

 In Praise of Computer Organization and Design: The Hardware/

Software Interface, Sixth Edition

 “With general purpose and specialized processors present in many aspects of
everyday life, it is now more important than ever, that the next generation of
computer engineers understand how computers compute and also the many
tradeo� s and optimizations necessary to build fast energy-e� cient machines. For
several generations of students, Computer Organization and Design by Patterson
and Hennesey has served as the gateway into the complex world of hardware/
so� ware interfaces; the memory hierarchy; and the bene� ts and hazards of
pipelining (pun intended).”

 —Mark Hempstead, Tu� s University

 “ Computer Organization and Design is the computer architecture book for your
(virtual) bookshelf. � e book is both timeless and new, as it complements venerable
principles—Moore’s Law, abstraction, common case fast, redundancy, memory
hierarchies, parallelism, and pipelining—with emerging trends from good (e.g.,
architectures targeting deep learning) to bad (processor core cyberattacks).”

 —Mark D. Hill, University of Wisconsin-Madison

 “� e new edition of Computer Organization and Design keeps pace with advances
in emerging processor architectures and applications, where AI, security and
virtualization will be supported on open instruction set architectures (e.g., RISC-V).
� is text acknowledges these changes, but continues to provide a rich foundation
of the fundamentals in Computer Organization and Design which will be needed
for the designers of hardware and so� ware that will power next generation secure,
performant and e� cient systems.”

 —Dave Kaeli, Northeastern University

 “� ere are timeless principles in computer system design, which are essential to
understand the organization and performance of any computer architecture. Based
on these principles and using a unique pedagogical approach, Patterson and Hennessy
present the evolution of computer architecture from uniprocessors to the latest
innovations on domain-speci� c architectures. � e inclusion of the Google TPU
supercomputer as an example of DNN-DSA in this new edition, heralds the rise of a
new generation of computer architects.”

 —Euripides Montagne, University of Central Florida

 “ Computer Organization and Design is the ultimate classic textbook that is still current
and applicable. It is very readable, and provides valuable insight into the hardware/
so� ware interface, which is useful both for future hardware engineers and for so� ware
developers interested in improving performance and energy-e� ciency. � e MIPS
architecture is ideal for teaching computer organization. It is straightforward, yet closely
resembles both ARM and RISC-V.”

 —Tali Moreshet, Boston University

This page intentionally left blank

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 S I X T H E D I T I O N

 David A. Patterson has been teaching computer architecture at the University of
California, Berkeley, since joining the faculty in 1977, where he held the Pardee Chair
of Computer Science. His teaching has been honored by the Distinguished Teaching
Award from the University of California, the Karlstrom Award from ACM, and the
Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson
received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award
for contributions to RISC, and he shared the IEEE Johnson Information Storage Award
for contributions to RAID. He also shared the IEEE John von Neumann Medal and
the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of both
AAAS organizaitons, the Computer History Museum, ACM, and IEEE, and he was
elected to the National Academy of Engineering, the National Academy of Sciences,
and the Silicon Valley Engineering Hall of Fame. He served as chair of the CS division
in the Berkeley EECS department, as chair of the Computing Research Association,
and as President of ACM. � is record led to Distinguished Service Awards from ACM
and CRA. He received the Tapia Achievement Award for Civic Science and Diversifying
Computing and shared the 2017 ACM A.M. Turing Award with Hennessy.

 At Berkeley, Patterson led the design and implementation of RISC I, likely the � rst
VLSI reduced instruction set computer, and the foundation of the commercial SPARC
architecture. He was a leader of the Redundant Arrays of Inexpensive Disks (RAID)
project, which led to dependable storage systems from many companies. He was
also involved in the Network of Workstations (NOW) project, which led to cluster
technology used by Internet companies and later to cloud computing. � ese projects
earned three dissertation awards from ACM. In 2016 he became Professor Emeritus at
Berkeley and a Distinguished Engineer at Google, where he works on domain speci� c
architectures for machine learning. He is also the Vice Chair of RISC-V International
and the Director of the RISC-V International Open Source Laboratory.

 John L. Hennessy was the tenth president of Stanford University, where he has
been a member of the faculty since 1977 in the departments of electrical engineering
and computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the
National Academy of Engineering, the National Academy of Science, and the American
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences.
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000
John von Neumann Award, which he shared with David Patterson. In 2017 they shared
the ACM A.M. Turing Award. He has also received seven honorary doctorates.

 In 1981, he started the MIPS project at Stanford with a handful of graduate students.
A� er completing the project in 1984, he took a leave from the university to cofound
MIPS Computer Systems (now MIPS Technologies), which developed one of the � rst
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have
been shipped in devices ranging from video games and palmtop computers to laser printers
and network switches. Hennessy subsequently led the DASH (Director Architecture
for Shared Memory) project, which prototyped the � rst scalable cache coherent
multiprocessor; many of the key ideas have been adopted in modern multiprocessors.
In addition to his technical activities and university responsibilities, he has continued to
work with numerous start-ups both as an early-stage advisor and an investor.

He is currently director of Knight-Hennessy Scholars and serves as non-executive
chairman of Alphabet.

 Computer Organization and Design

 T H E H A R D W A R E / S O F T W A R E I N T E R F A C E

 David A. Patterson

 University of California, Berkeley

Google, Inc.

 John L. Hennessy

 Stanford University

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

 Morgan Kaufmann is an imprint of Elsevier

 S I X T H E D I T I O N

 Library of Congress Cataloging-in-Publication Data

 British Library Cataloguing-in-Publication Data

 A catalogue record for this book is available from the British Library

 ISBN: 978-0-12-820109-1

 Senior Acquisitions Editor: Stephen R. Merken

 Content Development Specialist: Beth LoGiudice

 Project Manager: Beula Christopher

 Designer: Patrick Ferguson

 Morgan Kaufmann is an imprint of Elsevier

 � e Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB

 225 Wyman Street, Waltham, MA 02451, USA

 Copyright © 2021 Elsevier Inc. All rights reserved

 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including

photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how

to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the

Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

 � is book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted

herein).

 Notices

 Knowledge and best practice in this � eld are constantly changing. As new research and experience broaden our understanding, changes in

research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience

and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be

mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

 To the fullest extent of the law, neither the publisher nor the authors, contributors, or editors, assume any liability for any injury and/

or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

 For information on all MK publications visit our

website at www.mkp.com

 Printed in the United States of America

www.elsevier.com/permissions
www.mkp.com

 To Linda,
who has been, is, and always will be the love of my life

This page intentionally left blank

Contents

Preface xv

C H A P T E R S

 1 Computer Abstractions and Technology 2

1.1 Introduction 3
1.2 Seven Great Ideas in Computer Architecture 10
1.3 Below Your Program 13
1.4 Under the Covers 16
1.5 Technologies for Building Processors and Memory 24
1.6 Performance 28
1.7 � e Power Wall 40
1.8 � e Sea Change: � e Switch from Uniprocessors to Multiprocessors 43
1.9 Real Stu� : Benchmarking the Intel Core i7 46
1.10 Going Faster: Matrix Multiply in Python 49
1.11 Fallacies and Pitfalls 50
1.12 Concluding Remarks 53
1.13 Historical Perspective and Further Reading 55
1.14 Self-Study 55
1.15 Exercises 59

 2 Instructions: Language of the Computer 66

2.1 Introduction 68
2.2 Operations of the Computer Hardware 69
2.3 Operands of the Computer Hardware 72
2.4 Signed and Unsigned Numbers 79
2.5 Representing Instructions in the Computer 86
2.6 Logical Operations 93
2.7 Instructions for Making Decisions 96
2.8 Supporting Procedures in Computer Hardware 102
2.9 Communicating with People 112
2.10 MIPS Addressing for 32-Bit Immediates and Addresses 118
2.11 Parallelism and Instructions: Synchronization 127
2.12 Translating and Starting a Program 129
2.13 A C Sort Example to Put It All Together 138

x Contents

2.14 Arrays versus Pointers 147
2.15 Advanced Material: Compiling C and Interpreting Java 151
2.16 Real Stu� : ARMv7 (32-bit) Instructions 151
2.17 Real Stu� : ARMv8 (64-bit) Instructions 155
2.18 Real Stu� : RISC-V Instructions 156
2.19 Real Stu� : x86 Instructions 157
2.20 Going Faster: Matrix Multiply in C 166
2.21 Fallacies and Pitfalls 167
2.22 Concluding Remarks 169
2.23 Historical Perspective and Further Reading 172
2.24 Self Study 172
2.25 Exercises 175

 3 Arithmetic for Computers 186

3.1 Introduction 188
3.2 Addition and Subtraction 188
3.3 Multiplication 193
3.4 Division 199
3.5 Floating Point 206
3.6 Parallelism and Computer Arithmetic: Subword Parallelism 232
3.7 Real Stu� : Streaming SIMD Extensions and Advanced Vector Exten-

sions in x86 234
3.8 Going Faster: Subword Parallelism and Matrix Multiply 235
3.9 Fallacies and Pitfalls 237
3.10 Concluding Remarks 241
3.11 Historical Perspective and Further Reading 245
3.12 Self Study 245
3.13 Exercises 248

 4 The Processor 254

4.1 Introduction 256
4.2 Logic Design Conventions 260
4.3 Building a Datapath 263
4.4 A Simple Implementation Scheme 271
4.5 A Multicycle Implementation 284
4.6 An Overview of Pipelining 285
4.7 Pipelined Datapath and Control 298
4.8 Data Hazards: Forwarding versus Stalling 315
4.9 Control Hazards 328
4.10 Exceptions 337
4.11 Parallelism via Instructions 344
4.12 Putting It All Together: � e Intel Core i7 6700 and ARM

Cortex-A53 358

 Contents xi

4.13 Going Faster: Instruction-Level Parallelism and Matrix Multiply 366
4.14 Advanced Topic: An Introduction to Digital Design Using a

Hardware Design Language to Describe and Model a Pipeline and
More Pipelining Illustrations 368

4.15 Fallacies and Pitfalls 369
4.16 Concluding Remarks 370
4.17 Historical Perspective and Further Reading 371
4.18 Self-Study 371
4.19 Exercises 372

 5 Large and Fast: Exploiting Memory Hierarchy 390

5.1 Introduction 392
5.2 Memory Technologies 396
5.3 � e Basics of Caches 401
5.4 Measuring and Improving Cache Performance 416
5.5 Dependable Memory Hierarchy 436
5.6 Virtual Machines 442
5.7 Virtual Memory 446
5.8 A Common Framework for Memory Hierarchy 472
5.9 Using a Finite-State Machine to Control a Simple Cache 479
5.10 Parallelism and Memory Hierarchies: Cache Coherence 484
5.11 Parallelism and Memory Hierarchy: Redundant Arrays of

Inexpensive Disks 488
5.12 Advanced Material: Implementing Cache Controllers 488
5.13 Real Stu� : � e ARM Cortex-A8 and Intel Core i7 Memory

Hierarchies 489
5.14 Going Faster: Cache Blocking and Matrix Multiply 494
5.15 Fallacies and Pitfalls 496
5.16 Concluding Remarks 500
5.17 Historical Perspective and Further Reading 501
5.18 Self-Study 501
5.19 Exercises 506

 6 Parallel Processors from Client to Cloud 524

6.1 Introduction 526
6.2 � e Di� culty of Creating Parallel Processing Programs 528
6.3 SISD, MIMD, SIMD, SPMD, and Vector 533
6.4 Hardware Multithreading 540
6.5 Multicore and Other Shared Memory Multiprocessors 543
6.6 Introduction to Graphics Processing Units 548
6.7 Domain Speci� c Architectures 555

xii Contents

6.8 Clusters, Warehouse Scale Computers, and Other Message-
Passing Multiprocessors 558

6.9 Introduction to Multiprocessor Network Topologies 563
6.10 Communicating to the Outside World: Cluster Networking 566
6.11 Multiprocessor Benchmarks and Performance Models 567
6.12 Real Stu� : Benchmarking the Google TPUv3 Supercomputer

and an NVIDIA Volta GPU Cluster 577
6.13 Going Faster: Multiple Processors and Matrix Multiply 586
6.14 Fallacies and Pitfalls 589
6.15 Concluding Remarks 592
6.16 Historical Perspective and Further Reading 594
6.17 Self Study 594
6.18 Exercises 596

A P P E N D I C E S

 A Assemblers, Linkers, and the SPIM Simulator A-610

A.1 Introduction A-611
A.2 Assemblers A-618
A.3 Linkers A-626
A.4 Loading A-627
A.5 Memory Usage A-628
A.6 Procedure Call Convention A-630
A.7 Exceptions and Interrupts A-641
A.8 Input and Output A-646
A.9 SPIM A-648
A.10 MIPS R2000 Assembly Language A-653
A.11 Concluding Remarks A-689
A.12 Exercises A-690

 B The Basics of Logic Design B-692

B.1 Introduction B-693
B.2 Gates, Truth Tables, and Logic Equations B-694
B.3 Combinational Logic B-699
B.4 Using a Hardware Description Language B-710
B.5 Constructing a Basic Arithmetic Logic Unit B-716
B.6 Faster Addition: Carry Lookahead B-728
B.7 Clocks B-738
B.8 Memory Elements: Flip-Flops, Latches, and Registers B-740
B.9 Memory Elements: SRAMs and DRAMs B-748
B.10 Finite-State Machines B-757

 Contents xiii

B.11 Timing Methodologies B-762
B.12 Field Programmable Devices B-768
B.13 Concluding Remarks B-769
B.14 Exercises B-770

Index I-1

O N L I N E C O N T E N T

 Graphics and Computing GPUs C-2

C.1 Introduction C-3
C.2 GPU System Architectures C-7
C.3 Programming GPUs C-12
C.4 Multithreaded Multiprocessor Architecture C-25
C.5 Parallel Memory System C-36
C.6 Floating Point Arithmetic C-41
C.7 Real Stu� : � e NVIDIA GeForce 8800 C-46
C.8 Real Stu� : Mapping Applications to GPUs C-55
C.9 Fallacies and Pitfalls C-72
C.10 Concluding Remarks C-76
C.11 Historical Perspective and Further Reading C-77

 Mapping Control to Hardware D-2

D.1 Introduction D-3
D.2 Implementing Combinational Control Units D-4
D.3 Implementing Finite-State Machine Control D-8
D.4 Implementing the Next-State Function with a Sequencer D-22
D.5 Translating a Microprogram to Hardware D-28
D.6 Concluding Remarks D-32
D.7 Exercises D-33

 Survey of Instruction Set Architectures

E.1 Introduction E-3
E.2 A Survey of RISC Architecture for Desktop, Server, and Embedded

Computers E-4
E.3 � e Intel 80x86 E-30
E.4 � e VAX Architecture E-50
E.5 � e IBM 360/370 Architecture for Mainframe Computers E-69
E.6 Historical Perspective and References E-73

Glossary G-1

Further Reading FR-1

C

D

E

This page intentionally left blank

 Preface

 � e most beautiful thing we can experience is the mysterious. It is the
source of all true art and science.

 Albert Einstein, What I Believe, 1930

 About This Book

 We believe that learning in computer science and engineering should re� ect
the current state of the � eld, as well as introduce the principles that are shaping
computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, energy, and, ultimately, the success of computer systems.

 Modern computer technology requires professionals of every computing
specialty to understand both hardware and so� ware. � e interaction between
hardware and so� ware at a variety of levels also o� ers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
so� ware, computer science or electrical engineering, the central ideas in computer
organization and design are the same. � us, our emphasis in this book is to show
the relationship between hardware and so� ware and to focus on the concepts that
are the basis for current computers.

 � e switch from uniprocessor to multicore microprocessors and the recent
emphasis on domain speci� c architectures con� rmed the soundness of this
perspective, given since the � rst edition. While programmers could ignore the
advice and rely on computer architects, compiler writers, and silicon engineers to
make their programs run faster or be more energy-e� cient without change, that
era is over. Our view is that for at least the next decade, most programmers are
going to have to understand the hardware/so� ware interface if they want programs
to run e� ciently on modern computers.

 � e audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

xvi Preface

 About the Other Book

 Some readers may be familiar with Computer Architecture: A Quantitative
Approach , popularly known as Hennessy and Patterson. (� is book in turn is
o� en called Patterson and Hennessy.) Our motivation in writing the earlier book
was to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeo� s. We used an approach
that combined examples and measurements, based on commercial systems, to
create realistic design experiences. Our goal was to demonstrate that computer
architecture could be learned using quantitative methodologies instead of a
descriptive approach. It was intended for the serious computing professional who
wanted a detailed understanding of computers.

 A majority of the readers for this book do not plan to become computer
architects. � e performance and energy e� ciency of future so� ware systems will
be dramatically a� ected, however, by how well so� ware designers understand the
basic hardware techniques at work in a system. � us, compiler writers, operating
system designers, database programmers, and most other so� ware engineers
need a � rm grounding in the principles presented in this book. Similarly,
hardware designers must understand clearly the e� ects of their work on so� ware
applications.

 � us, we knew that this book had to be much more than a subset of the material
in Computer Architecture , and the material was extensively revised to match the
di� erent audience. We were so happy with the result that the subsequent editions of
 Computer Architecture were revised to remove most of the introductory material;
hence, there is much less overlap today than with the � rst editions of both books.

 Changes for the Sixth Edition

 � ere is arguably been more change in the technology and business of computer
architecture since the � � h edition than there were for the � rst � ve:

 ■ � e slowing of Moore’s Law . A� er 50 years of biannual doubling of the
number of transistors per chip, Gordon Moore’s prediction no longer holds.
Semiconductor technology will still improve, but more slowly and less
predictably than in the past.

 ■ � e rise of Domain Speci� c Architectures (DSA) . In part due to the slowing of
Moore’s Law and in part due to the end of Dennard Scaling, general purpose
processors are only improving a few percent per year. Moreover, Amdahl’s
Law limits the practical bene� t of increasing the number of processors per
chip. In 2020, it is widely believed that the most promising path forward is
DSA. It doesn’t try to run everything well like general purpose processors, but
focuses on running programs of one domain much better than conventional
CPUs.

 ■ Microarchitecture as a security attack surface . Spectre demonstrated that
speculative out-of-order execution and hardware multithreading make

 Preface xvii

Chapter or Appendix Sections Software focus Hardware focus

1. Computer Abstractions

and Technology

1.1 to 1.12

 1.13 (History)

3. Arithmetic for Computers

3.1 to 3.5

 3.11 (History)

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation)

E. RISC Instruction-Set Architectures E.1 to E.6

2. Instructions: Language

of the Computer

2.1 to 2.14

 2.15 (Compilers & Java)

2.16 to 2.22

 2.23 (History)

4.6 (Pipelining Overview)

4.5 (Multicycle Implementation)

4.7 (Pipelined Datapath)

4.8 to 4.10 (Hazards, Exceptions)

4.11 to 4.13 (Parallel, Real Stuff)

 4.17 (History)

B. The Basics of Logic Design B.1 to B.13

D. Mapping Control to Hardware D.1 to D.6

A. Assemblers, Linkers, and

the SPIM Simulator

 C.1 to C.11

Read carefully

Review or read

Read if have time

Read for culture

Reference

 4.14 (Verilog Pipeline Control)

5. Large and Fast: Exploiting

Memory Hierarchy

5.1 to 5.10

 5.17 (History)

4.15 to 4.16 (Fallacies)

6. Parallel Process from Client

to Cloud

6.1 to 6.9

 6.10 (Clusters)

6.11 to 6.15

 6.16 (History)

3.6 to 3.8 (Subword Parallelism)

3.9 to 3.10 (Fallacies)

5.13 to 5.16

C. Graphics Processor Units

 A.1 to A.11

 5.12 (Verilog Cache Controller)

 5.11 (Redundant Arrays of

Inexpensive Disks)

xviii Preface

timing based side-channel attacks practical. Moreover, these are not due to
bugs that can be � xed, but a fundamental challenge to this style of processor
design.

 ■ Open instruction sets and open source implementations . � e opportunities
and impact of open source so� ware have come to computer architecture.
Open instruction sets like RISC-V enables organizations to build their own
processors without � rst negotiating a license, which has enabled open-
source implementations that are shared to freely download and use as well as
proprietary implementations of RISC-V. Open source so� ware and hardware
are a boon to academic research and instruction, allowing students to see and
enhance industrial strength technology.

 ■ � e re-virticalization of the information technology industry . Cloud computing
has led to no more than a half-dozen companies that provide computing
infrastructure for everyone to use. Much like IBM in the 1960s and 1970s,
these companies determine both the so� ware stack and the hardware that
they deploy. � e changes above have led to some of these “hyperscalers”
developing their own DSA and RISC-V chips for deployment in their clouds.

 � e sixth edition of COD re� ects these recent changes, updates all the examples
and � gures, responds to requests of instructors, plus adds a pedagogic improvement
inspired by textbooks I used to help my grandchildren with their math classes.

 ■ � e Going Faster section is now in every chapter. It starts with a Python
version in Chapter 1, whose poor performance inspires learning C and
then rewriting matrix multiply in C in Chapter 2. � e remaining chapters
accelerate matrix multiply by leveraging data level parallelism, instruction
level parallelism, thread level parallelism, and by adjusting memory accesses
to match the memory hierarchy of a modern server. � is computer has 512-
bit SIMD operations, speculative out-of-order execution, three levels of
caches, and 48 cores. All four optimizations add only 21 lines of C code yet
speedup matrix multiply by almost 50,000, cutting it from nearly 6 hours
in Python to less than 1 second in optimized C. If I were a student again,
this running example would inspire me to use C and learn the underlying
hardware concepts of this book.

 ■ With this edition, every chapter has a Self Study section that asks thought
provoking questions and supplies the answers a� erwards to help you evaluate
if you follow the material on your own.

 ■ Besides explaining that Moore’s Law and Dennard Scaling no longer hold,
we’ve de-emphasized Moore’s Law as a change agent that was prominent in
the � � h edition.

 ■ Chapter 2 has more material to emphasize that binary data has no inherent
meaning—the program determines the data type—not an easy concept for
beginners to grasp.

 Preface xix

 ■ Chapter 2 also includes a short description of the RISC-V as a contrasting
instruction set to MIPS alongside ARMv7, ARMv8, and x86. (� ere is also a
companion version of this book based on RISC-V instead of MIPS, and we’re
updating that with the other changes as well.)

 ■ � e benchmark example of Chapter 2 is upgraded to SPEC2017 from
SPEC2006.

 ■ At instructors’ request, we have restored the multi-cycle implementation
of MIPS as an online section in Chapter 4 between the single-cycle
implementation and the pipelined implementation. Some instructors � nd
these three steps an easier path to teach pipelining.

 ■ � e Putting It All Together examples of Chapters 4 and 5 were updated
to the recent ARM A53 microarchitecture and the Intel i7 6700 Skyelake
microarchitecture.

 ■ � e Fallacies and Pitfalls Sections of Chapters 5 and 6 added pitfalls around
hardware security attacks of Row Hammer and Spectre.

 ■ Chapter 6 has a new section introducing DSAs using Google’s Tensor
Processing Unit (TPU) version 1. Chapter 6’s Putting it All Together section
is updated to compare Google’s TPUv3 DSA supercomputer to a cluster of
NVIDIA Volta GPUs.

 Finally, we updated all the exercises in the book.
 While some elements changed, we have preserved useful book elements

from prior editions. To make the book work better as a reference, we still place
de� nitions of new terms in the margins at their � rst occurrence. � e book element
called “Understanding Program Performance” sections helps readers understand
the performance of their programs and how to improve it, just as the “Hardware/
So� ware Interface” book element helped readers understand the tradeo� s at this
interface. “� e Big Picture” section remains so that the reader sees the forest
despite all the trees. “Check Yourself ” sections help readers to con� rm their
comprehension of the material on the � rst time through with answers provided at
the end of each chapter. � is edition still includes the green MIPS reference card,
which was inspired by the “Green Card” of the IBM System/360. � is card should
be a handy reference when writing MIPS assembly language programs.

 Instructor Support

 We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, � gures from the book, lecture slides, and other
materials are available to adopters from the publisher. Check the publisher’s Web
site for more information:

 https://textbooks.elsevier.com/web/manuals.aspx?isbn=9780128201091

https://textbooks.elsevier.com/web/manuals.aspx?isbn=9780128201091

xx Preface

 Concluding Remarks

 If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher.

 � is edition is the third break in the long-standing collaboration between
Hennessy and Patterson, which started in 1989. � e demands of running one of
the world’s great universities meant that President Hennessy could no longer make
the substantial commitment to create a new edition. � e remaining author felt
once again like a tightrope walker without a safety net. Hence, the people in the
acknowledgments and Berkeley colleagues played an even larger role in shaping
the contents of this book. Nevertheless, this time around there is only one author
to blame for the new material in what you are about to read.

 Acknowledgments for the Sixth Edition

 With every edition of this book, we are very fortunate to receive help from many
readers, reviewers, and contributors. Each of these people has helped to make this
book better.

 Special thanks goes to Dr. Rimas Avizenis, who developed the various versions of
matrix multiply and supplied the performance numbers as well. I deeply appreciate
his continued help a� er he has graduated from UC Berkeley. As I worked with his
father while I was a graduate student at UCLA, it was a nice symmetry to work with
Rimas when he was a graduate student at UC Berkeley.

 I also wish to thank my longtime collaborator Randy Katz of UC Berkeley, who
helped develop the concept of great ideas in computer architecture as part of the
extensive revision of an undergraduate class that we did together.

 I’d like to thank David Kirk , John Nickolls , and their colleagues at NVIDIA
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm,
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov)
for writing the � rst in-depth appendix on GPUs. I’d like to express again my
appreciation to Jim Larus , recently named Dean of the School of Computer and
Communications Science at EPFL, for his willingness in contributing his expertise
on assembly language programming, as well as for welcoming readers of this book
with regard to using the simulator he developed and maintains.

 I am also very grateful to Jason Bakos of the University of South Carolina,
who updated and created new exercises agian for this edition. � e originals were
prepared for the fourth edition by Perry Alexander (� e University of Kansas);
 Javier Bruguera (Universidade de Santiago de Compostela); Matthew Farrens
(University of California, Davis); David Kaeli (Northeastern University); Nicole
Kaiyan (University of Adelaide); John Oliver (Cal Poly, San Luis Obispo); Milos
Prvulovic (Georgia Tech); and Jichuan Chang , Jacob Leverich , Kevin Lim , and
 Partha Ranganathan (all from Hewlett-Packard). � anks also to Peter J. Ashenden
(Ashenden Design Pty Ltd) for his involvement in previous editions.

 Additional thanks goes to Jason Bakos for developing the new lecture slides.

 Preface xxi

 I am grateful to the many instructors who have answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to
our plans for this and previous editions. � ey include the following individuals:
Focus Groups in 2012: Bruce Barton (Su� olk County Community College), Je�
Braun (Montana Tech), Ed Gehringer (North Carolina State), Michael Goldweber
(Xavier University), Ed Harcourt (St. Lawrence University), Mark Hill (University
of Wisconsin, Madison), Patrick Homer (University of Arizona), Norm Jouppi
(HP Labs), Dave Kaeli (Northeastern University), Christos Kozyrakis (Stanford
University), Zachary Kurmas (Grand Valley State University), Jae C. Oh (Syracuse
University), Lu Peng (LSU), Milos Prvulovic (Georgia Tech), Partha Ranganathan
(HP Labs), David Wood (University of Wisconsin), Craig Zilles (University of
Illinois at Urbana-Champaign). Surveys and Reviews: Mahmoud Abou-Nasr (Wayne
State University), Perry Alexander (� e University of Kansas), Hakan Aydin (George
Mason University), Hussein Badr (State University of New York at Stony Brook),
Mac Baker (Virginia Military Institute), Ron Barnes (George Mason University),
Douglas Blough (Georgia Institute of Technology), Kevin Bolding (Seattle Paci� c
University), Miodrag Bolic (University of Ottawa), John Bonomo (Westminster
College), Je� Braun (Montana Tech), Tom Briggs (Shippensburg University), Scott
Burgess (Humboldt State University), Fazli Can (Bilkent University), Warren R.
Carithers (Rochester Institute of Technology), Bruce Carlton (Mesa Community
College), Nicholas Carter (University of Illinois at Urbana-Champaign), Anthony
Cocchi (� e City University of New York), Don Cooley (Utah State University),
Robert D. Cupper (Allegheny College), Edward W. Davis (North Carolina State
University), Nathaniel J. Davis (Air Force Institute of Technology), Molisa Derk
(Oklahoma City University), Nathan B. Dodge (� e University of Texas at Dallas),
Derek Eager (University of Saskatchewan), Ernest Ferguson (Northwest Missouri
State University), Rhonda Kay Gaede (� e University of Alabama), Etienne M.
Gagnon (UQAM), Costa Gerousis (Christopher Newport University), Paul Gillard
(Memorial University of Newfoundland), Michael Goldweber (Xavier University),
Georgia Grant (College of San Mateo), Merrill Hall (� e Master’s College), Tyson
Hall (Southern Adventist University), Ed Harcourt (St. Lawrence University),
Justin E. Harlow (University of South Florida), Paul F. Hemler (Hampden-Sydney
College), Martin Herbordt (Boston University), Steve J. Hodges (Cabrillo College),
Kenneth Hopkinson (Cornell University), Dalton Hunkins (St. Bonaventure
University), Baback Izadi (State University of New York—New Paltz), Reza Jafari,
Robert W. Johnson (Colorado Technical University), Bharat Joshi (University
of North Carolina, Charlotte), Nagarajan Kandasamy (Drexel University), Rajiv
Kapadia, Ryan Kastner (University of California, Santa Barbara), E.J. Kim (Texas
A&M University), Jihong Kim (Seoul National University), Jim Kirk (Union
University), Geo� rey S. Knauth (Lycoming College), Manish M. Kochhal (Wayne
State), Suzan Koknar-Tezel (Saint Joseph’s University), Angkul Kongmunvattana
(Columbus State University), April Kontostathis (Ursinus College), Christos
Kozyrakis (Stanford University), Danny Krizanc (Wesleyan University), Ashok
Kumar, S. Kumar (� e University of Texas), Zachary Kurmas (Grand Valley State
University), Robert N. Lea (University of Houston), Baoxin Li (Arizona State

xxii Preface

University), Li Liao (University of Delaware), Gary Livingston (University of
Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon Institute of Technology),
Yashwant K Malaiya (Colorado State University), Bill Mark (University of Texas
at Austin), Ananda Mondal (Cla� in University), Euripides Montagne (University
of Central Florida), Tali Moreshet (Boston University), Alvin Moser (Seattle
University), Walid Najjar (University of California, Riverside), Danial J. Neebel
(Loras College), John Nestor (Lafayette College), Jae C. Oh (Syracuse University),
Joe Oldham (Centre College), Timour Paltashev, James Parkerson (University of
Arkansas), Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted Pedersen
(University of Minnesota), Lu Peng (Louisiana State University), Gregory D
Peterson (� e University of Tennessee), Milos Prvulovic (Georgia Tech), Partha
Ranganathan (HP Labs), Dejan Raskovic (University of Alaska, Fairbanks) Brad
Richards (University of Puget Sound), Roman Rozanov, Louis Rubin� eld (Villanova
University), Md Abdus Salam (Southern University), Augustine Samba (Kent State
University), Robert Schaefer (Daniel Webster College), Carolyn J. C. Schauble
(Colorado State University), Keith Schubert (CSU San Bernardino), William
L. Schultz, Kelly Shaw (University of Richmond), Shahram Shirani (McMaster
University), Scott Sigman (Drury University), Bruce Smith, David Smith, Je� W.
Smith (University of Georgia, Athens), Mark Smotherman (Clemson University),
Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M), Timothy
D. Stanley (Brigham Young University), Dean Stevens (Morningside College),
Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander Taubin
(Boston University), Will � acker (Winthrop University), Mithuna � ottethodi
(Purdue University), Manghui Tu (Southern Utah University), Dean Tullsen
(UC San Diego), Rama Viswanathan (Beloit College), Ken Vollmar (Missouri
State University), Guoping Wang (Indiana-Purdue University), Patricia Wenner
(Bucknell University), Kent Wilken (University of California, Davis), David Wolfe
(Gustavus Adolphus College), David Wood (University of Wisconsin, Madison),
Ki Hwan Yum (University of Texas, San Antonio), Mohamed Zahran (City College
of New York), Amr Zaky (Santa Clara University), Gerald D. Zarnett (Ryerson
University), Nian Zhang (South Dakota School of Mines & Technology), Xiaoyu
Zhang (California State University San Marcos), Jiling Zhong (Troy University),
Huiyang Zhou (� e University of Central Florida), Weiyu Zhu (Illinois Wesleyan
University).

 A special thanks also goes to Mark Smotherman for making multiple passes to
� nd technical and writing glitches that signi� cantly improved the quality of this
edition.

 We wish to thank the extended Morgan Kaufmann family for agreeing to publish
this book again under the able leadership of Steve Merken and Beth LoGiudice : I
certainly couldn’t have completed the book without them. We also want to extend
thanks to Beula Christopher , who managed the book production process, and
 Patrick Ferguson , who did the cover design.

 � e contributions of the nearly 150 people we mentioned here have helped
make this sixth edition what I hope will be our best book yet. Enjoy!

 David A. Patterson

This page intentionally left blank

 Computer

Abstractions and

Technology

 1.1 Introduction 3

 1.2 Seven Great Ideas in Computer

Architecture 10

 1.3 Below Your Program 13

 1.4 Under the Covers 16

 1.5 Technologies for Building Processors and

Memory 24

 Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.

 Alfred North Whitehead,

 An Introduction to Mathematics , 1911

 1

 1.6 Performance 28

 1.7 The Power Wall 40

 1.8 The Sea Change: The Switch from Uniprocessors to

Multiprocessors 43

 1.9 Real Stuff: Benchmarking the Intel Core i7 46

 1.10 Going Faster: Matrix Multiply in Python 49

 1.11 Fallacies and Pitfalls 50

 1.12 Concluding Remarks 53

 1.13 Historical Perspective and Further Reading 55

 1.14 Self-Study 55

 1.15 Exercises 59

 1.1 Introduction

 Welcome to this book! We’re delighted to have this opportunity to convey the
excitement of the world of computer systems. � is is not a dry and dreary � eld,
where progress is glacial and where new ideas atrophy from neglect. No! Computers
are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product
of the United States, and whose economy has become dependent in part on the
rapid improvements in information technology. � is unusual industry embraces
innovation at a breathtaking rate. In the last 40 years, there have been a number
of new computers whose introduction appeared to revolutionize the computing
industry; these revolutions were cut short only because someone else built an even
better computer.

 � is race to innovate has led to unprecedented progress since the inception
of electronic computing in the late 1940s. Had the transportation industry kept
pace with the computer industry, for example, today we could travel from New
York to London in a second for a penny. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in San
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.

4 Chapter 1 Computer Abstractions and Technology

 Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolutions.
� e resulting multiplication of humankind’s intellectual strength and reach
naturally has a� ected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. � ere is now a new vein of scienti� c
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

 � e computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications that
were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science � ction.”

 ■ Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars was
ludicrous. Today, computers reduce pollution, improve fuel e� ciency via
engine controls, and increase safety through nearly automated driving and
air bag in� ation to protect occupants in a crash.

 ■ Cell phones: Who would have dreamed that advances in computer
systems would lead to more than half of the planet having mobile phones,
allowing person-to-person communication to almost anyone anywhere in
the world?

 ■ Human genome project: � e cost of computer equipment to map and analyze
human DNA sequences was hundreds of millions of dollars. It’s unlikely that
anyone would have considered this project had the computer costs been 10
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,
costs continue to drop; you will soon be able to acquire your own genome,
allowing medical care to be tailored to you.

 ■ World Wide Web: Not in existence at the time of the � rst edition of this book,
the web has transformed our society. For many, the web has replaced libraries
and newspapers.

 ■ Search engines: As the content of the web grew in size and in value, � nding
relevant information became increasingly important. Today, many people
rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

 Clearly, advances in this technology now a� ect almost every aspect of our
society. Hardware advances have allowed programmers to create wonderfully
useful so� ware, which explains why computers are omnipresent. Today’s science
� ction suggests tomorrow’s killer applications: already on their way are glasses that
augment reality, the cashless society, and cars that can drive themselves.

 1.1 Introduction 5

 Classes of Computing Applications and Their

Characteristics

 Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these di� erent applications have di� erent design requirements
and employ the core hardware technologies in di� erent ways. Broadly speaking,
computers are used in three di� erent classes of applications.

 Personal computers (PCs) in the form of laptops are possibly the best known
form of computing, which readers of this book have likely used extensively. Personal
computers emphasize delivery of good performance to single users at low cost and
usually execute third-party so� ware. � is class of computing drove the evolution of
many computing technologies, which is only about 40 years old!

 Servers are the modern form of what were once much larger computers, and
are usually accessed only via a network. Servers are oriented to carrying large
workloads, which may consist of either single complex applications—usually a
scienti� c or engineering application—or handling many small jobs, such as would
occur in building a large web server. � ese applications are usually based on
so� ware from another source (such as a database or simulation system), but are
o� en modi� ed or customized for a particular function. Servers are built from the
same basic technology as desktop computers, but provide for greater computing,
storage, and input/output capacity. In general, servers also place a greater emphasis
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

 Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and cost
a thousand dollars. � ese low-end servers are typically used for � le storage, small
business applications, or simple web serving (see Section 6.11). At the other extreme
are supercomputers , which at the present consist of hundreds of thousands of
processors and many terabytes of memory, and cost tens to hundreds of millions
of dollars. Supercomputers are usually used for high-end scienti� c and engineering
calculations, such as weather forecasting, oil exploration, protein structure
determination, and other large-scale problems. Although such supercomputers
represent the peak of computing capability, they represent a relatively small fraction
of the servers and a relatively small fraction of the overall computer market in
terms of total revenue.

 Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the
microprocessors found in your car, the computers in a television set, and the
networks of processors that control a modern airplane or cargo ship. A popular
term today is Internet of � ings (IoT), which suggests many small devices that
all communicate wirelessly over the Internet. Embedded computing systems are
designed to run one application or one set of related applications that are normally
integrated with the hardware and delivered as a single system; thus, despite the
large number of embedded computers, most users never really see that they are
using a computer!

 personal computer
(PC) A computer
designed for use by
an individual, usually
incorporating a graphics
display, a keyboard, and a
mouse.

 server A computer
used for running
larger programs for
multiple users, o� en
simultaneously, and
typically accessed only via
a network.

 terabyte (TB) Originally
1,099,511,627,776
(2 40) bytes, although
communications and
secondary storage
systems developers
started using the term to
mean 1,000,000,000,000
(10 12) bytes. To reduce
confusion, we now use the
term tebibyte (TiB) for
2 40 bytes, de� ning terabyte
(TB) to mean 10 12 bytes.
 Figure 1.1 shows the full
range of decimal and
binary values and names.

 supercomputer A class
of computers with the
highest performance and
cost; they are con� gured
as servers and typically
cost tens to hundreds of
millions of dollars.

 embedded computer
 A computer inside another
device used for running
one predetermined
application or collection of
so� ware.

6 Chapter 1 Computer Abstractions and Technology

 Embedded applications o� en have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary
to handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers o� en have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in a
plane or cargo ship crashes). In consumer-oriented embedded applications, such as
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded
systems, techniques of redundancy from the server world are o� en employed.
Although this book focuses on general-purpose computers, most concepts apply
directly, or with slight modi� cations, to embedded computers.

 Elaboration : Elaborations are short sections used throughout the text to provide more

detail on a particular subject that may be of interest. Disinterested readers may skip

over an Elaboration , since the subsequent material will never depend on the contents

of the Elaboration .

 Many embedded processors are designed using processor cores , a version of a

processor written in a hardware description language, such as Verilog or VHDL (see

Chapter 4). The core allows a designer to integrate other application-speci� c hardware

with the processor core for fabrication on a single chip.

 Welcome to the PostPC Era

 � e continuing march of technology brings about generational changes in computer
hardware that shake up the entire information technology industry. Since the
fourth edition of the book we have undergone such a change, as signi� cant in the

Decimal

term Abbreviation Value

Binary

term Abbreviation Value % Larger

kilobyte KB 1000 1 kibibyte KiB 210 2%

megabyte MB 1000 2 mebibyte MiB 220 5%

gigabyte GB 1000 3 gibibyte GiB 230 7%

terabyte TB 1000 4 tebibyte TiB 240 10%

petabyte PB 1000 5 pebibyte PiB 250 13%

exabyte EB 1000 6 exbibyte EiB 260 15%

zettabyte ZB 1000 7 zebibyte ZiB 270 18%

yottabyte YB 1000 8 yobibyte YiB 280 21%

ronnabyte RB 1000 9 robibyte RiB 290 24%

queccabyte QB 1000 10 quebibyte QiB 2100 27%

 FIGURE 1.1 The 2 X vs. 10 Y bytes ambiguity was resolved by adding a binary notation for all

the common size terms. In the last column we note how much larger the binary term is than its corresponding
decimal term, which is compounded as we head down the chart. � ese pre� xes work for bits as well as bytes, so
 gigabit (Gb) is 10 9 bits while gibibits (Gib) is 2 30 bits. � e society that runs the metric system created the decimal
pre� xes, with the last two proposed only in 2019 in anticipation of the global capacity of storage systems. All the
names are derived from the entymology in Latin of the powers of 1000 that they represent.

 1.1 Introduction 7

past as the switch starting 40 years ago to personal computers. Replacing the PC
is the personal mobile device (PMD) . PMDs are battery operated with wireless
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,
users can download so� ware (“apps”) to run on them. Unlike PCs, they no longer
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen
or even speech input. Today’s PMD is a smart phone or a tablet computer, but
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time
of tablets and smart phones versus that of PCs and traditional cell phones.

 Taking over from the traditional server is Cloud Computing , which relies upon
giant datacenters that are now known as Warehouse Scale Computers (WSCs).
Companies like Amazon and Google build these WSCs containing 50,000 servers
and then let companies rent portions of them so that they can provide so� ware
services to PMDs without having to build WSCs of their own. Indeed, So� ware as
a Service (SaaS) deployed via the cloud is revolutionizing the so� ware industry just
as PMDs and WSCs are revolutionizing the hardware industry. Today’s so� ware
developers will o� en have a portion of their application that runs on the PMD and
a portion that runs in the Cloud.

 What You Can Learn in This Book

 Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating

0

200

400

600

800

1000

1200

1400

1600

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

M
ill

io
n
s

Cell phone

(excluding smart phones)

PC (excluding tablets)

Smart phone

Tablet

 FIGURE 1.2 The number manufactured per year of tablets and smart phones, which

refl ect the PostPC era, versus personal computers and traditional cell phones. Smart
phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. PCs, tablets, and
traditional cell phone categories are declining. � e peak volume years text are 2011 for cell phones, 2013 for
PCs, and 2014 for tablets. PCs fell from 20% of total units shipped in 2007 to 10% in 2018.

 Personal mobile
devices (PMDs) are
small wireless devices to
connect to the Internet;
they rely on batteries for
power, and so� ware is
installed by downloading
apps. Conventional
examples are smart
phones and tablets.

 So� ware as a Service
(SaaS) delivers so� ware
and data as a service over
the Internet, usually via
a thin program such as a
browser that runs on local
client devices, instead of
binary code that must be
installed, and runs wholly
on that device. Examples
include web search and
social networking.

 Cloud Computing refers
to large collections of
servers that provide services
over the Internet; some
providers rent dynamically
varying numbers of servers
as a utility.

8 Chapter 1 Computer Abstractions and Technology

successful so� ware. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. � us, programmers o� en
followed a simple credo: minimize memory space to make programs fast. In the
last two decades, advances in computer design and memory technology have
greatly reduced the importance of small memory size in most applications other
than those in embedded computing systems.

 Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature
of processors and the hierarchical nature of memories. Moreover, as we explain
in Section 1.7 , today’s programmers need to worry about energy e� ciency of
their programs running either on the PMD or in the Cloud, which also requires
understanding what is below your code. Programmers who seek to build
competitive versions of so� ware will therefore need to increase their knowledge of
computer organization.

 We are honored to have the opportunity to explain what’s inside this revolutionary
machine, unraveling the so� ware below your program and the hardware under the
covers of your computer. By the time you complete this book, we believe you will
be able to answer the following questions:

 ■ How are programs written in a high-level language, such as C or Java,
translated into the language of the hardware, and how does the hardware
execute the resulting program? Comprehending these concepts forms the
basis of understanding the aspects of both the hardware and so� ware that
a� ect program performance.

 ■ What is the interface between the so� ware and the hardware, and how does
so� ware instruct the hardware to perform needed functions? � ese concepts
are vital to understanding how to write many kinds of so� ware.

 ■ What determines the performance of a program, and how can a programmer
improve the performance? As we will see, this depends on the original
program, the so� ware translation of that program into the computer’s
language, and the e� ectiveness of the hardware in executing the program.

 ■ What techniques can be used by hardware designers to improve performance?
� is book will introduce the basic concepts of modern computer design. � e
interested reader will � nd much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach .

 ■ What techniques can be used by hardware designers to improve energy
e� ciency? What can the programmer do to help or hinder energy e� ciency?

 ■ What are the reasons for and the consequences of the switch from sequential
processing to parallel processing? � is book gives the motivation, describes
the current hardware mechanisms to support parallelism, and surveys the
new generation of “multicore” microprocessors (see Chapter 6).

 ■ Since the � rst commercial computer in 1951, what great ideas did computer
architects come up with that lay the foundation of modern computing?

 multicore
microprocessor
 A microprocessor
containing multiple
processors (“cores”) in a
single integrated circuit.

 1.1 Introduction 9

 Without understanding the answers to these questions, improving the
performance of your program on a modern computer or evaluating what features
might make one computer better than another for a particular application will be
a complex process of trial and error, rather than a scienti� c procedure driven by
insight and analysis.

 � is � rst chapter lays the foundation for the rest of the book. It introduces the
basic ideas and de� nitions, places the major components of so� ware and hardware
in perspective, shows how to evaluate performance and energy, introduces
integrated circuits (the technology that fuels the computer revolution), and explains
the shi� to multicores.

 In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the
terminology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
 acronyms , which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted de� nition
of every term in the margins the � rst time it appears in the text. A� er a short
time of working with the terminology, you will be � uent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIe, SATA, and many others.

 To reinforce how the so� ware and hardware systems used to run a program will
a� ect performance, we use a special section, Understanding Program Performance ,
throughout the book to summarize important insights into program performance.
� e � rst one appears below.

 � e performance of a program depends on a combination of the e� ectiveness of the
algorithms used in the program, the so� ware systems used to create and translate
the program into machine instructions, and the e� ectiveness of the computer in
executing those instructions, which may include input/output (I/O) operations.
� is table summarizes how the hardware and so� ware a� ect performance.

 Hardware or software

component How this component affects performance

 Where is this

topic covered?

 Algorithm Determines both the number of source-level

statements and the number of I/O operations

executed

 Other books!

 Programming language,

compiler, and architecture

 Determines the number of computer instructions

for each source-level statement

 Chapters 2 and 3

 Processor and memory

system

 Determines how fast instructions can be executed Chapters 4, 5, and 6

 I/O system (hardware and

operating system)

 Determines how fast I/O operations may be

executed

 Chapters 4, 5, and 6

 acronym A word
constructed by taking the
initial letters of a string
of words. For example:
 RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

Understanding

Program

Performance

10 Chapter 1 Computer Abstractions and Technology

 Check Yourself sections are designed to help readers assess whether they
comprehend the major concepts introduced in a chapter and understand the
implications of those concepts. Some Check Yourself questions have simple answers;
others are for discussion among a group. Answers to the speci� c questions can
be found at the end of the chapter. Check Yourself questions appear only at the
end of a section, making it easy to skip them if you are sure you understand the
material.

 1. � e number of embedded processors sold every year greatly outnumbers
the number of PC and even PostPC processors. Can you con� rm or deny
this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of conventional computers in your home?

 2. As mentioned earlier, both the so� ware and hardware a� ect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

 ■ � e algorithm chosen

 ■ � e programming language or compiler

 ■ � e operating system

 ■ � e processor

 ■ � e I/O system and devices

 1.2
 Seven Great Ideas in Computer

Architecture

 We now introduce seven great ideas that computer architects have been invented in
the last 60 years of computer design. � ese ideas are so powerful they have lasted
long a� er the � rst computer that used them, with newer architects demonstrating
their admiration by imitating their predecessors. � ese great ideas are themes that
we will weave through this and subsequent chapters as examples arise. To point
out their in� uence, in this section we introduce icons and highlighted terms that
represent the great ideas and we use them to identify the nearly 100 sections of the
book that feature use of the great ideas.

 Use Abstraction to Simplify Design

 Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew. A major productivity technique for hardware
and so� ware is to use abstractions to represent the design at di� erent levels of

Check

Yourself

 1.2 Eight Great Ideas in Computer Architecture 11

representation; lower-level details are hidden to o� er a simpler model at higher
levels. We’ll use the abstract painting icon to represent this second great idea.

 Make the Common Case Fast

 Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is o� en simpler than
the rare case and hence is o� en easier to enhance. � is common sense advice
implies that you know what the common case is, which is only possible with
careful experimentation and measurement (see Section 1.6). We use a sports
car as the icon for making the common case fast, as the most common trip has
one or two passengers, and it’s surely easier to make a fast sports car than a fast
minivan!

 Performance via Parallelism

 Since the dawn of computing, computer architects have o� ered designs that get
more performance by performing operations in parallel. We’ll see many examples
of parallelism in this book. We use multiple jet engines of a plane as our icon for
 parallel performance .

 Performance via Pipelining

 A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining . For example, before � re engines, a “bucket
brigade” would respond to a � re, which many cowboy movies show in response to
a dastardly act by the villain. � e townsfolk form a human chain to carry a water
source to � re, as they could much more quickly move buckets up the chain instead
of individuals running back and forth. Our pipeline icon is a sequence of pipes,
with each section representing one stage of the pipeline.

 Performance via Prediction

 Following the saying that it can be better to ask for forgiveness than to ask for
permission, the next great idea is prediction . In some cases it can be faster on
average to guess and start working rather than wait until you know for sure,
assuming that the mechanism to recover from a misprediction is not too expensive
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

 Hierarchy of Memories

 Programmers want memory to be fast, large, and cheap, as memory speed o� en
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is o� en the majority of computer cost. Architects have found
that they can address these con� icting demands with a hierarchy of memories , with

12 Chapter 1 Computer Abstractions and Technology

the fastest, smallest, and most expensive memory per bit at the top of the hierarchy
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in
Chapter 5, caches give the programmer the illusion that main memory is nearly
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of
the hierarchy. We use a layered triangle icon to represent the memory hierarchy.
� e shape indicates speed, cost, and size: the closer to the top, the faster and more
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

 Dependability via Redundancy

 Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our icon, since the dual tires on each side of its rear axles allow the truck to continue
driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the � at tire can be � xed, thereby restoring redundancy!)

 In the prior edition , we listed an eighth great idea, which was “Designing for
Moore’s Law.” Gordon Moore, one of the founders of Intel, made a remarkable
prediction in 1965: integrated circuit resources would double every year. A decade
later he amended his prediction to doubling every 2 years.

 His prediction was accurate, and for 50 years, Moore’s Law shaped computer
architecture. As computer designs can take years, the resources available per chip
(“transistors”; see page 24) could easily double or triple between the start and � nish
of the project. Like a skeet shooter, computer architects had to anticipate where the
technology would be when the design � nishes rather than design for when it starts.

 Alas, no exponential growth can last forever, and Moore’s Law is no longer
accurate. � e slowing of Moore’s Law is shocking for computer designers who have
long leveraged it. Some do not want to believe it is over, despite the substantial
evidence to the contrary. Part of the reason is confusion between saying that
Moore’s prediction of the biannual doubling rate is now incorrect and claiming that
semiconductors will no longer improve. Semiconductor technology will continue
to improve, but more slowly than in the past. Starting with this edition, we will
discuss the implications of the slowing of Moore’s Law, especially in Chapter 6.

 Elaboration: During the heydays of Moore’s Law, the cost per chip resource would drop

with each new technology generation. In the latest technologies, the cost per resource

may be � at or even rising with each new generation, due to the cost of the new equipment,

the elaborate processes invented to make chips work at these � ner feature sizes, and

the reduction of the number of companies who are investing in these new technologies

to push the state-of-the-art. Less competition naturally leads to higher prices.

 1.3 Below Your Program 13

 1.3 Below Your Program

 A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated so� ware libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of so� ware that interpret or translate high-level operations into simple computer
instructions, an example of the great idea of abstraction .

 Figure 1.3 shows that these layers of so� ware are organized primarily in a
hierarchical fashion, with applications being the outermost ring and a variety of
 systems so� ware sitting between the hardware and applications so� ware.

 � ere are many types of systems so� ware, but two types of systems so� ware
are central to every computer system today: an operating system and a compiler.
An operating system interfaces between a user’s program and the hardware
and provides a variety of services and supervisory functions. Among the most
important functions are:

 ■ Handling basic input and output operations

 ■ Allocating storage and memory

 ■ Providing for protected sharing of the computer among multiple applications
using it simultaneously.

 Examples of operating systems in use today are Linux, iOS, Android, and Windows.

 In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

 Mark Twain, � e
Innocents Abroad , 1869

 systems so� ware
 So� ware that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

 operating system
 Supervising program that
manages the resources of
a computer for the bene� t
of the programs that run
on that computer.

Applications software

S

ys
tems software

Hardware

 FIGURE 1.3 A simplifi ed view of hardware and software as hierarchical layers, shown as

concentric circles with hardware in the center and applications software outermost. In
complex applications, there are o� en multiple layers of application so� ware as well. For example, a database
system may run on top of the systems so� ware hosting an application, which in turn runs on top of the
database.

14 Chapter 1 Computer Abstractions and Technology

 Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C+ ++ +, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and in Appendix A .

 From a High-Level Language to the Language of Hardware

 To actually speak to electronic hardware, you need to send electrical signals. � e
easiest signals for computers to understand are on and o� , and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. � e two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
 binary numbers . We refer to each “letter” as a binary digit or bit . Computers are
slaves to our commands, which are called instructions . Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

 1000110010100000

 tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

 � e � rst programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At � rst, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. � e � rst of
these programs was named an assembler . � is program translates a symbolic version
of an instruction into the binary version. For example, the programmer would write

 add A,B

 and the assembler would translate this notation into

 1000110010100000

 � is instruction tells the computer to add the two numbers A and B . � e name coined
for this symbolic language, still used today, is assembly language . In contrast, the
binary language that the machine understands is the machine language .

 Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate � uid � ow or that an accountant
might use to balance the books. Assembly language requires the programmer
to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.

 compiler A program
that translates high-level
language statements
into assembly language
statements.

 binary digit Also called
a bit . One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

 instruction A command
that computer hardware
understands and obeys.

 assembler A program
that translates a symbolic
version of instructions
into the binary version.

 assembly language
 A symbolic representation
of machine instructions.

 machine language
 A binary representation of
machine instructions.

 1.3 Below Your Program 15

 � e recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers
that translate programs in such languages into instructions. Figure 1.4 shows the
relationships among these programs and languages, which are more examples of
the power of abstraction .

 high-level programming

language A portable
language such as C, C+ +,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

swap(int v[], int k)

{int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

swap:

 multi $2, $5,4

 add $2, $4,$2

 lw $15, 0($2)

 lw $16, 4($2)

 sw $16, 0($2)

 sw $15, 4($2)

 jr $31

00000000101000100000000100011000

00000000100000100001000000100001

10001101111000100000000000000000

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

Assembler

Compiler

Binary machine

language

program

(for MIPS)

Assembly

language

program

(for MIPS)

High-level

language

program

(in C)

 FIGURE 1.4 C program compiled into assembly language and then assembled into binary

machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
� ese languages and this program are examined in more detail in Chapter 2.

16 Chapter 1 Computer Abstractions and Technology

 A compiler enables a programmer to write this high-level language expression:

 A + B

 � e compiler would compile it into this assembly language statement:

 add A,B

 As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B .

 High-level programming languages o� er several important bene� ts. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scienti� c
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. � ere are also domain-speci� c languages for even narrower groups of
users, such as those interested in machine learning, for example.

 � e second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in so� ware development
is that it takes less time to develop programs when they are written in languages
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

 � e � nal advantage is that programming languages allow programs to be
independent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions of
any computer. � ese three advantages are so strong that today little programming
is done in assembly language.

 1.4 Under the Covers

 Now that we have looked below your program to uncover the underlying so� ware,
let’s open the covers of your computer to learn about the underlying hardware. � e
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
di� erent parts of these four tasks.

 When we come to an important point in this book, a point so important that
we hope you will remember it forever, we emphasize it by identifying it as a Big
Picture item. We have about a dozen Big Pictures in this book, the � rst being the
� ve components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

 Two key components of computers are input devices , such as the microphone,
and output devices , such as the speaker. As the names suggest, input feeds the

 input device
 A mechanism through
which the computer is
fed information, such as a
keyboard.

 output device
 A mechanism that
conveys the result of a
computation to a user,
such as a display, or to
another computer.

 1.4 Under the Covers 17

computer, and output is the result of computation sent to the user. Some devices,
such as wireless networks, provide both input and output to the computer.

 Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s
take an introductory tour through the computer hardware, starting with the
external I/O devices.

The BIG

Picture

 � e � ve classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
� is organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these � ve
categories. To help you keep all this in perspective, the � ve components of
a computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

 FIGURE 1.5 The organization of a computer, showing the fi ve classic components. � e
processor gets instructions and data from memory. Input writes data to memory, and output reads data from
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

18 Chapter 1 Computer Abstractions and Technology

 Through the Looking Glass

 � e most fascinating I/O device is probably the graphics display. Most personal
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.
� e LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less o� en from re� ected light. � e rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three-
color components in the � nal image; in a color active matrix LCD, there are three
transistor switches at each point.

 � e image is composed of a matrix of picture elements, or pixels , which can
be represented as a matrix of bits, called a bit map . Depending on the size of the
screen and the resolution, the display matrix in a typical tablet ranges in size from
1024 � 768 to 2048 � 1536. A color display might use 8 bits for each of the three
colors (red, blue, and green), for 24 bits per pixel, permitting millions of di� erent
colors to be displayed.

 � e computer hardware support for graphics consists mainly of a raster refresh
bu� er , or frame bu� er , to store the bit map. � e image to be represented onscreen
is stored in the frame bu� er, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame bu� er with a simpli� ed design
of just 4 bits per pixel.

 � e goal of the bit map is to faithfully represent what is on the screen. � e
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

 liquid crystal display
 A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

 active matrix display
 A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

 pixel � e smallest
individual picture
element. Screens are
composed of hundreds
of thousands to millions
of pixels, organized in a
matrix.

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

 FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the

corresponding coordinate for the raster scan CRT display on the right. Pixel (X
0
, Y

0
) contains

the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X
1
, Y

1
).

 � rough computer
displays I have landed
an airplane on the
deck of a moving
carrier, observed a
nuclear particle hit a
potential well, � own
in a rocket at nearly
the speed of light and
watched a computer
reveal its innermost
workings.

 Ivan Sutherland, the
“father” of computer
graphics, Scienti� c
American , 1984

 1.4 Under the Covers 19

 Touchscreen

 While PCs also use LCD displays, the tablets and smartphones of the PostPC era
have replaced the keyboard and mouse with touch sensitive displays, which has
the wonderful user interface advantage of users pointing directly what they are
interested in rather than indirectly with a mouse.

 While there are a variety of ways to implement a touch screen, many tablets
today use capacitive sensing. Since people are electrical conductors, if an insulator
like glass is covered with a transparent conductor, touching distorts the electrostatic
� eld of the screen, which results in a change in capacitance. � is technology can
allow multiple touches simultaneously, which allows gestures that can lead to
attractive user interfaces.

 Opening the Box

 Figure 1.7 shows the contents of the Apple iPhone Xs Max smart phone.
Unsurprisingly, of the � ve classic components of the computer, I/O dominates
this device. � e list of I/O devices includes a capacitive multitouch LCD display,
front-facing camera, rear-facing camera, microphone, headphone jack, speakers,
accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. � e datapath,
control, and memory are a tiny portion of the components.

 � e small rectangles in Figure 1.8 contain the devices that drive our advancing
technology, called integrated circuits and nicknamed chips . � e A12 package seen
in the middle of in Figure 1.8 contains two large ARM processors and four little
ARM processors that operate with a clock rate of 2.5 GHz. � e processor is the active
part of the computer, following the instructions of a program to the letter. It adds
numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally,
people call the processor the CPU , for the more bureaucratic-sounding central
processor unit .

 Descending even lower into the hardware, Figure 1.9 reveals details of a
microprocessor. � e processor logically comprises two main components: datapath
and control, the respective brawn and brain of the processor. � e datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher performance design.

 � e iPhone Xs Max package in Figure 1.8 also includes a memory chip with 32
gibibits or 2 GiB of capacity. � e memory is where the programs are kept when
they are running; it also contains the data needed by the running programs. � e
memory is a DRAM chip. DRAM stands for dynamic random access memory .
DRAMs are used together to contain the instructions and data of a program. In
contrast to sequential access memories, such as magnetic tapes, the RAM portion
of the term DRAM means that memory accesses take basically the same amount of
time no matter what portion of the memory is read.

 integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

 central processor unit
(CPU) Also called
processor. � e active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

 datapath � e
component of the
processor that performs
arithmetic operations

 control � e component
of the processor that
commands the datapath,
memory, and I/O
devices according to
the instructions of the
program.

 memory � e storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

 dynamic random access
memory (DRAM)
 Memory built as an
integrated circuit; it
provides random access to
any location. Access times
are 50 nanoseconds and
cost per gigabyte in 2020
was $3 to $6.

20 Chapter 1 Computer Abstractions and Technology

 FIGURE 1.7 Components of the Apple iPhone Xs Max cell phone. At the le� is the capacitive multitouch
screen and LCD display. Next to it is the battery. To the far right is the metal frame that attaches the LCD
to the back of the iPhone. � e small components surrounding in the center are what we think of as the
computer; they are not simple rectangles to � t compactly inside the case next to the battery. Figure 1.8 shows
a close-up of the board to the le� of the metal case, which is the logic printed circuit board that contains the
processor and the memory (Courtesy TechInsights, www.techIngishts.com).

 FIGURE 1.8 � e logic board of Apple iPhone Xs Max in Figure 1.7 . � e large integrated circuit in the
middle is the Apple A12 chip, which contains two large ARM processor cores and four little ARM processor
cores that run at 2.5 GHz, as well as 2 GiB of main memory inside the package. Figure 1.9 shows a photograph
of the processor chip inside the A12 package. A similar-sized chip on a symmetric board attached to the
back is the 64 GiB � ash memory chip for nonvolatile storage. � e other chips on the board include power
management integrated controller and audio ampli� er chips (Courtesy TechInsights, www.techIngishts.com).

www.techIngishts.com
www.techIngishts.com

 1.4 Under the Covers 21

 Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache
memory. Cache memory consists of a small, fast memory that acts as a bu� er
for the DRAM memory. (� e nontechnical de� nition of cache is a safe place
for hiding things.) Cache is built using a di� erent memory technology, static
random access memory (SRAM) . SRAM is faster but less dense, and hence more
expensive, than DRAM (see Chapter 5). SRAM and DRAM are two layers of the
 memory hierarchy .

 static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

 FIGURE 1.9 � e processor integrated circuit inside the A12 package. � e size of chip is 8.4 by 9.91 mm, and
it was manufactured originally in a 7-nm process (see Section 1.5). It has two identical ARM big processors or
cores in the lower middle of the chip, four small cores on the lower right of the chip, a graphical processor unit
(GPU) on the far right (see Section 6.6), and a domain-speci� c accelerator for neural networks (see Section
6.7), called the NPU, on the far le� . In the middle are second-level cache memories (L2) for the big and
small cores (see Chapter 5). At the top and bottom of the chip are interfaces to main memory (DDR DRAM)
(Courtesy TechInsights, www.techinsights.com , and AnandTech, www.anandtech.com).

 cache memory A small,
fast memory that acts as a
bu� er for a slower, larger
memory.

www.techinsights.com
www.anandtech.com

22 Chapter 1 Computer Abstractions and Technology

 As mentioned above, one of the great ideas to improve design is abstraction.
One of the most important abstractions is the interface between the hardware and
the lowest-level so� ware. So� ware communicates to hardware via a vocabulary.
� e words of the vocabulary are called instructions, and the vocabulary itself is
called the instruction set architecture , or simply architecture , of a computer.
� e instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the
details of doing I/O, allocating memory, and other low-level system functions
so that application programmers do not need to worry about such details. � e
combination of the basic instruction set and the operating system interface
provided for application programmers is called the application binary interface
(ABI) .

 An instruction set architecture allows computer designers to talk about
functions independently from the hardware that performs them. For example,
we can talk about the functions of a digital clock (keeping time, displaying the
time, setting the alarm) independently from the clock hardware (quartz crystal,
LED displays, plastic buttons). Computer designers distinguish architecture from
an implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. � ese ideas bring us to another
Big Picture.

 instruction set
architecture Also
called architecture . An
abstract interface between
the hardware and the
lowest-level so� ware
that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O, and
so on.

 application binary
interface (ABI) � e user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
It de� nes a standard for
binary portability across
computers.

 Both hardware and so� ware consist of hierarchical layers using abstraction,
with each lower layer hiding details from the level above. One key interface
between the levels of abstraction is the instruction set architecture —the
interface between the hardware and low-level so� ware. � is abstract
interface enables many implementations of varying cost and performance
to run identical so� ware.

The BIG
Picture

 A Safe Place for Data

 � us far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile —that is, when it loses power,
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn o� the
power to the DVD player, and is thus a nonvolatile memory technology.

 To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and
programs between runs, the term main memory or primary memory is used for

 implementation
 Hardware that obeys the
architecture abstraction.

 volatile memory
 Storage, such as DRAM,
that retains data only if it
is receiving power.

 nonvolatile memory
 A form of memory that
retains data even in the
absence of a power source
and that is used to store
programs between runs.
A DVD disk is nonvolatile.

 1.4 Under the Covers 23

the former, and secondary memory for the latter. Secondary memory forms the
next lower layer of the memory hierarchy . DRAMs have dominated main memory
since 1975, but magnetic disks dominated secondary memory starting even earlier.
Because of their size and form factor, personal Mobile Devices use � ash memory ,
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip
containing the 64 GiB � ash memory of the iPhone Xs. While slower than DRAM,
it is much cheaper than DRAM in addition to being nonvolatile. Although costing
more per bit than disks, it is smaller, it comes in much smaller capacities, it is
more rugged, and it is more power e� cient than disks. Hence, � ash memory is
the standard secondary memory for PMDs. Alas, unlike disks and DRAM, � ash
memory bits wear out a� er 100,000 to 1,000,000 writes. � us, � le systems must
keep track of the number of writes and have a strategy to avoid wearing out storage,
such as by moving popular data. Chapter 5 describes disks and � ash memory in
more detail.

 Communicating with Other Computers

 We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device
or server without a network interface would be ridiculed. Networked computers
have several major advantages:

 ■ Communication : Information is exchanged between computers at high
speeds.

 ■ Resource sharing : Rather than each computer having its own I/O devices,
computers on the network can share I/O devices.

 ■ Nonlocal access : By connecting computers over long distances, users need not
be near the computer they are using.

 Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet . It can be
up to a kilometer long and transfer at up to 100 gigabits per second. Its length and
speed make Ethernet useful to connect computers on the same � oor of a building;
hence, it is an example of what is generically called a local area network . Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the web. � ey are typically based on optical � bers and are
leased from telecommunication companies.

 Networks have changed the face of computing in the last 40 years, both by
becoming much more ubiquitous and by making dramatic increases in performance.

 main memory Also
called primary memory .
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

 secondary memory
 Nonvolatile memory
used to store programs
and data between runs;
typically consists of � ash
memory in PMDs and
magnetic disks in servers.

 magnetic disk Also
called hard disk . A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material. Because they
are rotating mechanical
devices, access times are
about 5 to 20 milliseconds
and cost per gigabyte in
2020 was $0.01 to $0.02.

 � ash memory
 A nonvolatile semi-
conductor memory. It
is cheaper and slower
than DRAM but more
expensive per bit and
faster than magnetic disks.
Access times are about 5
to 50 microseconds and
cost per gigabyte in 2020
was $0.06 to $0.12.

 local area network
(LAN) A network
designed to carry data
within a geographically
con� ned area, typically
within a single building.

 wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

24 Chapter 1 Computer Abstractions and Technology

In the 1970s, very few individuals had access to electronic mail, the Internet and
web did not exist, and physically mailing magnetic tapes was the primary way to
transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

 As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the � rst standardized local area network technology,
developed about 40 years ago, was a version of Ethernet that had a maximum capacity
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if
not a hundred, computers. Today, local area network technology o� ers a capacity
of from 1 to 100 gigabits per second, usually shared by at most a few computers.
Optical communications technology has allowed similar growth in the capacity of
wide area networks, from hundreds of kilobits to gigabits and from hundreds of
computers connected to a worldwide network to millions of computers connected.
� is combination of dramatic rise in deployment of networking combined with
increases in capacity have made network technology central to the information
revolution of the last 30 years.

 For the last 15 years another innovation in networking is reshaping the way
computers communicate. Wireless technology is widespread, which enabled
the PostPC Era. � e ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a signi� cant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11ac, allow for
transmission rates from 1 to 1300 million bits per second. Wireless technology is
quite a bit di� erent from wire-based networks, since all users in an immediate area
share the airwaves.

 ■ Semiconductor DRAM memory, � ash memory, and disk storage di� er
signi� cantly. For each technology, list its volatility, approximate relative
access time, and approximate relative cost compared to DRAM.

 1.5
 Technologies for Building Processors

and Memory

 Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.10 shows the technologies that have
been used over time, with an estimate of the relative performance per unit cost for
each technology. Since this technology shapes what computers will be able to do
and how quickly they will evolve, we believe all computer professionals should be
familiar with the basics of integrated circuits.

 A transistor is simply an on/o� switch controlled by electricity. � e integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. When
Gordon Moore predicted the continuous doubling of resources, he was predicting

Check

Yourself

 transistor An on/o�
switch controlled by an
electric signal.

 1.5 Technologies for Building Processors and Memory 25

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1

1965 35

1975 Integrated circuit

Very large-scale integrated circuit

Ultra large-scale integrated circuit

Transistor

900

1995 2,400,000

2020 500,000,000,000

 FIGURE 1.10 Relative performance per unit cost of technologies used in computers over

time. Source: Computer Museum, Boston, with 2020 extrapolated by the authors. See Section 1.13 .

 1,000,000

 10,000,000

 100,000,000

1976 1978 1980 1982 1984 1986

Year of introduction

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

K
ib

ib
it
 c

a
p

a
c
it
y

16K

64K

256K

1M

4M

16M
64M

128M
256M

512M

1G 2G
4G

100,000

10,000

1000

100

10
2014 2016 2018 2020

8G
16G

 FIGURE 1.11 Growth of capacity per DRAM chip over time. � e y -axis is measured in kibibits (2 10 bits). � e DRAM industry
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat
closer to doubling every three years. With the slowing of Moore’s Law and di� culties in reliable manufacturing of smaller DRAM cells given
the challenging aspect ratios of their three-dimensional structure.

the growth rate of the number of transistors per chip. To describe the tremendous
increase in the number of transistors from hundreds to millions, the adjective very
large scale is added to the term, creating the abbreviation VLSI , for very large-scale
integrated circuit .

 � is rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For decades, the industry has consistently
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000
times! Figure 1.11 also shows the slowdown due to the slowing of Moore’s Law;
quadrupuling capacity has taken 6 years recently.

 To understand how manufacture integrated circuits, we start at the beginning.
� e manufacture of a chip begins with silicon , a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor . With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to
transform into one of three devices:

 ■ Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

 ■ Excellent insulators from electricity (like plastic sheathing or glass)

 ■ Areas that can conduct or insulate under special conditions (as a switch)

 very large-scale
integrated (VLSI)
circuit A device
containing hundreds of
thousands to millions of
transistors.

 silicon A natural
element that is a
semiconductor.

 semiconductor
 A substance that does not
conduct electricity well.

26 Chapter 1 Computer Abstractions and Technology

 Transistors fall in the last category. A VLSI circuit, then, is just billions of
combinations of conductors, insulators, and switches manufactured in a single
small package.

 � e manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.12 shows that process.
� e process starts with a silicon crystal ingot , which looks like a giant sausage.
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot
is � nely sliced into wafers no more than 0.1 inches thick. � ese wafers then go
through a series of processing steps, during which patterns of chemicals are placed
on each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

 silicon crystal ingot
 A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

 wafer A slice from a
silicon ingot no more than
0.1 inches thick, used to
create chips.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

 FIGURE 1.12 The chip manufacturing process. A� er being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). � ese patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. � en, the wafers are diced into dies (see
 Figure 1.9). In this � gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
� e yield of good dies in this case was 17/20, or 85%. � ese good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this � nal test.

 A single microscopic � aw in the wafer itself or in one of the dozens of patterning
steps can result in that area of the wafer failing. � ese defects , as they are called,
make it virtually impossible to manufacture a perfect wafer. � e simplest way to
cope with imperfection is to place many independent components on a single
wafer. � e patterned wafer is then chopped up, or diced, into these components,
called dies and more informally known as chips . Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

 Dicing enables you to discard only those dies that were unlucky enough to
contain the � aws, rather than the whole wafer. � is concept is quanti� ed by the

 defect A microscopic
� aw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

 die � e individual
rectangular sections that
are cut from a wafer, more
informally known as
 chips .

 1.5 Technologies for Building Processors and Memory 27

 yield of a process, which is de� ned as the percentage of good dies from the total
number of dies on the wafer.

 � e cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that � t on a wafer. To reduce the
cost, using the next generation process shrinks a large die as it uses smaller sizes
for both transistors and wires. � is improves the yield and the die count per wafer.
A 7-nanometer (nm) process was state-of-the-art in 2020, which means essentially
that the smallest feature size on the die is 7 nm.

 Once you’ve found good dies, they are connected to the input/output pins of a
package, using a process called bonding . � ese packaged parts are tested a � nal time,
since mistakes can occur in packaging, and then they are shipped to customers.

While we have talked about the cost of chips, there is a di� erence between cost
and price. Companies charge as much as the market will bear to maximize the

 yield � e percentage of
good dies from the total
number of dies on the
wafer.

 FIGURE 1.13 A 12-inch (300-mm) wafer this 10nm wafer contains 10th Gen Intel® Core™

processors, code-named “Ice Lake” (Courtesy Intel). � e number of dies on this 300-mm
(12-inch) wafer at 100% yield is 506. According to AnandTech, 1 each Ice Lake die is 11.4 by 10.7 mm. � e
several dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it
is easier to create the masks used to pattern the silicon. � is die uses a 10-nm technology, which means that
the smallest features are approximately 10 nm in size, although they are typically somewhat smaller than the
actual feature size, which refers to the size of the transistors as “drawn” versus the � nal manufactured size.

1Ian Cutress, “I Ran O� with Intel’s Tiger Lake Wafer. Who Wants a Die Shot?” January 13, 2020, https://
www.anandtech.com/show/15380/i-ran-o� -with-intels-tiger-lake-wafer-who-wants-a-die-shot

https://www.anandtech.com/show/15380/i-ran-off-with-intels-tiger-lake-wafer-who-wants-a-die-shot
https://www.anandtech.com/show/15380/i-ran-off-with-intels-tiger-lake-wafer-who-wants-a-die-shot

28 Chapter 1 Computer Abstractions and Technology

return on their investment, which must cover costs like a company’s research and
development (R&D), marketing, sales, manufacturing equipment maintenance,
building rental, cost of � nancing, pretax pro� ts, and taxes. Margins can be higher
on unique chips that come from only one company, like microprocessors, versus
chips that are commodities supplied by several companies, like DRAMs. � e price
� uctuates based on the ratio of supply and demand, and it is easy for multiple
companies to build more chips than the market demands.

 Elaboration : The cost of an integrated circuit can be expressed in three simple

equations:

 The � rst equation is straightforward to derive. The second is an approximation,

since it does not subtract the area near the border of the round wafer that cannot

accommodate the rectangular dies (see Figure 1.13). The � nal equation is based on

empirical observations of yields at integrated circuit factories, with the exponent related

to the number of critical processing steps.

 Hence, depending on the defect rate and the size of the die and wafer, costs are

generally not linear in the die area.

 A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

 1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

 2. It is less work to design a high-volume part than a low-volume part.

 3. � e masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

 4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

 5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

 1.6 Performance

 Assessing the performance of computers can be quite challenging. � e scale and
intricacy of modern so� ware systems, together with the wide range of performance

Cost per die
Cost per wafer

Dies per wafer yield

Dies per wafer
Wafer area

Die area

Yield
Defects per area Die area))n

1

1((

Check

Yourself

 1.6 Performance 29

improvement techniques employed by hardware designers, have made performance
assessment much more di� cult.

 When trying to choose among di� erent computers, performance is an important
attribute. Accurately measuring and comparing di� erent computers is critical to
purchasers and therefore to designers. � e people selling computers know this as
well. O� en, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately re� ects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

 � e rest of this section describes di� erent ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

 Defi ning Performance

 When we say one computer has better performance than another, what do we mean?
Although this question might seem simple, an analogy with passenger airplanes
shows how subtle the question of performance can be. Figure 1.14 lists some typical
passenger airplanes, together with their cruising speed, range, and capacity. If
we wanted to know which of the planes in this table had the best performance,
we would � rst need to de� ne performance. For example, considering di� erent
measures of performance, we see that the plane with the highest cruising speed was
the Concorde (retired from service in 2003), the plane with the longest range is the
Boeing 777-200LR, and the plane with the largest capacity is the Airbus A380-800.

 Let’s suppose we de� ne performance in terms of speed. � is still leaves two possible
de� nitions. You could de� ne the fastest plane as the one with the highest cruising
speed, taking a single passenger from one point to another in the least time. If you
were interested in transporting 500 passengers from one point to another, however,
the Airbus A380-800 would clearly be the fastest, as the last column of the � gure
shows. Similarly, we can de� ne computer performance in several di� erent ways.

 If you were running a program on two di� erent desktop computers, you’d say
that the faster one is the desktop computer that gets the job done � rst. If you were
running a datacenter that had several servers running jobs submitted by many
users, you’d say that the faster computer was the one that completed the most

 response time Also
called execution time .
� e total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/O activities,
operating system
overhead, CPU execution
time, and so on.

Airplane

Passenger

capacity

Cruising range

(miles)

Cruising speed

(m.p.h.)

Passenger throughput

(passengers × m.p.h.)

Boeing 737 240 3000 0564 135,360

BAC/Sud Concorde 132

301

853

4000 01350 178,200

Boeing 777-200LR 9395 554 166,761

Airbus A380-800 8477 0587 500,711

 FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. � e last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeo� and landing times).

30 Chapter 1 Computer Abstractions and Technology

jobs during a day. As an individual computer user, you are interested in reducing
 response time —the time between the start and completion of a task—also referred
to as execution time . Datacenter managers are o� en interested in increasing
 throughput or bandwidth —the total amount of work done in a given time. Hence,
in most cases, we will need di� erent performance metrics as well as di� erent sets
of applications to benchmark personal mobile devices, which are more focused on
response time, versus servers, which are more focused on throughput.

 Throughput and Response Time

 Do the following changes to a computer system increase throughput, decrease
response time, or both?

 1. Replacing the processor in a computer with a faster version

 2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the web

 Decreasing response time almost always improves throughput. Hence, in case
1, both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

 If, however, the demand for processing in the second case was almost
as large as the throughput, the system might force requests to queue up. In
this case, increasing the throughput could also improve response time, since
it would reduce the waiting time in the queue. � us, in many real computer
systems, changing either execution time or throughput o� en a� ects the other.

 In discussing the performance of computers, we will be primarily concerned with
response time for the � rst few chapters. To maximize performance, we want to
minimize response time or execution time for some task. � us, we can relate
performance and execution time for a computer X:

Performance
Execution time

X
X

�
1

 � is means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performance Performance

Execution time Execution time

X Y

X Y

�

�
1 1

EExecution time Execution timeY X�

 � at is, the execution time on Y is longer than that on X, if X is faster than Y.

 throughput Also called
 bandwidth . Another
measure of performance,
it is the number of tasks
completed per unit time.

EXAMPLE

ANSWER

 1.6 Performance 31

 In discussing a computer design, we o� en want to relate the performance of two
di� erent computers quantitatively. We will use the phrase “X is n times faster than
Y”—or equivalently “X is n times as fast as Y”—to mean

Performance

Performance
X

Y

= n

 If X is n times as fast as Y, then the execution time on Y is n times as long as it is
on X:

Performance

Performance

Execution time

Execution time

X

Y

Y

X

� � n

 Relative Performance

 If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

 We know that A is n times as fast as B if

Performance

Performance

Execution time

Execution time
A

B

B

A

� � n

 � us the performance ratio is

15

10
1 5� .

 and A is therefore 1.5 times as fast as B.

 In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance

Performance
A

B

� 1 5.

 means that

Performance
PerformanceA

B
1 5.

�

EXAMPLE

ANSWER

32 Chapter 1 Computer Abstractions and Technology

 For simplicity, we will normally use the terminology as fast as when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing , we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

 Measuring Performance

 Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be de� ned in di� erent ways,
depending on what we count. � e most straightforward de� nition of time is called
 wall clock time , response time , or elapsed time . � ese terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—everything.

 Computers are o� en shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize throughput
rather than attempt to minimize the elapsed time for one program. Hence, we
might want to distinguish between the elapsed time and the time over which the
processor is working on our behalf. CPU execution time or simply CPU time ,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time , and the CPU time
spent in the operating system performing tasks on behalf of the program, called
 system CPU time . Di� erentiating between system and user CPU time is di� cult to
do accurately, because it is o� en hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
di� erences among operating systems.

 For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

 Di� erent applications are sensitive to di� erent aspects of the performance of a
computer system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and so� ware.
Total elapsed time measured by a wall clock is the measurement of interest. In

 CPU execution
time Also called CPU
time . � e actual time the
CPU spends computing
for a speci� c task.

 user CPU time � e
CPU time spent in a
program itself.

 system CPU time � e
CPU time spent in
the operating system
performing tasks on
behalf of the program.

Understanding

Program

Performance

