


                  In Praise of Computer Organization and Design: The Hardware/

Software Interface, Sixth Edition  

 “With general purpose and specialized processors present in many aspects of 
everyday  life, it is now more important than ever, that the next generation of 
computer engineers understand how computers compute and also the many 
tradeo� s and optimizations necessary to build fast energy-e�  cient machines. For 
several generations of students,  Computer Organization and Design  by Patterson 
and  Hennesey has served as the gateway into the complex world of hardware/
so� ware interfaces; the memory hierarchy; and the bene� ts and hazards of 
pipelining (pun intended).”

  —Mark Hempstead,  Tu� s University    

 “ Computer Organization and Design  is the computer architecture book for your 
(virtual) bookshelf. � e book is both timeless and new, as it complements venerable 
principles—Moore’s Law, abstraction, common case fast, redundancy, memory 
hierarchies, parallelism, and pipelining—with emerging trends from good (e.g., 
architectures targeting deep learning) to bad (processor core cyberattacks).”

  —Mark D. Hill,  University of Wisconsin-Madison    

 “� e new edition of  Computer Organization and Design  keeps pace with advances 
in emerging processor architectures and applications, where AI, security and 
virtualization will be supported on open instruction set architectures (e.g., RISC-V).  
� is text acknowledges these changes, but continues to provide a rich foundation 
of the fundamentals in  Computer Organization and Design  which will be needed 
for the designers of hardware and so� ware that will power next generation secure, 
performant and e�  cient systems.”

  —Dave Kaeli,  Northeastern University    

 “� ere are timeless principles in computer system design, which are essential to 
understand the organization and performance of any computer architecture. Based 
on these principles and using a unique pedagogical approach, Patterson and Hennessy 
present the evolution of computer architecture from uniprocessors to the latest 
innovations on domain-speci� c architectures. � e inclusion of the Google TPU 
supercomputer as an example of DNN-DSA in this new edition, heralds the rise of a 
new generation of computer architects.”

  —Euripides Montagne,  University of Central Florida    

 “ Computer Organization and Design  is the ultimate classic textbook that is still current 
and applicable. It is very readable, and provides valuable insight into the hardware/
so� ware interface, which is useful both for future hardware engineers and for so� ware 
developers interested in improving performance and energy-e�  ciency. � e MIPS 
architecture is ideal for teaching computer organization. It is straightforward, yet closely 
resembles both ARM and RISC-V.”

  —Tali Moreshet,  Boston University    
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 T H E  H A R D W A R E / S O F T W A R E  I N T E R F A C E 

 S I X T H  E D I T I O N 



  David A. Patterson   has been teaching computer architecture at the University of 
California, Berkeley, since joining the faculty in 1977, where he held the Pardee Chair 
of Computer Science. His teaching has been honored by the Distinguished Teaching 
Award from the University of California, the Karlstrom Award from ACM, and the 
Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson 
received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award 
for contributions to RISC, and he shared the IEEE Johnson Information Storage Award 
for contributions to RAID. He also shared the IEEE John von Neumann Medal and 
the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of both 
AAAS  organizaitons, the Computer History Museum, ACM, and IEEE, and he was 
elected to the National Academy of Engineering, the National Academy of Sciences, 
and the Silicon Valley Engineering Hall of Fame. He served as chair of the CS division 
in the Berkeley EECS department, as chair of the Computing Research Association, 
and as President of ACM. � is record led to Distinguished Service Awards from ACM 
and CRA. He received the Tapia Achievement Award for Civic Science and Diversifying 
Computing and shared the 2017 ACM A.M. Turing Award with Hennessy. 

 At Berkeley, Patterson led the design and implementation of RISC I, likely the � rst 
VLSI reduced instruction set computer, and the foundation of the commercial SPARC 
architecture. He was a leader of the Redundant Arrays of Inexpensive Disks (RAID) 
project, which led to dependable storage systems from many companies. He was 
also involved in the Network of Workstations (NOW) project, which led to cluster 
technology used by Internet companies and later to cloud computing. � ese projects 
earned three dissertation awards from ACM. In 2016 he became Professor Emeritus at 
Berkeley and a Distinguished Engineer at Google, where he works on domain speci� c 
architectures for machine learning. He is also the Vice Chair of RISC-V International 
and the Director of the RISC-V International Open Source Laboratory. 

  John L. Hennessy  was the tenth president of Stanford University, where he has 
been a member of the faculty since 1977 in the departments of electrical engineering 
and computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the 
National Academy of Engineering, the National Academy of Science, and the American 
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences. 
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to 
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000 
John von Neumann Award, which he shared with David Patterson. In 2017 they shared 
the ACM A.M. Turing Award. He has also received seven honorary doctorates. 

 In 1981, he started the MIPS project at Stanford with a handful of graduate students. 
A� er completing the project in 1984, he took a leave from the university to cofound 
MIPS Computer Systems (now MIPS Technologies), which developed one of the � rst 
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have 
been shipped in devices ranging from video games and palmtop computers to laser printers 
and network switches. Hennessy subsequently led the DASH (Director Architecture 
for Shared Memory) project, which prototyped the � rst scalable cache coherent 
multiprocessor; many of the key ideas have been adopted in modern multiprocessors. 
In addition to his technical activities and university responsibilities, he has continued to 
work with numerous start-ups both as an early-stage advisor and an investor.

He is currently director of Knight-Hennessy Scholars and serves as non-executive 
chairman of Alphabet. 
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                  Preface  

    � e most beautiful thing we can experience is the mysterious. It is the 
source of all true art and science.  

   Albert Einstein, What I Believe,    1930    

  About This Book 

 We believe that learning in computer science and engineering should re� ect 
the current state of the � eld, as well as introduce the principles that are shaping 
computing. We also feel that readers in every specialty of computing need 
to appreciate the organizational paradigms that determine the capabilities, 
performance, energy, and, ultimately, the success of computer systems. 

 Modern computer technology requires professionals of every computing 
specialty to understand both hardware and so� ware. � e interaction between 
hardware and so� ware at a variety of levels also o� ers a framework for understanding 
the fundamentals of computing. Whether your primary interest is hardware or 
so� ware, computer science or electrical engineering, the central ideas in computer 
organization and design are the same. � us, our emphasis in this book is to show 
the relationship between hardware and so� ware and to focus on the concepts that 
are the basis for current computers. 

 � e switch from uniprocessor to multicore microprocessors and the recent 
emphasis on domain speci� c architectures con� rmed the soundness of this 
perspective, given since the � rst edition. While programmers could ignore the 
advice and rely on computer architects, compiler writers, and silicon engineers to 
make their programs run faster or be more energy-e�  cient without change, that 
era is over. Our view is that for at least the next decade, most programmers are 
going to have to understand the hardware/so� ware interface if they want programs 
to run e�  ciently on modern computers. 

 � e audience for this book includes those with little experience in assembly 
language or logic design who need to understand basic computer organization as 
well as readers with backgrounds in assembly language and/or logic design who 
want to learn how to design a computer or understand how a system works and 
why it performs as it does. 
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   About the Other Book 

 Some readers may be familiar with  Computer Architecture: A Quantitative 
Approach , popularly known as Hennessy and Patterson. (� is book in turn is 
o� en called Patterson and Hennessy.) Our motivation in writing the earlier book 
was to describe the principles of computer architecture using solid engineering 
fundamentals and quantitative cost/performance tradeo� s. We used an approach 
that combined examples and measurements, based on commercial systems, to 
create realistic design experiences. Our goal was to demonstrate that computer 
architecture could be learned using quantitative methodologies instead of a 
descriptive approach. It was intended for the serious computing professional who 
wanted a detailed understanding of computers. 

 A majority of the readers for this book do not plan to become computer 
architects. � e performance and energy e�  ciency of future so� ware systems will 
be dramatically a� ected, however, by how well so� ware designers understand the 
basic hardware techniques at work in a system. � us, compiler writers, operating 
system designers, database programmers, and most other so� ware engineers 
need a � rm grounding in the principles presented in this book. Similarly, 
hardware designers must understand clearly the e� ects of their work on so� ware 
applications. 

 � us, we knew that this book had to be much more than a subset of the material 
in  Computer Architecture , and the material was extensively revised to match the 
di� erent audience. We were so happy with the result that the subsequent editions of 
 Computer Architecture  were revised to remove most of the introductory material; 
hence, there is much less overlap today than with the � rst editions of both books. 

   Changes for the Sixth Edition 

 � ere is arguably been more change in the technology and business of computer 
architecture since the � � h edition than there were for the � rst � ve: 

  ■      � e slowing of Moore’s Law . A� er 50 years of biannual doubling of the 
number of transistors per chip, Gordon Moore’s prediction no longer holds. 
Semiconductor technology will still improve, but more slowly and less 
predictably than in the past.  

  ■      � e rise of Domain Speci� c Architectures (DSA) . In part due to the slowing of 
Moore’s Law and in part due to the end of Dennard Scaling, general purpose 
processors are only improving a few percent per year. Moreover, Amdahl’s 
Law limits the practical bene� t of increasing the number of processors per 
chip. In 2020, it is widely believed that the most promising path forward is 
DSA. It doesn’t try to run everything well like general purpose processors, but 
focuses on running programs of one domain much better than conventional 
CPUs.  

  ■      Microarchitecture as a security attack surface . Spectre demonstrated that 
speculative out-of-order execution and hardware multithreading make 
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timing based side-channel attacks practical. Moreover, these are not due to 
bugs that can be � xed, but a fundamental challenge to this style of processor 
design.  

  ■      Open instruction sets and open source implementations . � e opportunities 
and impact of open source so� ware have come to computer architecture. 
Open instruction sets like RISC-V enables organizations to build their own 
processors without � rst negotiating a license, which has enabled open-
source implementations that are shared to freely download and use as well as 
proprietary implementations of RISC-V. Open source so� ware and hardware 
are a boon to academic research and instruction, allowing students to see and 
enhance industrial strength technology.  

  ■      � e re-virticalization of the information technology industry . Cloud computing 
has led to no more than a half-dozen companies that provide computing 
infrastructure for everyone to use. Much like IBM in the 1960s and 1970s, 
these companies determine both the so� ware stack and the hardware that 
they deploy. � e changes above have led to some of these “hyperscalers” 
developing their own DSA and RISC-V chips for deployment in their clouds.  

 � e sixth edition of COD re� ects these recent changes, updates all the examples 
and � gures, responds to requests of instructors, plus adds a pedagogic improvement 
inspired by textbooks I used to help my grandchildren with their math classes. 

  ■     � e Going Faster section is now in every chapter. It starts with a Python 
version in Chapter 1, whose poor performance inspires learning C and 
then rewriting matrix multiply in C in Chapter 2. � e remaining chapters 
accelerate matrix multiply by leveraging data level parallelism, instruction 
level parallelism, thread level parallelism, and by adjusting memory accesses 
to match the memory hierarchy of a modern server. � is computer has 512-
bit SIMD operations, speculative out-of-order execution, three levels of 
caches, and 48 cores. All four optimizations add only 21 lines of C code yet 
speedup matrix multiply by almost 50,000, cutting it from nearly 6 hours 
in Python to less than 1 second in optimized C. If I were a student again, 
this running example would inspire me to use C and learn the underlying 
hardware concepts of this book.  

  ■     With this edition, every chapter has a Self Study section that asks thought 
provoking questions and supplies the answers a� erwards to help you evaluate 
if you follow the material on your own.  

  ■     Besides explaining that Moore’s Law and Dennard Scaling no longer hold, 
we’ve de-emphasized Moore’s Law as a change agent that was prominent in 
the � � h edition.  

  ■     Chapter 2 has more material to emphasize that binary data has no inherent 
meaning—the program determines the data type—not an easy concept for 
beginners to grasp.  
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  ■     Chapter 2 also includes a short description of the RISC-V as a contrasting 
instruction set to MIPS alongside ARMv7, ARMv8, and x86. (� ere is also a 
companion version of this book based on RISC-V instead of MIPS, and we’re 
updating that with the other changes as well.)  

  ■     � e benchmark example of Chapter 2 is upgraded to SPEC2017 from 
SPEC2006.  

  ■     At instructors’ request, we have restored the multi-cycle implementation 
of MIPS as an online section in Chapter 4 between the single-cycle 
implementation and the pipelined implementation. Some instructors � nd 
these three steps an easier path to teach pipelining.  

  ■     � e Putting It All Together examples of Chapters 4 and 5 were updated 
to the recent ARM A53 microarchitecture and the Intel i7 6700 Skyelake 
microarchitecture.  

  ■     � e Fallacies and Pitfalls Sections of Chapters 5 and 6 added pitfalls around 
hardware security attacks of Row Hammer and Spectre.  

  ■     Chapter 6 has a new section introducing DSAs using Google’s Tensor 
Processing Unit (TPU) version 1. Chapter 6’s Putting it All Together section 
is updated to compare Google’s TPUv3 DSA supercomputer to a cluster of 
NVIDIA Volta GPUs.  

 Finally, we updated all the exercises in the book. 
 While some elements changed, we have preserved useful book elements 

from prior editions. To make the book work better as a reference, we still place 
de� nitions of new terms in the margins at their � rst occurrence. � e book element 
called “Understanding Program Performance” sections helps readers understand 
the performance of their programs and how to improve it, just as the “Hardware/
So� ware Interface” book element helped readers understand the tradeo� s at this 
interface. “� e Big Picture” section remains so that the reader sees the forest 
despite all the trees. “Check Yourself ” sections help readers to con� rm their 
comprehension of the material on the � rst time through with answers provided at 
the end of each chapter. � is edition still includes the green MIPS reference card, 
which was inspired by the “Green Card” of the IBM System/360. � is card should 
be a handy reference when writing MIPS assembly language programs. 

   Instructor Support 

 We have collected a great deal of material to help instructors teach courses using 
this book. Solutions to exercises, � gures from the book, lecture slides, and other 
materials are available to adopters from the publisher. Check the publisher’s Web 
site for more information: 

   https://textbooks.elsevier.com/web/manuals.aspx?isbn=9780128201091    

https://textbooks.elsevier.com/web/manuals.aspx?isbn=9780128201091
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   Concluding Remarks 

 If you read the following acknowledgments section, you will see that we went to 
great lengths to correct mistakes. Since a book goes through many printings, we 
have the opportunity to make even more corrections. If you uncover any remaining, 
resilient bugs, please contact the publisher. 

 � is edition is the third break in the long-standing collaboration between 
Hennessy and Patterson, which started in 1989. � e demands of running one of 
the world’s great universities meant that President Hennessy could no longer make 
the substantial commitment to create a new edition. � e remaining author felt 
once again like a tightrope walker without a safety net. Hence, the people in the 
acknowledgments and Berkeley colleagues played an even larger role in shaping 
the contents of this book. Nevertheless, this time around there is only one author 
to blame for the new material in what you are about to read. 

   Acknowledgments for the Sixth Edition 

 With every edition of this book, we are very fortunate to receive help from many 
readers, reviewers, and contributors. Each of these people has helped to make this 
book better. 

 Special thanks goes to Dr. Rimas Avizenis, who developed the various versions of 
matrix multiply and supplied the performance numbers as well. I deeply appreciate 
his continued help a� er he has graduated from UC Berkeley. As I worked with his 
father while I was a graduate student at UCLA, it was a nice symmetry to work with 
Rimas when he was a graduate student at UC Berkeley. 

 I also wish to thank my longtime collaborator  Randy Katz  of UC Berkeley, who 
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        1.1     Introduction 

 Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. � is is not a dry and dreary � eld, 
where progress is glacial and where new ideas atrophy from neglect. No! Computers 
are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product 
of the United States, and whose economy has become dependent in part on the 
rapid improvements in information technology. � is unusual industry embraces 
innovation at a breathtaking rate. In the last 40 years, there have been a number 
of new computers whose introduction appeared to revolutionize the computing 
industry; these revolutions were cut short only because someone else built an even 
better computer. 

 � is race to innovate has led to unprecedented progress since the inception 
of electronic computing in the late 1940s. Had the transportation industry kept 
pace with the computer industry, for example, today we could travel from New 
York to London in a second for a penny. Take just a moment to contemplate how 
such an improvement would change society—living in Tahiti while working in San 
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can 
appreciate the implications of such a change. 
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 Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and the industrial revolutions. 
� e resulting multiplication of humankind’s intellectual strength and reach 
naturally has a� ected our everyday lives profoundly and changed the ways in which 
the search for new knowledge is carried out. � ere is now a new vein of scienti� c 
investigation, with computational scientists joining theoretical and experimental 
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and 
physics, among others. 

 � e computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications that 
were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science � ction.”

   ■      Computers in automobiles:  Until microprocessors improved dramatically 
in price and performance in the early 1980s, computer control of cars was 
ludicrous. Today, computers reduce pollution, improve fuel e�  ciency via 
engine controls, and increase safety through nearly automated driving and 
air bag in� ation to protect occupants in a crash.  

  ■      Cell phones:  Who would have dreamed that advances in computer 
systems would lead to more than half of the planet having mobile phones, 
allowing person-to-person communication to almost anyone anywhere in 
the world?  

  ■      Human genome project:  � e cost of computer equipment to map and analyze 
human DNA sequences was hundreds of millions of dollars. It’s unlikely that 
anyone would have considered this project had the computer costs been 10 
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover, 
costs continue to drop; you will soon be able to acquire your own genome, 
allowing medical care to be tailored to you.  

  ■      World Wide Web:  Not in existence at the time of the � rst edition of this book, 
the web has transformed our society. For many, the web has replaced libraries 
and newspapers.  

  ■      Search engines:  As the content of the web grew in size and in value, � nding 
relevant information became increasingly important. Today, many people 
rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.  

   Clearly, advances in this technology now a� ect almost every aspect of our 
society. Hardware advances have allowed programmers to create wonderfully 
useful so� ware, which explains why computers are omnipresent. Today’s science 
� ction suggests tomorrow’s killer applications: already on their way are glasses that 
augment reality, the cashless society, and cars that can drive themselves. 
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  Classes of Computing Applications and Their 

Characteristics 

 Although a common set of hardware technologies (see  Sections 1.4 and 1.5 ) is used 
in computers ranging from smart home appliances to cell phones to the largest 
supercomputers, these di� erent applications have di� erent design requirements 
and employ the core hardware technologies in di� erent ways. Broadly speaking, 
computers are used in three di� erent classes of applications. 

   Personal computers (PCs)   in the form of laptops are possibly the best known 
form of computing, which readers of this book have likely used extensively. Personal 
computers emphasize delivery of good performance to single users at low cost and 
usually execute third-party so� ware. � is class of computing drove the evolution of 
many computing technologies, which is only about 40 years old!    

   Servers   are the modern form of what were once much larger computers, and 
are usually accessed only via a network. Servers are oriented to carrying large 
workloads, which may consist of either single complex applications—usually a 
scienti� c or engineering application—or handling many small jobs, such as would 
occur in building a large web server. � ese applications are usually based on 
so� ware from another source (such as a database or simulation system), but are 
o� en modi� ed or customized for a particular function. Servers are built from the 
same basic technology as desktop computers, but provide for greater computing, 
storage, and input/output capacity. In general, servers also place a greater emphasis 
on dependability, since a crash is usually more costly than it would be on a single-
user PC.    

 Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and cost 
a thousand dollars. � ese low-end servers are typically used for � le storage, small 
business applications, or simple web serving (see Section 6.11). At the other extreme 
are   supercomputers  , which at the present consist of hundreds of thousands of 
processors and many   terabytes   of memory, and cost tens to hundreds of millions 
of dollars. Supercomputers are usually used for high-end scienti� c and engineering 
calculations, such as weather forecasting, oil exploration, protein structure 
determination, and other large-scale problems. Although such supercomputers 
represent the peak of computing capability, they represent a relatively small fraction 
of the servers and a relatively small fraction of the overall computer market in 
terms of total revenue.       

   Embedded computers   are the largest class of computers and span the widest 
range of applications and performance. Embedded computers include the 
microprocessors found in your car, the computers in a television set, and the 
networks of processors that control a modern airplane or cargo ship. A popular 
term today is Internet of � ings (IoT), which suggests many small devices that 
all communicate wirelessly over the Internet. Embedded computing systems are 
designed to run one application or one set of related applications that are normally 
integrated with the hardware and delivered as a single system; thus, despite the 
large number of embedded computers, most users never really see that they are 
using a computer!    

  personal computer 
(PC)        A computer 
designed for use by 
an individual, usually 
incorporating a graphics 
display, a keyboard, and a 
mouse.   

  server        A computer 
used for running 
larger programs for 
multiple users, o� en 
simultaneously, and 
typically accessed only via 
a network.   

  terabyte (TB)        Originally 
1,099,511,627,776 
(2 40 ) bytes, although 
communications and 
secondary storage 
systems developers 
started using the term to 
mean 1,000,000,000,000 
(10 12 ) bytes. To reduce 
confusion, we now use the 
term   tebibyte (TiB)   for 
2 40  bytes, de� ning  terabyte  
(TB) to mean 10 12  bytes. 
 Figure 1.1    shows the full 
range of decimal and 
binary values and names.   

  supercomputer        A class 
of computers with the 
highest performance and 
cost; they are con� gured 
as servers and typically 
cost tens to hundreds of 
millions of dollars.   

  embedded computer  
      A computer inside another 
device used for running 
one predetermined 
application or collection of 
so� ware.   
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 Embedded applications o� en have unique application requirements that 
combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only be as fast as necessary 
to handle its limited function, and beyond that, minimizing cost and power are the 
most important objectives. Despite their low cost, embedded computers o� en have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the computer in a 
plane or cargo ship crashes). In consumer-oriented embedded applications, such as 
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded 
systems, techniques of redundancy from the server world are o� en employed. 
Although this book focuses on general-purpose computers, most concepts apply 
directly, or with slight modi� cations, to embedded computers.

    Elaboration :        Elaborations  are short sections used throughout the text to provide more 

detail on a particular subject that may be of interest. Disinterested readers may skip 

over an  Elaboration , since the subsequent material will never depend on the contents 

of the  Elaboration . 

 Many embedded processors are designed using  processor cores , a version of a 

processor written in a hardware description language, such as Verilog or VHDL (see 

Chapter 4). The core allows a designer to integrate other application-speci� c hardware 

with the processor core for fabrication on a single chip.      

   Welcome to the PostPC Era 

 � e continuing march of technology brings about generational changes in computer 
hardware that shake up the entire information technology industry. Since the 
fourth edition of the book we have undergone such a change, as signi� cant in the 

Decimal 

term Abbreviation Value

Binary 

term Abbreviation Value % Larger

kilobyte KB 1000 1 kibibyte KiB 210 2%

megabyte MB 1000 2 mebibyte MiB 220 5%

gigabyte GB 1000 3 gibibyte GiB 230 7%

terabyte TB 1000 4 tebibyte TiB 240 10%

petabyte PB 1000 5 pebibyte PiB 250 13%

exabyte EB 1000 6 exbibyte EiB 260 15%

zettabyte ZB 1000 7 zebibyte ZiB 270 18%

yottabyte YB 1000 8 yobibyte YiB 280 21%

ronnabyte RB 1000 9 robibyte RiB 290 24%

queccabyte QB 1000 10 quebibyte QiB 2100 27%

 FIGURE 1.1      The 2 X  vs. 10 Y  bytes ambiguity was resolved by adding a binary notation for all 

the common size terms.     In the last column we note how much larger the binary term is than its corresponding 
decimal term, which is compounded as we head down the chart. � ese pre� xes work for bits as well as bytes, so 
 gigabit  (Gb) is 10 9  bits while  gibibits  (Gib) is 2 30  bits. � e society that runs the metric system created the decimal 
pre� xes, with the last two proposed only in 2019 in anticipation of the global capacity of storage systems. All the 
names are derived from the entymology in Latin of the powers of 1000 that they represent.      
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past as the switch starting 40 years ago to personal computers. Replacing the PC 
is the   personal mobile device (PMD)  . PMDs are battery operated with wireless 
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs, 
users can download so� ware (“apps”) to run on them. Unlike PCs, they no longer 
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen 
or even speech input. Today’s PMD is a smart phone or a tablet computer, but 
tomorrow it may include electronic glasses.  Figure 1.2    shows the rapid growth time 
of tablets and smart phones versus that of PCs and traditional cell phones.    

 Taking over from the traditional server is   Cloud Computing  , which relies upon 
giant datacenters that are now known as  Warehouse Scale Computers  (WSCs). 
Companies like Amazon and Google build these WSCs containing 50,000 servers 
and then let companies rent portions of them so that they can provide so� ware 
services to PMDs without having to build WSCs of their own. Indeed,   So� ware as 
a Service (SaaS)   deployed via the cloud is revolutionizing the so� ware industry just 
as PMDs and WSCs are revolutionizing the hardware industry. Today’s so� ware 
developers will o� en have a portion of their application that runs on the PMD and 
a portion that runs in the Cloud.       

   What You Can Learn in This Book 

 Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
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 FIGURE 1.2      The number manufactured per year of tablets and smart phones, which 

refl ect the PostPC era, versus personal computers and traditional cell phones.     Smart 
phones represent the recent growth in the cell phone industry, and they passed PCs in 2011. PCs, tablets, and 
traditional cell phone categories are declining. � e peak volume years text are 2011 for cell phones, 2013 for 
PCs, and 2014 for tablets. PCs fell from 20% of total units shipped in 2007 to 10% in 2018.       

  Personal mobile 
devices (PMDs)        are 
small wireless devices to 
connect to the Internet; 
they rely on batteries for 
power, and so� ware is 
installed by downloading 
apps. Conventional 
examples are smart 
phones and tablets.   

  So� ware as a Service 
(SaaS)        delivers so� ware 
and data as a service over 
the Internet, usually via 
a thin program such as a 
browser that runs on local 
client devices, instead of 
binary code that must be 
installed, and runs wholly 
on that device. Examples 
include web search and 
social networking.   

  Cloud Computing        refers 
to large collections of 
servers that provide services 
over the Internet; some 
providers rent dynamically 
varying numbers of servers 
as a utility.   
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successful so� ware. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. � us, programmers o� en 
followed a simple credo: minimize memory space to make programs fast. In the 
last two decades, advances in computer design and memory technology have 
greatly reduced the importance of small memory size in most applications other 
than those in embedded computing systems. 

 Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature 
of processors and the hierarchical nature of memories. Moreover, as we explain 
in  Section 1.7 , today’s programmers need to worry about energy e�  ciency of 
their programs running either on the PMD or in the Cloud, which also requires 
understanding what is below your code. Programmers who seek to build 
competitive versions of so� ware will therefore need to increase their knowledge of 
computer organization. 

 We are honored to have the opportunity to explain what’s inside this revolutionary 
machine, unraveling the so� ware below your program and the hardware under the 
covers of your computer. By the time you complete this book, we believe you will 
be able to answer the following questions:

   ■     How are programs written in a high-level language, such as C or Java, 
translated into the language of the hardware, and how does the hardware 
execute the resulting program? Comprehending these concepts forms the 
basis of understanding the aspects of both the hardware and so� ware that 
a� ect program performance.  

  ■     What is the interface between the so� ware and the hardware, and how does 
so� ware instruct the hardware to perform needed functions? � ese concepts 
are vital to understanding how to write many kinds of so� ware.  

  ■     What determines the performance of a program, and how can a programmer 
improve the performance? As we will see, this depends on the original 
program, the so� ware translation of that program into the computer’s 
language, and the e� ectiveness of the hardware in executing the program.  

  ■     What techniques can be used by hardware designers to improve performance? 
� is book will introduce the basic concepts of modern computer design. � e 
interested reader will � nd much more material on this topic in our advanced 
book,  Computer Architecture: A Quantitative Approach .  

  ■     What techniques can be used by hardware designers to improve energy 
e�  ciency? What can the programmer do to help or hinder energy e�  ciency?  

  ■     What are the reasons for and the consequences of the switch from sequential 
processing to parallel processing? � is book gives the motivation, describes 
the current hardware mechanisms to support parallelism, and surveys the 
new generation of   “multicore” microprocessors   (see Chapter 6).  

  ■     Since the � rst commercial computer in 1951, what great ideas did computer 
architects come up with that lay the foundation of modern computing?   

  multicore 
microprocessor  
      A microprocessor 
containing multiple 
processors (“cores”) in a 
single integrated circuit.   
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    Without understanding the answers to these questions, improving the 
performance of your program on a modern computer or evaluating what features 
might make one computer better than another for a particular application will be 
a complex process of trial and error, rather than a scienti� c procedure driven by 
insight and analysis. 

 � is � rst chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and de� nitions, places the major components of so� ware and hardware 
in perspective, shows how to evaluate performance and energy, introduces 
integrated circuits (the technology that fuels the computer revolution), and explains 
the shi�  to multicores. 

 In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the 
terminology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors)  love  using 
  acronyms  , which are  easy  to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a   highlighted   de� nition 
of every term in the margins the � rst time it appears in the text. A� er a short 
time of working with the terminology, you will be � uent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIe, SATA, and many others.    

 To reinforce how the so� ware and hardware systems used to run a program will 
a� ect performance, we use a special section,  Understanding Program Performance , 
throughout the book to summarize important insights into program performance. 
� e � rst one appears below.    

    � e performance of a program depends on a combination of the e� ectiveness of the 
algorithms used in the program, the so� ware systems used to create and translate 
the program into machine instructions, and the e� ectiveness of the computer in 
executing those instructions, which may include input/output (I/O) operations. 
� is table summarizes how the hardware and so� ware a� ect performance.

 Hardware or software 

component  How this component affects performance 

 Where is this 

topic covered? 

 Algorithm  Determines both the number of source-level 

statements and the number of I/O operations 

executed 

 Other books! 

 Programming language, 

compiler, and architecture 

 Determines the number of computer instructions 

for each source-level statement 

 Chapters 2 and 3 

 Processor and memory 

system 

 Determines how fast instructions can be executed  Chapters 4, 5, and 6 

 I/O system (hardware and 

operating system) 

 Determines how fast I/O operations may be 

executed 

 Chapters 4, 5, and 6 

  acronym        A word 
constructed by taking the 
initial letters of a string 
of words. For example: 
  RAM   is an acronym for 
Random Access Memory, 
and   CPU   is an acronym 
for Central Processing 
Unit.   

Understanding 

Program 

Performance
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         Check Yourself  sections are designed to help readers assess whether they 
comprehend the major concepts introduced in a chapter and understand the 
implications of those concepts. Some  Check Yourself  questions have simple answers; 
others are for discussion among a group. Answers to the speci� c questions can 
be found at the end of the chapter.  Check Yourself  questions appear only at the 
end of a section, making it easy to skip them if you are sure you understand the 
material.

   1.     � e number of embedded processors sold every year greatly outnumbers 
the number of PC and even PostPC processors. Can you con� rm or deny 
this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of conventional computers in your home?  

  2.     As mentioned earlier, both the so� ware and hardware a� ect the performance 
of a program. Can you think of examples where each of the following is the 
right place to look for a performance bottleneck?

   ■     � e algorithm chosen  

  ■     � e programming language or compiler  

  ■     � e operating system  

  ■     � e processor  

  ■     � e I/O system and devices  

                 1.2 
    Seven Great Ideas in Computer 

Architecture 

 We now introduce seven great ideas that computer architects have been invented in 
the last 60 years of computer design. � ese ideas are so powerful they have lasted 
long a� er the � rst computer that used them, with newer architects demonstrating 
their admiration by imitating their predecessors. � ese great ideas are themes that 
we will weave through this and subsequent chapters as examples arise. To point 
out their in� uence, in this section we introduce icons and highlighted terms that 
represent the great ideas and we use them to identify the nearly 100 sections of the 
book that feature use of the great ideas. 

  Use Abstraction to Simplify Design 

 Both computer architects and programmers had to invent techniques to make 
themselves more productive, for otherwise design time would lengthen as 
dramatically as resources grew. A major productivity technique for hardware 
and so� ware is to use  abstractions  to represent the design at di� erent levels of 

Check 

Yourself
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representation; lower-level details are hidden to o� er a simpler model at higher 
levels. We’ll use the abstract painting icon to represent this second great idea.

          Make the Common Case Fast 

 Making the  common case fast  will tend to enhance performance better than 
optimizing the rare case. Ironically, the common case is o� en simpler than 
the rare case and hence is o� en easier to enhance. � is common sense advice 
implies that you know what the common case is, which is only possible with 
careful experimentation and measurement (see  Section 1.6 ). We use a sports 
car as the icon for making the common case fast, as the most common trip has 
one or two passengers, and it’s surely easier to make a fast sports car than a fast 
minivan!

          Performance via Parallelism 

 Since the dawn of computing, computer architects have o� ered designs that get 
more performance by performing operations in parallel. We’ll see many examples 
of parallelism in this book. We use multiple jet engines of a plane as our icon for 
 parallel performance .

          Performance via Pipelining 

 A particular pattern of parallelism is so prevalent in computer architecture that 
it merits its own name:  pipelining . For example, before � re engines, a “bucket 
brigade” would respond to a � re, which many cowboy movies show in response to 
a dastardly act by the villain. � e townsfolk form a human chain to carry a water 
source to � re, as they could much more quickly move buckets up the chain instead 
of individuals running back and forth. Our pipeline icon is a sequence of pipes, 
with each section representing one stage of the pipeline.

          Performance via Prediction 

 Following the saying that it can be better to ask for forgiveness than to ask for 
permission, the next great idea is  prediction . In some cases it can be faster on 
average to guess and start working rather than wait until you know for sure, 
assuming that the mechanism to recover from a misprediction is not too expensive 
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as 
our prediction icon.

          Hierarchy of Memories 

 Programmers want memory to be fast, large, and cheap, as memory speed o� en 
shapes performance, capacity limits the size of problems that can be solved, and the 
cost of memory today is o� en the majority of computer cost. Architects have found 
that they can address these con� icting demands with a  hierarchy of memories , with 
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the fastest, smallest, and most expensive memory per bit at the top of the hierarchy 
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in 
Chapter  5, caches give the programmer the illusion that main memory is nearly 
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of 
the hierarchy. We use a layered triangle icon to represent the memory hierarchy. 
� e shape indicates speed, cost, and size: the closer to the top, the faster and more 
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

          Dependability via Redundancy 

 Computers not only need to be fast; they need to be dependable. Since any physical 
device can fail, we make systems  dependable  by including redundant components that 
can take over when a failure occurs  and  to help detect failures. We use the tractor-trailer 
as our icon, since the dual tires on each side of its rear axles allow the truck to continue 
driving even when one tire fails. (Presumably, the truck driver heads immediately to a 
repair facility so the � at tire can be � xed, thereby restoring redundancy!)

 In the prior edition  , we listed an eighth great idea, which was “Designing for 
Moore’s Law.” Gordon Moore, one of the founders of Intel, made a remarkable 
prediction in 1965: integrated circuit resources would double every year. A decade 
later he amended his prediction to doubling every 2 years. 

 His prediction was accurate, and for 50 years, Moore’s Law shaped computer 
architecture. As computer designs can take years, the resources available per chip 
(“transistors”; see page 24) could easily double or triple between the start and � nish 
of the project. Like a skeet shooter, computer architects had to anticipate where the 
technology would be when the design � nishes rather than design for when it starts. 

 Alas, no exponential growth can last forever, and Moore’s Law is no longer 
accurate. � e slowing of Moore’s Law is shocking for computer designers who have 
long leveraged it. Some do not want to believe it is over, despite the substantial 
evidence to the contrary. Part of the reason is confusion between saying that 
Moore’s prediction of the biannual doubling rate is now incorrect and claiming that 
semiconductors will no longer improve. Semiconductor technology  will  continue 
to improve, but more slowly than in the past. Starting with this edition, we will 
discuss the implications of the slowing of Moore’s Law, especially in Chapter 6. 

  Elaboration:  During the heydays of Moore’s Law, the cost per chip resource would drop 

with each new technology generation. In the latest technologies, the cost per resource 

may be � at or even  rising  with each new generation, due to the cost of the new equipment, 

the elaborate processes invented to make chips work at these � ner feature sizes, and 

the reduction of the  number  of companies who are investing in these new technologies 

to push the state-of-the-art. Less competition naturally leads to higher prices. 
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              1.3     Below Your Program   

 A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated so� ware libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple low-level instructions. 
To go from a complex application to the simple instructions involves several layers 
of so� ware that interpret or translate high-level operations into simple computer 
instructions, an example of the great idea of  abstraction . 

  Figure 1.3    shows that these layers of so� ware are organized primarily in a 
hierarchical fashion, with applications being the outermost ring and a variety of 
  systems so� ware   sitting between the hardware and applications so� ware.   

 � ere are many types of systems so� ware, but two types of systems so� ware 
are central to every computer system today: an operating system and a compiler. 
An   operating system   interfaces between a user’s program and the hardware 
and provides a variety of services and supervisory functions. Among the most 
important functions are:

   ■     Handling basic input and output operations  

  ■     Allocating storage and memory  

  ■     Providing for protected sharing of the computer among multiple applications 
using it simultaneously.  

   Examples of operating systems in use today are Linux, iOS, Android, and Windows. 

 In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own language. 

 Mark Twain,  � e 
Innocents Abroad , 1869 

  systems so� ware  
      So� ware that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.   

   operating system  
      Supervising program that 
manages the resources of 
a computer for the bene� t 
of the programs that run 
on that computer.    

Applications software 

S

ys
tems software 

Hardware

 FIGURE 1.3      A simplifi ed view of hardware and software as hierarchical layers, shown as 

concentric circles with hardware in the center and applications software outermost.     In 
complex applications, there are o� en multiple layers of application so� ware as well. For example, a database 
system may run on top of the systems so� ware hosting an application, which in turn runs on top of the 
database.       
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   Compilers   perform another vital function: the translation of a program written 
in a high-level language, such as C, C+ ++ +, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
languages and the simplicity of the instructions executed by the hardware, the 
translation from a high-level language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in  Chapter 2  and in  Appendix A .   

  From a High-Level Language to the Language of Hardware 

 To actually speak to electronic hardware, you need to send electrical signals. � e 
easiest signals for computers to understand are  on  and  o�  , and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. � e two symbols for these two letters are the numbers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
 binary numbers . We refer to each “letter” as a   binary digit   or   bit  . Computers are 
slaves to our commands, which are called   instructions  . Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits       

  1000110010100000  

 tell one computer to add two numbers.  Chapter 2  explains why we use numbers 
for instructions  and  data; we don’t want to steal that chapter’s thunder, but using 
numbers for both instructions and data is a foundation of computing. 

 � e � rst programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At � rst, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the computer, the 
pioneers invented programs to translate from symbolic notation to binary. � e � rst of 
these programs was named an   assembler  . � is program translates a symbolic version 
of an instruction into the binary version. For example, the programmer would write    

  add A,B  

 and the assembler would translate this notation into 

  1000110010100000  

 � is instruction tells the computer to add the two numbers  A  and  B . � e name coined 
for this symbolic language, still used today, is   assembly language  . In contrast, the 
binary language that the machine understands is the   machine language  .       

 Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate � uid � ow or that an accountant 
might use to balance the books. Assembly language requires the programmer 
to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer. 

  compiler        A program 
that translates high-level 
language statements 
into assembly language 
statements.   

  binary digit        Also called 
a   bit  . One of the two 
numbers in base 2 (0 or 1) 
that are the components 
of information.   

  instruction        A command 
that computer hardware 
understands and obeys.   

  assembler        A program 
that translates a symbolic 
version of instructions 
into the binary version.   

  assembly language  
      A symbolic representation 
of machine instructions.   

  machine language  
      A binary representation of 
machine instructions.   
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 � e recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of   high-level programming languages   and compilers 
that translate programs in such languages into instructions.  Figure 1.4    shows the 
relationships among these programs and languages, which are more examples of 
the power of  abstraction .         

  high-level programming 

language        A portable 
language such as C, C+ +, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
language.   

swap(int v[], int k)

{int temp;

   temp = v[k];

   v[k] = v[k+1];

   v[k+1] = temp;

}

swap:

      multi $2, $5,4

      add   $2, $4,$2

      lw    $15, 0($2)

      lw    $16, 4($2)

      sw    $16, 0($2)

      sw    $15, 4($2)

      jr    $31

00000000101000100000000100011000

00000000100000100001000000100001

10001101111000100000000000000000

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

Assembler

Compiler

Binary machine

language

program

(for MIPS)

Assembly

language

program

(for MIPS)

High-level

language

program

(in C)

 FIGURE 1.4      C program compiled into assembly language and then assembled into binary 

machine language.     Although the translation from high-level language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
� ese languages and this program are examined in more detail in Chapter 2.       
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 A compiler enables a programmer to write this high-level language expression: 

  A + B  

 � e compiler would compile it into this assembly language statement: 

  add A,B  

 As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers  A  and  B . 

 High-level programming languages o� er several important bene� ts. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see  Figure 1.4 ). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for scienti� c 
computation, Cobol for business data processing, Lisp for symbol manipulation, 
and so on. � ere are also domain-speci� c languages for even narrower groups of 
users, such as those interested in machine learning, for example. 

 � e second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in so� ware development 
is that it takes less time to develop programs when they are written in languages 
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language. 

 � e � nal advantage is that programming languages allow programs to be 
independent of the computer on which they were developed, since compilers and 
assemblers can translate high-level language programs to the binary instructions of 
any computer. � ese three advantages are so strong that today little programming 
is done in assembly language. 

       1.4     Under the Covers 

 Now that we have looked below your program to uncover the underlying so� ware, 
let’s open the covers of your computer to learn about the underlying hardware. � e 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chapters deal with 
di� erent parts of these four tasks. 

 When we come to an important point in this book, a point so important that 
we hope you will remember it forever, we emphasize it by identifying it as a  Big 
Picture  item. We have about a dozen Big Pictures in this book, the � rst being the 
� ve components of a computer that perform the tasks of inputting, outputting, 
processing, and storing data. 

 Two key components of computers are   input devices  , such as the microphone, 
and   output devices  , such as the speaker. As the names suggest, input feeds the 

  input device  
      A mechanism through 
which the computer is 
fed information, such as a 
keyboard.   

  output device  
      A mechanism that 
conveys the result of a 
computation to a user, 
such as a display, or to 
another computer.   
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computer, and output is the result of computation sent to the user. Some devices, 
such as wireless networks, provide both input and output to the computer.       

  Chapters 5  and 6 describe input/output (I/O) devices in more detail, but let’s 
take an introductory tour through the computer hardware, starting with the 
external I/O devices. 

The BIG 

Picture

       � e � ve classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor.  Figure 1.5    shows the standard organization of a computer. 
� is organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these � ve 
categories. To help you keep all this in perspective, the � ve components of 
a computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.    

 FIGURE 1.5      The organization of a computer, showing the fi ve classic components.     � e 
processor gets instructions and data from memory. Input writes data to memory, and output reads data from 
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.       
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    Through the Looking Glass 

 � e most fascinating I/O device is probably the graphics display. Most personal 
mobile devices use   liquid crystal displays (LCDs)   to get a thin, low-power display. 
� e LCD is not the source of light; instead, it controls the transmission of light. 
A typical LCD includes rod-shaped molecules in a liquid that form a twisting 
helix that bends light entering the display, from either a light source behind the 
display or less o� en from re� ected light. � e rods straighten out when a current is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCD displays use an   active matrix   that has a tiny transistor switch at 
each pixel to precisely control current and make sharper images. A red-green-blue 
mask associated with each dot on the display determines the intensity of the three-
color components in the � nal image; in a color active matrix LCD, there are three 
transistor switches at each point.       

 � e image is composed of a matrix of picture elements, or   pixels  , which can 
be represented as a matrix of bits, called a  bit map . Depending on the size of the 
screen and the resolution, the display matrix in a typical tablet ranges in size from 
1024 � 768 to 2048 � 1536. A color display might use 8 bits for each of the three 
colors (red, blue, and green), for 24 bits per pixel, permitting millions of di� erent 
colors to be displayed.    

 � e computer hardware support for graphics consists mainly of a  raster refresh 
bu� er , or  frame bu� er , to store the bit map. � e image to be represented onscreen 
is stored in the frame bu� er, and the bit pattern per pixel is read out to the graphics 
display at the refresh rate.  Figure 1.6    shows a frame bu� er with a simpli� ed design 
of just 4 bits per pixel. 

 � e goal of the bit map is to faithfully represent what is on the screen. � e 
challenges in graphics systems arise because the human eye is very good at detecting 
even subtle changes on the screen. 

  liquid crystal display  
      A display technology 
using a thin layer of liquid 
polymers that can be used 
to transmit or block light 
according to whether a 
charge is applied.   

  active matrix display  
      A liquid crystal display 
using a transistor to 
control the transmission 
of light at each individual 
pixel.   

  pixel        � e smallest 
individual picture 
element. Screens are 
composed of hundreds 
of thousands to millions 
of pixels, organized in a 
matrix.   

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
011

1
101

Y1

X0 X1

Y0

Y1

 FIGURE 1.6      Each coordinate in the frame buffer on the left determines the shade of the 

corresponding coordinate for the raster scan CRT display on the right.     Pixel (X 
0 
, Y 

0 
) contains 

the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X 
1 
, Y 

1 
).       

 � rough computer 
displays I have landed 
an airplane on the 
deck of a moving 
carrier, observed a 
nuclear particle hit a 
potential well, � own 
in a rocket at nearly 
the speed of light and 
watched a computer 
reveal its innermost 
workings. 

 Ivan Sutherland, the 
“father” of computer 
graphics,  Scienti� c 
American , 1984 
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   Touchscreen 

 While PCs also use LCD displays, the tablets and smartphones of the PostPC era 
have replaced the keyboard and mouse with touch sensitive displays, which has 
the wonderful user interface advantage of users pointing directly what they are 
interested in rather than indirectly with a mouse. 

 While there are a variety of ways to implement a touch screen, many tablets 
today use capacitive sensing. Since people are electrical conductors, if an insulator 
like glass is covered with a transparent conductor, touching distorts the electrostatic 
� eld of the screen, which results in a change in capacitance. � is technology can 
allow multiple touches simultaneously, which allows gestures that can lead to 
attractive user interfaces. 

   Opening the Box 

  Figure 1.7    shows   the contents of the Apple iPhone Xs Max smart phone. 
Unsurprisingly, of the � ve classic components of the computer, I/O dominates 
this device. � e list of I/O devices includes a capacitive multitouch LCD display, 
front-facing camera, rear-facing camera, microphone, headphone jack, speakers, 
accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. � e datapath, 
control, and memory are a tiny portion of the components. 

 � e small rectangles in  Figure 1.8    contain the devices that drive our advancing 
technology, called  integrated circuits  and nicknamed  chips . � e A12 package seen 
in the middle of in  Figure 1.8  contains two large ARM processors and four little 
ARM processors that operate with a clock rate of 2.5 GHz. � e  processor  is the active 
part of the computer, following the instructions of a program to the letter. It adds 
numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally, 
people call the processor the  CPU , for the more bureaucratic-sounding  central 
processor unit . 

 Descending even lower into the hardware,  Figure 1.9    reveals details of a 
microprocessor. � e processor logically comprises two main components: datapath 
and control, the respective brawn and brain of the processor. � e  datapath  performs 
the arithmetic operations, and  control  tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program.  Chapter 4  
explains the datapath and control for a higher performance design. 

 � e iPhone Xs Max package in  Figure 1.8  also includes a memory chip with 32 
gibibits or 2 GiB of capacity. � e  memory  is where the programs are kept when 
they are running; it also contains the data needed by the running programs. � e 
memory is a DRAM chip.  DRAM  stands for  dynamic random access memory . 
DRAMs are used together to contain the instructions and data of a program. In 
contrast to sequential access memories, such as magnetic tapes, the  RAM  portion 
of the term  DRAM  means that memory accesses take basically the same amount of 
time no matter what portion of the memory is read. 

  integrated circuit        Also 
called a chip. A device 
combining dozens to 
millions of transistors.   

  central processor unit 
(CPU)        Also called 
processor. � e active part 
of the computer, which 
contains the datapath and 
control and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.   

  datapath        � e 
component of the 
processor that performs 
arithmetic operations   

  control        � e component 
of the processor that 
commands the datapath, 
memory, and I/O 
devices according to 
the instructions of the 
program.   

  memory        � e storage 
area in which programs 
are kept when they are 
running and that contains 
the data needed by the 
running programs.   

  dynamic random access 
memory (DRAM)       
 Memory built as an 
integrated circuit; it 
provides random access to 
any location. Access times 
are 50 nanoseconds and 
cost per gigabyte in 2020 
was $3 to $6.   
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 FIGURE 1.7      Components of the Apple iPhone Xs Max cell phone. At the le�  is the capacitive multitouch 
screen and LCD display. Next to it is the battery. To the far right is the metal frame that attaches the LCD 
to the back of the iPhone. � e small components surrounding in the center are what we think of as the 
computer; they are not simple rectangles to � t compactly inside the case next to the battery.  Figure 1.8  shows 
a close-up of the board to the le�  of the metal case, which is the logic printed circuit board that contains the 
processor and the memory (Courtesy TechInsights,  www.techIngishts.com   ).    

 FIGURE 1.8      � e logic board of Apple iPhone Xs Max in  Figure 1.7 . � e large integrated circuit in the 
middle is the Apple A12 chip, which contains two large ARM processor cores and four little ARM processor 
cores that run at 2.5 GHz, as well as 2 GiB of main memory inside the package.  Figure 1.9  shows a photograph 
of the processor chip inside the A12 package. A similar-sized chip on a symmetric board attached to the 
back is the 64 GiB � ash memory chip for nonvolatile storage. � e other chips on the board include power 
management integrated controller and audio ampli� er chips (Courtesy TechInsights,  www.techIngishts.com ).    

www.techIngishts.com
www.techIngishts.com
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 Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache 
memory.  Cache memory  consists of a small, fast memory that acts as a bu� er 
for the DRAM memory. (� e nontechnical de� nition of  cache  is a safe place 
for hiding things.) Cache is built using a di� erent memory technology,  static 
random access memory (SRAM) . SRAM is faster but less dense, and hence more 
expensive, than DRAM (see  Chapter 5 ). SRAM and DRAM are two layers of the 
 memory hierarchy .  

   static random access 
memory (SRAM)        Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.    

 FIGURE 1.9      � e processor integrated circuit inside the A12 package. � e size of chip is 8.4 by 9.91 mm, and 
it was manufactured originally in a 7-nm process (see Section 1.5). It has two identical ARM big processors or 
cores in the lower middle of the chip, four small cores on the lower right of the chip, a graphical processor unit 
(GPU) on the far right (see Section 6.6), and a domain-speci� c accelerator for neural networks (see Section 
6.7), called the NPU, on the far le� . In the middle are second-level cache memories (L2) for the big and 
small cores (see Chapter 5). At the top and bottom of the chip are interfaces to main memory (DDR DRAM) 
(Courtesy TechInsights,  www.techinsights.com , and AnandTech,  www.anandtech.com ).    

  cache memory        A small, 
fast memory that acts as a 
bu� er for a slower, larger 
memory.   

www.techinsights.com
www.anandtech.com
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             As mentioned above, one of the great ideas to improve design is abstraction. 
One of the most important  abstractions  is the interface between the hardware and 
the lowest-level so� ware. So� ware communicates to hardware via a vocabulary. 
� e words of the vocabulary are called instructions, and the vocabulary itself is 
called the   instruction set architecture  , or simply   architecture  , of a computer. 
� e instruction set architecture includes anything programmers need to know to 
make a binary machine language program work correctly, including instructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the 
details of doing I/O, allocating memory, and other low-level system functions 
so that application programmers do not need to worry about such details. � e 
combination of the basic instruction set and the operating system interface 
provided for application programmers is called the   application binary interface 
(ABI)  .

              An instruction set architecture allows computer designers to talk about 
functions independently from the hardware that performs them. For example, 
we can talk about the functions of a digital clock (keeping time, displaying the 
time, setting the alarm) independently from the clock hardware (quartz crystal, 
LED displays, plastic buttons). Computer designers distinguish architecture from 
an   implementation   of an architecture along the same lines: an implementation is 
hardware that obeys the architecture abstraction. � ese ideas bring us to another 
Big Picture.  

  instruction set 
architecture        Also 
called   architecture  . An 
abstract interface between 
the hardware and the 
lowest-level so� ware 
that encompasses all the 
information necessary to 
write a machine language 
program that will run 
correctly, including 
instructions, registers, 
memory access, I/O, and 
so on.   

  application binary 
interface (ABI)        � e user 
portion of the instruction 
set plus the operating 
system interfaces used by 
application programmers. 
It de� nes a standard for 
binary portability across 
computers.   

      Both hardware and so� ware consist of hierarchical layers using abstraction, 
with each lower layer hiding details from the level above. One key interface 
between the levels of abstraction is the  instruction set architecture —the 
interface between the hardware and low-level so� ware. � is abstract 
interface enables many  implementations  of varying cost and performance 
to run identical so� ware.    

The BIG
Picture

   A Safe Place for Data 

 � us far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is   volatile  —that is, when it loses power, 
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn o�  the 
power to the DVD player, and is thus a   nonvolatile memory   technology.       

 To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and 
programs between runs, the term   main memory   or   primary memory   is used for 

   implementation  
      Hardware that obeys the 
architecture abstraction.    

  volatile memory  
      Storage, such as DRAM, 
that retains data only if it 
is receiving power.   

  nonvolatile memory  
      A form of memory that 
retains data even in the 
absence of a power source 
and that is used to store 
programs between runs. 
A DVD disk is nonvolatile.   
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the former, and   secondary memory   for the latter. Secondary memory forms the 
next lower layer of the  memory hierarchy . DRAMs have dominated main memory 
since 1975, but   magnetic disks   dominated secondary memory starting even earlier. 
Because of their size and form factor, personal Mobile Devices use   � ash memory  , 
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip 
containing the 64 GiB � ash memory of the iPhone Xs. While slower than DRAM, 
it is much cheaper than DRAM in addition to being nonvolatile. Although costing 
more per bit than disks, it is smaller, it comes in much smaller capacities, it is 
more rugged, and it is more power e�  cient than disks. Hence, � ash memory is 
the standard secondary memory for PMDs. Alas, unlike disks and DRAM, � ash 
memory bits wear out a� er 100,000 to 1,000,000 writes. � us, � le systems must 
keep track of the number of writes and have a strategy to avoid wearing out storage, 
such as by moving popular data.  Chapter 5  describes disks and � ash memory in 
more detail.

                      Communicating with Other Computers 

 We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in  Figure 1.5  is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new personal mobile device 
or server without a network interface would be ridiculed. Networked computers 
have several major advantages:

   ■      Communication : Information is exchanged between computers at high 
speeds.  

  ■      Resource sharing : Rather than each computer having its own I/O devices, 
computers on the network can share I/O devices.  

  ■      Nonlocal access : By connecting computers over long distances, users need not 
be near the computer they are using.  

   Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is  Ethernet . It can be 
up to a kilometer long and transfer at up to 100 gigabits per second. Its length and 
speed make Ethernet useful to connect computers on the same � oor of a building; 
hence, it is an example of what is generically called a   local area network  . Local area 
networks are interconnected with switches that can also provide routing services 
and security.   Wide area networks   cross continents and are the backbone of the 
Internet, which supports the web. � ey are typically based on optical � bers and are 
leased from telecommunication companies.       

 Networks have changed the face of computing in the last 40 years, both by 
becoming much more ubiquitous and by making dramatic increases in performance. 

  main memory        Also 
called   primary memory  . 
Memory used to hold 
programs while they are 
running; typically consists 
of DRAM in today’s 
computers.   

  secondary memory   
      Nonvolatile memory 
used to store programs 
and data between runs; 
typically consists of � ash 
memory in PMDs and 
magnetic disks in servers.   

  magnetic disk        Also 
called   hard disk  . A form 
of nonvolatile secondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
material. Because they 
are rotating mechanical 
devices, access times are 
about 5 to 20 milliseconds 
and cost per gigabyte in 
2020 was $0.01 to $0.02.   

  � ash memory  
      A nonvolatile semi-
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive per bit and 
faster than magnetic disks. 
Access times are about 5 
to 50 microseconds and 
cost per gigabyte in 2020 
was $0.06 to $0.12.   

  local area network 
(LAN)        A network 
designed to carry data 
within a geographically 
con� ned area, typically 
within a single building.   

  wide area network 
(WAN)        A network 
extended over hundreds 
of kilometers that can 
span a continent.   
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In the 1970s, very few individuals had access to electronic mail, the Internet and 
web did not exist, and physically mailing magnetic tapes was the primary way to 
transfer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access. 

 As networking technology improved, it became much cheaper and had a much 
higher capacity. For example, the � rst standardized local area network technology, 
developed about 40 years ago, was a version of Ethernet that had a maximum capacity 
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if 
not a hundred, computers. Today, local area network technology o� ers a capacity 
of from 1 to 100 gigabits per second, usually shared by at most a few computers. 
Optical communications technology has allowed similar growth in the capacity of 
wide area networks, from hundreds of kilobits to gigabits and from hundreds of 
computers connected to a worldwide network to millions of computers connected. 
� is combination of dramatic rise in deployment of networking combined with 
increases in capacity have made network technology central to the information 
revolution of the last 30 years. 

 For the last 15 years another innovation in networking is reshaping the way 
computers communicate. Wireless technology is widespread, which enabled 
the PostPC Era. � e ability to make a radio in the same low-cost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a signi� cant 
improvement in price, leading to an explosion in deployment. Currently available 
wireless technologies, called by the IEEE standard name 802.11ac, allow for 
transmission rates from 1 to 1300 million bits per second. Wireless technology is 
quite a bit di� erent from wire-based networks, since all users in an immediate area 
share the airwaves.   

       ■     Semiconductor DRAM memory, � ash memory, and disk storage di� er 
signi� cantly. For each technology, list its volatility, approximate relative 
access time, and approximate relative cost compared to DRAM.  

              1.5 
    Technologies for Building Processors 

and Memory 

 Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer.  Figure 1.10    shows the technologies that have 
been used over time, with an estimate of the relative performance per unit cost for 
each technology. Since this technology shapes what computers will be able to do 
and how quickly they will evolve, we believe all computer professionals should be 
familiar with the basics of integrated circuits. 

 A   transistor   is simply an on/o�  switch controlled by electricity. � e  integrated 
circuit  (IC) combined dozens to hundreds of transistors into a single chip. When 
Gordon Moore predicted the continuous doubling of resources, he was predicting 

Check 

Yourself

  transistor        An on/o�  
switch controlled by an 
electric signal.   
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Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 1

1965 35

1975 Integrated circuit

Very large-scale integrated circuit

Ultra large-scale integrated circuit

Transistor

900

1995 2,400,000

2020 500,000,000,000

 FIGURE 1.10      Relative performance per unit cost of technologies used in computers over 

time.      Source: Computer Museum, Boston, with 2020 extrapolated by the authors. See         Section     1.13  .    
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 FIGURE 1.11      Growth of capacity per DRAM chip over time.     � e  y -axis is measured in kibibits (2 10  bits). � e DRAM industry 
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat 
closer to doubling every three years. With the slowing of Moore’s Law and di�  culties in reliable manufacturing of smaller DRAM cells given 
the challenging aspect ratios of their three-dimensional structure.    

the growth rate of the number of transistors per chip. To describe the tremendous 
increase in the number of transistors from hundreds to millions, the adjective  very 
large scale  is added to the term, creating the abbreviation  VLSI , for   very large-scale 
integrated circuit  .     

 � is rate of increasing integration has been remarkably stable.  Figure 1.11    shows 
the growth in DRAM capacity since 1977. For decades, the industry has consistently 
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 
times! Figure 1.11 also shows the slowdown due to the slowing of Moore’s Law; 
quadrupuling capacity has taken 6 years recently. 

 To understand how manufacture integrated circuits, we start at the beginning. 
� e manufacture of a chip begins with   silicon  , a substance found in sand. Because 
silicon does not conduct electricity well, it is called a   semiconductor  . With a special 
chemical process, it is possible to add materials to silicon that allow tiny areas to 
transform into one of three devices:    

   ■     Excellent conductors of electricity (using either microscopic copper or 
aluminum wire)  

  ■     Excellent insulators from electricity (like plastic sheathing or glass)  

  ■     Areas that can conduct or insulate under special conditions (as a switch)  

  very large-scale 
integrated (VLSI) 
circuit        A device 
containing hundreds of 
thousands to millions of 
transistors.   

  silicon        A natural 
element that is a 
semiconductor.   

  semiconductor  
      A substance that does not 
conduct electricity well.   
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   Transistors fall in the last category. A VLSI circuit, then, is just billions of 
combinations of conductors, insulators, and switches manufactured in a single 
small package. 

 � e manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers.  Figure 1.12    shows that process. 
� e process starts with a   silicon crystal ingot  , which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot 
is � nely sliced into   wafers   no more than 0.1 inches thick. � ese wafers then go 
through a series of processing steps, during which patterns of chemicals are placed 
on each wafer, creating the transistors, conductors, and insulators discussed earlier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators.       

  silicon crystal ingot  
      A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.   

  wafer        A slice from a 
silicon ingot no more than 
0.1 inches thick, used to 
create chips.   

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

 FIGURE 1.12      The chip manufacturing process.     A� er being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see  Figure 1.13 ). � ese patterned wafers are 
then tested with a wafer tester, and a map of the good parts is made. � en, the wafers are diced into dies (see 
 Figure 1.9 ). In this � gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) 
� e yield of good dies in this case was 17/20, or 85%. � ese good dies are then bonded into packages and 
tested one more time before shipping the packaged parts to customers. One bad packaged part was found 
in this � nal test.       

 A single microscopic � aw in the wafer itself or in one of the dozens of patterning 
steps can result in that area of the wafer failing. � ese   defects  , as they are called, 
make it virtually impossible to manufacture a perfect wafer. � e simplest way to 
cope with imperfection is to place many independent components on a single 
wafer. � e patterned wafer is then chopped up, or  diced,  into these components, 
called   dies   and more informally known as   chips  .  Figure 1.13    shows a photograph 
of a wafer containing microprocessors before they have been diced; earlier,  Figure 
1.9  shows an individual microprocessor die.      

 Dicing enables you to discard only those dies that were unlucky enough to 
contain the � aws, rather than the whole wafer. � is concept is quanti� ed by the 

  defect        A microscopic 
� aw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.   

  die        � e individual 
rectangular sections that 
are cut from a wafer, more 
informally known as 
  chips  .   
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  yield   of a process, which is de� ned as the percentage of good dies from the total 
number of dies on the wafer.    

 � e cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and the smaller number of dies that � t on a wafer. To reduce the 
cost, using the next generation process shrinks a large die as it uses smaller sizes 
for both transistors and wires. � is improves the yield and the die count per wafer. 
A 7-nanometer (nm) process was state-of-the-art in 2020, which means essentially 
that the smallest feature size on the die is 7     nm. 

 Once you’ve found good dies, they are connected to the input/output pins of a 
package, using a process called  bonding . � ese packaged parts are tested a � nal time, 
since mistakes can occur in packaging, and then they are shipped to customers.

While we have talked about the cost of chips, there is a di� erence between cost 
and price. Companies charge as much as the market will bear to maximize the 

  yield        � e percentage of 
good dies from the total 
number of dies on the 
wafer.   

 FIGURE 1.13      A 12-inch (300-mm) wafer this 10nm wafer contains 10th Gen Intel® Core™ 

processors, code-named “Ice Lake” (Courtesy Intel).     � e number of dies on this 300-mm 
(12-inch) wafer at 100% yield is 506. According to AnandTech, 1  each Ice Lake die is 11.4 by 10.7 mm. � e 
several dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it 
is easier to create the masks used to pattern the silicon. � is die uses a 10-nm technology, which means that 
the smallest features are approximately 10 nm in size, although they are typically somewhat smaller than the 
actual feature size, which refers to the size of the transistors as “drawn” versus the � nal manufactured size.       

1Ian Cutress, “I Ran O�  with Intel’s Tiger Lake Wafer. Who Wants a Die Shot?” January 13, 2020, https://
www.anandtech.com/show/15380/i-ran-o� -with-intels-tiger-lake-wafer-who-wants-a-die-shot

https://www.anandtech.com/show/15380/i-ran-off-with-intels-tiger-lake-wafer-who-wants-a-die-shot
https://www.anandtech.com/show/15380/i-ran-off-with-intels-tiger-lake-wafer-who-wants-a-die-shot
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return on their investment, which must cover costs like a company’s research and 
development (R&D), marketing, sales, manufacturing equipment maintenance, 
building rental, cost of � nancing, pretax pro� ts, and taxes. Margins can be higher 
on unique chips that come from only one company, like microprocessors, versus 
chips that are commodities supplied by several companies, like DRAMs. � e price 
� uctuates based on the ratio of supply and demand, and it is easy for multiple 
companies to build more chips than the market demands.

    Elaboration :       The cost of an integrated circuit can be expressed in three simple 

equations:

        The � rst equation is straightforward to derive. The second is an approximation, 

since it does not subtract the area near the border of the round wafer that cannot 

accommodate the rectangular dies (see  Figure 1.13 ). The � nal equation is based on 

empirical observations of yields at integrated circuit factories, with the exponent related 

to the number of critical processing steps. 

 Hence, depending on the defect rate and the size of the die and wafer, costs are 

generally not linear in the die area.        

    A key factor in determining the cost of an integrated circuit is volume. Which of 
the following are reasons why a chip made in high volume should cost less?

   1.     With high volumes, the manufacturing process can be tuned to a particular 
design, increasing the yield.  

  2.     It is less work to design a high-volume part than a low-volume part.  

  3.     � e masks used to make the chip are expensive, so the cost per chip is lower 
for higher volumes.  

  4.     Engineering development costs are high and largely independent of volume; 
thus, the development cost per die is lower with high-volume parts.  

  5.     High-volume parts usually have smaller die sizes than low-volume parts and 
therefore have higher yield per wafer.  

             1.6     Performance 

 Assessing the performance of computers can be quite challenging. � e scale and 
intricacy of modern so� ware systems, together with the wide range of performance 

Cost per die
Cost per wafer

Dies per wafer yield

Dies per wafer
Wafer area

Die area

Yield
Defects per area Die area))n

1

1( (

Check 
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improvement techniques employed by hardware designers, have made performance 
assessment much more di�  cult. 

 When trying to choose among di� erent computers, performance is an important 
attribute. Accurately measuring and comparing di� erent computers is critical to 
purchasers and therefore to designers. � e people selling computers know this as 
well. O� en, salespeople would like you to see their computer in the best possible 
light, whether or not this light accurately re� ects the needs of the purchaser’s 
application. Hence, understanding how best to measure performance and the 
limitations of performance measurements is important in selecting a computer. 

 � e rest of this section describes di� erent ways in which performance can be 
determined; then, we describe the metrics for measuring performance from the 
viewpoint of both a computer user and a designer. We also look at how these metrics 
are related and present the classical processor performance equation, which we will 
use throughout the text. 

  Defi ning Performance 

 When we say one computer has better performance than another, what do we mean? 
Although this question might seem simple, an analogy with passenger airplanes 
shows how subtle the question of performance can be.  Figure 1.14    lists some typical 
passenger airplanes, together with their cruising speed, range, and capacity. If 
we wanted to know which of the planes in this table had the best performance, 
we would � rst need to de� ne performance. For example, considering di� erent 
measures of performance, we see that the plane with the highest cruising speed was 
the Concorde (retired from service in 2003), the plane with the longest range is the 
Boeing 777-200LR, and the plane with the largest capacity is the Airbus A380-800. 

 Let’s suppose we de� ne performance in terms of speed. � is still leaves two possible 
de� nitions. You could de� ne the fastest plane as the one with the highest cruising 
speed, taking a single passenger from one point to another in the least time. If you 
were interested in transporting 500 passengers from one point to another, however, 
the Airbus A380-800 would clearly be the fastest, as the last column of the � gure 
shows. Similarly, we can de� ne computer performance in several di� erent ways. 

 If you were running a program on two di� erent desktop computers, you’d say 
that the faster one is the desktop computer that gets the job done � rst. If you were 
running a datacenter that had several servers running jobs submitted by many 
users, you’d say that the faster computer was the one that completed the most 

  response time        Also 
called   execution time  . 
� e total time required 
for the computer to 
complete a task, including 
disk accesses, memory 
accesses, I/O activities, 
operating system 
overhead, CPU execution 
time, and so on.   

Airplane

Passenger 

capacity

Cruising range 

(miles)

Cruising speed 

(m.p.h.)

Passenger throughput 

(passengers ×  m.p.h.)

Boeing 737 240 3000 0564 135,360

BAC/Sud Concorde 132

301

853

4000 01350 178,200

Boeing 777-200LR 9395 554 166,761

Airbus A380-800 8477 0587 500,711

 FIGURE 1.14      The capacity, range, and speed for a number of commercial airplanes.     � e last 
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising 
speed (ignoring range and takeo�  and landing times).       
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jobs during a day. As an individual computer user, you are interested in reducing 
  response time  —the time between the start and completion of a task—also referred 
to as   execution time  . Datacenter managers are o� en interested in increasing 
  throughput   or   bandwidth  —the total amount of work done in a given time. Hence, 
in most cases, we will need di� erent performance metrics as well as di� erent sets 
of applications to benchmark personal mobile devices, which are more focused on 
response time, versus servers, which are more focused on throughput.     

    Throughput and Response Time     

 Do the following changes to a computer system increase throughput, decrease 
response time, or both?

   1.     Replacing the processor in a computer with a faster version  

  2.     Adding additional processors to a system that uses multiple processors 
for separate tasks—for example, searching the web      

 Decreasing response time almost always improves throughput. Hence, in case 
1, both response time and throughput are improved. In case 2, no one task gets 
work done faster, so only throughput increases. 

 If, however, the demand for processing in the second case was almost 
as large as the throughput, the system might force requests to queue up. In 
this case, increasing the throughput could also improve response time, since 
it would reduce the waiting time in the queue. � us, in many real computer 
systems, changing either execution time or throughput o� en a� ects the other. 

       In discussing the performance of computers, we will be primarily concerned with 
response time for the � rst few chapters. To maximize performance, we want to 
minimize response time or execution time for some task. � us, we can relate 
performance and execution time for a computer X:

   

Performance
Execution time

X
X

�
1

     � is means that for two computers X and Y, if the performance of X is greater than 
the performance of Y, we have 

 

Performance Performance

Execution time Execution time

X Y

X Y

�

�
1 1

EExecution time Execution timeY X�

      � at is, the execution time on Y is longer than that on X, if X is faster than Y. 

  throughput        Also called 
  bandwidth  . Another 
measure of performance, 
it is the number of tasks 
completed per unit time.   

EXAMPLE

ANSWER
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 In discussing a computer design, we o� en want to relate the performance of two 
di� erent computers quantitatively. We will use the phrase “X is  n  times faster than 
Y”—or equivalently “X is  n  times as fast as Y”—to mean 

 

Performance

Performance
X

Y

= n

      If X is  n  times as fast as Y, then the execution time on Y is  n  times as long as it is 
on X:

  

Performance

Performance

Execution time

Execution time

X

Y

Y

X

� � n

    

    Relative Performance     

 If computer A runs a program in 10 seconds and computer B runs the same 
program in 15 seconds, how much faster is A than B?   

 We know that A is  n  times as fast as B if
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 � us the performance ratio is
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1 5� .

     
 and A is therefore 1.5 times as fast as B.       

 In the above example, we could also say that computer B is 1.5 times  slower than  
computer A, since
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 For simplicity, we will normally use the terminology  as fast as  when we try to 
compare computers quantitatively. Because performance and execution time are 
reciprocals, increasing performance requires decreasing execution time. To avoid 
the potential confusion between the terms  increasing  and  decreasing , we usually 
say “improve performance” or “improve execution time” when we mean “increase 
performance” and “decrease execution time.” 

   Measuring Performance 

 Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program  execution time  is 
measured in seconds per program. However, time can be de� ned in di� erent ways, 
depending on what we count. � e most straightforward de� nition of time is called 
 wall clock time ,  response time , or  elapsed time . � ese terms mean the total time 
to complete a task, including disk accesses, memory accesses,  input/output  (I/O) 
activities, operating system overhead—everything. 

 Computers are o� en shared, however, and a processor may work on several 
programs simultaneously. In such cases, the system may try to optimize throughput 
rather than attempt to minimize the elapsed time for one program. Hence, we 
might want to distinguish between the elapsed time and the time over which the 
processor is working on our behalf.   CPU execution time   or simply   CPU time  , 
which recognizes this distinction, is the time the CPU spends computing for this 
task and does not include time spent waiting for I/O or running other programs. 
(Remember, though, that the response time experienced by the user will be the 
elapsed time of the program, not the CPU time.) CPU time can be further divided 
into the CPU time spent in the program, called   user CPU time  , and the CPU time 
spent in the operating system performing tasks on behalf of the program, called 
  system CPU time  . Di� erentiating between system and user CPU time is di�  cult to 
do accurately, because it is o� en hard to assign responsibility for operating system 
activities to one user program rather than another and because of the functionality 
di� erences among operating systems.          

 For consistency, we maintain a distinction between performance based on 
elapsed time and that based on CPU execution time. We will use the term  system 
performance  to refer to elapsed time on an unloaded system and  CPU performance  
to refer to user CPU time. We will focus on CPU performance in this chapter, 
although our discussions of how to summarize performance can be applied to 
either elapsed time or CPU time measurements.

       Di� erent applications are sensitive to di� erent aspects of the performance of a 
computer system. Many applications, especially those running on servers, depend 
as much on I/O performance, which, in turn, relies on both hardware and so� ware. 
Total elapsed time measured by a wall clock is the measurement of interest. In 

  CPU execution 
time        Also called   CPU 
time  . � e actual time the 
CPU spends computing 
for a speci� c task.   

  user CPU time        � e 
CPU time spent in a 
program itself.   

  system CPU time        � e 
CPU time spent in 
the operating system 
performing tasks on 
behalf of the program.   
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Performance


