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Preface

Scientists often have the feeling that, through their work, they are learning about
some aspect of themselves. Physicists see this connection in their work; as do,
for example, psychologists and chemists. In the study of robotics, the connection
between the �eld of study and ourselves is unusually obvious. Unlike a science that
seeks only to analyze, robotics as currently pursued takes the engineering bent
toward synthesis. Perhaps it is for these reasons that the �eld fascinates so many
of us.

The study of robotics concerns itself with the desire to synthesize some aspects
of human function through the use ofmechanisms, sensors, actuators, and computers.
Obviously, this is a huge undertaking, which seems certain to require a multitude of
ideas from various “classical” �elds.

Currently, different aspects of robotics research are carried out by experts in
various �elds. It is usually not the case that any single individual has the entire area
of robotics in his or her grasp. A partitioning of the �eld is natural to expect. At a
relatively high level of abstraction, splitting robotics into four major areas seems
reasonable: mechanical manipulation, locomotion, computer vision, and arti�cial
intelligence.

This book introduces the science and engineering of mechanical manipulation.
This subdiscipline of robotics has its foundations in several classical �elds. The major
relevant �elds are mechanics, control theory, and computer science. In this book,
Chapters 1 through 8 cover topics from mechanical engineering and mathematics,
Chapters 9 through 11 cover control-theoretical material, and Chapters 12 and 13
might be classed as computer-science material. Additionally, the book emphasizes
computational aspects of the problems throughout; for example, each chapter that
is concerned predominantly with mechanics has a brief section devoted to computa-
tional considerations.

This book evolved from class notes used to teach “Introduction to Robotics” at
StanfordUniversity during the autumns of 1983 through 1985. The �rst three editions
have been used from 1986 to 2016. The fourth edition has bene�ted from this use,
and incorporates corrections and improvements due to feedback frommany sources.
Thanks to all those who sent corrections to the author.

This book is appropriate for a senior undergraduate- or �rst-year graduate-
level course. It is helpful if the student has had one basic course in statics and
dynamics, a course in linear algebra, and can program in a high-level language.
Additionally, it is helpful, though not absolutely necessary, that the student have
completed an introductory course in control theory. One aim of the book is to
present material in a simple, intuitive way. Speci�cally, the audience need not be
strictly mechanical engineers, though much of the material is taken from that �eld.
At Stanford, many electrical engineers, computer scientists, and mathematicians
found the book quite readable.
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Directly, this book is of use to those engineers developing robotic systems, but
the material should be viewed as important background material for anyone who
will be involved with robotics. In much the same way that software developers have
usually studied at least somehardware, people not directly involvedwith themechan-
ics and control of robots should have some such background as that offered by
this text.

Like the third edition, the fourth edition is organized into 13 chapters. The
material will �t comfortably into an academic semester; teaching the material
within an academic quarter will probably require the instructor to choose a couple
of chapters to omit. Even at that pace, all of the topics cannot be covered in great
depth. In some ways, the book is organized with this in mind; for example, most
chapters present only one approach to solving the problem at hand. One of the
challenges of writing this book has been in trying to do justice to the topics covered
within the time constraints of usual teaching situations. One method employed to
this end was to consider only material that directly affects the study of mechanical
manipulation.

At the end of each chapter is a set of exercises. Each exercise has been assigned
a dif�culty factor, indicated in square brackets following the exercise’s number. Dif-
�culties vary between [00] and [50], where [00] is trivial and [50] is an unsolved
research problem.1 Of course, what one person �nds dif�cult, another might �nd
easy, so some readers may �nd the factors misleading in some cases. Nevertheless,
an effort has been made to appraise the dif�culty of the exercises.

At the end of each chapter, there is a programming assignment in which the
student applies the subject matter of the corresponding chapter to a simple three-
jointed planar manipulator. This simple manipulator is complex enough to demon-
strate nearly all the principles of general manipulators without bogging the student
down in too much complexity. Each programming assignment builds upon the pre-
vious ones, until, at the end of the course, the student has an entire library of manip-
ulator software.

There are a total of 12 MATLAB exercises associated with Chapters 1 through
9. These exercises were developed by Prof. Robert L.Williams II of Ohio University,
and we are greatly indebted to him for this contribution. These exercises can be used
with the MATLAB Robotics Toolbox2 created by Peter Corke, Principal Research
Scientist with CSIRO in Australia.

Chapter 1 is an introduction to the �eld of robotics. It introduces some back-
ground material, a few fundamental ideas, the adopted notation of the book, and it
previews the material in the later chapters.

Chapter 2 covers the mathematics used to describe positions and orientations
in 3-space. This is extremely important material: By de�nition, mechanical manip-
ulation concerns itself with moving objects (parts, tools, the robot itself) around in
space. We need ways to describe these actions in a way that is easily understood and
is as intuitive as possible.

Chapters 3 and 4 deal with the geometry of mechanical manipulators. They
introduce the branch of mechanical engineering known as kinematics, the study of

1I have adopted the same scale as in The Art of Computer Programming by D. Knuth
(Addison-Wesley).

2For the MATLAB Robotics Toolbox, go to http://petercorke.com/Robotics Toolbox.html
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motion without regard to the forces that cause it. In these chapters, we deal with the
kinematics of manipulators, but restrict ourselves to static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and static
forces.

In Chapter 6, we deal for the �rst time with the forces and moments required
to cause motion of a manipulator. This is the problem of manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator in terms of
trajectories through space.

Chapter 8 many topics related to the mechanical design of a manipulator. For
example, how many joints are appropriate, of what type should they be, and how
should they be arranged?

In Chapters 9 and 10, we study methods of controlling a manipulator (usually
with a computer) so that it will faithfully track a desired position trajectory through
space. Chapter 9 restricts attention to linear control methods; Chapter 10 extends
these considerations to the nonlinear realm.

Chapter 11 covers the �eld of active force control with a manipulator. That is,
we discuss how to control the application of forces by the manipulator. This mode of
control is important when the manipulator comes into contact with the environment
around it, such as during the washing of a window with a sponge.

Chapter 12 overviews methods of programming robots, speci�cally the
elements needed in a robot programming system, and the particular problems
associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems, which
represent the latest extension to the man–robot interface.

New in the 4th Edition:

• Additional exercises at the end of each chapter

• New section 8.9 on optical encoders

• New section 10.9 on adaptive control

• Updated material and references for changing technology

• Several new or updated �gures

• More than 100 minor typos and other errors corrected

I would like to thank the many people who have contributed their time to
helping me with this book. First, my thanks to the students of Stanford’s ME219 in
the autumn of 1983 through 1985, who suffered through the �rst drafts, found many
errors, and provided many suggestions. Professor Bernard Roth has contributed in
many ways, both through constructive criticism of the manuscript and by providing
me with an environment in which to complete the �rst edition. At SILMA Inc.,
I enjoyed a stimulating environment, plus resources that aided in completing the
second edition. Dr. Jeff Kerr wrote the �rst draft of Chapter 8. Prof. Robert L.
Williams II contributed the MATLAB exercises found at the end of each chapter,
and Peter Corke expanded his Robotics Toolbox to support this book’s style of the
Denavit–Hartenberg notation. I owe a debt to my previous mentors in robotics:
Marc Raibert, Carl Ruoff, Tom Binford, and Bernard Roth.

Many others around Stanford, SILMA, Adept, and elsewhere have helped in
various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling, Al Barr,
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Stephen Boyd, Chuck Buckley, Joel Burdick, Jim Callan, Brian Carlisle, Monique
Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal, Chris Goad, Ron
Goldman, Bill Hamilton, Steve Holland, Peter Jackson, Eric Jacobs, Johann Jäger,
Paul James, Jeff Kerr, Oussama Khatib, Jim Kramer, Dave Lowe, Jim Maples, Dave
Marimont, Dave Meer, Kent Ohlund, Madhusudan Raghavan, Richard Roy, Ken
Salisbury, Bruce Shimano, Donalda Speight, Bob Tilove, Sandy Wells, and Dave
Williams.

I wish to thank Tom Robbins at Pearson for his guidance with the �rst and
second editions.

The students of Prof. Roth’s Robotics Class of 2002 at Stanford used the second
edition and forwarded many reminders of the mistakes that needed to get �xed for
the fourth edition.

Finally I wish to thank those helpingwith the fourth edition:MattMarshall who
contributed some new end of chapter exercises as well as other helpful feedback; and
Julie Bai and Michelle Bayman at Pearson.

JJC
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Introduction

1.1 BACKGROUND

1.2 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS

1.3 NOTATION

1.1 BACKGROUND

The history of industrial automation is characterized by periods of rapid change in
popular methods. Either as a cause or, perhaps, an effect, such periods of change
in automation techniques seem closely tied to world economics. Use of the indus-

trial robot, which became identi�able as a unique device in the 1960s [1], along with
computer-aided design (CAD) systems and computer-aided manufacturing (CAM)
systems, characterizes the latest trends in the automation of the manufacturing pro-
cess. These technologies are leading industrial automation through another transi-
tion, the scope of which is still unknown [2].

In North America, there was much adoption of robotic equipment in the early
1980s, followed by a brief pull-back in the late 1980s. Since that time, the market
has been growing (see Fig. 1.1), although it is subject to economic swings, as are all
markets.

Figure 1.2 shows the number of robots being installed per year worldwide.
A major reason for the growth in the use of industrial robots is their declining cost
and increasing abilities. By 2025 it is estimated that the average manufacturing
employer will save 16% on labor by replacing human workers with robots. In some
countries, it is even more favorable to employ robots (see Fig. 1.3). As robots
become more cost effective at their jobs, and as human labor continues to become
more expensive, more and more industrial jobs become candidates for robotic auto-
mation. This is the single most important trend propelling growth of the industrial
robot market. A secondary trend is that, economics aside, as robots become more
capable, they become able to do more and more tasks that might be dangerous or
impossible for human workers to perform.

This book focuses on the mechanics and control of the most important form
of the industrial robot, the mechanical manipulator. Exactly what constitutes an
industrial robot is sometimes debated. Devices such as that shown in Fig. 1.4 are
always included, while numerically controlled (NC) milling machines usually are not.
The distinction lies somewhere in the sophistication of the programmability of the
device; if a mechanical device can be programmed to perform a wide variety of
applications, it is probably an industrial robot. Machines which are for the most part
limited to one class of task are considered �xed automation. For the purposes of this

1
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FIGURE 1.1: Sales of industrial robots in North America in millions of U.S.
dollars. Source: Robotic Industries Association.
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FIGURE 1.2: Yearly installations of multipurpose industrial robots. Source: World
Robotics 2016.

text, the distinctions need not be debated; most material is of a basic nature that
applies to a wide variety of programmable machines.

By and large, the study of the mechanics and control of manipulators is
not a new science, but merely a collection of topics taken from “classical” �elds.
Mechanical engineering contributes methodologies for the study of machines in
static and dynamic situations. Mathematics supplies tools for describing spatial
motions and other attributes of manipulators. Control theory provides tools for
designing and evaluating algorithms to realize desired motions or force applications.
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FIGURE 1.3: Labor cost savings from adoption of industrial robots. Estimated as a
percentage in 2025. Source: The Boston Consulting Group.

FIGURE 1.4: A modern 7 degree-of-freedom robot. Image courtesy KUKA Roboter
GmbH.
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Electrical-engineering techniques are brought to bear in the design of sensors
and interfaces for industrial robots, and computer science contributes a basis for
programming these devices to perform a desired task.

1.2 THE MECHANICS AND CONTROL OF MECHANICAL MANIPULATORS

The following sections will introduce some terminology, and brie�y preview each of
the topics that will be covered in the text.

Description of Position and Orientation

In the study of robotics, we are constantly concerned with the location of objects in
three-dimensional space. These objects are the links of the manipulator, the parts
and tools with which it deals, and other objects in the manipulator’s environment.
At a crude but important level, these objects are described by just two attributes:
position and orientation. Naturally, one topic of immediate interest is the manner in
which we represent these quantities and manipulate them mathematically.

In order to describe the position and orientation of a body in space, we will
always attach a coordinate system, or frame, rigidly to the object. We will then pro-
ceed to describe the position and orientation of this frame with respect to some
reference coordinate system (see Fig. 1.5).

Any frame can serve as a reference system within which to express the posi-
tion and orientation of a body, so we often think of transforming or changing the
description of these attributes of a body from one frame to another. Chapter 2 will
discuss conventions and methodologies for dealing with the description of position
and orientation, and the mathematics of manipulating these quantities with respect
to various coordinate systems.

Z

Z

X

X

X

Z

Z

X

YY

Y

Y

FIGURE 1.5: Coordinate systems or “frames” are attached to the manipulator and to
objects in the environment.
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Developing good skills concerning the description of position and rotation of
rigid bodies is highly useful even in �elds outside of robotics.

Forward Kinematics of Manipulators

Kinematics is the science of motion that treats motion without regard to the forces
which cause it. Within the science of kinematics, one studies position, velocity,
acceleration, and all higher order derivatives of the position variables (with respect
to time or any other variable(s)). Hence, the study of the kinematics of manipulators
refers to all the geometrical and time-based properties of the motion.

Manipulators consist of nearly rigid links, which are connected by joints that
allow relative motion of neighboring links. These joints are usually instrumented
with position sensors, which allow the relative position of neighboring links to be
measured. In the case of rotary or revolute joints, these displacements are called joint

angles. Some manipulators contain sliding (or prismatic) joints, in which the relative
displacement between links is a translation, sometimes called the joint offset.

The number of degrees of freedom that a manipulator possesses is the num-
ber of independent position variables that would have to be speci�ed in order to
locate all parts of the mechanism. This is a general term used for any mechanism.
For example, a four-bar linkage has only one degree of freedom (even though there
are three moving members). In the case of typical industrial robots, because a manip-
ulator is usually an open kinematic chain, and because each joint position is usually
de�ned with a single variable, the number of joints equals the number of degrees
of freedom.

At the free end of the chain of links that make up the manipulator is the end-

effector. Depending on the intended application of the robot, the end-effector could
be a gripper, a welding torch, an electromagnet, or another device. We generally
describe the position of the manipulator by giving a description of the tool frame,
which is attached to the end-effector, relative to the base frame, which is attached to
the nonmoving base of the manipulator (see Fig. 1.6).

A very basic problem in the study of mechanical manipulation is called for-

ward kinematics. This is the static geometrical problem of computing the position
and orientation of the end-effector of the manipulator. Speci�cally, given a set of
joint angles, the forward kinematic problem is to compute the position and orien-
tation of the tool frame relative to the base frame. Sometimes, we think of this as
changing the representation of manipulator position from a joint space description
into a Cartesian space description.1 This problem will be explored in Chapter 3.

Inverse Kinematics of Manipulators

In Chapter 4, we will consider the problem of inverse kinematics. This problem is
posed as follows:Given the position and orientation of the end-effector of the manip-
ulator, calculate all possible sets of joint angles that could be used to attain this given
position and orientation (see Fig. 1.7). This is a fundamental problem in the practical
use of manipulators.

1By Cartesian space, we mean the space in which the position of a point is given with three numbers,
and in which the orientation of a body is given with three numbers. It is sometimes called task space or
operational space.
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FIGURE 1.6: Kinematic equations describe the tool frame relative to the base frame
as a function of the joint variables.
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FIGURE 1.7: For a given position and orientation of the tool frame, values for the joint
variables can be calculated via the inverse kinematics.
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This is a rather complicated geometrical problem that is routinely solved thou-
sands of times daily in human and other biological systems. In the case of an arti�cial
system like a robot, we will need to create an algorithm in the control computer that
can make this calculation. In some ways, solution of this problem is the most impor-
tant element in a manipulator system.

We can think of this problem as a mapping of “locations” in 3-D Cartesian
space to “locations” in the robot’s internal joint space. This need naturally arises any-
time a goal is speci�ed in external 3-D space coordinates. Some early robots lacked
this algorithm—they were simply moved (sometimes by hand) to desired locations,
which were then recorded as a set of joint values (i.e., as a location in joint space)
for later playback. Obviously, if the robot is used purely in the mode of recording
and playback of joint locations and motions, no algorithm relating joint space to
Cartesian space is needed. These days, however, it is rare to �nd an industrial robot
that lacks this basic inverse kinematic algorithm.

The inverse kinematics problem is not as simple as the forward kinematics one.
Because the kinematic equations are nonlinear, their solution is not always easy (or
even possible) in a closed form. Also, questions about the existence of a solution and
about multiple solutions arise.

Study of these issues gives one an appreciation for what the human mind and
nervous system are accomplishing when we, seemingly without conscious thought,
move and manipulate objects with our arms and hands.

The existence or nonexistence of a kinematic solution de�nes the workspace

of a given manipulator. The lack of a solution means that the manipulator cannot
attain the desired position and orientation, because it lies outside of the manipula-
tor’s workspace.

Velocities, Static Forces, Singularities

In addition to dealing with static positioning problems, we may wish to analyze
manipulators in motion. Often, in performing velocity analysis of a mechanism, it is
convenient to de�ne a matrix quantity called the Jacobian of the manipulator. The
Jacobian speci�es a mapping from velocities in joint space to velocities in Cartesian
space (see Fig. 1.8). The nature of this mapping changes as the con�guration of
the manipulator varies. At certain points, called singularities, this mapping is not
invertible. An understanding of the phenomenon is important to designers and
users of manipulators.

Consider the rear gunner in a World War I–vintage biplane �ghter plane (illus-
trated in Fig. 1.9). While the pilot �ies the plane from the front cockpit, the rear
gunner’s job is to shoot at enemy aircraft. To perform this task, his gun is mounted
in a mechanism that rotates about two axes, the motions being called azimuth and
elevation. Using these two motions (two degrees of freedom), the gunner can direct
his stream of bullets in any direction he desires in the upper hemisphere.

An enemy plane is spotted at azimuth one o’clock and elevation 25 degrees!
The gunner trains his stream of bullets on the enemy plane and tracks its motion so
as to hit it with a continuous stream of bullets for as long as possible. He succeeds
and thereby downs the enemy aircraft.

A second enemy plane is seen at azimuth one o’clock and elevation 70 degrees!
The gunner orients his gun and begins �ring. The enemy plane is moving so as to
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FIGURE 1.8: The geometrical relationship between joint rates and velocity of the end-
effector can be described in a matrix called the Jacobian.

Elevation

Azimuth

FIGURE 1.9: A World War I biplane with a pilot and a rear gunner. The rear-gunner
mechanism is subject to the problem of singular positions.
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obtain a higher and higher elevation relative to the gunner’s plane. Soon the enemy
plane is passing nearly overhead. What’s this? The gunner is no longer able to keep
his stream of bullets trained on the enemy plane! He found that, as the enemy plane
�ew overhead, he was required to change his azimuth at a very high rate. He was not
able to swing his gun in azimuth quickly enough, and the enemy plane escaped!

In the latter scenario, the lucky enemy pilot was saved by a singularity! The
gun’s orienting mechanism, while working well over most of its operating range,
becomes less than ideal when the gun is directed straight upwards or nearly so.
To track targets that pass through the position directly overhead, a very fast motion
around the azimuth axis is required. The closer the target passes to the point directly
overhead, the faster the gunner must turn the azimuth axis to track the target. If the
target �ies directly over the gunner’s head, he would have to spin the gun on its
azimuth axis at in�nite speed!

Should the gunner complain to the mechanism designer about this problem?
Could a better mechanism be designed to avoid this problem? It turns out that you
really can’t avoid the problem very easily. In fact, any two-degree-of-freedom ori-
enting mechanism that has exactly two rotational joints cannot avoid having this
problem. In the case of this mechanism, with the stream of bullets directed straight
up, their direction aligns with the axis of rotation of the azimuth rotation. This means
that, at exactly this point, the azimuth rotation does not cause a change in the direc-
tion of the stream of bullets. We know we need two degrees of freedom to orient the
stream of bullets, but, at this point, we have lost the effective use of one of the joints.
Our mechanism has become locally degenerate at this location, and behaves as if it
only has one degree of freedom (the elevation direction).

This kind of phenomenon is caused by what is called a singularity of the mech-

anism. All mechanisms are prone to these dif�culties, including robots. Just as with
the rear gunner’s mechanism, these singularity conditions do not prevent a robot arm
from positioning anywhere within its workspace. However, they can cause problems
with motions of the arm in their neighborhood.

Manipulators do not always move through space; sometimes they are also
required to touch a workpiece or work surface and apply a static force. In this
case, the problem arises: Given a desired contact force and moment, what set of
joint torques is required to generate them? Once again, the Jacobian matrix of the
manipulator arises quite naturally in the solution of this problem.

Dynamics

Dynamics is a huge �eld of study devoted to studying the forces required to cause
motion. In order to accelerate a manipulator from rest, glide at a constant end-
effector velocity, and �nally decelerate to a stop, a complex set of torque functions
must be applied by the joint actuators.2 The exact form of the required functions of
actuator torque depend on the spatial and temporal attributes of the path taken by
the end-effector and on the mass properties of the links and payload, friction in the
joints, and so on. One method of controlling a manipulator to follow a desired path
involves calculating these actuator torque functions by using the dynamic equations
of motion of the manipulator.

2We use joint actuators as the generic term for devices that power a manipulator—for example, electric
motors, hydraulic and pneumatic actuators, and muscles.
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Many of us have experienced lifting an object that is actually much lighter than
we expected (e.g., getting a container of milk from the refrigerator which we thought
was full, but was nearly empty). Such a misjudgment of payload can cause an unusual
lifting motion. This kind of observation indicates that the human control system is
more sophisticated than a purely kinematic scheme. Rather, our manipulation con-
trol system makes use of knowledge of mass and other dynamic effects. Likewise,
algorithms that we construct to control the motions of a robot manipulator should
take dynamics into account.

A second use of the dynamic equations of motion is in simulation. By refor-
mulating the dynamic equations so that acceleration is computed as a function of
actuator torque, it is possible to simulate how a manipulator would move under
application of a set of actuator torques (see Fig. 1.10). As computing power becomes
more and more cost effective, the use of simulations is growing in use and importance
in many �elds.

In Chapter 6, we will develop dynamic equations of motion, which may be used
to control or simulate the motion of manipulators.

Trajectory Generation

A common way of causing a manipulator to move from here to there in a smooth,
controlled fashion is to cause each joint to move as speci�ed by a smooth function
of time. Commonly, each joint starts and ends its motion at the same time, so that
the manipulator motion appears coordinated. Exactly how to compute these motion
functions is the problem of trajectory generation (see Fig. 1.11).

A

V

τ3

τ2

τ1

FIGURE 1.10: The relationship between the torques applied by the actuators and the
resulting motion of the manipulator is embodied in the dynamic equations of motion.
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FIGURE 1.11: In order to move the end-effector through space from point A to point
B, we must compute a trajectory for each joint to follow.

Often, a path is described not only by a desired destination but also by some
intermediate locations, or via points, through which the manipulator must pass en
route to the destination. In such instances, the term spline is sometimes used to refer
to a smooth function that passes through a set of via points.

In order to force the end-effector to follow a straight line (or other geometric
shape) through space, the desired motion must be converted to an equivalent set
of joint motions. This Cartesian trajectory generation will also be considered in
Chapter 7.

Manipulator Design and Sensors

Although manipulators are, in theory, universal devices applicable to many situ-
ations, economics generally dictate that the intended task domain in�uence the
mechanical design of the manipulator. Along with issues such as size, speed, and
load capability, the designer must also consider the number of joints and their
geometric arrangement. These considerations affect the manipulator’s workspace
size and quality, the stiffness of the manipulator structure, and other attributes.

The more joints a robot arm contains, the more dextrous and capable it will
be. Of course, it will also be harder and more expensive to build. In order to build
a useful robot, that can take two approaches: build a specialized robot for a spe-
ci�c task, or build a universal robot that would able to perform a wide variety of
tasks. In the case of a specialized robot, some careful thinking will yield a solution
for how many joints are needed. For example, a specialized robot designed solely
to place electronic components on a �at circuit board does not need to have more
than four joints. Three joints allow the position of the hand to attain any position in
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τ3

τ2

τ1 50 lbs

FIGURE 1.12: The design of a mechanical manipulator must address issues of actuator
choice, location, transmission system, structural stiffness, sensor location, and more.

three-dimensional space, with a fourth joint added to allow the hand to rotate the
grasped component about a vertical axis. In the case of a universal robot, it is interest-
ing that fundamental properties of the physical world we live in dictate the “correct”
minimum number of joints—that minimum number is six.

Integral to the design of the manipulator are issues involving the choice and
location of actuators, transmission systems, and internal-position (and sometimes
force) sensors (see Fig. 1.12). These and other design issues will be discussed in
Chapter 8.

Linear Position Control

Some manipulators are equipped with stepper motors or other actuators that can
directly execute a desired trajectory. However, the vast majority of manipulators
are driven by actuators that supply a force or a torque to cause motion of the links.
In this case, an algorithm is needed to compute torques that will cause the desired
motion. The problem of dynamics is central to the design of such algorithms, but
does not in itself constitute a solution. A primary concern of a position control sys-

tem is to automatically compensate for errors in knowledge of the parameters of a
system, and to suppress disturbances that tend to perturb the system from the desired
trajectory. To accomplish this, position and velocity sensors are monitored by the con-

trol algorithm, which computes torque commands for the actuators (see Fig. 1.13).
In Chapter 9, we will consider control algorithms whose synthesis is based on linear
approximations to the dynamics of a manipulator. These linear methods are preva-
lent in current industrial practice.

Nonlinear Position Control

Although control systems based on approximate linear models are popular in cur-
rent industrial robots, it is important to consider the complete nonlinear dynamics
of the manipulator when synthesizing control algorithms. Some industrial robots
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θ2

θ3

θ1 θ2

θ3

FIGURE 1.13: In order to cause the manipulator to follow the desired trajectory, a
position-control system must be implemented. Such a system uses feedback from
joint sensors to keep the manipulator on course.

are now being introduced which make use of nonlinear control algorithms in their
controllers. These nonlinear techniques of controlling a manipulator promise better
performance than do simpler linear schemes. Chapter 10 will introduce nonlinear
control systems for mechanical manipulators.

Force Control

The ability of a manipulator to control forces of contact when it touches parts, tools,
or work surfaces seems to be of great importance in applying manipulators to many
real-world tasks. Force control is complementary to position control, in that we usu-
ally think of only one or the other as applicable in a certain situation. When a manip-
ulator is moving in free space, only position control makes sense, because there is no
surface to react against. When a manipulator is touching a rigid surface, however,
position-control schemes can cause excessive forces to build up at the contact, or
cause contact to be lost with the surface when it was desired for some application.
Manipulators are rarely constrained by reaction surfaces in all directions simulta-
neously, so a mixed or hybrid control is required, with some directions controlled
by a position-control law and remaining directions controlled by a force-control law

(see Fig. 1.14). Chapter 11 introduces a methodology for implementing such a force-
control scheme.

A robot should be instructed to wash a window by maintaining a certain force
in the direction perpendicular to the plane of the glass, while following a motion
trajectory in directions tangent to the plane. Such split or hybrid control speci�ca-
tions are natural for such tasks.
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V

F

F

FIGURE 1.14: In order for a manipulator to slide across a surface while applying a
constant force, a hybrid position–force control system must be used.

Programming Robots

A robot programming language serves as the interface between the human user
and the industrial robot. Central questions arise: How are motions through space
described easily by the programmer? How are multiple manipulators programmed
so that they can work in parallel? How are sensor-based actions described in a
language?

Robot manipulators differentiate themselves from �xed automation by being
“�exible,” which means programmable. Not only are the movements of manipu-
lators programmable, but, through the use of sensors and communications with
other factory automation, manipulators can adapt to variations as the task proceeds
(see Fig. 1.15).

In typical robot systems, there is a shorthand way for a human user to instruct
the robot which path it is to follow. First of all, a special point on the hand (or perhaps
on a grasped tool) is speci�ed by the user as the operational point, sometimes also
called the TCP (for Tool Center Point). Motions of the robot will be described by the
user in terms of desired locations of the operational point relative to a user-speci�ed
coordinate system. Generally, the user will de�ne this reference coordinate system
relative to the robot’s base coordinate system in some task-relevant location.

Most often, paths are constructed by specifying a sequence of via points. Via
points are speci�ed relative to the reference coordinate system and denote locations
along the path through which the TCP should pass. Along with specifying the via
points, the user may also indicate that certain speeds of the TCP be used over vari-
ous portions of the path. Sometimes, other modi�ers can also be speci�ed to affect
the motion of the robot (e.g., different smoothness criteria, etc.). From these inputs,
the trajectory-generation algorithm must plan all the details of the motion: veloc-
ity pro�les for the joints, time duration of the move, and so on. Hence, input to the
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FIGURE 1.15: Desired motions of the manipulator and end-effector, desired contact
forces, and complex manipulation strategies can be described in a robot program-

ming language.

trajectory-generation problem is generally given by constructs in the robot program-
ming language.

The sophistication of the user interface is becoming extremely important as
manipulators and other programmable automation are applied to more and more
demanding industrial applications. The problem of programming manipulators
encompasses all the issues of “traditional” computer programming, and so is
an extensive subject in itself. Additionally, some particular attributes of the
manipulator-programming problem cause additional issues to arise. Some of these
topics will be discussed in Chapter 12.

Off-Line Programming and Simulation

An off-line programming system is a robot programming environment that has been
suf�ciently extended, generally by means of computer graphics, that the develop-
ment of robot programs can take place without access to the robot itself. A com-
mon argument raised in their favor is that an off-line programming system will not
cause production equipment (i.e., the robot) to be tied up when it needs to be repro-
grammed; hence, automated factories can stay in production mode a greater percent-
age of the time (see Fig. 1.16).

They also serve as a natural vehicle to tie computer-aided design (CAD)
databases used in the design phase of a product to the actual manufacturing of
the product. In some cases, this direct use of CAD data can dramatically reduce the
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FIGURE 1.16: Off-line programming systems, generally providing a computer graphics
interface, allow robots to be programmed without access to the robot itself during
programming.

programming time required for the manufacturing process. Chapter 13 discusses
the elements of industrial robot off-line programming systems.

1.3 NOTATION

Notation is always an issue in science and engineering. In this book, we use the fol-
lowing conventions:

1. Usually, variables written in uppercase represent vectors or matrices. Lower-
case variables are scalars.

2. Leading subscripts and superscripts identify which coordinate system a quan-
tity is written in. For example, AP represents a position vector written in coor-

dinate system {A}, and A
BR is a rotation matrix3 that speci�es the relationship

between coordinate systems {A} and {B}.

3. Trailing superscripts are used (as widely accepted) for indicating the inverse or
transpose of a matrix (e.g., R−1, RT ).

4. Trailing subscripts are not subject to any strict convention, but may indicate a
vector component (e.g., x, y, or z) or may be used as a description, as in Pbolt,
the position of a bolt.

5. We will use many trigonometric functions. Our notation for the cosine of an
angle θ1 may take any of the following forms: cos θ1 = cθ1 = c1.

3This term will be introduced in Chapter 2.
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Vectors are taken to be column vectors; hence, row vectors will have the trans-
pose indicated explicitly.

A note on vector notation in general: Many mechanics texts treat vector quan-
tities at a very abstract level and routinely use vectors de�ned relative to different
coordinate systems in expressions. The clearest example is that of addition of vec-
tors which are given or known relative to differing reference systems. This is often
very convenient and leads to compact and somewhat elegant formulas. For exam-
ple, consider the angular velocity, 0ω4, of the last body in a series connection of four
rigid bodies (as in the links of a manipulator) relative to the �xed base of the chain.
Because angular velocities sum vectorially, we may write a very simple vector equa-
tion for the angular velocity of the �nal link:

0ω4 = 0ω1 + 1ω2 + 2ω3 + 3ω4. (1.1)

However, unless these quantities are expressed with respect to a common coordinate
system, they cannot be summed, and so, though elegant, equation (1.1) has hidden
much of the “work” of the computation. For the particular case of the study of
mechanical manipulators, statements like that of (1.1) hide the chore of bookkeeping
of coordinate systems, which is often the very idea that we need to deal with in practice.

Therefore, in this book, we carry frame-of-reference information in the nota-
tion for vectors, and we do not sum vectors unless they are in the same coordinate
system. In this way, we derive expressions that solve the “bookkeeping” problem and
can be applied directly to actual numerical computation.
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EXERCISES

1.1 [20] Make a chronology of major events in the development of industrial robots
over the past 40 years. See the Bibliography and general references.

1.2 [20] Make a chart showing the major applications of industrial robots (e.g., spot
welding, assembly, etc.) and the percentage of installed robots in use in each appli-
cation area. Base your chart on the most recent data you can �nd. See the Bibli-
ography and general references.

1.3 [40] Figure 1.3 shows how the cost effectiveness of industrial robots is increasing.
Find data on the cost of human labor in various speci�c industries (e.g., labor in the
auto industry, labor in the electronics assembly industry, labor in agriculture, etc.)
and create a graph showing how these costs compare to the use of robotics. You
should see that the robot cost curve “crosses” various human cost curves of dif-
ferent industries at different times. From this, derive approximate dates when
robotics �rst became cost effective for use in various industries.

1.4 [10] In a sentence or two, de�ne kinematics, workspace, and trajectory.
1.5 [10] In a sentence or two, de�ne frame, degree of freedom, and position control.
1.6 [10] In a sentence or two, de�ne force control, and robot programming language.
1.7 [10] In a sentence or two, de�ne nonlinear control, and off-line programming.
1.8 [20] Make a chart indicating how labor costs have risen over the past 20 years.
1.9 [20] Make a chart indicating how the computer performance–price ratio has

increased over the past 20 years.
1.10 [20] Make a chart showing the major users of industrial robots (e.g., aerospace,

automotive, etc.) and the percentage of installed robots in use in each industry.
Base your chart on the most recent data you can �nd (see the reference section).

1.11 [30] Write a robot program using simple terms such as “move to” that will deal
cards from a pre-shuf�ed deck to four players. Employ the following vectors to
denote the player locations: P1, P2, P3, and P4. Let Pdeck be the coordinates for
the deck, where a card is presented to the manipulator. Assume that the robot can
hold one card at a time in a gripper that responds to the commands “open” and
“close.”

1.12 [20] From your experience or exposure, give examples of both mechanical manip-
ulators and �xed automation machines. These could be applications or speci�c
devices.

1.13 [20] Why is six the minimum number of joints for a universal robot?
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1.14 [15] Using the notation of this book, compute

AP3 = s1
AP1 + c2

AP2

if θ1 =
π

6
, θ2 =

π

3
, AP T

1 = [3, 1, 5], and AP2 =





2
6
9



 .

1.15 [20] For the manipulator of Fig. 1.10 with electric motors supplying torques τ1, τ2,
and τ3, list pros and cons of placing the motors at the joints vs. using a belt-drive
system to place the motors at the robot base.

PROGRAMMING EXERCISE (PART 1)

Familiarize yourself with the computer you will use to do the programming exercises at
the end of each chapter. Make sure you can create and edit �les, and can compile and
execute programs.

MATLAB EXERCISE 1

At the end of most chapters in this textbook, a MATLAB exercise is given. Gener-
ally, these exercises ask the student to program the pertinent robotics mathematics in
MATLAB and then check the results of the MATLAB Robotics Toolbox. The textbook
assumes familiarity with MATLAB and linear algebra (matrix theory). Also, the student
must become familiar with the MATLAB Robotics Toolbox. For MATLAB Exercise 1,

a) Familiarize yourself with the MATLAB programming environment if necessary.
At the MATLAB software prompt, try typing demo and help. Using the color-
coded MATLAB editor, learn how to create, edit, save, run, and debug m-�les
(ASCII �les with series of MATLAB statements). Learn how to create arrays
(matrices and vectors), and explore the built-in MATLAB linear-algebra functions
for matrix and vector multiplication, dot and cross products, transposes, determi-
nants, and inverses, and for the solution of linear equations. MATLAB is based on
the language C, but is generally much easier to use. Learn how to program logical
constructs and loops in MATLAB. Learn how to use subprograms and functions.
Learn how to use comments (%) for explaining your programs and tabs for easy
readability. Check out www.mathworks.com for more information and tutorials.
Advanced MATLAB users should become familiar with Simulink, the graphical
interface of MATLAB, and with the MATLAB Symbolic Toolbox.

b) Familiarize yourself with the MATLAB Robotics Toolbox, a third-party toolbox
developed by Peter I. Corke of CSIRO, Pinjarra Hills, Australia. This product
can be downloaded for free from http://petercorke.com/Robotics Toolbox.html.
Download the MATLAB Robotics Toolbox, and install it on your computer
by using the .zip �le and following the instructions. Read the README �le,
and familiarize yourself with the various functions available to the user. Find
the robot.pdf �le—this is the user manual giving background information and
detailed usage of all of the Toolbox functions. Don’t worry if you can’t understand
the purpose of these functions yet; they deal with robotics mathematics concepts
covered in Chapters 2 through 9 of this book.
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Spatial Descriptions
and Transformations

2.1 INTRODUCTION

2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

2.5 SUMMARY OF INTERPRETATIONS

2.6 TRANSFORMATION ARITHMETIC

2.7 TRANSFORM EQUATIONS

2.8 MORE ON REPRESENTATION OF ORIENTATION

2.9 TRANSFORMATION OF FREE VECTORS

2.10 COMPUTATIONAL CONSIDERATIONS

2.1 INTRODUCTION

Robotic manipulation, by de�nition, implies that parts and tools will be moved
around in space by some sort of mechanism. This naturally leads to a need for
representing positions and the orientations of parts, of tools, and of the mechanism
itself. To de�ne and manipulate mathematical quantities that represent position
and orientation, we must de�ne coordinate systems and develop conventions for
representation. Many of the ideas developed here in the context of position and
orientation will form a basis for our later consideration of linear and rotational
velocities, forces, and torques.

We adopt the philosophy that somewhere there is a universe coordinate sys-

tem to which everything we discuss can be referenced. We will describe all positions
and orientations with respect to the universe coordinate system or with respect to
other Cartesian coordinate systems that are (or could be) de�ned relative to the
universe system.

2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

A description is used to specify attributes of various objects with which a manipu-
lation system deals. These objects are parts, tools, and the manipulator itself. In this
section, we discuss the description of positions, of orientations, and of an entity that
contains both of these descriptions: the frame.

21
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Description of a Position

Once a coordinate system is established, we can locate any point in the universe with
a 3 × 1 position vector. Because we will often de�ne many coordinate systems in
addition to the universe coordinate system, vectors must be tagged with information
identifying which coordinate systemwithin which they are de�ned. In this book, vec-
tors are written with a leading superscript indicating the coordinate system to which
they are referenced (unless it is clear from context)—for example, AP . This means
that the components of AP have numerical values that indicate distances along the
axes of {A}. Each of these distances along an axis can be thought of as the result of
projecting the vector onto the corresponding axis.

Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually
orthogonal unit vectors with solid heads. A point AP is represented as a vector and
can equivalently be thought of as a position in space, or simply as an ordered set of
three numbers. Individual elements of a vector are given the subscripts x, y, and z:

AP =

⎡

⎣

px

py

pz

⎤

⎦ . (2.1)

In summary, we will describe the position of a point in space with a position vector.
Other 3-tuple descriptions of the position of points, such as spherical or cylindrical
coordinate representations,will be discussed in the exercises at the endof the chapter.

Description of an Orientation

Often, we will �nd it necessary not only to represent a point in space, but also to
describe the orientation of a body in space. For example, if vector AP in Fig. 2.2
locates the point directly between the �ngertips of a manipulator’s hand, the com-
plete location of the hand is still not speci�ed until its orientation is also given.
Assuming that the manipulator has a suf�cient number of joints,1 the hand could

AP

YA

ZA

XA

{A}

FIGURE 2.1: Vector relative to frame (example).

1How many are “suf�cient” will be discussed in Chapters 3 and 4.
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AP

ZB

{A}

{B}

FIGURE 2.2: Locating an object in position and orientation.

be oriented arbitrarily while keeping the point between the �ngertips at the same
position in space. In order to describe the orientation of a body, we will attach a

coordinate system to the body and then give a description of this coordinate system

relative to the reference system. In Fig. 2.2, coordinate system {B} has been attached
to the body in a known way. A description of {B} relative to {A} now suf�ces to give
the orientation of the body.

Thus, positions of points are described with vectors, and orientations of bodies
are described with an attached coordinate system. One way to describe the body-
attached coordinate system, {B}, is to write the unit vectors of its three principal
axes2 in terms of the coordinate system {A}.

We denote the unit vectors giving the principal directions of coordinate sys-

tem {B} as X̂B , ŶB , and ẐB . When written in terms of coordinate system {A}, they

are called AX̂B ,
AŶB , and

AẐB . It will be convenient if we stack these three unit

vectors together as the columns of a 3 × 3 matrix, in the order AX̂B ,
AŶB ,

AẐB . We
will call this matrix a rotation matrix, and, because this particular rotation matrix
describes {B} relative to {A}, we name it with the notation A

BR (the choice of lead-
ing sub- and superscripts in the de�nition of rotation matrices will become clear in
following sections):

A
BR =

[

AX̂B
AŶB

AẐB

]

=

⎡

⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ . (2.2)

2It is often convenient to use three, although any two would suf�ce. (The third can always be recovered
by taking the cross product of the two given.)
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In summary, a set of three vectors may be used to specify an orientation. For conve-
nience, we will construct a 3 × 3 matrix that has these three vectors as its columns.
Hence, whereas the position of a point is represented with a vector, the orientation
of a body is represented with a matrix. In Section 2.8, we will consider some other
descriptions of orientation that require only three parameters.

We can give expressions for the scalars rij in (2.2) by noting that the components
of any vector are simply the projections of that vector onto the unit directions of its
reference frame. Hence, each component of A

BR in (2.2) can be written as the dot
product of a pair of unit vectors:

A
BR =

[

AX̂B
AŶB

AẐB

]

=

⎡

⎣

X̂B · X̂A ŶB · X̂A ẐB · X̂A

X̂B · ŶA ŶB · ŶA ẐB · ŶA

X̂B · ẐA ŶB · ẐA ẐB · ẐA

⎤

⎦ . (2.3)

In this case, we have omitted the leading superscripts in the rightmost matrix of (2.3).
In fact, the choice of frame in which to describe the unit vectors is arbitrary as long
as it is the same for each pair being dotted. The dot product of two unit vectors yields
the cosine of the angle between them, so it is clear why the components of rotation
matrices are often referred to as direction cosines.

Further inspection of (2.3) shows that the rows of thematrix are the unit vectors
of {A} expressed in {B}; that is,

A
BR =

[

AX̂B
AŶB

AẐB

]

=

⎡

⎢

⎢

⎣

BX̂T
A

BŶ T
A

BẐT
A

⎤

⎥

⎥

⎦

. (2.4)

Hence, B
AR, the description of frame {A} relative to {B}, is given by the transpose of

(2.3); that is,
B
AR = A

BRT . (2.5)

This suggests that the inverse of a rotation matrix is equal to its transpose, a fact that
can be easily veri�ed as

A
BRT A

BR =

⎡

⎢

⎢

⎣

AX̂T
B

AŶ T
B

AẐT
B

⎤

⎥

⎥

⎦

[

AX̂B
AŶB

AẐB

]

= I3, (2.6)

where I3 is the 3 × 3 identity matrix. Hence,

A
BR = B

AR−1 = B
ART . (2.7)

Indeed, from linear algebra [1], we know that the inverse of a matrix with
orthonormal columns is equal to its transpose.We have just shown this geometrically.

Description of a Frame

The information needed to completely specify the whereabouts of the manipulator
hand in Fig. 2.2 is a position and an orientation. The point on the bodywhose position
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we describe could be chosen arbitrarily, however. For convenience, the point whose
position we will describe is chosen as the origin of the body-attached frame. The situ-
ation of a position and an orientation pair arises so often in robotics that we de�ne
an entity called a frame, which is a set of four vectors giving position and orientation
information. For example, in Fig. 2.2, one vector locates the �ngertip position, and
three more describe its orientation. Equivalently, the description of a frame can be
thought of as a position vector and a rotation matrix. Note that a frame is a coor-
dinate system where, in addition to the orientation, we give a position vector which
locates its origin relative to some other embedding frame. For example, frame {B} is
described by A

BR and APBORG, where
APBORG is the vector that locates the origin of

the frame {B}:
{B} = {A

BR, APBORG}. (2.8)

In Fig. 2.3, there are three frames that are shown along with the universe coordinate
system. Frames {A} and {B} are known relative to the universe coordinate system,
and frame {C} is known relative to frame {A}.

In Fig. 2.3, we introduce a graphical representation of frames, which is conve-
nient in visualizing frames. A frame is depicted by three arrows representing unit
vectors de�ning the principal axes of the frame. An arrow representing a vector is
drawn from one origin to another. This vector represents the position of the origin
at the head of the arrow in terms of the frame at the tail of the arrow. The direction
of this locating arrow tells us, for example, in Fig. 2.3, that {C} is known relative to
{A}, and not vice versa.

In summary, a frame can be used as a description of one coordinate system
relative to another. A frame encompasses two ideas by representing both position
and orientation, and so may be thought of as a generalization of those two ideas.
Positions could be represented by a frame whose rotation-matrix part is the identity
matrix and whose position-vector part locates the point being described. Likewise,

ZU

ZB

ZA

ZC

XC

YC

YA

YU

XU XB

YB

XA

{U}

{B}

{C}

{A}

FIGURE 2.3: Example of several frames.
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an orientation could be represented by a frame whose position-vector part was the
zero vector.

2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

In a great many of the problems in robotics, we are concerned with expressing the
same quantity in terms of various reference coordinate systems. The previous section
introduced descriptions of positions, orientations, and frames; we now consider the
mathematics of mapping in order to change descriptions from frame to frame.

Mappings Involving Translated Frames

In Fig. 2.4, we have a position de�ned by the vector BP . We wish to express this point
in space in terms of frame {A}, when {A} has the same orientation as {B}. In this case,
{B} differs from {A} only by a translation, which is given by APBORG, a vector that
locates the origin of {B} relative to {A}.

Because both vectors are de�ned relative to frames of the same orientation, we
calculate the description of point P relative to {A}, AP , by vector addition:

AP = BP + APBORG. (2.9)

Note that only in the special case of equivalent orientations may we add vectors that
are de�ned in terms of different frames.

In this simple example, we have illustrated mapping a vector from one frame
to another. This idea of mapping, or changing the description from one frame to
another, is an extremely important concept. The quantity itself (here, a point in
space) is not changed; only its description is changed. This is illustrated in Fig. 2.4,

AP

BP

APBORG

YA

ZA

XA

{A}

YB

ZB

XB

{B}

FIGURE 2.4: Translational mapping.
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where the point described by BP is not translated, but remains the same, and instead
we have computed a new description of the same point, but now with respect to
system {A}.

We say that the vector APBORG de�nes this mapping because all the informa-
tion needed to perform the change in description is contained in APBORG (along with
the knowledge that the frames had equivalent orientation).

Mappings Involving Rotated Frames

Section 2.2 introduced the notion of describing an orientation by three unit vectors
denoting the principal axes of a body-attached coordinate system. For convenience,
we stack these three unit vectors together as the columns of a 3 × 3 matrix. We will
call this matrix a rotation matrix, and, if this particular rotation matrix describes {B}

relative to {A}, we name it with the notation A
BR.

Note that, by our de�nition, the columns of a rotation matrix all have unit
magnitude, and, further, that these unit vectors are orthogonal. As we saw earlier, a
consequence of this is that

A
BR = B

AR−1 = B
ART . (2.10)

Therefore, because the columns of A
BR are the unit vectors of {B} written in {A}, the

rows of A
BR are the unit vectors of {A} written in {B}.

So, a rotation matrix can be interpreted as a set of three column vectors, or as
a set of three row vectors, as follows:

A
BR =

[

AX̂B
AŶB

AẐB

]

=

⎡

⎢

⎢

⎣

BX̂T
A

BŶ T
A

BẐT
A

⎤

⎥

⎥

⎦

. (2.11)

As in Fig. 2.5, the situation will arise often where we know the de�nition of a vec-
tor with respect to some frame, {B}, and we would like to know its de�nition with
respect to another frame, {A}, where the origins of the two frames are coincident.
This computation is possible when a description of the orientation of {B} is known
relative to {A}. This orientation is given by the rotation matrix A

BR, whose columns
are the unit vectors of {B} written in {A}.

In order to calculate AP , we note that the components of any vector are simply
the projections of that vector onto the unit directions of its frame. The projection is
calculated as the vector dot product. Thus, we see that the components of AP may
be calculated as

Apx = BX̂A · BP,

Apy = BŶA · BP, and (2.12)

Apz = BẐA · BP.

In order to express (2.12) in terms of a rotation matrix multiplication, we note

from (2.11) that the rows of A
BR are BX̂A,

BŶA, and
BẐA. So (2.12) may be written

compactly, by using a rotation matrix, as

AP = A
BR BP. (2.13)
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BP

YA

YB

ZA

XB

ZB

XA

{A}{B}

FIGURE 2.5: Rotating the description of a vector.

Equation 2.13 implements a mapping—that is, it changes the description of a
vector—from BP , which describes a point in space relative to {B}, into AP , which is
a description of the same point, but expressed relative to {A}.

We now see that our notation is of great help in keeping track of mappings
and frames of reference. A helpful way of viewing the notation we have introduced
is to imagine that leading subscripts cancel the leading superscripts of the following
entity, for example, the Bs in (2.13).

EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Ẑ by

30 degrees. Here, Ẑ is pointing out of the page.
Writing the unit vectors of {B} in terms of {A} and stacking them as the columns

of the rotation matrix, we obtain

A
BR =

⎡

⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤

⎦ . (2.14)

Given

BP =

⎡

⎣

0.0
2.0
0.0

⎤

⎦ , (2.15)

we calculate AP as

AP = A
BR BP =

⎡

⎣

−1.000
1.732
0.000

⎤

⎦ . (2.16)
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BP

XA

YA
YB

XB

{A}
{B}

FIGURE 2.6: {B} rotated 30 degrees about Ẑ.

Here, A
BR acts as a mapping that is used to describe BP relative to frame {A},

AP . As was introduced in the case of translations, it is important to remember that,
viewed as a mapping, the original vector P is not changed in space. Rather, we com-
pute a new description of the vector relative to another frame.

Mappings Involving General Frames

Very often, we know the description of a vector with respect to some frame {B}, and
we would like to know its description with respect to another frame, {A}. We now
consider the general case of mapping. Here, the origin of frame {B} is not coincident
with that of frame {A} but has a general vector offset. The vector that locates {B}’s
origin is called APBORG. Also, {B} is rotated with respect to {A}, as described by A

BR.

Given BP , we wish to compute AP , as in Fig. 2.7.
We can �rst change BP to its description relative to an intermediate frame that

has the same orientation as {A}, but whose origin is coincident with the origin of {B}.
This is done by premultiplying by A

BR as in the last section. We then account for the
translation between origins by simple vector addition, as before, and obtain

AP = A
BR BP + APBORG. (2.17)

Equation 2.17 describes a general transformation mapping of a vector from its
description in one frame to a description in a second frame. Note the following
interpretation of our notation as exempli�ed in (2.17): the B’s cancel, leaving all
quantities as vectors written in terms of A, which may then be added.

The form of (2.17) is not as appealing as the conceptual form

AP = A
BT BP. (2.18)

That is, we would like to think of a mapping from one frame to another as an oper-
ator in matrix form. This aids in writing compact equations, and is conceptually
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AP
BP

APBORG

YA

ZA

XA

{A}

YB

ZB

XB

{B}

FIGURE 2.7: General transform of a vector.

clearer than (2.17). In order that we may write the mathematics given in (2.17) in
the matrix operator form suggested by (2.18), we de�ne a 4 × 4 matrix operator and
use 4 × 1 position vectors, so that (2.18) has the structure

[

AP

1

]

=

[

A
BR APBORG

0 0 0 1

]

[

BP

1

]

. (2.19)

In other words,

1. a “1” is added as the last element of the 4 × 1 vectors, and;

2. a row “[0 0 0 1]” is added as the last row of the 4 × 4 matrix.

We adopt the convention that a position vector is 3 × 1 or 4 × 1, depending on
whether it appears multiplied by a 3 × 3 matrix or by a 4 × 4 matrix. It is readily seen
that (2.19) implements

AP = A
BR BP + APBORG

1 = 1. (2.20)

The 4 × 4matrix in (2.19) is called a homogeneous transform. For our purposes,
it can be regarded purely as a construction used to cast the rotation and translation
of the general transform into a single matrix form. In other �elds of study, it can be
used to compute perspective and scaling operations (when the last row is other than
“[0 0 0 1]” or the rotation matrix is not orthonormal). The interested reader should
see [2].

Often, we will write an equation like (2.18) without any notation indicating
that it is a homogeneous representation, because it is obvious from context. Note
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that, although homogeneous transforms are useful in writing compact equations, a
computer program to transform vectors would generally not use them, because of
time wasted multiplying ones and zeros. Thus, this representation is mainly for our
convenience when thinking and writing equations down on paper.

Just as we used rotation matrices to specify an orientation, we will use trans-
forms (usually in homogeneous representation) to specify a frame. Observe that,
although we have introduced homogeneous transforms in the context of mappings,
they also serve as descriptions of frames. The description of frame {B} relative to {A}

is A
BT .

EXAMPLE 2.2

Figure 2.8 shows a frame {B}, which is rotated relative to frame {A} about ẐA by

30 degrees, translated 10 units in X̂A, and translated 5 units in ŶA. Find
AP , where

BP = [3.0 7.0 0.0]T .
The de�nition of frame {B} is

A
BT =

⎡

⎢

⎢

⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 5.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤

⎥

⎥

⎦

. (2.21)

Given

BP =

⎡

⎣

3.0
7.0
0.0

⎤

⎦ , (2.22)

AP

BP

APBORG

XA

YA
{A}

YB

XB

{B}

FIGURE 2.8: Frame {B} rotated and translated.
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we use the de�nition of {B} just given as a transformation:

AP = A
BT BP =

⎡

⎣

9.098
12.562
0.000

⎤

⎦ . (2.23)

2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

The same mathematical forms used to map points between frames can also be inter-
preted as operators that translate points, rotate vectors, or do both. This section
illustrates this interpretation of the mathematics we have already developed.

Translational Operators

A translation moves a point in space a �nite distance along a given vector direction.
With this interpretation of actually translating the point in space, only one coordi-
nate system need be involved. It turns out that translating the point in space is
accomplished with the same mathematics as mapping the point to a second frame.
Almost always, it is very important to understand which interpretation of the
mathematics is being used. The distinction is as simple as this: When a vector is
moved “forward” relative to a frame, we may consider either that the vector moved
“forward” or that the frame moved “backward.” The mathematics involved in the
two cases is identical; only our view of the situation is different. Figure 2.9 indicates

AP1

AQ

AP2
AP1

ZA

YA

XA

{A}

FIGURE 2.9: Translation operator.
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pictorially how a vector AP1 is translated by a vector AQ. Here, the vector AQ gives
the information needed to perform the translation.

The result of the operation is a new vector AP2, calculated as

AP2 = AP1 + AQ. (2.24)

To write this translation operation as a matrix operator, we use the notation

AP2 = DQ(q) AP1, (2.25)

where q is the signed magnitude of the translation along the vector direction Q̂.
The DQ operator may be thought of as a homogeneous transform of a special
simple form:

DQ(q) =

⎡

⎢

⎢

⎣

1 0 0 qx

0 1 0 qy

0 0 1 qz

0 0 0 1

⎤

⎥

⎥

⎦

, (2.26)

where qx , qy , and qz are the components of the translation vector Q and

q =
√

q2
x + q2

y + q2
z . Equations (2.9) and (2.24) implement the same mathematics.

Note that, if we had de�ned BPAORG (instead of APBORG) in Fig. 2.4 and had used it
in (2.9), then we would have seen a sign change between (2.9) and (2.24). This sign
change would indicate the difference between moving the vector “forward” and
moving the coordinate system “backward.” By de�ning the location of {B} relative
to {A} (with APBORG), we cause the mathematics of the two interpretations to be
the same. Now that the “DQ” notation has been introduced, we may also use it to
describe frames and as a mapping.

Rotational Operators

Another interpretation of a rotation matrix is as a rotational operator that operates
on a vector AP1 and changes that vector to a new vector, AP2, by means of a rotation,
R. Usually, when a rotation matrix is shown as an operator, no sub- or superscripts
appear, because it is not viewed as relating two frames. That is, we may write

AP2 = R AP1. (2.27)

Again, as in the case of translations, themathematics described in (2.13) and in (2.27)
are the same; only our interpretation is different. This fact also allows us to see how
to obtain rotational matrices that are to be used as operators:

The rotation matrix that rotates vectors through some rotation, R, is the same as

the rotation matrix that describes a frame rotated by R relative to the reference frame.
Although a rotation matrix is easily viewed as an operator, we will also de�ne

another notation for a rotational operator that clearly indicates which axis is being
rotated about:

AP2 = RK(θ) AP1. (2.28)

In this notation, “RK(θ)” is a rotational operator that performs a rotation about

the axis direction K̂ by θ degrees. This operator can be written as a homogeneous



34 Chapter 2 Spatial Descriptions and Transformations

transform whose position-vector part is zero. For example, substitution into (2.11)

yields the operator that rotates about the Ẑ axis by θ as

Rz(θ) =

⎡

⎢

⎢

⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

. (2.29)

Of course, to rotate a position vector, we could just as well use the 3 × 3 rotation-
matrix part of the homogeneous transform. The “RK” notation, therefore, may be
considered to represent a 3 × 3 or a 4 × 4 matrix. Later in this chapter, we will see

how to write the rotation matrix for a rotation about a general axis K̂ .

EXAMPLE 2.3

Figure 2.10 shows a vector AP1. We wish to compute the vector obtained by rotating

this vector about Ẑ by 30 degrees. We will call the new vector AP2.

The rotation matrix that rotates vectors by 30 degrees about Ẑ is the same as

the rotation matrix that describes a frame rotated 30 degrees about Ẑ relative to the
reference frame. Thus, the correct rotational operator is

Rz(30.0) =

⎡

⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤

⎦ . (2.30)

Given

AP1 =

⎡

⎣

0.0
2.0
0.0

⎤

⎦ , (2.31)

XA

YA

{A}

AP1

AP2

FIGURE 2.10: The vector AP1 rotated 30 degrees about Ẑ.
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we calculate AP2 as

AP2 = Rz(30.0)
AP1 =

⎡

⎣

−1.000
1.732
0.000

⎤

⎦ . (2.32)

Equations (2.13) and (2.27) implement the same mathematics. Note that, if we
had de�ned B

AR (instead of A
BR) in (2.13), then the inverse ofR would appear in (2.27).

This change would indicate the difference between rotating the vector “forward”
versus rotating the coordinate system “backward.” By de�ning the location of {B}

relative to {A} (by A
BR), we cause the mathematics of the two interpretations to be

the same.

Transformation Operators

As with vectors and rotation matrices, a frame has another interpretation as a trans-
formation operator. In this interpretation, only one coordinate system is involved,
so the symbol T is used without sub- or superscripts. The operator T rotates and
translates a vector AP1 to compute a new vector,

AP2 = T AP1. (2.33)

Again, as in the case of rotations, the mathematics described in (2.18) and in (2.33)
are the same, only our interpretation is different. This fact also allows us to see how
to obtain homogeneous transforms that are to be used as operators:

The transform that rotates by R and translates by Q is the same as the transform

that describes a frame rotated by R and translated by Q relative to the reference frame.
A transform is usually thought of as being in the form of a homogeneous trans-

form with general rotation-matrix and position-vector parts.

EXAMPLE 2.4

Figure 2.11 shows a vector AP1. We wish to rotate it about ẐA by 30 degrees and

translate it 10 units in X̂A and 5 units in ŶA. Find
AP2, where

AP1 = [3.0 7.0 0.0]T .
The operator T , which performs the translation and rotation, is

T =

⎡

⎢

⎢

⎣

0.866 −0.500 0.000 10.0
0.500 0.866 0.000 5.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤

⎥

⎥

⎦

. (2.34)

Given

AP1 =

⎡

⎣

3.0
7.0
0.0

⎤

⎦ , (2.35)
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AP1

RAP1
AP2

AQ

XA

YA

{A}

FIGURE 2.11: The vector AP1 rotated and translated to form AP2.

we use T as an operator:

AP2 = T AP1 =

⎡

⎣

9.098
12.562
0.000

⎤

⎦ . (2.36)

Note this example is numerically exactly the same as Example 2.2, but the interpre-
tation is quite different.

2.5 SUMMARY OF INTERPRETATIONS

We have introduced concepts �rst for the case of translation only, then for the case of
rotation only, and �nally for the general case of rotation about a point and translation
of that point. Having understood the general case of rotation and translation, we will
not need to explicitly consider the two simpler cases, since they are contained within
the general framework.

As a general tool to represent frames, we have introduced the homogeneous
transform, a 4 × 4 matrix containing orientation and position information.

We have introduced three interpretations of this homogeneous transform:

1. It is a description of a frame. A
BT describes the frame {B} relative to the frame

{A}. Speci�cally, the columns of A
BR are unit vectors de�ning the directions of

the principal axes of {B}, and APBORG locates the position of the origin of {B}.

2. It is a transform mapping. A
BT maps BP → AP .

3. It is a transform operator. T operates on AP1 to create AP2.
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From this point on, the terms frame and transform will both be used to refer
to a position vector plus an orientation. Frame is the term favored in speaking of a
description, and transform is used most frequently when function as a mapping or
operator is implied. Note that transformations are generalizations of (and subsume)
translations and rotations; we will often use the term transform when speaking of a
pure rotation (or translation).

2.6 TRANSFORMATION ARITHMETIC

In this section, we look at the multiplication of transforms and the inversion of trans-
forms. These two elementary operations form a functionally complete set of trans-
form operators.

Compound Transformations

In Fig. 2.12, we have CP and wish to �nd AP .
Frame {C} is known relative to frame {B}, and frame {B} is known relative to

frame {A}. We can transform CP into BP as

BP = B
CT CP ; (2.37)

then, we can transform BP into AP as

AP = A
BT BP. (2.38)

Combining (2.37) and (2.38), we get the (not unexpected) result

AP = A
BT B

CT CP, (2.39)

from which we could de�ne
A
CT = A

BT B
CT . (2.40)

AP

YA

ZA

XA

{A}

CP

YB

ZB

ZC

XB

XC

YC

{B}
{C}

FIGURE 2.12: Compound frames: each is known relative to the previous one.
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Again, note that familiarity with the sub- and superscript notation makes these
manipulations simple. In terms of the known descriptions of {B} and {C}, we can
give the expression for A

CT as

A
CT =

[

A
BR B

CR A
BR BPCORG + APBORG

0 0 0 1

]

. (2.41)

Inverting a Transform

Consider a frame {B} that is known with respect to a frame {A}—that is, we know
the value of A

BT . Sometimes we will wish to invert this transform, in order to get a

description of {A} relative to {B}—that is, B
AT . A straightforward way of calculating

the inverse is to compute the inverse of the 4 × 4 homogeneous transform. However,
if we do so, we are not taking full advantage of the structure inherent in the transform.
It is easy to �nd a computationally simplermethod of computing the inverse, one that
does take advantage of this structure.

To �nd B
AT , we must compute B

AR and BPAORG from A
BR and APBORG. First,

recall from our discussion of rotation matrices that

B
AR = A

BRT . (2.42)

Next, we change the description of APBORG into {B} by using (2.13):

B(APBORG) = B
AR APBORG + BPAORG. (2.43)

The left-hand side of (2.43) must be zero, so we have

BPAORG = −B
AR APBORG = −A

BRT APBORG. (2.44)

Using (2.42) and (2.44), we can write the form of B
AT as

B
AT =

[

A
BRT −A

BRT APBORG

0 0 0 1

]

. (2.45)

Note that, with our notation,
B
AT = A

BT −1.

Equation (2.45) is a general and extremely useful way of computing the inverse of a
homogeneous transform.

EXAMPLE 2.5

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about ẐA by 30

degrees and translated four units in X̂A and three units in ŶA. Thus, we have a descrip-
tion of A

BT . Find B
AT .

The frame de�ning {B} is

A
BT =

⎡

⎢

⎢

⎣

0.866 −0.500 0.000 4.0
0.500 0.866 0.000 3.0
0.000 0.000 1.000 0.0
0 0 0 1

⎤

⎥

⎥

⎦

. (2.46)
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XA

XB

YA

YB

{A}

{B}

FIGURE 2.13: {B} relative to {A}.

Using (2.45), we compute

B
AT =

⎡

⎢

⎢

⎣

0.866 0.500 0.000 −4.964
−0.500 0.866 0.000 −0.598
0.000 0.000 1.000 0.0
0 0 0 1

⎤

⎥

⎥

⎦

. (2.47)

2.7 TRANSFORM EQUATIONS

Figure 2.14 indicates a situation in which a frame {D} can be expressed as products
of transformations in two different ways. First,

U
DT = U

AT A
DT ; (2.48)

second;
U
DT = U

BT B
CT C

DT . (2.49)

We can set these two descriptions of U
DT equal to construct a transform

equation:
U
AT A

DT = U
BT B

CT C
DT . (2.50)

Transform equations can be used to solve for transforms in the case of n unknown
transforms and n transform equations. Consider (2.50) in the case that all transforms
are known except B

CT . Here, we have one transform equation and one unknown
transform; hence, we easily �nd its solution to be

B
CT = U

BT −1 U
AT A

DT C
DT −1. (2.51)

Figure 2.15 indicates a similar situation.
Note that, in all �gures, we have introduced a graphical representation of

frames as an arrow pointing from one origin to another origin. The arrow’s direction
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{U}

{A}

{D}

{C}

{B}

FIGURE 2.14: Set of transforms forming a loop.

indicates which way the frames are de�ned: In Fig. 2.14, frame {D} is de�ned relative
to {A}; in Fig. 2.15, frame {A} is de�ned relative to {D}. In order to compound
frames when the arrows line up, we simply compute the product of the transforms.
If an arrow points the opposite way in a chain of transforms, we simply compute its
inverse �rst. In Fig. 2.15, two possible descriptions of {C} are

U
CT = U

AT D
AT −1 D

CT (2.52)

and
U
CT = U

BT B
CT . (2.53)

Again, we might equate (2.52) and (2.53) to solve for, say, U
AT :

U
AT = U

BT B
CT D

CT −1 D
AT . (2.54)
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{U}

{A}

{D}

{C}

{B}

FIGURE 2.15: Example of a transform equation.

EXAMPLE 2.6

Assume that we know the transform B
TT in Fig. 2.16, which describes the frame at

the manipulator’s �ngertips {T } relative to the base of the manipulator, {B}, that
we know where the tabletop is located in space relative to the manipulator’s base
(because we have a description of the frame {S} that is attached to the table as shown,
B
ST ), and that we know the location of the frame attached to the bolt lying on the

table relative to the table frame—that is, S
GT . Calculate the position and orientation

of the bolt relative to the manipulator’s hand, T
GT .

Guided by our notation (and, it is hoped, our understanding), we compute the
bolt frame relative to the hand frame as

T
GT = B

TT −1 B
ST

S
GT . (2.55)
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{T }

{G }

{S }

{B }

FIGURE 2.16: Manipulator reaching for a bolt.

2.8 MORE ON REPRESENTATION OF ORIENTATION

So far, our only means of representing an orientation is by giving a 3 × 3 rotation
matrix. As shown, rotation matrices are special in that all columns are mutually
orthogonal and have unit magnitude. Further, we will see that the determinant of
a rotation matrix is always equal to +1. Rotation matrices may also be called proper

orthonormal matrices, where “proper” refers to the fact that the determinant is +1
(nonproper orthonormal matrices have the determinant −1).

It is natural to ask whether it is possible to describe an orientation with fewer
than nine numbers. A result from linear algebra (known as Cayley’s formula for

orthonormal matrices [3]) states that, for any proper orthonormal matrix R, there
exists a skew-symmetric matrix S, such that

R = (I3 − S)−1(I3 + S), (2.56)

where I3 is a 3 × 3 unit matrix. Now, a skew-symmetric matrix (i.e., S = −ST ) of
dimension 3 is speci�ed by three parameters (sx, sy, sz) as

S =

⎡

⎣

0 −sz sy
sz 0 −sx

−sy sx 0

⎤

⎦ . (2.57)

Therefore, an immediate consequence of formula (2.56) is that any 3 × 3 rotation
matrix can be speci�ed by just three parameters.
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Clearly, the nine elements of a rotation matrix are not all independent. In fact,
given a rotation matrix, R, it is easy to write down the six dependencies between the
elements. Imagine R as three columns, as originally introduced:

R = [X̂ Ŷ Ẑ]. (2.58)

As we know from Section 2.2, these three vectors are the unit axes of some frame
written in terms of the reference frame. Each is a unit vector, and all three must be
mutually perpendicular, so we see that there are six constraints on the nine matrix
elements:

|X̂| = 1,

|Ŷ | = 1,

|Ẑ| = 1, (2.59)

X̂ · Ŷ = 0,

X̂ · Ẑ = 0,

Ŷ · Ẑ = 0.

It is natural then to ask whether representations of orientation can be devised such
that the representation is conveniently speci�ed with three parameters. This section
will present several such representations.

Whereas translations along three mutually perpendicular axes are quite easy
to visualize, rotations seem less intuitive. Unfortunately, people have a hard time
describing and specifying orientations in three-dimensional space. One dif�culty is
that rotations don’t generally commute. That is, A

BR B
CR is not the same as B

CR A
BR.

EXAMPLE 2.7

Consider two rotations, one about Ẑ by 30 degrees, and one about X̂ by 30 degrees:

Rz(30) =

⎡

⎣

0.866 −0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

⎤

⎦ (2.60)

Rx(30) =

⎡

⎣

1.000 0.000 0.000
0.000 0.866 −0.500
0.000 0.500 0.866

⎤

⎦ (2.61)

Rz(30)Rx(30) =

⎡

⎣

0.87 −0.43 0.25
0.50 0.75 −0.43
0.00 0.50 0.87

⎤

⎦

�= Rx(30)Rz(30) =

⎡

⎣

0.87 −0.50 0.00
0.43 0.75 −0.50
0.25 0.43 0.87

⎤

⎦ (2.62)

The fact that the order of rotations is important should not be surprising; further-
more, it is captured in the fact that we use matrices to represent rotations, because
multiplication of matrices is not commutative in general.
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Because rotations can be thought of either as operators or as descriptions of
orientation, it is not surprising that different representations are favored for each of
these uses. Rotation matrices are useful as operators. Their matrix form is such that,
when multiplied by a vector, they perform the rotation operation. However, rota-
tion matrices are somewhat unwieldy when used to specify an orientation. A human
operator at a computer terminal whowishes to type in the speci�cation of the desired
orientation of a robot’s hand would have a hard time inputting a nine-elementmatrix
with orthonormal columns. A representation that requires only three numbers would
be simpler. The following sections introduce several such representations.

X–Y–Z Fixed Angles

One method of describing the orientation of a frame {B} is as follows:

Start with the frame coincident with a known reference frame {A}. Rotate
{B} �rst about X̂A by an angle γ , then about ŶA by an angle β, and, �nally,

about ẐA by an angle α.

Each of the three rotations takes place about an axis in the �xed reference
frame {A}. We will call this convention for specifying an orientation X–Y–Z �xed

angles. The word “�xed” refers to the fact that the rotations are speci�ed about the
�xed (i.e., nonmoving) reference frame (see Fig. 2.17). Sometimes, this convention
is referred to as roll, pitch, yaw angles, but care must be used, as this name is often
given to other related but different conventions.

The derivation of the equivalent rotation matrix, A
BRXYZ(γ, β, α), is straight-

forward, because all rotations occur about axes of the reference frame; that is,

A
BRXYZ(γ, β, α) = RZ(α)RY (β)RX(γ )

=

⎡

⎣

cα −sα 0
sα cα 0
0 0 1

⎤

⎦

⎡

⎣

cβ 0 sβ

0 1 0
−sβ 0 cβ

⎤

⎦

⎡

⎣

1 0 0
0 cγ −sγ

0 sγ cγ

⎤

⎦ , (2.63)
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FIGURE 2.17: X–Y–Z �xed angles. Rotations are performed in the order RX(γ ),
RY (β), RZ(α).
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where cα is shorthand for cos α, sα for sin α, and so on. It is extremely important
to understand the order of rotations used in (2.63). Thinking in terms of rotations as
operators, we have applied the rotations (from the right) of RX(γ ), then RY (β), and
then RZ(α). Multiplying (2.63) out, we obtain

A
BRXYZ(γ, β, α) =

⎡

⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤

⎦ . (2.64)

Keep in mind that the de�nition given here speci�es the order of the three rotations.

Equation (2.64) is correct only for rotations performed in the order: about X̂A by γ ,

about ŶA by β, about ẐA by α.
The inverse problem, that of extracting equivalent X–Y–Z �xed angles from a

rotationmatrix, is often of interest. The solution depends on solving a set of transcen-
dental equations: there are nine equations and three unknowns if (2.64) is equated to
a given rotation matrix. Among the nine equations are six dependencies, so, essen-
tially, we have three equations and three unknowns. Let

A
BRXYZ(γ, β, α) =

⎡

⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ . (2.65)

From (2.64), we see that, by taking the square root of the sum of the squares
of r11 and r21, we can compute cos β. Then, we can solve for β with the arc tangent
of −r31 over the computed cosine. Then, as long as cβ �= 0, we can solve for α by
taking the arc tangent of r21/cβ over r11/cβ, and we can solve for γ by taking the arc
tangent of r32/cβ over r33/cβ.

In summary,

β = Atan2(−r31,

√

r211 + r221),

α = Atan2(r21/cβ, r11/cβ), (2.66)

γ = Atan2(r32/cβ, r33/cβ),

where Atan2(y, x) is a two-argument arc tangent function.3

Although a second solution exists, by using the positive square root in the for-
mula forβ, we always compute the single solution forwhich−90.0◦ ≤ β ≤ 90.0◦. This
is usually a good practice, because we can then de�ne one-to-one mapping functions
between various representations of orientation. However, in some cases, calculating
all solutions is important (more on this will be presented in Chapter 4). If β = ±90.0◦

(so that cβ = 0), the solution of (2.67) degenerates. In those cases, only the sum or
the difference of α and γ can be computed. One possible convention is to choose
α = 0.0 in these cases, which has the results given next.

3Atan2(y, x) computes tan−1(
y
x ) but uses the signs of both x and y to identify the quadrant in which

the resulting angle lies. For example, Atan 2(−2.0,−2.0) = −135◦, whereas Atan 2(2.0, 2.0) = 45◦, a dis-
tinction which would be lost with a single-argument arc tangent function. We are frequently computing
angles that can range over a full 360◦, so wewill make use of theAtan2 function regularly. Note thatAtan2
becomes unde�ned when both arguments are zero. It is sometimes called a “4-quadrant arc tangent,” and
some programming-language libraries have it prede�ned.
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If β = 90.0◦, then a solution can be calculated to be

β = 90.0◦,

α = 0.0, (2.67)

γ = Atan2(r12, r22).

If β = −90.0◦, then a solution can be calculated to be

β = −90.0◦,

α = 0.0, (2.68)

γ = −Atan2(r12, r22).

Z–Y–X Euler Angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. Rotate {B} �rst
about ẐB by an angle α, then about ŶB by an angle β, and, �nally, about

X̂B by an angle γ .

In this representation, each rotation is performed about an axis of the moving
system {B} rather than one of the �xed reference {A}. Such sets of three rotations are
calledEuler angles. Note that each rotation takes place about an axis whose location
depends upon the preceding rotations. Because the three rotations occur about the

axes Ẑ, Ŷ , and X̂, we will call this representation Z–Y–X Euler angles.
Figure 2.18 shows the axes of {B} after each Euler angle rotation is applied.

Rotation α about Ẑ causes X̂ to rotate into X̂′, Ŷ to rotate into Ŷ ′, and so on. An
additional “prime” gets added to each axis with each rotation. A rotation matrix
which is parameterized by Z–Y–X Euler angles will be indicated by the notation
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FIGURE 2.18: Z–Y–X Euler angles.
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A
BRZ′Y ′X′(α, β, γ ). Note that we have added “primes” to the subscripts to indicate
that this rotation is described by Euler angles.

With reference to Fig. 2.18, we can use the intermediate frames {B ′} and {B ′′} in
order to give an expression for A

BRZ′Y ′X′(α, β, γ ). Thinking of the rotations as descrip-
tions of these frames, we can immediately write

A
BR = A

B ′R
B ′

B ′′R
B ′′

BR, (2.69)

where each of the relative descriptions on the right-hand side of (2.69) is given by
the statement of the Z–Y–X Euler angle convention. Namely, the �nal orientation
of {B} is given relative to {A} as

A
BRZ′Y ′X′ = RZ(α)RY (β)RX(γ )

=

⎡

⎣

cα −sα 0
sα cα 0
0 0 1

⎤

⎦

⎡

⎣

cβ 0 sβ

0 1 0
−sβ 0 cβ

⎤

⎦

⎡

⎣

1 0 0
0 cγ −sγ

0 sγ cγ

⎤

⎦ , (2.70)

where cα = cosα, sα = sinα, and so on. Multiplying out, we obtain

A
BRZ′Y ′X′(α, β, γ ) =

⎡

⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤

⎦ . (2.71)

Note that the result is exactly the same as that obtained for the same three rotations
taken in the opposite order about �xed axes! This somewhat nonintuitive result holds
in general: three rotations taken about �xed axes yield the same �nal orientation as
the same three rotations taken in opposite order about the axes of the moving frame.

Because (2.71) is equivalent to (2.64), there is no need to repeat the solution
for extracting Z–Y–X Euler angles from a rotation matrix. That is, (2.66) can also
be used to solve for Z–Y–XEuler angles that correspond to a given rotation matrix.

Z–Y–Z Euler Angles

Another possible description of a frame {B} is

Start with the frame coincident with a known frame {A}. Rotate {B} �rst
about ẐB by an angle α, then about ŶB by an angle β, and, �nally, about

ẐB by an angle γ .

Rotations are described relative to the frame we are moving, namely, {B}, so
this is an Euler angle description. Because the three rotations occur about the axes

Ẑ, Ŷ , and Ẑ, we will call this representation Z–Y–Z Euler angles.
Following the development exactly as in the last section, we arrive at the equiv-

alent rotation matrix

A
BRZ′Y ′Z′(α, β, γ ) =

⎡

⎣

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤

⎦ . (2.72)

The solution for extracting Z–Y–Z Euler angles from a rotation matrix is
stated next.
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Given

A
BRZ′Y ′Z′(α, β, γ ) =

⎡

⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ , (2.73)

then, if sin β �= 0, it follows that

β = Atan2(
√

r231 + r232, r33),

α = Atan2(r23/sβ, r13/sβ), (2.74)

γ = Atan2(r32/sβ,−r31/sβ).

Although a second solution exists (which we �nd by using the positive square root in
the formula for β), we always compute the single solution forwhich 0.0 ≤ β ≤ 180.0◦.
If β = 0.0 or 180.0◦, the solution of (2.74) degenerates. In those cases, only the sum
or the difference of α and γ may be computed. One possible convention is to choose
α = 0.0 in these cases, which has the results given next.

If β = 0.0, then a solution can be calculated to be

β = 0.0,

α = 0.0, (2.75)

γ = Atan2(−r12, r11).

If β = 180.0◦, then a solution can be calculated to be

β = 180.0◦,

α = 0.0, (2.76)

γ = Atan2(r12,−r11).

Other Angle-Set Conventions

In the preceding subsections, we have seen three conventions for specifying orien-
tation: X–Y–Z �xed angles, Z–Y–X Euler angles, and Z–Y–Z Euler angles. Each
of these conventions requires performing three rotations about principal axes in a
certain order. These conventions are examples of a set of 24 conventions that we will
call angle-set conventions. Of these, 12 conventions are for �xed-angle sets, and 12
are for Euler angle sets. Note that, because of the duality of �xed-angle sets with
Euler angle sets, there are really only 12 unique parameterizations of a rotation
matrix by using successive rotations about principal axes. There is often no particu-
lar reason to favor one convention over another, but various authors adopt different
ones, so it is useful to list the equivalent rotation matrices for all 24 conventions.
Appendix B (in the back of the book) gives the equivalent rotation matrices for all
24 conventions.

Equivalent Angle–Axis Representation

With the notation RX(30.0), we give the description of an orientation by giving an

axis, X̂, and an angle, 30.0 degrees. This is an example of an equivalent angle–axis rep-
resentation. If the axis is a general direction (rather than one of the unit directions)



Section 2.8 More on Representation of Orientation 49

any orientation may be obtained through proper axis and angle selection. Consider
the following description of a frame {B}:

Start with the frame coincident with a known frame {A}; then rotate {B}

about the vector AK̂ by an angle θ according to the right-hand rule.

Vector K̂ is sometimes called the equivalent axis of a �nite rotation. A general

orientation of {B} relative to {A} may be written as A
BR(K̂, θ) or RK(θ), and will be

called the equivalent angle–axis representation.4 The speci�cation of the vector AK̂

requires only two parameters, because its length is always taken to be one. The angle

speci�es a third parameter. Often, we will multiply the unit direction, K̂ , with the
amount of rotation, θ , to form a compact 3 × 1 vector description of orientation,
denoted by K (no “hat”) (see Fig. 2.19).

When the axis of rotation is chosen from among the principal axes of {A}, then
the equivalent rotation matrix takes on the familiar form of planar rotations:

RX(θ) =

⎡

⎣

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤

⎦ , (2.77)

RY (θ) =

⎡

⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ , (2.78)

RZ(θ) =

⎡

⎣

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦ . (2.79)
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FIGURE 2.19: Equivalent angle–axis representation.

4That such a K̂ and θ exist for any orientation of {B} relative to {A} was shown originally by Euler,
and is known as Euler’s theorem on rotation [3].
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If the axis of rotation is a general axis, it can be shown (as in Exercise 2.6) that the
equivalent rotation matrix is

RK(θ) =

⎡

⎣

kxkxvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ kykyvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ kzkzvθ + cθ

⎤

⎦ , (2.80)

where cθ = cos θ , sθ = sin θ , vθ = 1 − cos θ , and AK̂ = [kxkykz]
T . The sign of θ is

determined by the right-hand rule, with the thumb pointing along the positive sense

of AK̂ .
Equation (2.80) converts from angle–axis representation to rotation-matrix

representation. Note that, given any axis of rotation and any angular amount, we
can easily construct an equivalent rotation matrix.

The inverse problem, namely, that of computing K̂ and θ from a given rotation
matrix, is mostly left for the exercises (Exercises 2.6 and 2.7), but a partial result is
given here [3]. If

A
BRK(θ) =

⎡

⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ , (2.81)

then

θ = Acos

(

r11 + r22 + r33 − 1

2

)

and

K̂ =
1

2 sin θ

⎡

⎣

r32 − r23
r13 − r31
r21 − r12

⎤

⎦ . (2.82)

This solution always computes a value of θ between 0 and 180 degrees. For any

axis–angle pair (AK̂, θ), there is another pair, namely, (−AK̂,−θ), which results in
the same orientation in space, with the same rotation matrix describing it. Therefore,
in converting from a rotation-matrix into an angle–axis representation, we are faced
with choosing between solutions. A more serious problem is that, for small angular
rotations, the axis becomes ill-de�ned. Clearly, if the amount of rotation goes to zero,
the axis of rotation becomes completely unde�ned. The solution given by (2.82) fails
if θ = 0◦ or θ = 180◦.

EXAMPLE 2.8

A frame {B} is described as initially coincident with {A}. We then rotate {B} about

the vector AK̂ = [0.7070 7070 0]T (passing through the origin) by an amount
θ = 30 degrees. Give the frame description of {B}.

Substituting into (2.80) yields the rotation-matrix part of the frame description.
There was no translation of the origin, so the position vector is [0, 0, 0]T . Hence,

A
BT =

⎡

⎢

⎢

⎣

0.933 0.067 0.354 0.0
0.067 0.933 −0.354 0.0

−0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

⎤

⎥

⎥

⎦

. (2.83)


