5th EDITION

PHYSICS

for SCIENTISTS and ENGINEERS

DOUGLAS

5th EDITION

PHYSICS for SCIENTISTS and ENGINEERS

DOUGLAS GIANCOLI

Pearson

Editorial Director: Jeanne Zalesky

Content Development: Margy Kuntz, Andrea Giancoli

Project Managers: Cynthia Rae Abbott, Elisa Mandelbaum, Francesca Monaco, Karen Misler, Rebecca Dunn

Production Vendor: CodeMantra

Interior Composition: Preparé Italia, Battipaglia (SA), Italy

Copyeditor: Joanna Dinesmore

Proofreaders: Andrea Giancoli, Carol Reitz, and Clare Romeo

Art House: Lachina Creative

Design Managers: Mark Ong, Derek Bacchus, Emily Friel, SPi Global

Rights & Permissions Manager: Ben Ferrini

SPi Global Photo Researcher: Eric Schrader and Mary Teresa Giancoli

Manufacturing Buyer: Stacey Wienberger

Copyright © 2020, 2008, 2000, 1989, 1984 by Douglas C. Giancoli. Published by Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Photo credits appear on page A-77, which constitutes a continuation of this copyright page.

PEARSON, ALWAYS LEARNING and MasteringTM Physics are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Giancoli, Douglas C., author.

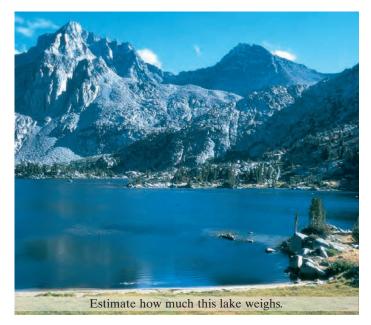
Title: Physics for scientists & engineers with modern physics/Douglas C. Giancoli.

Other titles: Physics for scientists and engineers with modern physics

Description: Fifth edition. | Upper Saddle River, N.J.: Pearson Education, Inc., [2019] | Includes bibliographical references and index. Contents: Introduction, measurement, estimating — Describing motion: kinematics in one dimension — Kinematics in two or three dimensions; vectors — Dynamics: Newton's laws of motion — Using Newton's laws: friction, circular motion, drag forces — Gravitation and Newton's synthesis — Work and energy — Conservation of energy — Linear momentum — Rotational motion — Angular momentum; general rotation — Static equilibrium; elasticity and fracture — Fluids — Oscillations — Wave motion — Sound — Temperature, thermal expansion, and the ideal gas law — Kinetic theory of gases — Heat and the first law of thermodynamics — Second law of thermodynamics — Electric charge and electric field — Gauss's law — Electric potential — Capacitance, dielectrics, electric energy storage — Electric currents and resistance — DC circuits — Magnetism — Sources of magnetic field — Electromagnetic induction and Faraday's law — Inductance, electromagnetic oscillations, and AC circuits — Maxwell's equations and electromagnetic waves — Light: reflection and refraction — Lenses and optical instruments — The wave nature of light: interference and polarization — Diffraction — The special theory of relativity — Early quantum theory and models of the atom — Quantum mechanics — Quantum mechanics of atoms — Molecules and solids — Nuclear physics and radioactivity — Nuclear energy; effects and uses of radiation — Elementary particles — Astrophysics and cosmology.

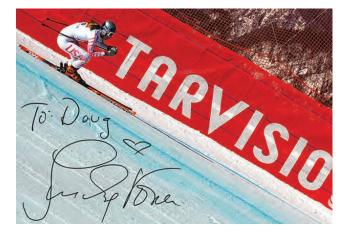
Identifiers: LCCN 2019015435 | ISBN 9780134378053 (v.1) | ISBN 0134378059 (v.1)

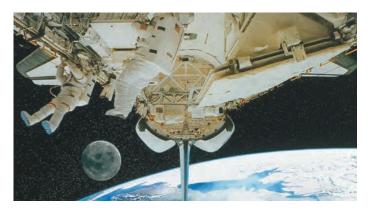
Subjects: LCSH: Physics--Textbooks.


Classification: LCC QC21.3 .G539 2019 | DDC 530--dc23 LC record available at https://lccn.loc.gov/2019015435

ISBN 10: 0-321-99227-X; ISBN 13: 978-0-32-199227-7 (Student Edition) ISBN 10: 0-134-37806-7; ISBN 13: 978-13-437806-0 (Classic Student Edition) ISBN 10: 0-134-37808-3; ISBN 13: 978-0-13-437808-4 (Looseleaf Edition)

Contents

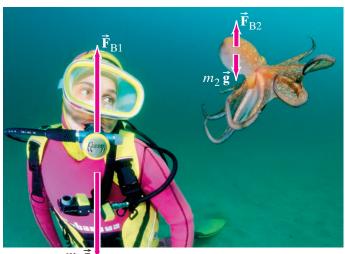

Applications List	xii
Preface	xvi
To Students	XX
Use of Color	xxi



1	Introduction, Measurement, Estimating	1
1-1	How Science Works	2
1-2	Models, Theories, and Laws	3
1-3	Measurement and Uncertainty;	
	Significant Figures	3
1-4	Units, Standards, and the SI System	6
1-5	Converting Units	9
1-6	Order of Magnitude: Rapid Estimating	11
*1-7	Dimensions and Dimensional Analysis	14
	Questions, MisConceptions, Problems 15–19	
2	Describing Motion: Kinematics in One Dimension	20
2 2-1	IN ONE DIMENSION	20 21
	IN ONE DIMENSION Reference Frames and Displacement	
2–1	IN ONE DIMENSION Reference Frames and Displacement Average Velocity	21
2-1 2-2	IN ONE DIMENSION Reference Frames and Displacement	21 22
2-1 2-2 2-3	IN ONE DIMENSION Reference Frames and Displacement Average Velocity Instantaneous Velocity	21 22 24
2-1 2-2 2-3 2-4	IN ONE DIMENSION Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration	21 22 24 27
2-1 2-2 2-3 2-4 2-5	IN ONE DIMENSION Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration	21 22 24 27 30

3	KINEMATICS IN TWO OR THREE DIMENSIONS; VECTORS	54
3–1	Vectors and Scalars	55
3-2 $3-3$	Addition of Vectors—Graphical Methods Subtraction of Vectors, and	55
5 5	Multiplication of a Vector by a Scalar	57
3-4	Adding Vectors by Components	58
3-5	Unit Vectors	62
3-6	Vector Kinematics	62
3-7	Projectile Motion	65
3–8	Solving Problems Involving Projectile Motion	67
3-9	Relative Velocity	73
5)	Questions, MisConceptions, Problems 76–84	75
1	Dynamics: Newton's Laws	0.5
	OF MOTION	85
4-1	Force	86
4-2	Newton's First Law of Motion	86
4-3	Mass	88
4-4	Newton's Second Law of Motion	88
4-5	Newton's Third Law of Motion	91
4–6	Weight—the Force of Gravity; and the Normal Force	94
4-7	Solving Problems with Newton's Laws:	
	Free-Body Diagrams	97
4–8	Problem Solving—A General Approach Questions, MisConceptions, Problems 105–115	104
	Using Newton's Laws: Friction, Circular Motion, Drag Forces	116
5-1	Using Newton's Laws with Friction	117
5-2	Uniform Circular Motion—Kinematics	123
5-3	Dynamics of Uniform Circular Motion	126
5-4	Highway Curves: Banked and Unbanked	130

Nonuniform Circular Motion 5-5 133 Velocity-Dependent Forces: Drag and Terminal Velocity *5-6 134 Questions, MisConceptions, Problems 136–144

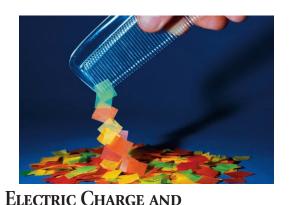


	GRAVITATION AND	
0	Newton's Synthesis 1	45
6-1	Newton's Law of Universal Gravitation	146
6-2	Vector Form of Newton's Law of	
	Universal Gravitation	149
6-3	Gravity Near the Earth's Surface	149
6-4	Satellites and "Weightlessness"	152
6-5	Planets, Kepler's Laws, and	
	Newton's Synthesis	155
6-6	Moon Rises an Hour Later Each Day	161
6–7	Types of Forces in Nature	161
*6-8	Gravitational Field	162
*6-9	Principle of Equivalence;	1.0
	Curvature of Space; Black Holes	163
	Questions, MisConceptions, Problems 165–171	
7	TA7 T) 4	7 0
	WORK AND ENERGY 1	72
7 - 1	Work Done by a Constant Force	173
7-2	Scalar Product of Two Vectors	176
7 - 3	Work Done by a Varying Force	177
7-4	Kinetic Energy and the	
	Work-Energy Principle	181
	Questions, MisConceptions, Problems 186–193	
8	Conservation of Energy 1	94
8-1	Conservative and Nonconservative Forces	195
8-2	Potential Energy	197
8-3	Mechanical Energy and Its Conservation	200
8-4	Problem Solving Using	
	Conservation of Mechanical Energy	201
8-5	The Law of Conservation of Energy	207
8-6	Energy Conservation with	
	Dissipative Forces: Solving Problems	208
8–7	Gravitational Potential Energy and	• • •
	Escape Velocity	210
8-8	Power	213
8–9	Potential Energy Diagrams;	215
νο 10	Stable and Unstable Equilibrium	215
*8-10	Gravitational Assist (Slingshot)	216
	Questions MisConceptions Problems 218-226	

9	Linear Momentum 2	227
9-1	Momentum and Its Relation to Force	228
9-2	Conservation of Momentum	230
9-3	Collisions and Impulse	234
9-4	Conservation of Energy and	
	Momentum in Collisions	235
9-5	Elastic Collisions in One Dimension	236
9-6	Inelastic Collisions	239
9-7	Collisions in 2 or 3 Dimensions	241
9-8	Center of Mass (CM)	244
9-9	Center of Mass and Translational Motion	248
*9-10	Systems of Variable Mass; Rocket Propulsion	251
	Questions, MisConceptions, Problems 254–263	,
10	ROTATIONAL MOTION 2	264
10-1	Angular Quantities	265
10-2	Vector Nature of Angular Quantities	270
10-3	Constant Angular Acceleration	270
10-4	Torque	271
10-5	Rotational Dynamics; Torque and	
10 0	Rotational Inertia	274
10-6	Solving Problems in Rotational Dynamics	276
10-7	Determining Moments of Inertia	279
10-8	Rotational Kinetic Energy	281
10-9	Rotation plus Translational Motion; Rolling	
	Why Does a Rolling Sphere Slow Down?	
10 10	Questions, MisConceptions, Problems 291–301	
11	Angular Momentum; General Rotation	302
11-1	Angular Momentum—Objects	
11 1	Rotating About a Fixed Axis	303
11-2	Vector Cross Product; Torque as a Vector	307
11-3	Angular Momentum of a Particle	309
11-4	Angular Momentum and Torque for	
	a System of Particles; General Motion	310
11-5	Angular Momentum and	
44 6	Torque for a Rigid Object	312
11-6	Conservation of Angular Momentum	315
*11-7	The Spinning Top and Gyroscope	317
11-8	Rotating Frames of Reference; Inertial Forces	
*11-9	The Coriolis Effect	319
	Questions, MisConceptions, Problems 322–330	
		17

12	STATIC EQUILIBRIUM; ELASTICITY AND FRACTURE	331
12-1	The Conditions for Equilibrium	332
12-2	Solving Statics Problems	334
*12-3	Applications to Muscles and Joints	339
12-4	Stability and Balance	341
12-5	Elasticity; Stress and Strain	342
12-6	Fracture	345
*12-7	Trusses and Bridges	347
*12-8	Arches and Domes	350
	Questions, MisConceptions, Problems 353-	-364
	${f \Lambda}^{{f {f F}}}_{ m B2}$	

13	FLUIDS 3	65
13-1	Phases of Matter	366
13-2	Density and Specific Gravity	366
13-3	Pressure in Fluids	367
13-4	Atmospheric Pressure and	
	Gauge Pressure	371
13-5	Pascal's Principle	371
13-6	Measurement of Pressure;	
	Gauges and the Barometer	372
13-7	Buoyancy and Archimedes' Principle	374
13-8	Fluids in Motion; Flow Rate and	
	the Equation of Continuity	378
13 - 9	Bernoulli's Equation	380
13-10	Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs,	
	Blood Flow	382
13-11	Viscosity	385
	Flow in Tubes: Poiseuille's Equation,	
	Blood Flow	385
*13-13	Surface Tension and Capillarity	386
	Pumps, and the Heart	388
	Questions, MisConceptions, Problems 390–398	


14	Oscillations	399
14-1	Oscillations of a Spring	400
14-2	Simple Harmonic Motion	402
14-3	Energy in the Simple	
	Harmonic Oscillator	408
14-4	Simple Harmonic Motion Related	410
14 5	to Uniform Circular Motion	410
14-5	The Simple Pendulum	411
*14-6	The Physical Pendulum and the Torsion Pendulum	412
14-7	Damped Harmonic Motion	414
14-8	Forced Oscillations; Resonance	417
14 0	Questions, MisConceptions, Problems 420–42	
15	Wave Motion	428
	Characteristics of Wave Motion	429
15-2	Types of Waves:	431
15-3	Transverse and Longitudinal Energy Transported by Waves	431
15-3	Mathematical Representation of a	433
13-4	Traveling Wave	437
*15-5	The Wave Equation	440
15-6	The Principle of Superposition	441
15-7	Reflection and Transmission	443
15-8	Interference	444
15-9	Standing Waves; Resonance	446
	Refraction	449
15-11	Diffraction	450
	Questions, MisConceptions, Problems 452–45	59
16	Sound	460
16-1	Characteristics of Sound	461
16-2	Mathematical Representation	101
10 2	of Longitudinal Waves	462
16-3	Intensity of Sound: Decibels	464
16-4	Sources of Sound:	
	Vibrating Strings and Air Columns	467
*16-5	Quality of Sound, and Noise;	
	Superposition	472
16-6	Interference of Sound Waves; Beats	473
16-7	Doppler Effect	476
*16-8	Shock Waves and the Sonic Boom	480
*16-9	Applications: Sonar, Ultrasound,	401
	and Medical Imaging Ouestions, MisConceptions, Problems 484–49	481
	Questions, MisConceptions, Problems 484–49	71

17	TEMPERATURE, THERMAL EXPANSION, AND THE IDEAL GAS LAW	492
17 1		
17–1 17–2	Atomic Theory of Matter	493 495
17-2	Temperature and Thermometers Thermal Equilibrium and the	493
17-3	Zeroth Law of Thermodynamics	497
17-4	Thermal Expansion	497
	Thermal Stresses	501
17-6	The Gas Laws and	
	Absolute Temperature	502
	The Ideal Gas Law	503
17-8	Problem Solving with the	504
17-9	Ideal Gas Law Ideal Gas Law in Terms of Molecules:	504
17-9	Avogadro's Number	506
*17-10	Ideal Gas Temperature Scale—	200
_, _,	a Standard	507
	Questions, MisConceptions, Problems 509–5	15
18	KINETIC THEORY OF GASES	516
18-1	The Ideal Gas Law and the Molecular	
	Interpretation of Temperature	516
18-2	Distribution of Molecular Speeds	520
	Real Gases and Changes of Phase	522
18-4	Vapor Pressure and Humidity	524
18–5	Temperature Decrease of Boiling Water with Altitude	526
18-6	Van der Waals Equation of State	527
18-7	Mean Free Path	528
18 - 8	Diffusion	530
	Questions, MisConceptions, Problems 532–53	37
19	HEAT AND THE FIRST LAW OF THERMODYNAMICS	538
19–1	Heat as Energy Transfer	539
19-2	Internal Energy	540
19-3	Specific Heat	541
19-4	Calorimetry—Solving Problems	542
19-5	Latent Heat	545
	The First Law of Thermodynamics	549
19–7	Thermodynamic Processes and the First Law	551
19-8	Molar Specific Heats for Gases,	
	and the Equipartition of Energy	556
19-9	Adiabatic Expansion of a Gas	559
19-10	Heat Transfer: Conduction,	F.C.0
	Convection, Radiation	560
	Questions, MisConceptions, Problems 568–57	IJ

20	SECOND LAW OF	
4 U	SECOND LAW OF THERMODYNAMICS	576
20-1	The Second Law of	
	Thermodynamics—Introduction	577
20-2	Heat Engines	578
20-3	The Carnot Engine;	
	Reversible and Irreversible Processes	580
20-4	Refrigerators, Air Conditioners, and	
	Heat Pumps	584
20-5	Entropy	587
20-6	Entropy and the Second Law of	
	Thermodynamics	590
20-7	Order to Disorder	593
20 - 8	Unavailability of Energy; Heat Death	594
20-9	Statistical Interpretation of Entropy	
	and the Second Law	595
*20-10	Thermodynamic Temperature;	
	Third Law of Thermodynamics	597
20-11	Thermal Pollution, Global Warming,	
	and Energy Resources	598
	Questions, MisConceptions, Problems 601–60	8

21	ELECTRIC FIELD	609
21-1	Static Electricity; Electric Charge and	
	Its Conservation	610
21-2	Electric Charge in the Atom	611
21-3	Insulators and Conductors	611
21-4	Induced Charge; the Electroscope	612
21-5		613
21-6	The Electric Field	618
21-7	Electric Field Calculations for	(22
21 0	Continuous Charge Distributions	622
	Field Lines	626
	Electric Fields and Conductors	627
21-10	Motion of a Charged Particle in an Electric Field	628
21 11	Electric Dipoles	629
	Electric Forces in Molecular Biology:	029
21-12	DNA Structure and Replication	631
	Questions, MisConceptions, Problems 634–642	001
22		
	Gauss's Law	643
22-1	Electric Flux	644
22-2	Gauss's Law	645
22 - 3	1 1	647
*22-4	Experimental Basis of Gauss's and	
	Coulomb's Laws	652
	Questions, MisConceptions, Problems 653–659	
23	ELECTRIC POTENTIAL	660
23-1	Electric Potential Energy and	
	Potential Difference	661
23-2	Relation between Electric Potential	
	and Electric Field	664
	Electric Potential Due to Point Charges	666
	Potential Due to Any Charge Distribution	669
23-5	Equipotential Lines and Surfaces	670
23-6	Potential Due to Electric Dipole;	(71
22 7	Dipole Moment	671
	E Determined from V	672
23-8	Electrostatic Potential Energy; the Electron Volt	674
23 0	Digital; Binary Numbers; Signal Voltage	676
	TV and Computer Monitors	679
	Electrocardiogram (ECG or EKG)	682
23-11	Questions, MisConceptions, Problems 684–691	002

24	ELECTRIC ENERGY STORAGE	692
24-1	Capacitors	692
24-2	Determination of Capacitance	694
24 - 3	Capacitors in Series and Parallel	698
24 - 4	Storage of Electric Energy	700
24-5	Dielectrics	703
*24-6	Molecular Description of Dielectrics	706
	Questions, MisConceptions, Problems 708–716	
3 E	ELECTRIC CURRENT	
25	ELECTRIC CURRENT AND RESISTANCE	717
25-1	The Electric Battery	718
25-2	Electric Current	720
25 - 3	Ohm's Law: Resistance and Resistors	722
25-4	Resistivity	724
25-5	Electric Power	726
25-6	Power in Household Circuits	729
25 - 7	Alternating Current	730
25 - 8	Microscopic View of Electric Current	732
*25-9	Superconductivity	735
*25-10	Electrical Conduction in the Human Nervous System	736
	Questions, MisConceptions, Problems 739–746	

26	DC Circuits	747
26-1	EMF and Terminal Voltage	748
26-2	Resistors in Series and in Parallel	749
26-3	Kirchhoff's Rules	754
26-4	EMFs in Series and in Parallel;	
	Charging a Battery	757
26-5	RC Circuits—Resistor and Capacitor	
	in Series	759
26-6	Electric Hazards and Safety	764
26-7	Ammeters and Voltmeters—Measurement	
	Affects Quantity Measured	767
	Questions, MisConceptions, Problems 771–781	

27	Magnetism	782	29	ELECTROMAGNETIC INDUCTION A FARADAY'S LAW	ND 838
27-2 27-3 27-4 27-5 27-6 27-7 27-8	Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic Field Torque on a Current Loop; Magnetic Dipole Moment Applications: Motors, Loudspeakers, Galvanometers Discovery and Properties of the Electron The Hall Effect Mass Spectrometer Questions, MisConceptions, Problems 802–810	782 785 786 788 793 795 797 799 800	29-2 29-3 29-4 29-5 29-6 29-7 *29-8	Induced EMF Faraday's Law of Induction; Lenz's Law EMF Induced in a Moving Conductor Electric Generators Back EMF and Counter Torque; Eddy Currents Transformers and Transmission of Power A Changing Magnetic Flux Produces an Electric Field Information Storage: Magnetic and Semiconductor Applications of Induction: Microphone, Seismograph, GFCI Questions, MisConceptions, Problems 860–868 INDUCTANCE, ELECTROMAGNETIC	839 840 845 846 848 851 854 856 858
28	Sources of Magnetic Field	811	$\frac{30}{30-1}$	OSCILLATIONS, AND AC CIRCUITS Mutual Inductance	869
28-2 28-3 28-4 28-5 28-6 28-7 28-8 28-9 28-10	Magnetic Field Due to a Straight Wire Force between Two Parallel Wires Definitions of the Ampere and the Coulomb Ampère's Law Magnetic Field of a Solenoid and a Toroid Biot-Savart Law Magnetic Field Due to a Single Moving Charge Magnetic Materials—Ferromagnetism Electromagnets and Solenoids—Applications Magnetic Fields in Magnetic Materials; Hysteresis Paramagnetism and Diamagnetism	812 813 814 815 819 821 824 824 826 827 828	30-2 30-3 30-4 30-5 30-6 30-7 30-8 30-9 30-10	Self-Inductance; Inductors Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations LC Oscillations with Resistance (LRC Circuit) AC Circuits and Reactance LRC Series AC Circuit; Phasor Diagrams Resonance in AC Circuits Impedance Matching Three-Phase AC Questions, MisConceptions, Problems 890–897 MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES	872 874 875 877 880 881 885 887 888
	Questions, MisConceptions, Problems 830–837		31-2 31-3 31-4 31-5 31-6 31-7 31-8 31-9	Changing Electric Fields Produce Magnetic Fields; Displacement Current Gauss's Law for Magnetism Maxwell's Equations Production of Electromagnetic Waves Electromagnetic Waves, and Their Speed, Derived from Maxwell's Equations Light as an Electromagnetic Wave and the Electromagnetic Spectrum Measuring the Speed of Light Energy in EM Waves; the Poynting Vector Radiation Pressure Radio and Television; Wireless Communication	899 902 903 903 905 909 912 913 915

Questions, MisConceptions, Problems 921–925

32	LIGHT: REFLECTION AND REFRACTION	926
32-1	The Ray Model of Light	927
32-2	Reflection; Image Formation by a Plane Mirror	927
32–3	Formation of Images by Spherical Mirrors	931
32-4	Seeing Yourself in a Magnifying Mirror (Concave)	936
32-5	Convex (Rearview) Mirrors	938
32-6	Index of Refraction	939
32 - 7	Refraction: Snell's Law	939
32 - 8	The Visible Spectrum and Dispersion	941
32 - 9	Total Internal Reflection; Fiber Optics	943
*32-10	Refraction at a Spherical Surface	946
	Questions, MisConceptions, Problems 949–957	

33	Lenses and Optical Instruments	958
33-1	Thin Lenses; Ray Tracing and	
	Focal Length	959
33-2	The Thin Lens Equation	962
33 - 3	Combinations of Lenses	966
33 - 4	Lensmaker's Equation	968
33-5	Cameras: Film and Digital	970
33-6	The Human Eye; Corrective Lenses	975
33 - 7	Magnifying Glass	979
33-8	Telescopes	980
33-9	Compound Microscope	983
33-10	Aberrations of Lenses and Mirrors	984
	Questions, MisConceptions, Problems 986–994	

	THE WAVE NATURE OF LIGHT:	
34	Interference and Polarization	995
34–1	Waves vs. Particles; Huygens'	996
24 2	Principle and Diffraction Huygens' Principle and the Law of	990
34–2	Refraction; Mirages	997
34–3	Interference—Young's Double-Slit Experiment	998
*34-4	Intensity in the Double-Slit	
	Interference Pattern	1002
34-5	Interference in Thin Films	1004
34-6	Michelson Interferometer	1010
34 - 7	Polarization	1010
*34-8	Liquid Crystal Displays (LCD)	1014
*34-9	Scattering of Light by the Atmosphere	1015
34 - 10	Brightness: Lumens and Luminous Intensit	y 1016
*34-11	Efficiency of Lightbulbs	1016
	Questions, MisConceptions, Problems 1018–10	024
25		
33	Diffraction	1025
$\frac{55}{35-1}$		1025 1026
35-1 *35-2	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction	1026
*35-2	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern	1026
*35-2 *35-3	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment	1026 1028 1031
*35-2 *35-3 35-4	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction	1026 1028 1031 1033
*35-2 *35-3 35-4 35-5	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures	1026 1028 1031
*35-2 *35-3 35-4	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and	1026 1028 1031 1033 1033
*35-2 *35-3 35-4 35-5 35-6	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit	1026 1028 1031 1033
*35-2 *35-3 35-4 35-5	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and	1026 1028 1031 1033 1033
*35-2 *35-3 35-4 35-5 35-6 35-7	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification	1026 1028 1031 1033 1033 1035
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating	1026 1028 1031 1033 1033 1035
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy	1026 1028 1031 1033 1033 1035
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy Peak Widths and Resolving Power for a	1026 1028 1031 1033 1033 1035 1037 1040
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9 *35-10	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy Peak Widths and Resolving Power for a Diffraction Grating	1026 1028 1031 1033 1035 1035 1037 1040 1041
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9 *35-10 35-11	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy Peak Widths and Resolving Power for a Diffraction Grating X-Rays and X-Ray Diffraction	1026 1028 1031 1033 1033 1035 1037 1040
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9 *35-10 35-11	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy Peak Widths and Resolving Power for a Diffraction Grating X-Rays and X-Ray Diffraction X-Ray Imaging and Computed	1026 1028 1031 1033 1035 1037 1040 1041 1043
*35-2 *35-3 35-4 35-5 35-6 35-7 35-8 35-9 *35-10 35-11 *35-12	Diffraction by a Single Slit or Disk Intensity in Single-Slit Diffraction Pattern Diffraction in the Double-Slit Experiment Interference vs. Diffraction Limits of Resolution; Circular Apertures Resolution of Telescopes and Microscopes; the λ Limit Resolution of the Human Eye and Useful Magnification Diffraction Grating The Spectrometer and Spectroscopy Peak Widths and Resolving Power for a Diffraction Grating X-Rays and X-Ray Diffraction	1026 1028 1031 1033 1035 1035 1037 1040 1041

36	THE SPECIAL THEORY OF RELATIVITY	1055	38	Quantum Mechanics	1128
36–1	Galilean-Newtonian Relativity	1056		Quantum Mechanics—A New Theory	1129
	The Michelson–Morley Experiment	1058	38–2	The Wave Function and Its Interpretation;	
	Postulates of the Special Theory		20 2	the Double-Slit Experiment The Heisenberg Uncertainty Principle	1129 1131
	of Relativity	1061	38-3	Philosophic Implications;	1131
	Simultaneity	1062	30-4	Probability Versus Determinism	1135
	Time Dilation and the Twin Paradox	1064	38-5	The Schrödinger Equation in One	
	Length Contraction	1070 1072		Dimension—Time-Independent Form	1136
	Four-Dimensional Space-Time Galilean and Lorentz Transformations	1072		Time-Dependent Schrödinger Equation	1138
	Relativistic Momentum	1077	38-7	Free Particles; Plane Waves and	4440
	The Ultimate Speed	1079	20. 0	Wave Packets	1140
	$E = mc^2$; Mass and Energy	1080	38-8	Particle in an Infinitely Deep Square Well Potential (a Rigid Box)	1142
	Doppler Shift for Light	1085	38_0	Finite Potential Well	1147
36-13	The Impact of Special Relativity	1086		Tunneling through a Barrier	1149
	Questions, MisConceptions, Problems 1088–1	.094	30 10	Questions, MisConceptions, Problems 1152–1	
~ —	EARLY QUANTUM THEORY AND			Y	
3 7	Models of the Atom	1095		0	
		1055	30	QUANTUM MECHANICS OF	11 = 0
37-1	Blackbody Radiation;	1006		ATOMS	1158
37-2	Planck's Quantum Hypothesis Photon Theory of Light and the	1096	39-1	Quantum-Mechanical View of Atoms	1159
37-2	Photon Theory of Light and the Photoelectric Effect	1098	39-2	Hydrogen Atom: Schrödinger	
37-3	Energy, Mass, and Momentum of a	1070		Equation and Quantum Numbers	1159
	Photon	1101		Hydrogen Atom Wave Functions	1163
	Compton Effect	1102	39-4	Multielectron Atoms;	1166
	Photon Interactions; Pair Production	1104	30 5	the Exclusion Principle Periodic Table of Elements	1167
37–6	Wave-Particle Duality; the Principle of	1105		X-Ray Spectra and Atomic Number	1169
37-7	Complementarity Wave Nature of Matter	1105 1106		Magnetic Dipole Moment;	1107
	Electron Microscopes	1108	3)	Total Angular Momentum	1171
	Early Models of the Atom	1110	39-8	Fluorescence and Phosphorescence	1174
	Atomic Spectra: Key to the Structure	1110	39-9	Lasers	1175
	of the Atom	1111	*39-10	Holography	1178
	The Bohr Model	1113		Questions, MisConceptions, Problems 1180–1	185
37-12	de Broglie's Hypothesis Applied to Atoms		40		
	Questions, MisConceptions, Problems 1121–1	127	40	Molecules and Solids	1186
APPEN	DICES		40 1	Bonding in Molecules	1187
				Potential-Energy Diagrams	1107
A	Mathematical Formulas	A-1	70 Z	for Molecules	1189
В	Derivatives and Integrals	A-6	40-3	Weak (van der Waals) Bonds	1192
C	Numerical Integration	A-8		Molecular Spectra	1196
D	More on Dimensional Analysis	A-12	40-5	Bonding in Solids	1202
E	Gravitational Force Due to a		40-6	Free-Electron Theory of Metals;	
_	Spherical Mass Distribution	A-13		Fermi Energy	1203
F	Differential Form of Maxwell's	A 16		Band Theory of Solids	1208
C	Equations Salasted Jacobses	A-16		Semiconductors and Doping	1210
G	Selected Isotopes	A-18		Semiconductor Diodes, LEDs, OLEDs	1212
	rs to Odd-Numbered Problems	A-23		Transistors: Bipolar and MOSFETs	1218
Index		A-47	40-11	Integrated Circuits, 10-nm Technology	1219
Photo (Credits	A-77		Questions, MisConceptions, Problems 1220–1	223

	Ne 20.1797 Ne 16 122 keV 3.7·10° s	43	ELEMENTARY PARTICLES	1289
	9 F 15 18.5884032 P 12.2 MeV 380-10" s	43-1	High-Energy Particles and Accelerators	1290
	0 012 013 014		Beginnings of Elementary Particle	
	8 [15.99903; 15.99977] 7.9·10 ⁻⁶ 8.58 ms 70.59 s		Physics—Particle Exchange	1296
			Particles and Antiparticles	1299
	7 14.00728] 200·10 ⁻⁴ s -590·10 ⁻⁴ s? 1 16.4 14.12	43–4	Particle Interactions and	1200
	C C8 C9 C10 C11 C12	12 5	Conservation Laws Neutrinos	1300 1302
	12.006% 230.keV 1265.ms 19.308 s 20.38 m 98.93		Particle Classification	1302
	B B7 B8 B9 B10 B11 10.806: 1.4 MeV 770 ms 0.54 keV 19.9 80.1		Particle Stability and Resonances	1304
	5 10.621) 350.10 °s 800.10 °s 800.10 °s 60.3 60.3 60.3 60.3 60.3 60.3 60.3 60.3	43-8	•	1300
	Z Be Be 6 Be 7 Be 8 Be 9 Be 10 1,387-10° a 4 510° s	13 0	Towards a New Model	1307
	G 0.0088 2p 478 0.046 0.0078 0 < 0.001	43-9	Quarks	1308
	Li Li 4 Li 5 Li 6 Li 7 Li 8 840.3 ms 178.3 ms 379.10 ms	43-1	0 The Standard Model: QCD and	
	σ ₂₀ 71 p σ σ ₀₀ 39 σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ		Electroweak Theory	1311
	He 4.002602 Ho 3 0000134 99.999998 648 keV 70010" s 159 keV 119 ms 2.910" s 197 2.910" s		1 Grand Unified Theories	1314
	σ _{alo} < 0.05 σ _{alo} 5330 n n n n n n n n n n n n n n n n n n	43-1	2 Strings and Supersymmetry	1317
	[1.00784; 99,9885 0.0115 12.312 a 3.28 MeV -1.3 MeV 1.6 MeV 20 MeV 1.00811] 139·10 ** s -350·10 ** s 290·10 ** s 23·10 ** s		Questions, MisConceptions, Problems 1318-	-1231
	0.0352 0.0352 0.0351 0.0435743 n 2n n73n7 2n7 0 1 2 3 4 5 6 N→		ASTROPHYSICS AND	
	Nuclear Physics and	44	Cosmology	1322
41		${44-1}$	Stars and Galaxies	1323
TI	RADIOACTIVITY 1220	44-2		
41-1	Structure and Properties of the Nucleus 122	7	of Stars, Nucleosynthesis	1326
	Binding Energy and Nuclear Forces 123	0 44-3		1332
41-3	Radioactivity 123	3 44-4		100.1
41-4	Alpha Decay 123	4	Curvature of Space	1334
	Beta Decay 123		The Expanding Universe: Redshift and Hubble's Law	1338
	Gamma Decay 123	9 44-6		1330
41-7	Conservation of Nucleon Number and		Microwave Background	1342
<i>1</i> 1 0	Other Conservation Laws 124 Half-Life and Rate of Decay 124	1/1 1/	The Standard Cosmological Model:	
	<i>y</i>	U	Early History of the Universe	1345
	Decay Series 124 Radioactive Dating 124	44_X	Inflation: Explaining Flatness,	1010
	Detection of Particles 124	0	Uniformity, and Structure	1348
11 11	Questions, MisConceptions, Problems 1250–1255	44-7	Dark Matter and Dark Energy	1350
	· · · · · · · · · · · · · · · · · · ·		0 Large-Scale Structure of the Universe	1353 1354
4.0	Nuclear Energy; Effects		1 Gravitational Waves—LIGO 2 Finally	1354
47	AND USES OF RADIATION 1250		Questions, MisConceptions, Problems 1356-	
				1000
42-1	Nuclear Reactions and the		NDICES	
12 2	Transmutation of Elements 125	A	Mathematical Formulas	A-1
	Cross Section 126	U D	Derivatives and Integrals	A-6
	Nuclear Fission; Nuclear Reactors 126 Nuclear Fusion 126		Numerical Integration	A-8
	Passage of Radiation Through Matter;	D	More on Dimensional Analysis	A-12
4 2-3	Biological Damage 127		Gravitational Force Due to a	
42-6	Measurement of Radiation—Dosimetry 127		Spherical Mass Distribution	A-13
	Radiation Therapy 127		Differential Form of Maxwell's	
	Tracers in Research and Medicine 127	7	Equations	A-16
	Emission Tomography: PET and SPECT 127		Selected Isotopes	A-18
	Nuclear Magnetic Resonance (NMR);		vers to Odd-Numbered Problems	A-23
	Magnetic Resonance Imaging (MRI) 127			
	Questions, MisConceptions, Problems 1283–1288	Photo	Credits	

Applications (Selected) to Medicine and Biology and to Engineering, Environment, Everyday Life, Etc. (Entries with a star * include material new to this edition)

Chapter 1	Supermarket ramp design 113	Pole vault 194, 203–4, (189)
Viruses attack cell 7	Doomsday asteroid 114, 262	Downhill ski runs 194
Heartbeats in a lifetime 12	*Car stuck in mud 115	Roller coaster 198, 202, 209
Number of nucleons in human body 17	Chapter 5	Escape velocity from Earth
Lung capacity 19	Centrifugation 126	or Moon 212
Building collapse 2, 332, 346–7	Skiing 116, 121, 136	Power needs of car 214
The 8000-m peaks 9	Push or pull a sled? 120	Efficiency of engine 215
Making estimates: volume of a lake 11	Skier speed in air vs. on snow 121	*Gravitational assist 216–7, 224, 263
Page thickness 12	*Simulating gravity 126, 136, 141, 168, 171	High jump 220
Building height by triangulation 12	*Uranium enrichment, reactor, bomb 126	Bungee jump 221
Earth radius estimate 13, 18	Ferris wheel 129	Lunar module landing 222
Fermi estimates 13	Avoid skidding on a curve 130–2	Escape velocity from solar system 223
Particulate pollution 18	Banked highway curves 132	Ski jump 225
Global positioning satellite 18	Cross-country skiing friction 136	Long jump 225
Computer chips 18	Rotating space station 136, 141, 168	Chapter 9
Chapter 2	*Rotor ride 137, 143	Impulse in fall: break a leg? 257
Airport runway design 32	Airplane bank/turn 137, 144	Billiard balls 227, 230, 237, 242
*Car air bag inflation time 32, 254	Roller coaster upside down 141	Tennis serve 229, 234
Car braking distance 35, 183	Car flying up off road 141	Rocket propulsion 233, 252, 395
CD bit size, bit rate, playing time 48, 53	Rock climbing friction 143	Rifle recoil 233
*Baseball 49, 82, 83, 84, 172	Chapter 6	Karate blow 235
Basketball 50, 83, 109	Weightlessness 154–5	Nuclear reactors 238
Golf putt, uphill or down 52	*Astronauts in orbit 145, 155, 165	Nuclear collisions 238, 239, 241, 243
Rapid transit system 53	Gravity on tall peaks 150	Ballistic pendulum, speed measured 240
Chapter 3	Oil and mineral exploration 150, 165, 167	Distant planet discovery 250, 262
Helicopter supply drop 54, 72, 83	Satellites, spacecraft 145, 152–5, 168, 169	Conveyor belt 253
*Sports 54, 65, 69, 71, 76, 77, 79, 80, 81,	Geostationary satellites 153	Car crashworthiness 261 Asteroid danger 262
82, 83, 84	Free fall, for athletes 155	Asteroid danger 262 Force wind exerts 263
Kicked football 69,71	Planets 155–8, 167	
Truck escape lane 79, 110	Determining the Sun's mass 158	U
Golf on the Moon 82	Planets around other stars 158, 250, 262	Chapter 10
Extreme sports 83	*Ocean tides 159, 165, 170	Acuity of bird's eye 266
Chapter 4	Lagrange point 160	Centrifuge 271 *Biceps, triceps, torque 273, 295, 339
How we can walk 92	*Moon's orbit, periods, phases, diagram 161, 169	*Biceps, triceps, torque 273, 295, 339 Situps 291
Whiplash 106	*Eclipses 161	Fast mammal 291
*Force heart exerts 107	Curved space 163–4	Rotating carnival rides 264, 267, 268
Rocket 85, 92, 108, 233, 252, 395	Black holes 164, 167	Tire iron extension 272
Skater pushoff 91	White dwarfs 167	Flywheel, energy 282, 301
What force accelerates a car 92	Comets, asteroids, moons 168, 169, 171	Yo-yo 287
You weigh less in a falling elevator 96 Hockey 98	GPS 169	Braking forces on a car 288–9
•	Milky Way Galaxy 171	Bicycle odometer 291
Elevator, discomfort 101, 108	Chapter 7	Tightrope walking 291
Mechanical advantage, pulley 102, 188 Accelerometer 102	Baseball pitch 172	*Total solar eclipse 293
Accelerometer 102 *Sports 106, 107, 108, 109, 110, 112	Car stopping distance $\propto v^2$ 183	Wrench torque 294
*Bear sling 106, 107, 108, 109, 110, 112	Lever 187, 334	Hammer throw 296
Tug of war 106, 355	*Pulley 188	CD rotation frequency 298
Car accident "g's" 100, 233	Jet catapults 189	Bicycle gears 299
Optical tweezers 108, 916, 923	Bicycle, sprockets (teeth) 192, 299	Cue stick, ball roll 300
*Tightrope walker 109	Climbing rope stretch 193	*Bicycle turn angle 301
Basketball shot 109	Chapter 8	Chapter 11
Mountain climbers 110, 114, 115, 193, 370	Stair-climbing power 213	Rotating skaters/divers 302, 304, 330
City planning, cars on hill 112	*ATP 216	Neutron star collapse 305, 330
Bicycling 112, 114	Hike <i>over</i> logs 218	Strange spinning bike wheel 307, 314
	210	501,511

Automobile wheel balancing 314–5	Rocket thrust 395	Chapter 17
Precessing top 317–8	Reynolds number 395	Life under ice 500–1
Gyroscope 318	Barrel broken by thin liquid column 397	Molecules in one breath 507, 514
Hurricanes, cyclones, typhoons 321, 394	Chapter 14	Snorkels are short 515
*Anticyclonic weather 321	Spider web oscillations 405	*Hot air balloon 492, 515
Precession of the equinoxes 327	Human leg as pendulum 424	Expansion joints 495, 498, 501
SUV rollover 328	Shock absorbers 399, 415	Do holes expand? 499
Baseball bat sweet spot 330	Unwanted floor vibrations 406	Opening a tight lid 499
Chapter 12	Loudspeaker 406–7	Gas tank overflow 500
*Forces in muscles & joints 339, 358, (273)	*Pendulum clock 412, 421, 424	Highway buckling 501
*What can make an athlete 339	Geology 412, 415	Closed jars in fires 503
*Forces on the spine and back pain 340	Measure g with pendulum 412	Mass (weight) of air in a room 505
Human balance with loads 342	Earthquake dampers 415	Cold and hot tire pressure 506
*Bone fracture 346, 359, 364	Child on a swing, resonance 417–8	Thermostat 509
Buildings, statics 331–352	Resonance damage 418	Pyrex glass 509
Lever, mechanical advantage 334	<i>Q</i> -value 419, 425, 896	*Tape measure inaccuracy 510,513
Balancing a seesaw 335	Bungee jumper 422	Scuba 512, 513, 514, 515
Cantilever 336	*Metronome 424	Potato chip bag puff up 513
Fracture 345–7	Natural stride 424	Chapter 18
Tragic collapse 346–7, (332)	Tall building sway 426	KE of molecules in cells 519
Trusses and bridges 347–9, 363	Chapter 15	Humidity, and comfort 525–6
Architecture: arches and domes 350–2	Echolocation by bats, dolphins,	Chromatography 531
*Forces in a dome 352	whales 434	Diffusion in living organisms 531–2, 536
Chanton 12	Water waves 428, 435	Temperature effect on chemical
Chapter 13 Pressure in cells 371	Sound wave 431, 460 <i>ff</i>	reactions 521
Blood flow 380, 384, 386	Geology 435, 452, 457	Evaporation cools 524, 548
Human circulatory system 380	Earthquake waves 435, 437, 450, 453	Humidity, weather 526
Blood loss to brain, TIA 384	Square wave 442	*Temperature decrease of boiling
*Air flow in animal burrow 384	*Cell phone signal 451	water with altitude 526–7
Heart disease, artery clogging 386	AM and FM radio wave bending 452	Pressure cooker 535
Walking on water, insect 387	Fish and fisher: internal reflection 456 Seismic reflection: oil prospecting 457	Chapter 19
Heart as a pump 388–9	1 1 0	Working off Calories 540
*Blood pressure measurement 389	Coffee spill 457 Tsunami 459	Measuring Calorie content 545, 570
Blood transfusion 395, 396		Evaporation and body
Water supply pressure 369	Chapter 16 Wide range of human hearing 464	temperature 548–9, (524)
Atmospheric pressure decrease	Sensitivity of the ear 467, (466)	Body heat: convection by blood 563, 574
with elevation 370	Bats use Doppler 479	Body's radiative heat loss 564
Altitude where air pressure is half 370	Doppler blood-flow meter 479, 491	Room comfort: cool air, warm walls 565
Finger holds water in straw 371	Ultrasound medical imaging 482–3	Medical thermography 567
Hydraulic lift 372	*Doppler ultrasound imaging 483	Avoid plants freezing 568
Hydraulic brakes 372	Stringed instruments 460, 468–9	Eating snow makes you colder 571
Pressure gauges 372–3	Wind instruments 460, 469–72	Heat conduction to skin,
Barometer 373	Piano strings 460, 468, 469	blood capillaries 573
Suction 374	Distance from lightning, seconds 461	Leaf's energy absorption 575
Hydrometer 377	Autofocusing camera 462	Metabolizing fat 575
Continental drift, plate tectonics 378	Loudspeaker output 465	Cold tile, warm rugs 561
*Lake level change, rock	Musical scale 468	Heat loss through windows 562
thrown overboard 378, 390	Guitar, violin 468, 469, 484, 487	Thermal windows (two panes) 562
Helium balloon lift 378	Organ pipes 471–2	How clothing insulates 562
Heating duct 380	Tuning with beats 475–6	R-values of thermal insulation 562
Hot-water heating system flow 382	Doppler in weather forecasting 480	Ocean currents and wind 563
Perfume atomizer 383	*Radar speed gun 480	Convective home heating 563
Airplane wing lift 383	Galaxy redshift 480	Dark vs. light clothing 564
Sailing upwind 383	Sonic boom; sound barrier 481, 489	Radiation from the sun, seasons 566
Baseball curve 384 Why smake goes up a chimney 384	Sonar: depth in sea, Earth	Astronomy—size of a star 566
Why smoke goes up a chimney 384 Scaps and detergents 387	"soundings" 481–2, 489	Goose down loft 568
Soaps and detergents 387 Pumps 388–9, (374)	Signal-to-noise ratio 486, 490, 679	Thermos bottle 568
Siphon 390	Quartz oscillator clock 487 Motion sensor 489	Emergency blanket 568
Hydraulic press 393	Audio gain 490	Air parcels, weather, adiabatic lapse rate 573
Tryuraunc press 393	Audio gaiii 490	lapse rate 573

Chapter 20	Chapter 24	Aurora borealis 792
Biological development, evolution 594	Capacitor shocks, burns 703	Electric motors, DC and AC 795–6
*Trees offsetting CO ₂ buildup 608	Heart defibrillator 703,712,764	Loudspeakers and headsets 796
Steam engine 576, 578, 582, 606	Capacitor use as power backup,	Chapter 28
Internal combustion engines	surge protector, memory 692, 695 Condenser microphone 695	Coaxial cable 818, 874, 911
578–80, 583–4	Computer key 695	Solenoid switches: doorbell, car starter 826
Engine efficiency 582–3	Camera flash energy 701	Magnetic circuit breakers 826
Refrigerators, air conditioners 584–6,	Electrostatic air cleaner 710	Relay (magnetic) 830
Heat pump 586–7, 603	Tiny distance measurement 710	Chapter 29
*SEER rating 587	Coaxial cable 714, 818, 874, 911	EM blood-flow measurement 845
Thermal pollution, climate 598–600	*Dynamic random access	Induction stove 842
*Carbon footprint 598	memory (DRAM) 716, 857	Generators, power plants 846–7
Energy resources 599, 605–6	Chapter 25	Alternators, in cars 848
Solar, thermal, wind energy 599, 605	Electrical conduction in human	Motor overload 849
Diesel engine 607, (575)	nervous system, neurons 736–8	Eddy-current damping 850, 861
Stirling cycle 607	Action potential 737	Airport metal detector 850
Jet engine, Brayton cycle 607	Battery construction, terminals 718–9	Transformers, power transmission 851–3
Dehumidifier 608, (537)	*Electric cars 720,744	Cell phone charger 852
	Battery connections 721,724	Car ignition system 852
Chapter 21 Inside a cell: kinetic theory plus	Loudspeaker wire thickness 725	*Wireless electric power transmission 854
electrostatic force 631	Heating element 726–8	transmission 854 Inductive charger 854
DNA structure, replication 631–3, 640	Resistance thermometer 726	Magnetic information storage 856
Static electricity 609, 610, 635, 640	Lightning bolt 728, (690, 716)	*Semiconductor memory 857–8
Photocopiers and printers 619	Household circuits, shorts 729–30	*RAM, DRAM 857
Electrical shielding, safety 628	Fuses, circuit breakers 729, 766	*Bit-line & word-line 857
<i>3</i> .	Safety—wires getting hot 729, 764–6	*Writing and reading memory 857
Chapter 23	Extension cord danger 730	*Volatile and non volatile memory 858
Electrocardiogram (ECG) 660, 682–3, 779	Hair dryer 732	*Flash memory, MOSFET, MRAM 858
(ECG) 660, 682–3, 779 Dipoles in molecular biology 672	Strain gauge 746	Microphone 858
Heart beat, depolarization process 682–3	Chapter 26	Card reader, magnetic strip 858
Common voltages 10^{-4} V to 10^{8} V 663	*Blood sugar phone app 747	Seismograph 859
Breakdown voltage 666	Heart pacemaker 764 Electricity dangers to humans 764–6	Ground fault circuit interrupter
Lightning rods 666	Electricity dangers to humans 764–6 Ventricular fibrillation 764	(GFCI) 859
*Supply voltage, signal voltage 676	Two-speed fan 752–3	Shielded cable 861
*Digital, bits, bytes, binary numbers 676	Car battery charging 757	Recycling solid waste 861
*Analog-to-digital converter (ADC) 676	*Jump-starting a car, safely 758–9	Chapter 30
*Morse code 676	RC: sawtooth, flashers, wipers 763, 780	*Electric car inductive charging 869
*Bit-rate, TV transmission 676, 678–9, 682	Hazards, electric safety 764–6	Surge protection 877
*Data compression, jpeg 677–8	Proper grounding, plugs 765–6	Capacitors as filters 884, 896, 897
*Quantization error 677	Leakage current 766	Loudspeaker cross-over 884
*Sampling rate, bit depth 677	Dangerous downed power line 766	Impedance matching 888
*Digital-to-analog converter (DAC)	Ammeters, voltmeters,	3-phase AC 889
677, 780	ohmmeters 767–9	<i>Q</i> -value 896, (419, 425)
*Bandwidth 678	Meter connection, corrections 768–9,781	Filter circuit 896
*Noise, bit flips 678–9	*Measurement affects quantity	Chapter 31
*Digital error correction, parity bit 678	measured 769	Optical tweezers 916, 923
*Bit error rate 679	Voltage divider 774	*TV from the Moon 898, 920, 924
*Signal-to-noise ratio (S/N) 679	Solar panel 778	Wireless devices, transmission
*TV and computer monitors 679–82	Potentiometer and bridge circuits 778–9	898, 917–20
*Digital TV, pixels, subpixels 680	Car battery corrosion 780	Antennas 911, 919
*Flat screens, HD 680–1 *Addressing pixels 680–1	Digital-to-analog converter (DAC) 780, (677)	Phone call time lag 912
*Addressing pixels 680–1 *Data stream 681		*Solar sail 916, 925
*Active matrix, TFT, data lines 681–2	Chapter 27 Electromagnetic blood pump 802	Radio and TV 917–9 AM and FM 918
*TV refresh rate 682	Blood flow rate, Hall effect 807	AM and FM 918 Cell phones, remotes, cable TV,
Oscilloscope 682	Use of a compass 784	satellite TV 920
*ASCII code 688	Magnetic declination 784	*GPS 924
Photocell 689	Maps and true north 784	Solar power use 924
	704	721

Chapter 32		Sky color	1015-6	*Photovoltaic cells	1214-5
Medical endoscope, bronche	oscope,	*Lightbulb efficiency, LED	1016-7	*LED displays, bulbs	1215–6
colonoscope	945	Stealth aircraft coating	1022	TV remote	1215, 1225
How tall a mirror do you ne	eed 930	CD bits, pits & lands	1024	*Solid-state lighting	1215–6
Seeing yourself in a magni	fying	Chapter 35		*pn diode laser	1216
mirror (concave)	936–7	Resolution of eye	1035, 1037	*OLED, AMOLED displays	1216–7
Convex (rearview mirrors)	938	Useful magnification	1035, 1037	Amplifiers	1218
Optical illusions	939, 998	Spectroscopy in biology	1041	*MOSFET switch	1218-9
Apparent water depth	939-40, 941	X-ray diffraction in biology	1041	*Technology generation	1219
Rainbows	942, 957	Medical imaging: X-rays, CT	1044		121)
Colors underwater	943	*Interference microscope	1043-7	Chapter 41	10.10
Diamonds sparkle	944		1048	Earliest life	1248
Prism binoculars	944	*Phase-contrast microscope	1048	Radiation film badges	1249, 1274
Fiber optic cables	945, 954, 956	Hubble space telescope	1034-3	Smoke detector	1237
*High-frequency trading,	, ,	Telescope and microscope	1035–7	Radioactive activity and safet	y 1243–4
interception	945	resolution		Carbon-14 dating	1246–7
Solar cooker	951	X-rays	1043–7	Archeological & geological	
Washing machine water lev		Tomography	1045–7	dating	1246–8
detector	956	Chapter 36		Oldest Earth rocks	1248
Road reflectors	957	Space travel	1067–8	Geiger counter	1248
		Global position system (GPS		Rubidium-strontium dating	1253
Chapter 33	975–8	Fantasy supertrain	1071	Tritium dating	1254
Human eye		Radar speed gun	1092	*Mass excess, mass defect	1254
Fovea, denser in cones	976, 1037	Chapter 37			
Near- and far-sighted	976–8	Electron microscope image: b	lood vessel.	Chapter 42	1071
Corrective lenses	976–7, 987		95, 1109, (7)	Biological radiation damage	1271–6
Contact lenses	978	Photosynthesis	1102	Radiation dosimetry, RBE	1272–6
Seeing underwater	978	Measuring bone density	1103	Radon exposure	1274, 1276
Light microscopes	983–4, 1048	Electron microscopes (EM),		Natural radioactive backgrou	
Where your eye can see a	0.61		1151, (1095)	Radiation exposure, film badg	
lens image	961	Photocells	1098	Radiation sickness	1274
Cameras, film and digital	970–5	Photodiodes, soundtracks	1101	Whole-body dose	1275
*CCD, CMOS sensors,	070 1	Chapter 38		Radiation therapy	1276–7
potential well	970–1	Scanning tunneling electron		Proton therapy	1277
*Bayer pixels, Fovean	971	microscope	1151	Radioactive tracers	1277–8
Digital artifacts	971	Atomic force microscope	1151	Gamma camera	1278
Camera adjustments, <i>f</i> -stop	971–3	•	1131	Medical imaging, PET, SPEC	Γ, MRI
Depth of field	973	Chapter 39	1174 5		1278-82
Resolution, compression, J		Fluorescence analysis	1174–5	*Brain PET scan using cell pho	one 1279
raw	973–4	Medical uses of lasers, surgery		Imaging resolutions compared	d 1282
Telephoto, wide angle	975	Neon lights	1158	Radiation and thyroid	1286
Optical vs. digital zoom	975	Fluorescent lightbulbs	1175	Nuclear reactors, power plant	
Magnifying glass	979–80		175–9, 1216	1256, 1263-	
Telescopes	980–2	Bar code readers	1177	Breeder reactors	1265
*Microscopes	983-4, 1048	DVD, CD, Blu-ray	1177–8	Manhattan project	1266
Lens aberrations	984–5	Holography	1178–9	Nuclear fusion	1266–71
Film projector	989	Chapter 40		Why stars shine	1267-9
Pinhole camera	990	Cell energy—ATP	1192	Thermonuclear devices	1269
Chapter 34		Weak bonds, DNA	1192-4	Fusion energy reactors	1269–71
Soap bubbles, oil films,		Protein synthesis	1194–6		1209-/1
colors	995, 1004-8	*Pulse oximeter	1216	Chapter 43	
Highway mirages	998	Computer processor chips	1186	Linacs and tumor irradiation	1294
Lens coatings	1008–9	Transparent objects	1210	Chapter 44	
Polarizing sunglasses	1012–13	Zener diode voltage	1210	Stars and galaxies	1323-32
Liquid crystal displays, TV a			213–4, 1225		331, 1337–8
computer screens	1014–5	Rectifiers	1214	Big Bang storyline	1345–8
	101.0				1010

Preface

New Stuff!

- 1. MisConceptual Questions, 10 or 15 at the end of each chapter. The multiple-choice answers include common misconceptions as well as correct responses. Pedagogically, asking students to think, to consider the options, is more effective than just telling them what is valid and what is wrong. (These are in addition to the one at the start of each chapter.
- 2. **Digital** is all around us. Yet that word is not always used carefully. In this new edition we have 20 new pages describing the basics from the ground up. **Binary** numbers, *bits* and *bytes*, are introduced in Chapter 23 along with analog-to-digital conversion (ADC), and vice versa, including *digital audio* and how video screens work. Also information **compression**, *sampling rate*, *bit depth*, *pixel addressing*, *digital transmission* and, in later chapters, information **storage** (RAM, DRAM, flash), *digital cameras* and their *sensors* (CCD, CMOS).
- 3. Gravitational Assist (Slingshot) to accelerate spacecraft (Chapter 8).
- **4. Magnetic field** of a **single moving charge**, rarely treated (and if it is, maybe not well), and it shows the need for relativity theory.
- **5.** Seeing **yourself** in a **magnifying mirror** (concave), angular magnification and blurriness with a paradox. Also **convex** (rearview) **mirrors** (Chapter 32).
- **6.** Pedagogical clarification on defining **potential energy**, and energy itself (Chapter 8), and on hundreds of other topics.
- 7. The **Moon** rises an hour later each day (Chapter 6), its *phases*, *periods*, and diagram.
- **8.** Efficiency of **lightbulbs** (Chapter 34).
- **9. Idealization** vs. reality emphasized—such as PV diagrams (Chapter 19) as an idealized approximation.
- **10.** Many new Problems (~ 500) plus new Questions as well as the 500 or so MisConceptual Questions (point 1 above).
- 11. Many new worked-out Examples.
- 12. More math steps included in derivations and Examples.
- **13. State** of a system and *state variables* clarified (Chapter 17).
- **14.** Contemporary physics: Gravitational waves, LIGO and Virgo, Higgs, WIMPS, OLEDS and other semiconductor physics, nuclear fusion updates, neutrino-less double beta decay.
- **15.** New SI units (Chapter 1, Chapter 21, Tables).
- **16.** Boiling temperature of water vs. elevation (Chapter 18).
- 17. Modern physics in earlier classical Chapters (sometimes in Problems): Light-years, observable universe (Chapter 1); optical tweezers (Chapter 4); uranium enrichment (Chapter 5); black holes and curved space, white dwarfs (Chapter 6); crystal structure (Chapter 7); Yukawa potential, Lennard-Jones potential (Chapter 8); neutrons, nuclear reactors, moderator, nuclear collisions, radioactive decay, neutron star collapse (Chapter 9); galaxy redshift (Chapter 16); gas diffusion of uranium (Chapter 18); quarks (Chapter 21); liquid-drop model of nucleus, Geiger counter, Van de Graaff (Chapter 23); transistors (Chapters 23, 29); isotopes, cyclotron (Chapter 27); MOSFET (Chapter 29); semiconductor (camera sensor), photon (Chapter 33); line spectra, X-ray crystallography (Chapter 35).
- 18. Second law of thermodynamics and heat energy reorganized (Chapter 20).
- **19. Symmetry** emphasized throughout.
- **20.** *Uranium enrichment*, % needed in reactors, bombs (Chapters 5, 42).
- **21.** Mass excess, mass defect (Chapter 41).
- **22.** The *mole*, more careful definition (Chapter 17).
- **23.** Liquid-gas ambiguity above critical temperature (Chapter 18).
- 24. Measurement affects quantity measured, new emphasis.

25. New Applications:

- Ocean Tides (Chapter 6)
- Anticyclonic weather (Chapter 11)
- Jump starting a car safely (Chapter 26)
- Light bulb efficiency (Chapter 34)
- Specialty microscopes and contrast (Chapter 35)
- Forces on Muscles and Joints (Chapter 12)
- Doppler ultrasound imaging (Chapter 16)
- Lake level change when rock thrown from boat (Chapter 13)
- Skier speed on snow vs. flying through the air (Chapter 5)
- Inductive charging (Chapter 29)
- Human body internal heat transfer is convection (blood) (Chapter 19)
- Blood pressure measurement (Chapter 13)
- Sports (lots)
- Voltage divider (Chapter 26, Problems)
- Flat screen TV (Chapters 23, 34, 40)
- Carbon footprint and climate (Chapter 20)
- Electrocardiogram (Chapter 23)
- Wireless from the Moon unimaginable (Chapter 31)
- Why snorkels are short (Chapter 17 Problem)
- Electric cars (Chapter 25)
- Digital (Chapters 23, 29, 33, 40) includes (in addition to details in point 2 above) quantization error, digital error correction, noise, bit error rate, digital TV data stream, refresh rate, active matrix, thin film transistors, digital memory, bit-line, reading and writing of memory cells (MOSFET), floating gate, volatile and nonvolatile memory, Bayer, JPEG, ASCII code, and more.

Seeing the World through Eyes that Know Physics

I was motivated to write a textbook different from others which typically present physics as a sequence of facts, like a catalog. Instead of beginning formally and dogmatically, I aim to begin each topic with everyday observations and experiences the students can relate to: start with specifics, the real world, and then go to the great generalizations and the more formal aspects of the physics, showing why we believe what we believe. This approach reflects how science is actually practiced.

The aim is to give students a thorough understanding of the basic concepts of physics in all its aspects, from mechanics to modern physics. Also important is to show students how useful physics is in their own everyday lives and in their future professions by means of interesting applications to biology, medicine, engineering, architecture, and more.

Much effort has gone into approaches for the practical techniques of solving problems: worked-out Examples, Problem Solving sections, and Problem Solving Strategies.

Chapter 1 is *not* a throwaway. It is fundamental to physics to realize that every measurement has an *uncertainty*, and how significant figures are used. Being able to make rapid *estimates* is a powerful tool useful for every student, and used throughout the book starting in Chapter 1 (you can estimate the Earth's radius!).

Mathematics can be an obstacle to students. I have aimed at including all steps in a derivation. Important mathematical tools, such as addition of vectors and vector product, are incorporated in the text where first needed, so they come with a context rather than in a forbidding introductory Chapter. Appendices contain a basic math review, derivatives and integrals, plus some more advanced topics including numerical integration, gravitational field of spherical mass distribution, Maxwell's equations in differential form, and a Table of selected nuclear isotopes (carefully updated, as are the Periodic Table and the Fundamental Constants found inside the back and front covers).

Some instructors may find this book contains more material than can be covered in their courses. The text offers great flexibility. Sections marked with a star * may be considered optional. These contain slightly more advanced

Versions of this Book

Complete version: 44 Chapters including 9 Chapters of modern physics.

Classic version: 37 Chapters, 35 on classical physics, plus one each on relativity and quantum theory.

3 Volume version: Available separately or packaged together

Volume 1: Chapters 1–20 on mechanics, including fluids, oscillations, waves, plus heat and thermodynamics.

Volume 2: Chapters 21–35 on electricity and magnetism, plus light and optics.

Volume 3: Chapters 36–44 on modern physics: relativity, quantum theory, atomic physics, condensed matter, nuclear physics, elementary particles, cosmology and astrophysics.

physics material, or material not usually covered in typical courses, or interesting applications; they contain no material needed in later Chapters (except perhaps in later optional Sections). For a brief course, all optional material could be dropped as well as significant parts of Chapters 13, 16, 26, 30, and 35, and selected parts of Chapters 9, 12, 19, 20, 33. Topics not covered in class can be a valuable resource for outside study by students. Indeed, this text can serve as a useful reference for years because of its wide range of coverage.

Thanks

Many physics professors provided input or direct feedback on every aspect of this textbook. They are listed below, and I owe each a debt of gratitude.

Edward Adelson, The Ohio State University Lorraine Allen, United States Coast Guard Academy

Zaven Altounian, McGill University Leon Amstutz, Taylor University Kim Arvidsson, Schreiner University Philip S. Baringer, Kansas University Bruce Barnett, Johns Hopkins University Michael Barnett, Lawrence Berkeley Lab Anand Batra, Howard University David Branning, Trinity College

Bruce Bunker, University of Notre Dame Wayne Carr, Stevens Institute of Technology Charles Chiu, University of Texas Austin Roger N. Clark, U. S. Geological Survey Russell Clark, University of Pittsburgh Robert Coakley, University of Southern Maine David Curott, University of North Alabama

Biman Das, SUNY Potsdam Bob Davis, Taylor University

Kaushik De, University of Texas Arlington Michael Dennin, University of California Irvine

Kathryn Dimiduk, Cornell University John DiNardo, Drexel University

Scott Dudley, United States Air Force Academy

John Essick, Reed College

Cassandra Fesen, Dartmouth College Leonard Finegold, Drexel University

Alex Filippenko, University of California Berkeley

Richard Firestone, Lawrence Berkeley Lab Tom Furtak, Colorado School of Mines Gill Gabelmann, Washburn University

Gabriel Orebi Gann, University of California Berkeley Edward Gibson, California State University Sacramento

John Hamilton, University of Hawai'i - Hilo

John Hardy, Texas A&M

J. Erik Hendrickson, University of Wisconsin-Eau Claire

Charles Hibbard, Lowell High School Dr. Laurent Hodges, Iowa State University David Hogg, New York University

Mark Hollabaugh, Normandale Community College Russell Holmes, University of Minnesota Twin Cities William Holzapfel, University of California Berkeley Bob Jacobsen, University of California Berkeley

Arthur W. John, Northeastern University David Jones, Florida International University Andrew N. Jordan, University of Rochester

Teruki Kamon, Texas A&M

Thomas Hemmick, State University of New York Stonybrook Daryao Khatri, University of the District of Columbia

Woo-Joong Kim, Seattle University
John Kinard, Greenwood High School
Jay Kunze, Idaho State University
Jim LaBelle, Dartmouth College
Andrei Linde, Stanford University

M.A.K. Lodhi, Texas Tech

Lisa Madewell, University of Wisconsin

Ponn Maheswaranathan, Winthrop University Bruce Mason, University of Oklahoma Mark Mattson, James Madison University Linda McDonald, North Park College Raj Mohanty, Boston University

Giuseppe Molesini, Isituto Nazionale di ottica Florence

Lisa K. Morris, Washington State University Richard Muller, University of California Berkeley

Blaine Norum, University of Virginia Lauren Movatne, Reedley College

Alexandria Oakes, Eastern Michigan University

Ralph Oberly, Marshall University Michael Ottinger, San Juan College

Lyman Page, Princeton

Laurence Palmer, University of Maryland Bruce Partridge, Haverford College R. Daryl Pedigo, University of Washington Robert Pelcovitz, Brown University

Saul Perlmutter, University of California Berkeley

Vahe Peroomian, UCLA Harvey Picker, Trinity College Amy Pope, Clemson University

James Rabchuk, Western Illinois University Michele Rallis, Ohio State University Andrew Resnick, Cleveland State University Paul Richards, University of California Berkeley Peter Riley, University of Texas Austin

Dennis Rioux, University of Wisconsin Oshkosh

John Rollino, Rutgers University

John Kohillo, Rutgers Offiversity

Larry Rowan, University of North Carolina Chapel Hill

Arthur Schmidt, Northwestern University

Cindy Schwarz, Vassar College

Peter Sheldon, Randolph-Macon Woman's College James Siegrist, University of California Berkeley Christopher Sirola, University of Southern Mississippi

Earl Skelton, Georgetown University

George Smoot, University of California Berkeley Stanley Sobolewski, Indiana University of Pennsylvania

Mark Sprague, East Carolina University Michael Strauss, University of Oklahoma Leo Takahashi, Pennsylvania State University Richard Taylor, University of Oregon

Oswald Tekyi-Mensah, Alabama State University

Ray Turner, Clemson University Som Tyagi, Drexel University David Vakil, El Camino College Robert Webb, Texas A&M

Robert Weidman, Michigan Technological University Edward A. Whittaker, Stevens Institute of Technology

Lisa M. Will, San Diego City College

Suzanne Willis, Northern Illinois University

Michael Winokur, University of Wisconsin-Madison Stanley George Wojcicki, Stanford University Mark Worthy, Mississippi State University

Edward Wright, UCLA

Todd Young, Wayne State College

I owe special thanks to Prof. Bob Davis for much valuable input, and especially for working out all the Problems and producing the Solutions Manual for all Problems, as well as for providing the answers to odd-numbered Problems at the back of the book. Many thanks also to J. Erik Hendrickson who collaborated with Bob Davis on the solutions, and to the team they managed (Michael Ottinger, John Kinard, David Jones, Kristi Hatch, Lisa Will).

I am especially grateful to Profs. Lorraine Allen, Kathryn Dimiduk, Michael Strauss, Cindy Schwarz, Robert Coakley, Robert Pelcovitz, Mark Hollabaugh, Charles Hibbard, and Michael Winokur, who helped root out errors and offered significant improvements and clarifications.

For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics, I was fortunate to receive generous input from some of the top experts in the field, to whom I owe a debt of gratitude: Saul Perlmutter, George Smoot, Richard Muller, Alex Filippenko, Paul Richards, Gabriel Orebi Gann, James Siegrist, and William Holzapfel (UC Berkeley), Andreí Linde (Stanford U.), Lyman Page (Princeton), Edward Wright (UCLA), Michael Strauss (University of Oklahoma), and Bob Jacobsen (UC Berkeley).

I also wish to thank many others at the University of California, Berkeley, Physics Department for helpful discussions, and for hospitality. Thanks also to Prof. Tito Arecchi at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Pearson Education with whom I worked on this project, especially Jeanne Zalesky and Paul Corey, and the perspicacious editors Margy Kuntz and Andrea Giancoli.

The final responsibility for all errors lies with me. I welcome comments, corrections, and suggestions as soon as possible to benefit students for the next reprint.

D.G.

email: jeanne.zalesky@pearson.com

paper mail: Jeanne Zalesky

Pearson Education 501 Boylston Street Boston, MA 020116

About the Author

Doug Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley, his MS in physics at MIT, and his PhD in elementary particle physics back at UC Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley's Virus Lab developing skills in molecular biology and biophysics.

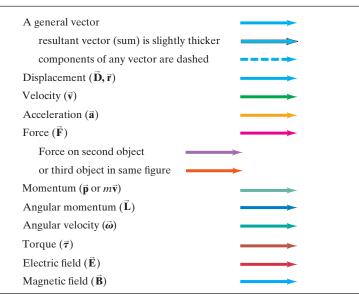
His mentors include Nobel winners Emilio Segrè, Barry Barish, and Donald Glaser.

He has taught a wide range of undergraduate courses, traditional as well as innovative ones, and works to improve his textbooks meticulously, seeking ways to provide a better understanding of physics for students.

Doug loves the outdoors, especially climbing peaks. He says climbing peaks is like learning physics: it takes effort and the rewards are great.

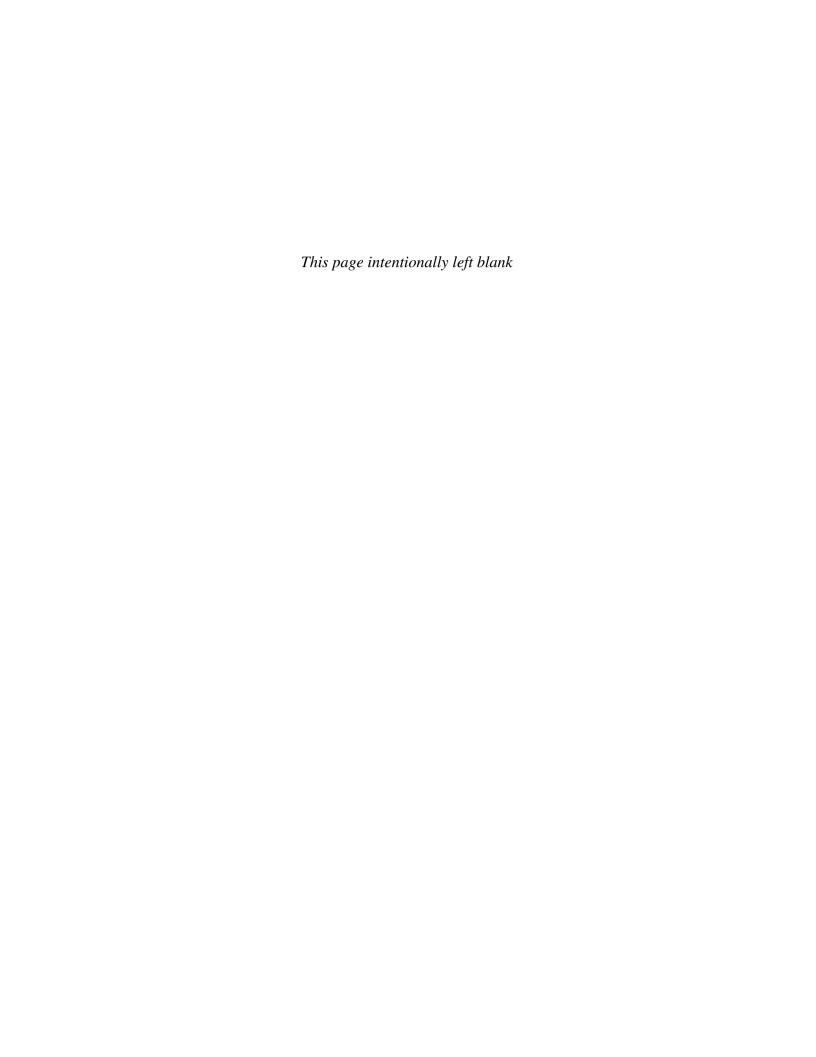
Students Advice

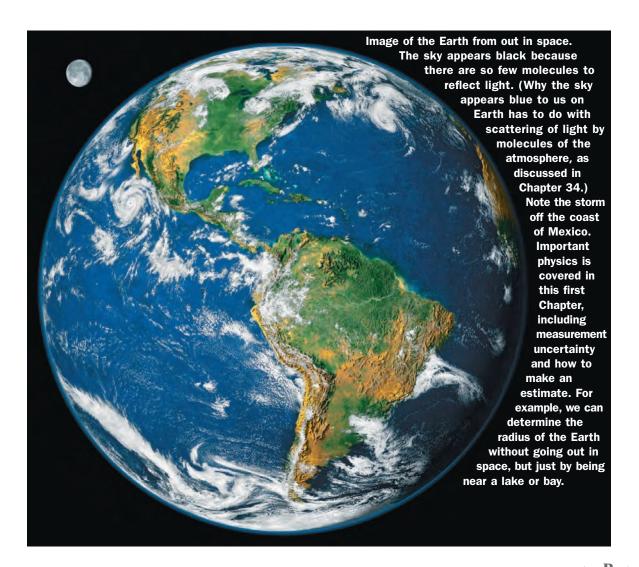
HOW TO STUDY


- Read the Chapter. Learn new vocabulary and notation. Respond to questions and exercises as they occur. Follow carefully the steps of worked-out Examples and derivations. Avoid time looking at a screen. Paper is better than pixels when it comes to learning and thinking.
- **2.** Attend all class meetings. Listen. Take notes. Ask questions (everyone wants to, but maybe you will have the courage). You will get more out of class if you read the Chapter first.
- **3.** Read the Chapter again, paying attention to details. Follow derivations and worked-out Examples. Absorb their logic. Answer Exercises and as many of the end-of-Chapter Questions as you can, and all MisConceptual Questions.
- **4.** Solve at least 10 to 20 end-of-Chapter Problems, especially those assigned. In doing Problems you may find out what you learned and what you didn't. Discuss them with other students. Problem solving is one of the great learning tools. Don't just look for a formula—it might be the wrong one.

NOTES ON THE FORMAT AND PROBLEM SOLVING

- 1. Sections marked with a star (*) may be considered optional or advanced. They can be omitted without interrupting the main flow of topics. No later material depends on them except possibly later starred Sections. They may be fun to read, though.
- 2. The customary **conventions** are used: symbols for quantities (such as *m* for mass) are italicized, whereas units (such as m for meter) are not italicized. Symbols for vectors are shown in boldface with a small arrow above: **F**.
- **3.** Few equations are valid in all situations. Where practical, the **range of validity** of important equations are stated in square brackets next to the equation. The equations that represent the great laws of physics are displayed with a tan background, as are a few other indispensable equations.
- 4. At the end of each Chapter is a set of Questions you should try to answer. Attempt all the multiple-choice MisConceptual Questions, which are intendend to get common misconceptions "out on the table" by including them as responses (temptations) along with correct answers. Most important are Problems which are ranked as Level I, II, or III, according to estimated difficulty. Level I Problems are easiest, Level II are standard Problems, and Level III are "challenge problems." These ranked Problems are arranged by Section, but Problems for a given Section may depend on earlier material too. There follows a group of General Problems, not arranged by Section or ranked. Problems that relate to optional Sections are starred (*). Answers to odd-numbered Problems are given at the end of the book.
- 5. Being able to solve **Problems** is a crucial part of learning physics, and provides a powerful means for understanding the concepts and principles. This book contains many aids to problem solving: (a) worked-out **Examples**, including an Approach and a Solution, which should be studied as an integral part of the text; (b) some of the worked-out Examples are **Estimation Examples**, which show how rough or approximate results can be obtained even if the given data are sparse (see Section 1-6); (c) **Problem Solving Strategies** placed throughout the text to suggest a step-by-step approach to problem solving for a particular topic—but the basics remain the same; most of these "Strategies" are followed by an Example that is solved by explicitly following the suggested steps; (d) special problem-solving Sections; (e) "Problem Solving" marginal notes which refer to hints within the text for solving Problems; (f) **Exercises** within the text that you should work out immediately, and then check your response against the answer given at the bottom of the last page of that Chapter; (g) the Problems themselves at the end of each Chapter.
- **6. Conceptual Examples** pose a question which hopefully starts you to think about a response. Give yourself a little time to come up with your own response before reading the Response given.
- 7. Math review, plus additional topics, are found in **Appendices**. Useful data, conversion factors, and math formulas are found inside the front and back covers.


USE OF COLOR


Vectors

Electricity and magnetism Electric circuit symbols Wire, with switch S Electric field lines Equipotential lines Resistor Magnetic field lines Capacitor Electric charge (+) Inductor Electric charge (-) Battery Ground

Optics	Other	
Light rays -	Energy level (atom, etc.)	
Object	Measurement lines ←1.0 m→	
Real image (dashed)	Path of a moving object	
Virtual image (dashed and paler)	Direction of motion or current	

Introduction, Measurement, Estimating

CHAPTER-OPENING QUESTIONS—Guess now!

- 1. How many cm 3 are in $1.0 \,\mathrm{m}^3$?
- (a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.
- **2.** Suppose you wanted to actually measure the radius of the Earth, at least roughly, rather than taking other people's word for what it is. Which response below describes the best approach?
- (a) Use an extremely long measuring tape.
- **(b)** It is only possible by flying high enough to see the actual curvature of the Earth.
- (c) Use a standard measuring tape, a stepladder, and a large smooth lake.
- (d) Use a laser and a mirror on the Moon or on a satellite.
- (e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don't worry about getting the right answer now—the idea is to get your preconceived notions out on the table. If they are misconceptions, we expect them to be cleared up as you read the Chapter. You will get another chance at the Question later in the Chapter when the appropriate material has been covered. These Chapter-Opening Questions will also help you see the power and usefulness of physics.]

CONTENTS

- I-1 How Science Works
- 1–2 Models, Theories, and Laws
- 1–3 Measurement and Uncertainty; Significant Figures
- 1–4 Units, Standards, and the SI System
- 1–5 Converting Units
- 1–6 Order of Magnitude: Rapid Estimating
- *1–7 Dimensions and Dimensional Analysis

(a)

FIGURE 1–1 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands. (b) The Hartford Civic Center collapsed in 1978, just two years after it was built.

Science is not static. It changes and develops

hysics is the most basic of the sciences. It deals with the behavior and structure of matter. The field of physics is usually divided into *classical physics* which includes motion, fluids, heat, sound, light, electricity and magnetism; and *modern physics* which includes the topics of relativity, atomic structure, condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics. We will cover all these topics in this book, beginning with motion (or mechanics, as it is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is wonderfully useful for anyone making a career in science or technology. Engineers, for example, must know how to calculate the forces within a structure to design it so that it remains standing (Fig. 1–1a). Indeed, in Chapter 12 we will see a worked-out Example of how a simple physics calculation—or even intuition based on understanding the physics of forces—would have saved hundreds of lives (Fig. 1–1b). We will see many examples in this book of how physics is useful in many fields, and in everyday life.

1−1 How Science Works

There is a real physical world out there. We could just walk through it, not thinking much about it. Or, we can instead examine it carefully. That is what scientists do. The aim of science is the search for order in our observations of the physical world so as to provide a deeper picture or description of this world around us. Sometimes we just want to understand how things work.

Some people seem to think that science is a mechanical process of collecting facts and devising theories. But it is not so simple. Science is a creative activity, and in many ways resembles other creative activities of the human mind.

One important aspect of science is **observation** of events (which great writers and artists also do), and includes the design and carrying out of experiments. But observation and experiment require imagination, because scientists can never include everything in a description of what they observe. In other words, scientists must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 в.с.) and Galileo (1564–1642), interpreted motion along a horizontal surface. Aristotle noted that objects given an initial push along the ground (or on a level tabletop) always slow down and stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. Galileo, in his reexamination of horizontal motion in the 1600s, had the idea that friction is a kind of force like a push or a pull; and he imagined that if friction could be eliminated, an object given an initial push along a horizontal surface would continue to move indefinitely without stopping. He concluded that for an object to be in motion was *just as natural* as for it to be at rest. By inventing a new approach, Galileo founded our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination. Galileo made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the scientific process. The other side is the invention or creation of **theories** to explain and order the observations. Theories are never derived directly from observations. Observations may help inspire a theory, and theories are accepted or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of humans. For example, the idea that matter is made up of atoms (the atomic theory) was not arrived at by direct observation of atoms. Rather, the idea sprang from creative minds. The theory of relativity, the electromagnetic theory of light, and Newton's law of universal gravitation were likewise the result of human imagination.

The great theories of science may be compared, as creative achievements, with great works of art or literature. But how does science differ from these other creative activities? One important difference is that science requires **testing** of its ideas or theories to see if their predictions are borne out by experiment.

But theories are not "proved" by testing. First of all, no measuring instrument is perfect, so exact confirmation is not possible. Furthermore, it is not possible to test a theory in every single possible circumstance. Hence a theory cannot be absolutely verified.