

A n I n t r o d u c t I o n

t o P r o g r A m m I n g u s I n g

VIsuAl BAsIc
®

t e n t h e d I t I o n

David I. Schneider

University of Maryland

Boston Columbus Hoboken Indianapolis New York San Francisco

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_SCHN2782_10_SE_FM.indd 1 3/1/16 6:59 PM

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook

appear on the appropriate page within text.

Copyright © 2017, 2014, 2011, 2006 Pearson Education, Inc. All rights reserved. Printed in the United States

of America. This publication is protected by Copyright, and permission should be obtained from the publisher

prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms

and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit

www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations

have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They

have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any

warranties or representations, nor does it accept any liabilities with respect to the programs or applications.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY

OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF

THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS”

WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM

ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES

AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS

RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE

USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL

INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION

HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN

THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY

BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

MICROSOFT® WINDOWS®, AND MICROSOFT WINDOWS® ARE REGISTERED TRADEMARKS OF THE

MICROSOFT CORPORATION IN THE U.S.A AND OTHER COUNTRIES. THIS BOOK IS NOT SPONSORED OR

ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

Library of Congress Cataloging-in-Publication Data

Names: Schneider, David I., author.

Title: An introduction to programming using Visual Basic / David I.

 Schneider, University of Maryland.

Description: Tenth edition. | Boston : Pearson Education, [2017] | Includes

 bibliographical references and index.

Identifiers: LCCN 2016003346| ISBN 9780134542782 | ISBN 0134542789

Subjects: LCSH: BASIC (Computer program language) | Visual Basic.

Classification: LCC QA76.73.B3 S333633 2017 | DDC 005.26/8--dc23 LC record

available at http://lccn.loc.gov/2016003346

ISBN - 10: 0-13-454278-9

ISBN - 13: 978-0-13-454278-210 9 8 7 6 5 4 3 2 1

Vice President, Editorial Director, ECS: Marcia Horton

Executive Editor: Tracy Johnson

Editorial Assistant: Kristy Alaura

Vice President of Marketing: Christy Lesko

Director of Field Marketing: Tim Galligan

Product Marketing Manager: Bram Van Kempen

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Director of Product Management: Erin Gregg

Team Lead, Program and Project Management:

Scott Disanno

Program Manager: Carole Snyder

Senior Specialist, Program Planning and Support:

Maura Zaldivar-Garcia

Cover Designer: Marta Samsel, Black Horse Designs

Manager, Rights and Permissions: Ben Ferrini

Project Manager, Rights and Permissions:

Tamara Efsen, Aptara

Inventory Manager: Ann Lam

Cover Image: Justine Beckett/Alamy Stock Photo

Media Project Manager: Leslie Sumrall

Composition: SPi Global

Project Manager: Shylaja Gattupalli, SPi Global

Printer/Binder: Courier/Kendallville

Cover and Insert Printer: Phoenix Color/Hagerstown

A01_SCHN2782_10_SE_FM.indd 2 3/1/16 6:59 PM

iii

Attention Students

Installing Visual Studio

To complete the tutorials and programming problems in this book, you need to

install Visual Studio 2015 on your computer.

We recommend that you download Visual Studio Community 2015 from the fol-

lowing Web site, and install it on your system:

www.visualstudio.com

Visual Studio Community 2015 is a free, full-featured development environment,

and is a perfect companion for this textbook.

NOTE: If you are working in your school’s computer lab, there is a good chance

that Microsoft Visual Studio has already been installed. If this is the case, your

instructor will show you how to start Visual Studio.

Installing the Student Sample Program Files

The Student Sample Program files that accompany this book are available for down-

load from the book’s companion Web site at:

http://www.pearsonhighered.com/cs-resources

These files are required for many of the book’s tutorials. Simply download the

Student Sample Program files to a location on your hard drive where you can easily

access them.

A01_SCHN2782_10_SE_FM.indd 3 3/1/16 6:59 PM

iv

Guide to VideoNotes
www.pearsonhighered.com/cs-resourcesVideoNote

Chapter 2 Visual Basic, Controls, and Events

Textbox Walkthrough 22

Button Walkthrough 27

Event Procedures 37

Chapter 3 Variables, Input, and Output

Numbers & Strings 56

Variable Scope 82

Input Boxes and Message Boxes 97

Chapter 4 Decisions

Relational and Logical Operators 115

If Blocks 122

Select Case Blocks 146

Listboxes, Radio Buttons, and Checkboxes for Input 160

Chapter 5 General Procedures

Function Procedures 180

Sub Procedures 197

Debugging Functions and Sub Procedures 218

Chapter 6 Repetition

Pretest Do Loops 242

For . . . Next Loops 257

List Boxes and Loops 273

Chapter 7 Arrays

Declaring and Using Arrays 295

For Each Loops 302

LINQ 321

Chapter 8 Text Files

StreamReaders and StreamWriters 413

Exception Handling 419

Chapter 9 Additional Controls and Objects

List Boxes and Combo Boxes 454

Timer, Picturebox, Menustrip, and Scrollbar Controls 463

Graphics 491

Chapter 10 Databases

Introduction to Databases 514

Querying Tables 521

Editing Databases 540

Chapter 11 Object-Oriented Programming

Classes and Objects 552

Arrays of Objects 569

Inheritance 581

A01_SCHN2782_10_SE_FM.indd 4 3/1/16 6:59 PM

v

Guide to Application Topics

Business and Economics

Admission fee, 164

Airline reservations, 390, 508

Analyze a Loan case study, 376

Analyze fuel economy, 393

Analyze growth of chains, 372

Annuity, 69, 195, 240, 255, 269

APY, 142

Automated directory assistance, 392

Automobile depreciation, 268

Bank account, 600

Bond yield, 112

Break-even analysis, 68, 156

Business travel expenses, 510

Calculate a profit, 68, 127, 194

Calculate a tip, 137, 211

Calculate weekly pay, 138, 184, 223, 485, 567

Car loan, 176, 254, 269

Cash register, 567, 578, 579, 597

Cash reward, 157

Change from a sale, 138

Checking account transactions, 488

Compare interest rates, 141–42

Compare two salary options, 269

Compound interest, 172, 184, 195, 253, 268, 488

Consumer options, 158

Consumer price index, 254

Cost of a computer system, 169

Cost of a tour, 157

Cost of benefits, 165, 166

Cost of electricity, 88

Cost of flash drives, 171

Create sales receipt, 428

Credit card account, 222, 489

Crop production, 70, 271

Currency exchange rates, 534

Depreciation, 268, 286

Discounted price, 68, 87, 143

Display economic data in a bar chart, 270, 495,

502

Display economic data in a pie chart, 494, 502,

504

Dogs of the DOW, 360

Doubling time of an investment, 253, 285

Dow Jones Industrial Average, 360

Employee paycheck receipt, 579

FICA tax, 128, 229, 568

Future value, 91, 185

Gather billing information, 489

Generate an order form, 237

Growth of an investment, 195

Income tax, 140, 171

Individual Retirement Account, 288

Interest-Only mortgage, 598

ISBN code, 386

Itemized bill, 110, 237

Lifetime earnings, 268

Loan analysis, 111, 488

Loan calculator, 239

Mail-order company, 549

Maintain a membership list, 506

Manage telephone directories, 449

Marginal revenue and cost, 156

Marketing terms, 109

Membership fee, 171

Minimum wage, 502

Monetary units of countries, 528

Mortgage, 222, 254, 565

Mortgage with points, 598

Municipal bonds, 92

Number of restaurants in U.S., 70

Pay raise, 222

Payroll, 228, 485, 598

Percentage markup, 69

Postage costs, 194

Present value, 92

Price-to-earnings ratio, 89

Recording Checks and Deposits case study, 439

Rental costs, 175, 196

Restaurant order, 176, 579

Retirement plan, 170

Revenue, 156

Rule of ‘72’, 285

Salary, 108

Salary options, 271

Sales commission, 91

Savings account, 139

Simple interest, 268

Small dogs of the DOW, 361

Supply and demand, 271

Tax return, 171

Total cost, 137

Total salaries paid, 374

Track inventory, 370, 507, 597

U.S. national debt, 71

Universal Product Code, 450

Weekly Payroll case study, 228

Withdrawal from a savings account, 138

Withholding tax, 229, 579

A01_SCHN2782_10_SE_FM.indd 5 3/1/16 6:59 PM

 vi ◆ Guide to Application Topics

General Interest

Academy awards, 359

Age of a tire, 158

Airplane animation, 505

American Heart Association recommendation,

175

Anagram, 332

Analyze grades, 276

Bachelor degrees conferred, 387

Birthdays, 141, 212, 256, 272

Body Mass Index, 193

Bouncing ball animation, 496

Caffeine absorption, 285

Calculate age, 96, 98, 108, 141, 172

Calendar, 412

Chain-link sentence, 320

Chocolate ice cream, 71

Cloudiness descriptors, 155

College admissions, 177

College credits, 345

College enrollments, 503

College majors, 503

College tuition, 196

Computer pioneers, 356

Convert temperatures, 181, 478

Country flags, 501, 505, 511

Crayola crayons, 318, 411

Declaration of Independence, 107

Determine day of week, 107

Dial a telephone, 490

Digital clock, 475

Distance between cities, 364

Distance from a storm, 87

Earliest colleges, 340, 343, 437

Freshman life goals, 503

Friday the 13th, 270

Game of Life, 391

Gettysburg Address, 71, 431

GPA, 237

Grade book, 550

Ideal weight, 268

Internet lingo, 505

Language translation, 388

Leap years, 139, 195

Manage a list of names, 417

Mean temperature, 431

Military time, 139

Monthly precipitation, 373

Movies, 139, 162, 243, 538, 539, 540, 547

Newton’s law of cooling, 256

Nutritional content of foods, 365

Old McDonald Had a Farm, 211

Palindrome, 288

Physician’s abbreviations, 157

Pig Latin, 138

Pizza consumption, 70

Population growth, 71, 253, 256

Population of cities, 522–27, 531, 532,

544, 547

Presidential age at inauguration, 299, 300, 318,

398, 399, 461

Presidential colleges, 359

Presidential eligibility, 170

Principal languages, 504

Proverbs, 238

Quasi-palindromes, 271

Quiz, 123, 137, 140, 148, 173

Qwerty word, 269

Radioactive decay, 254, 267

Rating of hurricanes, 193

Shakespeare sonnet, 316, 334

Smoking among college students, 502

Social networking sites, 371

Soundex system, 289

Speed of a car, 89

State abbreviations, 354, 404, 412, 414, 434, 577

State areas, 354, 412, 436

State birds, 429, 430

State capitals, 335, 429

State flowers, 173, 429, 430

State mottos, 173

State nicknames, 173, 429

State populations, 199, 354, 404, 412, 577, 578

Stopwatch, 463

Supreme Court justices, 356, 357, 399, 400, 402,

411, 412

Times Square ball, 478

Training heart rate, 88, 194

U.S. cities, 352

U.S. presidents, 140, 148, 159, 317, 324, 333, 402,

406, 410

U.S. Senate, 438, 448

U.S. states, 274, 275, 281–83, 304, 316, 321, 326,

333, 335, 354, 433, 436, 577

United Nations, 283, 334, 338, 339, 533, 534

University rankings, 371

User-operated directory assistance, 392

Using Excel, 412

Voting machine, 507

Vowel word, 187

Water usage, 70

Weather beacon, 125

Word palindrome, 319

A01_SCHN2782_10_SE_FM.indd 6 3/1/16 6:59 PM

 Guide to Application Topics ◆ vii

Mathematics

Areas of geometric shapes, 156

Average speed, 70

Binary search, 289

Birthday probability, 256, 272

Calculate a median, 333, 372

Calculate a range, 252, 283, 317

Calculate a spread, 597

Calculate a sum, 315, 316, 429

Calculate an average, 90, 138, 244, 270, 276, 303,

316, 319, 332, 333, 344, 372, 386, 567, 597

Calculate population densities, 354

Calculator, 110, 143, 583, 597

Coefficient of restitution, 251

Convert percentage to a decimal, 89

Convert speeds, 71

Convert temperatures, 251

Convert units of length, 93, 111, 385, 461

Curve grades, 386

Determine a special number, 272

Determine two largest numbers, 211

Error detection, 288

Factorial, 270

Factorization, 253

Find largest number, 267, 300, 429

Find smallest number, 252, 315, 429

Fraction calculator, 568, 578

Gas mileage, 70

Greatest Common Divisor, 252

Interesting algorithm, 240

ISBN codes, 386

Magic square, 375

Make change, 111, 138

Measurements on a square, 566, 578

Multiplication table, 261

Odometer readings, 272

Projectile motion, 70, 286

Quadratic equation, 176

Standard deviation, 283, 317, 386

Student grades, 488, 550, 555, 569, 587, 597

Sum a series, 267

Sum of digits, 272

Surface area, 193

Sports and Games

Baseball, 89, 355, 438, 448, 451, 535–38

Blackjack, 601

Carnival game, 477

Dice, 477, 478, 566, 578

Famous athletes, 357, 358

Four-minute mile, 71

PGA Championship, 372

Pick-up-Sticks, 238

Poker, 389, 574

Powerball, 476

Rock-Paper-Scissors, 464, 590

Rose Bowl, 279, 280

Soccer league, 389

Super Bowl, 296, 297, 301, 332

Triathlon, 88

World Series of baseball, 509

A01_SCHN2782_10_SE_FM.indd 7 3/1/16 6:59 PM

viii

Contents

Guide to VideoNotes iv

Guide to Application Topics v

Preface xii

MyProgrammingLab xvi

Acknowledgments xvii

Using this Book for a Short or Condensed Course xviii

Chapter 1 An Introduction to Computers

and Problem Solving 1

1.1 An Introduction to Computing and Visual Basic 2

1.2 Program Development Cycle 5

1.3 Programming Tools 7

Chapter 2 Visual Basic, Controls, and Events 15

2.1 An Introduction to Visual Basic 2015 16

2.2 Visual Basic Controls 18

2.3 Visual Basic Events 37

Summary 52

Chapter 3 Variables, Input, and Output 53

3.1 Numbers 54

3.2 Strings 72

3.3 Input and Output 93

Summary 109

Programming Projects 110

A01_SCHN2782_10_SE_FM.indd 8 3/1/16 6:59 PM

 Contents ◆ ix

Chapter 4 Decisions 113

4.1 Relational and Logical Operators 114

4.2 If Blocks 122

4.3 Select Case Blocks 144

4.4 Input via User Selection 160

Summary 174

Programming Projects 175

Chapter 5 General Procedures 179

5.1 Function Procedures 180

5.2 Sub Procedures, Part I 197

5.3 Sub Procedures, Part II 213

5.4 Program Design 224

5.5 A Case Study: Weekly Payroll 228

Summary 236

Programming Projects 236

Chapter 6 Repetition 241

6.1 Do Loops 242

6.2 For . . . Next Loops 257

6.3 List Boxes and Loops 273

Summary 284

Programming Projects 285

Chapter 7 Arrays 293

7.1 Creating and Using Arrays 294

7.2 Using LINQ with Arrays 321

A01_SCHN2782_10_SE_FM.indd 9 3/1/16 6:59 PM

 x ◆ Contents

7.3 Arrays of Structures 335

7.4 Two-Dimensional Arrays 362

7.5 A Case Study: Analyze a Loan 376

Summary 384

Programming Projects 385

Chapter 8 Text Files 395

8.1 Managing Text Files 396

8.2 StreamReaders, StreamWriters, and Structured Exception Handling 413

8.3 XML 432

8.4 A Case Study: Recording Checks and Deposits 439

Summary 447

Programming Projects 448

Chapter 9 Additional Controls and Objects 453

9.1 List Boxes and Combo Boxes 454

9.2 Eight Additional Controls and Objects 463

9.3 Multiple-Form Programs 479

9.4 Graphics 491

Summary 505

Programming Projects 506

Chapter 10 Databases 513

10.1 An Introduction to Databases 514

10.2 Editing and Designing Databases 540

Summary 548

Programming Projects 549

A01_SCHN2782_10_SE_FM.indd 10 3/1/16 6:59 PM

 Contents ◆ xi

Chapter 11 Object-Oriented Programming 551

11.1 Classes and Objects 552

11.2 Working with Objects 569

11.3 Inheritance 581

Summary 599

Programming Projects 600

Appendices 603

Appendix A ANSI Values 603

Appendix B How To 605

Appendix C Files and Folders 617

Appendix D Visual Basic Debugging Tools 619

Answers 629

Index 695

A01_SCHN2782_10_SE_FM.indd 11 3/1/16 6:59 PM

PrefaCe

Visual Basic has been a widely used programming language since its introduction

in 1991. Its latest incarnation, Visual Basic 2015, brings continued refinement

of the language. Visual Basic programmers are enthusiastically embracing the power-

ful capabilities of the language. Likewise, students learning their first programming

language will find VB the ideal tool to understand the development of computer

programs.

My objectives when writing this text were as follows:

1. To develop focused chapters. Rather than covering many topics superficially,
I concentrate on important subjects and cover them thoroughly.

2. To use examples and exercises with which students can relate, appreciate, and feel comfort-

able. I frequently use real data. Examples do not have so many embellishments that

students are distracted from the programming techniques illustrated.

3. To produce compactly written text that students will find both readable and informative.

The main points of each topic are discussed first and then the peripheral details are

presented as comments.

4. To teach good programming practices that are in step with modern programming methodol-

ogy. Problem solving techniques and structured programming are discussed early and

used throughout the book.The style follows object-oriented programming principles.

5. To provide insights into the major applications of computers.

What’s New in the Tenth Edition

Among the changes in this edition, the following are the most significant.

1. Visual Basic Upgraded The version of Visual Basic has been upgraded from
Visual Basic 2012 to Visual Basic 2015, and relevant new features of Visual
Basic 2015 have been addressed.

2. Additional Exercises Sixty new exercises have been added, most of which are

 application exercises.

3. Updated Data The real-world data appearing in exercises, examples, and data files

has been updated.

4. Decimal Data Type The Decimal data type has been introduced and used in all

 examples and exercises dealing with financial data.

5. Short-Circuit Evaluation AndAlso and OrElse are introduced for the evaluation of

logical operators.

6. Windows 10 The screen captures have been updated from Windows 8 to Windows 10

captures.

7. New Statements and Methods The Exit Sub and Exit Function statements and the

string methods Remove and Replace are discussed.

xii

A01_SCHN2782_10_SE_FM.indd 12 3/1/16 6:59 PM

 Preface ◆ xiii

Unique and Distinguishing Features

Exercises for Most Sections. Each section that teaches programming has an exercise

set. The exercises both reinforce the understanding of the key ideas of the section

and challenge the student to explore applications. Most of the exercise sets require

the student to trace programs, find errors, and write programs. The answers to all the

odd-numbered exercises in Chapters 2 through 7 and the short-answer odd-numbered

exercises from Chapters 8, 9, 10, and 11 are given at the end of the text. A screen

 capture accompanies most programming answers.

Practice Problems. Practice Problems are carefully selected exercises located at the end

of a section, just before the exercise set. Complete solutions are given following the

exercise set. The practice problems often focus on points that are potentially confusing

or are best appreciated after the student has thought about them. The reader should

seriously attempt the practice problems and study their solutions before moving on

to the exercises.

Programming Projects. Beginning with Chapter 3, every chapter contains program-

ming projects. The programming projects not only reflect the variety of ways that

computers are used in the business community, but also present some games and

general-interest topics. The large number and range of difficulty of the programming

projects provide the flexibility to adapt the course to the interests and abilities of the

students. Some programming projects in later chapters can be assigned as end-of-the-

semester projects.

Comments. Extensions and fine points of new topics are deferred to the “Comments”

portion at the end of each section so that they will not interfere with the flow of the

presentation.

Captions. Every example and applied exercise is labeled with a caption identifying its

type of application.

Screen Captures. The output for most applied exercises and programming projects are

shown in screen captures. This feature helps clarify the intent of the exercises.

Case Studies. Each of the three case studies focuses on an important programming

application. The problems are analyzed and the programs are developed with top-

down charts and pseudocode. The programs can be downloaded from the companion

website at http://www.pearsonhighered.com/schneider.

Chapter Summaries. In Chapters 2 through 11, the key results are stated and the

important terms are summarized at the end of the chapter.

“How To” Appendix. Appendix B provides a compact, step-by-step reference on how

to carry out standard tasks in the Visual Basic and Windows environments.

Appendix on Debugging. The placing of the discussion of Visual Basic’s sophisticated

debugger in Appendix D allows the instructor flexibility in deciding when to cover

this topic.

Guide to Application Topics. This section provides an index of programs that deal with

various topics including Business, Mathematics, and Sports.

A01_SCHN2782_10_SE_FM.indd 13 3/1/16 6:59 PM

 xiv ◆ Preface

VideoNotes. Thirty VideoNotes are available at www.pearsonhighered.com/cs-resources.

VideoNotes are Pearson’s visual tool designed for teaching key programming concepts

and techniques. VideoNote icons are placed in the margin of the text book to notify

the reader when a topic is discussed in a video. Also, a Guide to Video Notes sum-

marizing the different videos throughout the text is included.

Solution Manuals. The Student Solutions Manual contains the answer to every odd-

numbered exercise. The Instructor Solutions Manual contains the answer to every

exercise and programming project. Both solution manuals are in pdf format and can

be downloaded from the Publisher’s Web site.

Source Code. The programs for all examples and case studies can be downloaded from

the Publisher’s Web site.

How to Access Instructor and Student Resource
Materials

Online Practice and Assessment with

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of

programming. Through practice exercises and immediate, personalized feedback,

MyProgrammingLab improves the programming competence of beginning students

who often struggle with the basic concepts and paradigms of popular high-level

 programming languages.

A self-study and homework tool, the MyProgrammingLab course for Visual Basic

consists of roughly two hundred small practice exercises covering introductory topics

such as variables, calculations, decision statements, loops, procedures, arrays, and

more. For students, the system automatically detects errors in the logic and syntax of

their code submissions and offers targeted hints that enable students to figure out what

went wrong—and why. For instructors, a comprehensive gradebook tracks correct and

incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to get

started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

Instructor Resources

The following protected instructor resource materials are available on the Publisher’s

Web site at www.pearsonhighered.com/cs-resources. For username and password

information, please contact your local Pearson representative.

•	 Test Item File

•	 PowerPoint Lecture Slides

•	 Instructor Solutions Manual

•	 VideoNotes

•	 Programs for all examples, case studies, and answers to exercises and programming

projects (Databases, text files, and picture files needed for the exercises are included

in the Programs folder.)

MyProgrammingLab™

A01_SCHN2782_10_SE_FM.indd 14 3/1/16 6:59 PM

 Preface ◆ xv

Student Resources

Access to the Premium Website and VideoNotes tutorials is located at www.

pearsonhighered.com/cs-resources. Students must use the access card located in the front

of the book to register and access the online material. If there is no access card in the

front of this textbook, students can purchase access by going to www.pearsonhighered.

com/cs-resources and selecting “purchase access to premium content.” Instructors must

register on the site to access the material.

The following content is available through the Premium Web site:

•	 VideoNotes

•	 Student Solutions Manual

•	 Programs for examples and case studies (Databases, text files, and picture files needed

for the exercises are included in the Programs folder.)

A01_SCHN2782_10_SE_FM.indd 15 3/1/16 6:59 PM

PROGRAMMING PRACTICE

With MyProgrammingLab, your students will gain first-hand programming
experience in an interactive online environment.

IMMEDIATE, PERSONALIZED FEEDBACK

MyProgrammingLab automatically detects errors in the logic and syntax of their
code submission and offers targeted hints that enables students to figure out what
went wrong and why.

GRADUATED COMPLEXITY

MyProgrammingLab breaks down programming
concepts into short, understandable sequences
of exercises. Within each sequence the level and
sophistication of the exercises increase gradually
but steadily.

PEARSON eTEXT

The Pearson eText gives students access to their textbook anytime, anywhere

DYNAMIC ROSTER

Students’ submissions are stored in a roster that indicates whether
the submission is correct, how many attempts were made, and the
actual code submissions from each attempt.

STEP-BY-STEP VIDEONOTE TUTORIALS

These step-by-step video tutorials enhance the programming concepts presented
in select Pearson textbooks.

Copyright © 2017 Pearson Education, Inc. or its afÏliate(s). All rights reserved. HELO88173 • 11/15

To improving results

Through the power of practice and immediate personalized feedback,

MyProgrammingLab helps improve your students’ performance.

For more information and titles available with MyProgrammingLab,

please visit www.myprogramminglab.com.

xvi

A01_SCHN2782_10_SE_FM.indd 16 3/1/16 6:59 PM

xvii

aCknowledgments

Many talented instructors and programmers provided helpful comments and

constructive suggestions during the many editions of this text and I am most

grateful for their contributions. The current edition benefited greatly from the valuable

comments of the following reviewers:

Milam Aiken, University of Mississippi

Geoffrey Campbell, Illinois State University

Sherrie Cannoy, North Carolina A&T State University

Joshua Cuneo, Georgia Gwinnett College

Jean Hendrix, University of Arkansas at Monticello

Colin Ikei, Long Beach City College

Ingyu Lee, Troy University

Pati Milligan, Baylor University

Mohammad Rob, University of Houston—Clear Lake

John Robinson, Rutgers University—Camden

Michael Zurad, University of Wisconsin—Parkside

Many people are involved in the successful publication of a book. I wish to thank

the dedicated team at Pearson whose support and diligence made this textbook pos-

sible, especially Program Manager Carole Snyder and Team Lead Scott Disanno.

I am grateful to Kathy Liszka of the University of Akron for producing the

 VideoNotes that accompany the book. I would like to thank Kathy Liszka, Anne

Bunner, and Howard Lerner for their excellent proofreading. The competence and

 graciousness of Shylaja Gattupalli at SPi Global made for a pleasant production

process.

I extend special thanks to my editor Tracy Johnson. Her ideas and enthusiasm

helped immensely with the preparation of the book.

David I. Schneider

dis@math.umd.edu

A01_SCHN2782_10_SE_FM.indd 17 3/1/16 6:59 PM

Using this Book for a short

or Condensed CoUrse

This book provides more than enough material for a complete semester course. For a course

shorter than a semester in length, it will be necessary to bypass some sections. The following

syllabus provides one possible way to present an abbreviated introduction to programming.

Chapter 1 An Introduction to Computers and Problem Solving

 1.1 An Introduction to Computing and Visual Basic

Chapter 2 Visual Basic, Controls, and Events

 2.1 An Introduction to Visual Basic 2015
 2.2 Visual Basic Controls
 2.3 Visual Basic Events

Chapter 3 Variables, Input, and Output

 3.1 Numbers
 3.2 Strings
 3.3 Input and Output

Chapter 4 Decisions

 4.1 Relational and Logical Operators
 4.2 If Blocks
 4.3 Select Case Blocks
 4.4 Input via User Selection

Chapter 5 General Procedures1

 5.1 Function Procedures
 5.2 Sub Procedures, Part I

Chapter 6 Repetition

 6.1 Do Loops
 6.2 For . . . Next Loops

Chapter 7 Arrays

 7.1 Creating and Accessing Arrays
 7.2 Using LINQ with Arrays

Chapter 8 Text Files2

 8.1 Managing Text Files
 or 8.2 StreamReaders, StreamWriters, Structured Exception Handling

1 Passing by reference can be omitted or just mentioned briefly. In Chapters 6 through 11, ByRef

is used only in Example 6 of Section 7.3 (Arrays of Structures) and in the Chapter 7 case study. In

both of those programs, it is used to obtain input.
2Sections 8.1 and 8.2 are independent of each other.

xviii

A01_SCHN2782_10_SE_FM.indd 18 3/1/16 6:59 PM

1

1

1.1 An Introduction to Computing and Visual Basic 2

1.2 Program Development Cycle 5

◆ Performing a Task on the Computer ◆ Program Planning

1.3 Programming Tools 7

◆ Flowcharts ◆ Pseudocode ◆ Hierarchy Chart ◆ Decision Structure

◆ Direction of Numbered NYC Streets Algorithm ◆ Repetition Structure

◆ Class Average Algorithm

An Introduction to Computers
and Problem Solving

M01_SCHN2782_10_SE_C01.indd 1 2/29/16 3:02 PM

 2 ◆ Chapter 1 An Introduction to Computers and Problem Solving

1.1 An Introduction to Computing and Visual Basic

An Introduction to Programming Using Visual Basic is about problem solving using computers.

The programming language used is Visual Basic 2015 (hereafter shortened to Visual Basic),

but the principles apply to most modern programming languages. Many of the examples

and exercises illustrate how computers are used in the real world. Here are some questions

that you may have about computers and programming.

Question: How do we communicate with the computer?

Answer: Many languages are used to communicate with the computer. At the lowest level,

there is machine language, which is understood directly by the microprocessor but is difficult

for humans to understand. Visual Basic is an example of a high-level language. It consists of

instructions to which people can relate, such as Click, If, and Do. Some other well-known

high-level languages are Java, C+ + , and Python.

Question: How do we get computers to perform complicated tasks?

Answer: Tasks are broken down into a sequence of instructions, called a program, that

can be expressed in a computer language. Programs can range in size from two or three

 instructions to millions of instructions. The process of executing the instructions is called

running the program.

Question: What is a GUI?

Answer: What the user views on the monitor and interacts with while a program is running

is called the user interface. GUI (pronounced GOO-ee) stands for “graphical user interface”.

Both Windows and Visual Basic use a graphical user interface; that is, they employ objects

such as windows, icons, and menus that can be manipulated by a mouse. Non-GUI-based

programs use only text and are accessed solely via a keyboard.

Question: What are the meanings of the terms “programmer” and “user”?

Answer: A programmer (also called a developer) is a person who solves problems by writing

programs on a computer. After analyzing the problem and developing a plan for solving it,

the programmer writes and tests the program that instructs the computer how to carry out

the plan. The program might be run many times, either by the programmer or by others.

A user is any person who runs a program. While working through this text, you will func-

tion both as a programmer and as a user.

Question: What is the meaning of the term “code”?

Answer: The Visual Basic instructions that the programmer writes are called code. The

process of writing a program is often called coding.

Question: Are there certain characteristics that all programs have in common?

Answer: Most programs do three things: take in data, manipulate data, and produce results.

These operations are referred to as input, processing, and output. The input data might be held

in the program, reside on a disk, or be provided by the user in response to requests made by

the computer while the program is running. The processing of the input data occurs inside

the computer and can take from a fraction of a second to many hours. The output data are

displayed on a monitor, printed on a printer, or recorded on a disk. As a simple example,

consider a program that computes sales tax. An item of input data is the cost of the thing

purchased. The processing consists of multiplying the cost by the sales tax rate. The output

data is the resulting product, the amount of sales tax to be paid.

M01_SCHN2782_10_SE_C01.indd 2 2/29/16 3:03 PM

 1.1 An Introduction to Computing and Visual Basic ◆ 3

Question: Many programming languages, including Visual Basic, use a zero-based numbering

system. What is a zero-based numbering system?

Answer: In a zero-based numbering system, numbering begins with zero instead of one. For

example, in the word “code”, “c” would be the zeroth letter, “o” would be the first letter,

and so on.

Question: What are the meanings of the terms “hardware” and “software”?

Answer: Hardware refers to the physical components of the computer, including all periph-

erals, the central processing unit, disk drives, and all mechanical and electrical devices.

Programs are referred to as software.

Question: How are problems solved with a program?

Answer: Problems are solved by carefully reading them to determine what data are given

and what outputs are requested. Then a step-by-step procedure is devised to process the

given data and produce the requested output.

Question: Are there any prerequisites to learning Visual Basic?

Answer: You should be familiar with how folders (also called directories) and files are man-

aged by Windows. Files reside on storage devices such as hard disks, USB flash drives,

CDs, and DVDs. Traditionally, the primary storage devices for personal computers were

hard disks and floppy disks. Therefore, the word disk is frequently used to refer to any

storage device.

Question: Will it matter whether Windows 7, Windows 8, or Windows 10 are used as the underlying

operating system?

Answer: Visual Basic runs fine with all three of these versions of Windows. However,

the windows will vary slightly in appearance. Figure 1.1 shows the appearance of a typi-

cal window produced in Visual Basic with each of the three versions of Windows. The

appearance of windows depends on the Windows product edition, the hardware on your

system, and your own personal preferences. In this book, all screen captures have been

done with the Windows 10 operating system.

FIgure 1.1 Visual Basic windows.

(a) Windows 7 (b) Windows 8 (c) Windows 10

M01_SCHN2782_10_SE_C01.indd 3 2/29/16 3:03 PM

 4 ◆ Chapter 1 An Introduction to Computers and Problem Solving

Question: What is an example of a program developed in this textbook?

Answer: Figure 1.2 shows a program from Chapter 7 when it is first run. After the user types

in a first name and clicks on the button, the names of the presidents who have that first name

are displayed. Figure 1.3 shows the output.

FIgure 1.2 Window when program is

first run.
FIgure 1.3 Window after a name is entered

and the button is clicked.

Question: How does the programmer create the aforementioned program?

Answer: The programmer begins with a blank window called a form. See Fig. 1.4. The

programmer adds objects, called controls, to the form and sets properties for the controls.

In Fig. 1.5, four controls have been placed on the form. The Text properties of the form,

the label, and the button have been set to “U.S. Presidents”, “First name:”, and “Display

Presidents”. The Name property of the list box was set to “lstPres”.

The code is written into a text-editing window called the Code Editor. The code tells

the computer what to do after the button is clicked. The program includes the form (with

its controls), the code, and a file containing the data.

FIgure 1.4 A blank Visual Basic form. FIgure 1.5 Controls added to the form.

label

text box

button

list box

Question: What conventions are used to show keystrokes?

Answer: The combination key1+key2 means “hold down key1 and then press key2”. The

combination Ctrl+C places selected material into the Clipboard. The combination key1/key2

means “press and release key1 and then press key2”. The combination Alt/F opens the File

menu on a menu bar.

Question: What is the difference between Visual Studio and Visual Basic?

Answer: Visual Studio is an all-encompassing development environment for creating web-

sites and Windows applications. Visual Basic is a programming language that is part of

Visual Studio.

M01_SCHN2782_10_SE_C01.indd 4 2/29/16 3:03 PM

 1.2 Program Development Cycle ◆ 5

Question: How can the programs for the examples in this textbook be obtained?

Answer: See the preface for information on how to download the programs from the Pear-

son website.

Question: Are there any adjustments that should be made to Windows before using this textbook?

Answer: Possibly. By default, Windows 7 and Windows 8 show only the base names of files.

You should configure Windows to display the filename extensions for all known file types.

(The details are presented in Appendix B in the ”Configuring the Windows Environment”

section.) Windows 10 shows the full file name by default.

Question: Are there any adjustments that should be made to Visual Basic while using this textbook?

Answer: Yes. Three adjustments are discussed in the textbook. In Section 2.2, a set-

ting is specified that guarantees flexibility in naming, saving, and discarding programs.

In Section 2.3, we specify the number of spaces that lines of code will be indented. In

 Section 3.2, we set some options that affect how rigorous we must be when declaring the

data types of variables and using variables.

Question: Where will new programs be saved?

Answer: Before writing your first program, you should use File Explorer (with Windows

8 or 10) or Windows Explorer (with Windows 7) to create a separate folder to hold your

programs. The first time you save a program, you will have to browse to that folder. Subse-

quent savings will use that folder as the default folder.

1.2 Program Development Cycle

We learned in Section 1.1 that hardware refers to the machinery in a computer system (such

as the monitor, keyboard, and CPU) and software refers to a collection of instructions,

called a program, that directs the hardware. Programs are written to solve problems or

perform tasks on a computer. Programmers translate the solutions or tasks into a language

the computer can understand. As we write programs, we must keep in mind that the com-

puter will do only what we instruct it to do. Because of this, we must be very careful and

thorough when writing our instructions. Note: Microsoft Visual Basic refers to a program

as a project, application, or solution.

■ Performing a Task on the Computer

The first step in writing instructions to carry out a task is to determine what the output

should be—that is, exactly what the task should produce. The second step is to identify the

data, or input, necessary to obtain the output. The last step is to determine how to process

the input to obtain the desired output—that is, to determine what formulas or ways of

doing things should be used to obtain the output.

This problem-solving approach is the same as that used to solve word problems in an

algebra class. For example, consider the following algebra problem:

How fast is a car moving if it travels 50 miles in 2 hours?

The first step is to determine the type of answer requested. The answer should be a num-

ber giving the speed in miles per hour (the output). The information needed to obtain the

answer is the distance and time the car has traveled (the input). The formula

speed = distance/time

M01_SCHN2782_10_SE_C01.indd 5 2/29/16 3:03 PM

 6 ◆ Chapter 1 An Introduction to Computers and Problem Solving

is used to process the distance traveled and the time elapsed in order to determine the

speed. That is,

 speed = 50 miles/2 hours

 = 25 miles/hours

A graphical representation of this problem-solving process is shown in Fig. 1.6.

FIgure 1.6 The problem-solving process.

Input Processing Output

We determine what we want as output, get the needed input, and process the input to

produce the desired output.

In the chapters that follow, we discuss how to write programs to carry out the preceding

operations. But first we look at the general process of writing programs.

■ Program Planning

A baking recipe provides a good example of a plan. The ingredients and the amounts are

determined by what is to be baked. That is, the output determines the input and the process-

ing. The recipe, or plan, reduces the number of mistakes you might make if you tried to

bake with no plan at all. Although it’s difficult to imagine an architect building a bridge or

a factory without a detailed plan, many programmers (particularly students in their first

programming course) try to write programs without first making a careful plan. The more

complicated the problem, the more complex the plan may be. You will spend much less

time working on a program if you devise a carefully thought out step-by-step plan and test

it before actually writing the program.

Many programmers plan their programs using a sequence of steps, referred to as the

Software Development Life Cycle. The following step-by-step process will enable you to use

your time efficiently and help you design error-free programs that produce the desired output.

1. Analyze: Define the problem.

Be sure you understand what the program should do—that is, what the output should

be. Have a clear idea of what data (or input) are given and the relationship between the

input and the desired output.

2. Design: Plan the solution to the problem.

Find a logical sequence of precise steps that perform the task. Such a sequence of steps

is called an algorithm. Every detail, including obvious steps, should appear in the algo-

rithm. In the next section, we discuss three popular methods used to develop the logic

plan: flowcharts, pseudocode, and hierarchy charts. These tools help the programmer

break a problem into a sequence of small tasks the computer can perform to solve the

problem. Planning also involves using representative data to test the logic of the algo-

rithm by hand to ensure that it is correct.

3. Design the interface: Select the objects (text boxes, buttons, etc.).

Determine how the input will be obtained and how the output will be displayed. Then

create objects to receive the input and display the output. Also, create appropriate but-

tons and menus to allow the user to control the program.

M01_SCHN2782_10_SE_C01.indd 6 2/29/16 3:03 PM

 1.3 Programming Tools ◆ 7

4. Code: Translate the algorithm into a programming language.

Coding is the technical word for writing the program. During this stage, the program

is written in Visual Basic and entered into the computer. The programmer uses the

algorithm devised in Step 2 along with a knowledge of Visual Basic.

5. Test and correct: Locate and remove any errors in the program.

Testing is the process of finding errors in a program. (An error in a program is called

a bug and testing and correcting is often referred to as debugging.) As the program

is typed, Visual Basic points out certain kinds of program errors. Other kinds of

errors will be detected by Visual Basic when the program is executed; however, many

errors due to typing mistakes, flaws in the algorithm, or incorrect use of the Visual

Basic language rules, can be uncovered and corrected only by careful detective work.

An example of such an error would be using addition when multiplication was the

proper operation.

6. Complete the documentation: Organize all the material that describes the program.

Documentation is intended to allow another person, or the programmer at a later

date, to understand the program. Internal documentation (comments) consists of

statements in the program that are not executed but point out the purposes of vari-

ous parts of the program. Documentation might also consist of a detailed descrip-

tion of what the program does and how to use it (for instance, what type of input is

expected). For commercial programs, documentation includes an instruction manual

and on-line help. Other types of documentation are the flowchart, pseudocode, and

hierarchy chart that were used to construct the program. Although documentation

is listed as the last step in the program development cycle, it should take place as the

program is being coded.

1.3 Programming Tools

This section discusses some specific algorithms and describes three tools used to convert

algorithms into computer programs: flowcharts, pseudocode, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks. For instance, when-

ever you mail a letter, you must decide how much postage to put on the envelope. One rule

of thumb is to use one stamp for every five sheets of paper or fraction thereof. Suppose a

friend asks you to determine the number of stamps to place on an envelope. The following

algorithm will accomplish the task.

1. Request the number of sheets of paper; call it Sheets. (input)

2. Divide Sheets by 5. (processing)

3. If necessary, round the quotient up to a whole number; call it Stamps. (processing)

4. Reply with the number Stamps. (output)

The preceding algorithm takes the number of sheets (Sheets) as input, processes the

data, and produces the number of stamps needed (Stamps) as output. We can test the algo-

rithm for a letter with 16 sheets of paper.

1. Request the number of sheets of paper; Sheets = 16.

2. Dividing 5 into 16 gives 3.2.

3. Rounding 3.2 up to 4 gives Stamps = 4.

4. Reply with the answer, 4 stamps.

M01_SCHN2782_10_SE_C01.indd 7 2/29/16 3:03 PM

 8 ◆ Chapter 1 An Introduction to Computers and Problem Solving

Of the program design tools available, three popular ones are the following:

Flowcharts: Graphically depict the logical steps to carry out a task and show how the steps

relate to each other.

Pseudocode: Uses English-like phrases with some Visual Basic terms to outline the task.

Hierarchy charts: Show how the different parts of a program relate to each other.

■ Flowcharts

A flowchart consists of special geometric symbols connected by arrows. Within each

 symbol is a phrase presenting the activity at that step. The shape of the symbol indicates the

type of operation that is to occur. For instance, the parallelogram denotes input or output.

The arrows connecting the symbols, called flowlines, show the progression in which the

steps take place. Flowcharts should “flow” from the top of the page to the bottom. Although

the symbols used in flowcharts are standardized, no standards exist for the amount of detail

required within each symbol.

FIgure 1.7 The problem-solving process for the stamp problem.

Input
(16)

Processing
(formulas)

Output
(4)

Symbol Name Meaning

Flowline Used to connect symbols and indicate the

flow of logic.

Terminal Used to represent the beginning (Start) or

the end (End) of a task.

Input/Output Used for input and output operations.

The data to be input or output is described

in the parallelogram.

Processing Used for arithmetic and data-manipulation

operations. The instructions are listed

inside the symbol.

Decision Used for any logic or comparison operations.

Unlike the input/output and processing

symbols, which have one entry and one exit

flowline, the decision symbol has one entry

and two exit paths. The path chosen depends

on whether the answer to a question is “yes”

or “no.”

Connector Used to join different flowlines.

Annotation Used to provide additional information

about another flowchart symbol.

This problem-solving example can be illustrated by Fig. 1.7.

M01_SCHN2782_10_SE_C01.indd 8 2/29/16 3:03 PM

 1.3 Programming Tools ◆ 9

The table of the flowchart symbols shown on the previous page has been adopted by

the American National Standards Institute (ANSI). Figure 1.8 shows the flowchart for the

postage-stamp problem.

The main advantage of using a flowchart to plan a task is that it provides a graphical

representation of the task, thereby making the logic easier to follow. We can clearly see

every step and how each is connected to the next. The major disadvantage is that when a

program is very large, the flowcharts may continue for many pages, making them difficult

to follow and modify.

■ Pseudocode

Pseudocode is an abbreviated plain English version of actual computer code (hence, pseu-

docode). The geometric symbols used in flowcharts are replaced by English-like statements

that outline the process. As a result, pseudocode looks more like computer code than

does a flowchart. Pseudocode allows the programmer to focus on the steps required to

solve a problem rather than on how to use the computer language. The programmer can

describe the algorithm in Visual Basic–like form without being restricted by the rules of

Visual Basic. When the pseudocode is completed, it can be easily translated into the Visual

Basic language.

FIgure 1.8 Flowchart for the postage-stamp problem.

Start

input

processing

processing

output

End

Obtain
Sheets

Set Stamps 5
Sheets / 5

Display
Stamps

Round Stamps
up to a whole

number (if nec.)

M01_SCHN2782_10_SE_C01.indd 9 2/29/16 3:03 PM

 10 ◆ Chapter 1 An Introduction to Computers and Problem Solving

The following is pseudocode for the postage-stamp problem:

Program: Determine the proper number of stamps for a letter.

Obtain the number of sheets (Sheets) (input)

Set the number of stamps to Sheets / 5 (processing)

Round the number of stamps up to a whole number (if nec.) (processing)

Display the number of stamps (output)

Pseudocode has several advantages. It is compact and probably will not extend for many

pages as flowcharts commonly do. Also, the plan looks like the code to be written and so

is preferred by most programmers.

■ Hierarchy Chart

The last programming tool we’ll discuss is the hierarchy chart, which shows the overall

program structure. Hierarchy charts are also called structure charts, HIPO (Hierarchy

plus Input-Process-Output) charts, top-down charts, or VTOC (Visual Table of Con-

tents) charts. All these names refer to planning diagrams that are similar to a company’s

 organization chart.

Hierarchy charts depict the organization of a program but omit the specific processing

logic. They describe what each part of the program does and they show how the parts relate

to each other. The details on how the parts work, however, are omitted. The chart is read

from top to bottom and from left to right. Each part may be subdivided into a succession of

subparts that branch out under it. Typically, after the activities in the succession of subparts

are carried out, the part to the right of the original part is considered. A quick glance at

the hierarchy chart reveals each task performed in the program and where it is performed.

Figure 1.9 shows a hierarchy chart for the postage-stamp problem.

FIgure 1.9 Hierarchy chart for the postage-stamp problem.

Obtein
Sheets

Display
Stamps

Calculate
Stamps

Postage-stamp
program

Set Stamps 5
Sheets / 5

Round Stamps
up to a whole

number (if nec.)

The main benefit of hierarchy charts is in the initial planning of a program. We break

down the major parts of a program so we can see what must be done in general. From this

point, we can then refine each part into more detailed plans using flowcharts or pseudocode.

This process is called the divide-and-conquer method.

■ Decision Structure

The postage-stamp problem was solved by a series of instructions to read data, perform cal-

culations, and display results. Each step was in a sequence; that is, we moved from one line to

the next without skipping over any lines. This kind of structure is called a sequence structure.

Many problems, however, require a decision to determine whether a series of instructions

should be executed. If the answer to a question is “yes”, then one group of instructions is

M01_SCHN2782_10_SE_C01.indd 10 2/29/16 3:03 PM

 1.3 Programming Tools ◆ 11

executed. If the answer is “no”, then another is executed. This structure is called a decision

structure. Figure 1.10 contains the pseudocode and flowchart for a decision structure.

Sequence and decision structures are both used to solve the following problem.

■ Direction of Numbered NYC Streets Algorithm

Problem: Given a street number of a one-way street in New York City, decide the direction

of the street, either eastbound or westbound.

Discussion: There is a simple rule to tell the direction of a one-way street in New York City:

Even-numbered streets run eastbound.

Input: Street number.

Processing: Decide if the street number is divisible by 2.

Output: “Eastbound” or “Westbound”.

FIgure 1.10 Pseudocode and flowchart for a decision structure.

Process
step(s) 2

Is
condition

true?

No Yes

Process
step(s) 1

If condition is true Then
 Process step(s) 1
Else
 Process step(s) 2
End If

FIgure 1.11 Flowchart for the numbered New York City streets problem.

Display
Westbound

No Yes

Display
Eastbound

Start

End

Get
Street

Is
Street
even?

M01_SCHN2782_10_SE_C01.indd 11 2/29/16 3:03 PM

 12 ◆ Chapter 1 An Introduction to Computers and Problem Solving

Figures 1.11 through 1.13 show the flowchart, pseudocode, and hierarchy chart for the

numbered New York City streets problem.

■ repetition Structure

A programming structure that executes instructions many times is called a repetition structure

or a loop structure. Loop structures need a test (or condition) to tell when the loop should

end. Without an exit condition, the loop would repeat endlessly (an infinite loop). One way

to control the number of times a loop repeats (often referred to as the number of passes or

iterations) is to check a condition before each pass through the loop and continue executing the

loop as long as the condition is true. See Fig. 1.14. The solution of the next problem requires

a repetition structure.

FIgure 1.13 Hierarchy chart for the numbered New York City streets problem.

Street

direction

program

Get

street

number

Decide whether

street number

is even or odd

Display

direction

FIgure 1.12 Pseudocode for the numbered New York City streets problem.

Program: Determine the direction of a numbered NYC street.

Get street

If street is even Then

Display Eastbound

Else

Display Westbound

End If

FIgure 1.14 Pseudocode and flowchart for a loop.

Process
step(s)

Is
condition

true?

No

Yes
Do While condition is true
 Process step(s)
Loop

M01_SCHN2782_10_SE_C01.indd 12 2/29/16 3:03 PM

 1.3 Programming Tools ◆ 13

■ Class Average Algorithm

Problem: Calculate and report the average grade for a class.

Discussion: The average grade equals the sum of all grades divided by the number of students.

We need a loop to read and then add (accumulate) the grades for each student in the class. Inside

the loop, we also need to total (count) the number of students in the class. See Figs. 1.15 to 1.17.

Input: Student grades.

Processing: Find the sum of the grades; count the number of students; calculate average

grade = sum of grades / number of students.

Output: Average grade.

FIgure 1.15 Flowchart for the class average problem.

Start

counter and
sum start at 0

reguest next
grade

No

Yes

add 1 to counter

accumulate
sum of grades

find the average

display the
answer

End

Initialize
Counter and

Sum to 0

Display
Average

Set Average
to Sum/Counter

Add Grade
to Sum

Increment
Counter

Get next
Grade

Are
there more

data?

M01_SCHN2782_10_SE_C01.indd 13 2/29/16 3:03 PM

 14 ◆ Chapter 1 An Introduction to Computers and Problem Solving

■ Comments

1. Tracing a flowchart is like playing a board game. We begin at the Start symbol and proceed

from symbol to symbol until we reach the End symbol. At any time, we will be at just one

symbol. In a board game, the path taken depends on the result of spinning a spinner or

rolling a pair of dice. The path taken through a flowchart depends on the input.

2. The algorithm should be tested at the flowchart stage before being coded into a program.

Different data should be used as input, and the output checked. This process is known

as desk checking. The test data should include nonstandard data as well as typical data.

3. Flowcharts, pseudocode, and hierarchy charts are universal problem-solving tools. They

can be used to plan programs for implementation in many computer languages, not just

Visual Basic.

4. Flowcharts are used throughout this text to provide a visualization of the flow of certain

programming tasks and Visual Basic control structures. Major examples of pseudocode

and hierarchy charts appear in the case studies.

5. Flowcharts are time-consuming to write and difficult to update. For this reason, profes-

sional programmers are more likely to favor pseudocode and hierarchy charts. Because

flowcharts so clearly illustrate the logical flow of programming techniques, they are a

valuable tool in the education of programmers.

6. There are many styles of pseudocode. Some programmers use an outline form, whereas

others use a form that looks almost like a programming language. The pseudocode

appearing in the case studies of this text focuses on the primary tasks to be performed

by the program and leaves many of the routine details to be completed during the coding

process. Several Visual Basic keywords, such as “If”, “Else”, “Do”, and “While”, are

used extensively in the pseudocode appearing in this text.

FIgure 1.17 Hierarchy chart for the class average problem.

Class
Average
Problem

Get
Grade

Compute Sum and
Number of Grades

Calculate
Average

Display
Average

Program: Calculate and report the average grade of a class.

Initialize Counter and Sum to 0

Do While there are more data

Get the next Grade

Increment the Counter

Add the Grade to the Sum

Loop

Compute Average = Sum/Counter

Display Average

FIgure 1.16 Pseudocode for the class average problem.

M01_SCHN2782_10_SE_C01.indd 14 2/29/16 3:03 PM

15

2

2.1 An Introduction to Visual Basic 2015 16

◆ Why Windows and Why Visual Basic? ◆ How You Develop a Visual Basic Program

2.2 Visual Basic Controls 18

◆ Starting a New Visual Basic Program ◆ An Important Setting

◆ A Text Box Walkthrough

◆ A Button Walkthrough ◆ A Label Walkthrough ◆ A List Box Walkthrough

◆ The Name Property ◆ Fonts ◆ Auto Hide ◆ Positioning and Aligning Controls

◆ Multiple Controls ◆ Setting Tab Order

2.3 Visual Basic Events 37

◆ An Event Procedure Walkthrough ◆ Properties and Event Procedures of the Form

◆ The Header of an Event Procedure ◆ Opening a Program

Summary 52

Visual Basic, Controls, and Events

M02_SCHN2782_10_SE_C02.indd 15 2/29/16 3:03 PM

 16 ◆ Chapter 2 Visual Basic, Controls, and Events

2.1 An Introduction to Visual Basic 2015

Visual Basic 2015 is the latest generation of Visual Basic, a language used by many software

developers. Visual Basic was designed to make user-friendly programs easier to develop.

Prior to the creation of Visual Basic, developing a friendly user interface usually required

a programmer to use a language such as C or C+ + , often requiring hundreds of lines of

code just to get a window to appear on the screen. Now the same program can be created

in much less time with fewer instructions.

■  Why Windows and Why Visual Basic?

What people call graphical user interfaces, or GUIs, have revolutionized the software

industry. Instead of the confusing textual prompts that earlier users once saw, today’s users

are presented with such devices as icons, buttons, and drop-down lists that respond to

mouse clicks. Accompanying the revolution in how programs look was a revolution in

how they feel. Consider a program that requests information for a database. Figure 2.1

shows how a program written before the advent of GUIs got its information. The program

requests the six pieces of data one at a time, with no opportunity to go back and alter pre-

viously entered information. Then the screen clears and the six inputs are again requested

one at a time.

FIgurE 2.2 Input screen of a Visual Basic program to fill a database.

FIgurE 2.1 Input screen of a pre-Visual Basic program to fill a database.

Enter name (Enter EOD to terminate): Mr. President

Enter Address: 1600 Pennsylvania Avenue

Enter City: Washington

Enter State: DC

Enter Zip code: 20500

Enter Phone Number: 202-456-1414

Figure 2.2 shows how an equivalent Visual Basic program gets its information. The

boxes may be filled in any order. When the user clicks on a box with the mouse, the cursor

moves to that box. The user can either type in new information or edit the existing infor-

mation. When satisfied that all the information is correct, the user clicks on the Write to

Database button. The boxes will clear, and the data for another person can be entered. After

all names have been entered, the user clicks on the Exit button. In Fig. 2.1, the program is

in control; in Fig. 2.2, the user is in control!

M02_SCHN2782_10_SE_C02.indd 16 2/29/16 3:03 PM

 2.1 An Introduction to Visual Basic 2015 ◆ 17

■  How You Develop a Visual Basic Program

A key element of planning a Visual Basic program is deciding what the user sees—in other

words, designing the user interface. What data will he or she be entering? How large a win-

dow should the program use? Where will you place the buttons the user clicks on to activate

actions in the program? Will the program have places to enter text (text boxes) and places

to display output? What kind of warning boxes (message boxes) should the program use?

In Visual Basic, the responsive objects a program designer places on windows are called

controls. Two features make Visual Basic different from traditional programming tools:

1. You literally draw the user interface, much like using a paint program.

2. Perhaps more important, when you’re done drawing the interface, the buttons, text

boxes, and other objects that you have placed in a blank window will automatically rec-

ognize user actions such as mouse movements and button clicks. That is, the sequence

of procedures executed in your program is controlled by “events” that the user initiates

rather than by a predetermined sequence of procedures in your program.

In any case, only after you design the interface does anything like traditional program-

ming occur. Objects in Visual Basic recognize events like mouse clicks. How the objects

respond to them depends on the instructions you write. You always need to write instruc-

tions in order to make controls respond to events. This makes Visual Basic programming

fundamentally different from traditional programming. Programs in traditional program-

ming languages ran from the top down. For these programming languages, execution started

from the first line and moved with the flow of the program to different parts as needed. A

Visual Basic program works differently. Its core is a set of independent groups of instruc-

tions that are activated by the events they have been told to recognize. This event-driven

methodology is a fundamental shift. The user decides the order in which things happen,

not the programmer.

Most of the programming instructions in Visual Basic that tell your program how to

respond to events like mouse clicks occur in what Visual Basic calls event procedures. Essen-

tially, anything executable in a Visual Basic program either is in an event procedure or is

used by an event procedure to help the procedure carry out its job. In fact, to stress that

Visual Basic is fundamentally different from traditional programming languages, Microsoft

uses the term project or application, rather than program, to refer to the combination of

programming instructions and user interface that makes a Visual Basic program possible.

Here is a summary of the steps you take to design a Visual Basic program:

1. Design the appearance of the window that the user sees.

2. Determine the events that the controls on the window should respond to.

3. Write the event procedures for those events.

Now here is what happens when the program is running:

1. Visual Basic monitors the controls in the window to detect any event that a control can

recognize (mouse movements, clicks, keystrokes, and so on).

2. When Visual Basic detects an event, it examines the program to see if you’ve written

an event procedure for that event.

3. If you have written an event procedure, Visual Basic executes the instructions that make

up that event procedure and goes back to Step 1.

4. If you have not written an event procedure, Visual Basic ignores the event and goes

back to Step 1.

M02_SCHN2782_10_SE_C02.indd 17 2/29/16 3:03 PM

 18 ◆ Chapter 2 Visual Basic, Controls, and Events

These steps cycle continuously until the program ends. Usually, an event must happen

before Visual Basic will do anything. Event-driven programs are more reactive than active—

and that makes them more user friendly.

2.2 Visual Basic Controls

Visual Basic programs display a Windows-style screen (called a form) with boxes into which

users type (and in which users edit) information and buttons that they click on to initiate

actions. The boxes and buttons are referred to as controls. In this section, we examine forms

and four of the most useful Visual Basic controls.

■  Starting a New Visual Basic Program

Each program is saved (as several files and subfolders) in its own folder. Before writing your

first program, you should use File Explorer (with Windows 8 or 10) or Windows Explorer

(with Windows 7) to create a folder to hold your programs.

The process for starting Visual Basic varies slightly with the version of Windows and

the edition of Visual Studio installed on the computer. Some possible sequences of steps

are shown below.

Windows 7 Click the Windows Start button, click All Programs, and then click on

“Microsoft Visual Studio 2015.”

Windows 8 and 8.1 Click the tile labeled “Visual Studio 2015.” If there is no such tile,

click on Search in the Charms bar, select the Apps category, type “Visual Studio” into the

Search box in the upper-right part of the screen, and click on the rectangle labeled “Visual

Studio 2015” that appears on the left side of the screen.

Windows 10 Click the Windows Start button, click All apps, and then click on Visual

Studio 2015. Or, click on the tile labeled Visual Studio 2015.

Figure 2.3 shows the top part of the screen after Visual Basic is started. A Menu bar

and a Toolbar are at the top of the screen. These two bars, with minor variations, are always

FIgurE 2.3 Visual Basic opening screen.

Menu bar

Toolbar

M02_SCHN2782_10_SE_C02.indd 18 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 19

present while you are working with Visual Basic. The remainder of the screen is called the

Start Page. Some tasks can be initiated from the Menu bar, the Toolbar, and the Start Page.

We will usually initiate them from the Menu bar or the Toolbar.

The first item on the Menu bar is File. Click on File, hover over (or click on) New, and

then click on Project to produce a New Project dialog box. (Alternately, press Alt/F/N/P or

Ctrl+Shift+N.) Figure 2.4 shows a New Project dialog box produced by the Visual Basic

Community 2015 edition. Your screen might look somewhat different than Fig. 2.4 even if

you are using the Visual Basic Community 2015 edition.

Select Visual Basic in the Templates list on the left side of Fig. 2.4, and select Windows

Forms Application in the center list. Note: The number of items in the center list will vary

depending on the edition of Visual Studio you are using.

The name of the program, initially set to WindowsApplication1, can be specified at this

time. Since we will have a chance to change it later, let’s just use the name WindowsApplica-

tion1 for now. Click on the OK button to invoke the Visual Basic programming environ-

ment. See Fig. 2.5 on the next page. The Visual Basic programming environment is referred

to as the Integrated Development Environment or IDE. The IDE contains the tools for

writing, running, and debugging programs.

It is possible that your screen will look different than Fig. 2.5. The IDE is extremely

configurable. Each window in Fig. 2.5 can have its location and size altered. New win-

dows can be displayed in the IDE, and any window can be closed or hidden behind

a tab. For instance, in Fig. 2.5 the Toolbox window is hidden behind a tab. The View

menu is used to add additional windows to the IDE. If you would like your screen to

look similar to Fig. 2.5, click on Reset Windows Layout in the Window menu, and then

click on the Yes button.

The Menu bar of the IDE displays the menus of commands you use to work with

Visual Basic. Some of the menus, like File, Edit, View, and Window, are common to most

Windows applications. Others, such as Project, Debug, and Data, provide commands spe-

cific to programming in Visual Basic.

The Toolbar holds a collection of buttons that carry out standard operations when

clicked. For example, you use the sixth button, which looks like two diskettes, to save the

FIgurE 2.4 The Visual Basic New Project dialog box.

M02_SCHN2782_10_SE_C02.indd 19 2/29/16 3:03 PM

 20 ◆ Chapter 2 Visual Basic, Controls, and Events

files associated with the current program. To reveal the purpose of a Toolbar button, hover

the mouse pointer over it. The little information rectangle that pops up is called a tooltip.

The Document window currently holds the rectangular Form window, or form for

short. (The Form window is also known as the form designer window or the design win-

dow.) The form becomes a Windows window when a program is executed. Most informa-

tion displayed by the program appears on the form. The information usually is displayed

in controls that the programmer has placed on the form. Note: You can change the size of

the form by dragging one of its sizing handles.

The Properties window is used to change the initial appearance and behavior of objects

on the form. Some (but not all) properties and appearances can be changed by code.

The Solution Explorer window displays the files associated with the program and pro-

vides access to the commands that pertain to them. (Note: If the Solution Explorer or the

Properties window is not visible, click on it in the View menu.)

The Toolbox holds icons representing objects (called controls) that can be placed on

the form. If your screen does not show the Toolbox, hover the mouse over the Toolbox tab

at the left side of the screen. The Toolbox will come into view. Then click on the pushpin

icon in the title bar at the top of the Toolbox to keep the Toolbox permanently displayed

in the IDE. (Note: If there is no tab marked Toolbox, click on Toolbox in the View menu.)

The controls in the Toolbox are grouped into categories such as All Windows Forms

and Common Controls. Figure 2.6 shows the Toolbox after the Common Controls group has

been expanded. Most of the controls discussed in this text can be found in the list of com-

mon controls. (You can obtain a description of a control by hovering the mouse over the

control.) The four controls discussed in this chapter are text boxes, labels, buttons, and list

boxes. In order to see all the group names, collapse each of the groups.

FIgurE 2.5 The Visual Basic Integrated Development Environment in Form Designer mode.

Form

Menu bar

Toolbar

Toolbox
tab

Form Designer
tab

Document
window

Solution Explorer
window

Properties
window

Sizing handle

M02_SCHN2782_10_SE_C02.indd 20 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 21

Text boxes: Text boxes are used to get information from the user, referred to as input, or to

display information produced by the program, referred to as output.

Labels: Labels are placed near text boxes to tell the user what type of information is dis-

played in the text boxes.

Buttons: The user clicks on a button to initiate an action.

List boxes: In the first part of this book, list boxes are used to display output. Later, they

are used to make selections.

■  An Important Setting

The process of naming and saving programs can proceed in two different ways. In this

book, we do not require that a program be given a name until it is saved. The following

steps guarantee that Visual Basic will follow that practice.

1. Click on Options from the Tools menu to display an Options dialog box.

2. Click on the Projects and Solutions item in the left pane of the Options dialog box.

3. If the box labeled “Save new projects when created” is checked, uncheck it.

4. Click on the OK button.

5. Open the File menu in the Toolbar and click on Close Solution. Note: If a dialog box

appears and asks you if you want to save or discard changes to the current project, click

on the Discard button.

FIgurE 2.6 The Toolbox’s common controls.

Group names

Pushpin

M02_SCHN2782_10_SE_C02.indd 21 2/29/16 3:03 PM

 22 ◆ Chapter 2 Visual Basic, Controls, and Events

■  A Text Box Walkthrough

Place a text box on a form

1. Start a new Visual Basic program.

2. Double-click on the TextBox control () in the Common Controls group of

the Toolbox.

A rectangle with three small squares appears at the upper-left corner of the form.

The square on the top of the text box, called the Tasks button, can be used to set

the MultiLine property of the text box. The squares on the left and right sides of

the text box are called sizing handles. See Fig. 2.7. An object showing its handles is

said to be selected. A selected text box can have its width altered, location changed,

and other properties modified. You alter the width of the text box by dragging one

of its sizing handles.

FIgurE 2.7 Setting the Text property.

3. Move the mouse cursor to any point in the interior of the text box, hold down the left

mouse button, and drag the text box to the center of the form.

4. Click anywhere on the form outside the rectangle to deselect the text box.

5. Click on the rectangle to reselect the text box.

6. Hover the mouse over the handle in the center of the right side of the text box until

the cursor becomes a double-arrow, hold down the left mouse button, and move the

mouse to the right.

The text box is stretched to the right. Similarly, grabbing the handle on the left side

and moving the mouse to the left stretches the text box to the left. You also can use the

handles to make the text box smaller. Steps 2, 3, and 6 allow you to place a text box of

any width anywhere on the form. Note: The text box should now be selected; that is, its

sizing handles should be showing. If not, click anywhere inside the text box to select it.

7. Press the Delete key to remove the text box from the form.

Step 8 gives an alternative way to place a text box of any width at any location on

the form.

8. Click on the text box icon in the Toolbox, move the mouse pointer to any place on the

form, hold down the left mouse button, drag the mouse on a diagonal, and release the

mouse button to create a selected text box.

You can now alter the width and location as before. Note: The text box should now be

selected. If not, click anywhere inside the text box to select it.

Activate, move, and resize the Properties window

9. Press F4 to activate the Properties window.

You also can activate the Properties window by clicking on it, clicking on Properties

 Window from the View menu, or right-clicking on the text box with the mouse but-

ton and selecting Properties from the context menu that appears. See Fig. 2.8. The

first line of the Properties window (called the Object box) reads “TextBox1”, etc.

VideoNote

Textbox

Walkthrough

M02_SCHN2782_10_SE_C02.indd 22 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 23

TextBox1 is the current name of the text box. The third button in the row of buttons

below the Object box, the Properties button A B, is normally highlighted. If not,

click on it. The left column of the Properties window gives the available properties,

and the right column gives the current settings of the properties. The first two buttons

A B in the row of buttons below the Object box permit you to view the list of

properties either grouped into categories or alphabetically. You can use the up- and

down-arrow keys (or the scroll arrows, scroll box, or the mouse scroll wheel) to move

through the list of properties.

FIgurE 2.8 Text box Properties window.

Name of
currently
selected
control

Categorized view

Description
pane

Object
box

Scroll
arrow

Scroll
box

Alphabetic view

10. Click on the Properties window’s title bar and drag the window to the center of the

screen.

The Properties window is said to be floating or undocked. Some people find a

floating window easier to work with.

11. Drag the lower-right corner of the Properties window to change the size of the Proper-

ties window.

An enlarged window will show more properties at once.

12. Hold down the Ctrl key and double-click on the title bar.

The Properties window will return to its original docked location. We now will discuss

four properties in this walkthrough.

Set four properties of the text box

Assume that the text box is selected and its Properties window activated.

Note 1: The third and fourth buttons below the Object box, the Properties button and the

Events button, determine whether properties or events are displayed in the Properties

window. Normally the Properties button is highlighted. If not, click on it.

Note 2: If the Description pane is not visible, right-click on the Properties window, then

click on Description. The Description pane describes the currently highlighted property.

13. Move to the Text property with the up- and down-arrow keys (alternatively, scroll until

the Text property is visible, and click on the property).

The Text property, which determines the words displayed in the text box, is now high-

lighted. Currently, there is no text displayed in the Text property’s Settings box on its right.

M02_SCHN2782_10_SE_C02.indd 23 2/29/16 3:03 PM

 24 ◆ Chapter 2 Visual Basic, Controls, and Events

14. Type your first name, and then press the Enter key or click on another property. Your

name now appears in both the Settings box and the text box. See Fig. 2.9.

FIgurE 2.9 Setting the Text property.

(b)(a)

FIgurE 2.10 Setting the ForeColor property.

15. Click at the beginning of your name in the Text Settings box, and add your title, such

as Mr., Ms., or The Honorable. Then, press the Enter key.

If you mistyped your name, you can easily correct it now.

16. Use the mouse scroll wheel to move to the ForeColor property, and then click on it.

The ForeColor property determines the color of the text displayed in the text box.

17. Click on the down-arrow button A B in the right part of the Settings box, and then

click on the Custom tab to display a selection of colors. See Fig. 2.10.

18. Click on one of the colors, such as blue or red.

Notice the change in the color of your name.

19. Select the Font property with a single click of the mouse, and click on the ellipsis button

A B in the right part of its Settings box.

The Font dialog box in Fig. 2.11 is displayed. The three lists give the current name

(Microsoft Sans Serif), current style (Regular), and current size (8 point) of the font.

You can change any of these attributes by clicking on an item in its list or by typing into

the box at the top of the list.

M02_SCHN2782_10_SE_C02.indd 24 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 25

20. Click on Bold in the Font style list, click on 12 in the Size list, and click on the OK button.

Your name is now displayed in a larger bold font. The text box will expand so that it

can accommodate the larger font.

21. Click on the text box and resize it to be about 3 inches wide.

Visual Basic programs consist of three parts: interface, values of properties, and code.

Our interface consists of a form with a single object—a text box. We have set a few

properties for the text box—the text (namely, your name), the foreground color, the font

style, and the font size. In Section 2.3, we discuss how to place code into a program.

Visual Basic endows certain capabilities to programs that are independent of any code

we write. We will now run the current program without adding any code and experi-

ence these capabilities.

Run and end the program

22. Click on the Start button A B on the Toolbar to run the program.

Alternatively, you can press F5 to run the program or can click on Start Debugging

in the Debug menu. After a brief delay, a copy of the form appears with your name

highlighted.

23. Press the End key to move the cursor to the end of your name, type in your last name,

and then keep typing.

Eventually, the words will scroll to the left.

24. Press the Home key to return to the beginning of your name.

The text box functions like a miniature word processor. You can place the cursor any-

where you like in order to add or delete text. You can drag the cursor across text to

select a block, place a copy of the block in the Clipboard with Ctrl+C, and then dupli-

cate it elsewhere with Ctrl+V.

FIgurE 2.11 The Font dialog box.

M02_SCHN2782_10_SE_C02.indd 25 2/29/16 3:03 PM

 26 ◆ Chapter 2 Visual Basic, Controls, and Events

25. Click on the Stop Debugging button A B on the Toolbar to end the program.

Alternately, you can end the program by clicking on the form’s Close button A B,
clicking on Stop Debugging in the Debug menu, or pressing Alt+F4.

26. Select the text box, activate the Properties window, select the ReadOnly property, click

on the down-arrow button A B, and finally click on True.

Notice that the background color of the text box has turned gray.

27. Run the program, and try typing into the text box. You can’t.

Such a text box is used for output. Only code can display information in the text box.

(Note: In this textbook, whenever a text box will be used only for the purpose of dis-

playing output, we will always set the ReadOnly property to True.)

28. End the program.

Saving and closing the program

29. Click on the Toolbar’s Save All button A B to save the work done so far.

Alternatively, you can click on Save All in the File menu. The dialog box in Fig. 2.12 will

appear to request a name and the location where the program is to be saved.

FIgurE 2.12 The Save Project dialog box.

30. Type a name for the program, such as “VBdemo”.

Use Browse to locate a folder. (This folder will automatically be used the next time you

click on the Save All button.) The files for the program will be saved in a subfolder of

the selected folder.

Important: If the “Create directory for solution” check box is checked, then click on

the check box to uncheck it.

31. Click on the Save button.

32. Click on Close Solution in the File menu.

In the next step we reload the program.

33. Hover over (or click on) Open in the File menu and then click on Project/Solution in the

context menu that drops down. Navigate to the folder corresponding to the program

you just saved, double-click on the folder, and double-click on the file with extension sln.

If you do not see the Form Designer for the program, double-click on Form1.vb in the

Solution Explorer. The program now exists just as it did after Step 28. You can now

modify the program and/or run it. (Note: You can also carry out the task in the first

sentence by pressing Alt/F/O/P or Ctrl+Shift+O.)

34. Click on Close Solution in the File menu to close the program.

M02_SCHN2782_10_SE_C02.indd 26 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 27

■ A Button Walkthrough

Place a button on a form

1. Click on the New Project button A B on the Toolbar and begin a new program.

2. Double-click on the Button control () in the Toolbox to place a button on

the form. The Button control is the second item in the Common Controls group of the

Toolbox.

3. Drag the button to the center of the form.

4. Activate the Properties window, highlight the Text property, type “Please Push Me”,

and press the Enter key.

The button is too small to accommodate the phrase. See Fig. 2.13.

FIgurE 2.13 Setting the Text property.

(a) (b)

5. Click on the button to select it, and then drag the right-hand sizing handle to widen the

button so that it can accommodate the phrase “Please Push Me” on one line.

Alternately, you can drag the bottom sizing handle down and have the phrase displayed

on two lines.

6. Run the program, and click on the button.

The color of the button turns blue when the mouse hovers over it. In Section 2.3, we

will write code that is executed when a button is clicked on.

7. End the program and select the button.

8. From the Properties window, edit the Text setting by inserting an ampersand (&) before

the first letter P, and then press the Enter key.

Notice that the first letter P on the button is now underlined. See Fig. 2.14. Pressing Alt+P

while the program is running causes the same event to occur as does clicking the button.

Here, P is referred to as the access key for the button. (The access key is always the character

following the ampersand.)

FIgurE 2.14 Designating P as an access key.

(a) (b)

VideoNote

Button

Walkthrough

M02_SCHN2782_10_SE_C02.indd 27 2/29/16 3:03 PM

 28 ◆ Chapter 2 Visual Basic, Controls, and Events

9. Click on Close Solution in the File menu to close the program.

There is no need to save this program, so click on the Discard button.

■  A Label Walkthrough

1. Click on the New Project button on the Toolbar and begin a new program.

Feel free to keep the default name, such as WindowsApplication1.

2. Double-click on the Label control () in the Toolbox to place a label on the

form.

3. Drag the label to the center of the form.

4. Activate the Properties window, highlight the Text property, type “Enter Your Phone

Number:”, and press the Enter key.

Such a label is placed next to a text box into which the user will type a phone number.

Notice that the label widened to accommodate the text. This happened because the

AutoSize property of the label is set to True by default.

5. Change the AutoSize property to False and press Enter.

Notice that the label now has eight sizing handles when selected.

6. Make the label narrower and longer until the words occupy two lines.

7. Activate the Properties window, and click on the down arrow to the right of the set-

ting for the TextAlign property. Experiment by clicking on the various rectangles and

observing their effects.

The combination of sizing and alignment permits you to design a label easily.

8. Run the program.

Nothing happens, even if you click on the label. Labels just sit there. The user cannot

change what a label displays unless you write code to make the change.

9. End the program.

10. Click on Close Solution in the File menu to close the program.

There is no need to save this program, so click on the Discard button.

■ A List Box Walkthrough

1. Click on the New Project button on the Toolbar and begin a new program.

Feel free to keep the default name, such as WindowsApplication1.

2. Place a ListBox control () on the form.

3. Press F4 to activate the Properties window and notice that the list box does not have a

Text property.

The word ListBox1 that appears is actually the setting for the Name property.

4. Place a text box, a button, and a label on the form.

5. Click on the Object box just below the title bar of the Properties window.

The name of the form and the names of the four controls are displayed. If you click

on one of the names, that object will become selected and its properties displayed in

the Properties window.

6. Run the program.

Notice that the word ListBox1 has disappeared, but the words Button1 and Label1 are

still visible. The list box is completely blank. In subsequent sections, we will write code

to place information into the list box.

7. End the program.

M02_SCHN2782_10_SE_C02.indd 28 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 29

8. Click on Close Solution in the File menu to close the program.

There is no need to save this program, so click on the Discard button.

■  The Name Property

The form and each control on it has a Name property. By default, the form is given the name

Form1 and controls are given names such as TextBox1 and TextBox2. These names can (and

should) be changed to descriptive ones that reflect the purpose of the form or control. Also,

it is a good programming practice to have each name begin with a three-letter prefix that

identifies the type of the object. See Table 2.1.

Object Prefix Example

form frm frmPayroll

button btn btnComputeTotal

label lbl lblAddress

list box lst lstOutput

text box txt txtCity

TABLE 2.1 Some three-letter prefixes.

The Solution Explorer window contains a file named Form1.vb that holds information

about the form. Form1 is also the setting of the form’s Name property in the Properties

window. If you change the base name of the file Form1.vb, the setting of the Name property

will automatically change to the new name. To make the change, right-click on Form1.vb in

the Solution Explorer window, click on Rename in the context menu that appears, type in a

new name (such as frmPayroll.vb), and press the Enter key. Important: Make sure that the

new filename keeps the extension vb.

The name of a control placed on a form is changed from the control’s Properties win-

dow. (The Name property is always the third property in the alphabetized list of properties.)

Names of controls and forms must begin with a letter and can include numbers, letters, and

underscore (_) characters, but cannot include punctuation marks or spaces.

The Name and Text properties of a button are both initially set to something like But-

ton1. However, changing one of these properties does not affect the setting of the other

properties, and similarly for the Name and Text properties of forms, text boxes, and labels.

The Text property of a form specifies the words appearing in the form’s title bar.

■ Fonts

The default font for controls is Microsoft Sans Serif. Courier New is another commonly

used font. Courier New is a fixed-width font; that is, each character has the same width.

With such a font, the letter i occupies the same space as the letter m. Fixed-width fonts are

used with tables when information is to be aligned in columns.

■ Auto Hide

The Auto Hide feature allows you to make more room on the screen for the Document win-

dow by hiding windows (such as the Toolbox, Solution Explorer, and Properties windows).

Let’s illustrate the feature with a walkthrough using the Toolbox window.

1. If the Toolbox window is not visible, click on Toolbox in the Menu bar’s View menu

to see the window.

Auto Hide is enabled when the pushpin icon is horizontal A B. When the Auto Hide

feature is enabled, the Toolbox window will move out of view when not needed.

M02_SCHN2782_10_SE_C02.indd 29 2/29/16 3:03 PM

 30 ◆ Chapter 2 Visual Basic, Controls, and Events

2. If the pushpin icon is vertical A B, then click on the icon to make it horizontal.

The Auto Hide feature is now enabled.

3. Press Ctrl+Alt+X to display the Toolbox, and then move the mouse cursor somewhere

outside the Toolbox window and click the left mouse button.

The window becomes a tab captioned Toolbox on the left side of the screen.

4. Click on the tab.

The window comes into view and is ready for use. After you click outside the window,

it will return back into the tab.

5. Click on the pushpin icon to make it vertical.

The Auto Hide feature is now disabled.

6. Click the mouse cursor somewhere outside the Toolbox window.

The Toolbox window stays fixed. Note: We recommend keeping Auto Hide disabled

for the Toolbox, Solution Explorer, and Properties windows unless you are creating a

program with a very large form and need extra space.

■  Positioning and Aligning Controls

Visual Basic provides several tools for positioning and aligning controls on a form. Proximity

lines are short line segments that help you place controls a comfortable distance from each

other and from the sides of the form. Snap lines are horizontal and vertical line segments that

help you align controls. The Format menu is used to align controls, center controls horizon-

tally and vertically in a form, and make a group of selected controls the same size.

A Positioning and Aligning Walkthrough

1. Begin a new program.

2. Place a button near the center of the form.

3. Drag the button toward the upper-right corner of the form until two short line segments

appear. The line segments are called proximity lines. See Fig. 2.15(a). The button is now

a comfortable distance from each of the two sides of the form.

FIgurE 2.15 Positioning controls.

Proximity
line

Snap
line

(a) (b)

(c) (d)

M02_SCHN2782_10_SE_C02.indd 30 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 31

4. Place a second button below the first button and drag it upward until a proximity line

appears between the two buttons.

The buttons are now a comfortable distance apart.

5. Resize and position the two buttons as shown in Fig. 2.15(b).

6. Drag Button2 upward until a blue line appears along the bottoms of the two buttons.

See Fig. 2.15(c). This blue line is called a snap line. The bottoms of the two buttons

are now aligned.

7. Continue dragging Button2 upward until a purple snap line appears just underneath

the words Button1 and Button2.

See Fig. 2.15(d). The texts in the two buttons are now aligned. If we were to continue

dragging Button2 upward, a blue snap line would tell us when the tops were aligned.

Steps 8 and 9 present another way to align the tops of the controls.

8. Click on Button1 and then hold down the Ctrl key and click on Button2.

After the mouse button is released, both buttons will be selected. Note: This process (called

selection of multiple controls) can be repeated to select a group of any number of controls.

9. With the two buttons still selected, open the Format menu in the Menu bar, hover over

Align, and click on Tops.

The tops of the two buttons are now aligned. Precisely, Button1 (the first button selected)

will stay fixed, and Button2 will move up so that its top is aligned with the top of But-

ton1. The Align submenu also is used to align middles or corresponding sides of a group

of selected controls. Some other useful submenus of the Format menu are as follows:

Make Same Size: Equalize the width and/or height of the controls in a group of selected

controls.

Center in Form: Center a selected control either horizontally or vertically in a form.

Vertical Spacing: Equalize the vertical spacing between a column of three or more

selected controls.

Horizontal Spacing: Equalize the horizontal spacing between a row of three or more

selected controls.

10. With the two buttons still selected, open the Properties window and set the ForeColor

property to blue.

Notice that the ForeColor property has been altered for both buttons. Actually, any

property that is common to every control in a group of selected multiple controls can

be set simultaneously for the entire group of controls.

■  Multiple Controls

When a group of controls are selected with the Ctrl key, the first control selected (called

the dominant control of the group) will have white sizing handles, while the other controls

will have black sizing handles. All alignment and sizing statements initiated from the Format

menu will keep the dominant control fixed and will align (or size) the other controls with

respect to the dominant control. You can designate a different control to be the dominant

control by clicking on it.

After multiple controls have been selected, they can be dragged, deleted, and have properties

set as a group. The arrow keys also can be used to move and size multiple controls as a group.

A group of multiple controls also can be selected by clicking the mouse outside the con-

trols, dragging it across the controls, and releasing it. The Select All command from the Edit

menu (or the key combination Ctrl+A) causes all the controls on the form to be selected.

M02_SCHN2782_10_SE_C02.indd 31 2/29/16 3:03 PM

 32 ◆ Chapter 2 Visual Basic, Controls, and Events

■  Setting Tab Order

At any time, only one control can receive user input through the keyboard. That control

is said to have the focus. When a text box has the focus, there is a blinking cursor inside it.

Whenever the Tab key is pressed while a program is running, the focus moves from

one control to another. The following walkthrough explains how to determine the order in

which the focus moves and how that order can be changed.

1. Start a new program.

2. Place a button, a text box, and a list box on the form.

3. Run the program, and successively press the Tab key.

Notice that the controls receive the focus in the order they were placed on the form.

4. End the program.

5. Click on Tab Order in the View menu.

The screen appears as in Fig. 2.16(a). The controls are numbered from 0 to 2 in the order

they were created. Each of the numbers is referred to as a tab index.

FIgurE 2.16 Tab order.

(a) (b)

6. Click on the list box, then the text box, and finally the button.

Notice that the tab indexes change as shown in Fig. 2.16(b).

7. Click again on Tab Order in the View menu to set the new tab order.

8. Run the program again, and successively press the Tab key.

Notice that the controls receive the focus according to the new tab order.

9. End the program.

10. Add a label to the form, rerun the program, and successively press the Tab key.

Notice that the label does not receive the focus. Whether or not a control can receive

the focus is determined by the setting of its TabStop property. By default, the setting

of the TabStop property is True for buttons, text boxes, and list boxes, and False for

labels. In this book we always use these default settings. Note: Even though labels do not

receive the focus while tabbing, they are still assigned a tab index.

■  Comments

1. While you are working on a program, the program resides in memory. Removing a pro-

gram from memory is referred to as closing the program. A program is automatically

closed when you begin a new program. Also, it can be closed directly with the Close

Solution command from the File menu.

2. Three useful properties that have not been discussed are the following:

(a) BackColor: This property specifies the background color for the form or a control.

M02_SCHN2782_10_SE_C02.indd 32 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 33

(b) Visible: Setting the Visible property to False causes an object to disappear when the
program is run. The object can be made to reappear with code.

(c) Enabled: Setting the Enabled property of a control to False restricts its use. It
appears grayed and cannot receive the focus. Controls sometimes are disabled tem-
porarily when they are not needed in the current state of the program.

3. Most properties can be set or altered with code as the program is running instead

of being preset from the Properties window. For instance, a button can be made to

disappear with a line such as Button1.Visible = False. The details are presented in

Section 2.3.

4. If you inadvertently double-click on a form, a window containing text will appear. (The

first line is Public Class Form1.) This is the Code Editor, which is discussed in the next

section. To return to the Form Designer, click on the tab at the top of the Document

window labeled “Form1.vb [Design].”

5. We have seen two ways to place a control onto a form. Another way is to just click on

the control in the Toolbox and then drag the control from the Toolbox to the location

in the form.

6. There is a small down-arrow button on the right side of the Text property setting box.

When you click on that button, a rectangular box appears. The setting for the Text

 property can be typed into this box instead of into the Settings box. This method

of specifying the setting is especially useful when you want a button to have a multi-

line caption.

7. We recommend setting the StartPosition property of the form to CenterScreen. With

this setting the form will appear in the center of the screen when the program is run.

8. Refer to the properties windows in Fig. 2.8. If you click on the button at the right side

of the Properties window’s Object box, a list showing all the controls on the form will

drop down. You can then click on one of the controls to make it the selected control.

9. Exercises 35 through 47 develop additional techniques for manipulating and accessing

controls placed on a form. We recommend that you work these exercises whether or

not they are assigned by your instructor.

Practice Problems 2.2

1. What is the difference between the Text and the Name properties of a button?

2. The first two group names in the Toolbox are All Windows Forms and Common Controls.

How many groups are there?

ExErCISES 2.2

1. Create a form with two buttons, run the program, and click on each button. What do

you notice different about a button after it has been clicked?

2. While a program is running, a control is said to lose focus when the focus moves from

that control to another control. Give three ways the user can cause a control to lose

focus.

M02_SCHN2782_10_SE_C02.indd 33 2/29/16 3:03 PM

 34 ◆ Chapter 2 Visual Basic, Controls, and Events

In Exercises 3 through 24, carry out the task.

3. Place “CHECKING ACCOUNT” in the title bar of a form.

4. Create a text box containing the words “PLAY IT, SAM” in blue letters.

5. Create a text box with a yellow background.

6. Create a text box named txtGreeting and containing the word “HELLO” in large italic

letters.

7. Create a label containing the sentence “After all is said and done, more is said than

done.” The sentence should occupy three lines, and each line should be centered hori-

zontally in the label.

8. Create a read-only text box containing the words “Visual Basic” in bold white letters

on a red background.

9. Create a text box named txtLanguage containing the words “Visual Basic 2015” in

Courier New font.

10. Create a yellow button named btnPush containing the word “PUSH”.

11. Create a white button containing the word “PUSH” in large italic letters.

12. Create a button containing the word “PUSH” in bold letters with the letter P underlined.

13. Create a button containing the word “PUSH” with the letter H as the access key.

14. Create a label containing the word “ALIAS” in white on a blue background.

15. Create a label named lblAKA containing the centered italicized word “ALIAS”.

16. Place “BALANCE SHEET” in the title bar of a form having a yellow background.

17. Create a label containing “VISUAL” on the first line and “BASIC” on the second line.

Each word should be right-justified.

18. Create a form named frmHello whose title bar reads “Hello World”.

19. Create a label containing the underlined word “PROGRAM” in italics.

20. Create a label containing the bold word “ALIAS” in the Courier New font.

21. Create a list box with a yellow background.

22. Create a list box that will be invisible when the program is run.

23. Create a form named frmYellow with a yellow background.

24. Create a button containing the bold underlined word “BUTTON”.

In Exercises 25 through 30, create the form shown in the figure. (These exercises give

you practice creating controls and assigning properties. The interfaces do not necessarily

correspond to actual programs.)

25. 26.

M02_SCHN2782_10_SE_C02.indd 34 2/29/16 3:03 PM

 2.2 Visual Basic Controls ◆ 35

1.

2.

1.

2.

27. 28.

29. 30.

1.

2.

1.

2.

31. Create a replica of your bank check on a form. Words common to all checks, such as

“PAY TO THE ORDER OF”, should be contained in labels. Items specific to your

checks, such as your name at the top left, should be contained in text boxes. Make the

check on the screen resemble your personal check as much as possible. Note: Omit the

account number.

32. Create a replica of your campus ID on a form. Words that are on all student IDs, such

as the name of the college, should be contained in labels. Information specific to your

ID, such as your name and student ID number, should be contained in text boxes.

33. Consider the form shown in Exercise 25. Assume the Batman button was added to the

form before the Robin button. What is the tab index of the Robin button?

34. Consider the form shown in Exercise 26. Assume the first control added to the form

was the label. What is the tab index of the label?

The following hands-on exercises develop additional techniques for manipulating and

accessing controls placed on a form.

35. Place a text box on a form and select the text box. What is the effect of pressing the

various arrow keys?

36. Place a text box on a form and select the text box. What is the effect of pressing the

various arrow keys while holding down the Shift key?

37. Repeat Exercise 36 for selected multiple controls.

38. Repeat Exercise 35 for selected multiple controls.

39. Place a label and a list box on a form and change their font sizes to 12 at the same time.

40. Place a button in the center of a form and select it. Hold down the Ctrl key and press

an arrow key. Repeat this process for each of the other arrow keys. Describe what

happens.

41. Place a label and a text box on a form with the label to the left of and above the text box.

Select the label. Hold down the Ctrl key and press the down-arrow key twice. With the

Ctrl key still pressed, press the right-arrow key. Describe what happens.

M02_SCHN2782_10_SE_C02.indd 35 2/29/16 3:03 PM

 36 ◆ Chapter 2 Visual Basic, Controls, and Events

42. Place two buttons on a form with one button to the right of and below the other but-

ton. Select the lower button, hold down the Ctrl key, and press the left-arrow key. With

the Ctrl key still pressed, press the up-arrow key. Describe the effect of pressing the

two arrow keys.

43. Experiment with the Align command on the Format menu to determine the difference

between the center and the middle of a control.

44. Place four large buttons vertically on a form. Use the Format menu to make them the

same size and to make the spacing between them uniform.

45. Place a label and a text box on a form as in Exercise 26, and then lower the label slightly

and lower the text box until it is about one inch lower than the label. Use the mouse to

slowly raise the text box to the top of the form. Three snap lines will appear along the

way: a blue snap line, a purple snap line, and finally another blue snap line. What is the

significance of each snap line?

46. Place a text box on a form, select the text box, and open its Properties window. Double-

click on the name (not the Settings box) of the ReadOnly property. Double-click again.

What is the effect of double-clicking on a property whose possible settings are True

and False?

47. Place a button on a form, select the button, and open its Properties window. Double-

click on the name (not the Settings box) of the ForeColor property. Double-click repeat-

edly. Describe what is happening.

Solutions to Practice Problems 2.2

1. The text is the words appearing on the button, whereas the name is the designation used to refer to the

button in code. Initially, they have the same value, such as Button1. However, each can be changed inde-

pendently of the other.

2. The Toolbox in the Community Edition of Visual Basic contains 10 groups. Figure 2.17 shows the Toolbox

after each group has been collapsed. Note: In some other editions of Visual Basic the Toolbox contains

more groups.

FIgurE 2.17 Toolbox group names.

M02_SCHN2782_10_SE_C02.indd 36 2/29/16 3:03 PM

