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ix

The speed, density, and complexity of today’s digital devices are made possible by 
advances in physical processing technology and digital design methodology. Aside from 
semiconductor technology, the design of leading-edge devices depends critically on 
hardware description languages (HDLs) and synthesis tools. Three public-domain 
 languages, Verilog, VHDL, and SystemVerilog, all play a role in design flows for today’s 
digital devices. HDLs, together with fundamental knowledge of digital logic circuits, 
provide an entry point to the world of digital design for students majoring in computer 
science, computer engineering, and electrical engineering. 

In the not-too-distant past, it would be unthinkable for an electrical engineering 
student to graduate without having used an oscilloscope. Today, the needs of industry 
demand that undergraduate students become familiar with the use of at least one 
 hardware description language. Their use of an HDL as a student will better prepare 
them to be productive members of a design team after they graduate.

Given the presence of three HDLs in the design arena, we have expanded our 
presentation of HDLs in Digital Design to treat Verilog and VHDL, and to provide 
an introduction to SystemVerilog. Our intent is not to require students to learn three, 
or even two, languages, but to provide the instructor with a choice between Verilog and 

VHDL while teaching a systematic methodology for design, regardless of the language, 

and an optional introduction to SystemVerilog. Certainly, Verilog and VHDL are 
widely used and taught, dominate the design space, and have common underlying 
concepts supporting combinational and sequential logic design, and both are essential 
to the synthesis of high-density integrated circuits. Our text offers parallel tracks of 

presentation of both languages, but allows concentration on a single language. The 
level of treatment of Verilog and VHDL is essentially equal, without emphasizing one 
language over the other. A language-neutral presentation of digital design is a  common 

Preface

A01_MANO9897_06_SE_FM.indd   9 2/14/17   7:04 PM



x    Preface

thread through the treatment of both languages. A large set of problems, which are 
stated in language-neutral terms, at the end of each chapter can be worked with either 
Verilog or VHDL.

The emphasis in our presentation is on digital design, with HDLs in a supporting role. 
Consequently, we present only those details of Verilog, VHDL, and SystemVerilog that 
are needed to support our treatment of an introduction to digital design. Moreover, 
although we present examples using each language, we identify and segregate the treat-
ment of topics and examples so that the instructor can choose a path of presentation for 

a single language—either Verilog or VHDL. Naturally, a path that emphasizes Verilog 
can conclude with SystemVerilog, but it can be skipped without compromising the objec-
tives. The introduction to SystemVerilog is selective—we present only topics and exam-
ples that are extensions of Verilog, and well within the scope of an introductory 
treatment. To be clear, we are not advocating simultaneous presentation of the lan-
guages. The instructor can choose either Verilog/SystemVerilog or VHDL as the core 
language supporting an introductory course in digital design. Regardless of the language, 

our focus is on digital design.

The language-based examples throughout the book are not just about the details of 
an HDL. We emphasize and demonstrate the modeling and verification of digital circuits 
having specified behavior. Neither Verilog or VHDL are covered in their entirety. Some 

details of the languages will be left to the reader’s continuing education and use of web 

resources. Regardless of language, our examples introduce a design methodology based 
on the concept of computer-aided modeling of digital systems by means of a main-
stream, IEEE-standardized, hardware description language.

This revision of Digital Design begins each chapter with a statement of its objectives. 
Problems at the end of each chapter are combined with in-chapter examples, and with 
in-chapter Practice Exercises. Together, these encounters with the subject matter bring 
the student closer to achieving the stated objectives and becoming skilled in digital 
design. Answers are given to selected problems at the end of each chapter. A Solution 
Manual gives detailed solutions to all of the problems at the end of the chapters. The 
level of detail of the solutions is such that an instructor can use individual problems to 
support classroom instruction.

M U LT I M O DA L  L E A R N I N G

Like the previous editions, this edition of Digital Design supports a multimodal approach 
to learning. The so-called VARK1, 2 characterization of learning modalities identifies four 
major modes by which we learn: (V) visual, (A) aural (hearing), (R) reading, and (K) 
kinesthetic. The relatively high level of illustrations and graphical content of our text 

1 Kolb, David A. (2015) [1984]. Experiential learning: Experience as the source of learning and development 
(2nd ed.). Upper Saddle River, NJ: Pearson Education. ISBN 9780133892406. OCLC 909815841.

2 Fleming, Neil D. (2014). “The VARK modalities”. vark-learn.com.

A01_MANO9897_06_SE_FM.indd   10 2/14/17   7:04 PM



Preface    xi

addresses the visual (V) component of VARK; discussions and numerous examples 
address the reading (R) component. Students who exploit the availability of free Verilog, 
VHDL and SystemVerilog simulators and synthesis tools to work assignments are led 
through a kinesthetic learning experience, including the delight of designing a digital 
circuit that actually works. The remaining element of VARK, the aural/auditory (A) 
experience depends on the instructor and the attentiveness of the student (Put away the 
smart phone!). We have provided an abundance of materials and examples to support 
classroom lectures. Thus, a course using Digital Design, can provide a rich, balanced, 
learning experience and address all the modes identified by VARK.

For skeptics who might still question the need to present and use HDLs in a first 
course in digital design, we note that industry does not rely on schematic-based design 
methods. Schematic entry creates a representation of functionality that is implicit in the 
constructs and layout of the schematic. Unfortunately, it is difficult for anyone in a rea-
sonable amount of time to determine the functionality represented by the schematic of 
a logic circuit without having been instrumental in its construction, or without having 
additional documentation expressing the design intent. Consequently, industry today 
relies almost exclusively on HDLs to describe the functionality of a design and to serve 
as a basis for documenting, simulating, testing, and synthesizing the hardware imple-
mentation of the design in a standard cell-based ASIC or an FPGA. The utility of a 
schematic depends on the detailed documentation of a carefully constructed hierarchy 
of design units. In the past, designers relied on their years of experience to create a 
schematic of a circuit to implement functionality. Today’s designers using HDLs, can 
express functionality directly and explicitly, without years of accumulated experience, 
and use synthesis tools to generate the schematic as a byproduct, automatically. Industry 
adopted HDL-based design flows because schematic entry dooms us to inefficiency, if 
not failure, in understanding and designing large, complex, ICs.

Introduction of HDLs in a first course in digital design is not intended to replace 
fundamental understanding of the building blocks of such circuits, or to eliminate a 
discussion of manual methods of design. It is still essential for students to understand 
how hardware works. Thus, this edition of Digital Design retains a thorough treatment 
of combinational and sequential logic design and a foundation in Boolean algebra. 
Manual design practices are presented, and their results are compared with those 
obtained using HDLs. What we are presenting, however, is an emphasis on how hard-
ware is designed today, to better prepare a student for a career in today’s industry, where 
HDL-based design practices are dominant.

F L E X I B I L I T Y

We include both manual and HDL-based design examples. Our end-of-chapter problems 
cross-reference problems that access a manual design task with a companion problem that 
uses an HDL to accomplish the assigned task. We also link the manual and HDL-based 
approaches by presenting annotated results of simulations in the text, in answers to 
selected problems at the end of the text, and extensively in the solution manual.
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N E W  TO  T H I S  E D I T I O N

This edition of Digital Design uses the latest features of IEEE Standard 1364, but only 
insofar as they support our pedagogical objectives. The revisions and updates to the text 
include:

•  Elimination of specialized circuit-level content not typically covered in a first course 
in logic circuits and digital design (e.g., RTL, DTL, and emitter-coupled logic circuits)

•  Addition of “Web Search Topics” at the end of each chapter to point students to 
additional subject matter available on the web

•  Revision of approximately one-third of the problems at the end of the chapters

•  A solution manual for the entire text, including all new problems

•  Streamlining of the discussion of Karnaugh maps

•  Integration of treatment of basic CMOS technology with treatment of logic gates

•  Inclusion of an appendix introducing semiconductor technology

•  Treatment of digital design with VHDL and SystemVerilog

D E S I G N  M E T H O D O LO G Y

A highlight of our presentation is a systematic methodology for designing a state 
machine to control the data path of a digital system. The framework in which this mate-
rial is presented treats the realistic situation in which status signals from the datapath 
are used by the controller, i.e., the system has feedback. Thus, our treatment provides a 
foundation for designing complex and interactive digital systems. Although it is pre-
sented with an emphasis on HDL-based design, the methodology is also applicable to 
manual-based approaches to design and is language-neutral.

J U S T  E N O U G H  H D L

We present only those elements of Verilog, VHDL, and SystemVerilog that are matched 
to the level and scope of this text. Also, correct syntax does not guarantee that a model 
meets a functional specification or that it can be synthesized into physical hardware. So, 
we introduce students to a disciplined use of industry-based practices for writing models 
to ensure that a behavioral description can be synthesized into physical hardware, and 
that the behavior of the synthesized circuit will match that of the behavioral description. 
Failure to follow this discipline can lead to software race conditions in the HDL models 
of such machines, race conditions in the test bench used to verify them, and a mismatch 
between the results of simulating a behavioral model and its synthesized physical coun-
terpart. Similarly, failure to abide by industry practices may lead to designs that simulate 
correctly, but which have hardware latches that are introduced into the design acciden-
tally as a consequence of the modeling style used by the designer. The industry-based 
 methodology we present leads to race-free and latch-free designs. It is important that 
students learn and follow industry practices in using HDL models, independent of 
whether a student’s curriculum has access to synthesis tools.
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V E R I F I C AT I O N

In industry, significant effort is expended to verify that the functionality of a circuit is 
correct. Yet not much attention is given to verification in introductory texts on digital 
design, where the focus is on design itself, and testing is perhaps viewed as a secondary 
undertaking. Our experience is that this view can lead to premature “high-fives” and 
declarations that “the circuit works beautifully.” Likewise, industry gains repeated 
returns on its investment in an HDL model by ensuring that it is readable, portable, 
and reusable. We demonstrate naming practices and the use of parameters to facilitate 
reusability and portability. We also provide test benches for all of the solutions and 
exercises to (1) verify the functionality of the circuit; (2) underscore the importance of 
thorough testing; and (3) introduce students to important concepts, such as self- checking 
test benches. Advocating and illustrating the development of a test plan to guide the 
development of a test bench, we introduce test plans, albeit simply, in the text and 
expand them in the solutions manual and in the answers to selected problems at the 
end of the text.

H D L  CO N T E N T

We have ensured that all examples in the text and all answers in the solution manual 
conform to accepted industry practices for modeling digital hardware. As in the previous 
edition, HDL material is inserted in separate sections so that it can be covered or 
skipped as desired, does not diminish treatment of manual-based design, and does not 
dictate the sequence of presentation. The treatment is at a level suitable for beginning 
students who are learning digital circuits and an HDL at the same time. The text pre-
pares students to work on significant independent design projects and to succeed in a 
later course in computer architecture and advanced digital design.

Instructor Resources

Instructors can obtain the following classroom-ready resources from the publisher:

•  Source code and test benches for all Verilog HDL examples in the test

•  All figures and tables in the text

•  Source code for all HDL models in the solutions manual

•  A downloadable solutions manual with graphics suitable for classroom presentation

HDL Simulators

Two free simulators can be downloaded from www.Syncad.com. The first simulator is 
VeriLogger Pro, a traditional Verilog simulator that can be used to simulate the HDL 
examples in the book and to verify the solutions of HDL problems. This simulator 
accepts the syntax of the IEEE-1995 standard and will be useful to those who have 
legacy models. As an interactive simulator, VeriLogger Extreme accepts the syntax of 
IEEE-2001 as well as IEEE-1995, allowing the designer to simulate and analyze design 
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ideas before a complete simulation model or schematic is available. This technology is 
particularly useful for students because they can quickly enter  Boolean and D flip-flop 
or latch input equations to check equivalency or to experiment with flip-flops and latch 
designs. Free design tools that support design entry, simulation and synthesis (of FPGAs) 
are available from www.altera.com and from www.xilinx.com.

Chapter Summary

The following is a brief summary of the topics that are covered in each chapter.
Chapter 1 presents the various binary systems suitable for representing information 

in digital systems. The binary number system is explained and binary codes are illus-
trated. Examples are given for addition and subtraction of signed binary numbers and 
decimal numbers in binary-coded decimal (BCD) format.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-
tion between Boolean expressions and their corresponding logic diagrams. All possible 
logic operations for two variables are investigated, and the most useful logic gates used 
in the design of digital systems are identified. This chapter also introduces basic CMOS 
logic gates.

Chapter 3 covers the map method for simplifying Boolean expressions. The map 
method is also used to simplify digital circuits constructed with AND–OR, NAND, or 
NOR gates. All other possible two-level gate circuits are considered, and their method 
of implementation is explained. Verilog and VHDL are introduced together with simple 
examples of gate-level models.

Chapter 4 outlines the formal procedures for the analysis and design of combinational 
circuits. Some basic components used in the design of digital systems, such as adders and 
code converters, are introduced as design examples. Frequently used digital logic func-
tions such as parallel adders and subtractors, decoders, encoders, and multiplexers are 
explained, and their use in the design of combinational circuits is illustrated. HDL exam-
ples are given in gate-level, dataflow, and behavioral models to show the alternative ways 
available for describing combinational circuits in Verilog and VHDL. The procedure for 
writing a simple test bench to provide stimulus to an HDL design is presented.

Chapter 5 outlines the formal procedures for analyzing and designing clocked (syn-
chronous) sequential circuits. The gate structure of several types of flip-flops is presented 
together with a discussion on the difference between level and edge triggering. Specific 
examples are used to show the derivation of the state table and state diagram when 
analyzing a sequential circuit. A number of design examples are presented with empha-
sis on sequential circuits that use D-type flip-flops. Behavioral modeling in Verilog and 
VHDL for sequential circuits is explained. HDL examples are given to illustrate Mealy 
and Moore models of sequential circuits.

Chapter 6 deals with various sequential circuit components such as registers, shift 
registers, and counters. These digital components are the basic building blocks from 
which more complex digital systems are constructed. HDL descriptions of shift registers 
and counters are presented.

A01_MANO9897_06_SE_FM.indd   14 2/14/17   7:04 PM



Preface    xv

Chapter 7 introduces random access memory (RAM) and programmable logic 
devices. Memory decoding and error correction schemes are discussed. Combinational 
and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs 
are presented.

Chapter 8 deals with the register transfer level (RTL) representation of digital sys-
tems. The algorithmic state machine (ASM) chart is introduced. A number of examples 
demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL 
description in the design of digital systems. The design of a finite state machine to con-
trol a datapath is presented in detail, including the realistic situation in which status 
signals from the datapath are used by the state machine that controls it. This chapter 
provides the student with a systematic approach to more advanced design projects.

Chapter 9 presents experiments that can be performed in the laboratory with hardware 
that is readily available commercially. The operation of the ICs used in the experiments 
is explained by referring to diagrams of similar components introduced in previous 
 chapters. Each experiment is presented informally and the student is expected to design 
the circuit and formulate a procedure for checking its operation in the laboratory. The lab 
experiments can be used in a stand-alone manner too and can be accomplished by a tra-
ditional approach, with a breadboard and TTL circuits, or with an HDL/synthesis approach 
using FPGAs. Today, software for synthesizing an HDL model and implementing a circuit 
with an FPGA is available at no cost from vendors of FPGAs, allowing students to conduct 
a significant amount of work in their personal environment before using prototyping 
boards and other resources in a lab. Circuit boards for rapid prototyping circuits with 
FPGAs are available at a nominal cost, and typically include push buttons, switches, seven-
segment displays, LCDs, keypads, and other I/O devices. With these resources, students 
can work prescribed lab exercises or their own projects and get results immediately.

Chapter 10 presents the standard graphic symbols for logic functions recommended 
by an ANSI/IEEE standard. These graphic symbols have been developed for small-scale 
integration (SSI) and medium-scale integration (MSI) components so that the user can 
recognize each function from the unique graphic symbol assigned. The chapter shows 
the standard graphic symbols of the ICs used in the laboratory experiments.
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1

Chapter 1

Digital Systems and Binary Numbers

C H A P T E R  O B J E C T I V E S

1. Understand binary number system.
2. Know how to convert between binary, octal, decimal, and hexadecimal numbers.
3. Know how to take the complement and reduced radix complement of a number.
4. Know how to form the code of a number.
5. Know how to form the parity bit of a word.

1.1  D I G I TA L  S Y S T E M S

Digital systems have such a prominent role in everyday life that we refer to the pres-
ent technological period as the digital age. Digital systems are used in communication, 
business transactions, traffic control, spacecraft guidance, medical treatment, weather 
monitoring, the Internet, and many other commercial, industrial, and scientific enter-
prises. We have digital telephones, digital televisions, digital versatile discs (DVDs), 
digital cameras, personal, handheld, touch-screen devices, and, of course, digital comput-
ers. We enjoy music downloaded to our portable media player (e.g., iPod Touch®) and 
other handheld devices having high-resolution displays and touch-screen graphical user 
interfaces (GUIs). GUIs enable them to execute commands that appear to the user to 
be simple, but which, in fact, involve precise execution of a sequence of complex internal 
instructions. Most, if not all, of these devices have a special-purpose digital computer, or 
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2    Chapter 1  Digital Systems and Binary Numbers

processor, embedded within them. The most striking property of the digital computer 
is its generality. It can follow a sequence of instructions, called a program, which oper-
ates on given data. The user can specify and change the program or the data according 
to the specific need. Because of this flexibility, general-purpose digital computers can 
perform a variety of information-processing tasks that range over a wide spectrum of 
applications and provide unprecedented access to massive repositories of information 
and media.

One characteristic of digital systems is their ability to represent and manipulate dis-
crete elements of information. Any set that is restricted to a finite number of elements 
contains discrete information. Examples of discrete sets are the 10 decimal digits, the 26 
letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early 
digital computers were used for numeric computations. In this case, the discrete ele-
ments were the digits. From this application, the term digital computer emerged.

Discrete elements of information are represented in a digital system by physical 
quantities called signals. Electrical signals such as voltages and currents are the most 
common. Electronic devices called transistors predominate in the circuitry that imple-
ment, represent, and manipulate these signals. The signals in most present-day electronic 
digital systems use just two discrete values and are therefore said to be binary. A binary 
digit, called a bit, has two numerical values: 0 and 1. Discrete elements of information 
are represented with groups of bits called binary codes. For example, the decimal digits 0 
through 9 are represented in a digital system with a code of four bits (e.g., the number 7 
is represented by 0111). How a pattern of bits is interpreted as a number depends on the 
code system in which it resides. To make this distinction, we could write (0111)2 to indi-
cate that the pattern 0111 is to be interpreted in a binary system, and (0111)10 to indicate 
that the reference system is decimal. Then 01112 = 710, which is not the same as 011110, 
or one hundred eleven. The subscript indicating the base for interpreting a pattern of 
bits will be used only when clarification is needed. Through various techniques, groups 
of bits can be made to represent discrete symbols, not necessarily numbers, which are 
then used to develop the system in a digital format. Thus, a digital system is a system that 
manipulates discrete elements of information represented internally in binary form. In 
today’s technology, binary systems are most practical because, as we will see, they can 
be implemented with electronic components.

Discrete quantities of information either emerge from the nature of the data being 
processed or may be quantized from a continuous process. On the one hand, a payroll 
schedule is an inherently discrete process that contains employee names, social security 
numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed 
by means of discrete data values such as letters of the alphabet (names), digits (salary), 
and special symbols (such as $). On the other hand, a research scientist may observe 
a continuous process, e.g., temperature, but record only specific quantities in tabular 
form. The scientist is thus quantizing continuous data, making each number in the table 
a discrete quantity. In many cases, the quantization of a process can be performed auto-
matically by an analog-to-digital converter, a device that forms a digital (discrete) rep-
resentation of an analog (continuous) quantity. Digital cameras rely on this technology 
to quantify the measurements of exposure captured from an image.
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Section 1.1  Digital Systems    3

The general-purpose digital computer is the best-known example of a digital system. 
The major parts of a computer are a memory unit, a central processing unit, and input–
output units. The memory unit stores programs as well as input, output, and intermedi-
ate data. The central processing unit performs arithmetic and other data-processing 
operations as specified by the program. The program and data prepared by a user are 
transferred into memory by means of an input device such as a keyboard or a touch-
screen video display. An output device, such as a printer, receives the results of the 
computations, and the printed results are presented to the user. A digital computer can 
accommodate many input and output devices. One very useful device is a communi-
cation unit that provides interaction with other users through the Internet. A digital 
computer is a powerful instrument that can perform not only arithmetic computations 
but also logical operations. In addition, it can be programmed to make decisions based 
on internal and external conditions.

There are fundamental reasons that commercial products are made with digital cir-
cuits. Like a digital computer, most digital devices are programmable. By changing the 
program in a programmable device, the same underlying hardware can be used for many 
different applications, thereby allowing its cost of development to be spread across sales 
to a wider customer base. Dramatic cost reductions in digital devices have come about 
because of advances in digital integrated circuit technology. As the number of transistors 
that can be put on a piece of silicon increases to produce complex functions, the cost 
per unit decreases, and digital devices can be bought at an increasingly reduced price. 
Equipment built with digital integrated circuits can perform at a speed of hundreds of 
millions of operations per second. Digital systems can be made to operate with extreme 
reliability by using error-correcting codes. An example of this strategy is the digital ver-
satile disk (DVD), in which digital information representing photos, video, audio, and 
other data is recorded without the loss of a single item. Digital information on a DVD 
is recorded in such a way that, by examining the code in each digital sample before it is 
played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the opera-

tion of each digital module, it is necessary to have a basic knowledge of digital circuits 

and their logical function. The first seven chapters of this book present the basic tools 
of digital design, such as logic gate structures, combinational and sequential circuits, and 
programmable logic devices. Chapter 8 introduces digital design at the register transfer 
level (RTL) using a modern, public-domain hardware description language (HDL). 
Chapter 9 concludes the text with laboratory exercises using digital circuits.

Today’s array of inexpensive digital devices is made possible by the convergence of 
fabrication technology and computer-based design methodology. Today’s “best practice” 
in digital design methodology uses HDLs to describe and simulate the functionality of a 
digital circuit. An HDL resembles a programming language and is suitable for describing 
digital circuits in textual form. It is used to simulate a digital system to verify its opera-
tion before hardware is built. It is also used in conjunction with logic synthesis tools to 
automate the design process. Because it is important that students become familiar with 

an HDL-based design methodology, HDL descriptions of digital circuits are presented 
throughout the book. While these examples help illustrate the features of an HDL, they 
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4    Chapter 1  Digital Systems and Binary Numbers

also demonstrate the best practices used by industry to exploit HDLs. Ignorance of these 
practices will lead to cute, but worthless, HDL models that may simulate a phenomenon, 
but that cannot be synthesized by design tools, or to models which waste silicon area or 
synthesize to hardware that does not operate correctly.

As previously stated, digital systems manipulate discrete quantities of information 
that are represented in binary form. Operands used for calculations may be expressed 
in the binary number system. Other discrete elements, including the decimal digits 
and characters of the alphabet, are represented in binary codes. Digital circuits, also 
referred to as logic circuits, process data by means of binary logic elements (logic gates) 
using binary signals. Quantities are stored in binary (two-valued) storage elements (flip-
flops). The purpose of this chapter is to introduce the various binary concepts and pro-
vide a foundation for further study in the succeeding chapters.

1. 2  B I N A R Y  N U M B E R S

A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied 
by the position of the coefficients (symbols) in the number. To be more exact, 7,392 is a 
shorthand notation for what should be written as

7 * 103
+ 3 * 102

+ 9 * 101
+ 2 * 100

However, the convention is to write only the numeric coefficients and, from their posi-
tion, deduce the necessary powers of 10, with powers increasing from right to left. In 
general, a number with a decimal point is represented by a series of coefficients:

a5a4a3a2a1a0. a-1a-2a-3

The coefficients aj are any of the 10 digits (0, 1, 2, . . . ,9), and the subscript value j gives 
the place value and, hence, the power of 10 by which the coefficient must be multiplied. 
Thus, the preceding decimal number can be expressed as

105a5 + 104a4 + 103a3 + 102a2 + 101a1 + 100a0 + 10-1a-1 + 10-2a-2 + 10-3a-3

with a3 = 7, a2 = 3, a1 = 9, and a0 = 2, and the other coefficients equal to zero.
The radix of a number system determines the number of distinct values that can be 

used to represent any arbitrary number. The decimal number system is said to be of 
base, or radix, 10 because it uses 10 digits and the coefficients are multiplied by powers 
of 10. The binary system is a different number system. The coefficients of the binary 
number system have only two possible values: 0 and 1. Each coefficient aj is multiplied 
by a power of the radix, for example, 2j, and the results are added to obtain the decimal 
equivalent of the number. The radix point (e.g., the decimal point when 10 is the radix) 
distinguishes positive powers of 10 from negative powers of 10. For example, the decimal 
equivalent of the binary number 11010.11 is 26.75, as shown from the multiplication of 
the coefficients by powers of 2:

1 * 24
+ 1 * 23

+ 0 * 22
+ 1 * 21

+ 0 * 20
+ 1 * 2-1

+ 1 * 2-2
= 26.75
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Section 1.2  Binary Numbers    5

There are many different number systems. In general, a number expressed in a base-r 
system has coefficients multiplied by powers of r:

 an
# rn

+ an - 1
# rn - 1

+ g + a2
# r2

+ a1
# r + a0 + a-1

# r-1

 + a-2
# r-2

+ g + a-m
# r-m

The coefficients aj range in value from 0 to r - 1. To distinguish between numbers of 
different bases, we enclose the coefficients in parentheses and write a subscript equal 
to the base used (except sometimes for decimal numbers, where the content makes it 
obvious that the base is decimal). An example of a base-5 number is

(4021.2)5 = 4 * 53
+ 0 * 52

+ 2 * 51
+ 1 * 50

+ 2 * 5-1
= (511.4)10

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is 
a base-8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number 
is (127.4)8. To determine its equivalent decimal value, we expand the number in a power 
series with a base of 8:

(127.4)8 = 1 * 82
+ 2 * 81

+ 7 * 80
+ 4 * 8-1

= (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number.
It is customary to borrow the needed r digits for the coefficients from the decimal 

system when the base of the number is less than 10. The letters of the alphabet are used 
to supplement the 10 decimal digits when the base of the number is greater than 10. For 
example, in the hexadecimal (base-16) number system, the first 10 digits are borrowed 
from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11, 
12, 13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F)16 = 11 * 163
+ 6 * 162

+ 5 * 161
+ 15 * 160

= (46,687)10

The hexadecimal system is used commonly by designers to represent long strings of bits 
in the addresses, instructions, and data in digital systems. For example, B65F is used to 
represent 1011011001011111.

As noted before, the digits in a binary number are called bits. When a bit is equal to 
0, it does not contribute to the sum during the conversion. Therefore, the conversion 
from binary to decimal can be obtained by adding only the numbers with powers of two 
corresponding to the bits that are equal to 1. For example,

(110101)2 = 32 + 16 + 4 + 1 = (53)10

There are four 1’s in the binary number. The corresponding decimal number is 
the sum of the four powers of two. Zero and the first 24 numbers obtained from 2 to 
the power of n are listed in Table 1.1. In computer work, 210 is referred to as K (kilo), 
220 as M (mega), 230 as G (giga), and 240 as T (tera). Thus, 4K = 212

= 4,096 and 
16M = 224

= 16,777,216. Computer memory capacity and word size are usually given 
in bytes. A byte is equal to eight bits and can accommodate (i.e., represent the code 
of) one keyboard character. A computer hard disk with four gigabytes of storage has a 
capacity of 4G = 232 bytes (approximately 4 billion bytes). A terabyte is 1024 gigabytes, 
approximately 1 trillion bytes.
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6    Chapter 1  Digital Systems and Binary Numbers

Arithmetic operations with numbers in base r follow the same rules as for decimal 
numbers. When a base other than the familiar base 10 is used, one must be careful to 
use only the r-allowable digits. Examples of addition, subtraction, and multiplication of 
two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011

addend: +100111 subtrahend: -100111  multiplier: * 101

sum: 1010100 difference: 000110 1011

0000 

1011  

110111

The sum of two binary numbers is calculated by the same rules as in decimal, except 
that the digits of the sum in any significant position can be only 0 or 1. Any carry 
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in 
decimal, except that the borrow in a given significant position adds 2 to a minuend digit. 
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple: 
The multiplier digits are always 1 or 0; therefore, the partial products are equal either 
to a shifted (left) copy of the multiplicand or to 0.

Practice Exercise 1.1

What is the decimal value of 1 * 24
+ 0 * 23

+ 1 * 22
+ 0 * 21

+ 1 * 20?

Answer: 21

1. 3  N U M B E R - B A S E  CO N V E R S I O N S

Representations of a number in a different radix are said to be equivalent if they have 
the same decimal representation. For example, (0011)8 and (1001)2 are equivalent—both 

partial product:

product:

n 2n
n 2n

n 2n

0 1 8 256 16 65,536

1 2 9 512 17 131,072

2 4 10 1,024 (1K) 18 262,144

3 8 11 2,048 19 524,288

4 16 12 4,096 (4K) 20 1,048,576 (1M)

5 32 13 8,192 21 2,097,152

6 64 14 16,384 22 4,194,304

7 128 15 32,768 23 8,388,608

Table 1.1
Powers of Two
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Section 1.3  Number-Base Conversions    7

have decimal value 9. The conversion of a number in base r to decimal is done by 
expanding the number in a power series and adding all the terms as shown previously. 
We now present a general procedure for the reverse operation of converting a decimal 
number to a number in base r. If the number includes a radix point, it is necessary to 
separate the number into an integer part and a fraction part, since each part must be 
converted differently. The conversion of a decimal integer to a number in base r is done 
by dividing the number and all successive quotients by r and accumulating the remainders. 
This procedure is best illustrated by example.

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 
and a remainder of 1

2. Then the quotient is again divided by 2 to give a new quotient 
and remainder. The process is continued until the integer quotient becomes 0. The coef-

ficients of the desired binary number are obtained from the remainders as follows:

Integer 

Quotient

Remainder Coefficient

41>2 = 20 + 1
2

a0 = 1

20>2 = 10 + 0 a1 = 0

10>2 = 5 + 0 a2 = 0

5>2 = 2 + 1
2

a3 = 1

2>2 = 1 + 0 a4 = 0

1>2 = 0 + 1
2

a5 = 1

Therefore, the answer is (41)10 = (a5a4a3a2a1a0)2 = (101001)2.
The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1  101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except 
that division is done by r instead of 2.

 ■
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8    Chapter 1  Digital Systems and Binary Numbers

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give 
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer 
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and 
a remainder of 2. This process can be conveniently tabulated as follows:

153

19 1

2 3

0 2 = (231)8

The conversion of a decimal fraction to binary is accomplished by a method simi-
lar to that used for integers. However, multiplication is used instead of division, and 
integers instead of remainders are accumulated. Again, the method is best explained 
by example.

� ■

EXAMPLE 1.3

Convert (0.6875)10 to binary. First, 0.6875 is multiplied by 2 to give an integer and a 
fraction. Then the new fraction is multiplied by 2 to give a new integer and a new frac-
tion. The process is continued until the fraction becomes 0 or until the number of digits 
has sufficient accuracy. The coefficients of the binary number are obtained from the 
integers as follows:

Integer Fraction Coefficient

0.6875 * 2 = 1 + 0.3750 a-1 = 1

0.3750 * 2 = 0 + 0.7500 a-2 = 0

0.7500 * 2 = 1 + 0.5000 a-3 = 1

0.5000 * 2 = 1 + 0.0000 a-4 = 1

Therefore, the answer is (0.6875)10 = (0.a-1 a-2 a-3 a-4)2 = (0.1011)2.
To convert a decimal fraction to a number expressed in base r, a similar procedure is 

used. However, multiplication is by r instead of 2, and the coefficients found from the 
integers may range in value from 0 to r - 1 instead of 0 and 1.

� ■
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EXAMPLE 1.4

Convert (0.513)10 to octal.

 0.513 * 8 = 4.104

 0.104 * 8 = 0.832

 0.832 * 8 = 6.656

 0.656 * 8 = 5.248

 0.248 * 8 = 1.984

 0.984 * 8 = 7.872

The answer, to six significant figures, is obtained from the integer part of the products:

(0.513)10 = (0.406517c )8

The conversion of decimal numbers with both integer and fraction parts is done by 
converting the integer and the fraction separately and then combining the two answers. 
Using the results of Examples 1.1 and 1.3, we obtain

(41.6875)10 = (101001.1011)2

From Examples 1.2 and 1.4, we have

(153.513)10 = (231.406517)8

� ■

Practice Exercise 1.2

Convert (117.23)10 to octal.

Answer: (117.23)10 = (165.1656)8

1. 4  O C TA L  A N D  H E X A D E C I M A L  N U M B E R S

The conversion from and to binary, octal, and hexadecimal plays an important role in 
digital computers, because shorter patterns of hex characters are easier to recognize 
than long patterns of 1’s and 0’s. Since 23

= 8 and 24
= 16, each octal digit corresponds 

to three binary digits and each hexadecimal digit corresponds to four binary digits. The 
first 16 numbers in the decimal, binary, octal, and hexadecimal number systems are 
listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary 
number into groups of three digits each, starting from the binary point and proceeding 
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10    Chapter 1  Digital Systems and Binary Numbers

to the left and to the right. The corresponding octal digit is then assigned to each group. 
The following example illustrates the procedure:

(10 110 001 101 011 # 111 100 000 110)2

2 6 1 5 3 7 4 0 6

= (26153.7406)8

Conversion from binary to hexadecimal is similar, except that the binary number is 
divided into groups of four digits:

(10 1100 0110 1011 # 1111 0010)2

2 C 6 B F 2

= (2C6B.F2)16

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily 
remembered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding 
procedure. Each octal digit is converted to its three-digit binary equivalent. Similarly, 
each hexadecimal digit is converted to its four-digit binary equivalent. The procedure is 
illustrated in the following examples:

(673.124)8 = (110 111 011 # 001 010 100)2

6 7 3 1 2 4

and
(306.D)16 = (0011 0000 0110 # 1101)2

3 0 6 D

Decimal  
(base 10)

Binary  
(base 2)

Octal  
(base 8)

Hexadecimal  
(base 16)

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Table 1.2
Numbers with Different Bases
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Binary numbers are difficult to work with because they require three or four times 
as many digits as their decimal equivalents. For example, the binary number 
111111111111 is equivalent to decimal 4095. However, digital computers use binary 
representation of numbers, and it is sometimes necessary for the human operator or 
user to communicate directly with the machine by means of such numbers. One scheme 
that retains the binary system in the computer, but reduces the number of digits the 
human must consider,1 utilizes the relationship between the binary number system and 
the octal or hexadecimal system. By this method, the human thinks in terms of octal or 
hexadecimal numbers and performs the required conversion by inspection when direct 
communication with the machine is necessary. Thus, the binary number 111111111111 
has 12 digits and is expressed in octal as 7777 (4 digits) or in hexadecimal as FFF 
(3  digits). During communication between people (about binary numbers in the com-
puter), the octal or hexadecimal representation is more desirable because it can be 
expressed more compactly with a third or a quarter of the number of digits required 
for the equivalent binary number. Thus, most computer manuals use either octal or 

hexadecimal numbers to specify instructions and other binary quantities. The choice 
between them is arbitrary, although hexadecimal tends to win out, since it can represent 
a byte with two digits.

Practice Exercise 1.3

Find the binary representation of 13510.

Answer: 13510 = 1110 00012

Practice Exercise 1.4

Find the octal representation of (135)10.

Answer: 13510 = 7028

1. 5  CO M P L E M E N T S  O F  N U M B E R S

Complements are used in digital computers to simplify the subtraction operation and for 
logical manipulation. Simplifying operations leads to simpler, less expensive circuits to 
implement the operations. There are two types of complements for each base-r system: 
the radix complement and the diminished radix complement. The first is referred to as 
the r’s complement and the second as the (r - 1)>s complement. When the value of the 
base r is substituted in the name, the two types are referred to as the 2’s complement 
and 1’s complement for binary numbers and the 10’s complement and 9’s complement 
for decimal numbers.

1 Machines having a word length of 64 bits are common.
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12    Chapter 1  Digital Systems and Binary Numbers

Diminished Radix Complement

Given a number N in base r having n digits, the (r - 1)>s complement of N, that is, 
its diminished radix complement, is defined as 1rn

- 12 - N. For decimal numbers, 
r = 10 and r - 1 = 9, so the 9’s complement of N is 110n

- 12 - N. In this case, 10n 
represents a number that consists of a single 1 followed by n 0’s. 10n

- 1 is a number 
represented by n 9’s. For example, if n = 4, we have 104

= 10,000 and 104
- 1 = 9999. 

It follows that the 9’s complement of a decimal number is obtained by subtracting each 
digit from 9. Here are some numerical examples:

The 9>s complement of 546700 is 999999 - 546700 = 453299.

The 9>s complement of 012398 is 999999 - 012398 = 987601.

For binary numbers, r = 2 and r - 1 = 1, so the 1’s complement of N is (2n
- 1) - N. 

Again, 2n is represented by a binary number that consists of a 1 followed by n 0’s. 2n
- 1 

is a binary number represented by n 1’s. For example, if n = 4, we have 24
= (10000)2 

and 24
- 1 = (1111)2. Thus, the 1’s complement of a binary number is obtained by sub-

tracting each digit from 1. However, when subtracting binary digits from 1, we can have 
either 1 - 0 = 1 or 1 - 1 = 0, which causes the bit to change from 0 to 1 or from 1 to 
0, respectively. Therefore, the 1’s complement of a binary number is formed by changing 

1’s to 0’s and 0’s to 1’s. The following are some numerical examples:

The 1>s complement of 1011000 is 0100111.

The 1>s complement of 0101101 is 1010010.

The (r - 1)>s complement of octal or hexadecimal numbers is obtained by subtract-
ing each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an n-digit number N in base r is defined as rn
- N for 

N ≠ 0 and as 0 for N = 0. Comparing with the (r - 1)>s complement, we note 
that the r’s complement is obtained by adding 1 to the (r - 1)>s complement, 
since rn

- N = [(rn
- 1) - N] + 1. Thus, the 10’s complement of decimal 2389 is 

7610 + 1 = 7611 and is obtained by adding 1 to the 9’s complement value. The 2’s 
complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to 
the 1’s-complement value.

Since 10 is a number represented by a 1 followed by n 0’s, 10n
- N, which is the 10’s 

complement of N, can be formed also by leaving all least significant 0’s unchanged, 
subtracting the first nonzero least significant digit from 10, and subtracting all higher 
significant digits from 9. Thus,

the 10>s complement of 012398 is 987602

and

the 10>s complement of 246700 is 753300
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The 10’s complement of the first number (012398) is obtained by subtracting 8 from 10 
in the least significant position and subtracting all other digits from 9. The 10’s comple-
ment of the second number (246700) is obtained by leaving the two least significant 0’s 
unchanged, subtracting 7 from 10, and subtracting the other three digits from 9.

Practice Exercise 1.5

Find (a) the diminished radix (9’s) complement and (b) the radix (10’s) complement 
of 13510.

Answer: 

(a) 9’s complement: 86410

(b) 10’s complement: 86510

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and the 
first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher significant 
digits. For example,

the 2>s complement of 1101100 is 0010100

and

the 2>s complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant 
0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other 
four most significant digits. The 2’s complement of the second number is obtained by 
leaving the least significant 1 unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix 
point. If the original number N contains a radix point, the point should be removed 
temporarily in order to form the r’s or (r - 1)>s complement. The radix point is then 
restored to the complemented number in the same relative position. It is also worth 
mentioning that the complement of the complement restores the number to its original 

value. To see this relationship, note that the r’s complement of N is rn
- N, so that the 

complement of the complement is rn
- 1rn

- N2 = N and is equal to the original 
number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow con-
cept. In this method, we borrow a 1 from a higher significant position when the minu-
end digit is smaller than the subtrahend digit. The method works well when people 
perform subtraction with paper and pencil. However, when subtraction is imple-
mented with digital hardware, the method is less efficient than the method that uses 
complements.
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14    Chapter 1  Digital Systems and Binary Numbers

The subtraction of two n-digit unsigned numbers M - N in base r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N. Mathematically, 
M + 1rn

- N2 = M - N + rn.

2. If M Ú N, the sum will produce an end carry rn, which can be discarded; what is 
left is the result M - N.

3. If M 6 N, the sum does not produce an end carry and is equal to rn
- (N - M), 

which is the r’s complement of (N - M). To obtain the answer in a familiar form, 
take the r’s complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1.5

Using 10’s complement, subtract 72532 - 3250.

M = 72532

10>s complement of N = + 96750

Sum = 169282

Discard end carry 105
= -100000

Answer = 69282

Note that M has five digits and N has only four digits. Both numbers must have the same 
number of digits, so we write N as 03250. Taking the 10’s complement of N produces a 
9 in the most significant position. The occurrence of the end carry signifies that M Ú N 
and that the result is therefore positive.

� ■

EXAMPLE 1.6

Using 10’s complement, subtract 3250 - 72532.

M = 03250

10>s complement of N = +27468

Sum = 30718

There is no end carry. Therefore, the answer is written with a minus sign as -(10>s com-
plement of 30718) = -69282.

Note that since 3250 6 72532, the result is negative. Because we are dealing with 
unsigned numbers, there is really no way to get an unsigned result for this case. When 
subtracting with complements, we recognize the negative answer from the absence of 
the end carry and the complemented result. When working with paper and pencil, we 
can change the answer to a signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using 
the procedure outlined previously.

 ■
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EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction 
(a) X - Y and (b) Y - X by using 2’s complements.

(a) X = 1010100

2>s complement of Y = +0111101

Sum = 10010001

Discard end carry 27
= -10000000

Answer: X-Y = 0010001

(b) Y = 1000011

2>s complement of X = +0101100

Sum = 1101111

There is no end carry. Therefore, the answer is Y - X = -(2>s complement of 1101111) = 

-0010001.
 ■

Subtraction of unsigned numbers can also be done by means of the (r - 1)>s comple-
ment. Remember that the (r - 1)>s complement is one less than the r’s complement. 
Because of this, the result of adding the minuend to the complement of the subtrahend 
produces a sum that is one less than the correct difference when an end carry occurs. 
Removing the end carry and adding 1 to the sum is referred to as an end-around carry.

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1’s complement.

(a) X - Y = 1010100 - 1000011

X = 1010100

1>s complement of Y = +0111100

Sum = 10010000

End@around carry = +    1

Answer: X-Y = 0010001

(b) Y - X = 1000011 - 1010100

Y = 1000011

1>s complement of X = +0101011

Sum = 1101110

There is no end carry. Therefore, the answer is Y- X = -(1>s complement of 1101110)= 

-0010001.
 ■
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16    Chapter 1  Digital Systems and Binary Numbers

Note that the negative result is obtained by taking the 1’s complement of the sum, since 
this is the type of complement used. The procedure with end-around carry is also appli-
cable to subtracting unsigned decimal numbers with 9’s complement.

Practice Exercise 1.6

Given X = (1101010)2 and Y = (0101011)2, (a) find X - Y and (b) find Y - X using 
2’s complements.

Answer: (a) X = (1101010)2 = 10610, Y = (0101011)2 = 4310

X - Y = 10610 - 43106310

2’s complement of Y: 10101012

X - Y = (1101010)2 + (1010101)2 = (0111111)2 = 6310

(b) Y - X = 4310 - 10610 = -6310

2’s complement of X: (1 0010110)2

Y - X = (010 1011)2 + (001 0110)2 = (100 0001)2 No end carry

Y - X = -2’s complement of (100 0001)2

Y - X = -(011 1111)2 = -6310

Practice Exercise 1.7

Repeat Practice Exercise 1.5 using 1’s complements.

Answer: (a) X = (1101010)2 = 10610, Y = (0101011)2 = 4310

X - Y = 10610 - 4310 - 6310

1’s complement of Y: 10101002

X - Y = (1101010)2

+  (1010100)2

(10111110)2 End@around carry

X - Y = 01111102 + 00000012 = 01111112 = 6310

(b) X = (1101010)2 = 10610, Y = (0101011)2 = 4310

Y - X = 4310 - 10610 = -6310

1’s complement of X: (0010101)2

Y - X = (0100011)2

+  (0010101)2

(011 1000)2

No end-around carry

Y - X = -1’s complement of ((011 1000)2 + (000 0001)2)

Y - X = -1’s complement of (100 0001)2 = (011 1110)2 = -6310
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1. 6  S I G N E D  B I N A R Y  N U M B E R S

Positive integers (including zero) can be represented as unsigned numbers. However, to 
represent negative integers, we need a notation for negative values. In ordinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a plus 
sign. Because of hardware limitations, computers must represent everything with binary 
digits. It is customary to represent the sign with a bit placed in the leftmost position of 
the number. The convention is to make the sign bit 0 for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a 
string of bits when represented in a computer. The user determines whether the number 
is signed or unsigned. If the binary number is signed, then the leftmost bit represents the 
sign and the rest of the bits represent the number. If the binary number is assumed to be 
unsigned, then the leftmost bit is the most significant bit of the number. For example, the 
string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary) 
because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent 
of 25 when considered as an unsigned number and the binary equivalent of -9 when 
considered as a signed number. This is because the 1 that is in the leftmost position desig-
nates a negative and the other four bits represent binary 9. Usually, there is no confusion 
in interpreting the bits if the type of representation for the number is known in advance.

Practice Exercise 1.8

Which bit of a signed binary number represents the sign?

Answer: The leftmost bit

Practice Exercise 1.9

What unsigned binary number is represented by the string of bits 11001?

Answer: 2510

The representation of the signed numbers in the last example is referred to as the 
 signed-magnitude convention. In this notation, the number consists of a magnitude and a 
symbol ( +  or -) or a bit (0 or 1) indicating the sign. This is the representation of signed num-
bers used in ordinary arithmetic. When arithmetic operations are implemented in a com-
puter, it is more convenient to use a different system, referred to as the signed-complement 
system, for representing negative numbers. In this system, a negative number is indicated 
by its complement. Whereas the signed-magnitude system negates a number by chang-
ing its sign, the signed-complement system negates a number by taking its complement. 
Since positive numbers always start with 0 (plus) in the leftmost position, the complement 
will always start with a 1, indicating a negative number. The signed-complement system  
can use either the 1’s or the 2’s complement, but the 2’s complement is the most common.

As an example, consider the number 9, represented in binary with eight bits. +9 is rep-
resented with a sign bit of 0 in the leftmost position, followed by the binary equivalent 
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18    Chapter 1  Digital Systems and Binary Numbers

of 9, which gives 00001001. Note that all eight bits must have a value; therefore, 0’s are 
inserted following the sign bit up to the first 1. Although there is only one way to repre-
sent +9, there are three different ways to represent -9 with eight bits:

signed@magnitude representation: 10001001

signed@1>s@complement representation: 11110110

signed@2>s@complement representation: 11110111

Practice Exercise 1.10

What decimal number does the signed-magnitude binary number N = 10011 represent?

Answer: N = -310

Practice Exercise 1.11

Convert the signed-magnitude binary number N = 01100 to a negative value having 
the same magnitude.

Answer: N = 11100

In signed-magnitude, -9 is obtained from +9 by changing only the sign bit in the left-
most position from 0 to 1. In signed-1’s-complement, -9 is obtained by complementing 
all the bits of +9, including the sign bit. The signed-2’s-complement representation of -9 
is obtained by taking the 2’s complement of the positive number, including the sign bit.

Table 1.3 lists all possible four-bit signed binary numbers in the three representa-
tions. The equivalent decimal number is also shown for reference. Note that the positive 
numbers in all three representations are identical and have 0 in the leftmost position. 
The signed-2’s-complement system has only one representation for 0, which is always 
positive. The other two systems have either a positive 0 or a negative 0, something not 
encountered in ordinary arithmetic. Note that all negative numbers have a 1 in the 
leftmost bit position; that is the way we distinguish them from the positive numbers. 
With four bits, we can represent 16 binary numbers. In the signed-magnitude and the 
1’s-complement representations, there are eight positive numbers and eight negative 
numbers, including two zeros. In the 2’s-complement representation, there are eight 
positive numbers, including one zero, and eight negative numbers.

Practice Exercise 1.12

Represent -5 three ways with 8 bits: (a) signed-magnitude (b) signed 1>s complement, 
and (c) signed 2>s complement.

Answer: (a) 10000101, (b) 11111010, and (c) 11111011
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Practice Exercise 1.13

In the signed-2’s-complement system, negate the number 710, represented with 8 bits.

Answer:     N = 0000 01112

1>s comp = 1111 10002 

2>s comp = 1111 10012

The signed-magnitude system is used in ordinary arithmetic, but is awkward when 
employed in computer arithmetic because of the separate handling of the sign and 
the magnitude. Therefore, the signed-complement system is normally used. The 1’s 
complement imposes some difficulties and is seldom used for arithmetic operations. 
It is useful as a logical operation, since the change of 1 to 0 or 0 to 1 is equivalent to a 
logical complement operation, as will be shown in the next chapter. The  discussion of 
signed binary arithmetic that follows deals exclusively with the signed-2’s- complement 
representation of negative numbers. The same procedures can be applied to the 
signed-1’s-complement system by including the end-around carry as is done with 
unsigned numbers.

Decimal
Signed-2’s  

Complement
Signed-1’s  

Complement
Signed  

Magnitude

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0001 0001 0001

+0 0000 0000 0000

-0 — 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

-8 1000 — —

Table 1.3
Signed Binary Numbers
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Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordi-
nary arithmetic. If the signs are the same, we add the two magnitudes and give the 
sum the common sign. If the signs are different, we subtract the smaller magnitude 
from the larger and give the difference the sign of the larger magnitude. For example, 
(+25) + (-37) = -(37 - 25) = -12 is done by subtracting the smaller magnitude, 25, 
from the larger magnitude, 37, and appending the sign of 37 to the result. This is a process 
that requires a comparison of the signs and magnitudes and then performing either addi-
tion or subtraction. The same procedure applies to binary numbers in signed-magnitude 
representation. In contrast, the rule for adding numbers in the signed-complement sys-
tem does not require a comparison or subtraction, but only addition. The procedure is 
very simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers represented in 

signed-2’s-complement form is obtained from the addition of the two numbers, including 

their sign bits. A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

+ 6

+13

+19

 

00000110

00001101

00010011

   

- 6

+13

+7

 

11111010

00001101

00000111

+ 6

-13

- 7

 

00000110

11110011

11111001

   

- 6

-13

-19

 

11111010

11110011

11101101

Note that negative numbers must be initially in 2’s-complement form and that if the 
sum obtained after the addition is negative, it is in 2’s-complement form. For example, 
-7 is represented as 11111001, which is the 2’s complement of +7.

In each of the four cases, the operation performed is addition with the sign bit 
included. Any carry out of the sign-bit position is discarded, and negative results are 
automatically in 2’s-complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient 
number of bits to accommodate the sum. If we start with two n-bit numbers and the sum 
occupies n + 1 bits, we say that an overflow occurs. When one performs the addition 
with paper and pencil, an overflow is not a problem, because we are not limited by the 
width of the page. We just extend the word by adding another 0 to a positive number or 
another 1 to a negative number in the most significant position to extend the number to 
n + 1 bits and then perform the addition. Overflow is a problem in computers because 
the number of bits that hold a number is finite and fixed, and a result that exceeds the 
finite value by 1 cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used 
to the signed-magnitude system. To determine the value of a negative number in signed-
2’s complement, it is necessary to convert the number to a positive number to place it 
in a more familiar form. For example, the signed binary number 11111001 is negative 
because the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary equiva-
lent of +7. We therefore recognize the original negative number to be equal to -7.
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Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2’s-comple-
ment form is simple and can be stated as follows:

Take the 2’s complement of the subtrahend (including the sign bit) and add it to the 
minuend (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure is adopted because a subtraction operation can be changed to an addi-
tion operation if the sign of the subtrahend is changed, as is demonstrated by the fol-
lowing relationship:

({A) - (+B) = ({A) + (-B);

({A) - (-B) = ({A) + (+B).

But changing a positive number to a negative number is easily done by taking the 2’s 
complement of the positive number. The reverse is also true, because the complement 
of a negative number in complement form produces the equivalent positive number. 
To see this, consider the subtraction (-6) - (-13) = +7. In binary with eight bits, this 
operation is written as (11111010 - 11110011). The subtraction is changed to addition 
by taking the 2’s complement of the subtrahend (-13), giving (+13). In binary, this is 
11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct 
answer: 00000111(+7).

It is worth noting that binary numbers in the signed-complement system are added 
and subtracted by the same basic addition and subtraction rules as unsigned numbers. 
Therefore, computers need only one common hardware circuit to handle both types 

of arithmetic. This consideration has resulted in the signed-complement system being 
used in virtually all arithmetic units of computer systems. The user or programmer must 
interpret the results of such addition or subtraction differently, depending on whether 
it is assumed that the numbers are signed or unsigned.

Practice Exercise 1.14 – Using 2’s complements, find the following sums:

(a)    +4
+11

(b)    -4
+11

(c)    +4
-11

(d)    -4
-11

Answer:

(a) 

+4 0000 0100

+11 0000 1011

+15 0000 1111

(b) 

-4 1111 1100

+11 0000 1011

+ 7 0000 0111

(c) 

+4 0000 0100

-11 1111 0101

-7 1111 1001

(d) 

-4 1111 1100

-11 1111 0101

-15 1111 0001
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1. 7  B I N A R Y  CO D E S

Digital systems use signals that have two distinct values and circuit elements that 
have two stable states. There is a direct analogy among binary signals, binary circuit 
elements, and binary digits. A binary number of n digits, for example, may be repre-
sented by n binary circuit elements, each having an output signal equivalent to 0 or 
1. Digital systems represent and manipulate not only binary numbers but also many 
other discrete elements of information. Any discrete element of information that is 
distinct among a group of quantities can be represented with a binary code (i.e., a pat-
tern of 0’s and 1’s). The codes must be in binary because, in today’s technology, and 
in the foreseeable future, only circuits that represent and manipulate patterns of 0’s 
and 1’s can be manufactured economically for use in computers. However, it must be 
realized that binary codes merely change the symbols, not the meaning of the elements 
of information that they represent. If we inspect the bits of a computer at random, we 
will find that most of the time they represent some type of coded information rather 
than binary numbers.

An n-bit binary code is a group of n bits that assumes up to 2n distinct combinations 
of 1’s and 0’s, with each combination representing one element of the set that is being 
coded. A set of four elements can be coded with two bits, with each element assigned 
one of the following bit combinations: 00, 01, 10, and 11. A set of eight elements requires 
a three-bit code and a set of 16 elements requires a four-bit code. The bit combination 
of an n-bit code is determined from the count in binary from 0 to 2n

- 1. Each element 
must be assigned a unique binary bit combination, and no two elements can have the 
same value; otherwise, the code assignment will be ambiguous.

Although the minimum number of bits required to code 2n distinct quantities is n, 
there is no maximum number of bits that may be used for a binary code. For example, 
the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned a 
bit combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned 
the bit combination 0001000000.

Binary-Coded Decimal Code

Although the binary number system is the most natural system for a computer 
because it is readily represented in today’s electronic technology, most people are 
more accustomed to the decimal system. One way to resolve this difference is to 
convert decimal numbers to binary, perform all arithmetic calculations in binary, and 
then convert the binary results back to decimal. This method requires that we store 
decimal numbers in the computer so that they can be converted to binary. Since the 
computer can accept only binary values, we must represent the decimal digits by 
means of a code that contains 1’s and 0’s. It is also possible to perform the arithmetic 
operations directly on decimal numbers when they are stored in the computer in 
coded form.

A binary code will have some unassigned bit combinations if the number of elements 
in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary 
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code that distinguishes among 10 elements must contain at least four bits, but 6 out of 
the 16 possible combinations remain unassigned. Different binary codes can be obtained 
by arranging four bits into 10 distinct combinations. The code most commonly used for 
the decimal digits is the straight binary assignment listed in Table 1.4. This scheme is 
called binary-coded decimal and is commonly referred to as BCD. Other decimal codes 
are possible and a few of them are presented later in this section.

Table 1.4 gives the four-bit code for each decimal digit. A number with k decimal 
digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as 
0011 1001 0110, with each group of four bits representing one decimal digit. A decimal 
number in BCD is the same as its equivalent binary number only when the number is 
between 0 and 9. A BCD number greater than 10 looks different from its equivalent 
binary number, even though both contain 1’s and 0’s. Moreover, the binary combina-

tions 1010 through 1111 are not used and have no meaning in BCD. Consider decimal 
185 and its corresponding value in BCD and binary:

(185)10 = (0001 1000 0101)BCD = (10111001)2

The BCD value has 12 bits to encode the characters of the decimal value, but the equiva-
lent binary number needs only 8 bits. It is obvious that the representation of a BCD 
number needs more bits than its equivalent binary value. However, there is an advantage 
in the use of decimal numbers, because computer input and output data are generated 
by people who use the decimal system.

It is important to realize that BCD numbers are decimal numbers and not binary 
numbers, although they use bits in their representation. The only difference between a 
decimal number and BCD is that decimals are written with the symbols 0, 1, 2, . . . , 9, 
and BCD numbers use the binary code 0000, 0001, 0010, . . . , 1001. The decimal value 
is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and 
decimal 15 as 0001 0101. The corresponding binary values are 1010 and 1111 and have 
only four bits.

Decimal  
Symbol

BCD  
Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Table 1.4
Binary-Coded Decimal (BCD)
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Practice Exercise 1.15

Find the BCD representation of 8410.

Answer: 8410 = 1000 0100BCD

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry from 
a previous less significant pair of digits. Since each digit does not exceed 9, the sum 
cannot be greater than 9 + 9 + 1 = 19, with 1 being a previous carry. Suppose we 
add the BCD digits as if they were binary numbers. Then the binary sum will produce 
a result in the range from 0 to 19. In binary, this range will be from 0000 to 10011, but 
in BCD, it is from 0000 to 11001, with the first (i.e., leftmost) 1 being a carry and the 
next four bits being the BCD sum. When the binary sum is equal to or less than 1001 
(without a carry), the corresponding BCD digit is correct. However, when the binary 
sum is greater than or equal to 1010, the result is an invalid BCD digit. The addition of 
6 = (0110)2 to the binary sum converts it to the correct digit and also produces a carry 
as required. This is because a carry in the most significant bit position of the binary sum 
and a decimal carry differ by 16 - 10 = 6. Consider the following three BCD additions:

4

+5

9

 

0100

+0101

1001

 

4

+8

12

 

0100

+1000

1100

 

8

+9

17

 

1000

1001

10001

      
+0110

10010
   

+0110

10111

In each case, the two BCD digits are added as if they were two binary numbers. If the 
binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum 
and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In the 
second example, the binary sum produces an invalid BCD digit (1100). The addition of 
0110 produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third 
example, the binary sum (10001) produces a carry. This condition occurs when the sum 
is greater than or equal to 16. Although the other four bits are less than 1001, the binary 
sum requires a correction because of the carry. Adding 0110, we obtain the required 
BCD sum 0111 (i.e., the number 7) and a BCD carry.

The addition of two n-digit unsigned BCD numbers follows the same procedure. 
Consider the addition of 184 + 576 = 760 in BCD:

BCD

Binary sum

Add 6

BCD sum

 

1

0001

+0101

0111

  

0111

 

1

1000

0111

10000

0110

0110

 

 

0100

0110

1010

0110

0000

 

 

184

+576

  

760
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The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and 
a carry for the next pair of digits. The second pair of BCD digits plus a previous carry 
produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of digits 
plus a carry produces a binary sum of 0111 and does not require a correction.

Practice Exercise 1.16

Find the BCD sum of 4 + 6.

Answer: 10000

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation 
of signed numbers in binary. We can use either the familiar signed-magnitude system 
or the signed-complement system. The sign of a decimal number is usually represented 
with four bits to conform to the four-bit code of the decimal digits. It is customary to 
designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement 
system can be either the 9’s or the 10’s complement, but the 10’s complement is the 
one most often used. To obtain the 10’s complement of a BCD number, we first take 
the 9’s complement and then add 1 to the least significant digit. The 9’s complement is 
calculated from the subtraction of each digit from 9.

The procedures developed for the signed-2’s-complement system in the previous sec-
tion also apply to the signed-10’s-complement system for decimal numbers. Addition is 
done by summing all digits, including the sign digit, and discarding the end carry. This 
operation assumes that all negative numbers are in 10’s-complement form. Consider the 
addition (+375) + (-240) = +135, done in the signed-complement system:

0 375

+9 760

0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is the 
10’s complement of 0240. The two numbers are added and the end carry is discarded to 
obtain +135. Of course, the decimal numbers inside the computer, including the sign 
digits, must be in BCD. The addition is done with BCD digits as described previously.

Practice Exercise 1.17

Find the BCD sum

(a) 370 + (-250)

Answer: 0120

(b) 250 + (-370)

Answer: 9880, -120
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26    Chapter 1  Digital Systems and Binary Numbers

The subtraction of decimal numbers, either unsigned or in the signed-10’s-comple-
ment system, is the same as in the binary case: Take the 10’s complement of the sub-
trahend and add it to the minuend. Many computers have special hardware to perform 
arithmetic calculations directly with decimal numbers in BCD. The user of the computer 
can specify programmed instructions to perform the arithmetic operation with decimal 
numbers directly, without having to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different 
codes can be formulated by arranging four bits into 10 distinct combinations. BCD and 
three other representative codes are shown in Table 1.5. Each code uses only 10 out of 
a possible 16 bit combinations that can be arranged with four bits. The other six unused 
combinations have no meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, 
each bit position is assigned a weighting factor in such a way that each digit can be 
evaluated by adding the weights of all the 1’s in the coded combination. The BCD 
code has weights of 8, 4, 2, and 1, which correspond to the power-of-two values of 
each bit. The bit assignment 0110, for example, is interpreted by the weights to rep-
resent decimal 6 because 8 * 0 + 4 * 1 + 2 * 1 + 1 * 0 = 6. The bit combination 
1101, when weighted by the respective digits 2421, gives the decimal equivalent of 

Decimal  
Digit

BCD  
8421 2421 Excess-3 8, 4, −2, −1

0 0000 0000 0011 0000

1 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

4 0100 0100 0111 0100

5 0101 1011 1000 1011

6 0110 1100 1001 1010

7 0111 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 1111

1010 0101 0000 0001

Unused 
bit  
combi-
nations

1011 0110 0001 0010

1100 0111 0010 0011

1101 1000 1101 1100

1110 1001 1110 1101

1111 1010 1111 1110

Table 1.5
Four Different Binary Codes for the Decimal Digits
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2 * 1 + 4 * 1 + 2 * 0 + 1 * 1 = 7. Note that some digits can be coded in two pos-
sible ways in the 2421 code. For instance, decimal 4 can be assigned to bit combination 
0100 or 1010, since both combinations add up to a total weight of 4.

BCD adders add BCD values directly, digit by digit, without converting the numbers 
to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD 
adders require significantly more hardware and no longer have a speed advantage of 
conventional binary adders [5].

The 2421 and the excess-3 codes are examples of self-complementing codes. Such 
codes have the property that the 9’s complement of a decimal number is obtained 
directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-
tern). For example, the codes in Table 1.5 indicate that decimal 395 is represented in the 
excess-3 code as 0110 1100 1000. Its 9’s complement, 604, is represented as 1001 0011 
0111, which is obtained simply by complementing each bit of the code for 395 (as with 
the 1’s complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-
complementing property. Excess-3 is an unweighted code in which each coded combi-

nation is obtained from the corresponding binary value plus 3. Note that the BCD code 
is not self-complementing.

The 8, 4, -2, -1 code is an example of assigning both positive and negative weights 
to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and 
is calculated from 8 * 0 + 4 * 1 + (-2) * 1 + (-1) * 0 = 2.

Gray Code

The output data of many physical systems are quantities that are continuous. These 
data must be converted into digital form before they are applied to a digital system. 
Continuous or analog information is converted into digital form by means of an analog-
to-digital converter. It is sometimes convenient to use the Gray code shown in Table 1.6 
to represent digital data that have been converted from analog data. The advantage of 
the Gray code over the straight binary number sequence is that only one bit in the code 
group changes in going from one number to the next. For example, in going from 7 to 
8, the Gray code changes from 0100 to 1100. Only the first bit changes, from 0 to 1; the 
other three bits remain the same. By contrast, with binary numbers the change from 7 
to 8 will be from 0111 to 1000, which causes all four bits to change values.

The Gray code is used in applications in which the normal sequence of binary num-
bers generated by the hardware may produce an error or ambiguity during the transi-
tion from one number to the next. If binary numbers are used, a change, for example, 
from 0111 to 1000 may produce an intermediate erroneous number 1001 if the value 
of the rightmost bit takes longer to change than do the values of the other three bits. 
This could have serious consequences for the machine using the information. The Gray 
code eliminates this problem, since only one bit changes its value during any transition 
between two numbers.

A typical application of the Gray code is the representation of analog data by a con-
tinuous change in the angular position of a shaft. The shaft is partitioned into segments, 
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and each segment is assigned a number. If adjacent segments are made to correspond 
with the Gray-code sequence, ambiguity is eliminated between the angle of the shaft 
and the value encoded by the sensor.

ASCII Character Code

Many applications of digital computers require the handling not only of numbers but also 
of other characters or symbols, such as the letters of the alphabet. For instance, consider 
a high-tech company with thousands of employees. To represent the names and other 
pertinent information, it is necessary to formulate a binary code for the letters of the 
alphabet. In addition, the same binary code must represent numerals and special charac-
ters (such as $). An alphanumeric character set is a set of elements that includes the 10 
decimal digits, the 26 letters of the alphabet, and a number of special characters. Such a 
set contains between 36 and 64 elements if only capital letters are included, or between 
64 and 128 elements if both uppercase and lowercase letters are included. In the first case, 
we need a binary code of six bits, and in the second, we need a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard 
Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-
ters, as shown in Table 1.7.  The seven bits of the code are designated by b1 through b7, 
with b7 being the most significant bit. The letter A, for example, is represented in ASCII 
as 1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters 
that can be printed and 34 nonprinting characters used for various control functions. The 

Gray  
Code

Decimal  
Equivalent

0000  0

0001  1

0011  2

0010  3

0110  4

0111  5

0101  6

0100  7

1100  8

1101  9

1111 10

1110 11

1010 12

1011 13

1001 14

1000 15

Table 1.6
Gray Code
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b7b6b5

b4b3b2b1 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 “ 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ‘ 7 G W g w

1000 BS CAN ( 8 H X h x

1001 HT EM ) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [ k {

1100 FF FS , 6 L l �

1101 CR GS - = M ] m }

1110 SO RS . 7 N ¿ n ∼

1111 SI US / ? O - o DEL

Control Characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

SP Space DEL Delete

Table 1.7
American Standard Code for Information Interchange (ASCII)
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graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase 
letters (a through z), the 10 numerals (0 through 9), and 32 special printable characters, 
such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names. 
They are listed again below the table with their functional names. The control characters 
are used for routing data and arranging the printed text into a prescribed format. There are 
three types of control characters: format effectors, information separators, and communica-
tion-control characters. Format effectors are characters that control the layout of printing. 
They include the familiar word processor and typewriter controls such as backspace (BS), 
horizontal tabulation (HT), and carriage return (CR). Information separators are used to 
separate the data into divisions such as paragraphs and pages. They include characters such 
as record separator (RS) and file separator (FS). The communication-control characters are 
useful during the transmission of text between remote devices so that it can be distinguished 
from other messages using the same communication channel before it and after it. Exam-
ples of communication-control characters are STX (start of text) and ETX (end of text), 
which are used to frame a text message transmitted through a communication channel.

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity as a 
single unit called a byte. Therefore, ASCII characters most often are stored one per byte. 
The extra bit is sometimes used for other purposes, depending on the application. For 
example, some printers recognize eight-bit ASCII characters with the most significant 
bit set to 0. An additional 128 eight-bit characters with the most significant bit set to 1 
are used for other symbols, such as the Greek alphabet or italic type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added 
to the ASCII character to indicate its parity. A parity bit is an extra bit included with a 
message to make the total number of 1’s either even or odd. Consider the following two 
characters and their even and odd parity:

With even parity With odd parity

ASCII A = 1000001 01000001 11000001

ASCII T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an 
even number of 1’s in the character for even parity or an odd number of 1’s in the 
character for odd parity. In general, one or the other parity is adopted, with even parity 
being more common.

The parity bit is helpful in detecting errors during the transmission of information 
from one location to another. This function is handled by generating an even parity bit 
at the sending end for each character. The eight-bit characters that include parity bits 
are transmitted to their destination. The parity of each character is then checked at the 
receiving end. If the parity of the received character is not even, then at least one bit 
has changed value during the transmission. This method detects one, three, or any odd 
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combination of errors in each character that is transmitted. An even combination of 
errors, however, goes undetected, and additional error detection codes may be needed 
to take care of that possibility.

What is done after an error is detected depends on the particular application. One 
possibility is to request retransmission of the message on the assumption that the error 
was random and will not occur again. Thus, if the receiver detects a parity error, it sends 
back the ASCII NAK (negative acknowledge) control character consisting of an even-
parity eight bits 10010101. If no error is detected, the receiver sends back an ACK 
(acknowledge) control character, namely, 00000110. The sending end will respond to 
an NAK by transmitting the message again until the correct parity is received. If, after 
a number of attempts, the transmission is still in error, a message can be sent to the 
operator to check for malfunctions in the transmission path.

Practice Exercise 1.18

What is the even parity bit of A = 0101100?

Answer: 1

1. 8  B I N A R Y  S TO R AG E  A N D  R E G I S T E R S

The binary information in a digital computer must have a physical existence in some 
medium for storing individual bits. A binary cell is a device that possesses two stable 
states and is capable of storing one bit (0 or 1) of information. The input to the cell 
receives excitation signals that set it to one of the two states. The output of the cell is a 
physical quantity that distinguishes between the two states. The information stored in a 
cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable state.

Registers

A register is a contiguous group of binary cells. A register with n cells can store any dis-
crete quantity of information that contains n bits. The state of a register is an n-tuple of 
1’s and 0’s, with each bit designating the state of one cell in the register. The content of a 
register is a function of the interpretation given to the information stored in it. Consider, 
for example, a 16-bit register with the following binary content:

1100001111001001

A register with 16 cells can be in one of 216 possible states. If one assumes that the content 
of the register represents a binary integer, then the register can store any binary number 
from 0 to 216

- 1. For the particular example shown, the content of the register is the 
binary equivalent of the decimal number 50,121. If one assumes instead that the register 
stores alphanumeric characters of an eight-bit code, then the content of the register is 
any two meaningful characters. For the ASCII code with an even parity placed in the 
eighth most significant bit position, the register contains the two characters C (the left-
most eight bits) and I (the rightmost eight bits). If, however, one interprets the content 
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of the register to be four decimal digits represented by a four-bit code, then the content 
of the register is a four-digit decimal number. In the excess-3 code, the register holds the 
decimal number 9,096. The content of the register is meaningless in BCD, because the bit 
combination 1100 is not assigned to any decimal digit. From this example, it is clear that 
a register can store discrete elements of information and that the same bit configuration 
may be interpreted differently for different types of data depending on the application.

Register Transfer

A digital system is characterized by its registers and the components that perform data 
processing. In digital systems, a register transfer operation is a basic operation that con-
sists of a transfer of binary information from one set of registers into another set of 
registers. The transfer may be direct, from one register to another, or may pass through 
data-processing circuits to perform an operation. Figure 1.1 illustrates the transfer of 
information among registers and demonstrates pictorially the transfer of binary infor-
mation from a keyboard into a register in the memory unit. The input unit is assumed to 
have a keyboard, a control circuit, and an input register. Each time a key is struck, the 

FIGURE 1.1

Transfer of information among registers

MEMORY UNIT

PROCESSOR UNIT

INPUT UNIT

J O H N

Memory
Register
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8 cells
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Keyboard CONTROL

01001010010011111100100011001110

Processor
Register

Input
Register

J

O
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N
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control circuit enters an equivalent eight-bit alphanumeric character code into the input 
register. We shall assume that the code used is the ASCII code with an odd-parity bit. 
The information from the input register is transferred into the eight least significant cells 
of a processor register. After every transfer, the input register is cleared to enable the 
control to insert a new eight-bit code when the keyboard is struck again. Each eight-bit 
character transferred to the processor register is preceded by a shift of the previous char-
acter to the next eight cells on its left. When a transfer of four characters is completed, 
the processor register is full, and its contents are transferred into a memory register. The 
content stored in the memory register shown in Fig. 1.1 came from the transfer of the 
characters “J,” “O,” “H,” and “N” after the four appropriate keys were struck.

To process discrete quantities of information in binary form, a computer must be 
provided with devices that hold the data to be processed and with circuit elements that 
manipulate individual bits of information. The device most commonly used for holding 

data is a register. Binary variables are manipulated by means of digital logic circuits. 
Figure 1.2 illustrates the process of adding two 10-bit binary numbers. The memory unit, 

FIGURE 1.2

Example of registers in binary information processing

MEMORY UNIT

PROCESSOR UNIT

Operand 1

Operand 2

Sum

R1

R2

R3

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1

0 0 1 1 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 1 1
Digital logic
circuits for

binary addition
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which normally consists of millions of registers, is shown with only three of its registers. 
The part of the processor unit shown consists of three registers—R1, R2, and R3—
together with digital logic circuits that manipulate the bits of R1 and R2 and transfer into 
R3 a binary number equal to their arithmetic sum. Memory registers store information 
and are incapable of processing the two operands. However, the information stored in 
memory can be transferred to processor registers, and the results obtained in processor 
registers can be transferred back into a memory register for storage until needed again. 
The diagram shows the contents of two operands transferred from two memory registers 
into R1 and R2. The digital logic circuits produce the sum, which is transferred to register 
R3. The contents of R3 can now be transferred back to one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital sys-
tem in a simple manner. The registers of the system are the basic elements for storing and 
holding the binary information. Digital logic circuits process the binary information stored 
in the registers. Digital logic circuits and registers are covered in Chapters 2 through 6. 
The memory unit is explained in Chapter 7. The description of register operations at the 
register transfer level and the design of digital systems are covered in Chapter 8.

1. 9  B I N A R Y  LO G I C

Binary logic deals with variables that take on two discrete values and with operations 
that assume logical meaning. The two values the variables assume may be called by dif-
ferent names (true and false, yes and no, etc.), but for our purpose, it is convenient to 
think in terms of bits and assign the values 1 and 0. The binary logic introduced in this 
section is equivalent to an algebra called Boolean algebra. The formal presentation of 
Boolean algebra is covered in more detail in Chapter 2. The purpose of this section is 
to introduce Boolean algebra in a heuristic manner and relate it to digital logic circuits 
and binary signals.

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables 
are designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable 
having two and only two distinct possible values: 1 and 0. There are three basic logical 
operations: AND, OR, and NOT. Each operation produces a binary result, denoted by z.

1. AND: This operation is represented by a dot or by the absence of an operator. For 
example, x # y = z or xy = z is read “x AND y is equal to z.” The logical operation 
AND is interpreted to mean that z = 1 if and only if x = 1 and y = 1; otherwise 
z = 0. (Remember that x, y, and z are binary variables and can be equal either to 
1 or 0, and nothing else.) The result of the operation x # y is z.

2. OR: This operation is represented by a plus sign. For example, x + y = z is read 
“x OR y is equal to z,” meaning that z = 1 if x = 1 or if y = 1 or if both x = 1 
and y = 1. If both x = 0 and y = 0, then z = 0.
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3. NOT: This operation is represented by a prime (sometimes by an overbar). For 
example, x′ = z (or x = z) is read “not x is equal to z,” meaning that z is what 
x is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1. The NOT 
operation is also referred to as the complement operation, since it changes a 1 to 
0 and a 0 to 1, that is, the result of complementing 1 is 0, and vice versa.

Binary logic resembles binary arithmetic, and the operations AND and OR have 
similarities to multiplication and addition, respectively. In fact, the symbols used for 
AND and OR are the same as those used for multiplication and addition. However, 
binary logic should not be confused with binary arithmetic. One should realize that an 
arithmetic variable designates a number that may consist of many digits. A logic vari-
able is always either 1 or 0. For example, in binary arithmetic, we have 1 + 1 = 10 (read 
“one plus one is equal to 2”), whereas in binary logic, we have 1 + 1 = 1 (read “one 
OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specified by the 
definition of the logical operation. Definitions of logical operations may be listed in a 
compact form called truth tables. A truth table is a table of all possible combinations 
of the variables, showing the relation between the values that the variables may take 
and the result of the operation. The truth tables for the operations AND and OR with 
variables x and y are obtained by listing all possible values that the variables may have 
when combined in pairs. For each combination, the result of the operation is then listed 
in a separate row. The truth tables for AND, OR, and NOT are given in Table 1.8. These 
tables clearly demonstrate the definition of the operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more physical input signals 
to produce an output signal. Electrical signals such as voltages or currents exist as 
analog signals having values over a given continuous range, say, 0–3 V, but in a digital 
system these voltages are interpreted to be either of two recognizable values, 0 or 1. 
Voltage-operated logic circuits respond to two separate voltage levels that represent a 
binary variable equal to logic 1 or logic 0. For example, a particular digital system may 
define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice, 
each voltage level has an acceptable range, as shown in Fig. 1.3. The input terminals 

AND OR NOT

x y x # y x y x + y x x′

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

Table 1.8
Truth Tables of Logical Operations
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of digital circuits accept binary signals within the allowable range and respond at the 
output terminals with binary signals that fall within the specified range. The intermedi-
ate region between the allowed regions is crossed only during a state transition. Any 
desired information for computing or control can be operated on by passing binary 
signals through various combinations of logic gates, with each signal representing a 
particular binary variable. When the physical signal is in a particular range it is inter-
preted to be either a 0 or a 1.

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4. 
The gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 
output signals if input logic requirements are satisfied. The input signals x and y in the 
AND and OR gates may exist in one of four possible states: 00, 10, 11, or 01. These 
input signals are shown in Fig. 1.5 together with the corresponding output signal for 
each gate. The timing diagrams illustrate the idealized response of each gate to the 
four input signal combinations. The horizontal axis of the timing diagram represents 
the time, and the vertical axis shows the signal as it changes between the two possible 
voltage levels. In reality, the transitions between logic values occur quickly, but not 

FIGURE 1.3

Signal levels for binary logic values
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FIGURE 1.4
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instantaneously. The low level represents logic 0 and the high level logic 1. The AND 
gate responds with a logic 1 output signal when both input signals are logic 1. The OR 
gate responds with a logic 1 output signal if any input signal is logic 1. The NOT gate 
is commonly referred to as an inverter. The reason for this name is apparent from the 
signal response in the timing diagram, which shows that the output signal inverts the 
logic sense of the input signal.

AND and OR gates may have more than two inputs. An AND gate with three inputs 
and an OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate 
responds with logic 1 output if all three inputs are logic 1. The output produces logic 0 
if any input is logic 0. The four-input OR gate responds with logic 1 if any input is logic 
1; its output becomes logic 0 only when all inputs are logic 0.

P R O B L E M S

(Answers to problems marked with * appear at the end of the text.)

 1.1 (a) List the octal and hexadecimal numbers from 1410 to 3210. Using A and B for the last 
two digits, list the numbers from 810 to 2810 in base 12.

 1.2* What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes, 
and (c) 6.4G bytes?

 1.3 Convert the following numbers with the indicated bases to decimal:
 (a)* (4310)5 (b)* (198)12

 (c)  (445)8 (d)  (345)6

FIGURE 1.5

Input–output signals for gates
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 1.4 What is the largest binary number that can be expressed with 16 bits? What are the equiva-
lent decimal and hexadecimal numbers?

 1.5* Determine the base of the numbers in each case for the following operations to be correct:
 (a) 14/2 = 5 (b) 56/4 = 15 (c) 32 + 12 = 28.

 1.6* The solutions to the quadratic equation x2
- 11x + 22 = 0 are x = 3 and x = 6. What is 

the base of the numbers?

 1.7* Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.

 1.8 Convert the decimal number 431 to binary in two ways: (a) convert directly to binary; 
(b) convert first to hexadecimal and then from hexadecimal to binary. Which method is 
faster?

 1.9 Express the following numbers in decimal:
 (a)* (10110.0101)2 (b)* (16.5)16

 (c)* (26.24)8 (d)  (DABA.B)16

 (e)  (1011.1001)2

 1.10 Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010 
(b) 110.010. Explain why the decimal answer in (b) is four times that in (a).

 1.11 Perform the following division in binary: 111011 , 101.

 1.12* Add and multiply the following numbers without converting them to decimal:
 (a) Binary numbers 1011 and 101.
 (b) Hexadecimal numbers 2E and 34.

 1.13 Do the following conversion problems:
 (a) Convert decimal 27.315 to binary.
 (b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to 

decimal. How close is the result to 2/3?
 (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. 

Is the answer the same?

 1.14 Obtain the 1’s and 2’s complements of the following binary numbers:
 (a) 10010000 (b) 00000000
 (c) 11011010 (d) 10101010
 (e) 10100101 (f) 11111111.

 1.15 Find the 9’s and the 10’s complement of the following decimal numbers:
 (a) 25,478,036 (b) 63, 325, 600
 (c) 25,000,000 (d) 00,000,000.

 1.16 (a) Find the 16’s complement of C3AF.
 (b) Convert C3AF to binary.
 (c) Find the 2’s complement of the result in (b).
 (d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

 1.17 Perform subtraction on the given unsigned numbers using the 10’s complement of the 
subtrahend. Where the result should be negative, find its 10’s complement and affix a minus 
sign. Verify your answers.

 (a) 6,473 - 5,297 (b) 125 - 1,800
 (c) 1,076 - 3,217 (d) 1,631 - 745
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