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xvi  PREFACE

 

Preface

New Stuff!
 1. MisConceptual Questions, 10 or 15 at the end of each chapter. The multiple-

choice answers include common misconceptions as well as correct responses. 
Pedagogically, asking students to think, to consider the options, is more  
effective than just telling them what is valid and what is wrong. (These are in 
addition to the one at the start of each chapter.

 2. Digital is all around us. Yet that word is not always used carefully. In this 
new edition we have 20 new pages describing the basics from the ground 
up. Binary numbers, bits and bytes, are introduced in Chapter 23 along with 
analog-to-digital conversion (ADC), and vice versa, including digital audio  

and how video screens work. Also information compression, sampling rate, bit 

depth, pixel addressing, digital transmission and, in later chapters, information  
storage (RAM, DRAM, flash), digital cameras and their sensors (CCD, CMOS).

 3. Gravitational Assist (Slingshot) to accelerate spacecraft (Chapter 8).

 4. Magnetic field of a single moving charge, rarely treated (and if it is, maybe 
not well), and it shows the need for relativity theory.

 5. Seeing yourself in a magnifying mirror (concave), angular magnification and 
blurriness with a paradox. Also convex (rearview) mirrors (Chapter 32).

 6. Pedagogical clarification on defining potential energy, and energy itself 
(Chapter 8), and on hundreds of other topics.

 7. The Moon rises an hour later each day (Chapter 6), its phases, periods, and diagram.

 8. Efficiency of lightbulbs (Chapter 34).

 9. Idealization vs. reality emphasized—such as PV diagrams (Chapter 19) as an 
idealized approximation.

 10. Many new Problems ('  500) plus new Questions as well as the 500 or so 
MisConceptual Questions (point 1 above).

 11. Many new worked-out Examples.

 12. More math steps included in derivations and Examples.

 13. State of a system and state variables clarified (Chapter 17).

 14. Contemporary physics: Gravitational waves, LIGO and Virgo, Higgs, WIMPS, 
OLEDS and other semiconductor physics, nuclear fusion updates, neutrino-less 
double beta decay.

 15. New SI units (Chapter 1, Chapter 21, Tables).

 16. Boiling temperature of water vs. elevation (Chapter 18).

 17. Modern physics in earlier classical Chapters (sometimes in Problems): Light-years,  
observable universe (Chapter 1); optical tweezers (Chapter 4); uranium  
enrichment (Chapter 5); black holes and curved space, white dwarfs (Chapter 6); 
crystal structure (Chapter 7); Yukawa potential, Lennard-Jones potential (Chap-
ter 8); neutrons, nuclear reactors, moderator, nuclear collisions, radioactive decay, 
neutron star collapse (Chapter 9); galaxy redshift (Chapter 16); gas diffusion of 
uranium (Chapter 18); quarks (Chapter 21); liquid-drop model of nucleus, Gei-
ger counter, Van de Graaff (Chapter 23); transistors (Chapters 23, 29); isotopes, 
cyclotron (Chapter 27); MOSFET (Chapter 29); semiconductor (camera sensor), 
photon (Chapter 33); line spectra, X-ray crystallography (Chapter 35).

 18. Second law of thermodynamics and heat energy reorganized (Chapter 20).

 19. Symmetry emphasized throughout.

 20. Uranium enrichment, % needed in reactors, bombs (Chapters 5, 42).

 21. Mass excess, mass defect (Chapter 41).

 22. The mole, more careful definition (Chapter 17).

 23. Liquid-gas ambiguity above critical temperature (Chapter 18).

 24. Measurement affects quantity measured, new emphasis.
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 25. New Applications:
•	 Ocean	Tides	(Chapter	6)
•	 Anticyclonic	weather	(Chapter	11)
•	 Jump	starting	a	car	safely	(Chapter	26)
•	 Light	bulb	efficiency	(Chapter	34)
•	 Specialty	microscopes	and	contrast	(Chapter	35)
•	 Forces	on	Muscles	and	Joints	(Chapter	12)
•	 Doppler ultrasound imaging (Chapter 16)
•	 Lake	level	change	when	rock	thrown	from	boat	(Chapter	13)
•	 Skier	speed	on	snow	vs.	flying	through	the	air	(Chapter	5)
•	 Inductive	charging	(Chapter	29)
•	 Human body internal heat transfer is convection (blood) (Chapter 19)
•	 Blood	pressure	measurement	(Chapter	13)
•	 Sports	(lots)
•	 Voltage divider (Chapter 26, Problems)
•	 Flat	screen	TV	(Chapters	23,	34,	40)
•	 Carbon	footprint	and	climate	(Chapter	20)
•	 Electrocardiogram (Chapter 23)
•	 Wireless	from	the	Moon	unimaginable	(Chapter	31)
•	 Why snorkels are short (Chapter 17 Problem)
•	 Electric	cars	(Chapter	25)
•	 Digital (Chapters 23, 29, 33, 40) includes (in addition to details in point 2 

above) quantization error, digital error correction, noise, bit error rate, digi-
tal TV data stream, refresh rate, active matrix, thin film transistors, digital 
memory, bit-line, reading and writing of memory cells (MOSFET), floating 
gate, volatile and nonvolatile memory, Bayer, JPEG, ASCII code, and more.

Seeing the World through Eyes that Know Physics
I was motivated to write a textbook different from others which typically present 
physics as a sequence of facts, like a catalog. Instead of beginning formally and  
dogmatically, I aim to begin each topic with everyday observations and experiences  
the students can relate to: start with specifics, the real world, and then go to the 
great generalizations and the more formal aspects of the physics, showing why we 
believe what we believe. This approach reflects how science is actually practiced.

The aim is to give students a thorough understanding of the basic concepts 
of physics in all its aspects, from mechanics to modern physics. Also important 
is to show students how useful physics is in their own everyday lives and in their 
future professions by means of interesting applications to biology, medicine, 
engineering, architecture, and more. 

Much effort has gone into approaches for the practical techniques of solving prob-
lems: worked-out Examples, Problem Solving sections, and Problem Solving Strategies.

Chapter 1 is not a throwaway. It is fundamental to physics to realize that ev-
ery measurement has an uncertainty, and how significant figures are used. Being 
able to make rapid estimates is a powerful tool useful for every student, and used 
throughout the book starting in Chapter 1 (you can estimate the Earth’s radius!). 

Mathematics can be an obstacle to students. I have aimed at including all 
steps in a derivation. Important mathematical tools, such as addition of vectors 
and vector product, are incorporated in the text where first needed, so they come 
with a context rather than in a forbidding introductory Chapter. Appendices 
contain a basic math review, derivatives and integrals, plus some more advanced 
topics including numerical integration, gravitational field of spherical mass  
distribution, Maxwell’s equations in differential form, and a Table of selected 
nuclear isotopes (carefully updated, as are the Periodic Table and the Funda-
mental Constants found inside the back and front covers).

Some instructors may find this book contains more material than can be 
covered in their courses. The text offers great flexibility. Sections marked with 
a star * may be considered optional. These contain slightly more advanced 

Versions of this Book
Complete version: 44 Chapters 
including 9 Chapters of modern 
physics.

Classic version: 37 Chapters, 
35 on classical physics, plus one 
each on relativity and quantum 
theory.

3 Volume version: Available 
separately or packaged together  

Volume 1: Chapters 1–20 on 
 mechanics, including fluids,  
oscillations, waves, plus heat  
and thermodynamics.

Volume 2: Chapters 21–35 on 
electricity and magnetism, plus 
light and optics.

Volume 3: Chapters 36–44 on  
modern physics: relativity,  
quantum theory, atomic physics,  
condensed matter, nuclear physics,  
elementary particles,  
cosmology and astrophysics.
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physics material, or material not usually covered in typical courses, or interest-
ing applications; they contain no material needed in later Chapters (except 
perhaps in later optional Sections). For a brief course, all optional material 
could be dropped as well as significant parts of Chapters 13, 16, 26, 30, and 35, 
and selected parts of Chapters 9, 12, 19, 20, 33. Topics not covered in class can 
be a valuable resource for outside study by students. Indeed, this text can serve 
as a useful reference for years because of its wide range of coverage.

Thanks
Many physics professors provided input or direct feedback on every aspect of this 
textbook. They are listed below, and I owe each a debt of gratitude.
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I owe special thanks to Prof. Bob Davis for much valuable input, and especially 
for working out all the Problems and producing the Solutions Manual for all 
Problems, as well as for providing the answers to odd-numbered Problems at the 
back of the book. Many thanks also to J. Erik Hendrickson who collaborated with 
Bob Davis on the solutions, and to the team they managed (Michael Ottinger, 
John Kinard, David Jones, Kristi Hatch, Lisa Will).

I am especially grateful to Profs. Lorraine Allen, Kathryn Dimiduk, Michael 
Strauss, Cindy Schwarz, Robert Coakley, Robert Pelcovitz, Mark Hollabaugh, 
Charles Hibbard, and Michael Winokur, who helped root out errors and offered 
significant improvements and clarifications.

For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics, 
I was fortunate to receive generous input from some of the top experts in the 
field, to whom I owe a debt of gratitude: Saul Perlmutter, George Smoot, Richard 
Muller, Alex Filippenko, Paul Richards, Gabriel Orebi Gann, James Siegrist, and 
William Holzapfel (UC Berkeley), Andreí Linde (Stanford U.), Lyman Page 
(Princeton), Edward Wright (UCLA), Michael Strauss (University of Oklahoma), 
and Bob Jacobsen (UC Berkeley).

I also wish to thank many others at the University of California, Berkeley, 
Physics Department for helpful discussions, and for hospitality. Thanks also to 
Prof. Tito Arecchi at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Pearson Education with whom 
I worked on this project, especially Jeanne Zalesky and Paul Corey, and the 
perspicacious editors Margy Kuntz and Andrea Giancoli.

The final responsibility for all errors lies with me. I welcome comments, 
corrections, and suggestions as soon as possible to benefit students for the next 
reprint.

D.G.
email: jeanne.zalesky@pearson.com 
paper mail: Jeanne Zalesky
 Pearson Education
 501 Boylston Street
 Boston, MA 020116 

About the Author
Doug Giancoli obtained his BA in physics (summa cum laude) from UC Berkeley,  
his MS in physics at MIT, and his PhD in elementary particle physics back at UC 
Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley’s Virus Lab  
developing skills in molecular biology and biophysics. 

His mentors include Nobel winners Emilio Segrè, Barry Barish, and 
Donald Glaser. 

He has taught a wide range of undergraduate courses, traditional as well as 
innovative ones, and works to improve his textbooks meticulously, seeking ways 
to provide a better understanding of physics for students.

Doug loves the outdoors, especially climbing peaks. He says climbing peaks 
is like learning physics: it takes effort and the rewards are great.

GIAN_PSE5_CH_FM_Classic_i-xxii_c.indd   19 03/07/20   16:04

mailto:jeanne.zalesky@pearson.com


 

Students Advice
HOW TO STUDY

 1. Read the Chapter. Learn new vocabulary and notation. Respond to questions and  
exercises as they occur. Follow carefully the steps of worked-out Examples and 
derivations. Avoid time looking at a screen. Paper is better than pixels when it 
comes to learning and thinking.

 2. Attend all class meetings. Listen. Take notes. Ask questions (everyone wants 
to, but maybe you will have the courage). You will get more out of class if you 
read the Chapter first.

 3. Read the Chapter again, paying attention to details. Follow derivations and 
worked-out Examples. Absorb their logic. Answer Exercises and as many of 
the end-of-Chapter Questions as you can, and all MisConceptual Questions.

 4. Solve at least 10 to 20 end-of-Chapter Problems, especially those assigned. In 
doing Problems you may find out what you learned and what you didn’t. Discuss  
them with other students. Problem solving is one of the great learning tools. 
Don’ t just look for a formula : it might be the wrong one. 

NOTES ON THE FORMAT AND PROBLEM SOLVING

 1. Sections marked with a star (*) may be considered optional or advanced. They can 
be omitted without interrupting the main flow of topics. No later material depends 
on them except possibly later starred Sections. They may be fun to read, though.

 2. The customary conventions are used: symbols for quantities (such as m for 
mass) are italicized, whereas units (such as m for meter) are not italicized. 
Symbols for vectors are shown in boldface with a small arrow above: F5.

 3. Few equations are valid in all situations. Where practical, the range of validity  
of important equations are stated in square brackets next to the equation. 
The equations that represent the great laws of physics are displayed with a 
tan background, as are a few other indispensable equations.

 4. At the end of each Chapter is a set of Questions you should try to answer. 
Attempt all the multiple-choice MisConceptual Questions, which are inten-
dend to get common misconceptions “out on the table” by including them 
as responses (temptations) along with correct answers. Most important are 
Problems which are ranked as Level I, II, or III, according to estimated dif-
ficulty. Level I Problems are easiest, Level II are standard Problems, and 
Level III are “challenge problems.” These ranked Problems are arranged by 
Section, but Problems for a given Section may depend on earlier material 
too. There follows a group of General Problems, not arranged by Section or 
ranked. Problems that relate to optional Sections are starred (*). Answers to 
odd-numbered Problems are given at the end of the book. 

 5. Being able to solve Problems is a crucial part of learning physics, and provides  
a powerful means for understanding the concepts and principles. This 
book contains many aids to problem solving: (a) worked-out Examples,  
including an Approach and a Solution, which should be studied as an integral  
part of the text; (b) some of the worked-out Examples are Estimation 
Examples,which show how rough or approximate results can be obtained even 
if the given data are sparse (see Section 1-6); (c) Problem Solving Strategies  
placed throughout the text to suggest a step-by-step approach to problem 
solving for a particular topic : but the basics remain the same; most of these 
“Strategies” are followed by an Example that is solved by explicitly following 
the suggested steps; (d) special problem-solving Sections; (e) “Problem Solv-
ing” marginal notes which refer to hints within the text for solving Problems; 
(f) Exercises within the text that you should work out immediately, and then 
check your response against the answer given at the bottom of the last page 
of that Chapter; (g) the Problems themselves at the end of each Chapter.

 6. Conceptual Examples pose a question which hopefully starts you to think 
about a response. Give yourself a little time to come up with your own 
response before reading the Response given.

 7. Math review, plus additional topics, are found in Appendices. Useful data,  
conversion factors, and math formulas are found inside the front and back covers.

xx  PREFACE
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1

Introduction,  
Measurement, Estimating

C
H

A P T
E

R

1
CHAPTER-OPENING QUESTIONS—Guess now!

1. How many cm3 are in 1.0 m3?
(a) 10.  (b) 100.  (c) 1000.  (d) 10,000.  (e) 100,000.  (f) 1,000,000.

2. Suppose you wanted to actually measure the radius of the Earth, at least 
roughly, rather than taking other people’s word for what it is. Which response 
below  describes the best approach?

(a) Use an extremely long measuring tape.
(b) It is only possible by flying high enough to see the actual curvature of the Earth.
(c) Use a standard measuring tape, a stepladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.
(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question : sometimes two. Try to answer right away. Don’t worry about 

getting the right answer now : the idea is to get your preconceived notions out on the table. If they 

are misconceptions, we expect them to be cleared up as you read the Chapter. You will get another 

chance at the Question later in the Chapter when the appropriate material has been covered. These 

Chapter-Opening Questions will also help you see the power and usefulness of physics.]

Image of the Earth from out in space.  

The sky appears black because 

there are so few molecules to 

reflect light. (Why the sky 

appears blue to us on 

Earth has to do with 

scattering of light by 

molecules of the  

atmosphere, as 

discussed in 

Chapter 34.) 

Note the storm 

off the coast 

of Mexico.

Important 

physics is 

covered in 

this first 

Chapter, 

including 

measurement 

uncertainty 

and how to 

make an 

estimate. For 

example, we can 

determine the 

radius of the Earth 

without going out in 

space, but just by being 

near a lake or bay.

CONTENTS
1–1 How Science Works

1–2 Models, Theories, and Laws

1–3 Measurement and  Uncertainty;  
Significant Figures

1–4 Units, Standards, and  
the SI System

1–5 Converting Units

1–6 Order of Magnitude:  
Rapid Estimating

1–7 Dimensions and  Dimensional 
Analysis

*
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2 CHAPTER 1 Introduction, Measurement, Estimating

P
hysics is the most basic of the sciences. It deals with the behavior and structure  
of matter. The �eld of physics is usually divided into classical physics which 
includes motion, �uids, heat, sound, light, electricity and magnetism; and 

 modern physics which includes the topics of relativity, atomic structure, condensed 
matter, nuclear physics, elementary particles, and cosmology and astrophysics. We 
will cover all these topics in this book, beginning with motion (or mechanics, as it 
is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is wonderfully useful for anyone making a 
career in science or technology. Engineers, for example, must know how to 
calculate the forces within a structure to design it so that it remains standing 
(Fig. 1 9 1a). Indeed, in Chapter 12 we will see a worked-out Example of how a 
simple physics  calculation : or even intuition based on understanding the physics 
of forces : would have saved hundreds of lives (Fig. 1 9 1b). We will see many 
examples in this book of how physics is useful in many �elds, and in everyday life.

1–1 How Science Works
There is a real physical world out there. We could just walk through it, not thinking 
much about it. Or, we can instead examine it carefully. That is what scientists do. 
The aim of science is the search for order in our observations of the physical 
world so as to provide a deeper picture or description of this world around us. 
Sometimes we just want to understand how things work.

Some people seem to think that science is a mechanical process of collecting 
facts and devising theories. But it is not so simple. Science is a creative activity, 
and in many ways resembles other creative activities of the human mind.

One important aspect of science is observation of events (which great writers 
and artists also do), and includes the design and carrying out of experiments. But 
observation and experiment require imagination, because scientists can never 
include everything in a description of what they observe. In other words, scientists 
must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384 9 322 b.c.) and  Galileo 
(1564 9 1642), interpreted motion along a horizontal surface. Aristotle noted that objects 
given an initial push along the ground (or on a level tabletop) always slow down and 
stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. 
Galileo, in his reexamination of horizontal motion in the 1600s, had the idea that 
friction is a kind of force like a push or a pull; and he imagined that if friction could be 
eliminated, an object given an initial push along a horizontal surface would continue 
to move inde�nitely without stopping. He concluded that for an object to be in motion 
was just as natural as for it to be at rest. By inventing a new approach, Galileo founded 
our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the 
imagination. Galileo made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of 
the scienti�c process. The other side is the invention or creation of theories to 
explain and order the observations. Theories are never derived directly from 
observations. Observations may help inspire a theory, and theories are accepted 
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of humans. For example, 
the idea that matter is made up of atoms (the atomic theory) was not arrived 
at by direct observation of atoms. Rather, the idea sprang from creative minds. 
The theory of relativity, the electromagnetic theory of light, and Newton’s law of 
universal gravitation were likewise the result of human imagination. 

The great theories of science may be compared, as creative achievements, 
with great works of art or literature. But how does science differ from these other 
creative activities? One important difference is that science requires testing of its 
ideas or theories to see if their predictions are borne out by experiment.

But theories are not “proved” by testing. First of all, no  measuring instrument is 
perfect, so exact con�rmation is not possible. Furthermore, it is not possible to test a 
theory in every single possible circumstance. Hence a  theory cannot be absolutely veri�ed.  

C A U T I O N

Science is not static.  
It changes and develops

(a)

(b)

FIGURE 1 – 1  (a) This bridge over 
the River Tiber in Rome was built 
2000 years ago and still stands. 
(b) The Hartford Civic Center 
collapsed in 1978, just two years 
after it was built.
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SECTION 1–3 Measurement and Uncertainty; Signi�cant Figures 3

Indeed, the history of science tells us that long-held theories can often be replaced  
by new ones.

1–2 Models, Theories, and Laws
When scientists are trying to understand a particular aspect of the physical world, 
they often make use of a model. A model, in the scientist’s sense, is a kind of 
analogy or mental image of the phenomena in terms of something we are familiar 
with. One example is the wave model of light. We cannot see waves of light as we 
can water waves. But it is valuable to think of light as made up of waves because 
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual  picture :  

something to hold on to : when we cannot see what actually is happening in the real 
world. Models often give us a deeper understanding: the analogy to a known system 
(for instance, water waves in the above example) can suggest new experiments to 
perform and can provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. 
Usually a model is relatively simple and provides a structural similarity to the 
phenomena being studied. A theory is broader, more detailed, and can give 
 quantitatively testable predictions, often with great precision. 

It is important not to confuse a model or a theory with the real world and 
the phenomena themselves. Theories are descriptions of the physical world, and 
they are made up by us. Theories are  invented : usually by very smart people.

Scientists give the title law to certain concise but general statements about 
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as 
Newton’s second law,  F = ma).

To be called a law, a statement must be found experimentally valid over a  
wide range of observed phenomena. For less general statements, the term  principle 
is often used (such as Archimedes’ principle). We use “theory” to describe a more 
general picture of a large group of phenomena.

Scienti�c laws are different from political laws, which are prescriptive: they tell 
us how we ought to behave. Scienti�c laws are descriptive: they do not say how 
nature should behave, but rather are meant to describe how nature does behave. 
As with theories, laws cannot be tested in the in�nite variety of cases possible. So  
we cannot be sure that any law is absolutely true. We use the term “law” when its 
validity has been tested over a wide range of situations, and when any limitations 
and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were 
true. But they are obliged to keep an open mind in case new information should 
alter the validity of any given law or theory. In other words, laws of physics, or 
the “laws of nature”, represent our descriptions of reality and are not inalterable 
facts that last forever. Laws are not lying there in nature, waiting to be discov-
ered. We humans, the brightest humans, invent the laws using observations and 
intuition as a basis. And we hope our laws provide a good description of nature, 
and at a minimum give us a reliable approximation of how nature really behaves.

1–3  Measurement and Uncertainty; 
Signi�cant Figures

In the quest to understand the world around us, scientists seek to �nd relationships  
among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement 
is absolutely precise. There is an uncertainty associated with every measure-
ment. Among the most important sources of uncertainty, other than blunders, 
are the  limited accuracy of every measuring instrument and the inability to read 

C A U T I O N

Theories and laws  
are NOT discovered.  
They are invented
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4 CHAPTER 1 Introduction, Measurement, Estimating

an instrument (such as a ruler) beyond some fraction of the smallest division 
shown. For example, if you were to use a centimeter ruler to measure the width 
of a board (Fig. 1 9 2), the result could be claimed to be precise to about 0.1 cm 
(1 mm), the smallest division on the ruler, although half of this value might be a 
valid claim as well. The reason is that it is dif�cult for the observer to estimate 
(or interpolate) between the smallest divisions. Furthermore, the ruler itself may 
not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the 
 estimated uncertainty in the measurement. For example, the width of a board 
might be written as  8.8 { 0.1 cm.  The {0.1 cm (“plus or minus 0.1 cm”) 
represents the estimated uncertainty in the measurement, so that the actual 
width most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio 
of the uncertainty to the measured value, multiplied by 100. For example, if the 
measurement is 8.8 and the uncertainty about 0.1 cm, the percent uncertainty is

0.1
8.8

* 100%  L   1%,

where L  means “is approximately equal to.”
Often the uncertainty in a measured value is not speci�ed explicitly. In such 

cases, scientists follow a general rule that

uncertainty in a numerical value is assumed to be one or a few units in the 
last digit speci�ed.

For example, if a length is given as 5.6 cm, the uncertainty is assumed to be about 
0.1 cm or 0.2 cm, or possibly 0.3 cm. It is important in this case that you do not 
write 5.60 cm, for this implies an uncertainty on the order of 0.01 or 0.02 cm; it 
assumes that the length is probably between about 5.58 cm and 5.62 cm, when 
actually you believe it is between about 5.4 and 5.8 cm.

Signi�cant Figures

The number of reliably known digits in a number is called the number of 
 signi�cant �gures. Thus there are four signi�cant �gures in the number 23.21 cm 
and two in the number 0.062 cm (the zeros in the latter are merely place holders 
that show where the decimal point goes). The number of signi�cant �gures may 
not always be clear. Take, for example, the number 80. Are there one or two 
signi�cant �gures? We need words here: If we say it is roughly 80 km between 
two cities, there is only one signi�cant �gure (the 8) since the zero is merely a 
place holder. If there is no suggestion that the 80 is a rough approximation, then 
we can often assume (as we will in this book) that it has two signi�cant �gures: 
so it is 80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to 
within {0.1 or {0.2 km, then we need to write 80.0 km (three signi�cant �gures).

When specifying numerical results, you should avoid the temptation to 
keep more digits in the �nal answer than is justi�ed: see boldface statement 
above. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the 
result of multi plication would be 76.84 cm2. But this answer can not be accurate 
to the implied 0.01 cm2 uncertainty. Why? Because (using the outer limits of 
the assumed uncertainty for each measurement) the result could be between  
11.2 cm * 6.7 cm = 75.04 cm2  and  11.4 cm * 6.9 cm = 78.66 cm2.  At best, we 
can quote the answer as 77 cm2, which implies an uncertainty of about 1 or 2 cm2.  
The other two digits (in the number 76.84 cm2) must be dropped (rounded off) 
because they are not signi�cant. As a rough general signi�cant �gures rule,

the �nal  result of a multiplication or division should have no more digits than 

the numerical value with the fewest signi�cant �gures.

In our example, 6.8 cm has the least number of signi�cant �gures, namely two. 
Thus the result 76.84 cm2 needs to be rounded off to 77 cm2.

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm2;   
(b) 14.63 cm2;  (c) 14.6 cm2;  (d) 15 cm2.

P R O B L E M  S O LV I N G

Signi�cant �gures rule:  
Number of signi�cant �gures in 

�nal result should be same as  
the least signi�cant input value

FIGURE 1 – 2  Measuring the width 
of a board with a centimeter ruler. 
The uncertainty is about {1 mm. 
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SECTION 1–3 Measurement and Uncertainty; Signi�cant Figures 5

†Be careful also about other digital read-outs. If a digital bathroom scale shows 85.6, do not assume the 
uncertainty is {0.1 or {0.2; the scale was likely manufactured with an accuracy of perhaps only 1% or 
so: that is, {1 or {2. For digital scienti�c instruments, also be careful: the instruction manual should 
state the accuracy.

CONCEPTUAL EXAMPLE 1 – 1 Significant figures. Using a protractor 
(Fig.  1 9 4), you measure an angle to be 30°. (a) How many signi�cant �gures 
should you quote in this  measurement? (b) Use a calculator to �nd the cosine 
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with 
which you can measure an angle is about one degree (certainly not 0.1°). So you 
can quote two signi�cant �gures, namely 30° (not 30.0°). (b) If you enter cos 30° 
in your calculator, you will get a  number like 0.866025403. But the angle you 
entered is known only to two signi�cant �gures, so its cosine is correctly given 
by 0.87; you must round your answer to two signi�cant �gures.

NOTE Trigonometric functions, like cosine, are reviewed in Appendix A.

FIGURE 1 – 4  Example 1 9 1.  
A protractor used to measure an 
angle.

EXERCISE C Do 0.00324 and 0.00056 have the same number of signi�cant �gures?

Scienti�c Notation

We commonly write numbers in “powers of ten,” or “scienti�c” notation : for instance 
36,900 as  3.69 * 104,  or 0.0021 as  2.1 * 10-3.  One advantage of scienti�c notation 
is that it allows the number of signi�cant �gures to be clearly expressed. For example, 
it is not clear whether 36,900 has three, four, or �ve signi�cant �gures. With powers 
of ten notation the ambiguity can be avoided: if the number is known to three signif-
icant �gures, we write  3.69 * 104,  but if it is known to four, we write  3.690 * 104.

When adding or subtracting numbers, the �nal result should contain no more 
decimal places than the number with the fewest decimal places. For example, the 
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly  36 + 8.2 = 44,  not 44.2.

Be careful not to confuse signi�cant �gures with the number of decimal places. 
Signi�cant �gures are related to the expected uncertainty in any measured quantity.

EXERCISE B For each of the following numbers, state the number of signi�cant �gures  
and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may 
not be signi�cant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not 
0.666666666 as calculators give (Fig. 1 9 3a). Digits should not be quoted in a result 
unless they are truly signi�cant �gures. However, to obtain the most accurate 
result, you should normally keep one or more extra signi�cant �gures throughout a 

calculation, and round off only in the �nal result. (With a calculator, you can keep 
all its digits in intermediate results.) Calculators can also give too few signi�cant 
�gures. For example, when you multiply  2.5 * 3.2,  a calculator may give the 
answer as simply 8. See Fig. 1 9 3b. But the answer is  accurate to two signi�cant 
�gures, so the proper answer is 8.0.†

P R O B L E M  S O LV I N G

Signi�cant �gures when  
adding and subtracting

C A U T I O N

Calculators err with signi�cant �gures

P R O B L E M  S O LV I N G

Report only the proper number of 
signi�cant �gures in the �nal result. But  
keep extra digits during the calculation

FIGURE 1 – 3  These two calculators 
show the wrong number of 
signi�cant �gures. In (a), 2.0 was 
divided by 3.0. The correct �nal 
result should be stated as 0.67. In (b), 
2.5 was multiplied by 3.2. The correct 
result is 8.0. 

(a) (b)
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6 CHAPTER 1 Introduction, Measurement, Estimating

EXERCISE D Write each of the following in scienti�c notation and state the number of 
 signi�cant �gures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Signi�cant Figures

The signi�cant �gures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we 
divide 97 by 92:

97
92

= 1.05  L   1.1.

Both 97 and 92 have two signi�cant �gures, so the rule says to give the 
answer as  1.1. Yet the numbers 97 and 92 both imply an uncertainty of {1 
if no other uncertainty is stated. Both  92 { 1  and  97 { 1  imply an uncer-
tainty of about 1%  (1>92 L 0.01 = 1%).  But the �nal result to two signi�cant 
�gures is  1.1, with an implied uncertainty of {0.1, which is an uncertainty of  
0.1>1.1 L 0.1 L 10%.  In this case it is better to give the answer as 1.05 (which 
is three signi�cant �gures). Why? Because 1.05 implies an uncertainty of {0.01 
which is  0.01>1.05 L 0.01 L 1%,  just like the uncertainty in the original numbers 
92 and 97.

SUGGESTION: Use the signi�cant �gures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations

Much of physics involves approximations, often because we do not have the  
means to solve a problem precisely. For example, we may choose to ignore air 
resistance or friction in doing a Problem even though they are present in the real 
world, and then our calculation is only an estimate or approximation. In doing 
Problems, we should be aware of what approximations we are making, and be 
aware that the precision of our answer may not be nearly as good as the number 
of signi�cant �gures given in the result.

Accuracy versus Precision

There is a technical difference between “precision” and “accuracy.” Precision in 
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting results 
like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks 
as best as possible each time), you could say the measurements give a precision 
a bit better than 0.1 cm.  Accuracy refers to how close a measurement is to the 
true value. For example, if the ruler shown in Fig. 1 9 2 was manufactured with a 
2% error, the accuracy of its measurement of the board’s width (about 8.8 cm) 
would be about 2% of 8.8 cm or about {0.2 cm. Estimated uncertainty is meant 
to take both accuracy and precision into account.

1–4  Units, Standards, and the SI System
The measurement of any quantity is made relative to a particular standard or unit, 
and this unit must be speci�ed along with the numerical value of the quantity. 
For example, we can measure length in British units such as inches, feet, or miles, 
or in the metric system in centimeters, meters, or kilometers. To specify that the 
length of a particular object is 18.6 is insuf�cient. The unit must be given, because 
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, 
we need to de�ne a standard which de�nes exactly how long one meter or one 
second is. It is important that standards be chosen that are readily reproducible 
so that  anyone needing to make a very accurate measurement can refer to the 
standard in the laboratory and communicate results with other scientists.
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SECTION 1–4 Units, Standards, and the SI System 7

TABLE 1 – 1  Some Typical Lengths or Distances  
(order of magnitude)

Length (or Distance) Meters (approximate)

Neutron or proton (diameter) 10-15 m
Atom (diameter) 10-10 m
Virus [see Fig. 1 9 5a] 10-7 m
Sheet of paper (thickness) 10-4 m
Finger width 10-2 m
Football �eld length 102 m
Height of Mt. Everest [see Fig. 1 9 5b] 104 m
Earth diameter 107 m
Earth to Sun 1011 m
Earth to nearest star 1016 m
Earth to nearest galaxy 1022 m
Earth to farthest galaxy visible 1026 m

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about 
one-�ftieth of 1%. Not bad!

Length

The �rst truly international standard was the meter (abbreviated m) established as the 
standard of length by the French Academy of Sciences in the 1790s. The standard meter 
was originally chosen to be one ten-millionth of the distance from the Earth’s equator 
to either pole,† and a platinum rod to represent this length was made. (One meter is, 
very roughly, the distance from the tip of your nose to the tip of your �nger, with arm 
and hand stretched out horizontally.) In 1889, the meter was de�ned more precisely as 
the distance between two �nely engraved marks on a particular bar of platinum 9 iridium 
alloy. In 1960, to provide greater precision and reproducibility, the meter was rede�ned 
as 1,650,763.73 wavelengths of a particular orange light emitted by the gas krypton-86.

In 1983 the meter was again rede�ned, this time in terms of the speed of light 
(whose best measured value in terms of the older de�nition of the meter was 
299,792,458 m>s, with an uncertainty of 1 m>s). The new de�nition reads: “The 
meter is the length of path traveled by light in vacuum during a time interval of  
1>299,792,458 of a second.” The new de�nition of the meter has the effect of 
giving the speed of light the exact value of 299,792,458 m>s. [The newer de�nitions 
provided greater precision than the 2 marks on the old platinum bar.]

British units of length (inch, foot, mile) are now de�ned in terms of the meter. 
The inch (in.) is de�ned as exactly 2.54 centimeters (cm;  1 cm = 0.01 m). One 
foot is exactly 12 in., and 1 mile is 5280 ft. Other conversion factors are given in 
the Table on the inside of the front cover of this book. Table 1 9 1 below presents 
some typical lengths, from very small to very large, rounded off to the nearest 
power of 10. (We call this rounded off value the order of magnitude.) See also Fig. 
1 9 5. (Note that the abbreviation for inches (in.) is the only one with a period, to 
distinguish it from the word “in”.) [The nautical mile = 6076 ft = 1852 km is used 
by ships on the open sea and was originally de�ned as 1>60 of a degree latitude 
on Earth’s surface. A speed of 1 knot is 1 nautical mile per hour.] 

Time

The standard unit of time is the second (s). For many years, the second was de�ned as  
1>86,400 of a mean solar day  (24 h>day * 60 min>h * 60 s>min = 86,400 s>day).  
The standard second can be de�ned more precisely in terms of the frequency of 
radiation emitted by cesium atoms when they pass between two particular states. 
 [Speci�cally, one second is the time required for 9,192,631,770 periods of this radiation. 
This number was chosen to keep “one second” the same as in the old de�nition.] 
There are, by de�nition, 60 s in one minute (min) and 60 minutes in one hour (h). 
Table 1 9 2 presents a range of time intervals, rounded off to the nearest power of 10.

New de�nition of the meter

FIGURE 1 – 5  Some lengths: (a) viruses 
(about 10-7 m long) attacking a cell;  
(b) Mt. Everest’s height is on the order  
of 104 m (8850 m, to be precise). 

(a)

(b)

TABLE 1 – 2  Some Typical Time Intervals  
(order of magnitude)

Time Interval Seconds (approximate)

Lifetime of very unstable  
subatomic particle 10-23 s

Lifetime of radioactive elements 10-22 s to 1028 s
Lifetime of muon 10-6  s

Time between human heartbeats 100 s ( = 1 s)
One day 105 s
One year 3 * 107 s

Human life span 2 * 109 s
Length of recorded history 1011 s
Humans on Earth 1014 s
Life on Earth 1017 s

Age of Universe 4 * 1017 s
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8 CHAPTER 1

†Some exceptions are for angle (radians : see Chapter 10), solid angle (steradian), and sound level 
(bel or decibel, Chapter 16). 

*Some Sections of this book, such as this subsection, may be considered optional at the discretion of 
the instructor and they are marked with an asterisk (*). See the Preface for more details.

TABLE 1 – 3 Some Masses

Object
Kilograms  

(approximate)

Electron 10-30 kg
Proton, neutron 10-27 kg
DNA molecule 10-17 kg
Bacterium 10-15 kg
Mosquito 10-5 kg
Plum 10-1 kg
Human 102 kg
Ship 108 kg
Earth 6 * 1024 kg
Sun 2 * 1030 kg
Galaxy 1041 kg

TABLE 1 – 4 Metric (SI) Pre�xes

Pre�x Abbreviation Value

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro† m 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

†m is the Greek letter “mu.”

Mass

The standard unit of mass is the kilogram (kg). The standard mass has been, since 
1889, a particular platinum 9 iridium cylinder, kept at the International Bureau of 
Weights and Measures near Paris, France, whose mass is de�ned as exactly 1 kg.  
A range of masses is presented in Table 1 9 3. [For practical purposes, a 1 kg mass 
weighs about 2.2 pounds on Earth.]

1 metric ton is 1000 kg. In the British system of units, 1 ton is 2000 pounds.
When dealing with atoms and molecules, we usually use the uni�ed atomic 

mass unit (u or amu). In terms of the kilogram,
1 u = 1.6605 * 10-27 kg.

(Precise values of this and other numbers are given inside the front cover.)  
The density of a uniform object is its mass divided by its volume, commonly 
expressed in kg>m3. 

Unit Pre�xes

In the metric system, the larger and smaller units are de�ned in multiples of 10 
from the standard unit, and this makes calculation particularly easy. Thus 1 kilo- 
me ter (km) is 1000 m, 1 centimeter is 1

100 m, 1 millimeter (mm) is 1
1000 m or  

1
10 cm, and so on. The pre�xes “centi-,” “kilo-,” and others are listed in Table 1 9 4 
and can be applied not only to units of length but to units of volume, mass, or 
any other unit. For example, a centiliter (cL) is 1

100 liter (L), and a kilogram (kg) 
is 1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels 
(individual “picture elements”).

In common usage,  1 mm (= 10 - 6 m)  is called 1 micron.

Systems of Units

When dealing with the laws and equations of physics it is very important to use  
a consistent set of units. Several systems of units have been in use over the years. 
Today the most important is the Système International (French for International 
System), which is abbreviated SI. In SI units, the standard of length is the meter, 
the standard for time is the second, and the standard for mass is the kilogram. 
This  system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and 
second are the standard units of length, mass, and time, as abbreviated in the title. 
The British engineering system (although more used in the U.S. than Britain) has 
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book, although we often de�ne the 
cgs and British units when a new quantity is introduced. In the SI, there have 
traditionally been seven base quantities, each de�ned in terms of a standard; 
seven is the smallest number of base quantities consistent with a full description 
of the physical world. See Table 1 9 5. All other quantities† can be de�ned in terms 
of seven base quantities; see the Table inside the front cover which lists many 
quantities and their units in terms of base units.

A New SI

As always in science, new ideas and approaches can produce better precision and 
closer correspondence with the real world. Even for units and standards.

International organizations on units have proposed further changes that 
should make standards more readily available and reproducible. To cite one 
example, the standard kilogram (see above) has been found to have changed 
slightly in mass ( contamination is one cause).

The new rede�nition of SI standards follows the method already used for the 
meter as being related to the de�ned value of the speed of light, as we mentioned on 
page 7 under “Length”.  For example, the charge on the electron, e, instead of being a 
measured value, becomes de�ned as a certain value (its current value), and the unit 
of electric charge (the coulomb) follows from that. All units then become based on 

P R O B L E M  S O LV I N G

Always use a consistent set of units

*
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SECTION 1–5 Converting Units 9

TABLE 1 – 5  
Traditional SI Base Quantities

Quantity Unit
Unit 

Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric  

current ampere A
Temperature kelvin K
Amount of  

substance mole mol
Luminous  

intensity candela cd

EXAMPLE 1 – 2 The 8000-m peaks. There are only 14 peaks whose summits 
are over 8000 m above sea level. They are the highest peaks in the world 
(Fig.  1 9 6 and Table 1 9 6) and are referred to as “eight-thousanders.” What is 
the elevation, in feet, of an elevation of 8000 m?

APPROACH We need to convert meters to feet, and we can start with the 
conversion factor  1 in. = 2.54 cm,  which is exact. That is,  1 in. = 2.5400 cm  to 
any number of signi�cant �gures, because it is de�ned to be.

SOLUTION One foot is de�ned to be 12 in., so we can write

1 ft =  (12  in. ) ¢2.54 
cm
 in. 

≤ = 30.48 cm = 0.3048 m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this 
equation to �nd the number of feet in 1 meter:

1 m =
1 ft

0.3048
= 3.28084 ft.

(We could carry the result to 6 signi�cant �gures because 0.3048 is exact,  
0.304800 g.) We multiply this equation by 8000.0 (to have �ve signi�cant �gures):

8000.0 m =  (8000.0  m ) ¢3.28084 
ft

 m 
≤ = 26,247 ft.

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the unit conversions all in one line:

8000.0 m =  (8000.0  m ) ¢ 100  cm 
1  m 

≤ ¢ 1  in. 
2.54  cm 

≤ ¢ 1 ft
12  in. 

≤ = 26,247 ft.

The key is to multiply conversion factors, each equal to one  (  = 1.0000),  and 
to make sure which units cancel.

P H Y S I C S  A P P L I E D

The world’s tallest peaks

FIGURE 1 – 6  The world’s second 
highest peak, K2, whose summit is 
considered the most dif�cult of the 
“8000-ers.” Example 1 9 2.

de�ned fundamental constants like e and the speed of light. Seven is still the number 
of basic standards. The new de�nitions maintain the values of the traditional de�ni-
tions: the “new” meter is the same length as the “old” meter. The new de�nitions do 
not change our understanding of what length, time, or mass means.

For us, using this book, the difference between the new SI and the traditional 
SI is highly technical and does not affect the physics we study. We include the 
traditional SI because there is some good physics in explaining it. [The Table of 
Fundamental Constants inside the front cover would look slightly different using 
the new SI. The value of the charge e on the electron, for example, is de�ned, and so 
would have no uncertainty attached to it; instead, our Table inside the front cover 
includes the traditional SI measured uncertainty (updated) of {98 * 10-29 C.]

1–5 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current, consists 
of a number and a unit. Often we are given a quantity in one set of units, but we 
want it expressed in another set of units. For example, suppose we measure that 
a shelf is 21.5 inches wide, and we want to express this in centimeters. We must 
use a conversion factor, which in this case is, by de�nition, exactly

1 in. = 2.54 cm

or, written another way,

1 = 2.54 cm>in.

Since multiplying by the number one does not change anything, the width of our 
shelf, in cm, is

21.5 inches =  (21.5  in. ) * a2.54 
cm
 in. 
b = 54.6 cm.

Note how the units (inches in this case) cancelled out (thin red lines). A Table 
 containing many unit conversions is found inside the front cover of this book. 
Let’s consider some Examples.

TABLE 1 – 6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013
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10 CHAPTER 1 Introduction, Measurement, Estimating

EXERCISE E The names and elevations of the 14 eight-thousand-meter peaks in the 
world (see Example 1 9 2) are given in Table 1 9 6, repeated here. They are all in the Hima-
laya mountain range in India, Pakistan, Tibet, and China. Determine the elevation of the 
world’s three highest peaks in feet.

EXAMPLE 1 – 3 Apartment area. You have seen a nice apartment whose 
�oor area is 880 square feet (ft2). What is its area in square meters?

APPROACH We use the same conversion factor,  1 in. = 2.54 cm,  but this time 
we have to use it twice.

SOLUTION Because  1 in. = 2.54 cm = 0.0254 m,  then

1 ft2
=  (12 in.)  2(0.0254 m>in.)  2

= 0.0929 m2.
So

880 ft2
=  (880 ft2) (0.0929 m2>ft2)   L   82 m2.

NOTE As a rule of thumb, an area given in ft2 is roughly 10 times the number 
of square meters (more precisely, about 10.8*).

Rule of thumb:
Floor area in ft 2 is about 10 * 
area in m2: 100 m2

L 1000 ft 2

EXAMPLE 1 – 4 Speeds. Where the posted speed limit is 55 miles per hour 
(mi>h or mph), what is this speed (a) in meters per second (m>s) and (b) in 
kilometers per hour (km>h)?

APPROACH We again use the conversion factor  1 in. = 2.54 cm,  and we recall 
that there are 5280 feet in a mile and 12 inches in a foot; also, one hour contains  
(60 min>h) * (60 s>min) = 3600 s>h.

SOLUTION (a) We can write 1 mile as

 1 mi =  (5280  ft ) ¢12 
 in. 
 ft 

≤ ¢2.54 
 cm 
 in. 

≤ ¢ 1 m
100  cm 

≤
 = 1609 m.

We also know that 1 hour contains 3600 s, so

55 
mi
h

= ¢55 
 mi 
 h 

≤ ¢1609 
m

 mi 
≤ ¢ 1  h 

3600 s
≤ = 25 

m
s

,

where we rounded off to two signi�cant �gures.

(b) Now we use  1 mi = 1609 m = 1.609 km;  then

55 
mi
h

= ¢55 
 mi 
h

≤ ¢1.609 
km
 mi 

≤ = 88 
km
h

.

NOTE Each conversion factor is equal to one. You can look up most conversion 
factors in the Table inside the front cover.

P R O B L E M  S O LV I N G

Conversion factors = 1

EXERCISE G Return to the �rst Chapter-Opening Question, page 1, and answer it again 
now. Try to explain why you may have answered differently the �rst time.

When changing units, you can avoid making an error in the use of conversion 
factors by checking that units cancel out properly. For example, in our conversion 
of 1 mi to 1609 m in Example 1 9 4(a), if we had incorrectly used the factor (100 cm

1 m )  
instead of ( 1 m

100 cm) , the centimeter units would not have cancelled out; we would not 
have ended up with meters.

TABLE 1 – 6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

The �rst two equations in Example 1 9 2 on the previous page show how to 
change from feet to meters, or meters to feet. For practical purposes

1 m = 3.28 ft  L   3.3 ft

which means that we can change any distance or height in meters to feet by 
multiplying by 3 and adding 10% (0.1). For example, a 3000-m-high peak in feet 
is 9000 ft + 900 ft L 10,000 ft .

P R O B L E M  S O LV I N G

Unit conversion is wrong  
if units do not cancel

EXERCISE F One hectare is de�ned as 1.000 * 104 m2. There are 640 acres in a square 
mile. Both units are used for land area. (a) How many acres are in one hectare? (b) What 
would be an easy everyday rule-of-thumb conversion factor?

GIAN_PSE5_CH01_001-019_ca.indd   10 01/07/20   16:17



 

SECTION 1–6 Order of Magnitude: Rapid Estimating 11

†Formulas like this for volume, area, etc., are found inside the back cover of this book.

EXAMPLE 1 – 5 ESTIMATE Volume of a lake. Estimate how much water 
there is in a  particular lake, Fig. 1 9 7a, which is roughly circular, about 1 km 
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a 
 perfectly �at  bottom. We are only estimating here. To estimate the volume, we can 
use a simple model of the lake as a cylinder: we multiply the average depth of the 
lake times its roughly circular surface area, as if the lake were a cylinder (Fig. 1 9 7b).

SOLUTION The volume V of a cylinder is the product of its height h times 
the area of its base:  V = hpr2,  where r is the radius of the circular base.† The 
radius r is  12 km = 500 m,  so the volume is approximately

V = hpr2  L    (10 m) * (3) * (5 * 102 m)  2  L   8 * 106 m3  L   107 m3,

where p was rounded off to 3. So the volume is on the order of 107 m3, ten 
million cubic meters. Because of all the estimates that went into this calculation,  
the order-of-magnitude estimate (107 m3) is probably better to quote than  
the 8 * 106 m3 �gure.

NOTE To express our result in U.S. gallons, we see in the Table on the 
inside front cover that  1 liter = 10-3 m3

L
1
4 gallon.  Hence, the lake contains  

about (8 * 106 m3) (1 gallon>4 * 10 - 3 m3) L 2 * 109  gallons of water.

P H Y S I C S  A P P L I E D

Estimating the volume (or mass) of 
a lake; see also Fig. 1–7

(b)

(a)

10 m

r = 500 m

FIGURE 1 – 7  Example 1 9 5. (a) How much water is in this 
lake? (Photo is one of the Rae Lakes in the Sierra Nevada 
of California.) (b) Model of the lake as a cylinder. [We could go 
one step further and estimate the mass or weight of this lake. 
We will see later that water has a density of 1000 kg>m3,  
so this lake has a mass of about (103 kg>m3) (107 m3) L 1010 kg, 
which is about 10 billion kg or 10 million metric tons. 
(A metric ton is 1000 kg, about 2200 lb, slightly larger than a 
British ton, 2000 lb.)]

This is an exciting and powerful Section that will be useful throughout this book, 
and in real life. We will see how to make approximate calculations of quantities 
you may never have dreamed you could do. 

Also, we are sometimes interested only in an approximate value for a quantity, 
maybe because an accurate calculation would take more time than it is worth or 
requires data that are not available. In other cases, we may want to make a rough 
estimate in order to check a calculation made on a calculator, to make sure that 
no blunders were made when the numbers were entered.

A rough estimate can be made by rounding off all numbers to one signi�cant 
�gure and its power of 10, and after the calculation is made, again keeping only 
one signi�cant �gure. Such an estimate is called an order-of-magnitude estimate 
and can be accurate within a factor of 10, and often better. In fact, the phrase 
“order of  magnitude” is sometimes used to refer simply to the power of 10.

P R O B L E M  S O LV I N G

How to make a rough estimate

1–6  Order of Magnitude: Rapid Estimating
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12 CHAPTER 1 Introduction, Measurement, Estimating

It cannot be emphasized enough how important it is to draw a diagram when 
solving a physics Problem, as the next Example shows.

EXAMPLE 1 – 7 ESTIMATE Height by triangulation. Estimate the height 
of the building shown in Fig. 1 9 9, by “triangulation,” with the help of a bus-stop 
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of 
the pole to be 3 m. You next step away from the pole until the top of the pole is  
in line with the top of the building, Fig. 1 9 9a. You are 5 ft 6 in. tall, so your eyes are 
about 1.5 m above the ground. Your friend is taller, and when she stretches out her 
arms, one hand touches you and the other touches the pole, so you estimate that 
distance as 2 m (Fig. 1 9 9a). You then pace off the distance from the pole to the 
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.

SOLUTION Now you draw, to scale, the diagram shown in Fig. 1 9 9b using 
these measurements. You can measure, right on the diagram, the last side of 
the   triangle to be about  x L 13 or 14 m.  Alternatively, you can use similar 
triangles to obtain the height x:

1.5 m
2 m

=
x

18 m
,

so
x  L   13 12 m.

Finally you add in your eye height of 1.5 m above the ground to get your �nal 
result: the  building is about 15 m tall.

FIGURE 1 – 8  Example 1 9 6. 
Micrometer used for measuring 
small thicknesses.

FIGURE 1 – 9  Example 1 9 7. 
Diagrams are really useful!

16 m

18 m

2 m

1.5 m

(b)

x = ?

1.5 m

3 m

(a)

1.5 m

?

2 m

EXAMPLE 1 – 6 ESTIMATE Thickness of a sheet of paper. Estimate the 
thickness of a page of this book.

APPROACH At �rst you might think that a special measuring device, a 
 micro meter (Fig. 1 9 8), is needed to measure the thickness of one page since an  
ordinary ruler can not be read so �nely. But we can use a trick or, to put it in  
physics terms, make use of a symmetry: we can make the reasonable  
assumption that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you 
measure the thickness of the �rst 500 pages of this book (page 1 to page 500), you 
might get something like 1.5 cm. Note that 500 numbered pages, counted front and 
back, is 250 separate pieces of paper. So one sheet must have a  thickness of about

1.5 cm
250 sheets

  L   6 * 10-3 cm = 6 * 10-2 mm,

or less than a tenth of a millimeter (0.1 mm).

EXAMPLE 1 – 8 ESTIMATE Total number of heartbeats. Estimate the 
total number of beats a typical human heart makes in a lifetime.

APPROACH A typical resting heart rate is 70 beats>min. But during exercise it 
can be a lot higher. A reasonable average might be 80 beats>min.

SOLUTION One year, in seconds, is  (24 h>d) (3600 s>h) (365 d) L 3 * 107 s.  
If an  average person lives  70 years =  (70 yr) (3 * 107 s>yr) L 2 * 109 s,  then 
the total number of heartbeats would be about

¢80 
beats
min

≤ ¢ 1 min
60 s

≤ (2 * 109 s)   L   3 * 109,

or 3 billion.
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EXERCISE H Return to the second Chapter-Opening Question, page 1, and answer it 
again now. Try to explain why you may have answered differently the �rst time.

EXAMPLE 1 – 9 ESTIMATE Estimating the radius of Earth. Believe it  
or not, you can estimate the radius of the Earth without having to go into space 
(see the photograph on page 1). If you have ever been on the shore of a large lake, 
you may have noticed that you cannot see the beaches, piers, or rocks at water 
level across the lake on the opposite shore. The lake seems to bulge out between 
you and the opposite shore : a good clue that the Earth is round. Suppose you 
climb a stepladder and discover that when your eyes are 10 ft (3.0 m) above the 
water, you can just see the rocks at water level on the opposite shore. From a map, 
you estimate the distance to the opposite shore as  d L 6.1 km.  Use Fig. 1 9 10 
with  h = 3.0 m  to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,  
c2

= a2
+ b2,  where c is the length of the hypotenuse of any right triangle, 

and a and b are the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1 9 10, the two sides are the radius of 
the Earth R and the distance  d = 6.1 km = 6100 m.  The hypotenuse is approx-
imately the length  R + h,  where  h = 3.0 m.  By the Pythagorean theorem,

 R2
+ d2

L (R + h)  2

   L R2
+ 2hR + h2.

We solve algebraically for R, after cancelled R2 on both sides:

 R  L   
d2

- h2

2h
=

(6100 m)2
- (3.0 m)2

6.0 m
 = 6.2 * 106 m
 = 6200 km.

NOTE Precise measurements give 6380 km. But look at your achievement! 
With a few simple rough measurements and simple geometry, you made a good 
 estimate of the Earth’s radius. You did not need to go out in space, nor did you 
need a very long measuring tape.†

Earth

Center

of Earth

Lake

R R

d

h

FIGURE 1 – 10  Example 1 9 9, but 
not to scale. You can just barely see 
rocks at water level on the opposite 
shore of a lake 6.1 km wide if you 
stand on a stepladder.

Another type of estimate, this one made famous by Enrico Fermi (1901 9 1954,  
Fig. 1 9 11), was to show his students how to estimate the number of piano tuners 
in a city, such as Chicago or San Francisco. To get a rough order-of-magnitude 
estimate of the number of piano tuners today in San Francisco, a city of about 
800,000 inhabitants, we can proceed by estimating the number of functioning 
pianos, how often each piano is tuned, and how many pianos each tuner can tune. 
To estimate the number of pianos in San Francisco, we note that certainly not 
everyone has a piano. A guess of 1 family in 3 having a piano would correspond 
to 1 piano per 12 persons, assuming an average family of 4 persons.

As an order of magnitude, let’s say 1 piano per 10 people. This is certainly 
more reasonable than 1 per 100 people, or 1 per every person, so let’s proceed 
with the estimate that 1 person in 10 has a piano, or about 80,000 pianos in San 
Francisco. Now a piano tuner needs an hour or two to tune a piano. So let’s 
 estimate that a tuner can tune 4 or 5 pianos a day. A piano ought to be tuned 
every 6 months or a year : let’s say once each year. A piano tuner tuning 4 pianos 
a day, 5 days a week, 50 weeks a year can tune about 1000 pianos a year. So San 
Francisco, with its (very) roughly 80,000 pianos, needs about 80 piano tuners. This 
is, of course, only a rough estimate.‡ It tells us that there must be many more than 
10 piano tuners, and surely not as many as 1000.

P R O B L E M  S O LV I N G

Estimating how many piano 
tuners there are in a city

FIGURE 1 – 11  Enrico Fermi. 
Fermi contributed signi�cantly to 
both theoretical and experimental 
physics, a feat almost unique in 
modern times.

†As a teenager I had a summer job washing dishes at a camp located 350 m above famous Lake Tahoe 
in California. Starting the drive down to Lake Tahoe, the beaches across the lake were visible. But 
approaching the level of Lake Tahoe, the beaches across the lake were no longer visible! I realized 
that Lake Tahoe was bulging up in the middle, blocking the view. (“The Earth is round.”)
‡A search on the internet (done after this calculation) reveals over 50 listings. Each of these listings 
may employ more than one tuner, but on the other hand, each may also do repairs as well as tuning. 
In any case, our estimate is reasonable.

SECTION 1–6 Order of Magnitude: Rapid Estimating 13
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14 CHAPTER 1 Introduction, Measurement, Estimating

1–7  Dimensions and  
Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of 
base units that make it up. The dimensions of area, for example, are always length 
squared, abbreviated [L2] using square brackets; the units can be square meters, 
square feet, cm2, and so on. Velocity, on the other hand, can be measured in units 
of km>h, m>s, or mi>h, but the dimensions are always a length [L] divided by a 
time [T ]: that is, [L>T  ] .

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h is   
A =

1
2 bh,  whereas the area of a circle of radius r is  A = pr2.  The formulas are 

 different in the two cases, but the dimensions of area are always [L2].
Dimensions can be used as a help in working out relationships, a procedure 

referred to as dimensional analysis. One useful technique is the use of dimensions 
to check if a relationship is incorrect. Note that we add or subtract quantities only 
if they have the same dimensions (we don’t add centimeters and hours); and the  
quantities on each side of an equals sign must have the same dimensions. (In numer-
ical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation  v = v0 +
1
2 at2,  where v is 

the velocity of an object after a time t, v0 is the object’s initial velocity, and the 
object  undergoes an acceleration a. Let’s do a dimensional check to see if this 
equation could be correct or is surely incorrect. Note that numerical factors, like 
the 1

2 here, do not affect dimensional checks. We write a dimensional equation as 
follows,  remembering that the dimensions of velocity are [L>T  ] and (as we shall 
see in Chapter 2) the dimensions of acceleration are [L>T 2]:

 B L

T
R   ≟   B L

T
R + B L

T 2 R [T 2]

 ≟   B L

T
R + [L].

The dimensions are incorrect: on the right side, we have the sum of quantities 
whose dimensions are not the same. Thus we conclude that an error was made 
in the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can 
not tell you if it is completely right. For example, a dimensionless numerical factor 
(such as 1

2 or 2p) could be missing.
Dimensional analysis can also be used as a quick check on an equation you 

are not sure about. For example,  consider a simple pendulum of length ℓ. Suppose 
that you can’t remember whether the equation for the period T (the time to make 
one back-and-forth swing) is  T = 2p1ℓ>g  or  T = 2p1g>ℓ,  where g is the accel-
eration due to gravity and, like all accelerations, has dimensions [L>T 2]. (Do not 
worry about these formulas : the correct one will be derived in Chapter 11; what 
we are concerned about here is a person’s recalling whether it contains ℓ>g or g>ℓ.)  
A dimensional check shows that the former (ℓ>g)  is correct:

[T  ] = B
[L]

[L>T 2]
= 2[T 2] = [T  ],

whereas the latter (g>ℓ)  is not:

[T  ]  ≠   C
[L>T 2]

[L]
= B

1

[T 2]
=

1
[T  ]

⋅

The constant 2p has no dimensions and so can’t be checked using  dimensions.
Further uses of dimensional analysis are found in Appendix D.

*

*Some Sections of this book, such as this one, may be considered optional at the discretion of the 
 instructor, and they are marked with an asterisk (*). See the Preface for more details.
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Questions 15

EXAMPLE 1 – 10 Planck length. The smallest meaningful measure of length is 
called the “Planck length,” and is de�ned in terms of three fundamental  constants 
in nature: the speed of light  c = 3.00 * 10 8 m>s,  the gravitational constant  
G = 6.67 * 10-11 m3>kg # s2,  and Planck’s constant  h = 6.63 * 10-34 kg ⋅m2>s.  
The Planck length lP (l is the Greek letter “lambda”) is given by the following 
combination of these three constants:

lP = A
Gh

c3
.

Show that the dimensions of lP are length [L], and �nd the order of magnitude of lP .

APPROACH We rewrite the above equation in terms of dimensions. The 
 dimensions of c are [L>T  ], of G are [L3>MT 2 ], and of h are [ML2>T ].

SOLUTION The dimensions of lP are

C
[L3>MT 2 ] [ML2>T ]

[L3>T 3 ]
= 2[L2 ] = [L]

which is a length. Good. The value of the Planck length is

lP = B
Gh

c3 = C
(6.67 * 10-11 m3>kg # s2) (6.63 * 10-34 kg # m2>s)

(3.00 * 10 8 m>s)3   L   4 * 10-35 m,

which is on the order of 10-34 or 10-35 m.

NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest 
 particles (quarks, leptons) have sizes on the order of the Planck length, 10-35 m. 
These  theories also suggest that the “Big Bang,” with which the Universe is believed 
to have begun, started from an initial size on the order of the Planck length.

Summary
[The Summary that appears at the end of each Chapter in this book 
gives a brief overview of the main ideas of the Chapter. The  Summary 
cannot serve to give an understanding of the material, which can be 
accomplished only by a detailed reading of the  Chapter.]

Physics, like other sciences, is a creative endeavor. It is not 
simply a collection of facts. Important theories are created with 
the idea of explaining observations. To be accepted, theories are 
tested by comparing their predictions with the results of actual 
experiments. Note that, in general, a theory cannot be “proved” 
in an absolute sense.

Scientists often devise models of physical phenomena.  
A model is a kind of picture or analogy that helps to describe 
the phenomena in terms of something we already know about.  
A theory, often developed from a model, is usually deeper and 
more complex than a simple model.

A scienti�c law is a concise statement, often expressed in the 
form of an equation, which quantitatively describes a wide range 
of phenomena.

Measurements play a crucial role in physics, but can never 
be perfectly precise. It is important to specify the uncertainty of 
a measurement either by stating it directly using the {  notation, 
and>or by keeping only the correct number of signi�cant �gures.

Physical quantities are always speci�ed relative to a particular 
standard or unit, and the unit used should always be stated. The 
commonly accepted set of units today is the Système  International 
(SI), in which the standard units of length, mass, and time are the 
meter, kilogram, and second.

When converting units, check all conversion factors for  correct 
cancellation of units.

Making rough, order-of-magnitude estimates is a very useful 
technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of 
base quantities that comprise it. Velocity, for example, has dimen-
sions of [length>time] or [L>T ]. Working with only the dimensions 
of the various quantities in a given relationship : this technique is 
called dimensional analysis : makes it possible to check a relation-
ship for correct form.]

Questions
 1. What are the merits and drawbacks of using a person’s foot as 

a standard? Consider both (a) a particular person’s foot, and 
(b) any person’s foot. Keep in mind that it is advantageous 
that fundamental standards be accessible (easy to compare to), 
invariable (do not change), indestructible, and reproducible.

 2. What is wrong with this road sign:
Memphis 7 mi (11.263 km)?

 3. Why is it incorrect to think that the more digits you include 
in your answer, the more accurate it is?

 4. For an answer to be complete, units need to be speci�ed. Why?
 5. You measure the radius of a wheel to be 4.16 cm. If you 

 multiply by 2 to get the diameter, should you write the 
result as 8 cm or as 8.32 cm? Justify your answer.

 6. Express the sine of 30.0° with the correct number of signif-
icant �gures.

 7. List assumptions useful to estimate the number of car 
mechanics in (a) San Francisco, (b) your hometown, and 
then make the estimates.
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16 CHAPTER 1 Introduction, Measurement, Estimating

MisConceptual Questions
[List all answers that are valid.]
 1. The laws of physics

(a) are permanent and unalterable.
(b) are part of nature and are waiting to be discovered.
(c) can change, but only because of evidence that convinces 

the community of physicists.
(d) apply to physics but not necessarily to chemistry or 

other �elds.
(e) were basically complete by 1900, and have undergone 

only minor revisions since.
(f ) are accepted by all major world countries, and cannot 

be changed without international treaties.
 2. How should we write the result of the following calculation, 

being careful about signi�cant �gures?
(3.84 s) (37 m>s) +  (5.3 s) (14.1 m>s) =

(a) 200 m.
(b) 210 m.
(c) 216.81 m.

(d) 217 m.
(e) 220 m.

 3. Four students use different instruments to measure the 
length of the same pen. Which measurement implies the 
greatest precision? 
(a) 160.0 mm. 
(b) 16.0 cm. 
(c) 0.160 m. 

(d) 0.00016 km.
(e) Need more 

information.
 4. The number 0.0078 has how many signi�cant �gures? 

(a) 1.
(b) 2.

(c) 3.
(d) 4.

 5. How many signi�cant �gures does  1.362 + 25.2  have?
(a) 2.
(b) 3.

(c) 4.
(d) 5.

 6. Accuracy represents 
(a) repeatability of a measurement, using a given  instrument. 
(b) how close a measurement is to the true value. 
(c) an ideal number of measurements to make. 
(d) how poorly an instrument is operating. 

 7. Precision represents
(a) repeatability of a measurement, using a given  instrument. 
(b) how close a measurement is to the true value. 
(c) an ideal number of measurements to make. 
(d) how poorly an instrument is operating. 

 8. To convert from ft2 to yd2, you should
(a) multiply by 3.
(b) multiply by 1>3.
(c) multiply by 9.

(d) multiply by 1>9.
(e) multiply by 6.
(f ) multiply by 1>6.

 9. Which is not true about an order-of-magnitude estimation?
(a) It gives you a rough idea of the answer.
(b) It can be done by keeping only one signi�cant �gure.
(c) It can be used to check if an exact calculation is reasonable.
(d) It may require making some reasonable assumptions in 

order to calculate the answer.
(e) It will always be accurate to at least two signi�cant  �gures.

 10. [L2 ]  represents the dimensions for which of the following?
(a) cm2.
(b) square feet. 

(c) m2.
(d) All of the above.

Problems
[The Problems at the end of each Chapter are ranked I, II, or III 
according to estimated dif�culty, with (I) Problems being  easiest. 
Level III are meant as challenges for the best students. The Problems 
are arranged by Section, meaning that the reader should have read up 
to and including that Section, but not only that Section : Problems 
often depend on earlier material. Next is a set of “General Problems” 
not arranged by Section and not ranked.]

1 – 3  Measurement, Uncertainty, Signi�cant Figures

(Note: In Problems, assume a number like 6.4 is accurate to {0.1;  
and 950 is accurate to 2 signi�cant �gures ({10) unless 950 is said to  

be “precisely” or “very nearly” 950, in which case assume  950 { 1.)

 1. (I) How many signi�cant �gures do each of the  following 
numbers have: (a) 777, (b) 81.60, (c) 7.03, (d) 0.03, (e) 0.0086, 
(f ) 6465, and (g) 8700?

 2. (I) Write the following numbers in powers of 10 notation:  
(a) 5.859, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, (f ) 444.

 3. (I) Write out the following numbers in full with the 
correct number of zeros: (a) 8.69 * 10 5,  (b) 9.1 * 10 3, 
(c) 2.5 * 10-1,  (d) 4.76 * 10 2,  and (e) 3.62 * 10-5.

 4. (II) What is the percent uncertainty in the measurement  
3.25 { 0.35 m?

 5. (II) Time intervals measured with a physical stopwatch 
typically have an uncertainty of about 0.2 s, due to human 
reaction time at the start and stop moments. What is the 
percent uncertainty of a hand-timed measurement of  
(a) 4.5 s, (b) 45 s, (c) 4.5 min?

 6. (II) Add  (9.2 * 10 3 s) + (6.3 * 10 4 s) + (0.008 * 10 6 s).

 7. (II) Multiply  4.079 * 10 2 m  by  0.057 * 10-1 m, taking into 
account signi�cant �gures.

 8. (II) What, approximately, is the percent uncertainty for 
a measurement given as 1.27 m2?

 9. (II) For small angles u, the numerical value of sin u is 
approximately the same as the numerical value of tan u. 
Find the largest angle for which sine and tangent agree to 
within two signi�cant �gures.

 10. (II) A report stated that “a survey of 215 students found that 
37.2% had bought a sugar-rich soft drink the day before.” 
(a) How many students bought a soft drink? (b) What is 
wrong with the original statement?

 11. (II) A watch manufacturer claims that its watches gain or 
lose no more than 9 seconds in a year. How accurate are 
these watches, expressed as a percentage?

 12. (III) What is the area, and its approximate uncertainty, of 
a circle of radius  5.1 * 10 4 cm?

 13. (III) What, roughly, is the percent uncertainty in the volume 
of a spherical beach ball of radius  r = 0.64 { 0.04 m?

1 – 4 and 1 – 5  Units, Standards, SI, Converting Units

 14. (I) Write the following as full (decimal) numbers without 
pre�xes on the units: (a) 286.6 mm, (b) 74 mV, (c) 430 mg, 
(d) 47.2 ps, (e) 22.5 nm, (f ) 2.50 gigavolts.

*
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Problems 17

 15. (I) Express the following using the pre�xes of Table 1 9 4:  
(a) 3 * 106 volts, (b) 2 * 10-6 meters, (c) 5 * 103 days,  
(d) 18 * 102 bucks, and (e) 9 * 10-7 seconds.

 16. (I) Determine your own height in meters, and your mass 
in kg.

 17. (II) To the correct number of signi�cant �gures, use the 
information inside the front cover of this book to deter-
mine the ratio of (a) the surface area of Earth compared 
to the surface area of the Moon, (b) the volume of Earth 
compared to the volume of the Moon.

 18. (II) Would a driver traveling at 15 m>s in a 35 mi>h zone be  
exceeding the speed limit? Why or why not?

 19. (II) The age of the universe is thought to be about  
14 billion years. Assuming two signi�cant �gures, write this 
in powers of 10 in (a) years, (b) seconds.

 20. (II) The Sun, on average, is 93 million miles from Earth. 
How many meters is this? Express (a) using powers of  
10, and (b) using a metric pre�x (km).

 21. (II) Express the following sum with the correct number of 
signi�cant �gures:  1.90 m + 142.5 cm + 6.27 * 105 mm.

 22. (II) A typical atom has a diameter of about  1.0 * 10-10 m.   
(a) What is this in inches? (b) Approximately how many 
atoms are along a 1.0-cm line, assuming they just touch?

 23. (II) Determine the conversion factor between  (a) km>h 
and mi>h, (b) m>s and  ft>s, and (c) km>h and m>s.

 24. (II) What is the conversion factor between (a) ft2 and yd2,  
(b) m2 and ft2?

 25. (II) A light-year is the distance light travels in one year  
(at speed = 2.998 * 108 m>s) .  (a) How many meters are 
there in 1.00 light-year? (b) An astronomical unit (AU) is the 
 average distance from the Sun to Earth,  1.50 * 108 km.  How 
many AU are there in 1.00 light-year?

 26. (II) How much longer (percentage) is a one-mile race than 
a 1500-m race (“the metric mile”)?

 27. (II) How many wavelengths of orange krypton-86 light 
(Section 1 9 4) would �t into the thickness of one page of 
this book? See Example 1 9 6.

 28. (II) Using the French Academy of Sciences’ original de�-
nition of the meter, calculate Earth’s circumference and 
radius in those meters. Give % error relative to today’s 
accepted values (inside front cover).

 29. (II) A passenger jet uses about 12 liters of fuel per km of 
�ight. What is that value expressed as miles per gallon?

 30. (II) American football uses a �eld that is 100.0 yd long, 
whereas a soccer �eld is 100.0 m long. Which �eld is longer, 
and by how much (give yards, meters, and percent)?

 31. (II) (a) How many seconds are there in 1.00 year? (b) How 
many nanoseconds are there in 1.00 year? (c) How many 
years are there in 1.00 second?

 32. (II) Use Table 1 9 3 to estimate the total number of protons  
or neutrons in (a) a bacterium, (b) a DNA molecule,  
(c) the human body, (d) our Galaxy.

 33. (II) The diameter of the planet Mercury is 4879 km. 
(a) What is the surface area of Mercury? (b) How many 
times larger is the surface area of the Earth?

 34. (III) A standard baseball has a circumference of approx-
imately 23 cm. If a baseball had the same mass per unit 
 volume (see Tables in Section 1 9 4) as a neutron or a proton, 
about what would its mass be?

1 – 6 Order-of-Magnitude Estimating

(Note: Remember that for rough estimates, only round numbers 

are needed both as input to calculations and as �nal results.)

 35. (I) Estimate the order of magnitude (power of 10) of:  
(a) 3200, (b) 86.30 * 103,  (c) 0.076, and (d) 15.0 * 108.

 36. (II) Estimate how many books can be shelved in a  college 
library with 6500 m2 of �oor space. Assume 8 shelves high, 
having books on both sides, with corridors 1.5 m wide. 
Assume books are about the size of this one, on average.

 37. (II) Estimate how many hours it would take to run (at 
10 km>h) across the U.S. from New York to California.

 38. (II) Estimate the number of liters of water a human drinks 
in a lifetime.

 39. (II) Estimate the number of cells in an adult human body, 
given that a typical cell has a diameter of about 10 mm, and 
the human body has a density of about 1000 kg>m3 .

 40. (II) Estimate how long it would take one person to mow a 
football �eld using an ordinary home lawn mower (Fig. 1 9 12). 
(State your assumptions, such as the mower moves with a 
1@km>h speed, and 
has a 0.5-m width.)

 41. (II) Estimate the number of gallons of gasoline consumed 
by the total of all automobile drivers in the U.S., per year.

 42. (II) Estimate the number of dentists (a) in San Francisco 
and (b) in your town or city.

 43. (II) Estimate how many kilograms of laundry soap are 
used in the U.S. in one year (and therefore pumped out of 
washing machines with the dirty water). Assume each load 
of laundry takes 0.1 kg of soap.

 44. (II) How big is a ton (1000 kg)? That is, what is the volume 
of something that weighs a ton? To be speci�c, estimate the 
diameter of a 1-ton rock, but �rst make a wild guess: will it 
be 1 ft across, 3 ft, or the size of a car? [Hint: Rock has mass 
per volume about 3 times that of water, which is 1 kg per  
liter (103 cm3)  or 62 lb per cubic foot.]

 45. (II) A hiking trail is 270 km long through varying terrain. 
A group of hikers cover the �rst 49 km in two and a half 
days. Estimate how much time they should allow for the 
rest of the trip.

 46. (II) Estimate how many days it would take to walk around 
the circumference of the Earth, assuming 12 h walking per 
day at 4 km>h.

 47. (II) Estimate the number of jelly beans  
in the jar of Fig. 1 9 13.

FIGURE 1 – 13   
Problem 47. Estimate 
the number of jelly 
beans in the jar.

FIGURE 1 – 12   
Problem 40.
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18 CHAPTER 1 Introduction, Measurement, Estimating

 48. (II) Estimate the number of bus drivers (a) in Washington, 
D.C., and (b) in your town.

 49. (III) You are in a hot air balloon, 300 m above the �at 
Texas plains. You look out toward the horizon. How far out 
can you see : that is, how far is your horizon? The Earth’s 
radius is about 6400 km.

 50. (III) I agree to hire you for 30 days. You can decide between 
two methods of payment: either (1) $1000 a day, or (2) one 
penny on the �rst day, two pennies on the second day and 
continue to double your daily pay each day up through day 
30. Use quick estimation to make your decision, and justify it.

 51. (III) The rubber worn from tires mostly enters the atmosphere 
as particulate pollution. Estimate how much rubber (in kg) is 
put into the air in the United States every year. To get started, 
a good estimate for a tire tread’s depth is 1 cm when new, and 
rubber has a mass of about 1200 kg per m3 of volume.

 52. (III) Many sailboats are docked at a marina 4.4 km away on 
the opposite side of a lake. You stare at one of the sailboats 
because, when you are lying �at at the water’s edge, you 
can just see its deck but none of the side of the sailboat. 
You then go to that sailboat on the other side of the 
lake and  measure that the deck 
is 1.5 m above the level of the 
water. Using Fig. 1 9 14, where  
h = 1.5 m,  estimate the radius R  
of the Earth.

 53. (III) You are lying on a beach, your eyes 20 cm above 
the sand. Just as the Sun sets, fully disappearing over the 
 horizon, you immediately jump up, your eyes now 150 cm 
above the sand, and you can again just see the top of the 
Sun. If you count the number of seconds  (= t)   until the 
Sun fully disappears again, you can estimate the Earth’s 

radius. But for this Prob lem, use the known radius of the 
Earth to calculate the time t.

1 – 7 Dimensions

 54. (I) What are the dimensions of density, which is mass per 
 volume?

 55. (II) The speed v of an object is given by the equation  
v = At3

- Bt,  where t refers to time. (a) What are the 
dimensions of A and B? (b) What are the SI units for the 
constants A and B?

 56. (II) Three students derive the following equations in which 
x refers to distance traveled, v the speed, a the acceleration 
(m>s2) , t the time, and the subscript zero (0)  means a quantity 
at time  t = 0.  Here are their equations:  (a) x = vt2

+ 2at,  
(b) x =  v0 t +  

1
2 at2,  and (c) x =  v0 t +  2at2.  Which of these could  

possibly be  correct according to a dimensional check, and why?
 57. (II) (a) Show that the following combination of the three 

fundamental constants of nature that we used in Example 1 9 10 
(that is G, c, and h) forms a quantity with the dimensions 
of time:

tP = A
Gh

c5
.

This quantity, tP , is called the Planck time and is thought 
to be the earliest time, after the creation of the Universe, at 
which the currently known laws of physics can be applied. 
(b) Estimate the order of magnitude of tP using values given 
inside the front cover (or Example 1 9 10).

General Problems
 58. Global positioning satellites (GPS) can be used to determine 

your position with great accuracy. If one of the satellites is 
20,000 km from you, and you want to know your position  
to {2 m, what percent uncertainty in the distance is required? 
How many signi�cant �gures are needed in the distance?

 59. One mole of atoms consists of  6.02 * 1023  individual atoms. 
If a mole of atoms were spread uniformly over the Earth’s 
surface, how many atoms would there be per square meter?

 60. Computer chips (Fig. 1 9 15) can be etched on circular silicon 
wafers of thickness 0.300 mm that are sliced from a solid 
cylindrical silicon crystal of 
length  25 cm. If each wafer 
can hold 750 chips, what is 
the maximum number of chips 
that can be produced from one 
entire cylinder?

 61. If you used only a keyboard to enter data, how many 
years would it take to �ll up a hard drive in a computer 
that can store 1.0 terabytes  (1.0 * 1012 bytes)   of data? 
Assume 40-hour work weeks, and that you can type 150 
characters per minute, and that one byte is one keyboard 
character.

 62. An average family of four uses roughly 1200 L (about 
300 gallons) of water per day  (1 L = 1000 cm3) .  How much 
depth would a lake lose per year if it covered an area of  
60 km2 with uniform depth and supplied a local town with  
a population of 40,000 people? Consider only population 
uses, and neglect evaporation, rain, creeks and rivers.

 63. A certain compact disc (CD) contains 783.216 megabytes 
of digital information. Each byte consists of exactly 8 bits. 
When played, a CD player reads the CD’s information  
at a constant rate of 1.4 megabits per second. How many 
 minutes does it take the player to read the entire CD?

 64. An angstrom (symbol Å) is a unit of length, de�ned as 
10-10 m, which is on the order of the diameter of an atom. 
(a) How many nanometers are in 1.0 angstrom? (b) How 
many femtometers or fermis (the common unit of length 
in nuclear physics) are in 1.0 angstrom? (c) How many 
 angstroms are in 1.0 m? (d) How many angstroms are in 
1.0 light-year (see Problem 25)?

*

*

*

*

*

Earth

Earth center

Lake

R R

d

h

FIGURE 1 – 14  Problem 52.  
You see a sailboat across a lake 
(not to scale). R is the radius of the 
Earth. Because of the curvature of 
the Earth, the water “bulges out” 
between you and the boat. 

FIGURE 1 – 15  Problem 60. The 
wafer held by the hand is shown 
below, enlarged and  illuminated 
by colored light. Visible are rows 
of integrated circuits (chips).
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General Problems 19

 65. A typical adult human lung contains about 300 million tiny 
cavities called alveoli. Estimate the average diameter of a 
single alveolus.

 66. Hold a pencil in front of your eye at a position where its 
blunt end just blocks out the Moon (Fig. 1 9 16). Make appro-
priate measurements to estimate the diameter of the Moon, 
given that the Earth 9 Moon distance is  3.8 * 105 km.

 67. A storm dumps 1.0 cm of rain on a city 5 km wide 
and 7 km long in a 2-h period. How many metric tons  
(1 metric ton = 103 kg)   of water fell on the city? (1 cm3 of  
water has a mass of  1 g = 10-3 kg.)   How many gallons 
of water was this?

 68. Greenland’s ice sheet covers over  1.7 * 106 km2  and is 
approximately 2.5 km thick. If it were to melt completely then 
by how much would you expect the ocean to rise? Assume 2

3 
of Earth’s surface is ocean. See Tables inside front and back 
covers.

 69. Noah’s ark was ordered to be 300 cubits long, 50 cubits wide, 
and 30 cubits high. The cubit was a unit of measure equal 
to the length of a human forearm, elbow to the tip of the 
 longest �nger. Express the dimensions of Noah’s ark in 
meters, and estimate its volume (m3).

 70. One liter (1000 cm3)  of oil is spilled onto a smooth lake. If 
the oil spreads out uniformly until it makes an oil slick just 
one molecule thick, with adjacent molecules just touching, 
estimate the diameter of the oil slick. Assume the oil mole-
cules have a diameter of  2 * 10-10 m.

 71. If you walked north along one of Earth’s lines of longitude 
until you had changed latitude by 1 minute of arc (there are 
60 minutes per degree), how far would you have walked (in 
miles)? This distance is a nautical mile (page 7).

 72. Determine the percent uncertainty in u, and in sin u, when 
(a) u = 15.0° { 0.5°,  (b) u = 75.0° { 0.5°.

 73. Jim stands beside a wide river and wonders how wide it  
is. He spots a large rock on the bank directly across from 
him. He then walks upstream 85 strides and judges that 
the angle between him and 
the rock, which he can still 
see, is now at an angle of 
30° downstream (Fig. 1 9 17). 
Jim measures his stride to be 
about 0.8 m long. Estimate 
the width of the river.

 74. Make a rough estimate of the volume of your body (in m 3).
 75. Estimate the number of plumbers in San Francisco.
 76. Estimate the ratio (order of magnitude) of the mass of a 

human to the mass of a DNA molecule. [Hint: Check the 
Tables in this Chapter.]

 77. The following formula estimates an average person’s lung 
capacity V (in liters, where  1 L = 10 3 cm 3) :

V = 4.1H - 0.018A - 2.7,

where H and A are the person’s height (in meters) and age 
(in years), respectively. In this formula, what are the units 
of the numbers 4.1, 0.018, and 2.7?

 78. The density of an object is de�ned as its mass divided by its 
volume. Suppose a rock’s mass and volume are measured to 
be 6 g and 2.8325 cm3. To the correct number of signi�cant 
�gures, determine the rock’s density (mass>volume).

 79. Recent �ndings in astrophysics suggest that the observ-
able universe can be modeled as a sphere of radius 
R = 13.7 * 109 light-years = 13.0 * 10 25 m  with an average 
total mass density of about  1 * 10-26 kg>m 3.  Only about 4% 
of total mass is due to “ordinary” matter (such as protons, 
neutrons, and electrons). Estimate how much ordinary 
matter (in kg) there is in the observable universe. (For the 
light-year, see Problem 25.)

A N S W E R S  T O  E X E R C I S E S

A: (d).
B: All three have three signi�cant �gures; the number of 

decimal places is (a) 2, (b) 3, (c) 4.
C: No: they have three and two, respectively.
D: (a) 2.58 * 10-2,  3;  (b) 4.23 * 104,  3 (probably);  

(c) 3.4450 * 102, 5.

E: Mt. Everest, 29,035 ft; K2, 28,251 ft; Kangchenjunga, 28,169 ft.
F: (a) 2.47 acres in 1 hectare; (b) 2 12 or even just 2 acres in 

1 hectare. 
G: (f ) 1,000,000; that is, one million.
H: (c).

FIGURE 1 – 16   
Problem 66. How big 
is the Moon?

FIGURE 1 – 17   
Problem 73. 85 Strides

30°
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CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now : you will get another chance later in the 
Chapter. See also page 1 of Chapter 1 for more explanation.]

Two small heavy balls have the same diameter but one weighs twice as much as 
the other. The balls are dropped from a second-story balcony at the exact same 
time. The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

T
he motion of objects : baseballs, automobiles, joggers, and even the Sun and 
Moon : is an obvious part of everyday life. It was not until the sixteenth 
and seventeenth centuries that our modern understanding of motion was 

established. Many individuals contributed to this understanding, particularly 
Galileo Galilei (1564 9 1642) and Isaac Newton (1642 9 1727).

The study of the motion of objects, and the related concepts of force and energy, 
form the �eld called mechanics. Mechanics is customarily divided into two parts: 
 kinematics, which is the description of how objects move, and dynamics, which deals 
with force and why objects move as they do. This Chapter and the next deal with 
kinematics.

A space shuttle has released 
a parachute to reduce its 
speed quickly. The directions 
of the shuttle’s velocity and 
acceleration are shown by 
the green (v5) and gold (a5) 
arrows.

Motion is described using 
the concepts of velocity and 
acceleration. In the case 
shown here, the velocity v5 is 
to the right, in the direction 
of motion. The acceleration 
a5 is in the opposite direction 
from the velocity v5, which 
means the object is slowing 
down.

We examine in detail 
motion with constant 
acceleration, including the 
vertical motion of objects 
falling under gravity.

v
a

Describing Motion:  
Kinematics in One Dimension

CONTENTS
2–1 Reference Frames and 

Displacement

2–2 Average Velocity

2–3 Instantaneous Velocity

2–4 Acceleration

2–5 Motion at Constant 
Acceleration

2–6 Solving Problems
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SECTION 2–1 Reference Frames and Displacement 21

For now we only discuss objects that move without rotating (Fig. 2 9 1a). 
Such motion is called translational motion. In this Chapter we will be concerned 
with describing an object that moves along a straight-line path, which is one- 
dimensional translational motion. In Chapter 3 we will describe translational 
motion in two (or three) dimensions along paths that are not straight. (Rotation, 
shown in Fig. 2 9 1b, is discussed in Chapters 10 and 11.)

We will often use the concept, or model, of an idealized particle which is 
considered to be a mathematical point with no spatial extent (no size). A point 
particle can undergo only translational motion. The particle model is useful in 
many real situations where we are interested only in translational motion and 
the object’s size is not signi�cant. For example, we might consider a billiard ball, 
or even a spacecraft traveling toward the Moon, as a particle for many purposes.

2–1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to 
a reference frame, or frame of reference. For example, while you are on a train 
traveling at 80 km>h, suppose a person walks past you toward the front of the 
train at a speed of, say, 5 km>h (Fig. 2 9 2). This 5 km>h is the person’s speed with 
respect to the train as frame of reference. With respect to the ground, that person 
is moving at a speed of  80 km>h + 5 km>h = 85 km>h.  It is always important to 
specify the frame of reference when stating a speed. In everyday life, we usually 
mean “with respect to the Earth” without even thinking about it, but the reference 
frame must be speci�ed whenever there might be confusion.

(a) (b)

FIGURE 2 – 1  A falling pinecone 
undergoes (a) pure translation;  
(b) it is rotating as well as translating.

FIGURE 2 – 2  A person walks toward the front of a train at 5 km>h.  
The train is moving at 80 km>h with respect to the ground, so the  
walking person’s speed, relative to the ground, is 85 km>h.

When specifying the motion of an object, it is important to specify not only the 
speed but also the direction of motion. Often we can specify a direction by using 
north, east, south, and west, and by “up” and “down.” In physics, we often draw 
a set of coordinate axes, as shown in Fig. 2 9 3, to represent a frame of reference.  
We can always place the origin 0, and the directions of the x and y axes, as we 
like for convenience. The x and y axes are always perpendicular to each other. 
The origin is where  x = 0,  y = 0.  Objects positioned to the right of the origin  
of   coordinates (0) on the x axis have an x coordinate which we almost always 
choose to be positive;  objects at points to the left of 0 have a negative x  coordinate. 
The position along the y axis is usually considered positive when above 0, and 
negative when below 0, although the reverse convention can be used if convenient.  
Any point on the xy plane can be speci�ed by giving its x and y coordinates. In 
three dimensions, a z axis perpendicular to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along 
which the motion takes place. Then the position of an object at any moment is 
given by its x coordinate. If the motion is vertical, as for a dropped object, we 
usually use the y axis.

FIGURE 2 – 3  Standard set of xy 
coordinate axes, sometimes called 
“rectangular coordinates.” [Also 
called Cartesian coordinates, after 
René Descartes (1596 9 1650), who 
invented them.]

- y
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22 CHAPTER 2 Describing Motion: Kinematics in One Dimension

We need to make a distinction between the distance an object has traveled 
and its displacement, which is de�ned as the change in position of the object. 

That is, displacement is how far the object is from its starting point. To see the 
distinction between total distance and displacement, imagine a person walking 70 m 
to the east and then turning around and walking back (west) a distance of 30 m (see  
Fig. 2 9 4). The total distance traveled is  70 m + 30 m = 100 m,  but the displace-
ment is only 40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan-
tities are called vectors, and are represented by arrows in diagrams. For example, 
in Fig. 2 9 4, the blue arrow represents the displacement whose magnitude is 40 m 
and whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with 
motion in one dimension, along a line. In this case, vectors which point in one 
direction will be positive (usually to the right along the x axis). Vectors that point 
in the opposite direction will have a negative sign in front of their magnitude.

Consider the motion of an object over a particular time interval. Suppose 
that at some initial time, call it t1 , the object is on the x axis at the position x1 
in the coordinate system shown in Fig. 2 9 5. At some later time, t2 , suppose the 
object has moved to position x2 . The displacement of our object is  x2 - x1 ,  and is 
represented by the arrow pointing to the right in Fig. 2 9 5. It is convenient to write

∆x = x2 - x1 ,

where the symbol ∆ (Greek letter delta) means “change in.” Then ∆x means 
“the  change in x,” or “change in position,” which is in fact the displacement. 
The change in any quantity means the �nal value of that quantity, minus the initial 

value. Suppose x1 = 10.0 m  and  x2 = 30.0 m,  as in Fig. 2 9 5. Then

∆x = x2 - x1 = 30.0 m - 10.0 m = 20.0 m,

so the displacement is 20.0 m in the positive direction, Fig. 2 9 5.
Now consider an object moving to the left as shown in Fig. 2 9 6. Here the object, 

a person, starts at  x1 = 30.0 m  and walks to the left to the point  x2 = 10.0 m.  In 
this case her displacement is

∆x = x2 - x1 = 10.0 m - 30.0 m = -20.0 m,

and the blue arrow representing the vector displacement points to the left. For 
one-dimensional motion along the x axis, a vector pointing to the right is positive, 
whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at  x = 20 cm  on a piece of graph paper and walks along the 
x axis to  x = -20 cm.  It then turns around and walks back to  x = -10 cm.  Determine 
(a) the ant’s displacement and (b) the total distance traveled.

2–2 Average Velocity
An important aspect of the motion of a moving object is how fast it is moving : its 
speed or velocity.

The term “speed” refers to how far an object travels in a given time interval, 
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we 
say its average speed was 80 km>h. In general, the average speed of an object is 
de�ned as the total distance traveled along its path divided by the time it takes to 

travel this distance:

average speed =
distance traveled

time elapsed
. (2 – 1)

The terms “velocity” and “speed” are often used interchangeably in ordi-
nary language. But in physics we make a distinction between the two. Speed 
is simply a positive number, with units. Velocity, on the other hand, is used to 
signify both the magnitude (numerical value) of how fast an object is moving 
and also the direction in which it is moving. Velocity is therefore a vector. 

C A U T I O N

The displacement may not equal the 
total distance traveled

x
0

70 m

West East40 m

Displacement

30 m

y

FIGURE 2 – 4  A person walks 70 m 
east, then 30 m west. The total distance 
traveled is 100 m (path is shown dashed  
in black); but the displacement, shown 
as a solid blue arrow, is 40 m to the east.

FIGURE 2 – 5  The arrow represents 
the displacement  x2 - x1 .   
Distances are in meters.

x

y

x1 x2

10
0

20 30 40
Distance (m)

FIGURE 2 – 6  For the displacement 
∆x = x2 - x1 = 10.0 m - 30.0 m,  
the displacement vector points left.
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SECTION 2–2 Average Velocity 23

There is a second difference between speed and velocity: namely, the average 

velocity is de�ned in terms of displacement, rather than total distance traveled:

average velocity =

displacement

time elapsed
=

final position - initial position

time elapsed
.

Average speed and average velocity have the same magnitude when the 
motion is all in one direction. In other cases, they may differ: recall the walk we 
described earlier, in Fig. 2 9 4, where a person walked 70 m east and then 30 m 
west. The total distance traveled was  70 m + 30 m = 100 m,  but the displacement 
was 40 m. Suppose this walk took 70 s to complete. Then the average speed was:

distance

time elapsed
=

100 m

70 s
= 1.4 m>s.

The magnitude of the average velocity, on the other hand, was:

displacement

time elapsed
=

40 m

70 s
= 0.57 m>s.

In everyday life, we are usually interested in average speed. If this second equation 
on average velocity seems strange, we will see its usefulness in the next Section. 

To discuss one-dimensional motion of an object in general, suppose that at 
some moment in time, call it t1 , the object is on the x axis at position x1 in a coordi-
nate system, and at some later time, t2 , suppose it is at position x2 . The elapsed time  
(= change in time) is  ∆t = t2 - t1 .  During this time interval the displacement of 
our object is  ∆x = x2 - x1 .  Then the average velocity, de�ned as the displacement 

divided by the elapsed time, can be written

v =
x2 - x1

t2 - t1

=
∆x

∆t
, [average velocity]  (2 – 2)

where v stands for velocity and the bar ( ) over the v is a standard symbol 
meaning “average.”

It is always important to choose (and state) the elapsed time, or time interval, 
t2 - t1 ,  the time that passes during our chosen period of observation.

C A U T I O N

Average speed is not necessarily 
equal to the magnitude of the 
average velocity

C A U T I O N

Time interval = elapsed time

EXAMPLE 2 – 1 Runner’s average velocity. The position of a runner is 
plotted as moving along the x axis of a coordinate system. During a 3.00-s time 
interval, the runner’s position changes from  x1 = 50.0 m  to  x2 = 30.5 m,  as 
shown in Fig. 2 9 7.  What is the runner’s average velocity?

APPROACH We want to �nd the average velocity, which is the displacement 
divided by the elapsed time.

SOLUTION The displacement is

 ∆x = x2 - x1

 = 30.5 m - 50.0 m = -19.5 m.

In this case the displacement is negative.
The elapsed time, or time interval, is given as  ∆t = 3.00 s.  The average 

velocity (Eq. 2 9 2) is

v =
∆x

∆t
=

-19.5 m

3.00 s
= -6.50 m>s.

The displacement and average velocity are negative: that is, the runner is moving 
to the left along the x axis, as indicated by the arrow in Fig. 2 9 7. The runner’s 
average velocity is 6.50 m>s to the left.

FIGURE 2 – 7  Example 2 9 1.  
A person runs from  x1 = 50.0 m   
to  x2 = 30.5 m.  The displacement 
is -19.5 m.

y

x
10

0
20 30 40 50 60

Distance (m)

Start
(x1)

Finish
(x2)

∆x

For one-dimensional motion in the usual case of the +x axis to the right,  
if x2 is less than x1 , then the object is moving to the left, and  ∆x = x2 - x1  
is less than zero. The sign of the displacement, and thus of the average velocity, 
indicates the direction: the average velocity is positive for an object moving to the 
right along the x axis and negative when the object moves to the left. The direction 
of the average velocity is always the same as the direction of the displacement.

P R O B L E M  S O LV I N G

+ or - sign can signify the direction 
for linear motion
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24 CHAPTER 2 Describing Motion: Kinematics in One Dimension

2–3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of 
your average velocity is 75 km>h. It is unlikely, though, that you were moving 
at precisely 75 km>h at every instant. To describe this situation we need the 
concept of instantaneous velocity, which is the velocity at any instant of time. 
(Its magnitude is the number, with units, indicated by a speedometer, Fig. 2 9 8.) 
More precisely, the  instantaneous velocity at any moment is de�ned as the average 

velocity over an in�nitesimally short time interval. That is, Eq. 2 9 2 is to be evalu-
ated in the limit of ∆t becoming extremely small, approaching zero. We can write 
the de�nition of instantaneous velocity, v, for one-dimensional motion as

v = lim
∆tS0

 
∆x

∆t
. [instantaneous velocity]  (2 – 3)

The notation lim∆tS0 means the ratio ∆x>∆t is to be evaluated in the limit of ∆t 
approaching zero. But we do not simply set  ∆t = 0  in this de�nition, for then  
∆x would also be zero, and we would not be able to evaluate it. Rather, we 
consider the ratio ∆x>∆t, as a whole. As we let ∆t approach zero, ∆x approaches 
zero as well. But the ratio ∆x>∆t approaches some de�nite value, which is the 
instantaneous velocity at a given instant.

In Eq. 2 9 3, the limit as  ∆t S 0  is written in calculus notation as dx>dt and is  
called the derivative of x with respect to t:

v = lim
∆tS0

 
∆x

∆t
=

dx

dt
. (2 – 4)

This equation is the de�nition of instantaneous velocity for one-dimensional 
motion.

For instantaneous velocity we use the symbol v, whereas for average velocity 
we use v, with a bar above. In the rest of this book, when we use the term 
“velocity” it will refer to instantaneous velocity. When we want to speak of the 
average velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan-
taneous velocity. Why? Because as the time interval becomes in�nitesimally small 
(∆t S 0), an object has no time to change speed or direction, and so the distance 
traveled and the magnitude of the  displacement have to be the same.

EXAMPLE 2 – 2 Distance a cyclist travels. How far can a cyclist travel in 
2.5 h along a straight road if her average velocity is 18 km>h?

APPROACH We want to �nd the distance traveled, which in this case equals 
the displacement ∆x , so we solve Eq. 2 9 2 for ∆x.

SOLUTION In Eq. 2 9 2,  v = ∆x>∆t,  we multiply both sides by ∆t and obtain

∆x = v ∆t =  (18 km>h) (2.5 h) = 45 km.

EXAMPLE 2 – 3 Car changes speed. A car travels at a constant 50 km>h for 
100 km. It then speeds up to 100 km>h and is driven another 100 km. What is 
the car’s average speed for the 200-km trip?

APPROACH At 50 km>h, the car takes 2.0 h to travel 100 km. At 100 km>h, it 
takes only 1.0 h to travel 100 km. We use the de�nition of average velocity, Eq. 2 9 2.

SOLUTION Average velocity (Eq. 2 9 2) is

v =
∆x

∆t
=

100 km + 100 km

2.0 h + 1.0 h
= 67 km>h.

NOTE Averaging the two speeds,  (50 km>h + 100 km>h) 
>2 = 75 km>h,  gives 

a wrong answer. Can you see why? You must use the de�nition of v, Eq. 2 9 2.

FIGURE 2 – 8  Car speedometer 
showing mi>h in white, and km>h  
in orange.
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SECTION 2–3 Instantaneous Velocity 25

If an object moves at a uniform (that is, constant) velocity during a partic-
ular time interval, then its instantaneous velocity at any instant is the same as its 
average velocity (see Fig. 2 9 9a). But in many situations this is not the case. For 
example, a car may start from rest, speed up to 50 km>h, remain at that velocity 
for a time, then slow down to 20 km>h in a traf�c jam, and �nally stop at its 
destination after traveling a total of 15 km in 30 min. This trip is plotted on the 
graph of Fig. 2 9 9b. Also shown on the graph is the average velocity (dashed line), 
which is  v = ∆x>∆t = 15 km>0.50 h = 30 km>h.

To better understand instantaneous velocity, let us consider a graph of the 
 position versus time (x vs. t) of a particle moving along the x axis, as shown in 
Fig. 2 9 10. (Note that this is different from showing the “path” of a particle moving in  
two dimensions on an x vs. y plot.) The particle is at position x1 at time t1 , and at posi-
tion x2 at time t2 .  P1 and P2 represent these two points on the graph. A straight line  
drawn from point P1 (x1 , t1)  to point P2 (x2 , t2)  forms the hypotenuse of a right 
triangle whose sides are ∆x and ∆t . The ratio ∆x>∆t is the slope of the straight 
line P1 P2 . But ∆x>∆t is also the average velocity of the particle during  
the time interval  ∆t = t2 - t1 .  Therefore, we conclude that the average velocity of a  
particle during any time interval  ∆t = t2 - t1  is equal to the slope of the straight  
line (or chord) connecting the two points (x1 , t1)  and (x2 , t2)  on an x vs. t graph.

Consider now a time ti , intermediate between t1 and t2 , at which time the 
particle is at xi (Fig. 2 9 11). The slope of the straight line P1 Pi is less than the slope 
of P1 P2 in this case. Thus the average velocity during the time interval  ti - t1  is 
less than during the time interval  t2 - t1 .

Now let us imagine that we take the point Pi in Fig. 2 9 11 to be closer and closer  
to point P1 . That is, we let the interval  ti - t1 ,  which we now call ∆t , become 
smaller and smaller. The slope of the line connecting the two points becomes 
closer and closer to the slope of a line tangent to the curve at point P1 . The 
average velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point P1 . The de�nition of the instantaneous velocity (Eq. 2 9 3) is 
the limiting value of the average velocity as ∆t approaches zero. Thus the instan-

taneous velocity equals the slope of the tangent to the x vs. t curve at that point 
(which we can simply call “the slope of the curve” at that point).

Because the velocity at any instant equals the slope of the tangent to the x 
vs. t graph at that instant, we can obtain the velocity at any instant from such a 
graph. For example, in Fig. 2 9 12 (which shows the same curve as in Figs. 2 9 10 and  
2 9 11), the slope continually increases as our object moves from x1 to x2 , so the 
velocity is increasing. For times after t2 , however, the slope begins to decrease 
and in fact reaches zero (so  v = 0)  where x has its maximum value, at point P3 
in Fig. 2 9 12. Beyond this point, the slope is negative, as for point P4 . The velocity 
is therefore negative, which makes sense since x is now decreasing : the particle 
is moving to the left on a standard xy plot, toward decreasing values of x.

If an object moves with constant velocity over a particular time interval, 
its instantaneous velocity is equal to its average velocity. The graph of x vs. t 
in this case will be a straight line whose slope equals the velocity. The curve 
of Fig. 2 9 10 has no straight sections, so there are no time intervals when the 
velocity is constant.

FIGURE 2 – 10  Graph of a particle’s 
position x vs. time t. The slope of 
the straight line P1 P2 represents the 
average velocity of the particle  
during the time interval ∆t = t2 - t1 .

P1

P2

∆x = x2 - x1

∆t = t2 - t1

t2t1

x1

x2

0

x

t

FIGURE 2 – 11  Same position vs.  
time curve as in Fig. 2–10, but 
including an intermediate time ti . 
Note that the average velocity over 
the time interval  ti - t1  (which is the  
slope of P1 Pi) is less than the average 
velocity over the time interval  t2 - t1 .   
The slope of the thin line tangent 
to the curve at point P1 equals the 

instantaneous velocity at time t1 .
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FIGURE 2 – 12  Same x vs. t curve as in 
Figs. 2 9 10 and 2 9 11, but here showing 
the slope at four different points:  
At P3 , the slope is zero, so  v = 0.   
At P4 the slope is negative, so  v 6 0.
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FIGURE 2 – 9  Velocity of a car as 
a function of time: (a) at constant 
velocity; (b) with velocity varying 
in time.
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26 CHAPTER 2 Describing Motion: Kinematics in One Dimension

EXERCISE B What is your speed at the instant you turn around to move in the opposite 
direction? (a) Depends on how quickly you turn around; (b) always zero; (c) always 
negative; (d) none of the above.

The derivatives of various functions are studied in calculus courses, and you 
can �nd a review in this book in Appendix B. The derivatives of polynomial 
functions (which we use a lot) are:

d

dt
 (Ctn) = nCtn - 1 and 

dC

dt
= 0,

where C is any constant.

EXAMPLE 2 – 4 Given x as a function of t. A jet engine moves along an 
experimental track (which we call the x axis) as shown in Fig. 2 9 13a. We will 
treat the engine as if it were a particle. Its position as a function of time is 
given by the equation  x = At2

+ B, where  A = 2.10 m>s2  and  B = 2.80 m,  
and this equation is plotted in Fig. 2 9 13b. (a) Determine the displacement of the 
engine during the time interval from  t1 = 3.00 s  to  t2 = 5.00 s. (b) Determine 
the average velocity during this time interval. (c) Determine the magnitude of 
the instantaneous velocity at  t = 5.00 s.

APPROACH (a) We substitute values for t1 and t2 in the given equation for x 
to obtain x1 and x2 . (b) The average velocity can be found from Eq. 2 9 2. (c) To 
�nd the instantaneous velocity, we take the derivative of the given x equation 
with respect to t using the formulas given above.

SOLUTION (a) At  t1 = 3.00 s,  the position (point P1 in Fig. 2 9 13b) is

x1 = At1
2
+ B =  (2.10 m>s2) (3.00 s)  2

+ 2.80 m = 21.7 m.

At  t2 = 5.00 s,  the position (P2 in Fig. 2 9 13b) is

x2 =  (2.10 m>s2) (5.00 s)  2
+ 2.80 m = 55.3 m.

The displacement is thus

x2 - x1 = 55.3 m - 21.7 m = 33.6 m.

(b) The magnitude of the average velocity can then be calculated as

v =
∆x

∆t
=

x2 - x1

t2 - t1

=
33.6 m

2.00 s
= 16.8 m>s.

This equals the slope of the straight line joining points P1 and P2 shown in Fig. 2 9 13b.

(c) The instantaneous velocity at  t = t2 = 5.00 s  equals the slope of the tangent 
to the curve at point P2 shown in Fig. 2 9 13b. We could measure this slope off 
the graph to obtain v2 . But we can calculate v more precisely for any time t, 
using the given formula

x = At2
+ B,

which is the engine’s position x as a function of time t. We take the derivative 
of x with respect to time (see formulas at top of this page):

v =
dx

dt
=

d

dt
 (At2

+ B) = 2At.

We are given  A = 2.10 m>s2, so for  t = t2 = 5.00 s,

v2 = 2At = 2(2.10 m>s2) (5.00 s) = 21.0 m>s.

FIGURE 2 – 13  Example 2 9 4.  
(a) Engine traveling on a straight track. 
(b) Graph of x vs. t: x = At2

+ B.
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SECTION 2–4 Acceleration 27

2–4 Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a 
car whose velocity increases in magnitude from zero to 80 km>h is accelerating. 
 Acceleration speci�es how rapidly the velocity of an object is changing.

Average Acceleration

Average acceleration is de�ned as the change in velocity divided by the time 
taken to make this change:

average acceleration =

change of velocity

time elapsed
.

In symbols, the average acceleration over a time interval  ∆t = t2 - t1  during 
which the velocity changes by  ∆v = v2 - v1  is de�ned as

a =
v2 - v1

t2 - t1

=
∆v

∆t
. (2 – 5)

Because velocity is a vector, acceleration is a vector too. But for one-dimensional 
motion, we need only use a plus or minus sign to indicate acceleration direction 
relative to a chosen coordinate axis.

EXAMPLE 2 – 5 Average acceleration. A car accelerates along a straight road 
from rest to 90 km>h in 5.0 s, Fig. 2 9 14. What is the magnitude of its average 
acceleration?

APPROACH Average acceleration is the change in velocity divided by the 
elapsed time, 5.0 s. The car starts from rest, so  v1 = 0.  The �nal velocity is
v2 = 90 km>h = 90 * 103

 m>3600 s = 25 m>s.

SOLUTION From Eq. 2 9 5, the average acceleration is

a =
v2 - v1

t2 - t1

=
25 m>s - 0 m>s

5.0 s
= 5.0 

m>s

s
.

This is read as “�ve meters per second per second” and means that, on average, 
the velocity changed by 5.0 m>s during each second. That is, assuming the 
acceleration was constant, during the �rst second the car’s velocity increased 
from zero to 5.0 m>s. During the next second its velocity increased by another  
5.0 m>s, reaching a velocity of 10.0 m>s at  t = 2.0 s, and so on. See Fig. 2 9 14.

FIGURE 2  –  14  Example 2 9 5. The 
car is shown at the start with  v1 = 0  
at  t1 = 0.  The car is shown three 
more times, at  t = 1.0 s,  t = 2.0 s,  
and at the end of our time interval, 
t2 = 5.0 s.  The green arrows 
represent the velocity vectors, whose 
length represents the magnitude of 
the velocity at that moment and get 
longer with time. The acceleration 
vector is the orange arrow, whose 
magnitude is constant and is found 
to equal 5.0 m>s2. Distances are not 
to scale.

Acceleration

[a  =  5.0 m>s2]

v1  =  0
t1  =  0

at  t  =  2.0 s
    v  =  10.0 m>s

at  t  =  1.0 s
    v  =  5.0 m>s

at  t = t2  =  5.0 s
     v = v2 =  25 m>s
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28 CHAPTER 2 Describing Motion: Kinematics in One Dimension

CONCEPTUAL EXAMPLE 2 – 6 Velocity and acceleration. (a) If the velo-
ci ty of an object is zero, does it mean that the acceleration is zero? (b) If the 
acceleration is zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration 
is zero, nor does a zero acceleration mean that the velocity is zero. (a) For 
example, when you put your foot on the gas pedal of your car which is at rest, 
the velocity starts from zero but the acceleration is not zero since the velocity 
of the car changes. (How else could your car start forward if its velocity weren’t 
changing : that is, accelerating?) (b) As you cruise along a straight highway at 
a constant velocity of 100 km>h, your acceleration is zero:  a = 0,  v ≠  0.

EXERCISE C A powerful car is advertised to go from zero to 60 mi>h in 5.4 s. What does 
this say about the car: (a) it is fast (high speed); or (b) it accelerates well?

EXAMPLE 2 – 7 Car slowing down. An automobile is moving to the right 
along a straight highway, which we choose to be the positive x axis (Fig. 2 9 15). 
Then the driver puts on the brakes. If the initial velocity (when the driver hits 
the brakes) is  v1 = 15.0 m>s, and it takes 5.0 s to slow down to  v2 = 5.0 m>s,  
what was the car’s average acceleration?

APPROACH We put the given initial and �nal velocities, and the elapsed time, into  
Eq. 2 9 5 for a.

SOLUTION In Eq. 2 9 5, we call the initial time  t1 = 0,  and set  t2 = 5.0 s.  
(Note that our choice of  t1 = 0  doesn’t affect the calculation of a because only  
∆t = t2 - t1  appears in Eq. 2 9 5.) Then

a =
5.0 m>s - 15.0 m>s

5.0 s
= -2.0 m>s2.

The negative sign appears because the �nal velocity is less than the initial velocity. In 
this case the direction of the acceleration is to the left (in the negative x direction) :  

even though the velocity is always pointing to the right. We say that the acceleration 
is 2.0 m>s2 to the left, and it is shown in Fig. 2 9 15 as an orange arrow.

Acceleration

a = -2.0 m>s2

v1  =  15.0 m>s

at  t1  =  0

v2  =  5.0 m>s

at  t2  =  5.0 s

FIGURE 2 – 15  Example 2 9 7,  
showing the position of the car 
at times t1 and t2 , as well as the 
car’s velocity represented by the 
green arrows. We calculate that the 
acceleration vector (orange) points to 
the left as the car slows down while 
moving to the right.

“Deceleration”

When an object is slowing down, we sometimes say it is decelerating. In physics, 
the concept of acceleration is all we need: it can be + or  - . But if the word 
“deceleration” is used, be careful: deceleration does not mean that the acceleration 
is necessarily negative, as in Example 2 9 7. The velocity of an object moving to 
the right along the positive x axis is positive; if the object is slowing down (as 
in Fig. 2 9 15), the acceleration is negative. But the same car moving to the left 
(decreasing x), and slowing down, has positive acceleration that points to the 
right, as shown in Fig. 2 9 16. We have a deceleration whenever the magnitude 
of the velocity is decreasing; thus the velocity and acceleration point in opposite 

directions when there is deceleration.

We almost always write the units for acceleration as m>s2 (meters per second 
squared) instead of m>s>s. This is possible because:

m>s

s
=

m

s ⋅ s
=

m

s2
.

According to the calculation in Example 2 9 5, the velocity changed on average 
by 5.0 m>s during each second, for a total change of 25 m>s over the 5.0 s; the 
average acceleration was 5.0 m>s2.

Note that acceleration tells us how quickly the velocity changes, whereas 
velocity tells us how quickly the position changes.

C A U T I O N

Distinguish velocity from acceleration

C A U T I O N

If v or a is zero, is the other zero too?

FIGURE 2 – 16  The car of  
Example 2 9 7, now moving to the left 
and decelerating. The acceleration is

 a =
v2 -  v1

∆t

 a =

( -5.0 m>s) - ( -15.0 m>s)

5.0 s

 =
-5.0 m>s +  15.0 m>s

5.0 s
=  +2.0 m>s2.

v1  =  -15.0 m>sv2  =  -5.0 m>s

a
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EXERCISE D A car moves along the x axis. What is the sign of the car’s acceleration if 
it is moving in the positive x direction with (a) increasing speed or (b) decreasing speed? 
What is the sign of the acceleration if the car moves in the negative x direction with 
(c) increasing speed or (d) decreasing speed?

Instantaneous Acceleration

The instantaneous acceleration, a, is de�ned as the limiting value of the average 

acceleration as we let ∆t approach zero:

a = lim
∆tS0

 
∆v

∆t
=

dv

dt
. (2 – 6)

This limit, dv>dt, is the derivative of v with respect to t. We will use the term 
“acceleration” to refer to the instantaneous value. If we want to discuss the 
average  acceleration, we will always include the word “average.”

If we draw a graph of the velocity, v, vs. time, t, as shown in Fig. 2 9 17, then 
the average acceleration over a time interval  ∆t = t2 - t1  is represented by 
the slope of the straight line connecting the two points P1 and P2 in Fig. 2 9 17. 
[Compare this to the position vs. time graph of Fig. 2 9 10 for which the slope of 
the straight line represents the average velocity.] The instantaneous  acceleration 
at any time, say t1 , is the slope of the tangent to the v vs. t curve at time t1 , 
which is also shown in Fig. 2 9 17. In Fig. 2 9 17, as we go from time t1 to time t2  
the velocity continually increases, but the acceleration (the rate at which the 
velocity changes) is decreasing since the slope of the curve is decreasing.

EXAMPLE 2 – 8 Acceleration given x (t). A particle is moving in a straight line 
so that its position is given by the relation  x = (2.10 m>s2)t2

+ (2.80 m),  as in  
Example 2 9 4. Calculate (a) its average acceleration during the time interval from  
t1 = 3.00 s  to  t2 = 5.00 s,  and (b) its instantaneous acceleration as a function 
of time.

APPROACH To determine acceleration, we �rst must �nd the velocity at t1 
and t2 by differentiating x:  v = dx>dt.  Then we use Eq. 2 9 5 to �nd the average 
acceleration, and Eq. 2 9 6 to �nd the instantaneous acceleration.

SOLUTION (a) The velocity at any time t is

v =
dx

dt
=

d

dt
 [  (2.10 m>s2)t2

+ 2.80 m] =  (4.20 m>s2)t,

as we already saw in Example 2 9 4c. Therefore, at time  t1 = 3.00 s, 
v1 = (4.20 m>s2) (3.00 s) = 12.6 m>s    and  at  t2 = 5.00 s,  v2 = 21.0 m>s.  
Therefore,

a =
∆v

∆t
=

21.0 m>s - 12.6 m>s

5.00 s - 3.00 s
= 4.20 m>s2.

(b) With  v =  (4.20 m>s2)t,  the instantaneous acceleration at any time is

a =
dv

dt
=

d

dt
 [  (4.20 m>s2)t ] = 4.20 m>s2.

The acceleration in this case is constant; it does not depend on time. Figure 2 9 18 
shows graphs of (a) x vs. t (the same as Fig. 2 9 13b), (b) v vs. t, which is linearly 
increasing as calculated above, and (c) a vs. t, which is a horizontal straight line 
because  a = constant.

P1

P2

Slope is average acceleration
during ∆t = t2 - t1

Slope is
instantaneous
acceleration
at t1

t20 t1

v1

v2

v

t

∆v = v2 - v1

∆t = t2 - t1

FIGURE 2 – 17  A graph of velocity 
v vs. time t. The average acceleration 
over a time interval  ∆t = t2 - t1  is 
the slope of the straight line P1 P2 : 
a = ∆v>∆t.  The instantaneous 
acceleration at time t1 is the slope of 
the v vs. t curve at that instant.

FIGURE 2 – 18  Example 2 9 8. 
Graphs of (a) x vs. t, (b) v vs. t,  
and (c) a vs. t for the motion 
x = At2

+ B.  Note that v increases 
linearly with t and that the 
acceleration a is constant. Also, v is 
the slope of the x vs. t curve, whereas 
a is the slope of the v vs. t curve.
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Like velocity, acceleration is a rate. The velocity of an object is the rate at which 
its displacement changes with time; its acceleration, on the other hand, is the rate 
at which its velocity changes with time. In a sense, acceleration is a “rate of a rate.”  
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FIGURE 2 – 19  Example 2 9 9.

CONCEPTUAL EXAMPLE 2 – 9 Analyzing with graphs. Figure 2 9 19 shows 
the velocity as a function of time for two cars accelerating from 0 to 100 km>h in 
a time of 10.0 s. Compare for the two cars: (a) the average acceleration; (b) the 
instantaneous acceleration; and (c) the total distance traveled.

RESPONSE (a) Average acceleration is ∆v>∆t. Both cars have the same  
∆v (100 km>h) and the same ∆t (10.0 s), so the average acceleration is the same 
for both cars. (b) Instantaneous acceleration is the slope of the tangent to the  
v vs. t curve. For about the �rst 4 s, the top curve is steeper than the bottom curve, 
so car A has a greater instantaneous acceleration during this interval. The bottom 
curve is steeper during the last 6 s, so car B has the larger acceleration during this 
period. (c) Except at  t = 0  and  t = 10.0 s,  car A is always going faster than car B. 
Since it is going faster, it will go farther in the same time. Notice what marvelous 
information we can get from a graph.

2–5 Motion at Constant Acceleration
We now examine motion in a straight line when the magnitude of the acceleration 
is constant. In this case, the instantaneous and average acceleration are  equal. 
We  use the de�nitions of average velocity and acceleration to derive a set of   
valuable equations that relate x, v, a, and t when a is constant, allowing us 
to  determine any one of these variables if we know the others.

Notation in physics varies from book to book; and different instructors use 
different notation. We are now going to change our notation, to simplify it a bit 
for our discussion here of motion at constant acceleration. First we choose the 
initial time in any discussion to be zero, and we call it t0 . That is,  t1 = t0 = 0. 
(This is effectively starting a stopwatch at t0 .) We can then let  t2 = t   be the 
elapsed time. The initial position (x1)  and the initial velocity (v1)  of an object 
will now be represented by x0 and v0  , since they represent x and v at  t = 0.  
At time t the position and velocity will be called x and v (rather than x2 and v2). 
The average velocity during the time interval  t - t0  will be (Eq. 2 9 2)

v =
∆x

∆t
=

x - x0

t - t0

=
x - x0

t

since we chose  t0 = 0.  The acceleration, assumed constant in time, is  a = ∆v>∆t 
(Eq. 2 9 5), so

a =
v - v0

t
.

A common problem is to determine the velocity of an object after any elapsed 
time t, when we are given the object’s constant acceleration. We can solve such 
problems by solving for v in the last equation: �rst we multiply both sides by t , 
which gives at = v - v0  , and then

v = v0 + at. [constant acceleration]  (2 – 7)

If an object, such as a motorcycle, starts from rest  (v0 = 0)   and accelerates  

This can be expressed in equation form: since  a = dv>dt  and  v = dx>dt,  then

a =
dv

dt
=

d

dt
 ¢dx

dt
≤ =

d2x

dt2
.

Here d2x>dt2 is the second derivative of x with respect to time: we �rst take the 
derivative of x with respect to time (dx>dt), and then we again take the derivative 
with respect to time, (d>dt) (dx>dt), to get the acceleration.

EXERCISE E The position of a particle is given by the following equation:

x = (2.00 m>s3)t3
+ (2.50 m>s)t.

What is the acceleration of the particle at  t = 2.00 s?  Choose one: (a) 13.0 m>s2;  
(b) 22.5 m>s2; (c) 24.0 m>s2; (d) 2.00 m>s2; (e) 21.0 m>s2.

108642
0

100

t (s)

v
 (

k
m
>h

)

Car A

Car B
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at 4.0 m>s2, then after an elapsed time  t = 6.0 s  its velocity will be  
v = 0 + at =  (4.0 m>s2) (6.0 s) = 24 m>s.

Next, let us see how to calculate the position x of an object after a time t  
when it undergoes constant acceleration. The de�nition of average velocity  
(Eq. 2 9 2) is  v = (x - x0) 

>t,  which we can rewrite by multiplying both sides by t  :

x = x0 + vt. (2 – 8)

Because the velocity increases at a uniform rate, the average velocity,  v,  will be 
midway between the initial and �nal velocities:

v =
v0 + v

2
. [constant acceleration]  (2 – 9)

(Careful: Equation 2 9 9 is not necessarily valid if the acceleration is not constant.) 
We combine the last two Equations with Eq. 2 9 7 and �nd, starting with Eq. 2 9 8,

 x = x0 + vt

 = x0 + ¢ v0 + v

2
≤  t

 = x0 + ¢ v0 + v0 + at

2
≤  t

or
 x = x0 + v0 t +

1
2 at2. [constant acceleration]  (2 – 10)

Equations 2 9 7, 2 9 9, and 2 9 10 are three of the four most useful equations for 
motion at constant acceleration. We now derive the fourth equation, which is useful 
in situations where the time t is not known. We substitute Eq. 2 9 9 into Eq. 2 9 8:

x = x0 + vt = x0 + ¢ v + v0

2
≤  t.

Next we solve Eq. 2 9 7 for t, obtaining

t =
v - v0

a
,

and substituting this into the previous equation we have

x = x0 + ¢ v + v0

2
≤ ¢ v - v0

a
≤ = x0 +

v
2
- v0

2

2a
.

We solve this for v2 and obtain

v
2

= v0
2
+ 2a(x - x0) , [constant acceleration]  (2 – 11)

which is the other useful equation we sought.
We now have four equations relating position, velocity, acceleration, and time, 

when the acceleration a is constant. We collect these kinematic equations for 

constant acceleration here in one place for further reference (the tan background 
is used to emphasize their importance):

 v = v0 + at [a = constant] (2 – 12a)

 x = x0 + v0 t +
1
2 at2 [a = constant] (2 – 12b)

 v2
= v0

2
+ 2a(x - x0)  [a = constant] (2 – 12c)

 v =
v + v0

2
. [a = constant] (2 – 12d)

These useful equations are not valid unless a is a constant. In many cases we can 
set  x0 = 0,  and this simpli�es the above equations a bit. Note that x represents 
position (not distance), and that  x - x0  is the displacement, whereas t is the 
elapsed time. 

Equations 2 9 12 are useful also when a is approximately constant, in order  
to obtain  reasonable estimates.

C A U T I O N

Average velocity, but only if 
a = constant

Kinematic equations  

for constant acceleration  

(we’ll use them a lot)

SECTION 2–5 Motion at Constant Acceleration 31
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P H Y S I C S  A P P L I E D

Airport design

EXAMPLE 2 – 10 Runway design. You are designing an airport for small 
planes. One kind of airplane that might use this air�eld must reach a speed 
before takeoff of at least 27.8 m>s (100 km>h), and can accelerate at 2.00 m>s2. 
(a) If the runway is 150 m long, can this airplane reach the required speed for 
takeoff? (b) If not, what minimum length must the runway have?

APPROACH Assuming the plane’s acceleration is constant, we use the kinematic 
equations for constant acceleration. In (a), we want to �nd v, and we are given:

Known Wanted

 x0 = 0 v

 v0 = 0

 x = 150 m

 a = 2.00 m>s2

SOLUTION (a) Of the four kinematic equations on page 31, Eq. 2 9 12c will give 
us v when we know v0 , a, x, and x0 :

 v2
= v0

2
+ 2a(x - x0)

 = 0 + 2(2.00 m>s2)(150 m) = 600 m2>s2

 v = 2600 m2>s2
= 24.5 m>s.

This runway length is not suf�cient, because the minimum speed is not reached.

(b) Now we want to �nd the minimum runway length,  x - x0 ,  for a plane to 
reach v = 27.8 m>s,  given  a = 2.00 m>s2.  We again use Eq. 2 9 12c, but rewritten as

(x - x0) =
v

2
- v0

2

2a
=

(27.8 m>s)2
- 0

2(2.00 m>s2)
= 193 m.

A 200-m runway is more appropriate for this plane.

NOTE We did this Example as if the plane were a particle, so we round off our 
answer to 200 m.

P R O B L E M  S O LV I N G

Equations 2–12 are valid only when 
the acceleration is constant, which we 

assume in this Example

FIGURE 2 – 20  Example 2 9 11. An 
air bag deploying on impact.

EXAMPLE 2 – 11 ESTIMATE Air bags. Suppose you want to design an 
air bag system that can protect the driver at a speed of 100 km>h (60 mph) if 
the car hits a brick wall. Estimate how fast the air bag must in�ate (Fig. 2 9 20) to  
effectively protect the driver. How does the use of a seat belt help the driver?

APPROACH We assume the acceleration is roughly constant, so we can use 
Eqs. 2 9 12. Both Eqs. 2 9 12a and 2 9 12b contain t, our desired unknown. They both 
contain a, so we must �rst �nd a, which we can do using Eq. 2 9 12c if we know the 
distance x over which the car crumples. A rough estimate might be about 1 meter. 
We choose the time interval to start at the instant of impact with the car moving at  
v0 = 100 km>h,  and to end when the car comes to rest  (v = 0)  after traveling 1 m.

SOLUTION  We convert the given initial speed to SI units:  
100 km>h = 100 * 103

 m>3600 s = 28 m>s.  We then �nd the acceleration from 
Eq. 2 9 12c:

a = -  
v0

2

2x
= -  

(28 m>s)  2

2.0 m
= -390 m>s2.

This enormous acceleration takes place in a time given by (Eq. 2 9 12a):

t =
v - v0

a
=

0 - 28 m>s

-390 m>s2
= 0.07 s.

To be effective, the air bag would need to in�ate faster than this.
What does the air bag do? It spreads the force over a large area of the chest 

(to avoid puncture of the chest by the steering wheel). The seat belt keeps the 
person in a stable position directly in front of the expanding air bag.

P H Y S I C S  A P P L I E D

Car safety : air bags
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