

INTRODUCTION TO

JAVA
PROGRAMMING AND

DATA STRUCTURES
COMPREHENSIVE VERSION

Eleventh Edition

Y. Daniel Liang
Armstrong State University

™

330 Hudson Street, NY NY 10013

A01_LIAN0942_11_SE_FM.indd 1 07/02/17 11:38 am

To Samantha, Michael, and Michelle

ISBN-10: 0-13-467094-9

ISBN-13: 978-0-13-467094-2

Java™ and Netbeans™ screenshots ©2017 by Oracle Corporation, all rights reserved. Reprinted with permission.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook

appear on the appropriate page within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained

in the documents and related graphics published as part of the services for any purpose. All such documents and

related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby

disclaim all warranties and conditions with regard to this information, including all warranties and conditions of

merchantability, whether express, implied or statutory, �tness for a particular purpose, title and non-infringement.

In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential

 damages or any damages whatsoever resulting from loss of use, data or pro�ts, whether in an action of contract,

negligence or other tortious action, arising out of or in connection with the use or performance of information

 available from the services. The documents and related graphics contained herein could include technical

 inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or

its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described

herein at any time. Partial screen shots may be viewed in full within the software version speci�ed.

Copyright © 2018, 2015, 2013, 2011 by Pearson Education, Inc., Hoboken, New Jersey 07030. All rights reserved.

Printed in the United States of America. This publication is protected by Copyright, and permission should be

obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in

any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to

use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,

 Pearson Education, Inc., Hoboken, New Jersey 07030.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations

have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Names: Liang, Y. Daniel, author.

Title: Introduction to Java programming and data structures / Y. Daniel

 Liang, Armstrong State University.

Other titles: Introduction to Java programming

Description: Eleventh edition. Comprehensive version. | New York, NY :

 Pearson Education, 2017. | Revised edition of: Introduction to Java

 programming / Y. Daniel Liang, Armstrong Atlantic State University. Tenth

 edition. Comprehensive version. 2015. | Includes index.

Identifiers: LCCN 2017002082| ISBN 9780134670942 | ISBN 0134670949

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 L52 2017 | DDC 005.13/3--dc23 LC record available at https://lccn.loc.gov/2017002082

1–17

Senior Vice President Courseware Portfolio

 Management: Marcia J. Horton

Director, Portfolio Management: Engineering,

 Computer Science & Global Editions: Julian

Partridge

Higher Ed Portfolio Management: Tracy Johnson

(Dunkelberger)

Portfolio Management Assistant: Kristy Alaura

Managing Content Producer: Scott Disanno

Content Producer: Robert Engelhardt

Web Developer: Steve Wright

Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side

 Communications Inc (LSC): Maura Zaldivar-Garcia

Inventory Manager: Ann Lam

Marketing Manager: Demetrius Hall

Product Marketing Manager: Bram Van Kempen

Marketing Assistant: Jon Bryant

Cover Designer: Marta Samsel

Cover Photography: Germano Poli/123RF.com

Full-Service Project Management: Shylaja Gattupalli,

SPi Global

A01_LIAN0942_11_SE_FM.indd 2 2/2/17 9:42 AM

iii

Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and

suggestions have greatly improved the book. This edition has been substantially enhanced in

presentation, organization, examples, exercises, and supplements.

The book is fundamentals first by introducing basic programming concepts and techniques

before designing custom classes. The fundamental concepts and techniques of selection

statements, loops, methods, and arrays are the foundation for programming. Building this

strong foundation prepares students to learn object-oriented programming and advanced Java

programming.

This book teaches programming in a problem-driven way that focuses on problem solv-

ing rather than syntax. We make introductory programming interesting by using thought-

provoking problems in a broad context. The central thread of early chapters is on problem

solving. Appropriate syntax and library are introduced to enable readers to write programs for

solving the problems. To support the teaching of programming in a problem-driven way, the

book provides a wide variety of problems at various levels of difficulty to motivate students.

To appeal to students in all majors, the problems cover many application areas, including

math, science, business, financial, gaming, animation, and multimedia.

The book seamlessly integrates programming, data structures, and algorithms into one text.

It employs a practical approach to teach data structures. We first introduce how to use various

data structures to develop efficient algorithms, and then show how to implement these data

structures. Through implementation, students gain a deep understanding on the efficiency of

data structures and on how and when to use certain data structures. Finally, we design and

implement custom data structures for trees and graphs.

The book is widely used in the introductory programming, data structures, and algorithms

courses in the universities around the world. This comprehensive version covers fundamen-

tals of programming, object-oriented programming, GUI programming, data structures, algo-

rithms, concurrency, networking, database, and Web programming. It is designed to prepare

students to become proficient Java programmers. A brief version (Introduction to Java Pro-

gramming, Brief Version, Eleventh Edition) is available for a first course on programming,

commonly known as CS1. The brief version contains the first 18 chapters of the comprehen-

sive version. An AP version of the book is also available for high school students taking an

AP Computer Science course.

The best way to teach programming is by example, and the only way to learn programming

is by doing. Basic concepts are explained by example and a large number of exercises with

various levels of difficulty are provided for students to practice. For our programming courses,

we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad

context using a wide variety of interesting examples. If you have any comments on and

 suggestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang

y.daniel.liang@gmail.com

www.cs.armstrong.edu/liang

www.pearsonhighered.com/liang

fundamentals-first

problem-driven

data structures

comprehensive version

brief version

AP Computer Science

examples and exercises

Preface

A01_LIAN0942_11_SE_FM.indd 3 2/2/17 9:42 AM

iv Preface

ACM/IEEE Curricular 2013 and ABET
Course Assessment
The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge

organized into 18 Knowledge Areas. To help instructors design the courses based on this

book, we provide sample syllabi to identify the Knowledge Areas and Knowledge Units.

The sample syllabi are for a three semester course sequence and serve as an example for

institutional customization. The sample syllabi are accessible from the Instructor Resource

Website.

Many of our users are from the ABET-accredited programs. A key component of the

ABET accreditation is to identify the weakness through continuous course assessment

against the course outcomes. We provide sample course outcomes for the courses and sam-

ple exams for measuring course outcomes on the Instructor Resource Website.

What’s New in This Edition?
This edition is completely revised in every detail to enhance clarity, presentation, content,

examples, and exercises. The major improvements are as follows:

■■ The book’s title is changed to Introduction to Java Programming and Data Structures with

new enhancements on data structures. The book uses a practical approach to introduce

design, implement, and use data structures and covers all topics in a typical data structures

course. Additionally, it provides bonus chapters that cover advanced data structures such

as 2-4 trees, B-trees, and red-black trees.

■■ Updated to the latest Java technology. Examples and exercises are improved and simplified

by using the new features in Java 8.

■■ The default and static methods are introduced for interfaces in Chapter 13.

■■ The GUI chapters are updated to JavaFX 8. The examples are revised. The user interfaces

in the examples and exercises are now resizable and displayed in the center of the window.

■■ Inner classes, anonymous inner classes, and lambda expressions are covered using practi-

cal examples in Chapter 15.

■■ More examples and exercises in the data structures chapters use lambda expressions to

simplify coding. Method references are introduced along with the Comparator interface

in Section 20.6.

■■ The forEach method is introduced in Chapter 20 as a simple alternative to the foreach

loop for applying an action to each element in a collection.

■■ Use the default methods for interfaces in Java 8 to redesign and simplify MyList,

 MyArrayList, MyLinkedList, Tree, BST, AVLTree, MyMap, MyHashMap, MySet,

MyHashSet, Graph, UnweightedGraph, and WeightedGraph in Chapters 24–29.

■■ Chapter 30 is brand new to introduce aggregate operations for collection streams.

■■ FXML and the Scene Builder visual tool are introduced in Chapter 31.

■■ The Companion Website has been redesigned with new interactive quiz, CheckPoint ques-

tions, animations, and live coding.

■■ More than 200 additional programming exercises with solutions are provided to the

instructor on the Instructor Resource Website. These exercises are not printed in the text.

Please visit www.pearsonhighered.com/liang for a complete list of new features as well as

correlations to the previous edition.

A01_LIAN0942_11_SE_FM.indd 4 2/2/17 9:42 AM

Preface v

Pedagogical Features
The book uses the following elements to help students get the most from the material:

■■ The Objectives at the beginning of each chapter list what students should learn from

the chapter. This will help them determine whether they have met the objectives after

 completing the chapter.

■■ The Introduction opens the discussion with a thought-provoking question to motivate the

reader to delve into the chapter.

■■ Key Points highlight the important concepts covered in each section.

■■ Check Points provide review questions to help students track their progress as they read

through the chapter and evaluate their learning.

■■ Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,

teach problem solving and programming concepts. The book uses many small, simple, and

stimulating examples to demonstrate important ideas.

■■ The Chapter Summary reviews the important subjects that students should understand

and remember. It helps them reinforce the key concepts they have learned in the chapter.

■■ Quizzes are accessible online, grouped by sections, for students to do self-test on

 programming concepts and techniques.

■■ Programming Exercises are grouped by sections to provide students with opportunities to

apply the new skills they have learned on their own. The level of difficulty is rated as easy

(no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning program-

ming is practice, practice, and practice. To that end, the book provides a great many exer-

cises. Additionally, more than 200 programming exercises with solutions are provided to the

instructors on the Instructor Resource Website. These exercises are not printed in the text.

■■ Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer

 valuable advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings
The book is designed to provide flexible chapter orderings to enable GUI, exception handling,

recursion, generics, and the Java Collections Framework to be covered earlier or later.

The diagram on the next page shows the chapter dependencies.

A01_LIAN0942_11_SE_FM.indd 5 2/2/17 9:42 AM

C
h

a
p

te
r

3
9
 J

a
v
a
S

e
rv

e
r

F
a
ce

s

C
h

a
p

te
r

4
0
 R

M
I

C
h

a
p

te
r

4
1
 W

e
b

 S
e
rv

ic
e
s

C
h

a
p

te
r

4
4
 T

e
st

in
g
 U

si
n

g
 J

U
n

it

C
h

a
p

te
r

3
8
 J

a
v
a
S

e
rv

e
r

P
a
g
e
s

C
h

a
p

te
r

2
5
 B

in
a
ry

 S
e
a
rc

h
 T

re
e
s

C
h

a
p

te
r

2
6
 A

V
L

 T
re

e
s

C
h

a
p

te
r

2
9
 W

e
ig

h
te

d
 G

ra
p

h
s

a
n

d
 A

p
p

li
ca

ti
o

n
s

C
h

a
p

te
r

2
8
 G

ra
p

h
s

a
n

d

 A
p

p
li

ca
ti

o
n

s

C
h

a
p

te
r

2
1
 S

e
ts

 a
n

d
 M

a
p

s

C
h

a
p

te
r

2
2
 D

e
v
e
lo

p
p

in
g

 E

f�
ci

e
n

t
A

lg
o

ri
th

m
s

C
h

a
p

te
r

1
 I

n
tr

o
d

u
ct

io
n

 t
o

 C

o
m

p
u

te
rs

, P
ro

g
ra

m
s,

 a
n

d

 J
a
v
a

C
h

a
p

te
r

2
 E

le
m

e
n

ta
ry

 P

ro
g
ra

m
m

in
g

C
h

a
p

te
r

5
 L

o
o

p
s

C
h

a
p

te
r

7
 S

in
g
le

-D
im

e
n

si
o

n
a
l

 A

rr
a
y
s

C
h

a
p

te
r

8
 M

u
lt

id
im

e
n

si
o

n
a
l

 A

rr
a
y
s

C
h

a
p

te
r

4
 M

a
th

e
m

a
ti

ca
l

 F

u
n

ct
io

n
s,

 C
h

a
ra

ct
e
rs

,

 a
n

d
 S

tr
in

g
s

P
a
rt

 I
:
F

u
n

d
a
m

e
n

ta
ls

 o
f

 P

ro
g
ra

m
m

in
g

C
h

a
p

te
r

3
 S

e
le

ct
io

n
s

C
h

a
p

te
r

9
 O

b
je

ct
s

a
n

d
 C

la
ss

e
s

C
h

a
p

te
r

1
7
 B

in
a
ry

 I
/O

N
o
te

: C
h

a
p

te
rs

 1
–
1
8
 a

re
 i
n

 t
h

e
b

ri
e
f

v
e
rs

io
n

 o
f

th
is

 b
o

o
k

.

N
o
te

: C
h

a
p

te
rs

 1
–
3
0
 a

re
 i
n

 t
h

e
co

m
p

re
h

e
n

si
v
e
 v

e
rs

io
n

.

N
o
te

: C
h

a
p

te
rs

 3
1
–
4
4
 a

re
 b

o
n

u
s

ch
a
p

te
rs

 a
v
a
il

a
b

le
 f

ro
m

 t
h

e
C

o
m

p
a
n

io
n

 W
e
b

si
te

.

C
h

a
p

te
r

1
0
 T

h
in

k
in

g
 i
n

 O
b

je
ct

s

C
h

a
p

te
r

1
1
 I

n
h

e
ri

ta
n

ce
 a

n
d

 P

o
ly

m
o

rp
h

is
m

C
h

a
p

te
r

1
2
 E

x
ce

p
ti

o
n

 H

a
n

d
li

n
g
 a

n
d

 T
e
x
t

I/
O

C
h

a
p

te
r

1
3
 A

b
st

ra
ct

 C
la

ss
e
s

 a

n
d

 I
n

te
rf

a
ce

s

C
h

a
p

te
r

6
 M

e
th

o
d

s

P
a
rt

 I
I:

 O
b

je
ct

-O
ri

e
n

te
d

 P

ro
g
ra

m
m

in
g

C
h

a
p

te
r

3
2
 M

u
lt

it
h

re
a
d

in
g
 a

n
d

P
a
ra

ll
e
l
P

ro
g
ra

m
m

in
g

C
h

a
p

te
r

3
6
 I

n
te

rn
a
ti

o
n

a
li

za
ti

o
n

C
h

a
p

te
r

3
3
 N

e
tw

o
rk

in
g

C
h

a
p

te
r

3
4
 J

a
v
a
 D

a
ta

b
a
se

P
ro

g
ra

m
m

in
g

C
h

a
p

te
r

3
5
 A

d
v
a
n

ce
d

 D
a
ta

b
a
se

 P
ro

g
ra

m
m

in
g

C
h

a
p

te
r

3
7
 S

e
rv

le
ts

P
a
rt

 V
:
A

d
v
a
n

ce
d

 J
a
v
a

 P

ro
g
ra

m
m

in
g

C
h

a
p

te
r

1
4
 J

a
v
a
F

X
 B

a
si

cs

C
h

a
p

te
r

1
5
 E

v
e
n

t-
D

ri
v
e
n

 P

ro
g
ra

m
m

in
g
 a

n
d

 A

n
im

a
ti

o
n

s
C

h
a
p

te
r

2
0
 L

is
ts

, S
ta

ck
s,

 Q
u

e
u

e
s,

 a

n
d

 P
ri

o
ri

ty
 Q

u
e
u

e
s

C
h

a
p

te
r

1
6
 J

a
v
a
F

X
 C

o
n

tr
o

ls

 a
n

d
 M

u
lt

im
e
d

ia

C
h

a
p

te
r

3
1
 A

d
v
a
n

ce
d

 J
a
v
a
F

X

 a
n

d
 F

X
M

L

P
a
rt

 I
II

:
G

U
I

P
ro

g
ra

m
m

in
g

C
h

a
p

te
r

1
8
 R

e
cu

rs
io

n
C

h
 7

C
h

a
p

te
r

1
9
 G

e
n

e
ri

cs

C
h

a
p

te
r

2
4
 I

m
p

le
m

e
n

ti
n

g
 L

is
ts

,

 S
ta

ck
s,

 Q
u

e
u

e
s,

 a
n

d
 P

ri
o

ri
ty

 Q

u
e
u

e
s

P
a
rt

 I
V

:
D

a
ta

 S
tr

u
ct

u
re

s
a
n

d

 A
lg

o
ri

th
m

s

C
h

 1
3

C
h

 1
6

C
h

 9

C
h

ap
te

r
30

 A
gg

re
ga

te
 O

p
er

at
io

n
s

a
n

d
 C

o
ll

e
ct

io
n

 S
tr

e
a
m

s

C
h

a
p

te
r

4
2
 2

-4
 T

re
e
s

a
n

d
 B

-

 T
re

e
s

C
h

a
p

te
r

4
3
 R

e
d

-B
la

ck
 T

re
e
s

C
h

a
p

te
r

2
7
 H

a
sh

in
g

C
h

a
p

te
r

2
3
 S

o
rt

in
g

vi Preface

A01_LIAN0942_11_SE_FM.indd 6 2/2/17 9:42 AM

Organization of the Book
The chapters can be grouped into five parts that, taken together, form a comprehensive introduc-

tion to Java programming, data structures and algorithms, and database and Web programming.

Because knowledge is cumulative, the early chapters provide the conceptual basis for under-

standing programming and guide students through simple examples and exercises; subsequent

chapters progressively present Java programming in detail, culminating with the development

of comprehensive Java applications. The appendixes contain a mixed bag of topics, including an

introduction to number systems, bitwise operations, regular expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1–8)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning

Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques

with primitive data types, variables, constants, assignments, expressions, and operators (Chapter 2),

selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4), loops

(Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After Chapter 7, you can jump to

Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9–13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming

language that uses abstraction, encapsulation, inheritance, and polymorphism to provide

great flexibility, modularity, and reusability in developing software. You will learn program-

ming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism

(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces

(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14–16 and Bonus Chapter 31)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for

developing GUI programs, but also an excellent pedagogical tool for learning object-oriented

programming. This part introduces Java GUI programming using JavaFX in Chapters 14–16.

Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes

(Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI

 controls (Chapter 16), and playing audio and video (Chapter 16). You will learn the architecture

of JavaFX GUI programming and use the controls, shapes, panes, image, and video to develop

useful applications. Chapter 31 covers advanced features in JavaFX.

Part IV: Data Structures and Algorithms (Chapters 18–30 and Bonus Chapters 42–43)

This part covers the main subjects in a typical data structures and algorithms course. Chapter 18

introduces recursion to write methods for solving inherently recursive problems. Chapter 19 presents

how generics can improve software reliability. Chapters 20 and 21 introduce the Java Collection

Framework, which defines a set of useful API for data structures. Chapter 22 discusses measur-

ing algorithm efficiency in order to choose an appropriate algorithm for applications. Chapter 23

describes classic sorting algorithms. You will learn how to implement several classic data struc-

tures lists, queues, and priority queues in Chapter 24. Chapters 25 and 26 introduce binary search

trees and AVL trees. Chapter 27 presents hashing and implementing maps and sets using hashing.

Chapters 28 and 29 introduce graph applications. Chapter 30 introduces aggregate operations for

collection streams. The 2-4 trees, B-trees, and red-black trees are covered in Bonus Chapters 42–43.

Part V: Advanced Java Programming (Chapters 32-41, 44)

This part of the book is devoted to advanced Java programming. Chapter 32 treats the use of

multithreading to make programs more responsive and interactive and introduces parallel pro-

gramming. Chapter 33 discusses how to write programs that talk with each other from different

Preface vii

A01_LIAN0942_11_SE_FM.indd 7 2/2/17 9:42 AM

hosts over the Internet. Chapter 34 introduces the use of Java to develop database projects.

Chapter 35 delves into advanced Java database programming. Chapter 36 covers the use of

internationalization support to develop projects for international audiences. Chapters 37 and

38 introduce how to use Java servlets and JavaServer Pages to generate dynamic content from

Web servers. Chapter 39 introduces modern Web application development using JavaServer

Faces. Chapter 40 introduces remote method invocation and Chapter 41 discusses Web ser-

vices. Chapter 44 introduces testing Java programs using JUnit.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords. Appendix B

gives tables of ASCII characters and their associated codes in decimal and in hex. Appen-

dix C shows the operator precedence. Appendix D summarizes Java modifiers and their usage.

Appendix E discusses special floating-point values. Appendix F introduces number systems and

conversions among binary, decimal, and hex numbers. Finally, Appendix G introduces bitwise

operations. Appendix H introduces regular expressions. Appendix I covers enumerated types.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs

and to compile and run the programs from the command window. You can also use a Java

development tool, such as NetBeans or Eclipse. These tools support an integrated develop-

ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,

executing, and debugging programs are integrated in one graphical user interface. Using these

tools effectively can greatly increase your programming productivity. NetBeans and Eclipse

are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found in

the supplements on the Companion Website www.pearsonhighered.com/liang.

Student Resource Website
The Student Resource Website (www.pearsonhighered.com/liang) contains the following

resources:

■■ Answers to CheckPoint questions

■■ Solutions to majority of even-numbered programming exercises

■■ Source code for the examples in the book

■■ Interactive quiz (organized by sections for each chapter)

■■ Supplements

■■ Debugging tips

■■ Video notes

■■ Algorithm animations

■■ Errata

Supplements
The text covers the essential subjects. The supplements extend the text to introduce additional

topics that might be of interest to readers. The supplements are available from the Companion

Website.

IDE tutorials

viii Preface

A01_LIAN0942_11_SE_FM.indd 8 2/2/17 9:42 AM

Instructor Resource Website
The Instructor Resource Website, accessible from www.pearsonhighered.com/liang, contains the

following resources:

■■ Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted

source code and to run programs without leaving the slides.

■■ Solutions to majority of odd-numbered programming exercises.

■■ More than 200 additional programming exercises and 300 quizzes organized by chapters.

These exercises and quizzes are available only to the instructors. Solutions to these

 exercises and quizzes are provided.

■■ Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a

large database of more than two thousand questions.)

■■ Sample exams. Most exams have four parts:

■■ Multiple-choice questions or short-answer questions

■■ Correct programming errors

■■ Trace programs

■■ Write programs

■■ Sample exams with ABET course assessment.

■■ Projects. In general, each project gives a description and asks students to analyze, design,

and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please

understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-

ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab

improves the programming competence of beginning students who often struggle with the

basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of small

practice problems organized around the structure of this textbook. For students, the system auto-

matically detects errors in the logic and syntax of their code submissions and offers targeted hints

that enable students to figure out what went wrong—and why. For instructors, a comprehensive

gradebook tracks correct and incorrect answers and stores the code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the

makers of the CodeLab interactive programming exercise system. For a full demonstration,

to see feedback from instructors and students, or to get started using MyProgrammingLab in

your course, visit www.myprogramminglab.com.

Video Notes
We are excited about the new Video Notes feature that is found in this new edition. These

videos provide additional help by presenting examples of key topics and showing how

to solve problems completely from design through coding. Video Notes are available from

www.pearsonhighered.com/liang.

VideoNote

Preface ix

A01_LIAN0942_11_SE_FM.indd 9 2/2/17 9:42 AM

Algorithm Animations
We have provided numerous animations for algorithms. These are valuable pedagogical tools

to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-

panion Website.

Acknowledgments
I would like to thank Armstrong State University for enabling me to teach what I write and for

supporting me in writing what I teach. Teaching is the source of inspiration for continuing to

improve the book. I am grateful to the instructors and students who have offered comments,

suggestions, corrections, and praise. My special thanks go to Stefan Andrei of Lamar Univer-

sity and William Bahn of University of Colorado Colorado Spring for their help to improve

the data structures part of this book.

This book has been greatly enhanced thanks to outstanding reviews for this and previous edi-

tions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North

 Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Ste-

fan Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre

(Rochester Institute of Technology), Aaron Braskin (Mira Costa High School), David Champion

(DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar (University of North

Dakota), Daryl Detrick (Warren Hills Regional High School), Charles Dierbach (Towson Univer-

sity), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of Wisconsin at

Parkside), Summer Ehresman (Center Grove High School), Deena Engel (New York University),

Henry A. Etlinger (Rochester Institute of Technology), James Ten Eyck (Marist College), Myers

Foreman (Lamar University), Olac Fuentes (University of Texas at El Paso), Edward F. Gehringer

(North Carolina State University), Harold Grossman (Clemson University), Barbara Guillot (Loui-

siana State University), Stuart Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern

Oregon University), Ron Hofman (Red River College, Canada), Stephen Hughes (Roanoke Col-

lege), Vladan Jovanovic (Georgia Southern University), Deborah Kabura Kariuki (Stony Point

High School), Edwin Kay (Lehigh University), Larry King (University of Texas at Dallas), Nana

Kofi (Langara College, Canada), George Koutsogiannakis (Illinois Institute of Technology), Roger

Kraft (Purdue University at Calumet), Norman Krumpe (Miami University), Hong Lin (DeVry

Institute), Dan Lipsa (Armstrong State University), James Madison (Rensselaer Polytechnic Insti-

tute), Frank Malinowski (Darton College), Tim Margush (University of Akron), Debbie Masada

(Sun Microsystems), Blayne Mayfield (Oklahoma State University), John McGrath (J.P. McGrath

Consulting), Hugh McGuire (Grand Valley State), Shyamal Mitra (University of Texas at Austin),

Michel Mitri (James Madison University), Kenrick Mock (University of Alaska Anchorage), Frank

Murgolo (California State University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen

(University of Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach),

Gavin Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Par-

son (Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli

(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De

Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana Uni-

versity), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State University),

David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University), Daniel Spiegel

(Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin Tao (Pace University),

Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser University), Deborah Trytten

(University of Oklahoma), Michael Verdicchio (Citadel), Kent Vidrine (George Washington Uni-

versity), and Bahram Zartoshty (California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy

Johnson and her colleagues Marcia Horton, Demetrius Hall, Yvonne Vannatta, Kristy Alaura,

Carole Snyder, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their colleagues for

organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Animation

x Preface

A01_LIAN0942_11_SE_FM.indd 10 2/2/17 9:42 AM

xi

BrIef contentS
 1 Introduction to computers,

Programs, and Java™ 1

 2 elementary Programming 33

 3 Selections 75

 4 mathematical functions,
characters, and Strings 119

 5 Loops 159

 6 methods 205

 7 Single-dimensional arrays 247

 8 multidimensional arrays 289

 9 objects and classes 323

 10 object-oriented thinking 367

 11 Inheritance and Polymorphism 411

 12 exception handling
and text I/o 453

 13 abstract classes and Interfaces 499

 14 JavafX Basics 541

 15 event-driven Programming and
animations 593

 16 JavafX uI controls and
multimedia 643

 17 Binary I/o 691

 18 recursion 719

 19 generics 751

 20 Lists, Stacks, Queues, and Priority
Queues 775

 21 Sets and maps 815

 22 developing efficient algorithms 839

 23 Sorting 881

 24 Implementing Lists, Stacks,
Queues, and Priority Queues 917

 25 Binary Search trees 953

 26 avL trees 989

 27 hashing 1009

 28 graphs and applications 1039

 29 Weighted graphs and
applications 1085

 30 aggregate operations for
collection Streams 1123

chaPter 31–44 are available from the
companion Website at www.pearsonhighered
.com/liang

 31 advanced JavafX and fXmL

 32 multithreading and Parallel
 Programming

 33 networking

 34 Java database Programming

 35 advanced database Programming

 36 Internationalization

 37 Servlets

 38 JavaServer Pages

 39 JavaServer faces

 40 rmI

 41 Web Services

 42 2-4 trees and B-trees

 43 red-Black trees

 44 testing using Junit

Appendixes 1155

 a Java Keywords 1157

 B the aScII character Set 1158

 c operator Precedence chart 1160

 d Java modifiers 1162

 e Special floating-Point values 1164

 f number Systems 1165

 g Bitwise operations 1169

 h regular expressions 1170

 I enumerated types 1175

Quick Reference 1181
Index 1183

A01_LIAN0942_11_SE_FM.indd 11 2/2/17 9:42 AM

xii

contentS
 chapter 1 Introduction to computers,

 Programs, and Java™ 1
 1.1 Introduction 2
 1.2 What Is a Computer? 2
 1.3 Programming Languages 7
 1.4 Operating Systems 9
 1.5 Java, the World Wide Web, and Beyond 10
 1.6 The Java Language Specification, API, JDK,

JRE, and IDE 11
 1.7 A Simple Java Program 12
 1.8 Creating, Compiling, and Executing a Java Program 15
 1.9 Programming Style and Documentation 18
 1.10 Programming Errors 20
 1.11 Developing Java Programs Using NetBeans 23
 1.12 Developing Java Programs Using Eclipse 25

 chapter 2 elementary Programming 33
 2.1 Introduction 34
 2.2 Writing a Simple Program 34
 2.3 Reading Input from the Console 37
 2.4 Identifiers 40
 2.5 Variables 40
 2.6 Assignment Statements and Assignment Expressions 42
 2.7 Named Constants 43
 2.8 Naming Conventions 44
 2.9 Numeric Data Types and Operations 45
 2.10 Numeric Literals 48
 2.11 Evaluating Expressions and Operator Precedence 50
 2.12 Case Study: Displaying the Current Time 52
 2.13 Augmented Assignment Operators 54
 2.14 Increment and Decrement Operators 55
 2.15 Numeric Type Conversions 57
 2.16 Software Development Process 59
 2.17 Case Study: Counting Monetary Units 63
 2.18 Common Errors and Pitfalls 65

 chapter 3 Selections 75
 3.1 Introduction 76
 3.2 boolean Data Type 76
 3.3 if Statements 78
 3.4 Two-Way if-else Statements 80
 3.5 Nested if and Multi-Way if-else Statements 81
 3.6 Common Errors and Pitfalls 83
 3.7 Generating Random Numbers 87
 3.8 Case Study: Computing Body Mass Index 89
 3.9 Case Study: Computing Taxes 90
 3.10 Logical Operators 93
 3.11 Case Study: Determining Leap Year 97
 3.12 Case Study: Lottery 98
 3.13 switch Statements 100

A01_LIAN0942_11_SE_FM.indd 12 2/2/17 9:42 AM

 3.14 Conditional Operators 103
 3.15 Operator Precedence and Associativity 104
 3.16 Debugging 106

 chapter 4 mathematical functions,
characters, and Strings 119

 4.1 Introduction 120
 4.2 Common Mathematical Functions 120
 4.3 Character Data Type and Operations 125
 4.4 The String Type 130
 4.5 Case Studies 139
 4.6 Formatting Console Output 145

 chapter 5 Loops 159
 5.1 Introduction 160
 5.2 The while Loop 160
 5.3 Case Study: Guessing Numbers 163
 5.4 Loop Design Strategies 166
 5.5 Controlling a Loop with User Confirmation or a Sentinel Value 168
 5.6 The do-while Loop 170
 5.7 The for Loop 173
 5.8 Which Loop to Use? 176
 5.9 Nested Loops 178
 5.10 Minimizing Numeric Errors 180
 5.11 Case Studies 182
 5.12 Keywords break and continue 186
 5.13 Case Study: Checking Palindromes 189
 5.14 Case Study: Displaying Prime Numbers 191

 chapter 6 methods 205
 6.1 Introduction 206
 6.2 Defining a Method 206
 6.3 Calling a Method 208
 6.4 void vs. Value-Returning Methods 211
 6.5 Passing Parameters by Values 214
 6.6 Modularizing Code 217
 6.7 Case Study: Converting Hexadecimals to Decimals 219
 6.8 Overloading Methods 221
 6.9 The Scope of Variables 224
 6.10 Case Study: Generating Random Characters 225
 6.11 Method Abstraction and Stepwise Refinement 227

 chapter 7 Single-dimensional arrays 247
 7.1 Introduction 248
 7.2 Array Basics 248
 7.3 Case Study: Analyzing Numbers 255
 7.4 Case Study: Deck of Cards 256
 7.5 Copying Arrays 258
 7.6 Passing Arrays to Methods 259
 7.7 Returning an Array from a Method 262
 7.8 Case Study: Counting the Occurrences of Each Letter 263
 7.9 Variable-Length Argument Lists 266
 7.10 Searching Arrays 267
 7.11 Sorting Arrays 271

Contents xiii

A01_LIAN0942_11_SE_FM.indd 13 2/2/17 9:42 AM

 7.12 The Arrays Class 272
 7.13 Command-Line Arguments 274

 chapter 8 multidimensional arrays 289
 8.1 Introduction 290
 8.2 Two-Dimensional Array Basics 290
 8.3 Processing Two-Dimensional Arrays 293
 8.4 Passing Two-Dimensional Arrays to Methods 295
 8.5 Case Study: Grading a Multiple-Choice Test 296
 8.6 Case Study: Finding the Closest Pair 298
 8.7 Case Study: Sudoku 300
 8.8 Multidimensional Arrays 303

 chapter 9 objects and classes 323
 9.1 Introduction 324
 9.2 Defining Classes for Objects 324
 9.3 Example: Defining Classes and Creating Objects 326
 9.4 Constructing Objects Using Constructors 331
 9.5 Accessing Objects via Reference Variables 332
 9.6 Using Classes from the Java Library 336
 9.7 Static Variables, Constants, and Methods 339
 9.8 Visibility Modifiers 344
 9.9 Data Field Encapsulation 346
 9.10 Passing Objects to Methods 349
 9.11 Array of Objects 353
 9.12 Immutable Objects and Classes 355
 9.13 The Scope of Variables 357
 9.14 The this Reference 358

 chapter 10 object-oriented thinking 367
 10.1 Introduction 368
 10.2 Class Abstraction and Encapsulation 368
 10.3 Thinking in Objects 372
 10.4 Class Relationships 375
 10.5 Case Study: Designing the Course Class 378
 10.6 Case Study: Designing a Class for Stacks 380
 10.7 Processing Primitive Data Type Values as Objects 382
 10.8 Automatic Conversion between Primitive Types

and Wrapper Class Types 385
 10.9 The BigInteger and BigDecimal Classes 386
 10.10 The String Class 388
 10.11 The StringBuilder and StringBuffer Classes 394

 chapter 11 Inheritance and
Polymorphism 411

 11.1 Introduction 412
 11.2 Superclasses and Subclasses 412
 11.3 Using the super Keyword 418
 11.4 Overriding Methods 421
 11.5 Overriding vs. Overloading 422
 11.6 The Object Class and Its toString() Method 424
 11.7 Polymorphism 425
 11.8 Dynamic Binding 425
 11.9 Casting Objects and the instanceof Operator 429
 11.10 The Object’s equals Method 433

xiv Contents

A01_LIAN0942_11_SE_FM.indd 14 2/2/17 9:42 AM

 xv

 11.11 The ArrayList Class 434
 11.12 Useful Methods for Lists 440
 11.13 Case Study: A Custom Stack Class 441
 11.14 The protected Data and Methods 442
 11.15 Preventing Extending and Overriding 445

 chapter 12 exception handling
and text I/o 453

 12.1 Introduction 454
 12.2 Exception-Handling Overview 454
 12.3 Exception Types 459
 12.4 More on Exception Handling 462
 12.5 The finally Clause 470
 12.6 When to Use Exceptions 471
 12.7 Rethrowing Exceptions 472
 12.8 Chained Exceptions 473
 12.9 Defining Custom Exception Classes 474
 12.10 The File Class 477
 12.11 File Input and Output 480
 12.12 Reading Data from the Web 486
 12.13 Case Study: Web Crawler 488

 chapter 13 abstract classes and Interfaces 499
 13.1 Introduction 500
 13.2 Abstract Classes 500
 13.3 Case Study: the Abstract Number Class 505
 13.4 Case Study: Calendar and GregorianCalendar 507
 13.5 Interfaces 510
 13.6 The Comparable Interface 513
 13.7 The Cloneable Interface 518
 13.8 Interfaces vs. Abstract Classes 523
 13.9 Case Study: The Rational Class 526
 13.10 Class-Design Guidelines 531

 chapter 14 JavafX Basics 541
 14.1 Introduction 542
 14.2 JavaFX vs Swing and AWT 542
 14.3 The Basic Structure of a JavaFX Program 542
 14.4 Panes, Groups, UI Controls, and Shapes 545
 14.5 Property Binding 548
 14.6 Common Properties and Methods for Nodes 551
 14.7 The Color Class 553
 14.8 The Font Class 554
 14.9 The Image and ImageView Classes 556
 14.10 Layout Panes and Groups 558
 14.11 Shapes 567
 14.12 Case Study: The ClockPane Class 580

 chapter 15 event-driven Programming
and animations 593

 15.1 Introduction 594
 15.2 Events and Event Sources 596
 15.3 Registering Handlers and Handling Events 597
 15.4 Inner Classes 601
 15.5 Anonymous Inner Class Handlers 602

Contents xv

A01_LIAN0942_11_SE_FM.indd 15 2/2/17 9:42 AM

 15.6 Simplifying Event Handling Using Lambda Expressions 605
 15.7 Case Study: Loan Calculator 609
 15.8 Mouse Events 611
 15.9 Key Events 613
 15.10 Listeners for Observable Objects 616
 15.11 Animation 618
 15.12 Case Study: Bouncing Ball 626
 15.13 Case Study: US Map 630

 chapter 16 JavafX uI controls
and multimedia 643

 16.1 Introduction 644
 16.2 Labeled and Label 644
 16.3 Button 646
 16.4 CheckBox 648
 16.5 RadioButton 651
 16.6 TextField 654
 16.7 TextArea 655
 16.8 ComboBox 659
 16.9 ListView 662
 16.10 ScrollBar 665
 16.11 Slider 668
 16.12 Case Study: Developing a Tic-Tac-Toe Game 671
 16.13 Video and Audio 676
 16.14 Case Study: National Flags and Anthems 679

 chapter 17 Binary I/o 691
 17.1 Introduction 692
 17.2 How Is Text I/O Handled in Java? 692
 17.3 Text I/O vs. Binary I/O 693
 17.4 Binary I/O Classes 694
 17.5 Case Study: Copying Files 704
 17.6 Object I/O 706
 17.7 Random-Access Files 711

 chapter 18 recursion 719
 18.1 Introduction 720
 18.2 Case Study: Computing Factorials 720
 18.3 Case Study: Computing Fibonacci

Numbers 723
 18.4 Problem Solving Using Recursion 726
 18.5 Recursive Helper Methods 728
 18.6 Case Study: Finding the Directory Size 731
 18.7 Case Study: Tower of Hanoi 733
 18.8 Case Study: Fractals 736
 18.9 Recursion vs. Iteration 740
 18.10 Tail Recursion 740

 chapter 19 generics 751
 19.1 Introduction 752
 19.2 Motivations and Benefits 752
 19.3 Defining Generic Classes and Interfaces 754
 19.4 Generic Methods 756
 19.5 Case Study: Sorting an Array of Objects 758

xvi Contents

A01_LIAN0942_11_SE_FM.indd 16 2/2/17 9:42 AM

 19.6 Raw Types and Backward Compatibility 760
 19.7 Wildcard Generic Types 761
 19.8 Erasure and Restrictions on Generics 764
 19.9 Case Study: Generic Matrix Class 766

 chapter 20 Lists, Stacks, Queues, and
Priority Queues 775

 20.1 Introduction 776
 20.2 Collections 776
 20.3 Iterators 780
 20.4 Using the forEach Method 781
 20.5 Lists 782
 20.6 The Comparator Interface 787
 20.7 Static Methods for Lists and Collections 791
 20.8 Case Study: Bouncing Balls 794
 20.9 Vector and Stack Classes 798
 20.10 Queues and Priority Queues 799
 20.11 Case Study: Evaluating Expressions 803

 chapter 21 Sets and maps 815
 21.1 Introduction 816
 21.2 Sets 816
 21.3 Comparing the Performance of Sets and Lists 824
 21.4 Case Study: Counting Keywords 827
 21.5 Maps 828
 21.6 Case Study: Occurrences of Words 833
 21.7 Singleton and Unmodifiable Collections and Maps 835

 chapter 22 developing efficient
algorithms 839

 22.1 Introduction 840
 22.2 Measuring Algorithm Efficiency Using Big O Notation 840
 22.3 Examples: Determining Big O 842
 22.4 Analyzing Algorithm Time Complexity 846
 22.5 Finding Fibonacci Numbers Using Dynamic

Programming 849
 22.6 Finding Greatest Common Divisors Using Euclid’s

Algorithm 851
 22.7 Efficient Algorithms for Finding Prime Numbers 855
 22.8 Finding the Closest Pair of Points Using

Divide-and-Conquer 861
 22.9 Solving the Eight Queens Problem Using Backtracking 864
 22.10 Computational Geometry: Finding a Convex Hull 867

 chapter 23 Sorting 881
 23.1 Introduction 882
 23.2 Insertion Sort 882
 23.3 Bubble Sort 884
 23.4 Merge Sort 887
 23.5 Quick Sort 890
 23.6 Heap Sort 894
 23.7 Bucket and Radix Sorts 901
 23.8 External Sort 903

Contents xvii

A01_LIAN0942_11_SE_FM.indd 17 2/2/17 9:42 AM

 chapter 24 Implementing Lists, Stacks,
Queues, and Priority Queues 917

 24.1 Introduction 918
 24.2 Common Operations for Lists 918
 24.3 Array Lists 922
 24.4 Linked Lists 929
 24.5 Stacks and Queues 943
 24.6 Priority Queues 947

 chapter 25 Binary Search trees 953
 25.1 Introduction 954
 25.2 Binary Search Trees 954
 25.3 Deleting Elements from a BST 967
 25.4 Tree Visualization and MVC 973
 25.5 Iterators 976
 25.6 Case Study: Data Compression 978

 chapter 26 avL trees 989
 26.1 Introduction 990
 26.2 Rebalancing Trees 990
 26.3 Designing Classes for AVL Trees 993
 26.4 Overriding the insert Method 994
 26.5 Implementing Rotations 995
 26.6 Implementing the delete Method 996
 26.7 The AVLTree Class 996
 26.8 Testing the AVLTree Class 1002
 26.9 AVL Tree Time Complexity Analysis 1005

 chapter 27 hashing 1009
 27.1 Introduction 1010
 27.2 What Is Hashing? 1010
 27.3 Hash Functions and Hash Codes 1011
 27.4 Handling Collisions Using Open Addressing 1013
 27.5 Handling Collisions Using Separate Chaining 1017
 27.6 Load Factor and Rehashing 1017
 27.7 Implementing a Map Using Hashing 1019
 27.8 Implementing Set Using Hashing 1028

 chapter 28 graphs and applications 1039
 28.1 Introduction 1040
 28.2 Basic Graph Terminologies 1041
 28.3 Representing Graphs 1042
 28.4 Modeling Graphs 1048
 28.5 Graph Visualization 1058
 28.6 Graph Traversals 1061
 28.7 Depth-First Search (DFS) 1062
 28.8 Case Study: The Connected Circles Problem 1066
 28.9 Breadth-First Search (BFS) 1068
 28.10 Case Study: The Nine Tails Problem 1071

xviii Contents

A01_LIAN0942_11_SE_FM.indd 18 2/2/17 9:42 AM

 chapter 29 Weighted graphs and
applications 1085

 29.1 Introduction 1086
 29.2 Representing Weighted Graphs 1087
 29.3 The WeightedGraph Class 1089
 29.4 Minimum Spanning Trees 1097
 29.5 Finding Shortest Paths 1103
 29.6 Case Study: The Weighted Nine Tails Problem 1112

 chapter 30 aggregate operations
for collection Streams 1123

 30.1 Introduction 1124
 30.2 Stream Pipelines 1124
 30.3 IntStream, LongStream, and DoubleStream 1130
 30.4 Parallel Streams 1133
 30.5 Stream Reduction Using the reduce Method 1135
 30.6 Stream Reduction Using the collect Method 1138
 30.7 Grouping Elements Using the groupingby Collector 1141
 30.8 Case Studies 1144

chapter 31–44 are available from the companion Website at
www.pearsonhighered.com/liang

 chapter 31 advanced JavafX and fXmL

 chapter 32 multithreading and Parallel
Programming

 chapter 33 networking

 chapter 34 Java database Programming

 chapter 35 advanced database Programming

 chapter 36 Internationalization

 chapter 37 Servlets

 chapter 38 JavaServer Pages

 chapter 39 JavaServer faces

 chapter 40 rmI

 chapter 41 Web Services

 chapter 42 2-4 trees and B-trees

 chapter 43 red-Black trees

 chapter 44 testing using Junit

Contents xix

A01_LIAN0942_11_SE_FM.indd 19 2/2/17 9:42 AM

Appendixes 1155

 appendix a Java Keywords 1157

 appendix B the aScII character Set 1158

 appendix c operator Precedence chart 1160

 appendix d Java modifiers 1162

 appendix e Special floating-Point values 1164

 appendix f number Systems 1165

 appendix g Bitwise operations 1169

 appendix h regular expressions 1170

appendix I enumerated types 1175

Quick Reference 1181

Index 1183

xx Contents

A01_LIAN0942_11_SE_FM.indd 20 2/2/17 9:42 AM

Chapter 1 Introduction to Computers, Programs,
and Java™ 1
Your first Java program 12
Compile and run a Java program 17
NetBeans brief tutorial 23
Eclipse brief tutorial 25

Chapter 2 Elementary Programming 33
Obtain input 37
Use operators / and % 52
Software development
process 59
Compute loan payments 60
Compute BMI 72

Chapter 3 Selections 75
Program addition quiz 77
Program subtraction quiz 87
Use multi-way if-else
statements 90
Sort three integers 110
Check point location 112

Chapter 4 Mathematical Functions, Characters,
and Strings 119
Introduce Math functions 120
Introduce strings and objects 130
Convert hex to decimal 143
Compute great circle distance 151
Convert hex to binary 154

Chapter 5 Loops 159
Use while loop 160
Guess a number 163
Multiple subtraction quiz 166
Use do-while loop 170
Minimize numeric errors 180
Display loan schedule 197
Sum a series 198

Chapter 6 Methods 205
Define/invoke max method 208
Use void method 211
Modularize code 217
Stepwise refinement 227
Reverse an integer 236
Estimate p 239

Chapter 7 Single-Dimensional Arrays 247
Random shuffling 252
Deck of cards 256
Selection sort 271
Command-line arguments 275

Coupon collector’s problem 282
Consecutive four 284

Chapter 8 Multidimensional Arrays 289
Find the row with the largest sum 294
Grade multiple-choice test 296
Sudoku 300
Multiply two matrices 309
Even number of 1s 316

Chapter 9 Objects and Classes 323
Define classes and objects 324
Use classes 336
Static vs. instance 339
Data field encapsulation 346
The this keyword 358
The Fan class 364

Chapter 10 Object-Oriented Thinking 367
The Loan class 369
The BMI class 372
The StackOfIntegers class 380
Process large numbers 386
The String class 388
The MyPoint class 402

Chapter 11 Inheritance and Polymorphism 411
Geometric class hierarchy 412
Polymorphism and dynamic
binding demo 426
The ArrayList class 434
The MyStack class 441
New Account class 448

Chapter 12 Exception Handling and Text I/O 453
Exception-handling advantages 454
Create custom exception classes 474
Write and read data 480
HexFormatException 493

Chapter 13 Abstract Classes and Interfaces 499
Abstract GeometricObject class 500
Calendar and Gregorian
Calendar classes 507
The concept of interface 510
Redesign the Rectangle class 536

Chapter 14 JavaFX Basics 541
Getting started with JavaFX 542
Understand property binding 548
Use Image and ImageView 556
Use layout panes 558
Use shapes 567

VideoNotes
Locations of VideoNotes

http://www.pearsonhighered.com/liang
VideoNote

xxi

A01_LIAN0942_11_SE_FM.indd 21 2/2/17 9:42 AM

xxii VideoNotes

Display a tic-tac-toe board 586
Display a bar chart 588

Chapter 15 Event-Driven Programming
and Animations 593
Handler and its registration 600
Anonymous handler 603
Move message using the
mouse 612
Animate a rising flag 618
Flashing text 624
Simple calculator 634
Check mouse-point location 636
Display a running fan 639

Chapter 16 JavaFX UI Controls and Multimedia 643
Use ListView 662
Use Slider 668

Tic-Tac-Toe 671
Use Media, MediaPlayer,
and MediaView 676
Use radio buttons and text fields 683
Set fonts 685

Chapter 17 Binary I/O 691
Copy file 704
Object I/O 706
Split a large file 716

Chapter 18 Recursion 719
Binary search 730
Directory size 731
Fractal (Sierpinski triangle) 736
Search a string in a directory 747
Recursive tree 750

Chapter 7 Single-Dimensional Arrays 247
linear search animation on
Companion Website 268
binary search animation on
Companion Website 268
selection sort animation on
Companion Website 271

Chapter 8 Multidimensional Arrays 289
closest-pair animation on
the Companion Website 298

Chapter 22 Developing Efficient Algorithms 839
binary search animation on
the Companion Website 846
selection sort animation on
the Companion Website 846
closest-pair animation on
Companion Website 861
Eight Queens animation on
the Companion Website 864
convex hull animation on
the Companion Website 867

Chapter 23 Sorting 881
insertion-sort animation on
Companion Website 882
bubble sort animation on the
Companion Website 885
merge animation on Companion
Website 889
partition animation on
Companion Website 893
heap animation on Companion
Website 895

radix sort animation on Companion
Website 902

Chapter 24 Implementing Lists, Stacks,
Queues, and Priority Queues 917
list animation on Companion
Website 918
stack and queue animation on
Companion Website 943

Chapter 25 Binary Search Trees 953
BST animation on
Companion Website 954

Chapter 26 AVL Trees 989
AVL tree animation on
Companion Website 990

Chapter 27 Hashing 1009
linear probing animation on
Companion Website 1014
quadratic probing animation on
Companion Website 1015
separate chaining animation on
Companion Website 1018

Chapter 28 Graphs and Applications 1039
graph learning tool on
Companion Website 1042
U.S. Map Search 1064

Chapter 29 Weighted Graphs and
Applications 1085
weighted graph learning tool
animation on Companion Website 1086

Animations

A01_LIAN0942_11_SE_FM.indd 22 2/2/17 9:42 AM

Chapter

1
Introduction
to Computers,
Programs, and Java™

Objectives
■■ To understand computer basics, programs, and operating systems

(§§1.2–1.4).

■■ To describe the relationship between Java and the World Wide Web

(§1.5).

■■ To understand the meaning of Java language specification, API, JDK™,

JRE™, and IDE (§1.6).

■■ To write a simple Java program (§1.7).

■■ To display output on the console (§1.7).

■■ To explain the basic syntax of a Java program (§1.7).

■■ To create, compile, and run Java programs (§1.8).

■■ To use sound Java programming style and document programs properly

(§1.9).

■■ To explain the differences between syntax errors, runtime errors, and

logic errors (§1.10).

■■ To develop Java programs using NetBeans™ (§1.11).

■■ To develop Java programs using Eclipse™ (§1.12).

M01_LIAN0942_11_SE_C01.indd 1 2/1/17 4:15 PM

2 Chapter 1 Introduction to Computers, Programs, and Java™

1.1 Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to

create (or develop) software, which is also called a program. In basic terms, software contains

instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices you might not think would need it. Of course,

you expect to find and use software on a personal computer, but software also plays a role in

running airplanes, cars, cell phones, and even toasters. On a personal computer, you use word

processors to write documents, web browsers to explore the Internet, and e-mail programs to

send and receive messages. These programs are all examples of software. Software developers

create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.

There are many programming languages, some of which are decades old. Each language was

invented for a specific purpose—to build on the strengths of a previous language, for example,

or to give the programmer a new and unique set of tools. Knowing there are so many program-

ming languages available, it would be natural for you to wonder which one is best. However, in

truth, there is no “best” language. Each one has its own strengths and weaknesses. Experienced

programmers know one language might work well in some situations, whereas a different

language may be more appropriate in other situations. For this reason, seasoned programmers

try to master as many different programming languages as they can, giving them access to a

vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other lan-

guages. The key is to learn how to solve problems using a programming approach. That is the

main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is

helpful to review computer basics, programs, and operating systems (OSs). If you are already

familiar with such terms as central processing unit (CPU), memory, disks, operating systems,

and programming languages, you may skip Sections 1.2–1.4.

1.2 What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,

physical elements of the computer, and software provides the invisible instructions that control

the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential

to learning a programming language, but it can help you better understand the effects that a

program’s instructions have on the computer and its components. This section introduces

computer hardware components and their functions.

A computer consists of the following major hardware components (see Figure 1.1):

■■ A central processing unit (CPU)

■■ Memory (main memory)

■■ Storage devices (such as disks and CDs)

■■ Input devices (such as the mouse and the keyboard)

■■ Output devices (such as monitors and printers)

■■ Communication devices (such as modems and network interface cards (NIC))

A computer’s components are interconnected by a subsystem called a bus. You can think

of a bus as a sort of system of roads running among the computer’s components; data and

power travel along the bus from one part of the computer to another. In personal computers,

Point
Key

what is programming?

programming

program

Point
Key

hardware

software

bus

M01_LIAN0942_11_SE_C01.indd 2 2/1/17 4:15 PM

1.2 What Is a Computer? 3

the bus is built into the computer’s motherboard, which is a circuit case that connects all of

the parts of a computer together.

1.2.1 Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from the

memory and executes them. The CPU usually has two components: a control unit and an

arithmetic/logic unit. The control unit controls and coordinates the actions of the other com-

ponents. The arithmetic/logic unit performs numeric operations (addition, subtraction, multi-

plication, and division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny

electric switches, called transistors, for processing information.

Every computer has an internal clock that emits electronic pulses at a constant rate. These

pulses are used to control and synchronize the pace of operations. A higher clock speed enables

more instructions to be executed in a given period of time. The unit of measurement of clock

speed is the hertz (Hz), with 1 Hz equaling 1 pulse per second. In the 1990s, computers meas-

ured clock speed in megahertz (MHz), but CPU speed has been improving continuously; the

clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest processors

run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor

that performs the reading and executing of instructions. In order to increase the CPU processing

power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore

CPU is a single component with two or more independent cores. Today’s consumer comput-

ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even

hundreds of cores will be affordable.

1.2.2 Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) are stored in

a computer.

A computer is really nothing more than a series of switches. Each switch exists in two states:

on or off. Storing information in a computer is simply a matter of setting a sequence of switches

on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s and 1s

are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A small

number such as 3 can be stored as a single byte. To store a number that cannot fit into a single

byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As

a programmer, you don’t need to worry about the encoding and decoding of data, which the

computer system performs automatically, based on the encoding scheme. An encoding scheme

is a set of rules that govern how a computer translates characters and numbers into data with

which the computer can actually work. Most schemes translate each character into a

motherboard

CPU

speed

hertz

megahertz

gigahertz

core

bits

byte

encoding scheme

FIGURE 1.1 A computer consists of a CPU, memory, storage devices, input devices, output

devices, and communication devices.

Memory

e.g., Disk, CD,
and Tape

e.g., Modem,
and NIC

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

CPU

Bus

Storage
Devices

Communication
Devices

Input
Devices

Output
Devices

M01_LIAN0942_11_SE_C01.indd 3 2/1/17 4:15 PM

4 Chapter 1 Introduction to Computers, Programs, and Java™

predetermined string of bits. In the popular ASCII encoding scheme, for example, the character

C is represented as 01000011 in 1 byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

■■ A kilobyte (KB) is about 1,000 bytes.

■■ A megabyte (MB) is about 1 million bytes.

■■ A gigabyte (GB) is about 1 billion bytes.

■■ A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages

of documents, and 1 GB can store 50,000 pages of documents. A typical two-hour high-

resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well

as data with which the program is working. You can think of memory as the computer’s work

area for executing a program. A program and its data must be moved into the computer’s

memory before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is used

to locate the byte for storing and retrieving the data. Since the bytes in the memory can be

accessed in any order, the memory is also referred to as random-access memory (RAM).

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

FIGURE 1.2 Memory stores data and program instructions in uniquely addressed memory

locations.

01000011

01110010

01100101

01110111

00000011

Encoding for character ‘C’

Encoding for character ‘r’

Encoding for character ‘e’

Encoding for character ‘w’

Decimal number 3

2000

2001

2002

2003

2004

Memory address Memory content

Today’s personal computers usually have at least 4 GB of RAM, but they more commonly

have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster it can

operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.

The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-

tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,

slower, and less expensive.

1.2.4 Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: Any information that

has been saved in memory is lost when the system’s power is turned off. Programs and

data are permanently stored on storage devices and are moved, when the computer actu-storage devices

M01_LIAN0942_11_SE_C01.indd 4 2/1/17 4:15 PM

1.2 What Is a Computer? 5

ally uses them, to memory, which operates at much faster speeds than permanent storage

devices can.

There are three main types of storage devices:

■■ Magnetic disk drives

■■ Optical disc drives (CD and DVD)

■■ Universal serial bus (USB) flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium

physically stores data and program instructions. The drive reads data from the medium and

writes data onto the medium.

Disks

A computer usually has at least one hard disk drive. Hard disks are used for permanently stor-

ing data and programs. Newer computers have hard disks that can store from 500 GB to 1 TB

of data. Hard disk drives are usually encased inside the computer, but removable hard disks

are also available.

CDs and DVDs

CD stands for compact disc. There are three types of CDs: CD-ROM, CD-R, and CD-RW. A CD-

ROM is a prepressed disc. It was popular for distributing software, music, and video. Software,

music, and video are now increasingly distributed on the Internet without using CDs. A CD-R

(CD-Recordable) is a write-once medium. It can be used to record data once and read any number

of times. A CD-RW (CD-ReWritable) can be used like a hard disk; that is, you can write data onto

the disc, then overwrite that data with new data. A single CD can hold up to 700 MB.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and

you can use either to store data. A DVD can hold more information than a CD; a standard

DVD’s storage capacity is 4.7 GB. There are two types of DVDs: DVD-R (Recordable) and

DVD-RW (ReWritable).

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral

devices to the computer. You can use an USB to connect a printer, digital camera, mouse,

external hard disk drive, and other devices to the computer.

An USB flash drive is a device for storing and transporting data. A flash drive is small—about

the size of a pack of gum. It acts like a portable hard drive that can be plugged into your computer’s

USB port. USB flash drives are currently available with up to 256 GB storage capacity.

1.2.5 Input and Output Devices
Input and output devices let the user communicate with the computer. The most common

input devices are the keyboard and mouse. The most common output devices are monitors

and printers.

The Keyboard

A keyboard is a device for entering input. Compact keyboards are available without a numeric

keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.

Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the normal

action of another key when the two are pressed simultaneously.

drive

hard disk

CD-ROM

CD-R

CD-RW

DVD

function key

modifier key

M01_LIAN0942_11_SE_C01.indd 5 2/1/17 4:15 PM

6 Chapter 1 Introduction to Computers, Programs, and Java™

The numeric keypad, located on the right side of most keyboards, is a separate set of keys

styled like a calculator to use for quickly entering numbers.

Arrow keys, located between the main keypad and the numeric keypad, are used to move

the mouse pointer up, down, left, and right on the screen in many kinds of programs.

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other

programs for inserting text and objects, deleting text and objects, and moving up or down

through a document one screen at a time.

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of

an arrow) called a cursor around the screen, or to click on-screen objects (such as a button) to

trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch

determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions

of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on

the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and

768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and

clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller

the dot pitch, the sharper is the display.

1.2.6 Communication Devices
Computers can be networked through communication devices, such as a dial-up modem

 (modulator/demodulator), a digital subscriber line (DSL) or cable modem, a wired network

interface card, or a wireless adapter.

■■ A dial-up modem uses a phone line to dial a phone number to connect to the Internet

and can transfer data at a speed up to 56,000 bps (bits per second).

■■ A digital subscriber line (DSL) connection also uses a standard phone line, but it can

transfer data 20 times faster than a standard dial-up modem.

■■ A cable modem uses the cable line maintained by the cable company and is generally

faster than DSL.

■■ A network interface card (NIC) is a device that connects a computer to a local area

network (LAN). LANs are commonly used to connect computers within a limited area

such as a school, a home, and an office. A high-speed NIC called 1000BaseT can

transfer data at 1,000 million bits per second (mbps).

■■ Wireless networking is now extremely popular in homes, businesses, and schools.

Every laptop computer sold today is equipped with a wireless adapter that enables the

computer to connect to the LAN and the Internet.

Note
Answers to the CheckPoint questions are available at www.pearsonhighered.com/

liang. Choose this book and click Companion Website to select CheckPoint.

 1.2.1 What are hardware and software?

 1.2.2 List the five major hardware components of a computer.

numeric keypad

arrow keys

Insert key

Delete key

Page Up key

Page Down key

screen resolution

pixels

dot pitch

dial-up modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)

local area network (LAN)

million bits per second
(mbps)

Point
Check

M01_LIAN0942_11_SE_C01.indd 6 2/1/17 4:15 PM

1.3 Programming Languages 7

 1.2.3 What does the acronym CPU stand for? What unit is used to measure CPU speed?

 1.2.4 What is a bit? What is a byte?

 1.2.5 What is memory for? What does RAM stand for? Why is memory called RAM?

 1.2.6 What unit is used to measure memory size? What unit is used to measure disk size?

 1.2.7 What is the primary difference between memory and a storage device?

1.3 Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a

computer can use. There are hundreds of programming languages, and they were developed

to make the programming process easier for people. However, all programs must be converted

into the instructions the computer can execute.

1.3.1 Machine Language
A computer’s native language, which differs among different types of computers, is its machine

language—a set of built-in primitive instructions. These instructions are in the form of binary

code, so if you want to give a computer an instruction in its native language, you have to enter

the instruction as binary code. For example, to add two numbers, you might have to write an

instruction in binary code as follows:

1101101010011010

1.3.2 Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in

machine language are very difficult to read and modify. For this reason, assembly language

was created in the early days of computing as an alternative to machine languages. Assembly

language uses a short descriptive word, known as a mnemonic, to represent each of the

machine-language instructions. For example, the mnemonic add typically means to add num-

bers, and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you

might write an instruction in assembly code as follows:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the

computer cannot execute assembly language, another program—called an assembler—is used

to translate assembly-language programs into machine code, as shown in Figure 1.3.

Point
Key

machine language

assembly language

assembler

FIGURE 1.3 An assembler translates assembly-language instructions into machine code.

Assembly Source File

...

add 2, 3, result

...

Machine-Code File

...

1101101010011010

...

Assembler

Writing code in assembly language is easier than in machine language. However, it is still

tedious to write code in assembly language. An instruction in assembly language essentially

corresponds to an instruction in machine code. Writing in assembly language requires that you

M01_LIAN0942_11_SE_C01.indd 7 2/1/17 4:15 PM

8 Chapter 1 Introduction to Computers, Programs, and Java™

know how the CPU works. Assembly language is referred to as a low-level language, because

assembly language is close in nature to machine language and is machine dependent.

1.3.3 High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages

emerged. They are platform independent, which means that you can write a program in a high-

level language and run it in different types of machines. High-level languages are similar to

English and easy to learn and use. The instructions in a high-level programming language are

called statements. Here, for example, is a high-level language statement that computes the area of

a circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific

purpose. Table 1.1 lists some popular ones.

low-level language

high-level language

statement

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. Developed for the Department

of Defense and used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. Designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. Combines the power of an assembly language with the ease of use and portability

of a high-level language.

C++ An object-oriented language, based on C

C# Pronounced “C Sharp.” An object-oriented programming language developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. An object-oriented programming language, widely used for

developing platform-independent Internet applications.

JavaScript A Web programming language developed by Netscape

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. A simple, structured,

general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft. Enables the programmers to rapidly develop Windows-based

applications.

TABLE 1.1 Popular High-Level Programming Languages

A program written in a high-level language is called a source program or source code.

Because a computer cannot execute a source program, a source program must be translated

into machine code for execution. The translation can be done using another programming tool

called an interpreter or a compiler.

■■ An interpreter reads one statement from the source code, translates it to the machine

code or virtual machine code, then executes it right away, as shown in Figure 1.4a.

Note a statement from the source code may be translated into several machine

instructions.

source program

source code

interpreter

compiler

M01_LIAN0942_11_SE_C01.indd 8 2/1/17 4:15 PM

1.4 Operating Systems 9

FIGURE 1.4 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates

the entire source program into a machine-language file for execution.

Machine-Code File

...

0101100011011100

1111100011000100

...

High-Level Source File

...

 area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...

 area = 5 * 5 * 3.1415;

...

(a)

Interpreter

Output

Output

■■ A compiler translates the entire source code into a machine-code file, and the machine-code file is then executed,

as shown in Figure 1.4b.

 1.3.1 What language does the CPU understand?

 1.3.2 What is an assembly language? What is an assembler?

 1.3.3 What is a high-level programming language? What is a source program?

 1.3.4 What is an interpreter? What is a compiler?

 1.3.5 What is the difference between an interpreted language and a compiled language?

Point
Check

1.4 Operating Systems
The operating system (OS) is the most important program that runs on a computer.

The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac

OS, and Linux. Application programs, such as a web browser or a word processor, cannot run

unless an operating system is installed and running on the computer. Figure 1.5 shows the

interrelationship of hardware, operating system, application software, and the user.

Point
Key

operating system (OS)

FIGURE 1.5 Users and applications access the computer’s hardware via the operating system.

User

Application Programs

Operating System

Hardware

M01_LIAN0942_11_SE_C01.indd 9 2/1/17 4:15 PM

10 Chapter 1 Introduction to Computers, Programs, and Java™

The major tasks of an operating system are as follows:

■■ Controlling and monitoring system activities

■■ Allocating and assigning system resources

■■ Scheduling operations

1.4.1 Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending

output to the monitor, keeping track of files and folders on storage devices, and controlling

peripheral devices such as disk drives and printers. An operating system must also ensure

different programs and users working at the same time do not interfere with each other. In

addition, the OS is responsible for security, ensuring unauthorized users and programs are not

allowed to access the system.

1.4.2 Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program needs

(such as CPU time, memory space, disks, and input and output devices) and for allocating and

assigning them to run the program.

1.4.3 Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system

resources. Many of today’s operating systems support techniques such as multiprogramming,

multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs such as Microsoft Word, E-mail, and web

browser to run simultaneously by sharing the same CPU. The CPU is much faster than the

computer’s other components. As a result, it is idle most of the time—for example, while wait-

ing for data to be transferred from a disk or waiting for other system resources to respond. A

multiprogramming OS takes advantage of this situation by allowing multiple programs to use

the CPU when it would otherwise be idle. For example, multiprogramming enables you to use

a word processor to edit a file at the same time as your web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For

instance, a word-processing program allows users to simultaneously edit text and save it to a

disk. In this example, editing and saving are two tasks within the same program. These two

tasks may run concurrently.

Multiprocessing is similar to multithreading. The difference is that multithreading is for

running multithreads concurrently within one program, but multiprocessing is for running

multiple programs concurrently using multiple processors.

 1.4.1 What is an operating system? List some popular operating systems.

 1.4.2 What are the major responsibilities of an operating system?

 1.4.3 What are multiprogramming, multithreading, and multiprocessing?

1.5 Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software run-

ning on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling

at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called

Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.

multiprogramming

multithreading

multiprocessing

Point
Check

Point
Key

M01_LIAN0942_11_SE_C01.indd 10 2/1/17 4:15 PM

1.6 The Java Language Specification, API, JDK, JRE, and IDE 11

In 1995, renamed Java, it was redesigned for developing web applications. For the history of

Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced

to its design characteristics, particularly its promise that you can write a program once

and run it anywhere. As stated by its designer, Java is simple, object oriented, distributed,

 interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded,

and dynamic. For the anatomy of Java characteristics, see liveexample.pearsoncmg.com/etc/

JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop

robust mission-critical applications. Today, it is employed not only for web programming but

also for developing stand-alone applications across platforms on servers, desktop computers,

and mobile devices. It was used to develop the code to communicate with and control the

robotic rover on Mars. Many companies that once considered Java to be more hype than sub-

stance are now using it to create distributed applications accessed by customers and partners

across the Internet. For every new project being developed today, companies are asking how

they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the

Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around

for more than 40 years. The colorful World Wide Web and sophisticated web browsers are the

major reason for the Internet’s popularity.

Java initially became attractive because Java programs can run from a web browser. Such

programs are called applets. Today applets are no longer allowed to run from a Web browser

in the latest version of Java due to security issues. Java, however, is now very popular for

developing applications on web servers. These applications process data, perform computa-

tions, and generate dynamic webpages. Many commercial Websites are developed using Java

on the backend.

Java is a versatile programming language: You can use it to develop applications for desktop

computers, servers, and small handheld devices. The software for Android cell phones is

developed using Java.

 1.5.1 Who invented Java? Which company owns Java now?

 1.5.2 What is a Java applet?

 1.5.3 What programming language does Android use?

1.6 The Java Language Specification, API, JDK,
JRE, and IDE

Java syntax is defined in the Java language specification, and the Java library is

defined in the Java application program interface (API). The JDK is the software for

compiling and running Java programs. An IDE is an integrated development environ-

ment for rapidly developing programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a

program, the computer will not be able to understand it. The Java language specification and

the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming

 language’s syntax and semantics. You can find the complete Java language specification at

docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined classes

and interfaces for developing Java programs. The API is still expanding. You can view and

download the latest version of the Java API at download.java.net/jdk8/docs/api/.

Point
Check

Point
Key

Java language specification

API

library

M01_LIAN0942_11_SE_C01.indd 11 2/1/17 4:15 PM

12 Chapter 1 Introduction to Computers, Programs, and Java™

Java is a full-fledged and powerful language that can be used in many ways. It comes in

three editions:

■■ Java Standard Edition (Java SE) to develop client-side applications. The applications

can run on desktop.

■■ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java

servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

■■ Java Micro Edition (Java ME) to develop applications for mobile devices, such as

cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon which

all other Java technology is based. There are many versions of Java SE. The latest, Java SE 8, is

used in this book. Oracle releases each version with a Java Development Toolkit (JDK). For Java

SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8 or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for

compiling, running, and testing Java programs. The program for running Java programs is

known as JRE (Java Runtime Environment). Instead of using the JDK, you can use a Java

development tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated

development environment (IDE) for developing Java programs quickly. Editing, compiling,

building, debugging, and online help are integrated in one graphical user interface. You simply

enter source code in one window or open an existing file in a window, and then click a button

or menu item or press a function key to compile and run the program.

 1.6.1 What is the Java language specification?

 1.6.2 What does JDK stand for? What does JRE stand for?

 1.6.3 What does IDE stand for?

 1.6.4 Are tools like NetBeans and Eclipse different languages from Java, or are they dia-

lects or extensions of Java?

1.7 A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the

console. (The word console is an old computer term that refers to the text entry and display

device of a computer. Console input means to receive input from the keyboard, and console

output means to display output on the monitor.) The program is given in Listing 1.1.

LISTING 1.1 Welcome.java

1 public class Welcome {

2 public static void main(String[] args) {

3 // Display message Welcome to Java! on the console

 4 System.out.println("Welcome to Java!");

5 }

6 }

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Java Runtime Environment
(JRE)

Integrated development
environment

Point
Check

Point
Key

what is a console?

console input

console output

class

main method

display message

VideoNote

Your first Java program

Welcome to Java!

Note the line numbers are for reference purposes only; they are not part of the program. So,

don’t type line numbers in your program.
line numbers

M01_LIAN0942_11_SE_C01.indd 12 2/1/17 4:15 PM

1.7 A Simple Java Program 13

Line 1 defines a class. Every Java program must have at least one class. Each class has a

name. By convention, class names start with an uppercase letter. In this example, the class

name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A class

may contain several methods. The main method is the entry point where the program begins

execution.

A method is a construct that contains statements. The main method in this program contains

the System.out.println statement. This statement displays the string Welcome to Java!

on the console (line 4). String is a programming term meaning a sequence of characters. A

string must be enclosed in double quotation marks. Every statement in Java ends with a semi-

colon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used

for other purposes in the program. For example, when the compiler sees the word class, it

understands that the word after class is the name for the class. Other reserved words in this

program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Comments

help programmers to communicate and understand the program. They are not programming

statements, and thus are ignored by the compiler. In Java, comments are preceded by two

slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several

lines, called a block comment or paragraph comment. When the compiler sees //, it ignores

all text after // on the same line. When it sees /*, it scans for the next */ and ignores any text

between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program

displays Welcome to Java! */

A pair of braces in a program forms a block that groups the program’s components. In Java,

each block begins with an opening brace ({) and ends with a closing brace (}). Every class has

a class block that groups the data and methods of the class. Similarly, every method has a

method block that groups the statements in the method. Blocks can be nested, meaning that

one block can be placed within another, as shown in the following code:

class name

main method

string

statement terminator

reserved word

keyword

comment

line comment

block comment

block

match braces

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Method block

Class block

Tip
 An opening brace must be matched by a closing brace. Whenever you type an opening

brace, immediately type a closing brace to prevent the missing-brace error. Most Java

IDEs automatically insert the closing brace for each opening brace.

Caution
 Java source programs are case sensitive. It would be wrong, for example, to replace main

in the program with Main.

You have seen several special characters (e.g., { }, //, ;) in the program. They are used

in almost every program. Table 1.2 summarizes their uses.

The most common errors you will make as you learn to program will be syntax errors. Like

any programming language, Java has its own syntax, and you need to write code that conforms

case sensitive

special characters

common errors

M01_LIAN0942_11_SE_C01.indd 13 2/1/17 4:15 PM

14 Chapter 1 Introduction to Computers, Programs, and Java™

to the syntax rules. If your program violates a rule—for example, if the semicolon is missing,

a brace is missing, a quotation mark is missing, or a word is misspelled—the Java compiler

will report syntax errors. Try to compile the program with these errors and see what the com-

piler reports.

Note
You are probably wondering why the main method is defined this way and why

 System.out.println(...) is used to display a message on the console. For the

time being, simply accept that this is how things are done. Your questions will be fully

answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it

is easy to extend it to display more messages. For example, you can rewrite the program to

display three messages, as shown in Listing 1.2.

LISTING 1.2 WelcomeWithThreeMessages.java

1 public class WelcomeWithThreeMessages {

2 public static void main(String[] args) {

3 System.out.println("Programming is fun!");

4 System.out.println("Fundamentals First");

5 System.out.println("Problem Driven");

6 }

7 }

syntax rules

class

main method

display message

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.

() Opening and closing parentheses Used with methods.

[] Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

"" Opening and closing quotation marks Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

TABLE 1.2 Special Characters

Programming is fun!

Fundamentals First

Problem Driven

Further, you can perform mathematical computations and display the result on the console.

Listing 1.3 gives an example of evaluating
10.5 + 2 * 3

45 - 3.5
.

LISTING 1.3 ComputeExpression.java

1 public class ComputeExpression {

2 public static void main(String[] args) {

3 System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");

4 System.out.println((10.5 + 2 * 3) / (45 – 3.5));

5 }

6 }

class

main method

compute expression

(10.5 + 2 * 3) / (45 – 3.5) = 0.39759036144578314

M01_LIAN0942_11_SE_C01.indd 14 2/1/17 4:15 PM

1.8 Creating, Compiling, and Executing a Java Program 15

The print method in line 3

System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");

is identical to the println method except that println moves to the beginning of the next

line after displaying the string, but print does not advance to the next line when completed.

The multiplication operator in Java is *. As you can see, it is a straightforward process to

translate an arithmetic expression to a Java expression. We will discuss Java expressions fur-

ther in Chapter 2.

 1.7.1 What is a keyword? List some Java keywords.

 1.7.2 Is Java case sensitive? What is the case for Java keywords?

 1.7.3 What is a comment? Is the comment ignored by the compiler? How do you denote a

comment line and a comment paragraph?

 1.7.4 What is the statement to display a string on the console?

 1.7.5 Show the output of the following code:

public class Test {

 public static void main(String[] args) {

 System.out.println("3.5 * 4 / 2 – 2.5 is ");

 System.out.println(3.5 * 4 / 2 – 2.5);

 }

}

1.8 Creating, Compiling, and Executing a Java Program
You save a Java program in a .java file and compile it into a .class file. The .class file

is executed by the Java Virtual Machine (JVM).

You have to create your program and compile it before it can be executed. This process is

repetitive, as shown in Figure 1.6. If your program has compile errors, you have to modify the

program to fix them, then recompile it. If your program has runtime errors or does not produce

the correct result, you have to modify the program, recompile it, and execute it again.

You can use any text editor or IDE to create and edit a Java source-code file. This section

demonstrates how to create, compile, and run Java programs from a command window. Sec-

tions 1.11 and 1.12 will introduce developing Java programs using NetBeans and Eclipse. From

the command window, you can use a text editor such as Notepad to create the Java source-code

file, as shown in Figure 1.7.

Note
The source file must end with the extension .java and must have the same exact name

as the public class name. For example, the file for the source code in Listing 1.1 should

be named Welcome.java, since the public class name is Welcome.

A Java compiler translates a Java source file into a Java bytecode file. The following com-

mand compiles Welcome.java:

javac Welcome.java

Note
You must first install and configure the JDK before you can compile and run programs.

See Supplement I.B, Installing and Configuring JDK 8, for how to install the JDK and set

up the environment to compile and run Java programs. If you have trouble compiling and

running programs, see Supplement I.C, Compiling and Running Java from the Command

Window. This supplement also explains how to use basic DOS commands and how to

use Windows Notepad to create and edit files. All the supplements are accessible from

the Companion Website.

print vs. println

Point
Check

Point
Key

command window

file name Welcome.java,

compile

Supplement I.B

Supplement I.C

M01_LIAN0942_11_SE_C01.indd 15 2/1/17 4:15 PM

16 Chapter 1 Introduction to Computers, Programs, and Java™

FIGURE 1.6 The Java program-development process consists of repeatedly creating/modifying source code, compiling,

and executing programs.

Create/Modify Source Code

Result

Compile Source Code
e.g., javac Welcome.java

Saved on the disk

Stored on the disk

If compile errors occur

If runtime errors or incorrect result

Source code (developed by the programmer)

Bytecode (generated by the compiler for JVM
to read and interpret)

…
Method Welcome()
 0 aload_0
 …

Method void main(java.lang.String[])
 0 getstatic #2 …
 3 ldc #3 <String "Welcome to Java!">
 5 invokevirtual #4 …
 8 return

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");
 }
}

Run Bytecode
e.g., java Welcome

Source Code

Bytecode

“Welcome to Java” is displayed on the console

Welcome to Java!

FIGURE 1.7 You can create a Java source file using Windows Notepad.

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class

extension. Thus, the preceding command generates a file named Welcome.class, as shown in

Figure 1.8a. The Java language is a high-level language, but Java bytecode is a low-level

language. The bytecode is similar to machine instructions but is architecture neutral and can

run on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.8b. Rather

than a physical machine, the virtual machine is a program that interprets Java bytecode. This

is one of Java’s primary advantages: Java bytecode can run on a variety of hardware platforms

and operating systems. Java source code is compiled into Java bytecode, and Java bytecode is

interpreted by the JVM. Your Java code may use the code in the Java library. The JVM exe-

cutes your code along with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute the bytecode

on any platform with a JVM, which is an interpreter. It translates the individual instructions in

the bytecode into the target machine language code one at a time, rather than the whole pro-

gram as a single unit. Each step is executed immediately after it is translated.

.class bytecode file

bytecode

Java Virtual Machine (JVM)

interpret bytecode

M01_LIAN0942_11_SE_C01.indd 16 2/1/17 4:15 PM

1.8 Creating, Compiling, and Executing a Java Program 17

The following command runs the bytecode for Listing 1.1:

java Welcome

Figure 1.9 shows the javac command for compiling Welcome.java. The compiler generates

the Welcome.class file, and this file is executed using the java command.

Note
For simplicity and consistency, all source-code and class files used in this book are placed

under c:\book unless specified otherwise.

run

javac command

java command

c:\book

VideoNote

Compile and run a Java

program

FIGURE 1.8 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with

a Java Virtual Machine.

Ja

va
 Virtual Machine

Any
Computer

Java Bytecode

Welcome.java
(Java source-

code �le)

Welcome.class
(Java bytecode
executable �le)

Library Code

JVM
Java

Compiler

compiled
by generates

executed
by

(a) (b)

FIGURE 1.9 The output of Listing 1.1 displays the message “Welcome to Java!”

Show �les

Run

Compile

Caution
Do not use the extension .class in the command line when executing the program.

Use java ClassName to run the program. If you use java ClassName.class in

the command line, the system will attempt to fetch ClassName.class.class.

Tip
If you execute a class file that does not exist, a NoClassDefFoundError will

occur. If you execute a class file that does not have a main method or you mistype

the main method (e.g., by typing Main instead of main), a NoSuchMethodError

will occur.

java ClassName

NoClassDefFoundError

NoSuchMethodError

M01_LIAN0942_11_SE_C01.indd 17 2/1/17 4:15 PM

18 Chapter 1 Introduction to Computers, Programs, and Java™

Note
When executing a Java program, the JVM first loads the bytecode of the class to memory

using a program called the class loader. If your program uses other classes, the class loader

dynamically loads them just before they are needed. After a class is loaded, the JVM uses a

program called the bytecode verifier to check the validity of the bytecode and to ensure that

the bytecode does not violate Java’s security restrictions. Java enforces strict security to make

sure Java class files are not tampered with and do not harm your computer.

Pedagogical Note
Your instructor may require you to use packages for organizing programs. For example,

you may place all programs in this chapter in a package named chapter1. For instructions

on how to use packages, see Supplement I.F, Using Packages to Organize the Classes in

the Text.

 1.8.1 What is the Java source filename extension, and what is the Java bytecode filename

extension?

 1.8.2 What are the input and output of a Java compiler?

 1.8.3 What is the command to compile a Java program?

 1.8.4 What is the command to run a Java program?

 1.8.5 What is the JVM?

 1.8.6 Can Java run on any machine? What is needed to run Java on a computer?

 1.8.7 If a NoClassDefFoundError occurs when you run a program, what is the cause

of the error?

 1.8.8 If a NoSuchMethodError occurs when you run a program, what is the cause of the

error?

1.9 Programming Style and Documentation
Good programming style and proper documentation make a program easy to read and

help programmers prevent errors.

Programming style deals with what programs look like. A program can compile and run

properly even if written on only one line, but writing it all on one line would be bad pro-

gramming style because it would be hard to read. Documentation is the body of explanatory

remarks and comments pertaining to a program. Programming style and documentation are

as important as coding. Good programming style and appropriate documentation reduce the

chance of errors and make programs easy to read. This section gives several guidelines. For

more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Com-

panion Website.

1.9.1 Appropriate Comments and Comment Styles
Include a summary at the beginning of the program that explains what the program does, its key

features, and any unique techniques it uses. In a long program, you should also include comments

that introduce each major step and explain anything that is difficult to read. It is important to make

comments concise so that they do not crowd the program or make it difficult to read.

In addition to line comments (beginning with //) and block comments (beginning with /*),

Java supports comments of a special type, referred to as javadoc comments. javadoc comments

begin with /** and end with */. They can be extracted into an HTML file using the JDK’s

javadoc command. For more information, see Supplement III.Y, javadoc Comments, on the

Companion Website.

class loader

bytecode verifier

use package

Point
Check

Point
Key

programming style

documentation

javadoc comment

M01_LIAN0942_11_SE_C01.indd 18 2/1/17 4:15 PM

1.9 Programming Style and Documentation 19

Use javadoc comments (/** . . . */) for commenting on an entire class or an entire

method. These comments must precede the class or the method header in order to be extracted

into a javadoc HTML file. For commenting on steps inside a method, use line comments (//).

To see an example of a javadoc HTML file, check out liveexample.pearsoncmg.com/javadoc/

Exercise1.html. Its corresponding Java code is shown in liveexample.pearsoncmg.com/java-

doc/Exercise1.txt.

1.9.2 Proper Indentation and Spacing
A consistent indentation style makes programs clear and easy to read, debug, and maintain.

Indentation is used to illustrate the structural relationships between a program’s compo-

nents or statements. Java can read the program even if all of the statements are on the same

long line, but humans find it easier to read and maintain code that is aligned properly. Indent

each subcomponent or statement at least two spaces more than the construct within which

it is nested.

A single space should be added on both sides of a binary operator, as shown in (a), rather

in (b).

System.out.println(3 + 4 * 4); System.out.println(3+4*4);

(a) Good style (b) Bad style

1.9.3 Block Styles
A block is a group of statements surrounded by braces. There are two popular styles, next-line

style and end-of-line style, as shown below.

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

Next-line style End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the

end-of-line style saves space and may help avoid some subtle programming errors. Both are

acceptable block styles. The choice depends on personal or organizational preference. You

should use a block style consistently—mixing styles is not recommended. This book uses the

end-of-line style to be consistent with the Java API source code.

 1.9.1 Reformat the following program according to the programming style and documen-

tation guidelines. Use the end-of-line brace style.

public class Test

{

 // Main method
 public static void main(String[] args) {
 /** Display output */
 System.out.println("Welcome to Java");

 }

}

indent code

Point
Check

M01_LIAN0942_11_SE_C01.indd 19 2/1/17 4:15 PM

20 Chapter 1 Introduction to Computers, Programs, and Java™

1.10 Programming Errors
Programming errors can be categorized into three types: syntax errors, runtime

errors, and logic errors.

1.10.1 Syntax Errors
Errors that are detected by the compiler are called syntax errors or compile errors. Syntax

errors result from errors in code construction, such as mistyping a keyword, omitting some

necessary punctuation, or using an opening brace without a corresponding closing brace.

These errors are usually easy to detect because the compiler tells you where they are and

what caused them. For example, the program in Listing 1.4 has a syntax error, as shown in

Figure 1.10.

LISTING 1.4 ShowSyntaxErrors.java

1 public class ShowSyntaxErrors {

2 public static main(String[] args) {

3 System.out.println("Welcome to Java);

4 }

5 }

Four errors are reported, but the program actually has two errors:

■■ The keyword void is missing before main in line 2.

■■ The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to

fix errors from the top line and work downward. Fixing errors that occur earlier in the program

may also fix additional errors that occur later.

Point
Key

syntax errors

compile errors

FIGURE 1.10 The compiler reports syntax errors.

Compile

Tip
If you don’t know how to correct an error, compare your program closely, character by

character, with similar examples in the text. In the first few weeks of this course, you will

probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java

syntax, and can quickly fix syntax errors.
fix syntax errors

M01_LIAN0942_11_SE_C01.indd 20 2/1/17 4:15 PM

1.10 Programming Errors 21

1.10.2 Runtime Errors
Runtime errors are errors that cause a program to terminate abnormally. They occur while a

program is running if the environment detects an operation that is impossible to carry out. Input

mistakes typically cause runtime errors. An input error occurs when the program is waiting

for the user to enter a value, but the user enters a value that the program cannot handle. For

instance, if the program expects to read in a number, but instead the user enters a string, this

causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is

zero for integer divisions. For instance, the program in Listing 1.5 would cause a runtime error,

as shown in Figure 1.11.

LISTING 1.5 ShowRuntimeErrors.java

1 public class ShowRuntimeErrors {

2 public static void main(String[] args) {

3 System.out.println(1 / 0);

4 }

5 }

runtime errors

runtime error

FIGURE 1.11 The runtime error causes the program to terminate abnormally.

Run

1.10.3 Logic Errors
Logic errors occur when a program does not perform the way it was intended to. Errors of this

kind occur for many different reasons. For example, suppose you wrote the program in

 Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

LISTING 1.6 ShowLogicErrors.java

1 public class ShowLogicErrors {

2 public static void main(String[] args) {

3 System.out.print("Celsius 35 is Fahrenheit degree ");

4 System.out.println((9 / 5) * 35 + 32);

5 }

6 }

logic errors

Celsius 35 is Fahrenheit degree 67

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the division

for integers is the quotient—the fractional part is truncated—so in Java 9 / 5 is 1. To get the

correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct because the compiler gives indications

as to where the errors came from and why they are wrong. Runtime errors are not difficult to find,

either, since the reasons and locations for the errors are displayed on the console when the program

aborts. Finding logic errors, on the other hand, can be very challenging. In the upcoming chapters,

you will learn the techniques of tracing programs and finding logic errors.

M01_LIAN0942_11_SE_C01.indd 21 2/1/17 4:15 PM

22 Chapter 1 Introduction to Computers, Programs, and Java™

1.10.4 Common Errors
Missing a closing brace, missing a semicolon, missing quotation marks for strings, and mis-

spelling names are common errors for new programmers.

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must be matched

by a closing brace. A common error is missing the closing brace. To avoid this error, type a

closing brace whenever an opening brace is typed, as shown in the following example:

public class Welcome {

} Type this closing brace right away to match the opening brace.

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing

brace for each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer forgets to

place a statement terminator for the last statement in a block, as shown in the following

example:

public static void main(String[] args) {

 System.out.println("Programming is fun!");

 System.out.println("Fundamentals First");

 System.out.println("Problem Driven")

}

 Missing a semicolon

Common Error 3: Missing Quotation Marks

A string must be placed inside the quotation marks. Often, a new programmer forgets to place

a quotation mark at the end of a string, as shown in the following example:

System.out.println("Problem Driven);

 Missing a quotation mark

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing

quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new programmers. For exam-

ple, the word main is misspelled as Main and String is misspelled as string in the follow-

ing code:

1 public class Test {

2 public static void Main(string[] args) {

3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));

4 }

5 }

 1.10.1 What are syntax errors (compile errors), runtime errors, and logic errors?

 1.10.2 Give examples of syntax errors, runtime errors, and logic errors.

 1.10.3 If you forget to put a closing quotation mark on a string, what kind error of will be raised?

 1.10.4 If your program needs to read integers, but the user entered strings, an error would

occur when running this program. What kind of error is this?

Point
Check

M01_LIAN0942_11_SE_C01.indd 22 2/1/17 4:15 PM

1.11 Developing Java Programs Using NetBeans 23

 1.10.5 Suppose you write a program for computing the perimeter of a rectangle and you mistak-

enly write your program so it computes the area of a rectangle. What kind of error is this?

 1.10.6 Identify and fix the errors in the following code:

1 public class Welcome {

2 public void Main(String[] args) {

3 System.out.println('Welcome to Java!);

4 }

5)

Note
Section 1.8 introduced developing programs from the command line. Many of our readers

also use an IDE. The following two sections introduce two most popular Java IDEs:

NetBeans and Eclipse. These two sections may be skipped.

1.11 Developing Java Programs Using NetBeans
You can edit, compile, run, and debug Java Programs using NetBeans.

NetBeans and Eclipse are two free popular integrated development environments for develop-

ing Java programs. They are easy to learn if you follow simple instructions. We recommend

that you use either one for developing Java programs. This section gives the essential instruc-

tions to guide new users to create a project, create a class, compile, and run a class in NetBeans.

The use of Eclipse will be introduced in the next section. For instructions on downloading and

installing latest version of NetBeans, see Supplement II.B.

1.11.1 Creating a Java Project
Before you can create Java programs, you need to first create a project. A project is like a folder

to hold Java programs and all supporting files. You need to create a project only once. Here

are the steps to create a Java project:

1. Choose File, New Project to display the New Project dialog box, as shown in Figure 1.12.

2. Select Java in the Categories section and Java Application in the Projects section, and

then click Next to display the New Java Application dialog box, as shown in Figure 1.13.

3. Type demo in the Project Name field and c:\michael in Project Location field. Uncheck

Use Dedicated Folder for Storing Libraries and uncheck Create Main Class.

4. Click Finish to create the project, as shown in Figure 1.14.

Point
Key

VideoNote

NetBeans brief tutorial

FIGURE 1.12 The New Project dialog is used to create a new project and specify a project type.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with

permission.

M01_LIAN0942_11_SE_C01.indd 23 2/1/17 4:15 PM

24 Chapter 1 Introduction to Computers, Programs, and Java™

1.11.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following steps:

1. Right-click the demo node in the project pane to display a context menu. Choose New,

Java Class to display the New Java Class dialog box, as shown in Figure 1.15.

2. Type Welcome in the Class Name field and select the Source Packages in the Location

field. Leave the Package field blank. This will create a class in the default package.

3. Click Finish to create the Welcome class. The source-code file Welcome.java is placed

under the <default package> node.

4. Modify the code in the Welcome class to match Listing 1.1 in the text, as shown in

Figure 1.16.

1.11.3 Compiling and Running a Class
To run Welcome.java, right-click Welcome.java to display a context menu and choose Run File,

or simply press Shift + F6. The output is displayed in the Output pane, as shown in Figure 1.16.

The Run File command automatically compiles the program if the program has been changed.

FIGURE 1.13 The New Java Application dialog is for specifying a project name and location.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with

permission.

FIGURE 1.14 A New Java project named demo is created. Source: Copyright © 1995–2016

 Oracle and/or its affiliates. All rights reserved. Used with permission.

M01_LIAN0942_11_SE_C01.indd 24 2/1/17 4:15 PM

1.12 Developing Java Programs Using Eclipse 25

FIGURE 1.15 The New Java Class dialog box is used to create a new Java class. Source: Copyright © 1995–2016

Oracle and/or its affiliates. All rights reserved. Used with permission.

FIGURE 1.16 You can edit a program and run it in NetBeans. Source: Copyright © 1995–2016 Oracle and/or its

affiliates. All rights reserved. Used with permission.

Edit pane

Output pane

1.12 Developing Java Programs Using Eclipse
You can edit, compile, run, and debug Java Programs using Eclipse.

The preceding section introduced developing Java programs using NetBeans. You can also use

Eclipse to develop Java programs. This section gives the essential instructions to guide new

users to create a project, create a class, and compile/run a class in Eclipse. For instructions on

downloading and installing latest version of Eclipse, see Supplement II.D.

1.12.1 Creating a Java Project
Before creating Java programs in Eclipse, you need to first create a project to hold all files.

Here are the steps to create a Java project in Eclipse:

1. Choose File, New, Java Project to display the New Project wizard, as shown in Figure 1.17.

2. Type demo in the Project name field. As you type, the Location field is automatically set

by default. You may customize the location for your project.

Point
Key

VideoNote

Eclipse brief tutorial

M01_LIAN0942_11_SE_C01.indd 25 2/1/17 4:15 PM

26 Chapter 1 Introduction to Computers, Programs, and Java™

3. Make sure you selected the options Use project folder as root for sources and class files

so the .java and .class files are in the same folder for easy access.

4. Click Finish to create the project, as shown in Figure 1.18.

FIGURE 1.17 The New Java Project dialog is for specifying a project name and the properties.

Source: Eclipse Foundation, Inc.

FIGURE 1.18 A New Java project named demo is created. Source: Eclipse Foundation, Inc.

M01_LIAN0942_11_SE_C01.indd 26 2/1/17 4:15 PM

1.12 Developing Java Programs Using Eclipse 27

1.12.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following steps:

1. Choose File, New, Class to display the New Java Class wizard.

2. Type Welcome in the Name field.

3. Check the option public static void main(String[] args).

4. Click Finish to generate the template for the source code Welcome.java, as shown in

Figure 1.19.

1.12.3 Compiling and Running a Class
To run the program, right-click the class in the project to display a context menu. Choose Run,

Java Application in the context menu to run the class. The output is displayed in the Console

pane, as shown in Figure 1.20. The Run command automatically compiles the program if the

program has been changed.

FIGURE 1.19 The New Java Class dialog box is used to create a new Java class. Source: Eclipse

Foundation, Inc.

M01_LIAN0942_11_SE_C01.indd 27 2/1/17 4:15 PM

28 Chapter 1 Introduction to Computers, Programs, and Java™

FIGURE 1.20 You can edit a program and run it in Eclipse. Source: Eclipse Foundation, Inc.

Edit pane

Output pane

KEY TERMS

Application Program Interface (API) 11

assembler 7

assembly language 7

bit 3

block 13

block comment 13

bus 2

byte 3

bytecode 16

bytecode verifier 18

cable modem 6

central processing unit (CPU) 3

class loader 18

comment 13

compiler 8

console 12

dot pitch 6

DSL (digital subscriber line) 6

encoding scheme 3

hardware 2

high-level language 8

integrated development environment

(IDE) 12

interpreter 8

java command 17

Java Development Toolkit (JDK) 12

Java language specification 11

Java Runtime Environment (JRE) 12

Java Virtual Machine (JVM) 16

javac command 17

keyword (or reserved word) 13

library 11

line comment 13

logic error 21

low-level language 8

machine language 7

main method 13

memory 4

dial-up modem 6

motherboard 3

network interface card (NIC) 6

operating system (OS) 9

pixel 6

program 2

programming 2

runtime error 21

screen resolution 6

software 2

source code 8

source program 8

statement 8

statement terminator 13

storage devices 4

syntax error 20

Note
The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the key

terms and descriptions in the book, organized by chapters.

Supplement I.A

M01_LIAN0942_11_SE_C01.indd 28 2/1/17 4:15 PM

Chapter Summary 29

CHAPTER SUMMARY

1. A computer is an electronic device that stores and processes data.

2. A computer includes both hardware and software.

3. Hardware is the physical aspect of the computer that can be touched.

4. Computer programs, known as software, are the invisible instructions that control the

hardware and make it perform tasks.

5. Computer programming is the writing of instructions (i.e., code) for computers to

perform.

6. The central processing unit (CPU) is a computer’s brain. It retrieves instructions from

memory and executes them.

7. Computers use zeros and ones because digital devices have two stable states, referred to

by convention as zero and one.

8. A bit is a binary digit 0 or 1.

9. A byte is a sequence of 8 bits.

10. A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1

billion bytes, and a terabyte about 1,000 gigabytes.

11. Memory stores data and program instructions for the CPU to execute.

12. A memory unit is an ordered sequence of bytes.

13. Memory is volatile, because information is lost when the power is turned off.

14. Programs and data are permanently stored on storage devices and are moved to memory

when the computer actually uses them.

15. The machine language is a set of primitive instructions built into every computer.

16. Assembly language is a low-level programming language in which a mnemonic is used

to represent each machine-language instruction.

17. High-level languages are English-like and easy to learn and program.

18. A program written in a high-level language is called a source program.

19. A compiler is a software program that translates the source program into a machine-

language program.

20. The operating system (OS) is a program that manages and controls a computer’s activities.

21. Java is platform independent, meaning you can write a program once and run it on any

computer.

22. The Java source file name must match the public class name in the program. Java source-

code files must end with the .java extension.

23. Every class is compiled into a separate bytecode file that has the same name as the class

and ends with the .class extension.

24. To compile a Java source-code file from the command line, use the javac command.

M01_LIAN0942_11_SE_C01.indd 29 2/1/17 4:15 PM

30 Chapter 1 Introduction to Computers, Programs, and Java™

25. To run a Java class from the command line, use the java command.

26. Every Java program is a set of class definitions. The keyword class introduces a class

definition. The contents of the class are included in a block.

27. A block begins with an opening brace ({) and ends with a closing brace (}).

28. Methods are contained in a class. To run a Java program, the program must have a

main method. The main method is the entry point where the program starts when it is

executed.

29. Every statement in Java ends with a semicolon (;), known as the statement terminator.

30. Reserved words, or keywords, have a specific meaning to the compiler and cannot be

used for other purposes in the program.

31. In Java, comments are preceded by two slashes (//) on a line, called a line comment, or

enclosed between /* and */ on one or several lines, called a block comment or para-

graph comment. Comments are ignored by the compiler.

32. Java source programs are case sensitive.

33. Programming errors can be categorized into three types: syntax errors, runtime errors,

and logic errors. Errors reported by a compiler are called syntax errors or compile errors.

Runtime errors are errors that cause a program to terminate abnormally. Logic errors

occur when a program does not perform the way it was intended to.

QUIZ

Answer the quiz for this chapter at www.pearsonhighered.com/liang. Choose this book and click

Companion Website to select Quiz.

PROGRAMMING EXERCISES

Pedagogical Note
We cannot stress enough the importance of learning programming through exercises.

For this reason, the book provides a large number of programming exercises at various

levels of difficulty. The problems cover many application areas, including math, science,

business, financial, gaming, animation, and multimedia. Solutions to most even-

numbered programming exercises are on the Companion Website. Solutions to most

odd-numbered programming exercises are on the Instructor Resource Website. The level

of difficulty is rated easy (no star), moderate (*), hard (**), or challenging (***).

 1.1 (Display three messages) Write a program that displays Welcome to Java,

Welcome to Computer Science, and Programming is fun.

 1.2 (Display five messages) Write a program that displays Welcome to Java five

times.

 *1.3 (Display a pattern) Write a program that displays the following pattern:

 J A V V A

 J A A V V A A

J J AAAAA V V AAAAA

 J J A A V A A

level of difficulty

M01_LIAN0942_11_SE_C01.indd 30 2/1/17 4:15 PM

Programming Exercises 31

 1.4 (Print a table) Write a program that displays the following table:

a a^2 a^3

1 1 1

2 4 8

3 9 27

4 16 64

 1.5 (Compute expressions) Write a program that displays the result of

9.5 * 4.5 - 2.5 * 3

45.5 - 3.5
.

 1.6 (Summation of a series) Write a program that displays the result of

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

 1.7 (Approximate p) p can be computed using the following formula:

p = 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ c ≤

 Write a program that displays the result of 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
≤

 and 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+

1

13
≤. Use 1.0 instead of 1 in your

program.

 1.8 (Area and perimeter of a circle) Write a program that displays the area and perim-

eter of a circle that has a radius of 5.5 using the following formulas:

perimeter = 2 * radius * p

area = radius * radius * p

 1.9 (Area and perimeter of a rectangle) Write a program that displays the area and perime-

ter of a rectangle with a width of 4.5 and a height of 7.9 using the following formula:

area = width * height

 1.10 (Average speed in miles) Assume that a runner runs 14 kilometers in 45 minutes

and 30 seconds. Write a program that displays the average speed in miles per hour.

(Note 1 mile is equal to 1.6 kilometers.)

 *1.11 (Population projection) The U.S. Census Bureau projects population based on the

following assumptions:

■■ One birth every 7 seconds

■■ One death every 13 seconds

■■ One new immigrant every 45 seconds

 Write a program to display the population for each of the next five years. Assume

that the current population is 312,032,486, and one year has 365 days. Hint: In

Java, if two integers perform division, the result is an integer. The fractional part is

truncated. For example, 5 / 4 is 1 (not 1.25) and 10 / 4 is 2 (not 2.5). To get an

accurate result with the fractional part, one of the values involved in the division

must be a number with a decimal point. For example, 5.0 / 4 is 1.25 and 10 /

4.0 is 2.5.

 1.12 (Average speed in kilometers) Assume that a runner runs 24 miles in 1 hour, 40

minutes, and 35 seconds. Write a program that displays the average speed in

kilometers per hour. (Note 1 mile is equal to 1.6 kilometers.)

M01_LIAN0942_11_SE_C01.indd 31 2/1/17 4:15 PM

32 Chapter 1 Introduction to Computers, Programs, and Java™

 *1.13 (Algebra: solve 2 * 2 linear equations) You can use Cramer’s rule to solve the

following 2 * 2 system of linear equation provided that ad – bc is not 0:

ax + by = e

cx + dy = f
 x =

ed - bf

ad - bc
 y =

af - ec

ad - bc

 Write a program that solves the following equation and displays the value for x and

y: (Hint: replace the symbols in the formula with numbers to compute x and y. This

exercise can be done in Chapter 1 without using materials in later chapters.)

3.4x + 50.2y = 44.5

2.1x + .55y = 5.9

Note
More than 200 additional programming exercises with solutions are provided to the

instructors on the Instructor Resource Website.

M01_LIAN0942_11_SE_C01.indd 32 2/1/17 4:15 PM

