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Preface

The third edition of Calculus: Early Transcendentals supports a three-semester or four-

quarter calculus sequence typically taken by students studying mathematics, engineering, 

the natural sciences, or economics. The third edition has the same goals as the first edition:

• to motivate the essential ideas of calculus with a lively narrative, demonstrating the util-

ity of calculus with applications in diverse fields;

• to introduce new topics through concrete examples, applications, and analogies, appeal-

ing to students’ intuition and geometric instincts to make calculus natural and believ-

able; and

• once this intuitive foundation is established, to present generalizations and abstractions 

and to treat theoretical matters in a rigorous way.

The third edition both builds on the success of the previous two editions and addresses 

the feedback we have received. We have listened to and learned from the instructors who 

used the text. They have given us wise guidance about how to make the third edition an 

even more effective learning tool for students and a more powerful resource for instruc-

tors. Users of the text continue to tell us that it mirrors the course they teach—and, more 

important, that students actually read it! Of course, the third edition also benefits from our 

own experiences using the text, as well as from our experiences teaching mathematics at 

diverse institutions over the past 30 years.

New to the Third Edition

Exercises

The exercise sets are a major focus of the revision. In response to reviewer and instruc-

tor feedback, we’ve made some significant changes to the exercise sets by rearranging 

and relabeling exercises, modifying some exercises, and adding many new ones. Of the 

approximately 10,400 exercises appearing in this edition, 18% are new, and many of the 

exercises from the second edition were revised for this edition. We analyzed aggregated 

student usage and performance data from MyLab™ Math for the previous edition of this 

text. The results of this analysis helped us improve the quality and quantity of exercises 

that matter the most to instructors and students. We have also simplified the structure of 

the exercises sets from five parts to the following three:

1. Getting Started contains some of the former Review Questions but goes beyond those 

to include more conceptual exercises, along with new basic skills and short-answer 

exercises. Our goal in this section is to provide an excellent overall assessment of 

understanding of the key ideas of a section.

2. Practice Exercises consist primarily of exercises from the former Basic Skills, but 

they also include intermediate-level exercises from the former Further Explorations 

and Application sections. Unlike previous editions, these exercises are not necessar-

ily organized into groups corresponding to specific examples. For instance, instead of 

separating out Product Rule exercises from Quotient Rule exercises in Section 3.4, we 
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have merged these problems into one larger group of exercises. Consequently, specific 

instructions such as “Use the Product Rule to find the derivative of the following func-

tions” and “Use the Quotient Rule to find the derivative of the given functions” have 

been replaced with the general instruction “Find the derivative of the following func-

tions.” With Product Rule and Quotient Rule exercises mixed together, students must 

first choose the correct method for evaluating derivatives before solving the problems.

3. Explorations and Challenges consist of more challenging problems and those that 

extend the content of the section.

We no longer have a section of the exercises called “Applications,” but (somewhat ironically)  

in eliminating this section, we feel we are providing better coverage of applications 

because these exercises have been placed strategically throughout the exercise sets. Some 

are in Getting Started, most are in Practice Exercises, and some are in Explorations and 

Challenges. The applications nearly always have a boldface heading so that the topic of 

the application is readily apparent.

Regarding the boldface heads that precede exercises: These heads provide instructors 

with a quick way to discern the topic of a problem when creating assignments. We heard 

from users of earlier editions, however, that some of these heads provided too much guid-

ance in how to solve a given problem. In this edition, therefore, we eliminated or reworded 

run-in heads that provided too much information about the solution method for a problem.

Finally, the Chapter Review exercises received a major revamp to provide more 

exercises (particularly intermediate-level problems) and more opportunities for students 

to choose a strategy of solution. More than 26% of the Chapter Review exercises are new.

Content Changes

Below are noteworthy changes from the previous edition of the 

text. Many other detailed changes, not noted here, were made to 

improve the quality of the narrative and exercises. Bullet points 

with a icon represent major content changes from the previ-

ous edition.

Chapter 1 Functions

• Example 2 in Section 1.1 was modified with more emphasis 

on using algebraic techniques to determine the domain and 

range of a function. To better illustrate a common feature of 

limits, we replaced part (c) with a rational function that has a 

common factor in the numerator and denominator.

• Examples 7 and 8 in Section 1.1 from the second edition 

(2e) were moved forward in the narrative so that students get 

an intuitive feel for the composition of two functions using 

graphs and tables; compositions of functions using algebraic 

techniques follow.

• Example 10 in Section 1.1, illustrating the importance of 

secant lines, was made more relevant to students by using real 

data from a GPS watch during a hike. Corresponding exercises 

were also added.

• Exercises were added to Section 1.3 to give students practice 

at finding inverses of functions using the properties of expo-

nential and logarithmic functions.

• New application exercises (investment problems and a biology 

problem) were added to Section 1.3 to further illustrate the 

usefulness of logarithmic and exponential functions.

Chapter 2 Limits

• Example 4 in Section 2.2 was revised, emphasizing an alge-

braic approach to a function with a jump discontinuity, rather 

than a graphical approach.

• Theorems 2.3 and 2.13 were modified, simplifying the nota-

tion to better connect with upcoming material.

• Example 7 in Section 2.3 was added to solidify the notions of 

left-, right-, and two-sided limits.

• The material explaining the end behavior of exponential and log-

arithmic functions was reworked, and Example 6 in Section 2.5 

was added to show how substitution is used in evaluating limits.

• Exercises were added to Section 2.5 to illustrate the similarities 

and differences between limits at infinity and infinite limits. We 

also included some easier exercises in Section 2.5 involving 

limits at infinity of functions containing square roots.

• Example 5 in Section 2.7 was added to demonstrate an  

epsilon-delta proof of a limit of a quadratic function.

• We added 17 epsilon-delta exercises to Section 2.7 to provide 

a greater variety of problems involving limits of quadratic, 

cubic, trigonometric, and absolute value functions.

Chapter 3 Derivatives

• Chapter 3 now begins with a look back at average and instan-

taneous velocity, first encountered in Section 2.1, with a cor-

responding revised example in Section 3.1.

• The derivative at a point and the derivative as a function 

are now treated separately in Sections 3.1 and 3.2.

• After defining the derivative at a point in Section 3.1 with a 

supporting example, we added a new subsection: Interpreting 

the Derivative (with two supporting examples).

• Several exercises were added to Section 3.3 that require stu-

dents to use the Sum and Constant Rules, together with geom-

etry, to evaluate derivatives.

• The Power Rule for derivatives in Section 3.4 is stated 

for all real powers (later proved in Section 3.9). Example 4 
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in Section 3.4 includes two additional parts to highlight this 

change, and subsequent examples in upcoming sections rely 

on the more robust version of the Power Rule. The Power Rule 

for Rational Exponents in Section 3.8 was deleted because of 

this change.

• We combined the intermediate-level exercises in Section 3.4 

involving the Product Rule and Quotient Rule together under 

one unified set of directions.

• The derivative of e x still appears early in the chapter, but 

the derivative of ekx is delayed; it appears only after the Chain 

Rule is introduced in Section 3.7.

• In Section 3.7, we deleted references to Version 1 and Ver-

sion 2 of the Chain Rule. Additionally, Chain Rule exercises 

involving repeated use of the rule were merged with the stan-

dard exercises.

• In Section 3.8, we added emphasis on simplifying derivative 

formulas for implicitly defined functions; see Examples 4  

and 5.

• Example 3 in Section 3.11 was replaced; the new version shows 

how similar triangles are used in solving a related-rates problem.

Chapter 4 Applications of the Derivative

• The Mean Value Theorem (MVT) was moved from  

Section 4.6 to 4.2 so that the proof of Theorem 4.7 is not 

delayed. We added exercises to Section 4.2 that help students 

better understand the MVT geometrically, and we included 

exercises where the MVT is used to prove some well-known 

identities and inequalities.

• Example 5 in Section 4.5 was added to give guidance on a cer-

tain class of optimization problems.

• Example 3b in Section 4.7 was replaced to better drive home 

the need to simplify after applying l’Hôpital’s Rule.

• Most of the intermediate exercises in Section 4.7 are no longer 

separated out by the type of indeterminate form, and we added 

some problems in which l’Hôpital’s Rule does not apply.

• Indefinite integrals of trigonometric functions with argu-

ment ax (Table 4.9) were relocated to Section 5.5, where they 

are derived with the Substitution Rule. A similar change was 

made to Table 4.10.

• Example 7b in Section 4.9 was added to foreshadow a more 

complete treatment of the domain of an initial value problem 

found in Chapter 9.

• We added to Section 4.9 a significant number of intermediate 

antiderivative exercises that require some preliminary work 

(e.g., factoring, cancellation, expansion) before the antideriva-

tives can be determined.

Chapter 5 Integration

• Examples 2 and 3 in Section 5.1 on approximating areas were 

replaced with a friendlier function where the grid points are more 

transparent; we return to these approximations in Section 5.3, 

where an exact result is given (Example 3b).

• Three properties of integrals (bounds on definite integrals) were 

added in Section 5.2 (Table 5.5); the last of these properties is 

used in the proof of the Fundamental Theorem (Section 5.3).

• Exercises were added to Sections 5.1 and 5.2 where students 

are required to evaluate Riemann sums using graphs or tables 

instead of formulas. These exercises will help students better 

understand the geometric meaning of Riemann sums.

• We added to Section 5.3 more exercises in which the integrand 

must be simplified before the integrals can be evaluated.

• A proof of Theorem 5.7 is now offered in Section 5.5.

• Table 5.6 lists the general integration formulas that were relo-

cated from Section 4.9 to Section 5.5; Example 4 in Section 5.5 

derives these formulas.

Chapter 6 Applications of Integration  

Chapter 7 Logarithmic, Exponential, and Hyperbolic 

Functions

• Chapter 6 from the 2e was split into two chapters in order 

to match the number of chapters in Calculus (Late Transcen-

dentals). The result is a compact Chapter 7.

• Exercises requiring students to evaluate net change using 

graphs were added to Section 6.1.

• Exercises in Section 6.2 involving area calculations with 

respect to x and y are now combined under one unified set of 

directions (so that students must first determine the appropri-

ate variable of integration).

• We increased the number of exercises in Sections 6.3 and 6.4 

in which curves are revolved about lines other than the x- and 

y-axes. We also added introductory exercises that guide stu-

dents, step by step, through the processes used to find volumes.

• A more gentle introduction to lifting problems (specifically, 

lifting a chain) was added in Section 6.7 and illustrated in 

Example 3, accompanied by additional exercises.

• The introduction to exponential growth (Section 7.2) was 

rewritten to make a clear distinction between the relative 

growth rate (or percent change) of a quantity and the rate con-

stant k. We revised the narrative so that the equation y = y0e
kt 

applies to both growth and decay models. This revision 

resulted in a small change to the half-life formula.

• The variety of applied exercises in Section 7.2 was increased 

to further illustrate the utility of calculus in the study of expo-

nential growth and decay.

Chapter 8 Integration Techniques

• Table 8.1 now includes four standard trigonometric integrals 

that previously appeared in the section Trigonometric Integrals 

(8.3); these integrals are derived in Examples 1 and 2 in  

Section 8.1.

• A new section (8.6) was added so that students can mas-

ter integration techniques (that is, choose a strategy) apart 

from the context given in the previous five sections.

• In Section 8.5 we increased the number and variety of exer-

cises where students must set up the appropriate form of the 

partial fraction decomposition of a rational function, including 

more with irreducible quadratic factors.

• A full derivation of Simpson’s Rule was added to Section 8.8,  

accompanied by Example 7, additional figures, and an 

expanded exercise set.
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• The Comparison Test for improper integrals was added to 

Section 8.9, accompanied by Example 7, a two-part example. 

New exercises in Section 8.9 include some covering doubly 

infinite improper integrals over infinite intervals.

Chapter 9 Differential Equations

• The chapter on differential equations that was available 

only online in the 2e was converted to a chapter of the text, 

replacing the single-section coverage found in the 2e.

• More attention was given to the domain of an initial value 

problem, resulting in the addition and revision of several 

examples and exercises throughout the chapter.

Chapter 10 Sequences and Infinite Series

• The second half of Chapter 10 was reordered: Compari-

son Tests (Section 10.5), Alternating Series (Section 10.6, 

which includes the topic of absolute convergence), The Ratio 

and Root Tests (Section 10.7), and Choosing a Convergence 

Test (Section 10.8; new section). We split the 2e section that 

covered the comparison, ratio, and root tests to avoid over-

whelming students with too many tests at one time. Section 10.5 

focuses entirely on the comparison tests; 39% of the exercises 

are new. The topic of alternating series now appears before the 

Ratio and Root Tests so that the latter tests may be stated in 

their more general form (they now apply to any series rather 

than only to series with positive terms). The final section (10.8)  

gives students an opportunity to master convergence tests after 

encountering each of them separately.

• The terminology associated with sequences (10.2) now 

includes bounded above, bounded below, and bounded (rather 

than only bounded, as found in earlier editions).

• Theorem 10.3 (Geometric Sequences) is now developed in 

the narrative rather than within an example, and an additional 

example (10.2.3) was added to reinforce the theorem and limit 

laws from Theorem 10.2.

• Example 5c in Section 10.2 uses mathematical induction to 

find the limit of a sequence defined recursively; this technique 

is reinforced in the exercise set.

• Example 3 in Section 10.3 was replaced with telescoping 

series that are not geometric and that require re-indexing.

• We increased the number and variety of exercises where the 

student must determine the appropriate series test necessary to 

determine convergence of a given series.

• We added some easier intermediate-level exercises to Section 

10.6, where series are estimated using nth partial sums for a 

given value of n.

• Properties of Convergent Series (Theorem 10.8) was expanded 

(two more properties) and moved to Section 10.3 to better bal-

ance the material presented in Sections 10.3 and 10.4. Exam-

ple 4 in Section 10.3 now has two parts to give students more 

exposure to the theorem.

Chapter 11 Power Series

• Chapter 11 was revised to mesh with the changes made in 

Chapter 10.

• We included in Section 11.2 more exercises where the student 

must find the radius and interval of convergence.

• Example 2 in Section 11.3 was added to illustrate how to 

choose a different center for a series representation of a func-

tion when the original series for the function converges to the 

function on only part of its domain.

• We addressed an issue with the exercises in Section 11.2 of the 

previous edition by adding more exercises where the intervals 

of convergence either are closed or contain one, but not both, 

endpoints.

• We addressed an issue with exercises in the previous edition 

by adding many exercises that involve power series centered at 

locations other than 0.

Chapter 12 Parametric and Polar Curves

• The arc length of a two-dimensional curve described by 

parametric equations was added to Section 12.1, supported by 

two examples and additional exercises. Area and surfaces of 

revolution associated with parametric curves were also added 

to the exercises.

• In Example 3 in Section 12.2, we derive more general polar 

coordinate equations for circles.

• The arc length of a curve described in polar coordinates is 

given in Section 12.3.

Chapter 13 Vectors and the Geometry of Space

• The material from the 2e chapter Vectors and Vector- 

Valued Functions is now covered in this chapter and the fol-

lowing chapter.

• Example 5c in Section 13.1 was added to illustrate how to 

express a vector as a product of its magnitude and its  

direction.

• We increased the number of applied vector exercises in 

 Section 13.1, starting with some easier exercises, resulting in a 

wider gradation of exercises.

• We adopted a more traditional approach to lines and 

planes; these topics are now covered together in Section 13.5, 

followed by cylinders and quadric surfaces in Section 13.6. 

This arrangement gives students early exposure to all the basic 

three-dimensional objects that they will encounter throughout 

the remainder of the text.

• A discussion of the distance from a point to a line was 

moved from the exercises into the narrative, supported with 

Example 3 in Section 13.5. Example 4 finds the point of inter-

section of two lines. Several related exercises were added to 

this section.

• In Section 13.6 there is a larger selection of exercises where 

the student must identify the quadric surface associated with 

a given equation. Exercises are also included where students 

design shapes using quadric surfaces.

Chapter 14 Vector-Valued Functions

• More emphasis was placed on the surface(s) on which a space 

curve lies in Sections 14.1 and 14.3.
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• We added exercises in Section 14.1 where students are asked 

to find the curve of intersection of two surfaces and where  

students must verify that a curve lies on a given  surface.

• Example 3c in Section 14.3 was added to illustrate how a 

space curve can be mapped onto a sphere.

• Because the arc length of plane curves (described parametrically 

in Section 12.1 and with polar coordinates in Section 12.3) was 

moved to an earlier location in the text, Section 14.4 is now a 

shorter section.

Chapter 15 Functions of Several Variables

• Equations of planes and quadric surfaces were removed 

from this chapter and now appear in Chapter 13.

• The notation in Theorem 15.2 was simplified to match changes 

made to Theorem 2.3.

• Example 7 in Section 15.4 was added to illustrate how the 

Chain Rule is used to compute second partial derivatives.

• We added more challenging partial derivative exercises to 

 Section 15.3 and more challenging Chain Rule exercises to 

Section 15.4.

• Example 7 in Section 15.5 was expanded to give students 

more practice finding equations of curves that lie on surfaces.

• Theorem 15.13 was added in Section 15.5; it’s a three- 

dimensional version of Theorem 15.11.

• Example 7 in Section 15.7 was replaced with a more interest-

ing example; the accompanying figure helps tell the story of 

maximum/minimum problems and can be used to preview 

Lagrange multipliers.

• We added to Section 15.7 some basic exercises that help stu-

dents better understand the second derivative test for functions 

of two variables.

• Example 1 in Section 15.8 was modified so that using 

Lagrange multipliers is the clear path to a solution, rather than 

eliminating one of the variables and using standard techniques. 

We also make it clear that care must be taken when using the 

method of Lagrange multipliers on sets that are not closed and 

bounded (absolute maximum and minimum values may not exist).

Chapter 16 Multiple Integration

• Example 2 in Section 16.3 was modified because it was too 

similar to Example 1.

• More care was given to the notation used with polar, cylindri-

cal, and spherical coordinates (see, for example, Theorem 16.3 

and the development of integration in different coordinate 

systems).

• Example 3 in Section 16.4 was modified to make the integra-

tion a little more transparent and to show that changing vari-

ables to polar coordinates is permissible in more than just the 

xy-plane.

• More multiple integral exercises were added to Sections 16.1, 

16.2, and 16.4, where integration by substitution or integration 

by parts is needed to evaluate the integrals.

• In Section 16.4 we added more exercises in which the integrals 

must first be evaluated with respect to x or y instead of z. We 

also included more exercises that require triple integrals to be 

expressed in several orderings.

Chapter 17 Vector Calculus

• Our approach to scalar line integrals was stream-

lined; Example 1 in Section 17.2 was modified to reflect 

this fact.

• We added basic exercises in Section 17.2 emphasizing the 

geometric meaning of line integrals in a vector field. A subset 

of exercises was added where line integrals are grouped so 

that the student must determine the type of line integral before 

evaluating the integral.

• Theorem 17.5 was added to Section 17.3; it addresses the con-

verse of Theorem 17.4. We also promoted the area of a plane 

region by a line integral to theorem status (Theorem 17.8 in 

Section 17.4).

• Example 3 in Section 17.7 was replaced to give an example 

of a surface whose bounding curve is not a plane curve and 

to provide an example that buttresses the claims made at 

the end of the section (that is, Two Final Notes on Stokes’ 

Theorem).

• More line integral exercises were added to Section 17.3 where 

the student must first find the potential function before evalu-

ating the line integral over a conservative vector field using the 

Fundamental Theorem of Line Integrals.

• We added to Section 17.7 more challenging surface integrals 

that are evaluated using Stokes’ Theorem.

New to MyLab Math

• Assignable Exercises To better support students and instructors, we made the following 

changes to the assignable exercises:

° Updated the solution processes in Help Me Solve This and View an Example to better 

match the techniques used in the text.

° Added more Setup & Solve exercises to better mirror the types of responses that stu-

dents are expected to provide on tests. We also added a parallel “standard” version 

of each Setup & Solve exercise, to allow the instructor to determine which version to 

assign.

° Added exercises corresponding to new exercises in the text.



° Added exercises where MyLab Math users had identified gaps in coverage in the 2e.

° Added extra practice exercises to each section (clearly labeled EXTRA). These 

“beyond the text” exercises are perfect for chapter reviews, quizzes, and tests.

° Analyzed aggregated student usage and performance data from MyLab Math for the 

previous edition of this text. The results of this analysis helped improve the quality and 

quantity of exercises that matter the most to instructors and students.

• Instructional Videos For each section of the text, there is now a new full-lecture video. 

Many of these videos make use of Interactive Figures to enhance student understanding 

of concepts. To make it easier for students to navigate to the specific content they need, 

each lecture video is segmented into shorter clips (labeled Introduction, Example, or 

Summary). Both the full lectures and the video segments are assignable within MyLab 

Math. The videos were created by the following team: Matt Hudelson (Washington 

State University), Deb Carney and Rebecca Swanson (Colorado School of Mines),  

Greg Wisloski and Dan Radelet (Indiana University of Pennsylvania), and Nick Ormes 

(University of Denver).

• Enhanced Interactive Figures Incorporating functionality from several standard  

Interactive Figures makes Enhanced Interactive Figures mathematically richer and ideal 

for in-class demonstrations. Using a single figure, instructors can illustrate concepts that 

are difficult for students to visualize and can make important connections to key themes 

of calculus.

• Enhanced Sample Assignments These section-level assignments address gaps in pre-

calculus skills with a personalized review of prerequisites, help keep skills fresh with 

spaced practice using key calculus concepts, and provide opportunities to work exer-

cises without learning aids so students can check their understanding. They are assign-

able and editable.

• Quick Quizzes have been added to Learning Catalytics™ (an in-class assessment sys-

tem) for every section of the text.

• Maple™, Mathematica®, and Texas Instruments® Manuals and Projects have all 

been updated to align with the latest software and hardware.

Noteworthy Features

Figures

Given the power of graphics software and the ease with which many students assimilate 

visual images, we devoted considerable time and deliberation to the figures in this text. 

Whenever possible, we let the figures communicate essential ideas using annotations rem-

iniscent of an instructor’s voice at the board. Readers will quickly find that the figures 

facilitate learning in new ways.
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Annotated Examples

Worked-out examples feature annotations in blue to guide students through the process of 

solving the example and to emphasize that each step in a mathematical argument must be 

rigorously justified. These annotations are designed to echo how instructors “talk through” 

examples in lecture. They also provide help for students who may struggle with the alge-

bra and trigonometry steps within the solution process.

Quick Checks

The narrative is interspersed with Quick Check questions that encourage students to do 

the calculus as they are reading about it. These questions resemble the kinds of questions 

instructors pose in class. Answers to the Quick Check questions are found at the end of the 

section in which they occur.

Guided Projects

MyLab Math contains 78 Guided Projects that allow students to work in a directed, step-

by-step fashion, with various objectives: to carry out extended calculations, to derive 

physical models, to explore related theoretical topics, or to investigate new applications of 

calculus. The Guided Projects vividly demonstrate the breadth of calculus and provide a 

wealth of mathematical excursions that go beyond the typical classroom experience. A list 

of related Guided Projects is included at the end of each chapter.

Incorporating Technology

We believe that a calculus text should help students strengthen their analytical skills and 

demonstrate how technology can extend (not replace) those skills. Calculators and graph-

ing utilities are additional tools in the kit, and students must learn when and when not to 

use them. Our goal is to accommodate the different policies regarding technology adopted 

by various instructors.

Throughout the text, exercises marked with T  indicate that the use of technology—

ranging from plotting a function with a graphing calculator to carrying out a calculation 

using a computer algebra system—may be needed. See page xx for information regarding 

our technology resource manuals covering Maple, Mathematica, and Texas Instruments 

graphing calculators.

Text Versions

• eBook with Interactive Figures The text is supported by a groundbreaking and award-

winning electronic book created by Eric Schulz of Walla Walla Community College. 

This “live book” runs in Wolfram CDF Player (the free version of Mathematica) and 

contains the complete text of the print book plus interactive versions of approximately 

700 figures. Instructors can use these interactive figures in the classroom to illustrate the 

important ideas of calculus, and students can explore them while they are reading the 

text. Our experience confirms that the interactive figures help build students’ geometric 

intuition of calculus. The authors have written Interactive Figure Exercises that can be 

assigned via MyLab Math so that students can engage with the figures outside of class 

in a directed way. Available only within MyLab Math, the eBook provides instructors 

with powerful new teaching tools that expand and enrich the learning experience for 

students.

• Other eBook Formats The text is also available in various stand-alone eBook formats. 

These are listed in the Pearson online catalog: www.pearson.com. MyLab Math also 

contains an HTML eBook that is screen-reader accessible.

• Other Print Formats The text is also available in split editions (Single Variable  

[Chapters 1–12] and Multivariable [Chapters 10–17]) and in unbound (3-hole punched) 

formats. Again, see the Pearson online catalog for details: www.pearson.com.
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MyLab Math Online Course  

for Calculus: Early Transcendentals, 3e  

(access code required)

MyLab™ Math is available to accompany Pearson’s market-leading text offer-

ings. To give students a consistent tone, voice, and teaching method, each text’s 

flavor and approach are tightly integrated throughout the accompanying MyLab 
Math course, making learning the material as seamless as possible.

PREPAREDNESS 
One of the biggest challenges in calculus courses is making sure students are adequately prepared 
with the prerequisite skills needed to successfully complete their course work. MyLab Math 
supports students with just-in-time remediation and review of key concepts.

Integrated Review Course
These special MyLab courses contain pre-made, assignable quizzes to assess the prerequisite 
skills needed for each chapter, plus personalized remediation for any gaps in skills that are iden-
tified. Each student, therefore, receives the appropriate level of help—no more, no less.

DEVELOPING DEEPER UNDERSTANDING 
MyLab Math provides content and tools that help students build a deeper understanding of course 
content than would otherwise be possible.

pearson.com/mylab/math

eBook with Interactive Figures
The eBook includes approximately 700 fig-
ures that can be manipulated by students to 
provide a deeper geometric understanding 
of key concepts and examples as they read 
and learn new material. Students get unlim-
ited access to the eBook within any MyLab 
Math course using that edition of the text. 
The authors have written Interactive Figure 
Exercises that can be assigned for home-
work so that students can engage with the 
figures outside of the  classroom.
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NEW! Enhanced Sample Assignments
These section-level assignments include just-in-time review of prerequisites, help keep skills 
fresh with spaced practice of key concepts, and provide opportunities to work exercises without 
learning aids so students can check their understanding. They are assignable and editable within 
MyLab Math.

Additional Conceptual Questions
Additional Conceptual Questions focus on deeper, theoretical understanding of the key concepts 
in calculus. These questions were written by faculty at Cornell University under an NSF grant and 
are also assignable through Learning Catalytics™.

ALL NEW! Instructional Videos
For each section of the text, there is now a new full-lecture video. Many of these videos make 
use of Interactive Figures to enhance student understanding of concepts. To make it easier for 
students to navigate to the content they need, each lecture video is segmented into shorter clips 
(labeled Introduction, Example, or Summary). Both the video lectures and the video segments 
are assignable within MyLab Math. The Guide to Video-Based Assignments makes it easy to 
assign videos for homework by showing which MyLab Math exercises correspond to each video.

pearson.com/mylab/math

Setup & Solve Exercises
These exercises require students to 
show how they set up a problem, 
as well as the solution, thus bet-
ter mirroring what is required on 
tests. This new type of exercise was 
widely praised by users of the sec-
ond edition, so more were added 
to the third edition.

Exercises with Immediate 
Feedback
The over 8000 homework and practice 
exercises for this text regenerate algorith-
mically to give students unlimited oppor-
tunity for practice and mastery. MyLab 
Math provides helpful feedback when 
students enter incorrect answers and 
includes the optional learning aids Help 
Me Solve This, View an Example, videos, 
and/or the eBook.
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UPDATED! Technology Manuals (downloadable)
• Maple™ Manual and Projects by Kevin Reeves, East Texas Baptist University
• Mathematica® Manual and Projects by Todd Lee, Elon University
• TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University
These manuals cover Maple 2017, Mathematica 11, and the TI-84 Plus and TI-89, respectively. 
Each manual provides detailed guidance for integrating the software package or graphing calcu-
lator throughout the course, including syntax and commands. The projects include instructions 
and ready-made application files for Maple and Mathematica. The files can be downloaded from 
within MyLab Math.

Student’s Solutions Manuals (softcover and downloadable)
Single Variable Calculus: Early Transcendentals (Chapters 1–12)  
 ISBN: 0-13-477048-X | 978-0-13-477048-2
Multivariable Calculus (Chapters 10–17)  
 ISBN: 0-13-476682-2 | 978-0-13-476682-9
Written by Mark Woodard (Furman University), the Student’s Solutions Manual contains worked-
out solutions to all the odd-numbered exercises. This manual is available in print and can be 
downloaded from within MyLab Math.

SUPPORTING INSTRUCTION 
MyLab Math comes from an experienced partner with educational expertise and an eye on the 
future. It provides resources to help you assess and improve student results at every turn and 
unparalleled flexibility to create a course tailored to you and your students.

NEW! Enhanced Interactive Figures
Incorporating functionality from several standard Interactive Figures makes Enhanced Interac-
tive Figures mathematically richer and ideal for in-class demonstrations. Using a single enhanced 
figure, instructors can illustrate concepts that are difÏcult for students to visualize and can make 
important connections to key themes of calculus.

pearson.com/mylab/math

Learning Catalytics
Now included in all MyLab 
Math courses, this student 
response tool uses students’ 
smartphones, tablets, or lap-
tops to engage them in more 
interactive tasks and think-
ing during lecture. Learning 
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1

Chapter Preview Mathematics is a language with an alphabet, a vocabulary, 

and many rules. Before beginning your calculus journey, you should be familiar with the 

elements of this language. Among these elements are algebra skills; the notation and ter-

minology for various sets of real numbers; and the descriptions of lines, circles, and other 

basic sets in the coordinate plane. A review of this material is found in Appendix B, online 

at bit.ly/2y3Nck3. This chapter begins with the fundamental concept of a function and 

then presents the entire cast of functions needed for calculus: polynomials, rational func-

tions, algebraic functions, exponential and logarithmic functions, and the trigonometric 

functions, along with their inverses. Before you begin studying calculus, it is important 

that you master the ideas in this chapter.

1.1 Review of Functions
Everywhere around us we see relationships among quantities, or variables. For example, 

the consumer price index changes in time and the temperature of the ocean varies with lati-

tude. These relationships can often be expressed by mathematical objects called functions.  

Calculus is the study of functions, and because we use functions to describe the world 

around us, calculus is a universal language for human inquiry.

Functions

1 

1.1  Review of Functions

1.2  Representing Functions

1.3  Inverse, Exponential, and 

Logarithmic Functions

1.4  Trigonometric Functions and 

Their Inverses

DEFINITION Function

A function ƒ is a rule that assigns to each value x in a set D a unique value denoted 

ƒ1x2. The set D is the domain of the function. The range is the set of all values  

of ƒ1x2 produced as x varies over the entire domain (Figure 1.1).

Function f
Input x Output f (x)

Domain Range

a b f (a) 5 f (b)

x f (x)

f

f

f

Figure 1.1

www.bit.ly/2y3Nck3
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The independent variable is the variable associated with the domain; the dependent 

variable belongs to the range. The graph of a function ƒ is the set of all points 1x, y2 in 

the xy-plane that satisfy the equation y = ƒ1x2. The argument of a function is the expres-

sion on which the function works. For example, x is the argument when we write ƒ1x2. 
Similarly, 2 is the argument in ƒ122 and x2

+ 4 is the argument in ƒ1x2
+ 42.

QUICK CHECK 1 If ƒ1x2 = x2
- 2x, find ƒ1-12, ƒ1x22, ƒ1t2, and ƒ1p - 12. 

The requirement that a function assigns a unique value of the dependent variable to 

each value in the domain is expressed in the vertical line test (Figure 1.2a). For example, the 

outside temperature as it varies over the course of a day is a function of time (Figure 1.2b).

O

T
em

p
er

at
u
re

Time

Two y values for one value
of x fails test—not a function

Two times for one temperature
—a function

O

y

x

(a) (b)

Figure 1.2

Vertical Line Test

A graph represents a function if and only if it passes the vertical line test: Every 

vertical line intersects the graph at most once. A graph that fails this test does not 

represent a function.

EXAMPLE 1 Identifying functions State whether each graph in Figure 1.3 represents  

a function.

➤ If the domain is not specified, we take it 

to be the set of all values of x for which 

ƒ is defined. We will see shortly that the 

domain and range of a function may be 

restricted by the context of the problem.

➤ A set of points or a graph that does not 

correspond to a function represents 

a relation between the variables. All 

functions are relations, but not all 

relations are functions.

y

x

y

x

y

x

y

x

(a) (b) (c) (d)

Figure 1.3

SOLUTION The vertical line test indicates that only graphs (a) and (c) represent functions. 

In graphs (b) and (d), there are vertical lines that intersect the graph more than once. 

Equivalently, there are values of x that correspond to more than one value of y. Therefore, 

graphs (b) and (d) do not pass the vertical line test and do not represent functions.

Related Exercise 3 

EXAMPLE 2 Domain and range Determine the domain and range of each function.

a. ƒ1x2 = x2
+ 1  b. g1x2 = 24 - x2  c. h1x2 = x2

- 3x + 2

x - 1
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SOLUTION

a. Note that ƒ is defined for all values of x; therefore, its domain is the set of all real num-

bers, written 1-∞ , ∞2 or ℝ. Because x2
Ú 0 for all x, it follows that x2

+ 1 Ú 1, 

which implies that the range of ƒ is 31, ∞2. Figure 1.4 shows the graph of ƒ along with 

its domain and range.

b. Functions involving square roots are defined provided the quantity under the root is 

nonnegative (additional restrictions may also apply). In this case, the function g is 

defined provided 4 - x2
Ú 0, which means x2

… 4, or -2 … x … 2. Therefore, the 

domain of g is 3-2, 24. The graph of g1x2 = 24 - x2 is the upper half of a circle 

centered at the origin with radius 2 (Figure 1.5; see Appendix B, online at  

bit.ly/2y3Nck3). From the graph we see that the range of g is 30, 24.
c. The function h is defined for all values of x ≠ 1, so its domain is 5x: x ≠ 16.  

Factoring the numerator, we find that

h1x2 = x2
- 3x + 2

x - 1
=

1x - 121x - 22
x - 1

= x - 2, provided x ≠ 1.

The graph of y = h1x2, shown in Figure 1.6, is identical to the graph of the line 

y = x - 2 except that it has a hole at 11, -12 because h is undefined at x = 1. There-

fore, the range of h is 5y: y ≠ -16. Related Exercises 23, 25 
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Figure 1.7 Related Exercises 8–9 

QUICK CHECK 2 State the domain and range of ƒ1x2 = 1x2
+ 12-1. 

Composite Functions

Functions may be combined using sums 1ƒ + g2, differences 1ƒ - g2, products 1ƒg2, or 

quotients 1ƒ>g2. The process called composition also produces new functions.

EXAMPLE 3 Domain and range in context At time t = 0, a stone is thrown vertically 

upward from the ground at a speed of 30 m>s. Its height h above the ground in meters (ne-

glecting air resistance) is approximated by the function ƒ1t2 = 30t - 5t2, where t is mea-

sured in seconds. Find the domain and range of ƒ in the context of this particular problem.

SOLUTION Although ƒ is defined for all values of t, the only relevant times are between 

the time the stone is thrown 1t = 02 and the time it strikes the ground, when h = 0. 

Solving the equation h = 30t - 5t2
= 0, we find that

 30t - 5t2
= 0

 5t16 - t2 = 0  Factor.

 5t = 0 or 6 - t = 0 Set each factor equal to 0.

 t = 0 or t = 6.  Solve.

Therefore, the stone leaves the ground at t = 0 and returns to the ground at t = 6. An 

appropriate domain that fits the context of this problem is 5t: 0 … t … 66. The range 

consists of all values of h = 30t - 5t2 as t varies over 30, 64. The largest value of h oc-

curs when the stone reaches its highest point at t = 3 (halfway through its flight), which 

is h = ƒ132 = 45. Therefore, the range is 30, 454. These observations are confirmed by 

the graph of the height function (Figure 1.7). Note that this graph is not the trajectory of 

the stone; the stone moves vertically.

www.bit.ly/2y3Nck3
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EXAMPLE 4 Using graphs to evaluate composite functions Use the graphs of ƒ and 

g in Figure 1.9 to find the following values.

a. ƒ1g1322  b. g1  ƒ1322  c. ƒ1  ƒ1422  d. ƒ1g1  ƒ18222
SOLUTION

a. The graphs indicate that g132 = 4 and ƒ142 = 8, so ƒ1g1322 = ƒ142 = 8.

b. We see that g1ƒ1322 = g152 = 1. Observe that ƒ1g1322 ≠ g1ƒ1322.
c. In this case, ƒ1ƒ1422 = ƒ182 = 6.

8

d. Starting on the inside,

ƒ1g1ƒ18222 = ƒ1g1622 = ƒ112 = 6.

 6       1 Related Exercise 15 

()*

()* ()*

DEFINITION Composite Functions

Given two functions ƒ and g, the composite function ƒ ∘ g is defined by 1ƒ ∘ g21x2 = ƒ1g1x22. It is evaluated in two steps: y = ƒ1u2, where u = g1x2. 
The domain of ƒ ∘ g consists of all x in the domain of g such that u = g1x2 is in the 

domain of ƒ (Figure 1.8).

Range of g Range of f + gDomain of g Domain of f

x
1

x
2

g(x
2
) is outside domain

of f, so x
2
 is not in

domain of f + g.

g(x
1
) is in domain

of f, so x
1 

is in

domain of f + g.

g f

f (g(x
1
))

x
Function

g
u 5 g(x)

Function
f

y 5 f (u) 5 f (g(x))

(a)

(b)

Figure 1.8

➤  In the composition y = ƒ1g1x22, ƒ is the 

outer function and g is the inner function.

➤ Three different notations for intervals 

on the real number line will be used 

throughout the text:

• 3-2, 32 is an example of interval  

notation,

• -2 … x 6 3 is inequality notation, and

• 5x: -2 … x 6 36 is set notation.

9

8

7

6

5

4

3

2

1

9876543210

y

x

y 5 f (x)

y 5 g(x)

Figure 1.9

EXAMPLE 5 Using a table to evaluate composite functions Use the function values 

in the table to evaluate the following composite functions.

a. 1ƒ ∘ g2102  b. g1ƒ1-122  c. ƒ1g1g1-1222
x -2 -1 0 1 2

ƒ 1x 2 0 1 3 4 2

g 1x 2 -1 0 -2 -3 -4

SOLUTION

a. Using the table, we see that g102 = -2 and ƒ1-22 = 0. Therefore, 1ƒ ∘ g2102 = 0.

b. Because ƒ1-12 = 1 and g112 = -3, it follows that g1ƒ  1-122 = -3.

c. Starting with the inner function,

ƒ1g1g1-1222 = ƒ1g1022 = ƒ1-22 = 0.

 0       -2 Related Exercise 16 

(1)1* ()*
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EXAMPLE 6 Composite functions and notation Let ƒ1x2 = 3x2
- x and 

g1x2 = 1>x. Simplify the following expressions.

a. ƒ15p + 12  b. g11>x2  c. ƒ1g1x22  d. g1ƒ1x22
SOLUTION In each case, the functions work on their arguments.

a. The argument of ƒ is 5p + 1, so

ƒ15p + 12 = 315p + 122
- 15p + 12 = 75p2

+ 25p + 2.

b. Because g requires taking the reciprocal of the argument, we take the reciprocal of 1>x 

and find that g11>x2 = 1>11>x2 = x.

c. The argument of ƒ is g1x2, so

ƒ1g1x22 = ƒ a 1

x
b = 3a 1

x
b2

- a 1

x
b =

3

x2
-

1

x
=

3 - x

x2
 .

d. The argument of g is ƒ1x2, so

g1ƒ1x22 = g13x2
- x2 = 1

3x2
- x

 .

Related Exercises 33–37 

➤ Examples 6c and 6d demonstrate that, in 

general,

ƒ1g1x22 ≠ g1ƒ  1x22.

➤ Techniques for solving inequalities are 

discussed in Appendix B, online at  

bit.ly/2y3Nck3.

EXAMPLE 7 Working with composite functions Identify possible choices for the 

inner and outer functions in the following composite functions. Give the domain of the 

composite function.

a. h1x2 = 29x - x2  b. h1x2 = 2

1x2
- 123

SOLUTION

a. An obvious outer function is ƒ1x2 = 1x, which works on the inner function 

g1x2 = 9x - x2. Therefore, h can be expressed as h = ƒ ∘ g or h1x2 = ƒ1g1x22. The 

domain of ƒ ∘ g consists of all values of x such that 9x - x2
Ú 0. Solving this inequal-

ity gives 5x: 0 … x … 96 as the domain of ƒ ∘ g.

b. A good choice for an outer function is ƒ1x2 = 2>x3
= 2x-3, which works on 

the inner function g1x2 = x2
- 1. Therefore, h can be expressed as h = ƒ ∘ g 

or h1x2 = ƒ1g1x22. The domain of ƒ ∘ g consists of all values of g1x2 such that 

g1x2 ≠ 0, which is 5x: x ≠ {16. Related Exercises 44–45 

EXAMPLE 8 More composite functions Given ƒ1x2 = 23 x and g1x2 = x2
- x - 6, 

find the following composite functions and their domains.

a. g ∘ ƒ   b. g ∘ g

SOLUTION

a. We have

1g ∘ ƒ21x2 = g1ƒ1x22 = g123 x2 = 123 x2 2
- 23 x - 6 = x2>3

- x1>3
- 6.

ƒ1x2     ƒ1x2
Because the domains of ƒ and g are 1-∞ , ∞2, the domain of ƒ ∘ g is also 1-∞ , ∞2.

b. In this case, we have the composition of two polynomials:

 1g ∘ g21x2 = g1g1x22
 = g1x2

- x - 62
 = 1x2

- x - 622
- 1x2

- x - 62 - 6

          g1x2        g1x2
 = x4

- 2x3
- 12x2

+ 13x + 36.

The domain of the composition of two polynomials is 1-∞ , ∞2.
Related Exercises 47–48 

()*(1)1*

(1+)+1*     (1+)+1*

QUICK CHECK 3 If ƒ1x2 = x2
+ 1 and 

g1x2 = x2, find ƒ ∘ g and g ∘ ƒ. 

www.bit.ly/2y3Nck3
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Secant Lines and the Difference Quotient

As you will see shortly, slopes of lines and curves play a fundamental role in calculus.  

Figure 1.10 shows two points P1x, ƒ1x22 and Q1x + h, ƒ1x + h22 on the graph of 

y = ƒ1x2 in the case that h 7 0. A line through any two points on a curve is called a 

secant line; its importance in the study of calculus is explained in Chapters 2 and 3. For 

now, we focus on the slope of the secant line through P and Q, which is denoted msec 

and is given by

msec =

change in y

change in x
=

ƒ1x + h2 - ƒ1x2
1x + h2 - x

=

ƒ1x + h2 - ƒ1x2
h

 .

The slope formula 
ƒ1x + h2 - ƒ1x2

h
 is also known as a difference quotient, 

and it can be expressed in several ways depending on how the coordinates of P 

and Q are labeled. For example, given the coordinates P1a, ƒ1a22 and Q1x, ƒ1x22  
(Figure 1.11), the difference quotient is

msec =
ƒ1x2 - ƒ1a2

x - a
.

We interpret the slope of the secant line in this form as the average rate of change of ƒ 

over the interval 3a, x4.

x

y
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f (x)

f (x 1 h)

x x 1 h

y 5 f (x)

P

Q

f (x 1 h) 2 f (x)

h

f (x 1 h) 2 f (x)

h
m

sec 
5

For h . 0

Figure 1.10
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f (x) 2 f (a)

x 2 a

f (x) 2 f (a)
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m

sec 
5
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Figure 1.11

EXAMPLE 9 Working with difference quotients

a. Simplify the difference quotient 
ƒ1x + h2 - ƒ1x2

h
, for ƒ1x2 = 3x2

- x.

b. Simplify the difference quotient 
ƒ1x2 - ƒ1a2

x - a
, for ƒ1x2 = x3.

SOLUTION

a. First note that ƒ1x + h2 = 31x + h22
- 1x + h2. We substitute this expression into 

the difference quotient and simplify:

ƒ1x + h2       ƒ1x2

 
ƒ1x + h2 - ƒ1x2

h
=

31x + h22
- 1x + h2 - 13x2

- x2
h

 =
31x2

+ 2xh + h22 - 1x + h2 - 13x2
- x2

h
 Expand 1x + h22.

 =
3x2

+ 6xh + 3h2
- x - h - 3x2

+ x

h
 Distribute.

 =
6xh + 3h2

- h

h
 Simplify.

 =
h16x + 3h - 12

h
= 6x + 3h - 1.  Factor and simplify.

b. The factoring formula for the difference of perfect cubes is needed:

 
ƒ1x2 - ƒ1a2

x - a
=

x3
- a3

x - a

 =
1x - a21x2

+ ax + a22
x - a

 Factoring formula

 = x2
+ ax + a2.  Simplify.

Related Exercises 66, 72 

(1+++1)+++11* (1+)+1*

➤ Treat ƒ1x + h2 like the composition 

ƒ1g1x22, where x + h plays the role of 

g1x2. It may help to establish a pattern in 

your mind before evaluating ƒ1x + h2. 
For instance, using the function in 

Example 9a, we have

 ƒ1x2 = 3x2
- x;

 ƒ1122 = 3 # 122
- 12;

 ƒ1b2 = 3b2
- b;

 ƒ1math2 = 3 # math2
- math;

therefore,

ƒ1x + h2 = 31x + h22
- 1x + h2.

➤ See the front papers of this text for a 

review of factoring formulas.
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EXAMPLE 10 Interpreting the slope of the secant line The position of a hiker on a 

trail at various times t is recorded by a GPS watch worn by the hiker. These data are then 

uploaded to a computer to produce the graph of the distance function d = ƒ1t2 shown 

in Figure 1.12, where d measures the distance traveled on the trail in miles and t is the 

elapsed time in hours from the beginning of the hike.

a. Find the slope of the secant line that passes through the points on the graph corre-

sponding to the trail segment between milepost 3 and milepost 5, and interpret the 

result.

b. Estimate the slope of the secant line that passes through points A and B in Figure 1.12, 

and compare it to the slope of the secant line found in part (a).

d 5 f (t)

(0.45, 1)

(1.12, 2)

(1.76, 3)

(4.68, 6)

(5.85, 7)

(2.65, 4)

(3.33, 5)

Horizontal line segments
have horizontal secant lines:
The hiker is stationary.

5 2 3 mi

3.33 2 1.76 hr
m

sec 
5

mi

hr

ø4.2

ø5.8

change in d

change in

d ø 0.5 mi

0.5

change in t 0.2
m

sec 
5 ø 5 2.5

1

2

3

4

5

6

3 4 5 621

d

ø4.4

ø5.3

t

7

0

A

change in

t ø 0.2 hr

B

d 5 f (t)

(0.45, 1)

(1.12, 2)

(1.76, 3)

(4.68, 6)

(5.85, 7)

(2.65, 4)

(3.33, 5)

Horizontal line segments
have horizontal secant lines:
The hiker is stationary.

5 2 3 mi
 ø 1.3 

3.33 2 1.76 hr
m

sec 
5

mi

hr

ø4.2

ø5.8

change in d

change in

d ø 0.5 mi

0.5

change in t 0.2
m

sec 
5 ø 5 2.5

1

2

3

4

5

6

3 4 5 621

d

ø4.4

ø5.3

t

7

0

A

change in

t ø 0.2 hr

B

Figure 1.12

➤ Figure 1.12 contains actual GPS data 

collected in Rocky Mountain National 

Park. See Exercises 75–76 for another 

look at the data set.

SOLUTION

a. We see from the graph of d = ƒ1t2 that 1.76 hours (about 1 hour and 46 minutes) has 

elapsed when the hiker arrives at milepost 3, while milepost 5 is reached 3.33 hours 

into the hike. This information is also expressed as ƒ11.762 = 3 and ƒ13.332 = 5. To 

find the slope of the secant line through these points, we compute the change in dis-

tance divided by the change in time:

msec =

ƒ13.332 - ƒ11.762
3.33 - 1.76

=

5 - 3

3.33 - 1.76
≈ 1.3 

mi

hr
.

The units provide a clue about the physical meaning of the slope: It measures the av-

erage rate at which the distance changes per hour, which is the average speed of the 

hiker. In this case, the hiker walks with an average speed of approximately 1.3 mi>hr 

between mileposts 3 and 5.

b. From the graph we see that the coordinates of points A and B are approximately  14.2, 5.32 and 14.4, 5.82, respectively, which implies the hiker walks 

5.8 - 5.3 = 0.5 mi in 4.4 - 4.2 = 0.2 hr. The slope of the secant line through A  

and B is

msec =

change in d

change in t
≈

0.5

0.2
= 2.5 

mi

hr
.

For this segment of the trail, the hiker walks at an average speed of about 2.5 mi>hr, 

nearly twice as fast as the average speed computed in part (a). Expressed another way, 

steep sections of the distance curve yield steep secant lines, which correspond to faster 

average hiking speeds. Conversely, any secant line with slope equal to 0 corresponds 
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to an average speed of 0. Looking one last time at Figure 1.12, we can identify the 

time intervals during which the hiker was resting alongside the trail—whenever the 

distance curve is horizontal, the hiker is not moving.

Related Exercise 75 

QUICK CHECK 4 Refer to Figure 1.12. Find the hiker’s average speed during the first mile of 

the trail and then determine the hiker’s average speed in the time interval from 3.9 to  

4.1 hours. 

Symmetry

The word symmetry has many meanings in mathematics. Here we consider symmetries of 

graphs and the relations they represent. Taking advantage of symmetry often saves time and 

leads to insights.

DEFINITION Symmetry in Graphs

A graph is symmetric with respect to the y-axis if whenever the point 1x, y2 is 

on the graph, the point 1-x, y2 is also on the graph. This property means that the 

graph is unchanged when reflected across the y-axis (Figure 1.13a).

A graph is symmetric with respect to the x-axis if whenever the point 1x, y2 
is on the graph, the point 1x, -y2 is also on the graph. This property means that the 

graph is unchanged when reflected across the x-axis (Figure 1.13b).

A graph is symmetric with respect to the origin if whenever the point 1x, y2 is 

on the graph, the point 1-x, -y2 is also on the graph (Figure 1.13c). Symmetry about 

both the x- and y-axes implies symmetry about the origin, but not vice versa.

O

y

OO

x

x

(a)

y

(c)(b)

(x, 2y)

(x, y)

(x, y)

(2x, y)

(x, y)

(2x, 2y)

y

x

Symmetry
about origin

Symmetry
about y-axis

Symmetry
about x-axis

Figure 1.13

Polynomials consisting of only even powers of the variable (of the form x2n, where n 

is a nonnegative integer) are even functions. Polynomials consisting of only odd powers 

of the variable (of the form x2n + 1, where n is a nonnegative integer) are odd functions.

QUICK CHECK 5 Explain why the graph of a nonzero function is never symmetric with 

respect to the x-axis. 

DEFINITION Symmetry in Functions

An even function ƒ has the property that ƒ1-x2 = ƒ1x2, for all x in the domain. 

The graph of an even function is symmetric about the y-axis.

An odd function ƒ has the property that ƒ1-x2 = -ƒ1x2, for all x in the domain. 

The graph of an odd function is symmetric about the origin.
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EXAMPLE 11 Identifying symmetry in functions Identify the symmetry, if any, in 

the following functions.

a. ƒ1x2 = x4
- 2x2

- 20  b. g1x2 = x3
- 3x + 1  c. h1x2 = 1

x3
- x

SOLUTION

a. The function ƒ consists of only even powers of x (where 20 = 20 # 1 = 20x0 and x0 is 

considered an even power). Therefore, ƒ is an even function (Figure 1.14). This fact is 

verified by showing that ƒ1-x2 = ƒ1x2:
ƒ1-x2 = 1-x24 - 21-x22 - 20 = x4

- 2x2
- 20 = ƒ1x2.

b. The function g consists of two odd powers and one even power (again, 1 = x0 is an 

even power). Therefore, we expect that g has no symmetry about the y-axis or the ori-

gin (Figure 1.15). Note that

g1-x2 = 1-x23 - 31-x2 + 1 = -x3
+ 3x + 1,

so g1-x2 equals neither g1x2 nor -g1x2; therefore, g has no symmetry.

c. In this case, h is a composition of an odd function ƒ1x2 = 1>x with an odd function 

g1x2 = x3
- x. Note that

h1-x2 = 1

1-x23 - 1-x2 = -
1

x3
- x

= -h1x2.
Because h1-x2 = -h1x2, h is an odd function (Figure 1.16).

20

10

230

210

24 23 21 4321

y

x

(22, 212) (2, 212)

Even function: If (x, y) is on the
graph, then (2x, y) is on the graph.

y 5 x4 2 2x2 2 20

Figure 1.14

20

10

220

210

24 23 21 4321

y

x

No symmetry: neither
even nor odd function.

y 5 x3 2 3x 1 1

Figure 1.15

1

1

y

x

y 5
1

x3 2 x

(1.5, 0.53)

(20.5, 2.67)

(21.5, 20.53)

(0.5, 22.67)

Odd function: If (x, y) is on the
graph, then (2x, 2y) is on the graph.

Figure 1.16
Related Exercises 79–81 

➤ The symmetry of compositions of even 

and odd functions is considered in 

Exercises 101–104.

Getting Started

1. Use the terms domain, range, independent variable, and depen-

dent variable to explain how a function relates one variable to 

another variable.

2. Is the independent variable of a function associated with the 

domain or range? Is the dependent variable associated with the 

domain or range?

SECTION 1.1 EXERCISES

3. Decide whether graph A, graph B, or both represent functions.

y

xO

A

B
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4. The entire graph of ƒ is given. State the domain and range of ƒ.

1

2

3

4

5

6

1 32 4 65

y

x0

y 5 f (x)

5. Which statement about a function is true? (i) For each value of 

x in the domain, there corresponds one unique value of y in the 

range; (ii) for each value of y in the range, there corresponds one 

unique value of x in the domain. Explain.

6. Determine the domain and range of g1x2 = x2
- 1

x - 1
. Sketch a 

graph of g.

7. Determine the domain and range of ƒ1x2 = 3x2
- 10.

8. Throwing a stone A stone is thrown vertically upward from the 

ground at a speed of 40 m>s at time t = 0. Its distance d (in me-

ters) above the ground (neglecting air resistance) is approximated 

by the function ƒ1t2 = 40t - 5t2. Determine an appropriate 

domain for this function. Identify the independent and dependent 

variables.

9. Water tower A cylindrical water tower with a radius of 10 m 

and a height of 50 m is filled to a height of h m. The volume V of 

water (in cubic meters) is given by the function g1h2 = 100ph. 

Identify the independent and dependent variables for this function, 

and then determine an appropriate domain.

10. Let ƒ1x2 = 1>1x3
+ 12. Compute ƒ122 and ƒ1y22.

11. Let ƒ1x2 = 2x + 1 and g1x2 = 1>1x - 12. Simplify the expres-

sions ƒ1g11>222, g1ƒ1422, and g1ƒ1x22.
12. Find functions ƒ and g such that ƒ1g1x22 = 1x2

+ 125. 

Find a different pair of functions ƒ and g that also satisfy 

ƒ1g1x22 = 1x2
+ 125.

13. Explain how to find the domain of ƒ ∘ g if you know the domain 

and range of ƒ and g.

14. If ƒ1x2 = 1x and g1x2 = x3
- 2, simplify the expressions 

1ƒ ∘ g2132, 1ƒ ∘ ƒ21642, 1g ∘ ƒ21x2, and 1ƒ ∘ g21x2.
15. Use the graphs of ƒ and g in the figure to determine the following 

function values.

a. 1ƒ ∘ g2122 b. g1ƒ1222
c. ƒ1g1422 d. g1ƒ1522
e. ƒ1ƒ1822 f. g1ƒ1g15222

9

10

8

7

6

5

4

3

2

1

9876543210

y 5 f (x)

y 5 g(x)

y

x

16. Use the table to evaluate the given compositions.

x -1 0 1 2 3 4

ƒ 1x 2 3 1 0 -1 -3 -1

g 1x 2 -1 0 2 3 4 5

h 1x 2 0 -1 0 3 0 4

a. h1g1022 b. g1ƒ1422 
c. h1h1022 d. g1h1ƒ14222
e. ƒ1ƒ1ƒ11222 f. h1h1h10222
g. ƒ1h1g12222 h. g1ƒ1h14222
i. g1g1g11222 j. ƒ1ƒ1h13222

17. Rising radiosonde The National Weather Service releases  

approximately 70,000 radiosondes every year to collect data from 

the atmosphere. Attached to a balloon, a radiosonde rises at about 

1000 ft>min until the balloon bursts in the upper atmosphere. Sup-

pose a radiosonde is released from a point 6 ft above the ground 

and that 5 seconds later, it is 83 ft above the ground. Let ƒ1t2 rep-

resent the height (in feet) that the radiosonde is above the ground 

t seconds after it is released. Evaluate 
ƒ152 - ƒ102

5 - 0
 and interpret 

the meaning of this quotient.

18. World record free fall On October 14, 2012, Felix Baumgartner 

stepped off a balloon capsule at an altitude of 127,852.4 feet 

and began his free fall. It is claimed that Felix reached the speed 

of sound 34 seconds into his fall at an altitude of 109,731 feet 

and that he continued to fall at supersonic speed for 30 seconds 

until he was at an altitude of 75,330.4 feet. Let ƒ1t2 equal the 

distance that Felix had fallen t seconds after leaving his capsule. 

Calculate ƒ102, ƒ1342, ƒ1642, and his average supersonic speed 

ƒ1642 - ƒ1342
64 - 34

 (in ft>s) over the time interval 334, 644.  
(Source: http://www.redbullstratos.com)

19. Suppose ƒ is an even function with ƒ122 = 2 and g is an odd 

function with g122 = -2. Evaluate ƒ1-22, g1-22, ƒ1g1222, and 

g1ƒ1-222.

http://www.redbullstratos.com
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20. Complete the left half of the graph of g if g is an odd function. 

y

y 5 g(x)

xO

21. State whether the functions represented by graphs A, B, and C in 

the figure are even, odd, or neither.

y

x

B

A

C

22. State whether the functions represented by graphs A, B, and C in 

the figure are even, odd, or neither.

B

A

C

y

x

Practice Exercises

23–26. Domain and range State the domain and range of the function.

23. ƒ1x2 = x2
- 5x + 6

x - 2
 24. ƒ1x2 = x - 2

2 - x

25. ƒ1x2 = 27 - x2 26. ƒ1x2 = -225 - x2

27–30. Domain State the domain of the function.

27. h1u2 = 23 u - 1 28. F  1w2 = 24 2 - w

29. ƒ1x2 = 19 - x223>2 30. g1t2 = 1

1 + t2

31. Launching a rocket A small rocket is launched vertically up-

ward from the edge of a cliff 80 ft above the ground at a speed 

of 96 ft>s. Its height (in feet) above the ground is given by 

h1t2 = -16t2
+ 96t + 80, where t represents time measured in 

seconds.

a. Assuming the rocket is launched at t = 0, what is an appropri-

ate domain for h?

b. Graph h and determine the time at which the rocket reaches its 

highest point. What is the height at that time?

32. Draining a tank (Torricelli’s law) A cylindrical tank with a 

cross-sectional area of 10 m2 is filled to a depth of 25 m with 

water. At t = 0 s, a drain in the bottom of the tank with an 

area of 1 m2 is opened, allowing water to flow out of the tank. 

The depth of water in the tank (in meters) at time t Ú 0 is 

d1t2 = 15 - 0.22t22.

a. Check that d102 = 25, as specified.

b. At what time is the tank empty?

c. What is an appropriate domain for d?

33–42. Composite functions and notation Let ƒ1x2 = x2
- 4, 

g1x2 = x3, and F1x2 = 1>1x - 32. Simplify or evaluate the following 

expressions.

33. g11>z2 34. F1y42
35. F1g1y22 36. ƒ1g1w22
37. g1ƒ1u22 38. 

ƒ12 + h2 - ƒ122
h

39. F1F1x22 40. g1F1ƒ1x222
41. ƒ12x + 42 42. F a3x + 1

x
b

43–46. Working with composite functions Find possible choices for 

outer and inner functions ƒ and g such that the given function h equals 

ƒ ∘ g.

43. h1x2 = 1x3
- 5210 44. h1x2 = 2

1x6
+ x2

+ 122

45. h1x2 = 2x4
+ 2 46. h1x2 = 1

2x3
- 1

47–54. More composite functions Let ƒ1x2 = � x � , g1x2 = x2
- 4,  

F1x2 = 1x, and G1x2 = 1>1x - 22. Determine the following com-

posite functions and give their domains.

47. ƒ ∘ g 48. g ∘ ƒ

49. ƒ ∘ G 50. ƒ ∘ g ∘ G

51. G ∘ g ∘ ƒ 52. g ∘ F ∘ F

53. g ∘ g 54. G ∘ G

55–60. Missing piece Let g1x2 = x2
+ 3. Find a function ƒ that  

produces the given composition.

55. 1ƒ ∘ g21x2 = x2 56. 1ƒ ∘ g21x2 = 1

x2
+ 3

57. 1ƒ ∘ g21x2 = x4
+ 6x2

+ 9 58. 1ƒ ∘ g21x2 = x4
+ 6x2

+ 20

59. 1g ∘ ƒ21x2 = x4
+ 3 60. 1g ∘ ƒ21x2 = x2>3

+ 3

T
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61. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. The range of ƒ1x2 = 2x - 38 is all real numbers.

b. The relation y = x6
+ 1 is not a function because y = 2 for 

both x = -1 and x = 1.

c. If ƒ1x2 = x-1, then ƒ11>x2 = 1>ƒ1x2.
d. In general, ƒ1ƒ1x22 = 1ƒ1x222.

e. In general, ƒ1g1x22 = g1ƒ1x22.
f. By definition, ƒ1g1x22 = 1ƒ ∘ g21x2.
g. If ƒ1x2 is an even function, then cƒ1ax2 is an even function, 

where a and c are nonzero real numbers.

h. If ƒ1x2 is an odd function, then ƒ1x2 + d is an odd function, 

where d is a nonzero real number.

i. If ƒ is both even and odd, then ƒ1x2 = 0 for all x.

62–68. Working with difference quotients Simplify the difference 

quotient 
ƒ1x + h2 - ƒ1x2

h
 for the following functions.

62. ƒ1x2 = 10 63. ƒ1x2 = 3x

64. ƒ1x2 = 4x - 3 65. ƒ1x2 = x2

66. ƒ1x2 = 2x2
- 3x + 1 67. ƒ1x2 = 2

x

68. ƒ1x2 = x

x + 1

69–74. Working with difference quotients Simplify the difference 

quotient 
ƒ1x2 - ƒ1a2

x - a
 for the following functions.

69. ƒ1x2 = x2
+ x 70. ƒ1x2 = 4 - 4x - x2

71. ƒ1x2 = x3
- 2x 72. ƒ1x2 = x4

73. ƒ1x2 = -  
4

x2
 74. ƒ1x2 = 1

x
- x2

75. GPS data A GPS device tracks the elevation E (in feet) of a hiker 

walking in the mountains. The elevation t hours after beginning 

the hike is given in the figure.

a. Find the slope of the secant line that passes through points A 

and B. Interpret your answer as an average rate of change over 

the interval 1 … t … 3.

b. Repeat the procedure outlined in part (a) for the secant line that 

passes through points P and Q.

c. Notice that the curve in the figure is horizontal for an interval 

of time near t = 5.5 hr. Give a plausible explanation for the 

horizontal line segment.

A (1, 10,499)

Q (5, 12,144)

P (4, 12,631)

B (3, 12,227)

(2, 11,368)

(6, 12,330)

12,000

11,000

10,000

9000

13,000

10 2 3 4 5 6

E

t

76. Elevation vs. Distance The following graph, obtained from GPS 

data, shows the elevation of a hiker as a function of the distance d 

from the starting point of the trail.

a. Find the slope of the secant line that passes through points A 

and B. Interpret your answer as an average rate of change over 

the interval 1 … d … 3.

b. Repeat the procedure outlined in part (a) for the secant line that 

passes through points P and Q.

c. Notice that the elevation function is nearly constant over the 

segment of the trail from mile d = 4.5 to mile d = 5. Give a 

plausible explanation for the horizontal line segment.

12,000

11,000

10,000

9000

13,000

12,500

11,500

10,500

9500

10 2 3 4 75 6

E

d

A (1, 9954)

B (3, 11,302)

P (5, 12,357)

Q (6, 12,237)

(7, 12,421)

(2, 10,625)

(4, 11,946)

77–78. Interpreting the slope of secant lines In each exercise, a  

function and an interval of its independent variable are given. The  

endpoints of the interval are associated with points P and Q on the 

graph of the function.

a. Sketch a graph of the function and the secant line through P  

and Q.

b. Find the slope of the secant line in part (a), and interpret your an-

swer in terms of an average rate of change over the interval.  

Include units in your answer.

77. After t seconds, an object dropped from rest falls a distance 

d = 16t2, where d is measured in feet and 2 … t … 5.

78. The volume V of an ideal gas in cubic centimeters is given 

by V = 2>p, where p is the pressure in atmospheres and 

0.5 … p … 2.

79–86. Symmetry Determine whether the graphs of the following 

equations and functions are symmetric about the x-axis, the y-axis, or 

the origin. Check your work by graphing.

79. ƒ1x2 = x4
+ 5x2

- 12 80. ƒ1x2 = 3x5
+ 2x3

- x

81. ƒ1x2 = x5
- x3

- 2 82. ƒ1x2 = 2 � x �

83. x2>3
+ y2>3

= 1 84. x3
- y5

= 0

85. ƒ1x2 = x � x �  86. 0 x 0 + 0 y 0 = 1

Explorations and Challenges

87. Composition of even and odd functions from graphs Assume ƒ 

is an even function and g is an odd function. Use the (incomplete) 

graphs of ƒ and g in the figure to determine the following function 

values.

a. ƒ1g1-222 b. g1ƒ1-222
c. ƒ1g1-422 d. g1ƒ152 - 82
e. g1g1-722 f. ƒ11 - ƒ1822
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9

10

8

7

6

5

4

3

2

1

9876543210

y 5 f (x)

y 5 g(x)

y

x

88. Composition of even and odd functions from tables Assume ƒ 

is an even function, g is an odd function, and both are defined at 0. 

Use the (incomplete) table to evaluate the given compositions.

x 1 2 3 4

ƒ 1x 2 2 -1 3 -4

g 1x 2 -3 -1 -4 -2

a. ƒ1g1-122 b. g1ƒ1-422
c. ƒ1g1-322 d. ƒ1g1-222
e. g1g1-122 f. ƒ1g102 - 12
g. ƒ1g1g1-2222 h. g1ƒ1ƒ1-4222
i. g1g1g1-1222

89. Absolute value graphs Use the definition of absolute value (see 

Appendix B, online at bit.ly/2y3Nck3) to graph the equation 0 x 0 - 0 y 0 = 1. Use a graphing utility to check your work.

90. Graphing semicircles Show that the graph of  

ƒ1x2 = 10 + 2-x2
+ 10x - 9 is the upper half of a circle. 

Then determine the domain and range of the function.

91. Graphing semicircles Show that the graph of  

g1x2 = 2 - 2-x2
+ 6x + 16 is the lower half of a circle. Then  

determine the domain and range of the function.

92. Even and odd at the origin

a. If ƒ102 is defined and ƒ is an even function, is it necessarily 

true that ƒ102 = 0? Explain.

b. If ƒ102 is defined and ƒ is an odd function, is it necessarily true 

that ƒ102 = 0? Explain.

93–96. Polynomial calculations Find a polynomial ƒ that satisfies the 

following properties. (Hint: Determine the degree of ƒ; then substitute 

a polynomial of that degree and solve for its coefficients.)

93. ƒ1ƒ1x22 = 9x - 8 94. 1ƒ1x222
= 9x2

- 12x + 4

95. ƒ1ƒ1x22 = x4
- 12x2

+ 30 96. 1ƒ1x222
= x4

- 12x2
+ 36

97–100. Difference quotients Simplify the difference quotients 
ƒ1x + h2 - ƒ1x2

h
 and 

ƒ1x2 - ƒ1a2
x - a

 by rationalizing the numerator.

97. ƒ1x2 = 1x 98. ƒ1x2 = 21 - 2x

99. ƒ1x2 = -  
3

1x
 100. ƒ1x2 = 2x2

+ 1

101–104. Combining even and odd functions Let E be an even func-

tion and O be an odd function. Determine the symmetry, if any, of the 

following functions.

101. E + O 102. E # O

103. O ∘ E 104. E ∘ O

QUICK CHECK ANSWERS

1. 3, x4
- 2x2, t2

- 2t, p2
- 4p + 3 2. Domain is all 

real numbers; range is 5y: 0 6 y … 16. 3. 1ƒ ∘ g21x2 =
x4

+ 1 and 1g ∘ ƒ21x2 = 1x2
+ 122 4. Average speed  

≈  2.2 mi>hr for first mile; average speed = 0 on 

3.9 … t … 4.1. 5. If the graph were symmetric with  

respect to the x-axis, it would not pass the vertical line test. 

T

1.2 Representing Functions
We consider four approaches to defining and representing functions: formulas, graphs, 

tables, and words.

Using Formulas

The following list is a brief catalog of the families of functions that are introduced in this 

chapter and studied systematically throughout this text; they are all defined by formulas.

1. Polynomials are functions of the form

p1x2 = anx
n
+ an-1x

n-1
+ g + a1x + a0,

where the coefficients a0, a1, c, an are real numbers with an ≠ 0 and the nonnegative 

integer n is the degree of the polynomial. The domain of any polynomial is the set of 

all real numbers. An nth-degree polynomial can have as many as n real zeros or roots—

values of x at which p  1x2 = 0; the zeros are points at which the graph of p intersects 

the x-axis.

➤ One version of the Fundamental 

Theorem of Algebra states that a nonzero 

polynomial of degree n has exactly n 

(possibly complex) roots, counting each 

root up to its multiplicity.

www.bit.ly/2y3Nck3
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Using Graphs

Although formulas are the most compact way to represent many functions, graphs often 

provide the most illuminating representations. Two of countless examples of functions and 

their graphs are shown in Figure 1.18. Much of this text is devoted to creating and analyzing 

graphs of functions.

2. Rational functions are ratios of the form ƒ1x2 = p1x2>q1x2, where p and q are poly-

nomials. Because division by zero is prohibited, the domain of a rational function is the 

set of all real numbers except those for which the denominator is zero.

3. Algebraic functions are constructed using the operations of algebra: addition, sub-

traction, multiplication, division, and roots. Examples of algebraic functions are 

ƒ1x2 = 22x3
+ 4 and g  1x2 = x1>41x3

+ 22. In general, if an even root (square root, 

fourth root, and so forth) appears, then the domain does not contain points at which the 

quantity under the root is negative (and perhaps other points).

4. Exponential functions have the form ƒ1x2 = b  

x, where the base b ≠ 1 is a positive 

real number. Closely associated with exponential functions are logarithmic functions 

of the form ƒ1x2 = logb x, where b 7 0 and b ≠ 1. Exponential functions have a do-

main consisting of all real numbers. Logarithmic functions are defined for positive real 

numbers.

The natural exponential function is ƒ1x2 = ex, with base b = e, where 

e ≈ 2.71828cis one of the fundamental constants of mathematics. Associated with 

the natural exponential function is the natural logarithm function ƒ1x2 = ln x, which 

also has the base b = e.

5. The trigonometric functions are sin x, cos x, tan x, cot x, sec x, and csc x; they are 

fundamental to mathematics and many areas of application. Also important are their 

relatives, the inverse trigonometric functions.

6. Trigonometric, exponential, and logarithmic functions are a few examples of a large 

family called transcendental functions. Figure 1.17 shows the organization of these 

functions, which are explored in detail in upcoming chapters.

➤ Exponential and logarithmic functions 

are introduced in Section 1.3.

➤ Trigonometric functions and their 

inverses are introduced in Section 1.4.

QUICK CHECK 1 Are all polynomials 

rational functions? Are all algebraic 

functions polynomials? Algebraic functions

Rational functions

Transcendental functions

Polynomials

Trigonometric

Logarithmic

Exponential Many more!

Figure 1.17

0.2

0.4

0.6

0.8

1.0

21.0

20.5

0.5

1.0

12010080604020

y P

x0

Snapshot of a traveling wave packet Probability of getting at least one
double-six after n throws of two dice
(defined for positive integers n)

n number of throws

12010080604020 n0

Figure 1.18
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There are two approaches to graphing functions.

• Graphing calculators and graphing software are easy to use and powerful. Such technol-

ogy easily produces graphs of most functions encountered in this text. We assume you 

know how to use a graphing utility.

• Graphing utilities, however, are not infallible. Therefore, you should also strive to mas-

ter analytical methods (pencil-and-paper methods) in order to analyze functions and 

make accurate graphs by hand. Analytical methods rely heavily on calculus and are pre-

sented throughout this text.

The important message is this: Both technology and analytical methods are essential and 

must be used together in an integrated way to produce accurate graphs.

Linear Functions One form of the equation of a line (see Appendix B, online at  

bit.ly/2y3Nck3) is y = mx + b, where m and b are constants. Therefore, the function 

ƒ1x2 = mx + b has a straight-line graph and is called a linear function.

1

3

6

7

1 2 5 7

y

x

(0, 6)

line A

line B

(7, 3)

(5, 7)

(2, 1)

0

y-intercept

Figure 1.19

➤ In the solution to Example 1b, we 

used the point 12, 12 to determine the 

value of b. Using the point 15, 72—or, 

equivalently, the fact that g152 = 7—

leads to the same result.

EXAMPLE 1 Linear functions and their graphs Determine the function represented 

by (a) line A in Figure 1.19 and (b) line B in Figure 1.19.

SOLUTION

a. From the graph, we see that the y-intercept of line A is 10, 62. Using the points 10, 62 
and 17, 32, we find that the slope of the line is

m =

3 - 6

7 - 0
= -  

3

7
 .

Therefore, the line is described by the function ƒ1x2 = -  
3

7
 x + 6.

b. Line B passes through the points 12, 12 and 15, 72, so the slope of this line is

m =

7 - 1

5 - 2
= 2,

which implies that the line is described by a function of the form g1x2 = 2x + b. To 

determine the value of b, note that g122 = 1:

g122 = 2 # 2 + b = 1.

Solving for b, we find that b = 1 - 4 = -3. Therefore, the line is described by the 

function g1x2 = 2x - 3.

Related Exercises 3, 15–16 

EXAMPLE 2 Demand function for pizzas After studying sales for several months, 

the owner of a pizza chain knows that the number of two-topping pizzas sold in a week 

(called the demand) decreases as the price increases. Specifically, her data indicate that 

at a price of $14 per pizza, an average of 400 pizzas are sold per week, while at a price 

of $17 per pizza, an average of 250 pizzas are sold per week. Assume the demand d is a 

linear function of the price p.

a. Find the constants m and b in the demand function d = ƒ1p2 = mp + b. Then graph ƒ.

b. According to this model, how many pizzas (on average) are sold per week at a price  

of $20?

SOLUTION

a. Two points on the graph of the demand function are given: 1p, d2 = 114, 4002 and 117, 2502. Therefore, the slope of the demand line is

m =

400 - 250

14 - 17
= -50 pizzas per dollar.

www.bit.ly/2y3Nck3
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It follows that the equation of the linear demand function is

d - 250 = -501p - 172.
Expressing d as a function of p, we have d = ƒ1p2 = -50p + 1100 (Figure 1.20).

b. Using the demand function with a price of $20, the average number of pizzas that 

could be sold per week is ƒ1202 = 100.

Related Exercise 21 

1000

800

600

400

200

1200

252015105

d

p0

d 5 250p 1 1100

The demand function

d 5  250p 1 1100

is defined on the interval

0 # p # 22.

Figure 1.20

➤ The units of the slope have meaning: 

For every dollar the price is reduced, an 

average of 50 more pizzas can be sold.

Piecewise Functions A function may have different definitions on different parts of 

its domain. For example, income tax is levied in tax brackets that have different tax rates. 

Functions that have different definitions on different parts of their domain are called piece-

wise functions. If all the pieces are linear, the function is piecewise linear. Here are some 

examples.

EXAMPLE 3 Defining a piecewise function The graph of a piecewise linear function g 

is shown in Figure 1.21. Find a formula for the function.

SOLUTION For x 6 2, the graph is linear with a slope of 1 and a y-intercept of 10, 02; its 

equation is y = x. For x 7 2, the slope of the line is -1
2 and it passes through 14, 32; an 

equation of this piece of the function is

y - 3 = -  
1

2
 1x - 42 or y = -  

1

2
 x + 5.

For x = 2, we have g122 = 3. Therefore,

g1x2 = d x if x 6 2

3 if x = 2

-  
1

2
 x + 5 if x 7 2.

Related Exercises 25–26 

1

2

3

4

1 2 3 4

y

x

y 5 g(x)

(4, 3)
(2, 3)

Figure 1.21

EXAMPLE 4 Graphing piecewise functions Graph the following functions.

a. ƒ1x2 = c x2
- 5x + 6

x - 2
if x ≠ 2

1 if x = 2

b. ƒ1x2 = 0 x 0 , the absolute value function

SOLUTION

a. The function ƒ is simplified by factoring and then canceling x - 2, assuming x ≠ 2:

x2
- 5x + 6

x - 2
=

1x - 221x - 32
x - 2

= x - 3.

Therefore, the graph of ƒ is identical to the graph of the line y = x - 3 when x ≠ 2. 

We are given that ƒ122 = 1 (Figure 1.22).

b. The absolute value of a real number is defined as

ƒ1x2 = � x � = b x if x Ú 0

-x if x 6 0.

Graphing y = -x, for x 6 0, and y = x, for x Ú 0, produces the graph in Figure 1.23.

Related Exercises 29–30 

Power Functions Power functions are a special case of polynomials; they have the form 

ƒ1x2 = xn, where n is a positive integer. When n is an even integer, the function values are 

1

1

y

x

y 5 

x2 2 5x 1 6

x 2 2

1

(2, 1)

if x ? 2

if x 5 2

Figure 1.22

1

1

y

x

y 5 uxu

Figure 1.23
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nonnegative and the graph passes through the origin, opening upward (Figure 1.24). For 

odd integers, the power function ƒ1x2 = xn has values that are positive when x is positive 

and negative when x is negative (Figure 1.25).

10

20

30

40

24 23 22 21 4321

y

x

y 5 x4

y 5 x6

y 5 x2

Figure 1.24

40

30

20

10

240

230

220

210
24 23 22 21 4321 x

y y 5 x7

y 5 x5

y 5 x3

Figure 1.25

QUICK CHECK 2 What is the range of ƒ1x2 = x7? What is the range of ƒ1x2 = x8? 

Root Functions Root functions are a special case of algebraic functions; they have the 

form ƒ1x2 = x1>n, where n 7 1 is a positive integer. Notice that when n is even (square 

roots, fourth roots, and so forth), the domain and range consist of nonnegative numbers. 

Their graphs begin steeply at the origin and flatten out as x increases (Figure 1.26).

By contrast, the odd root functions (cube roots, fifth roots, and so forth) are defined 

for all real values of x, and their range is all real numbers. Their graphs pass through the 

origin, open upward for x 6 0 and downward for x 7 0, and flatten out as x increases in 

magnitude (Figure 1.27).

2

1

3210

y

x

y 5 x1/2

y 5 x1/4

y 5 x1/6

Figure 1.26

2

1

22

21

22 21 21 x

y

y 5 x1/3

y 5 x1/5

Figure 1.27

➤ Recall that if n is a positive integer, 

then x1>n is the nth root of x; that is, 

ƒ1x2 = x1>n
= 2

n
x .

Rational Functions Rational functions appear frequently in this text, and much is said 

later about graphing rational functions. The following example illustrates how analysis and 

technology work together.

QUICK CHECK 3 What are the  

domain and range of ƒ1x2 = x1>7? 

What are the domain and range of 

ƒ1x2 = x1>10? 

EXAMPLE 5 Technology and analysis Consider the rational function

ƒ1x2 = 3x3
- x - 1

x3
+ 2x2

- 6
 .

a. What is the domain of ƒ?

b. Find the roots (zeros) of ƒ.

c. Graph the function using a graphing utility.
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d. At what points does the function have peaks and valleys?

e. How does ƒ behave as x grows large in magnitude?

SOLUTION

a.  The domain consists of all real numbers except those at which the 

denominator is zero. A graphing utility shows that the denomina-

tor has one real zero at x ≈ 1.34 and therefore, the domain of ƒ is 

5x: x ≠ 1.346.

b.  The roots of a rational function are the roots of the numerator, pro-

vided they are not also roots of the denominator. Using a graphing util-

ity, the only real root of the numerator is x ≈ 0.85.

c.  After experimenting with the graphing window, a reasonable graph of ƒ 

is obtained (Figure 1.28). Because the denominator is zero at x ≈ 1.34, 

the function becomes large in magnitude at nearby points, and ƒ has a 

vertical asymptote.” Watch page break. Maintain current page break.

d. The function has two peaks (soon to be called local maxima), one near x = -3.0 and 

one near x = 0.4. The function also has two valleys (soon to be called local minima), 

one near x = -0.3 and one near x = 2.6.

e. By zooming out, it appears that as x increases in the positive direction, the graph ap-

proaches the horizontal asymptote y = 3 from below, and as x becomes large and 

negative, the graph approaches y = 3 from above.

Related Exercises 35–36 

24

1

2

23

4

5

6

23

22

21
210 28 26 24 22 108642 x

ypeak

valley

y 5 3

Root: x < 0.85

Domain < 1.34

y 5 
3x3 2 x 2 1

x3 1 2x2 2 6

peak

valley

Figure 1.28

➤ In Chapter 4, we show how calculus is 

used to locate the local maximum and 

local minimum values of a function.

Using Tables

Sometimes functions do not originate as formulas or graphs; they may start as numbers or 

data. For example, suppose you do an experiment in which a marble is dropped into a cylinder 

filled with heavy oil and is allowed to fall freely. You measure the total distance d, in centi-

meters, that the marble falls at times t = 0, 1, 2, 3, 4, 5, 6, and 7 seconds after it is dropped 

(Table 1.1). The first step might be to plot the data points (Figure 1.29).
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Figure 1.30

Table 1.1

t (s) d (cm)

0 0

1 2

2 6

3 14

4 24

5 34

6 44

7 54

The data points suggest that there is a function d = ƒ1t2 that gives the distance that 

the marble falls at all times of interest. Because the marble falls through the oil without 

abrupt changes, a smooth graph passing through the data points (Figure 1.30) is reason-

able. Finding the function that best fits the data is a more difficult problem, which we 

discuss later in the text.

Using Words

Using words may be the least mathematical way to define functions, but it is often the way 

in which functions originate. Once a function is defined in words, it can often be tabulated, 

graphed, or expressed as a formula.

EXAMPLE 6 A slope function Let S be the slope function for a given function ƒ. In 

words, this means that S1x2 is the slope of the curve y = ƒ1x2 at the point 1x, ƒ1x22. Find 

and graph the slope function for the function ƒ in Figure 1.31.

3

2

1

54321 x

y

y 5 f (x)

Figure 1.31
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SOLUTION For x 6 1, the slope of y = ƒ1x2 is 2. The slope is 0 for 1 6 x 6 2, and the 

slope is -1 for x 7 2. At x = 1 and x = 2, the graph of ƒ has a corner, so the slope is 

undefined at these points. Therefore, the domain of S is the set of all real numbers except 

x = 1 and x = 2, and the slope function (Figure 1.32) is defined by the piecewise  

function

S1x2 = c 2 if x 6 1

0 if 1 6 x 6 2

-1 if x 7 2.

Related Exercises 47–48 

3

1

21

21 321 x

y

S(x) 5

2  if x , 1

0  if 1 , x , 2

21  if x . 2

Figure 1.32

EXAMPLE 7 An area function Let A be an area function for a positive function ƒ.  

In words, this means that A1x2 is the area of the region bounded by the graph of ƒ and the 

t-axis from t = 0 to t = x. Consider the function (Figure 1.33)

ƒ1t2 = b2t if 0 … t … 3

6 if t 7 3.

a. Find A122 and A152.
b. Find a piecewise formula for the area function for ƒ.

SOLUTION

a. The value of A122 is the area of the shaded region between the graph of ƒ and the  

t-axis from t = 0 to t = 2 (Figure 1.34a). Using the formula for the area of a triangle,

A122 = 1

2
 122142 = 4.
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87654321 t0

y

f (t) 5
2t  if 0 # t # 3
6   if t . 3

Figure 1.33
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Figure 1.34

The value of A152 is the area of the shaded region between the graph of ƒ and the  

t-axis on the interval 30, 54 (Figure 1.34b). This area equals the area of the triangle whose 

base is the interval 30, 34 plus the area of the rectangle whose base is the interval 33, 54:
 area of the  area of the  

 triangle  rectangle

A152 = 1

2
 132162 + 122162 = 21.

b. For 0 … x … 3 (Figure 1.35a), A1x2 is the area of the triangle whose base is the inter-

val 30, x4. Because the height of the triangle at t = x is ƒ1x2,
A1x2 = 1

2
 x ƒ1x2 = 1

2
 x12x2 = x2.

ƒ1x2

(+)+* (1)1*

"

➤ Slope functions and area functions 

reappear in upcoming chapters and play 

an essential part in calculus.
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For x 7 3 (Figure 1.35b), A1x2 is the area of the triangle on the interval 30, 34 
plus the area of the rectangle on the interval 33, x4:

 area of the  area of the  

 triangle rectangle

A1x2 = 1

2
 132162 + 1x - 32162 = 6x - 9.

Therefore, the area function A (Figure 1.36) has the piecewise definition

A1x2 = b x2 if 0 … x … 3

6x - 9 if x 7 3.

Related Exercises 51–52 

(+)+* (+1)1+*
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Figure 1.35
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The graph of y 5 f (x) 1 d is the graph
of y 5 f (x) shifted vertically by d units:
up if d . 0 and down if d , 0.

Figure 1.37

1

1 x

y

y 5 f (x 1 3)

y 5 f (x)

y 5 f (x 2 2)

The graph of y 5 f (x 2 b) is the graph
of y 5 f (x) shifted horizontally by b units:
right if b . 0 and left if b , 0.

Figure 1.38

Transformations of Functions and Graphs

There are several ways to transform the graph of a function to produce graphs of new func-

tions. Four transformations are common: shifts in the x- and y-directions and scalings in the  

x- and y-directions. These transformations, summarized in Figures 1.37–1.42, can save time 

in graphing and visualizing functions.
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EXAMPLE 8 Transforming parabolas The graphs A, B, and C in Figure 1.43 are 

obtained from the graph of ƒ1x2 = x2 using shifts and scalings. Find the function that 

describes each graph.

SOLUTION

a. Graph A is the graph of ƒ shifted to the right by 2 units. It represents the function

ƒ1x - 22 = 1x - 222
= x2

- 4x + 4.

b. Graph B is the graph of ƒ shifted down by 4 units. It represents the function

ƒ1x2 - 4 = x2
- 4.

c. Graph C is a vertical scaling of the graph of ƒ shifted down by 1 unit. Therefore, it  

represents cƒ1x2 - 1 = cx2
- 1, for some value of c, with 0 6 c 6 1 (because  

the graph is vertically compressed). Using the fact that graph C passes through the 

points 1{2, 02, we find that c =
1
4 . Therefore, the graph represents

y =

1

4
 ƒ1x2 - 1 =

1

4
 x2

- 1.

Related Exercises 55, 58 
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y
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y 5 2 f (x)

For c . 0 and c Þ 1, the graph of y 5 cf (x) is the
graph of y 5 f (x) scaled vertically by a factor of c:
compressed if 0 , c , 1 and stretched if c . 1.

y 5 f (x)
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3

Figure 1.39

y 5 2    f (x)

y 5 f (x)

y 5 22 f (x)

For c , 0, the graph of y 5 cf (x) is the graph of
y 5 f (x) reflected across the x-axis and scaled
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if 0 , ucu , 1 and stretched if ucu . 1.
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Figure 1.40
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For a , 0, the graph of y 5 f (ax) is the graph of y 5 f (x) reflected
across the y-axis and scaled horizontally (if a Þ 21) by a factor of
1/uau: compressed if 0 , 1/uau , 1 and stretched if 1/uau . 1.
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3

Figure 1.42
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➤ You should verify that graph C also 

corresponds to a horizontal stretch 

and a vertical shift. It has the equation 

y = ƒ1ax2 - 1, where a =
1
2.
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EXAMPLE 9 Scaling and shifting Graph g1x2 = � 2x + 1 � .

SOLUTION We write the function as g1x2 = �21x +
1
22�. Letting ƒ1x2 = � x � , we have 

g1x2 = ƒ121x +
1
222. Therefore, the graph of g is obtained by horizontally compress-

ing the graph of ƒ by a factor of 12 and shifting it 12 unit to the left (Figure 1.44).

Related Exercise 64 

QUICK CHECK 4 How do you modify the 

graph of ƒ1x2 = 1>x to produce the 

graph of g1x2 = 1>1x + 42? 
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1

21

23 22 21 321 x

y

Basic curve

y 5 uxu

Step 1: Horizontal compression

 y 5 u2xu

y 5 u2x 1 1u

Step 2: Horizontal shift

 y 5 u2(x 1    )u
  5 u2x 1 1u

1

2

Figure 1.44

➤ Note that we can also write 

g1x2 = 2 �x +
1
2 �, which means the 

graph of g may also be obtained by 

vertically stretching the graph of ƒ by a 

factor of 2, followed by a horizontal shift.
SUMMARY Transformations

Given real numbers a, b, c, and d and a function ƒ, the graph of 

y = cƒ1a1x - b22 + d can be obtained from the graph of y = ƒ1x2 in the  

following steps.

y = ƒ1x2                                                                    T y = ƒ1ax2

 
                                                                   

T y = ƒ1a1x - b22

 
                                                                   

T y = cƒ1a1x - b22

 
                                                                   

T y = cƒ1a1x - b22 + d

horizontal scaling by a factor of 1> � a �  
(and reflection across the y-axis if a 6 0)

horizontal shift  

by b units

vertical scaling by a factor of � c �  (and 

reflection across the x-axis if c 6 0)

vertical shift  

by d units

Getting Started

1. Give four ways in which functions may be defined and  

represented.

2. What is the domain of a polynomial?

3. Determine the function ƒ represented by the graph of the line 

y = ƒ1x2 in the figure.

1

1 x

y

(3, 23)

(0, 21) y 5 f (x)

4. Determine the linear function g whose graph is parallel to the line 

y = 2x + 1 and passes through the point 15, 02.
5. What is the domain of a rational function?

6. What is a piecewise linear function?

SECTION 1.2 EXERCISES

7. Write a definition of the piecewise linear function y = ƒ1x2 that is 

given in the graph.

6

5

4

3

2

1

22

21
24 23 22 21 4321 x

y

y 5 f (x)

8. The graph of y = 1x is shifted 2 units to the right and 3 units up. 

Write an equation for this transformed graph.

9. How do you obtain the graph of y = ƒ1x + 22 from the graph of 

y = ƒ1x2?
10. How do you obtain the graph of y = -3ƒ1x2 from the graph of 

y = ƒ1x2?
11. How do you obtain the graph of y = ƒ13x2 from the graph of 

y = ƒ1x2?
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12. How do you obtain the graph of y = 41x + 322 + 6 from the 

graph of y = x2?

13. The graphs of the functions ƒ and g in the figure are obtained by 

vertical and horizontal shifts and scalings of y = � x � . Find for-

mulas for ƒ and g. Verify your answers with a graphing utility.

1

2

3

4

5

6

12122232425 4 532 x

y

y 5 f (x)

y 5 g(x)

y 5 uxu

21

22

23

24

14. Transformations Use the graph of ƒ in the figure to plot the fol-

lowing functions.

a. y = -ƒ1x2 b. y = ƒ1x + 22
c. y = ƒ1x - 22 d. y = ƒ12x2
e. y = ƒ1x - 12 + 2 f. y = 2ƒ1x2

y 5 f (x)y 5 f (x)

1

2

3

4

5

6

12122232425 4 532 x

y

21

22

23

24

Practice Exercises

15. Graph of a linear function Find and graph the linear function 

that passes through the points 11, 32 and 12, 52.
16. Graph of a linear function Find and graph the linear function 

that passes through the points 12, -32 and 15, 02.
17. Linear function Find the linear function whose graph passes 

though the point 13, 22 and is parallel to the line y = 3x + 8.

18. Linear function Find the linear function whose graph passes 

though the point 1-1, 42 and is perpendicular to the line 

y =
1
4 x - 7.

19–20. Yeast growth Consider a colony of yeast cells that has the 

shape of a cylinder. As the number of yeast cells increases, the cross-

sectional area A (in mm  

2) of the colony increases but the height of the 

colony remains constant. If the colony starts from a single cell, the 

number of yeast cells (in millions) is approximated by the linear func-

tion N1A2 = Cs  

A, where the constant Cs is known as the cell-surface 

coefficient. Use the given information to determine the cell-surface co-

efficient for each of the following colonies of yeast cells, and find  

the number of yeast cells in the colony when the cross-sectional area  

A reaches 150 mm2. (Source: Letters in Applied Microbiology, 594,  

59, 2014)

19. The scientific name of baker’s or brewer’s yeast (used in making 

bread, wine, and beer) is Saccharomyces cerevisiae. When the 

cross-sectional area of a colony of this yeast reaches 100 mm2, 

there are 571 million yeast cells.

20. The yeast Rhodotorula glutinis is a laboratory contaminant. When 

the cross-sectional area of a colony reaches 100 mm2, there are  

226 million yeast cells.

21. Demand function Sales records indicate that if Blu-ray players 

are priced at $250, then a large store sells an average of 12 units 

per day. If they are priced at $200, then the store sells an average 

of 15 units per day. Find and graph the linear demand function for 

Blu-ray sales. For what prices is the demand function defined?

22. Fundraiser The Biology Club plans to have a fundraiser for 

which $8 tickets will be sold. The cost of room rental and refresh-

ments is $175. Find and graph the function p = ƒ1n2 that gives 

the profit from the fundraiser when n tickets are sold. Notice that 

ƒ102 = -$175; that is, the cost of room rental and refreshments 

must be paid regardless of how many tickets are sold. How many 

tickets must be sold for the fundraiser to break even (zero profit)?

23. Bald eagle population After DDT was banned and the Endangered  

Species Act was passed in 1973, the number of bald eagles in the 

United States increased dramatically. In the lower 48 states, the 

number of breeding pairs of bald eagles increased at a nearly lin-

ear rate from 1875 pairs in 1986 to 6471 pairs in 2000.

a. Use the data points for 1986 and 2000 to find a linear function 

p that models the number of breeding pairs from 1986 to 2000 

(0 … t … 14).

b. Using the function in part (a), approximately how many breed-

ing pairs were in the lower 48 states in 1995?

Year

1963
0

2000

4000
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12,000

N
u
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b
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 o
f 

p
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rs
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2
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2
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8
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3
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3
3
9
9

3
7
4
9

4
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4
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2

5
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9
4

5
2
9
5

5
7
4
8 6
4
0
4

6
4
7
1 7
0
6
6

9
7
8
9

1
7
5
7

(Source: U.S. Fish and Wildlife Service)

24. Taxicab fees A taxicab ride costs $3.50 plus $2.50 per mile. Let 

m be the distance (in miles) from the airport to a hotel. Find and 

graph the function c1m2 that represents the cost of taking a taxi 

from the airport to the hotel. Also determine how much it will cost 

if the hotel is 9 miles from the airport.
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25–26. Defining piecewise functions Write a definition of the function 

whose graph is given.

25. 

2

4

6

8

6420222426 x

y

y 5 f (x)

26. 

6

5

4

3

2

1

21

22

87654321 x

y

y 5 g(x)

27. Parking fees Suppose that it costs 5¢ per minute to park at the air-

port, with the rate dropping to 3¢ per minute after 9 p.m. Find and 

graph the cost function c1t2 for values of t satisfying 0 … t … 120.  

Assume that t is the number of minutes after 8 p.m.

28. Taxicab fees A taxicab ride costs $3.50 plus $2.50 per mile for 

the first 5 miles, with the rate dropping to $1.50 per mile after the 

fifth mile. Let m be the distance (in miles) from the airport to a 

hotel. Find and graph the piecewise linear function c1m2 that  

represents the cost of taking a taxi from the airport to a hotel  

m miles away.

29–34. Piecewise linear functions Graph the following functions.

29. ƒ1x2 = c x2
- x

x - 1
if x ≠ 1

2 if x = 1

30. ƒ1x2 = c x2
- x - 2

x - 2
if x ≠ 2

4 if x = 2

31. ƒ1x2 = b3x - 1 if x … 0

-2x + 1 if x 7 0

32. ƒ1x2 = b3x - 1 if x 6 1

x + 1 if x Ú 1

33. ƒ1x2 = c -2x - 1 if x 6 -1

1 if -1 … x … 1

2x - 1 if x 7 1

34. ƒ1x2 = d 2x + 2 if x 6 0

x + 2 if 0 … x … 2

3 -
x

2
if x 7 2

35–40. Graphs of functions

a. Use a graphing utility to produce a graph of the given function. Experi-

ment with different windows to see how the graph changes on different 

scales. Sketch an accurate graph by hand after using the graphing utility.

b. Give the domain of the function.

c. Discuss interesting features of the function, such as peaks, valleys, 

and intercepts (as in Example 5).

35. ƒ1x2 = x3
- 2x2

+ 6 36. ƒ1x2 = 23 2x2
- 8

37. g1x2 = ` x2
- 4

x + 3
`  38. ƒ1x2 = 23x2

- 12

x + 1

39. ƒ1x2 = 3 - 0 2x - 1 0  40. ƒ1x2 = c 0 x - 1 0
x - 1

if x ≠ 1

0 if x = 1

41. Features of a graph Consider the graph of the function ƒ shown 

in the figure. Answer the following questions by referring to the 

points A–I.

A

B G

H

C

D

E

F I

x

y

y 5 f(x)

a. Which points correspond to the roots (zeros) of ƒ?

b. Which points on the graph correspond to high points or peaks 

(soon to be called local maximum values of ƒ)?

c. Which points on the graph correspond to low points or valleys 

(soon to be called local minimum values of ƒ)?

d. As you move along the curve in the positive x-direction, at 

which point is the graph rising most rapidly?

e. As you move along the curve in the positive x-direction, at 

which point is the graph falling most rapidly?

42. Features of a graph Consider the graph of the function g shown 

in the figure.

3

2

1

21

41 2 3

y

x

y 5 g(x)

a. Give the approximate roots (zeros) of g.

b. Give the approximate coordinates of the high points or peaks 

(soon to be called local maximum values of g).

c. Give the approximate coordinates of the low points or valleys 

(soon to be called local minimum values of g).

T
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d. Imagine moving along the curve in the positive x-direction on 

the interval 30, 34. Give the approximate coordinates of the 

point at which the graph is rising most rapidly.

e. Imagine moving along the curve in the positive x-direction on 

the interval 30, 34. Give the approximate coordinates of the 

point at which the graph is falling most rapidly.

43. Relative acuity of the human eye The fovea centralis (or fovea) 

is responsible for the sharp central vision that humans use for 

reading and other detail-oriented eyesight. The relative acuity of 

a human eye, which measures the sharpness of vision, is modeled 

by the function

R1u2 = 0.568

0.331 0 u 0 + 0.568
 ,

 where u (in degrees) is the angular deviation of the line of sight 

from the center of the fovea (see figure).

a. Graph R, for -15 … u … 15.

b. For what value of u is R maximized? What does this fact  

indicate about our eyesight?

c. For what values of u do we maintain at least 90% of our maxi-

mum relative acuity? (Source: The Journal of Experimental 

Biology, 203, 24, Dec 2000)

Fovea

u

44–48. Slope functions Determine the slope function S1x2 for the fol-

lowing functions.

44. ƒ1x2 = 3  45. ƒ1x2 = 2x + 1  46. ƒ1x2 = 0 x 0
47. Use the figure for Exercise 7.

48. Use the figure for Exercise 26.

49–52. Area functions Let A1x2 be the area of the region bounded by 

the t-axis and the graph of y = ƒ1t2 from t = 0 to t = x. Consider the 

following functions and graphs.

a. Find A122.  b. Find A162.  c. Find a formula for A1x2.
49. ƒ1t2 = 6

8

7

6

5

4

3

2

1

7 8654321 t

y

0

y 5 f (t)

T

50. ƒ1t2 = t

2

3

2

1

86 7543210

y

t

4

51. ƒ1t2 = b -2t + 8 if t … 3

2 if t 7 3

7

6

5

8

4

3

2

1

86 7543210

y

t

52. ƒ1t2 = � t - 2 � + 1

7

6

5

4

3

2

1

86 7543210

y

t

53. Explain why or why not Determine whether the following state-

ments are true and give an explanation or counterexample.

a. All polynomials are rational functions, but not all rational 

functions are polynomials.

b. If ƒ is a linear polynomial, then ƒ ∘ ƒ is a quadratic polynomial.

c. If ƒ and g are polynomials, then the degrees of ƒ ∘ g and g ∘ ƒ 

are equal.

d. The graph of g1x2 = ƒ1x + 22 is the graph of ƒ shifted 2 units 

to the right.

54. Shifting a graph Use a shift to explain how the graph of 

ƒ1x2 = 2-x2
+ 8x + 9 is obtained from the graph of 

g1x2 = 225 - x2. Sketch a graph of ƒ.

55. Transformations of ƒ 1x 2 = x2 Use shifts and scalings to trans-

form the graph of ƒ1x2 = x2 into the graph of g. Use a graphing 

utility to check your work.

a. g1x2 = ƒ1x - 32
b. g1x2 = ƒ12x - 42
c. g1x2 = -3ƒ1x - 22 + 4

d. g1x2 = 6ƒa x - 2

3
b + 1
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56. Transformations of ƒ 1x 2 = !x Use shifts and scalings to trans-

form the graph of ƒ1x2 = 1x into the graph of g. Use a graphing 

utility to check your work.

a. g1x2 = ƒ1x + 42 b. g1x2 = 2ƒ12x - 12
c. g1x2 = 2x - 1 d. g1x2 = 32x - 1 - 5

57–64. Shifting and scaling Use shifts and scalings to graph the given 

functions. Then check your work with a graphing utility. Be sure to 

identify an original function on which the shifts and scalings are  

performed.

57. ƒ1x2 = 1x - 222
+ 1 58.  ƒ1x2 = x2

- 2x + 3  

(Hint: Complete the square 

first.)

59. g1x2 = -3x2 60. g1x2 = 2x3
- 1

61. g1x2 = 21x + 322 62. p1x2 = x2
+ 3x - 5

63. h1x2 = -4x2
- 4x + 12 64. h1x2 = �3x - 6 � + 1

65–67. Intersection problems Find the following points of intersection.

65. The point(s) of intersection of the curves y = 422x and y = 2x2

66. The point(s) of intersection of the parabola y = x2
+ 2 and the 

line y = x + 4

67. The point(s) of intersection of the parabolas y = x2 and 

y = -x2
+ 8x

Explorations and Challenges

68. Two semicircles The entire graph of ƒ consists of the upper half 

of a circle of radius 2 centered at the origin and the lower half of a 

circle of radius 3 centered at 15, 02. Find a piecewise function for 

ƒ and plot a graph of ƒ.

69. Piecewise function Plot a graph of the function 

ƒ1x2 = d 3
2 x if 0 … x … 2

3 + 2x - 2 if 2 6 x … 6

225 - 1x - 622 if 6 6 x … 11.

70. Floor function The floor function, or greatest integer function, 

ƒ1x2 = :x; , gives the greatest integer less than or equal to x. 

Graph the floor function for -3 … x … 3.

71. Ceiling function The ceiling function, or smallest integer func-

tion, ƒ1x2 = <x=, gives the smallest integer greater than or equal 

to x. Graph the ceiling function for -3 … x … 3.

72. Sawtooth wave Graph the sawtooth wave defined by

ƒ1x2 = g f

x + 1 if  -1 … x 6 0

x if  0 … x 6 1

x - 1 if  1 … x 6 2

x - 2 if  2 … x 6 3

f

T

73. Square wave Graph the square wave defined by

ƒ1x2 = e 0 if  x 6 0

1 if  0 … x 6 1

0 if  1 … x 6 2

1 if  2 … x 6 3

f

74–76. Roots and powers Sketch a graph of the given pairs of func-

tions. Be sure to draw the graphs accurately relative to each other.

74. y = x4 and y = x6

75. y = x3 and y = x7

76. y = x1>3 and y = x1>5

77. Tennis probabilities Suppose the probability of a server winning 

any given point in a tennis match is a constant p, with 0 … p … 1.  

Then the probability of the server winning a game when serving 

from deuce is

ƒ1p2 = p2

1 - 2p11 - p2  .

a. Evaluate ƒ10.752 and interpret the result.

b. Evaluate ƒ10.252 and interpret the result.

(Source: The College Mathematics Journal, 38, 1, Jan 2007)

78. Temperature scales

a. Find the linear function C = ƒ1F2 that gives the reading on 

the Celsius temperature scale corresponding to a reading on 

the Fahrenheit scale. Use the facts that C = 0 when F = 32 

(freezing point) and C = 100 when F = 212 (boiling point).

b. At what temperature are the Celsius and Fahrenheit readings 

equal?

79. Automobile lease vs. purchase A car dealer offers a purchase op-

tion and a lease option on all new cars. Suppose you are interested 

in a car that can be bought outright for $25,000 or leased for a 

start-up fee of $1200 plus monthly payments of $350.

a. Find the linear function y = ƒ1m2 that gives the total amount 

you have paid on the lease option after m months.

b. With the lease option, after a 48-month (4-year) term, the car 

has a residual value of $10,000, which is the amount that you 

could pay to purchase the car. Assuming no other costs, should 

you lease or buy?

80. Walking and rowing Kelly has finished a picnic on an island 

that is 200 m off shore (see figure). She wants to return to a beach 

house that is 600 m from the point P on the shore closest to the 

island. She plans to row a boat to a point on shore x meters from  

P and then jog along the (straight) shore to the house.

200 m

xP

600 m

a. Let d1x2 be the total length of her trip as a function of x.  

Find and graph this function.

T
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b. Suppose that Kelly can row at 2 m>s and jog at 4 m>s. Let 

T1x2 be the total time for her trip as a function of x. Find and 

graph y = T1x2.
c. Based on your graph in part (b), estimate the point on the shore 

at which Kelly should land to minimize the total time of her 

trip. What is that minimum time?

81. Optimal boxes Imagine a lidless box with height h and a square base 

whose sides have length x. The box must have a volume of 125 ft3.

a. Find and graph the function S1x2 that gives the surface area of 

the box, for all values of x 7 0.

b. Based on your graph in part (a), estimate the value of x that 

produces the box with a minimum surface area.

82. Composition of polynomials Let ƒ be an nth-degree polynomial 

and let g be an mth-degree polynomial. What is the degree of the 

following polynomials?

a. ƒ # ƒ  b. ƒ ∘ ƒ  c. ƒ # g  d. ƒ ∘ g

83. Parabola vertex property Prove that if a parabola crosses the  

x-axis twice, the x-coordinate of the vertex of the parabola is half-

way between the x-intercepts.

T

84. Parabola properties Consider the general quadratic function 

ƒ1x2 = ax2
+ bx + c, with a ≠ 0.

a. Find the coordinates of the vertex of the graph of the parabola 

y = ƒ1x2 in terms of a, b, and c.

b. Find the conditions on a, b, and c that guarantee that the graph 

of ƒ crosses the x-axis twice.

85. Factorial function The factorial function is defined for positive 

integers as n! = n1n - 121n - 22g 3 # 2 # 1.

a. Make a table of the factorial function, for n = 1, 2, 3, 4, 5.

b. Graph these data points and then connect them with a smooth 

curve.

c. What is the least value of n for which n! 7 106?

QUICK CHECK ANSWERS

1. Yes; no 2. 1-∞ , ∞2; 30, ∞2 3. Domain and range 

are 1-∞ , ∞2. Domain and range are 30, ∞2. 4. Shift the 

graph of ƒ horizontally 4 units to the left. 

T

1.3  Inverse, Exponential, and 
Logarithmic Functions

Exponential functions are fundamental to all of mathematics. Many processes in the world 

around us are modeled by exponential functions—they appear in finance, medicine, ecol-

ogy, biology, economics, anthropology, and physics (among other disciplines). Every ex-

ponential function has an inverse function, which is a member of the family of logarithmic 

functions, also discussed in this section.

Exponential Functions

Exponential functions have the form ƒ1x2 = b  

x, where the base b ≠ 1 is a positive real 

number. An important question arises immediately: For what values of x can b  

x be evalu-

ated? We certainly know how to compute b  

x when x is an integer. For example, 23
= 8 and 

2-4
= 1>24

= 1>16. When x is rational, the numerator and denominator are interpreted as a 

power and root, respectively:

power

163>4
= 163>4

= 124 162 3
= 8.

root           2

But what happens when x is irrational? For example, how should 2p be understood? 

Your calculator provides an approximation to 2p, but where does the approximation come 

from? These questions will be answered eventually. For now, we assume that b  

x can be 

defined for all real numbers x and that it can be approximated as closely as desired by us-

ing rational numbers as close to x as needed. In Section 7.1, we prove that the domain of 

an exponential function is all real numbers.

Properties of Exponential Functions ƒ 1x 2 = b  

x

1. Because b  

x is defined for all real numbers, the domain of ƒ is 5x: -∞ 6 x 6 ∞6. 

Because b  

x
7 0 for all values of x, the range of ƒ is 5y: 0 6 y 6 ∞6.

2. For all b 7 0, b0
= 1, and therefore ƒ102 = 1.

3. If b 7 1, then ƒ is an increasing function of x (Figure 1.45). For example, if b = 2, 

then 2x
7 2y whenever x 7 y.

()*

➤ 163>4 can also be computed as 

24 163
= 24 4096 = 8.

➤ Exponent Rules

 For any base b 7 0 and real numbers x 

and y, the following relations hold:

E1. b  

xb  

y
= b  

x + y

E2. 
b  

x

b  

y = b  

x - y

 awhich includes 
1

b  

y = b-yb
E3. 1b  

x2y = b  

xy

E4. b  

x
7 0, for all x

20

15

10

5

21

y

x

y 5 10x

y 5 5x

y 5 3x

y 5 2x

Larger values of b
produce greater rates
of increase in bx  if b . 1.

Figure 1.45
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4. If 0 6 b 6 1, then ƒ is a decreasing function of x. For example, if b =
1
2 , then

ƒ1x2 = a 1

2
b x

=

1

2x = 2-x,

and because 2x increases with x, 2-x decreases with x (Figure 1.46).

20

15

10

5

22 21 x

y

y 5 0.1x

y 5 0.5x

y 5 0.9x

Smaller values of b produce
greater rates of decrease
in bx if 0 , b , 1.

Figure 1.46

The Natural Exponential Function One of the bases used for exponential functions is 

special. For reasons that will become evident in upcoming chapters, the special base is e, 

one of the fundamental constants of mathematics. It is an irrational number with a value of 

e = 2.718281828459 c.

QUICK CHECK 1 Is it possible to raise 

a positive number b to a power 

and obtain a negative number? Is it 

possible to obtain zero? 

QUICK CHECK 2 Explain why 

ƒ1x2 = a 1

3
b x

 is a decreasing 

function. 

➤ The notation e was proposed by the 

Swiss mathematician Leonhard Euler 

(pronounced oiler) (1707–1783). DEFINITION The Natural Exponential Function

The natural exponential function is ƒ1x2 = ex, which has the base 

e = 2.718281828459 c.

The base e gives an exponential function that has a valuable property. As shown 

in Figure 1.47a, the graph of y = ex lies between the graphs of y = 2x and y = 3x  

(because 2 6 e 6 3). At every point on the graph of y = ex, it is possible to draw a 

tangent line (discussed in Chapters 2 and 3) that touches the graph only at that point. The 

natural exponential function is the only exponential function with the property that the 

slope of the tangent line at x = 0 is 1 (Figure 1.47b); therefore, ex has both value and slope 

equal to 1 at x = 0. This property—minor as it may seem—leads to many simplifications 

when we do calculus with exponential functions.

(a) (b)

1

1

y

x

1

1

y

x

y 5 ex

y 5 exy 5 3x

y 5 2x

Tangent line has
slope 1 at (0, 1).

Figure 1.47

Inverse Functions

Consider the linear function ƒ1x2 = 2x, which takes any value of x and doubles it. The 

function that reverses this process by taking any value of ƒ1x2 = 2x and mapping it back 
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to x is called the inverse function of ƒ, denoted ƒ - 1. In this case, the inverse function is 

ƒ - 11x2 = x>2. The effect of applying these two functions in succession looks like this:

ƒ            ƒ - 1

x ¡ 2x ¡ x.

We now generalize this idea.

f

f 21

y 5 f (x)x

y is in the domain of f 21 and

y 5 f (x) is in the range of f.

x is in the domain of f and

x 5 f 21(y) is in the range of f 21.

Figure 1.48

Because the inverse “undoes” the original function, if we start with a value of x, apply 

ƒ to it, and then apply ƒ - 1 to the result, we recover the original value of x; that is,

ƒ211ƒ1x22 5 x.

x xy

ƒ ƒ21

Similarly, if we apply ƒ - 1 to a value of y and then apply ƒ to the result, we recover 

the original value of y; that is,

ƒ

ƒ1ƒ211y22 5 y.

y yx

ƒ21

➤ The notation ƒ - 1 for the inverse 

can be confusing. The inverse is not 

the reciprocal; that is, ƒ - 11x2 is not 

1>ƒ1x2 = 1ƒ1x22-1. We adopt the 

common convention of using simply 

inverse to mean inverse function.

One-to-One Functions We have defined the inverse of a function, but said nothing 

about when it exists. To ensure that ƒ has an inverse on a domain, ƒ must be one-to-one on 

that domain. This property means that every output of the function ƒ corresponds to exactly 

one input. The one-to-one property is checked graphically by using the horizontal line test.

DEFINITION One-to-One Functions and the Horizontal Line Test

A function ƒ is one-to-one on a domain D if each value of ƒ1x2 corresponds to exactly 

one value of x in D. More precisely, ƒ is one-to-one on D if ƒ1x12 ≠ ƒ1x22 whenever 

x1 ≠ x2, for x1 and x2 in D. The horizontal line test says that every horizontal line 

intersects the graph of a one-to-one function at most once (Figure 1.49).
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One-to-one function:
Each value of y in the range
corresponds to exactly
one value of x.

Not one-to-one function:
Some values of y correspond
to more than one value of x.

y
1

Figure 1.49

DEFINITION Inverse Function

Given a function ƒ, its inverse (if it exists) is a function ƒ - 1 such that whenever 

y = ƒ1x2, then ƒ - 11y2 = x (Figure 1.48).

QUICK CHECK 3 What is the inverse of 

ƒ1x2 = 1
3  x? What is the inverse of 

ƒ1x2 = x - 7? 


