
1

C
H

A
P

T
E

R

TOPICS

1.1 Introduction

1.2 Hardware

1.3 How Computers Store Data

1.4 How a Program Works

1.5 Types of Software

Introduction to Computers
and Programming1

1

Introduction
Think about some of the different ways that people use computers. In school, students

use computers for tasks such as writing papers, searching for articles, sending email, and

participating in online classes. At work, people use computers to analyze data, make pre-

sentations, conduct business transactions, communicate with customers and coworkers,

control machines in manufacturing facilities, and many other things. At home, people

use computers for tasks such as paying bills, shopping online, communicating with

friends and family, and playing computer games. And don’t forget that smart phones,

tablets, MP3 players, car navigation systems, and many other devices are computers

too. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This

means that computers are not designed to do just one job, but to do any job that their

programs tell them to do. A program is a set of instructions that a computer follows

to perform a task. For example, Figure 1-1 shows screens from two commonly used

programs: Microsoft Word and PowerPoint.

1.1

2 Chapter 1 Introduction to Computers and Programming

Programs are commonly referred to as software. Software is essential to a computer

because without software, a computer can do nothing. All of the software that we use to

make our computers useful is created by individuals known as programmers or software

developers. A programmer, or software developer, is a person with the training and

skills necessary to design, create, and test computer programs. Computer programming

is an exciting and rewarding career. Today, you will find programmers working in busi-

ness, medicine, government, law enforcement, agriculture, academics, entertainment,

and almost every other field.

This book introduces you to the fundamental concepts of computer programming.

Before we begin exploring those concepts, you need to understand a few basic things

about computers and how they work. This chapter will build a solid foundation of

knowledge that you will continually rely on as you study computer science. First, we

will discuss the physical components that computers are commonly made of. Next, we

will look at how computers store data and execute programs. Finally, we will discuss

the major types of software that computers use.

Figure 1-1 Commonly used programs (Courtesy of Microsoft Corporation)

Hardware

CONCEPT: The physical devices that a computer is made of are referred to as

the computer’s hardware. Most computer systems are made of simi-

lar hardware devices.

The term hardware refers to all of the physical devices, or components, that a computer

is made of. A computer is not one single device, but a system of devices that all work

together. Like the different instruments in a symphony orchestra, each device in a com-

puter plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing

components such as microprocessors, memory, disk drives, video displays, graphics

cards, and so on. Unless you already know a lot about computers, or at least have a

1.2

 1.2 Hardware 3

friend who does, understanding what these different components do can be confusing.

As shown in Figure 1-2, a typical computer system consists of the following major

components:

●● The central processing unit (CPU)
●● Main memory
●● Secondary storage devices
●● Input devices
●● Output devices

Figure 1-2 Typical components of a computer system (all photos © Shutterstock)

Input

Devices

Output

Devices

Secondary

Storage Devices

Central Processing

Unit

Main Memory

(RAM)

Let’s take a closer look at each of these components.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the

computer is running or executing the program. The central processing unit, or CPU, is

the part of a computer that actually runs programs. (The CPU is often referred to as the

processor.) The CPU is the most important component in a computer because without

it, the computer could not run software.

4 Chapter 1 Introduction to Computers and Programming

In the earliest computers, CPUs were huge devices made of electrical and mechanical

components such as vacuum tubes and switches. Figure 1-3 shows such a device. The

two women in the photo are working with the historic ENIAC computer. The ENIAC,

considered by many to be the world’s first programmable electronic computer, was built

in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was

primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo

of a lab technician holding a modern-day microprocessor. In addition to being much

smaller than the old electro-mechanical CPUs in early computers, microprocessors are

also much more powerful.

Figure 1-4 A lab technician holds a modern microprocessor (Courtesy of
Chris Ryan/OJO Images/Getty Images)

Figure 1-3 The ENIAC computer (Courtesy of US Army Center of Military History)

 1.2 Hardware 5

Main Memory

You can think of main memory as the computer’s work area. This is where the computer

stores a program while the program is running, as well as the data that the program is

working with. For example, suppose you are using a word processing program to write

an essay for one of your classes. While you do this, both the word processing program

and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this

because the CPU is able to quickly access data stored at any random location in RAM.

RAM is usually a volatile type of memory that is used only for temporary storage while

a program is running. When the computer is turned off, the contents of RAM are erased.

Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips (photo © Garsya/Shutterstock)

NOTE: Another type of memory that is stored in chips inside the computer is read-only

memory, or ROM. A computer can read the contents of ROM, but it cannot change its

contents, or store additional data there. ROM is nonvolatile, which means that it does

not lose its contents, even when the computer’s power is turned off. ROM is typically

used to store programs that are important for the system’s operation. One example is

the computer’s startup program, which is executed each time the computer is started.

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even

when there is no power to the computer. Programs are normally stored in secondary

memory and loaded into main memory as needed. Important data, such as word process-

ing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk

drive stores data by magnetically encoding it onto a circular disk. Solid state drives,

which store data in solid-state memory, are increasingly becoming popular. A solid

state drive has no moving parts, and operates faster than a traditional disk drive. Most

computers have some sort of secondary storage device, either a traditional disk drive or

a solid state drive, mounted inside their case. External disk drives, which connect to one

of the computer’s communication ports, are also available. External disk drives can be

used to create backup copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying

data, and for moving it to other computers. Universal Serial Bus drives, or USB drives, are

small devices that plug into the computer’s USB port, and appear to the system as a disk

6 Chapter 1 Introduction to Computers and Programming

drive. These drives do not actually contain a disk, however. They store data in a special type

of memory known as flash memory. USB drives, which are also known as memory sticks

and flash drives, are inexpensive, reliable, and small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are

also used for data storage. Data is not recorded magnetically on an optical disc, but is

encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect

the pits and thus read the encoded data. Optical discs hold large amounts of data, and

because recordable CD and DVD drives are now commonplace, they are good mediums

for creating backup copies of data.

NOTE: In recent years, cloud storage has become a popular way to store data. When

you store data in the cloud, you are storing it on a remote server via the Internet,

or via a company’s private network. When your data is stored in the cloud, you can

access it from many different devices, and from any location where you have a net-

work connection. Cloud storage can also be used to back up important data that is

stored on a computer’s disk.

Checkpoint

 1.1 What is a program?

 1.2 What is hardware?

 1.3 List the five major components of a computer system.

 1.4 What part of the computer actually runs programs?

 1.5 What part of the computer serves as a work area to store a program and its

data while the program is running?

 1.6 What part of the computer holds data for long periods of time, even when

there is no power to the computer?

 1.7 What part of the computer collects data from people and from other devices?

 1.8 What part of the computer formats and presents data for people or other devices?

Input Devices

Input is any data the computer collects from people and from other devices. The compo-

nent that collects the data and sends it to the computer is called an input device. Common

input devices are the keyboard, mouse, touchscreen, scanner, microphone, and digital

camera. Disk drives and optical drives can also be considered input devices because

programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be

a sales report, a list of names, or a graphic image. The data is sent to an output device,

which formats and presents it. Common output devices are video displays and printers.

Disk drives and CD recorders can also be considered output devices because the system

sends data to them in order to be saved.

 1.3 How Computers Store Data 7

Figure 1-6 Think of a byte as eight switches

OFF

ON

OFF OFFOFF

ON ON ON

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off

pattern that represents the data. For example, the pattern shown on the left in Figure

1-7 shows how the number 77 would be stored in a byte, and the pattern on the right

shows how the letter A would be stored in a byte. In a moment you will see how these

patterns are determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences

of 0s and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte

is only enough memory to store a letter of the alphabet or a small number. In order to

do anything meaningful, a computer has to have lots of bytes. Most computers today

have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit

stands for binary digit. Computer scientists usually think of bits as tiny switches that

can be either on or off. Bits aren’t actual “switches,” however, at least not in the conven-

tional sense. In most computer systems, bits are tiny electrical components that can hold

either a positive or a negative charge. Computer scientists think of a positive charge as

a switch in the on position, and a negative charge as a switch in the off position. Figure

1-6 shows the way that a computer scientist might think of a byte of memory: as a col-

lection of switches that are each flipped to either the on or off position.

1.3

8 Chapter 1 Introduction to Computers and Programming

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the

bit is turned on or off, it can represent one of two different values. In computer systems,

a bit that is turned off represents the number 0 and a bit that is turned on represents

the number 1. This corresponds perfectly to the binary numbering system. In the binary

numbering system (or binary, as it is usually called) all numeric values are written as

sequences of 0s and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with

the rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth,

as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values

calculated. Starting with the rightmost digit and moving left, the position values are 1,

2, 4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

1 0 0 1 1 1 0 1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

Figure 1-9 The values of binary digits

1 0 0 1 1 1 0 1

 1

 2
 4
 8
 16
 32
 64

128

To determine the value of a binary number you simply add up the position values of

all the 1s. For example, in the binary number 10011101, the position values of the 1s

are 1, 4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position

values is 157. So, the value of the binary number 10011101 is 157.

 1.3 How Computers Store Data 9

Figure 1-10 Determining the value of 10011101

1 0 0 1 1 1 0 1

 1

 4

 8

 16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-11 The bit pattern for 157

128 + 16 + 8 + 4 + 1 = 157

128 64 32 16 8 4 2 1
Position

values

1

0

111 1

0 0

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0.

When all of the bits in a byte are set to 1 (turned on), then the byte holds the larg-

est value that can be stored in it. The largest value that can be stored in a byte is

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. This limit exists because there are only

eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more

than one byte. For example, suppose we put two bytes together. That gives us 16 bits.

The position values of those 16 bits would be 20, 21, 22, 23, and so forth, up through

215. As shown in Figure 1-12, the maximum value that can be stored in two bytes is

65,535. If you need to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position

values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory.

Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in

the off position.

10 Chapter 1 Introduction to Computers and Programming

TIP: The acronym ASCII is pronounced “askee.”

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to

actually convert numbers to binary while programming. Knowing that this process is

taking place inside the computer will help you as you learn, and in the long term this

knowledge will make you a better programmer.

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary num-

ber. That includes characters, such as letters and punctuation marks. When a character

is stored in memory, it is first converted to a numeric code. The numeric code is then

stored in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in

computer memory. Historically, the most important of these coding schemes is ASCII,

which stands for the American Standard Code for Information Interchange. ASCII is a

set of 128 numeric codes that represent the English letters, various punctuation marks,

and other characters. For example, the ASCII code for the uppercase letter A is 65.

When you type an uppercase A on your computer keyboard, the number 65 is stored in

memory (as a binary number, of course). This is shown in Figure 1-13.

Figure 1-13 The letter A is stored in memory as the number 65

65A
00

1

0

1

0 0 0

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and

so forth. Appendix A shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s, and was eventually adopted

by most of all computer manufacturers. ASCII is limited, however, because it defines

codes for only 128 characters. To remedy this, the Unicode character set was developed

in the early 1990s. Unicode is an extensive encoding scheme that is compatible with

ASCII, and can also represent the characters of many of the world’s languages. Today,

Unicode is quickly becoming the standard character set used in the computer industry.

 1.3 How Computers Store Data 11

Advanced Number Storage

Earlier you read about numbers and how they are stored in memory. While reading that

section, perhaps it occurred to you that the binary numbering system can be used to

represent only integer numbers, beginning with 0. Negative numbers and real numbers

(such as 3.14159) cannot be represented using the simple binary numbering technique

we discussed.

Computers are able to store negative numbers and real numbers in memory, but to

do so they use encoding schemes along with the binary numbering system. Negative

numbers are encoded using a technique known as two’s complement, and real numbers

are encoded in floating-point notation. You don’t need to know how these encoding

schemes work, only that they are used to convert negative numbers and real numbers

to binary format.

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to

describe anything that uses binary numbers. Digital data is data that is stored in binary,

and a digital device is any device that works with binary data. In this section, we have

discussed how numbers and characters are stored in binary, but computers also work

with many other types of digital data.

For example, consider the pictures that you take with your digital camera. These images

are composed of tiny dots of color known as pixels. (The term pixel stands for picture

element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric

code that represents the pixel’s color. The numeric code is stored in memory as a binary

number.

Figure 1-14 A digital image is stored in binary format (photo on the right courtesy
of Tony Gaddis)

10010101110100010101101

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital

song is broken into small pieces known as samples. Each sample is converted to a binary

number, which can be stored in memory. The more samples that a song is divided into,

the more it sounds like the original music when it is played back. A CD-quality song is

divided into more than 44,000 samples per second!

Checkpoint

 1.9 What amount of memory is enough to store a letter of the alphabet or a small

number?

 1.10 What do you call a tiny “switch” that can be set to either on or off?

12 Chapter 1 Introduction to Computers and Programming

 1.11 In what numbering system are all numeric values written as sequences of 0s

and 1s?

 1.12 What is the purpose of ASCII?

 1.13 What encoding scheme is extensive to represent all the characters of all the lan-

guages in the world?

 1.14 What do the terms “digital data” and “digital device” mean?

How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written

in machine language. Because people find it very difficult to write

entire programs in machine language, other programming languages

have been invented.

Earlier, we stated that the CPU is the most important component in a computer because

it is the part of the computer that runs programs. Sometimes the CPU is called the

“computer’s brain,” and is described as being “smart.” Although these are common

metaphors, you should understand that the CPU is not a brain, and it is not smart. The

CPU is an electronic device that is designed to do specific things. In particular, the CPU

is designed to perform operations such as the following:

●● Reading a piece of data from main memory
●● Adding two numbers
●● Subtracting one number from another number
●● Multiplying two numbers
●● Dividing one number by another number
●● Moving a piece of data from one memory location to another
●● Determining whether one value is equal to another value
●● And so forth . . .

As you can see from this list, the CPU performs simple operations on pieces of data.

The CPU does nothing on its own, however. It has to be told what to do, and that’s the

purpose of a program. A program is nothing more than a list of instructions that cause

the CPU to perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific

operation. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruc-

tion to perform an operation.1 It is written in 0s and 1s because CPUs only understand

instructions that are written in machine language, and machine language instructions

are always written in binary.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the micropro-

cessor to move a value into the CPU.

1.4

 1.4 How a Program Works 13

A machine language instruction exists for each operation that a CPU is capable of per-

forming. For example, there is an instruction for adding numbers; there is an instruction

for subtracting one number from another; and so forth. The entire set of instructions

that a CPU can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs.

Some of the more well-known microprocessor companies are Intel, AMD, and Motor-

ola. If you look carefully at your computer, you might find a tag showing a logo for

its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically

understood only by microprocessors of the same brand. For example, Intel micropro-

cessors understand the same instructions, but they do not understand instructions for

Motorola microprocessors.

The machine language instruction that was previously shown is an example of only one

instruction. It takes a lot more than one instruction, however, for the computer to do

anything meaningful. Because the operations that a CPU knows how to perform are so

basic in nature, a meaningful task can be accomplished only if the CPU performs many

operations. For example, if you want your computer to calculate the amount of interest

that you will earn from your savings account this year, the CPU will have to perform a

large number of instructions, carried out in the proper sequence. It is not unusual for a

program to contain thousands, or even a million or more machine language instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When

you install a program on your computer, the program is typically copied to your com-

puter’s disk drive from a CD-ROM, or perhaps downloaded from a Web site.

Although a program can be stored on a secondary storage device such as a disk drive,

it has to be copied into main memory, or RAM, each time the CPU executes it. For

example, suppose you have a word processing program on your computer’s disk. To

execute the program you use the mouse to double-click the program’s icon. This causes

the program to be copied from the disk into main memory. Then, the computer’s CPU

executes the copy of the program that is in main memory. This process is illustrated in

Figure 1-15.

Figure 1-15 A program is copied into main memory and then executed (Courtesy Lefteris
Papaulakis/ Shutterstock, Garsya/ Shutterstock and marpan/ Shutterstock)

Main memory (RAM)Disk drive CPU

 1011100010100001 10011110

The program is copied

from secondary storage

to main memory.

The CPU executes

the program in

main memory.

14 Chapter 1 Introduction to Computers and Programming

When a CPU executes the instructions in a program, it is engaged in a process that is

known as the fetch-decode-execute cycle. This cycle, which consists of three steps, is

repeated for each instruction in the program. The steps are:

1. Fetch. A program is a long sequence of machine language instructions. The first
step of the cycle is to fetch, or read, the next instruction from memory into the CPU.

2. Decode. A machine language instruction is a binary number that represents a
command that tells the CPU to perform an operation. In this step the CPU decodes
the instruction that was just fetched from memory, to determine which operation
it should perform.

3. Execute. The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

Figure 1-16 The fetch-decode-execute cycle (Courtesy Garsya/Shutterstock, marpan/ Shutterstock)

CPU

Main memory

(RAM)

10111000

10100001

10011110

00011010

11011100

and so forth...

10100001

1 Fetch the next instruction

in the program.

3 Execute the instruction

(perform the operation).

Decode the instruction

to determine which

operation to perform.

2

From Machine Language to Assembly Language

Computers can only execute programs that are written in machine language. As pre-

viously mentioned, a program can have thousands, or even a million or more binary

instructions, and writing such a program would be very tedious and time consuming.

Programming in machine language would also be very difficult because putting a 0 or

a 1 in the wrong place will cause an error.

Although a computer’s CPU only understands machine language, it is impractical for

people to write programs in machine language. For this reason, assembly language was

created in the early days of computing2 as an alternative to machine language. Instead

of using binary numbers for instructions, assembly language uses short words that are

known as mnemonics. For example, in assembly language, the mnemonic add typically

means to add numbers, mul typically means to multiply numbers, and mov typically means

to move a value to a location in memory. When a programmer uses assembly language to

write a program, he or she can write short mnemonics instead of binary numbers.

2 The first assembly language was most likely developed in the 1940s at Cambridge University

for use with a historical computer known as the EDSAC.

 1.4 How a Program Works 15

Assembly language programs cannot be executed by the CPU, however. The CPU only

understands machine language, so a special program known as an assembler is used to

translate an assembly language program to a machine language program. This process

is shown in Figure 1-17. The machine language program that is created by the assembler

can then be executed by the CPU.

NOTE: There are many different versions of assembly language. It was mentioned

earlier that each brand of CPU has its own machine language instruction set. Each

brand of CPU typically has its own assembly language as well.

Figure 1-17 An assembler translates an assembly language program to a machine
language program

mov eax, Z

add eax, 2

mov Y, eax

and so forth...

Assembler
10111000

10100001

10011110

and so forth...

Assembly language

program

Machine language

program

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language

instructions, it is not without difficulties. Assembly language is primarily a direct sub-

stitute for machine language, and like machine language, it requires that you know a

lot about the CPU. Assembly language also requires that you write a large number of

instructions for even the simplest program. Because assembly language is so close in

nature to machine language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level lan-

guages began to appear. A high-level language allows you to create powerful and

complex programs without knowing how the CPU works, and without writing large

numbers of low-level instructions. In addition, most high-level languages use words

that are easy to understand. For example, if a programmer were using COBOL (which

was one of the early high-level languages created in the 1950s), he or she would write

the following instruction to display the message “Hello world” on the computer screen:

Display ”Hello world”

Doing the same thing in assembly language would require several instructions, and an

intimate knowledge of how the CPU interacts with the computer’s video circuitry. As

you can see from this example, high-level languages allow programmers to concentrate

on the tasks they want to perform with their programs rather than the details of how

the CPU will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists

several of the more well-known languages. If you are working toward a degree in com-

puter science or a related field, you are likely to study one or more of these languages.

16 Chapter 1 Introduction to Computers and Programming

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.

Department of Defense. The language is named in honor of Countess Ada

Lovelace, an influential and historical figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language

that was originally designed in the early 1960s to be simple enough for begin-

ners to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was

designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s, and was

designed for business applications.

Pascal Pascal was created in 1970, and was originally designed for teaching program-

ming. The language was named in honor of the mathematician, physicist, and

philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose lan-

guages developed at Bell Laboratories. The C language was created in 1972

and the C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the

year 2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems (a company that is now owned by Ora-

cle) in the early 1990s. It can be used to develop programs that run on a single

computer or over the Internet from a Web server.

JavaScript™ JavaScript, created in the 1990s, can be used in Web pages. Despite its name,

JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has become

popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-

ingly becoming a popular language for programs that run on Web servers.

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and

software development environment that allows programmers to create Windows®-

based applications quickly. VB was originally created in the early 1990s.

Each high-level language has its own set of words that the programmer must learn in

order to use the language. The words that make up a high-level programming language

are known as key words or reserved words. Each key word has a specific meaning, and

cannot be used for any other purpose. You previously saw an example of a COBOL

statement that uses the key word display to print a message on the screen. In the

Python language the word print serves the same purpose.

In addition to key words, programming languages have operators that perform various

operations on data. For example, all programming languages have math operators that

perform arithmetic. In Java, as well as most other languages, the + sign is an operator

that adds two numbers. The following adds 12 and 75:

12 + 75

 1.4 How a Program Works 17

In addition to key words and operators, each language also has its own syntax, which

is a set of rules that must be strictly followed when writing a program. The syntax rules

dictate how key words, operators, and various punctuation characters must be used in

a program. When you are learning a programming language, you must learn the syntax

rules for that particular language.

The individual instructions that you use to write a program in a high-level programming

language are called statements. A programming statement can consist of key words,

operators, punctuation, and other allowable programming elements, arranged in the

proper sequence to perform an operation.

NOTE: Human languages also have syntax rules. Do you remember when you took

your first English class, and you learned all those rules about infinitives, indirect

objects, clauses, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when

speaking and writing, other people usually understand what they mean. Unfortu-

nately, computers do not have this ability. If even a single syntax error appears in a

program, the program cannot be executed.

Compilers and Interpreters

Because the CPU understands only machine language instructions, programs that are

written in a high-level language must be translated into machine language. Once a pro-

gram has been written in a high-level language, the programmer will use a compiler or

an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate

machine language program. The machine language program can then be executed any

time it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and

executing are two different processes.

Figure 1-18 Compiling a high-level program and executing it (Courtesy marpan/ Shutterstock)

Display"Hello

Earthling"

and so forth...

High-level language

program

Compiler
10111000

10100001

10011110

and so forth...

Machine language

program

10111000

10100001

10011110

and so forth...

Machine language

program CPU

The compiler is used

to translate the high-level

language program to a

machine language program.

1

The machine language

program can be executed

at any time, without using

the compiler.

2

VideoNote

Compiling and
Executing a
Program

18 Chapter 1 Introduction to Computers and Programming

Figure 1-19 Executing a high-level program with an interpreter (Courtesy marpan/ Shutterstock)

The interpreter translates each high-level instruction to

its equivalent machine language instruction and

immediately executes it.

Display"Hello

Earthling"

and so forth...

High-level language

program

Interpreter 10100001

Machine language

instruction

CPU

This process is repeated for each high-level instruction.

NOTE: Programs that are compiled generally execute faster than programs that

are interpreted because a compiled program is already translated entirely to machine

language when it is executed. A program that is interpreted must be translated at the

time it is executed.

An interpreter is a program that both translates and executes the instructions in a

high-level language program. As the interpreter reads each individual instruction in the

program, it converts it to a machine language instruction and then immediately executes

it. This process repeats for every instruction in the program. This process is illustrated

in Figure 1-19. Because interpreters combine translation and execution, they typically

do not create separate machine language programs.

The statements that a programmer writes in a high-level language are called source code,

or simply code. Typically, the programmer types a program’s code into a text editor and

then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler

to translate the code into a machine language program, or an interpreter to translate and

execute the code. If the code contains a syntax error, however, it cannot be translated. A

syntax error is a mistake such as a misspelled key word, a missing punctuation character,

or the incorrect use of an operator. When this happens the compiler or interpreter displays

an error message indicating that the program contains a syntax error. The programmer

corrects the error and then attempts once again to translate the program.

Integrated Development Environments

Although you can use a simple text editor such as Notepad (which is part of the Win-

dows operating system) to write a program, most programmers use specialized software

packages called integrated development environments or IDEs. Most IDEs combine the

following programs into one software package:

●● A text editor that has specialized features for writing statements in a high-level

programming language
●● A compiler or interpreter
●● Useful tools for testing programs and locating errors

 1.4 How a Program Works 19

Figure 1-20 shows a screen from Microsoft Visual Studio, a popular IDE for developing

programs in the C++, Visual Basic, and C# languages. Eclipse™, NetBeans, Dev-C++,

and jGRASP™ are a few other popular IDEs.

Figure 1-20 An integrated development environment (photo courtesy of Microsoft Corporation)

Checkpoint

 1.15 A CPU understands instructions that are written only in what language?

 1.16 A program has to be copied into what type of memory each time the CPU

executes it?

 1.17 When a CPU executes the instructions in a program, it is engaged in what

process?

 1.18 What is assembly language?

 1.19 What type of programming language allows you to create powerful and com-

plex programs without knowing how the CPU works?

20 Chapter 1 Introduction to Computers and Programming

 1.20 Each language has a set of rules that must be strictly followed when writing a

program. What is this set of rules called?

 1.21 What do you call a program that translates a high-level language program into

a separate machine language program?

 1.22 What do you call a program that both translates and executes the instructions

in a high-level language program?

 1.23 What type of mistake is usually caused by a misspelled key word, a missing

punctuation character, or the incorrect use of an operator?

Types of Software

CONCEPT: Programs generally fall into one of two categories: system software

or application software. System software is the set of programs that

control or enhance the operation of a computer. Application soft-

ware makes a computer useful for everyday tasks.

If a computer is to function, software is not optional. Everything that a computer does,

from the time you turn the power switch on until you shut the system down, is under

the control of software. There are two general categories of software: system software

and application software. Most computer programs clearly fit into one of these two

categories. Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally

referred to as system software. System software typically includes the following types

of programs:

Operating Systems. An operating system is the most fundamental set of programs

on a computer. The operating system controls the internal operations of the com-

puter’s hardware, manages all of the devices connected to the computer, allows

data to be saved to and retrieved from storage devices, and allows other programs

to run on the computer. Examples of operating systems that are widely used today

are Windows, Mac OS, iOS, Android, and Linux.

Utility Programs. A utility program performs a specialized task that enhances the

computer’s operation or safeguards data. Examples of utility programs are virus

scanners, file compression programs, and data backup programs.

Software Development Tools. Software development tools are the programs that

programmers use to create, modify, and test software. Assemblers, compilers, and

interpreters are examples of programs that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application

software. These are the programs that people normally spend most of their time running

on their computers. Figure 1-1, at the beginning of this chapter, shows screens from two

1.5

 Review Questions 21

Review Questions

Multiple Choice

1. A(n) _____ is a set of instructions that a computer follows to perform a task.

a. compiler

b. program

c. interpreter

d. programming language

2. The physical devices that a computer is made of are referred to as _____.

a. hardware

b. software

c. the operating system

d. tools

3. The part of a computer that runs programs is called _____.

a. RAM

b. secondary storage

c. main memory

d. the CPU

4. Today, CPUs are small chips known as _____.

a. ENIACs

b. microprocessors

c. memory chips

d. operating systems

5. The computer stores a program while the program is running, as well as the data

that the program is working with, in _____.

a. secondary storage

b. the CPU

c. main memory

d. the microprocessor

commonly used applications—Microsoft Word, a word processing program, and Micro-

soft PowerPoint, a presentation program. Some other examples of application software

are spreadsheet programs, email programs, Web browsers, and game programs.

Checkpoint

 1.24 What fundamental set of programs controls the internal operations of the com-

puter’s hardware?

 1.25 What do you call a program that performs a specialized task, such as a virus

scanner, a file compression program, or a data backup program?

 1.26 Word processing programs, spreadsheet programs, email programs, Web

browsers, and game programs belong to what category of software?

22 Chapter 1 Introduction to Computers and Programming

6. This is a volatile type of memory that is used only for temporary storage while a

program is running.

a. RAM

b. secondary storage

c. the disk drive

d. the USB drive

7. A type of memory that can hold data for long periods of time—even when there is

no power to the computer––is called _____.

a. RAM

b. main memory

c. secondary storage

d. CPU storage

8. A component that collects data from people or other devices and sends it to the

computer is called _____.

a. an output device

b. an input device

c. a secondary storage device

d. main memory

9. A video display is a(n) _____.

a. output device

b. input device

c. secondary storage device

d. main memory

10. A _____ is enough memory to store a letter of the alphabet or a small number.

a. byte

b. bit

c. switch

d. transistor

11. A byte is made up of eight _____.

a. CPUs

b. instructions

c. variables

d. bits

12. In a(n) _____ numbering system, all numeric values are written as sequences of 0s

and 1s.

a. hexadecimal

b. binary

c. octal

d. decimal

13. A bit that is turned off represents the following value: _____.

a. 1

b. −1

c. 0

d. “no”

 Review Questions 23

14. A set of 128 numeric codes that represent the English letters, various punctuation

marks, and other characters is _____.

a. binary numbering

b. ASCII

c. Unicode

d. ENIAC

15. An extensive encoding scheme that can represent the characters of many of the

languages in the world is _____.

a. binary numbering

b. ASCII

c. Unicode

d. ENIAC

16. Negative numbers are encoded using the _____ technique.

a. two’s complement

b. floating-point

c. ASCII

d. Unicode

17. Real numbers are encoded using the _____ technique.

a. two’s complement

b. floating-point

c. ASCII

d. Unicode

18. The tiny dots of color that digital images are composed of are called _____.

a. bits

b. bytes

c. color packets

d. pixels

19. If you were to look at a machine language program, you would see _____.

a. Java code

b. a stream of binary numbers

c. English words

d. circuits

20. In the _____ part of the fetch-decode-execute cycle, the CPU determines which

operation it should perform.

a. fetch

b. decode

c. execute

d. immediately after the instruction is executed

21. Computers can only execute programs that are written in _____.

a. Java

b. assembly language

c. machine language

d. C++

24 Chapter 1 Introduction to Computers and Programming

22. The _____ translates an assembly language program to a machine language program.

a. assembler

b. compiler

c. translator

d. interpreter

23. The words that make up a high-level programming language are called _____.

a. binary instructions

b. mnemonics

c. commands

d. key words

24. The rules that must be followed when writing a program are called _____.

a. syntax

b. punctuation

c. key words

d. operators

25. A(n) _____ program translates a high-level language program into a separate

machine language program.

a. assembler

b. compiler

c. translator

d. utility

True or False

1. Today, CPUs are huge devices made of electrical and mechanical components such

as vacuum tubes and switches.

2. Main memory is also known as RAM.

3. Any piece of data that is stored in a computer’s memory must be stored as a binary

number.

4. Images, like the ones you make with your digital camera, cannot be stored as binary

numbers.

5. Machine language is the only language that a CPU understands.

6. Assembly language is considered a high-level language.

7. An interpreter is a program that both translates and executes the instructions in a

high-level language program.

8. A syntax error does not prevent a program from being compiled and executed.

9. Windows, Mac OS, iOS, Android, and Linux are all examples of application

software.

10. Word processing programs, spreadsheet programs, email programs, Web browsers,

and games are all examples of utility programs.

 Review Questions 25

Short Answer

1. Why is the CPU the most important component in a computer?

2. What number does a bit that is turned on represent? What number does a bit that

is turned off represent?

3. What would you call a device that works with binary data?

4. What are the words that make up a high-level programming language called?

5. What are the short words that are used in assembly language called?

6. What is the difference between a compiler and an interpreter?

7. What type of software controls the internal operations of the computer’s hardware?

Exercises

1. Appendix D shows how to convert a decimal number to binary. Use the technique

shown in Appendix D to convert the following decimal numbers to binary:

11

65

100

255

2. Use what you’ve learned about the binary numbering system in this chapter to

convert the following binary numbers to decimal:

 1101

 1 0 00

101011

3. Look at the ASCII chart in Appendix A and determine the codes for each letter of

your first name.

4. Use the Web to research the history of the BASIC, C++, Java, and Python program-

ming languages, and answer the following questions:
●● Who was the creator of each of these languages?
●● When was each of these languages created?
●● Was there a specific motivation behind the creation of these languages? If so,

what was it?

Converting
Binary to
Decimal

VideoNote

27

TOPICS

2.1 Designing a Program

2.2 Output, Input, and Variables

2.3 Variable Assignment and Calculations

2.4 Variable Declarations and Data Types

2.5 Named Constants

2.6 Hand Tracing a Program

2.7 Documenting a Program

2.8 Designing Your First Program

2.9 Focus on Languages: Java, Python,

and C++

Input, Processing,
and Output

C
H

A
P

T
E

R

2

27

Designing a Program

CONCEPT: Programs must be carefully designed before they are written. During

the design process, programmers use tools such as pseudocode and

flowcharts to create models of programs.

In Chapter 1 you learned that programmers typically use high-level languages to write
programs. However, all professional programmers will tell you that a program should
be carefully designed before the code is actually written. When programmers begin a
new project, they never jump right in and start writing code as the first step. They begin
by creating a design of the program.

After designing the program, the programmer begins writing code in a high-level lan-
guage. Recall from Chapter 1 that each language has its own rules, known as syntax,
that must be followed when writing a program. A language’s syntax rules dictate things
such as how key words, operators, and punctuation characters can be used. A syntax
error occurs if the programmer violates any of these rules.

If the program contains a syntax error, or even a simple mistake such as a misspelled key
word, the compiler or interpreter will display an error message indicating what the error
is. Virtually all code contains syntax errors when it is first written, so the programmer
will typically spend some time correcting these. Once all of the syntax errors and simple

2.1

28 Chapter 2 Input, Processing, and Output

typing mistakes have been corrected, the program can be compiled and translated into
a machine language program (or executed by an interpreter, depending on the language
being used).

Once the code is in an executable form, it is then tested to determine whether any logic
errors exist. A logic error is a mistake that does not prevent the program from running,
but causes it to produce incorrect results. (Mathematical mistakes are common causes
of logic errors.)

If there are logic errors, the programmer debugs the code. This means that the program-
mer finds and corrects the code that is causing the error. Sometimes during this process,
the programmer discovers that the original design must be changed. This entire process,
which is known as the program development cycle, is repeated until no errors can be
found in the program. Figure 2-1 shows the steps in the process.

Figure 2-1 The program development cycle

Debug the

code
Design the

program

Write the

code

Correct

syntax errors

Test the
executable

code

This book focuses entirely on the first step of the program development cycle: designing
the program. The process of designing a program is arguably the most important part of
the cycle. You can think of a program’s design as its foundation. If you build a house on
a poorly constructed foundation, eventually you will find yourself doing a lot of work
to fix the house! A program’s design should be viewed no differently. If your program is
designed poorly, eventually you will find yourself doing a lot of work to fix the program.

Designing a Program

The process of designing a program can be summarized in the following two steps:

1. Understand the task that the program is to perform.
2. Determine the steps that must be taken to perform the task.

Let’s take a closer look at each of these steps.

Understand the Task That the Program Is to Perform

It is essential that you understand what a program is supposed to do before you can
determine the steps that the program will perform. Typically, a professional program-
mer gains this understanding by working directly with the customer. We use the term
customer to describe the person, group, or organization that is asking you to write a
program. This could be a customer in the traditional sense of the word, meaning some-
one who is paying you to write a program. It could also be your boss, or the manager
of a department within your company. Regardless of who it is, the customer will be
relying on your program to perform an important task.

To get a sense of what a program is supposed to do, the programmer usually interviews
the customer. During the interview, the customer will describe the task that the program

 2.1 Designing a Program 29

should perform, and the programmer will ask questions to uncover as many details as
possible about the task. A follow-up interview is usually needed because customers
rarely mention everything they want during the initial meeting, and programmers often
think of additional questions.

The programmer studies the information that was gathered from the customer during
the interviews and creates a list of different software requirements. A software require-

ment is simply a single function that the program must perform in order to satisfy the
customer. Once the customer agrees that the list of requirements is complete, the pro-
grammer can move to the next phase.

TIP: If you choose to become a professional software developer, your customer will
be anyone who asks you to write programs as part of your job. As long as you are a
student, however, your customer is your instructor! In every programming class that
you will take, it’s practically guaranteed that your instructor will assign programming
problems for you to complete. For your academic success, make sure that you under-
stand your instructor’s requirements for those assignments and write your programs
accordingly.

Determine the Steps That Must Be Taken to Perform the Task

Once you understand the task that the program will perform, you begin by breaking
down the task into a series of steps. This is similar to the way you would break down
a task into a series of steps that another person can follow. For example, suppose your
little sister asks you how to boil water. Assuming she is old enough to be trusted around
the stove, you might break down that task into a series of steps as follows:

1. Pour the desired amount of water into a pot.
2. Put the pot on a stove burner.
3. Turn the burner to high.
4. Watch the water until you see large bubbles rapidly rising. When this happens,

the water is boiling.

This is an example of an algorithm, which is a set of well-defined logical steps that
must be taken to perform a task. Notice that the steps in this algorithm are sequentially
ordered. Step 1 should be performed before Step 2, and so on. If your little sister fol-
lows these steps exactly as they appear, and in the correct order, she should be able to
boil water successfully.

A programmer breaks down the task that a program must perform in a similar way. An
algorithm is created, which lists all of the logical steps that must be taken. For example,
suppose you have been asked to write a program to calculate and display the gross pay
for an hourly paid employee. Here are the steps that you would take:

1. Get the number of hours worked.
2. Get the hourly pay rate.
3. Multiply the number of hours worked by the hourly pay rate.
4. Display the result of the calculation that was performed in Step 3.

Of course, this algorithm isn’t ready to be executed on the computer. The steps in
this list have to be translated into code. Programmers commonly use two tools to
help them accomplish this: pseudocode and flowcharts. Let’s look at each of these in
more detail.

30 Chapter 2 Input, Processing, and Output

Pseudocode

Recall from Chapter 1 that each programming language has strict rules, known as
syntax, that the programmer must follow when writing a program. If the programmer
writes code that violates these rules, a syntax error will result and the program cannot
be compiled or executed. When this happens, the programmer has to locate the error
and correct it.

Because small mistakes like misspelled words and forgotten punctuation characters
can cause syntax errors, programmers have to be mindful of such small details when
writing code. For this reason, programmers find it helpful to write their programs in
pseudocode (pronounced “sue doe code”) before they write it in the actual code of a
programming language.

The word pseudo means fake, so pseudocode is fake code. It is an informal language that
has no syntax rules, and is not meant to be compiled or executed. Instead, programmers
use pseudocode to create models, or “mock-ups” of programs. Because programmers
don’t have to worry about syntax errors while writing pseudocode, they can focus all
of their attention on the program’s design. Once a satisfactory design has been created
with pseudocode, the pseudocode can be translated directly to actual code.

Here is an example of how you might write pseudocode for the pay calculating program
that we discussed earlier:

Display "Enter the number of hours the employee worked."

Input hours

Display "Enter the employee's hourly pay rate."

Input payRate

Set grossPay = hours * payRate

Display "The employee's gross pay is $", grossPay

Each statement in the pseudocode represents an operation that can be performed in any
high-level language. For example, all languages provide a way to display messages on the
screen, read input that is typed on the keyboard, and perform mathematical calculations.
For now, don’t worry about the details of this particular pseudocode program. As you prog-
ress through this chapter you will learn more about each of the statements that you see here.

NOTE: As you read the examples in this book, keep in mind that pseudocode is not
an actual programming language. It is a generic way to write the statements of an
algorithm, without worrying about syntax rules. If you mistakenly write pseudocode
into an editor for an actual programming language, such as Python or Visual Basic,
errors will result.

Flowcharts

Flowcharting is another tool that programmers use to design programs. A flowchart
is a diagram that graphically depicts the steps that take place in a program. Figure 2-2
shows how you might create a flowchart for the pay calculating program.

Notice that there are three types of symbols in the flowchart: ovals, parallelograms, and
rectangles. The ovals, which appear at the top and bottom of the flowchart, are called

 2.1 Designing a Program 31

terminal symbols. The Start terminal symbol marks the program’s starting point and
the End terminal symbol marks the program’s ending point.

Between the terminal symbols are parallelograms, which are used for both input symbols
and output symbols, and rectangles, which are called processing symbols. Each of these
symbols represents a step in the program. The symbols are connected by arrows that
represent the “flow” of the program. To step through the symbols in the proper order,
you begin at the Start terminal and follow the arrows until you reach the End terminal.
Throughout this chapter we will look at each of these symbols in greater detail. For your
reference, Appendix B summarizes all of the flowchart symbols that we use in this book.

There are a number of different ways that you can draw flowcharts, and your instructor
will most likely tell you the way that he or she prefers you to draw them in class. Perhaps
the simplest and least expensive way is to simply sketch the flowchart by hand with
pencil and paper. If you need to make your hand-drawn flowcharts look more profes-
sional, you can visit your local office supply store (or possibly your campus bookstore)
and purchase a flowchart template, which is a small plastic sheet that has the flowchart
symbols cut into it. You can use the template to trace the symbols onto a piece of paper.

Figure 2-2 Flowchart for the pay calculating program

End

Start

Set grossPay =
hours * payRate

Display "Enter the
number of hours the
employee worked."

Input hours

Display "Enter the
employee's hourly pay rate."

Input payRate

Display "The employee's
gross pay is $",

grossPay

32 Chapter 2 Input, Processing, and Output

The disadvantage of drawing flowcharts by hand is that mistakes have to be manually
erased, and in many cases, require that the entire page be redrawn. A more efficient and
professional way to create flowcharts is to use software. There are several specialized
software packages available that allow you to create flowcharts.

Flowchart Connector Symbols

Often, a flowchart is too long to fit on a page. Sometimes you can remedy this by break-
ing the flowchart into two or more smaller flowcharts, and placing them side-by-side
on the page. When you do this, you use a connector symbol to connect the pieces of the
flowchart. A connector symbol is a small circle with a letter or number written inside
it. Figure 2-3 shows an example of a flowchart with a connector symbol.

Figure 2-3 Flowchart with a connector symbol

Start

Display "Enter the
number of hours the
employee worked."

Input hours

Display "Enter the
employee's hourly

pay rate."

A
End

Set grossPay =
hours * payRate

Input payRate

Display "The employee's
gross pay is $",

grossPay

A

In Figure 2-3, the A connector symbol indicates that the second flowchart segment
begins where the first flowchart segment ends.

When a flowchart is simply too large to fit on a single page, you can break the flow-
chart into parts, and place the parts on separate pages. You then use the off-page con-

nector symbol to connect the pieces of the flowchart. The off-page connector symbol
is the “home plate” shape, with a page number shown inside it. If the connector is at
an exit point in the flowchart, the number indicates the page where the next part of
the flowchart is located. If the connector is at an entry point in the flowchart, it indi-
cates the page where the previous part of the flowchart is located. Figure 2-4 shows
an example. In the figure, the flowchart on the left is on page 1. At the bottom of the
flowchart is an off-page connector indicating that the flowchart continues on page 2. In

 2.1 Designing a Program 33

the flowchart on the right (which is page 2), the off-page connector at the top indicates
that the previous part of the flowchart is on page 1.

NOTE: Flowcharting symbols and techniques can vary from one book to another, or
from one software package to another. If you are using specialized software to draw
flowcharts, you might notice slight differences between some of the symbols that it
uses, compared to some of the symbols used in this book.

Figure 2-4 Flowchart with an off-page connector

Page 2Page 1

Start

Display "Enter the
number of hours the
employee worked."

Input hours

Display "Enter the
employee's hourly

pay rate."

2
End

Set grossPay =
hours * payRate

Input payRate

Display "The employee's
gross pay is $",

grossPay

1

Checkpoint

 2.1 Who is a programmer’s customer?

 2.2 What is a software requirement?

 2.3 What is an algorithm?

 2.4 What is pseudocode?

 2.5 What is a flowchart?

 2.6 What are each of the following symbols in a flowchart?

●● Oval
●● Parallelogram
●● Rectangle

34 Chapter 2 Input, Processing, and Output

Figure 2-5 The input, processing, and output of the pay calculating program

Hours worked

Hourly pay rate

Gross pay

Input Process Output

Multiply Hours Worked

by Hourly Pay Rate

The program processes this data by multiplying the hours worked by the hourly pay
rate. The results of the calculation are then displayed on the screen as output.

IPO Charts

An IPO chart is a simple but effective tool that programmers commonly use while
designing programs. IPO stands for input, processing, and output, and an IPO chart
describes the input, processing, and output of a program. These items are usually laid
out in columns. The input column shows a description of the data that is required as
input. The processing column shows a description of the process, or processes, that the
program performs. The output column describes the output that is produced by the
program. For example, Figure 2-6 shows an IPO chart for the pay calculating program.

In the remainder of this section, you will look at some simple programs that perform
output and input. In the next section, we will discuss how to process data.

Displaying Screen Output

Perhaps the most fundamental thing that you can do in a program is to display a mes-
sage on the computer screen. As previously mentioned, all high-level languages provide

Output, Input, and Variables

CONCEPT: Output is data that is generated and displayed by the program. Input

is data that the program receives. When a program receives data, it

stores it in variables, which are named storage locations in memory.

Computer programs typically perform the following three-step process:

1. Input is received.
2. Some process is performed on the input.
3. Output is produced.

Input is any data that the program receives while it is running. One common form of
input is data that is typed on the keyboard. Once input is received, some process, such
as a mathematical calculation, is usually performed on it. The results of the process are
then sent out of the program as output.

Figure 2-5 illustrates these three steps in the pay calculating program that we discussed
earlier. The number of hours worked and the hourly pay rate are provided as input.

2.2

 2.2 Output, Input, and Variables 35

a way to display screen output. In this book, we use the word Display to write pseudo-
code statements for displaying output on the screen. Here is an example:

Display "Hello world"

The purpose of this statement is to display the message Hello world on the screen.
Notice that after the word Display, we have written Hello world inside quotation
marks. The quotation marks are not to be displayed. They simply mark the beginning
and the end of the text that we wish to display.

Suppose your instructor tells you to write a pseudocode program that displays your
name and address on the computer screen. The pseudocode shown in Program 2-1 is
an example of such a program.

Figure 2-6 IPO chart for the pay calculating program

IPO Chart for the Pay Calculating Program

Input Processing Output

Number of hours

worked

Hourly pay rate

Multiply the number of hours

worked by the hourly pay rate.

The result is the gross pay.

Gross pay

Program 2-1

Display "Kate Austen"
Display "1234 Walnut Street"
Display "Asheville, NC 28899"

It is important for you to understand that the statements in this program execute in
the order that they appear, from the top of the program to the bottom. This is shown
in Figure 2-7. If you translated this pseudocode into an actual program and ran it, the
first statement would execute, followed by the second statement, and followed by the
third statement. If you try to visualize the way this program’s output would appear on
the screen, you should imagine something like that shown in Figure 2-8. Each Display
statement produces a line of output.

NOTE: Although this book uses the word Display for an instruction that displays
screen output, some programmers use other words for this purpose. For example,
some programmers use the word Print, and others use the word Write. Pseudocode
has no rules that dictate the words that you may or may not use.

36 Chapter 2 Input, Processing, and Output

Figure 2-7 The statements execute in order (Courtesy of Microsoft Corporation)

Display "Kate Austen"

Display "1234 Walnut Street"

Display "Asheville, NC 28899"

1

2

3

Figure 2-8 Output of Program 2-1 (Courtesy of Microsoft Corporation)

Kate Austen

1234 Walnut Street

Asheville, NC 28899

Figure 2-9 Flowchart for Program 2-1

End

Start

Display "Kate Austen"

Display "1234 Walnut
Street"

Display "Asheville, NC
28899"

Figure 2-9 shows the way you would draw a flowchart for this program. Notice that
between the Start and End terminal symbols there are three parallelograms. A paral-
lelogram can be either an output symbol or an input symbol. In this program, all three
parallelograms are output symbols. There is one for each of the Display statements.

 2.2 Output, Input, and Variables 37

Sequence Structures

It was mentioned earlier that the statements in Program 2-1 execute in the order that
they appear, from the top of the program to the bottom. A set of statements that execute
in the order that they appear is called a sequence structure. In fact, all of the programs
that you will see in this chapter are sequence structures.

A structure, also called a control structure, is a logical design that controls the order in
which a set of statements executes. In the 1960s, a group of mathematicians proved that
only three program structures are needed to write any type of program. The simplest of
these structures is the sequence structure. Later in this book, you will learn about the
other two structures—decision structures and repetition structures.

Strings and String Literals

Programs almost always work with data of some type. For example, Program 2-1 uses
the following three pieces of data:

"Kate Austen"

"1234 Walnut Street"

"Asheville, NC 28899"

These pieces of data are sequences of characters. In programming terms, a sequence
of characters that is used as data is called a string. When a string appears in the actual
code of a program (or in pseudocode, as it does in Program 2-1) it is called a string

literal. In program code, or pseudocode, a string literal is usually enclosed in quota-
tion marks. As mentioned earlier, the quotation marks simply mark where the string
begins and ends.

In this book, we will always enclose string literals in double quote marks ("). Most
programming languages use this same convention, but a few use single quote marks (').

Variables and Input

Quite often a program needs to store data in the computer’s memory so it can perform
operations on that data. For example, consider the typical online shopping experience:
You browse a Web site and add the items that you want to purchase to the shopping
cart. As you add items to the shopping cart, data about those items is stored in memory.
Then, when you click the checkout button, a program running on the Web site’s com-
puter calculates the total of all the items you have in your shopping cart, applicable sales
taxes, shipping costs, and the total of all these charges. When the program performs
these calculations, it stores the results in the computer’s memory.

Programs use variables to store data in memory. A variable is a storage location in
memory that is represented by a name. For example, a program that calculates the sales
tax on a purchase might use a variable named tax to hold that value in memory. And
a program that calculates the distance from Earth to a distant star might use a variable
named distance to hold that value in memory.

In this section, we will discuss a basic input operation: reading data that has been typed
on the keyboard. When a program reads data from the keyboard, usually it stores that
data in a variable so it can be used later by the program. In pseudocode we will read

VideoNote

Variables and Input

38 Chapter 2 Input, Processing, and Output

data from the keyboard with the Input statement. As an example, look at the following
statement, which appeared earlier in the pay calculating program:

Input hours

The word Input is an instruction to read a piece of data from the keyboard. The word
hours is the name of the variable in which that data will be stored. When this statement
executes, two things happen:

●● The program pauses and waits for the user to type something on the keyboard,
and then press the  key.

●● When the  key is pressed, the data that was typed is stored in the hours variable.

Program 2-2 is a simple pseudocode program that demonstrates the Input statement.
Before we examine the program, we should mention a couple of things. First, you will
notice that each line in the program is numbered. The line numbers are not part of the
pseudocode. We will refer to the line numbers later to point out specific parts of the
program. Second, the program’s output is shown immediately following the pseudocode.
From now on, all pseudocode programs will be shown this way.

Program 2-2

1 Display "What is your age?"
2 Input age
3 Display "Here is the value that you entered:"
4 Display age

Program Output (with Input Shown in Bold)

What is your age?
24 [Enter]
Here is the value that you entered:
24

The statement in line 1 displays the string "What is your age?" Then, the statement in line
2 waits for the user to type a value on the keyboard and press .The value that is typed will
be stored in the age variable. In the example execution of the program, the user has entered
24. The statement in line 3 displays the string "Here is the value that you entered:"
and the statement in line 4 displays the value that is stored in the age variable.

Notice that in line 4 there are no quotation marks around age. If quotation marks
were placed around age, it would have indicated that we want to display the word age
instead of the contents of the age variable. In other words, the following statement is
an instruction to display the contents of the age variable:

Display age

This statement, however, is an instruction to display the word age:

Display "age"

NOTE: In this section, we have mentioned the user. The user is simply any hypotheti-
cal person that is using a program and providing input for it. The user is sometimes
called the end user.

 2.2 Output, Input, and Variables 39

Figure 2-10 shows a flowchart for Program 2-2. Notice that the Input operation is also
represented by a parallelogram.

Variable Names

All high-level programming languages allow you to make up your own names for the
variables that you use in a program. You don’t have complete freedom in naming vari-
ables, however. Every language has its own set of rules that you must abide by when
creating variable names.

Although the rules for naming variables differ slightly from one language to another,
there are some common restrictions:

●● Variable names must be one word. They cannot contain spaces.
●● In most languages, punctuation characters cannot be used in variable names. It is

usually a good idea to use only alphabetic letters and numbers in variable names.
●● In most languages, the first character of a variable name cannot be a number.

In addition to following the programming language rules, you should always choose
names for your variables that give an indication of what they are used for. For example,
a variable that holds the temperature might be named temperature, and a variable that
holds a car’s speed might be named speed. You may be tempted to give variables names
like x and b2, but names like these give no clue as to what the variable’s purpose is.

Figure 2-10 Flowchart for Program 2-2

Start

End

Display "What is your

age?"

Input age

Display "Here is the

value that you entered:"

Display age

40 Chapter 2 Input, Processing, and Output

Because a variable’s name should reflect the variable’s purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the
following variable names:

grosspay

payrate

hotdogssoldtoday

Unfortunately, these names are not easily read by the human eye because the words
aren’t separated. Because we can’t have spaces in variable names, we need to find
another way to separate the words in a multiword variable name, and make it more
readable to the human eye.

One way to do this is to use the underscore character to represent a space. For example,
the following variable names are easier to read than those previously shown:

gross_pay

pay_rate

hot_dogs_sold_today

Another way to address this problem is to use the camelCase naming convention. cam-
elCase names are written in the following manner:

●● You begin writing the variable name with lowercase letters.
●● The first character of the second and subsequent words is written in uppercase.

For example, the following variable names are written in camelCase:

grossPay

payRate

hotDogsSoldToday

Because the camelCase convention is very popular with programmers, we will use it
from this point forward. In fact, you have already seen several programs in this chapter
that use camelCase variable names. The pay calculating program shown at the begin-
ning of the chapter uses the variable name payRate. Later in this chapter, Program 2-9
uses the variable names originalPrice and salePrice, and Program 2-11 uses the
variable names futureValue and presentValue.

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name are sometimes reminiscent of a camel’s humps.

Displaying Multiple Items with
One Display Statement

If you refer to Program 2-2 you will see that we used the following two Display state-
ments in lines 3 and 4:

Display "Here is the value that you entered:"

Display age

We used two Display statements because we needed to display two pieces of data. Line
3 displays the string literal "Here is the value that you entered:" and line 4
displays the contents of the age variable.

 2.2 Output, Input, and Variables 41

Most programming languages provide a way to display multiple pieces of data with one
statement. Because this is a common feature of programming languages, frequently we
will write Display statements in our pseudocode that display multiple items. We will
simply separate the items with a comma, as shown in line 3 of Program 2-3.

Program 2-3

1 Display "What is your age?"
2 Input age
3 Display "Here is the value that you entered: ", age

Program Output (with Input Shown in Bold)

What is your age?
24 [Enter]
Here is the value that you entered: 24

Take a closer look at line 3 of Program 2-3:

Display "Here is the value that you entered: ", age

Notice the space.

Notice that the string literal "Here is the value that you entered: " ends with
a space. That is because in the program output, we want a space to appear after the
colon, as shown here:

Here is the value that you entered: 24

Notice the space.

In most cases, when you are displaying multiple items on the screen, you want to
separate those items with spaces between them. Most programming languages do not
automatically print spaces between multiple items that are displayed on the screen. For
example, look at the following pseudocode statement:

Display "January", "February", "March"

In most programming languages, such as statement would produce the following output:
JanuaryFebruaryMarch

To separate the strings with spaces in the output, the Display statement should be
written as:

Display "January ", "February ", "March"

String Input

Programs 2-2 and 2-3 read numbers from the keyboard, which were stored in variables
by Input statements. Programs can also read string input. For example, the pseudocode
in Program 2-4 uses two Input statements: one to read a string and one to read a number.

42 Chapter 2 Input, Processing, and Output

The Input statement in line 2 reads input from the keyboard and stores it in the name
variable. In the example execution of the program, the user entered Andrea. The Input
statement in line 4 reads input from the keyboard and stores it in the age variable. In
the example execution of the program, the user entered 24.

Prompting the User

Getting keyboard input from the user is normally a two-step process:

1. Display a prompt on the screen.
2. Read a value from the keyboard.

A prompt is a message that tells (or asks) the user to enter a specific value. For example,
the pseudocode in Program 2-3 gets the user to enter his or her age with the following
statements:

Display "What is your age?"

Input age

In most programming languages, the statement that reads keyboard input does not dis-
play instructions on the screen. It simply causes the program to pause and wait for the
user to type something on the keyboard. For this reason, whenever you write a statement
that reads keyboard input, you should also write a statement just before it that tells the
user what to enter. Otherwise, the user will not know what he or she is expected to do.
For example, suppose we remove line 1 from Program 2-3, as follows:

Input age

Display "Here is the value that you entered: ", age

If this were an actual program, can you see what would happen when it is executed?
The screen would appear blank because the Input statement would cause the program
to wait for something to be typed on the keyboard. The user would probably think the
computer was malfunctioning.

The term user-friendly is commonly used in the software business to describe programs
that are easy to use. Programs that do not display adequate or correct instructions are
frustrating to use, and are not considered user-friendly. One of the simplest things that
you can do to increase a program’s user-friendliness is to make sure that it displays clear,
understandable prompts prior to each statement that reads keyboard input.

Program 2-4

1 Display "Enter your name."
2 Input name
3 Display "Enter your age."
4 Input age
5 Display "Hello ", name
6 Display "You are ", age, " years old."

Program Output (with Input Shown in Bold)

Enter your name.
Andrea [Enter]
Enter your age.
24 [Enter]
Hello Andrea
You are 24 years old.

 2.3 Variable Assignment and Calculations 43

TIP: Sometimes we computer science instructors jokingly tell our students to write
programs as if “Uncle Joe” or “Aunt Sally” were the user. Of course, these are not
real people, but imaginary users who are prone to making mistakes if not told exactly
what to do. When you are designing a program, you should imagine that someone
who knows nothing about the program’s inner workings will be using it.

Checkpoint

 2.7 What are the three operations that programs typically perform?

 2.8 What is an IPO chart?

 2.9 What is a sequence structure?

 2.10 What is a string? What is a string literal?

 2.11 A string literal is usually enclosed inside a set of what characters?

 2.12 What is a variable?

 2.13 Summarize three common rules for naming variables.

 2.14 What variable naming convention do we follow in this book?

 2.15 Look at the following pseudocode statement:

 Input temperature

 What happens when this statement executes?

 2.16 Who is the user?

 2.17 What is a prompt?

 2.18 What two steps usually take place when a program prompts the user for input?

 2.19 What does the term user-friendly mean?

Variable Assignment and Calculations

CONCEPT: You can store a value in a variable with an assignment statement. The

value can be the result of a calculation, which is created with math

operators.

Variable Assignment

In the previous section, you saw how the Input statement gets a value typed on the
keyboard and stores it in a variable. You can also write statements that store specific
values in variables. The following is an example, in pseudocode:

Set price = 20

This is called an assignment statement. An assignment statement sets a variable to a
specified value. In this case, the variable price is set to the value 20. When we write an
assignment statement in pseudocode, we will write the word Set, followed by the name

2.3

44 Chapter 2 Input, Processing, and Output

of the variable, followed by an equal sign (=), followed by the value we want to store in
the variable. The pseudocode in Program 2-5 shows another example.

Program 2-5

1 Set dollars = 2.75
2 Display "I have ", dollars, " in my account."

Program Output

I have 2.75 in my account.

In line 1, the value 2.75 is stored in the dollars variable. Line 2 displays the message
“I have 2.75 in my account.” Just to make sure you understand how the Display state-
ment in line 2 is working, let’s walk through it. The word Display is followed by three
pieces of data, so that means it will display three things. The first thing it displays is the
string literal "I have ". Next, it displays the contents of the dollars variable, which
is 2.75. Last, it displays the string literal " in my account."

Variables are called “variable” because they can hold different values while a program is
running. Once you set a variable to a value, that value will remain in the variable until you
store a different value in the variable. For example, look at the pseudocode in Program 2-6.

Program 2-6

1 Set dollars = 2.75
2 Display "I have ", dollars, " in my account."
3 Set dollars = 99.95
4 Display "But now I have ", dollars, " in my account!"

Program Output

I have 2.75 in my account.
But now I have 99.95 in my account!

Line 1 sets the dollars variable to 2.75, so when the statement in line 2 executes, it
displays “I have 2.75 in my account.” Then, the statement in line 3 sets the dollars
variable to 99.95. As a result, the value 99.95 replaces the value 2.75 that was previ-
ously stored in the variable. When line 4 executes, it displays “But now I have 99.95
in my account!” This program illustrates two important characteristics of variables:

●● A variable holds only one value at a time.
●● When you store a value in a variable, that value replaces the previous value that

was in the variable.

NOTE: When writing an assignment statement, all programming languages require
that you write the name of the variable that is receiving the value on the left side of
the = operator. For example, the following statement is incorrect:

Set 99.95 = dollars This is an error!

A statement such as this would be considered a syntax error.

 2.3 Variable Assignment and Calculations 45

NOTE: In this book, we have chosen to start variable assignment statements with
the word Set because it makes it clear that we are setting a variable to a value. In
most programming languages, however, assignment statements do not start with the
word Set. In most languages, an assignment statement looks similar to the following:

dollars = 99.95

If your instructor allows it, it is permissible to write assignment statements without
the word Set in your pseudocode. Just be sure to write the name of the variable that
is receiving the value on the left side of the equal sign.

Figure 2-11 Flowchart for Program 2-6

End

Start

Display "I have ",

dollars, " in my

account."

Set dollars = 2.75

Display "But now I have ",

dollars, " in my account!"

Set dollars = 99.95

In flowcharts, an assignment statement appears in a processing symbol, which is a rect-
angle. Figure 2-11 shows a flowchart for Program 2-6.

Performing Calculations

Most real-world algorithms require calculations to be performed. A programmer’s tools
for performing calculations are math operators. Programming languages commonly
provide the operators shown in Table 2-1.

Performing
Calculations

VideoNote

46 Chapter 2 Input, Processing, and Output

Programmers use the operators shown in Table 2-1 to create math expressions. A math

expression performs a calculation and gives a value. The following is an example of a
simple math expression:

12 + 2

The values on the right and left of the + operator are called operands. These are values
that the + operator adds together. The value that is given by this expression is 14.

Variables may also be used in a math expression. For example, suppose we have two
variables named hours and payRate. The following math expression uses the * opera-
tor to multiply the value in the hours variable by the value in the payRate variable:

hours * payRate

When we use a math expression to calculate a value, normally we want to save that
value in memory so we can use it again in the program. We do this with an assignment
statement. Program 2-7 shows an example.

Table 2-1 Common math operators1

Symbol Operator Description

+ Addition Adds two numbers

- Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the
quotient

MOD Modulus Divides one number by another and gives the
remainder

¿ Exponent Raises a number to a power

Program 2-7

1 Set price = 100
2 Set discount = 20
3 Set sale = price – discount
4 Display "The total cost is $", sale

Program Output

The total cost is $80

Line 1 sets the price variable to 100, and line 2 sets the discount variable to 20. Line
3 sets the sale variable to the result of the expression price – discount. As you can
see from the program output, the sale variable holds the value 80.

1 In some programming languages, the % character is used as the modulus operator, and some-

times the ** characters are used as the exponent operator.

 2.3 Variable Assignment and Calculations 47

In the Spotlight:

Calculating Cell Phone Overage Fees

Suppose your cell phone calling plan allows you to use 700 minutes per month. If you
use more than this limit in a month, you are charged an overage fee of 35 cents for each
excess minute. Your phone shows you the number of excess minutes that you have used
in the current month, but it does not show you how much your overage fee currently is.
Until now, you’ve been doing the math the old-fashioned way (with pencil and paper, or
with a calculator), but you would like to design a program that will simplify the task.
You would like to be able to enter the number of excess minutes, and have the program
perform the calculation for you.

First, you want to make sure that you understand the steps that the program must per-
form. It will be helpful if you closely look at the way you’ve been solving this problem,
using only paper and pencil, or calculator:

Manual Algorithm (Using pencil and paper, or calculator)

1. You get the number of excess minutes that you have used.
2. You multiply the number of excess minutes by 0.35.
3. The result of the calculation is your current overage fee.

Ask yourself the following questions about this algorithm:

Question: What input do I need to perform this algorithm?
Answer: I need the number of excess minutes.

Question: What must I do with the input?
Answer: I must multiply the input (the number of excess minutes) by

0.35. The result of that calculation is the overage fee.

Question: What output must I produce?
Answer: The overage fee.

Now that you have identified the input, the process that must be performed, and the
output, you can write the general steps of the program’s algorithm:

Computer Algorithm

1. Get the number of excess minutes as input.
2. Calculate the overage fee by multiplying the number of excess minutes by 0.35.
3. Display the overage fee.

In Step 1 of the computer algorithm, the program gets the number of excess minutes
from the user. Any time a program needs the user to enter a piece of data, it does two
things: (1) it displays a message prompting the user for the piece of data, and (2) it
reads the data that the user enters on the keyboard, and stores that data in a variable.
In pseudocode, Step 1 of the algorithm will look like this:

Display “Enter the number of excess minutes.”

Input excessMinutes

Notice that the Input statement stores the value entered by the user in a variable
named excessMinutes.

48 Chapter 2 Input, Processing, and Output

In Step 2 of the computer algorithm, the program calculates the overage fee by mul-
tiplying the number of excess minutes by 0.35. The following pseudocode statement
performs this calculation, and stores the result in a variable named overageFee:

Set overageFee = excessMinutes * 0.35

In Step 3 of the computer algorithm, the program displays the overage fee. Because the over-
age fee is stored in the overageFee variable, the program will display a message that shows
the value of the overageFee variable. In pseudocode we will use the following statement:

Display "Your current overage fee is $", overageFee

Program 2-8 shows the entire pseudocode program, with example output. Figure 2-12
shows the flowchart for this program.

Program 2-8

1 Display “Enter the number of excess minutes.”
2 Input excessMinutes
3 Set overageFee = excessMinutes * 0.35
4 Display “Your current overage fee is $”, overageFee

Program Output (with Input Shown in Bold)

Enter the number of excess minutes.
100 [Enter]
Your current overage fee is $35

Figure 2-12 Flowchart for Program 2-8

Start

Display "Enter the number
of excess minutes."

Input excessMinutes

Set overageFee =
excessMinutes * 0.35

Display "Your current
overage fee is $",

overageFee

End

 2.3 Variable Assignment and Calculations 49

In the Spotlight:

Calculating a Percentage

Determining percentages is a common calculation in computer programming. In mathe-
matics, the % symbol is used to indicate a percentage, but most programming languages
don’t use the % symbol for this purpose. In a program, you usually have to convert a
percentage to a decimal number. For example, 50 percent would be written as 0.5 and
2 percent would be written as 0.02.

Let’s step through the process of writing a program that calculates a percentage. Suppose
a retail business is planning to have a storewide sale where the prices of all items will
be 20 percent off. We have been asked to write a program to calculate the sale price of
an item after the discount is subtracted. Here is the algorithm:

1. Get the original price of the item.
2. Calculate 20 percent of the original price. This is the amount of the discount.
3. Subtract the discount from the original price. This is the sale price.
4. Display the sale price.

In Step 1 we get the original price of the item. We will prompt the user to enter this data
on the keyboard. Recall from the previous section that prompting the user is a two-step
process: (1) display a message telling the user to enter the desired data, and (2) reading that
data from the keyboard. We will use the following pseudocode statements to do this. Notice
that the value entered by the user will be stored in a variable named originalPrice.

Display “Enter the item's original price.”

Input originalPrice

In Step 2, we calculate the amount of the discount. To do this we multiply the original
price by 20 percent. The following statement performs this calculation and stores the
result in the discount variable.

Set discount = originalPrice * 0.2

In Step 3, we subtract the discount from the original price. The following statement does
this calculation and stores the result in the salePrice variable.

Set salePrice = originalPrice – discount

Last, in Step 4, we will use the following statement to display the sale price:

Display “The sale price is $”, salePrice

Program 2-9 shows the entire pseudocode program, with example output. Figure 2-13
shows the flowchart for this program.

Program 2-9

1 Display "Enter the item's original price."
2 Input originalPrice
3 Set discount = originalPrice * 0.2
4 Set salePrice = originalPrice – discount
5 Display "The sale price is $", salePrice

Figure 2-13 Flowchart for Program 2-9

End

Start

Display "Enter the
item's original price."

Set discount =
originalPrice * 0.2

Input originalPrice

Set salePrice =
originalPrice � discount

Display "The sale price
is $", salePrice

Program Output (with Input Shown in Bold)

Enter the item's original price.
100 [Enter]
The sale price is $80

The Order of Operations

It is possible to build mathematical expressions with several operators. The following
statement assigns the sum of 17, the variable x, 21, and the variable y to the variable
answer.

Set answer = 17 + x + 21 + y

Some expressions are not that straightforward, however. Consider the following
statement:

Set outcome = 12 + 6 / 3

50 Chapter 2 Input, Processing, and Output

 2.3 Variable Assignment and Calculations 51

What value will be stored in outcome? The number 6 is used as an operand for both
the addition and division operators. The outcome variable could be assigned either 6 or
14, depending on when the division takes place. The answer is 14 because the order of

operations dictates that the division operator works before the addition operator does.

In most programming languages, the order of operations can be summarized as follows:

1. Perform any operations that are enclosed in parentheses.
2. Perform any operations that use the exponent operator to raise a number to a power.
3. Perform any multiplications, divisions, or modulus operations as they appear from

left to right.
4. Perform any additions or subtractions as they appear from left to right.

Mathematical expressions are evaluated from left to right. When two operators share an
operand, the order of operations determines which operator works first. Multiplication
and division are always performed before addition and subtraction, so the statement

Set outcome = 12 + 6 / 3

works like this:

1. 6 is divided by 3, yielding a result of 2
2. 12 is added to 2, yielding a result of 14

It could be diagrammed as shown in Figure 2-14.

Figure 2-14 The order of operations at work

Set outcome = 12 + 6 / 3

Set outcome = 14

Set outcome = 12 + 2

Table 2-2 Some expressions and their values

Expression Value

5 + 2 * 4 13

10 / 2 – 3 2

8 + 12 * 2 – 4 28

6 – 3 * 2 + 7 – 1 6

Table 2-2 shows some other sample expressions with their values.

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some
operations to be performed before others. In the following statement, the variables a
and b are added together, and their sum is divided by 4:

 Set result = (a + b) / 4

52 Chapter 2 Input, Processing, and Output

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 2-3 shows more expressions and their values.

Table 2-3 More expressions and their values

Expression Value

(5 + 2) * 4 28

10 / (5 – 3) 5

8 + 12 * (6 – 2) 56

(6 – 3) * (2 + 7) / 3 9

NOTE: Parentheses can be used to enhance the clarity of a math expression, even
when they are unnecessary to get the correct result. For example, look at the follow-
ing statement:

Set fahrenheit = celsius * 1.8 + 32

Even when it is unnecessary to get the correct result, we can insert parentheses to
clearly show that celsius * 1.8 happens first in the math expression:

Set fahrenheit = (celsius * 1.8) + 32

In the Spotlight:

Calculating an Average

Determining the average of a group of values is a simple calculation: You add all of the
values and then divide the sum by the number of values. Although this is a straightfor-
ward calculation, it is easy to make a mistake when writing a program that calculates
an average. For example, let’s assume that the variables a, b, and c each hold a value
and we want to calculate the average of those values. If we are careless, we might write
a statement such as the following to perform the calculation:

Set average = a + b + c / 3

Can you see the error in this statement? When it executes, the division will take place
first. The value in c will be divided by 3, and then the result will be added to a + b.
That is not the correct way to calculate an average. To correct this error we need to put
parentheses around a + b + c, as shown here:

Set average = (a + b + c) / 3

Let’s step through the process of writing a program that calculates an average. Suppose
you have taken three tests in your computer science class, and you want to write a pro-
gram that will display the average of the test scores. Here is the algorithm:

1. Get the first test score.
2. Get the second test score.
3. Get the third test score.
4. Calculate the average by adding the three test scores and dividing the sum by 3.
5. Display the average.

 2.3 Variable Assignment and Calculations 53

In Steps 1, 2, and 3 we will prompt the user to enter the three test scores. We will store
those test scores in the variables test1, test2, and test3. In Step 4 we will calculate
the average of the three test scores. We will use the following statement to perform the
calculation and store the result in the average variable:

Set average = (test1 + test2 + test3) / 3

Last, in Step 5, we display the average. Program 2-10 shows the pseudocode for this
program, and Figure 2-15 shows the flowchart.

Program 2-10

1 Display "Enter the first test score."
2 Input test1
3 Display "Enter the second test score."
4 Input test2
5 Display "Enter the third test score."
6 Input test3
7 Set average = (test1 + test2 + test3) / 3
8 Display "The average score is ", average

Program Output (with Input Shown in Bold)

Enter the first test score.
90 [Enter]
Enter the second test score.
80 [Enter]
Enter the third test score.
100 [Enter]
The average score is 90

Figure 2-15 Flowchart for Program 2-10

End

Display "The average

score is ", average

Display "Enter the

third test score."

Input test3

Set average =

(test1 + test2 + test3) / 3

AStart

Display "Enter the

first test score."

Input test1

Display "Enter the

second test score."

Input test2

A

54 Chapter 2 Input, Processing, and Output

Advanced Arithmetic Operators:
Exponent and Modulus

In addition to the basic math operators for addition, subtraction, multiplication, and
division, many languages provide an exponent operator and a modulus operator. The
¿ symbol is commonly used as the exponent operator, and its purpose it to raise a

number to a power. For example, the following pseudocode statement raises the length
variable to the power of 2 and stores the result in the area variable:

Set area = length^2

The word MOD is used in many languages as the modulus operator. (Some languages
use the % symbol for the same purpose.) The modulus operator performs division, but
instead of returning the quotient, it returns the remainder. The following statement
assigns 2 to leftover:

Set leftover = 17 MOD 3

This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of
2. You will not use the modulus operator frequently, but it is useful in some situations.
It is commonly used in calculations that detect odd or even numbers, determine the day
of the week, measure the passage of time, and other specialized operations.

Converting Math Formulas to Programming Statements

You probably remember from algebra class that the expression 2xy is understood to
mean 2 times x times y. In math, you do not always use an operator for multiplication.
Programming languages, however, require an operator for any mathematical opera-
tion. Table 2-4 shows some algebraic expressions that perform multiplication and the
equivalent programming expressions.

Table 2-4 Algebraic expressions

Algebraic Expression Operation Being Performed Programming Expression

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

When converting some algebraic expressions to programming expressions, you may
have to insert parentheses that do not appear in the algebraic expression. For example,
look at the following formula:

x =

a + b

c

To convert this to a programming statement, a + b will have to be enclosed in
parentheses:

Set x = (a + b) / c

Table 2-5 shows additional algebraic expressions and their pseudocode equivalents.

 2.3 Variable Assignment and Calculations 55

Table 2-5 Algebraic expressions and pseudocode statements

Algebraic Expression Pseudocode Statement

y = 3
x

2
Set y = x / 2 * 3

z = 3bc + 4 Set z = 3 * b * c + 4

a =

x + 2

a - 1
Set a = (x + 2) / (a – 1)

In the Spotlight:

Converting a Math Formula

to a Programming Statement

Suppose you want to deposit a certain amount of money into a savings account, and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today to
make that happen? You can use the following formula to find out:

P =

F

(1 + r)n

The terms in the formula are as follows:

●● P is the present value, or the amount that you need to deposit today.
●● F is the future value that you want in the account. (In this case, F is $10,000.)
●● r is the annual interest rate.
●● n is the number of years that you plan to let the money sit in the account.

It would be nice to write a computer program to perform the calculation, because then
we can experiment with different values for the terms. Here is an algorithm that we
can use:

1. Get the desired future value.
2. Get the annual interest rate.
3. Get the number of years that the money will sit in the account.
4. Calculate the amount that will have to be deposited.
5. Display the result of the calculation in Step 4.

In Steps 1 through 3, we will prompt the user to enter the specified values. We will store
the desired future value in a variable named futureValue, the annual interest rate in a
variable named rate, and the number of years in a variable named years.

In Step 4, we calculate the present value, which is the amount of money that we will
have to deposit. We will convert the formula previously shown to the following pseudo-
code statement. The statement stores the result of the calculation in the presentValue
variable.

Set presentValue = futureValue / (1 + rate)^years

In Step 5, we display the value in the presentValue variable. Program 2-11 shows the
pseudocode for this program, and Figure 2-16 shows the flowchart.

