
JAVA

STARTING OUT WITH

JAVA

From Control Structures
through Objects

™

JAVA

S E V E N T H E D I T I O N

Tony Gaddis
Haywood Community College

STARTING OUT WITH

JAVA

330 Hudson Street, NY NY 10013

™

From Control Structures
through Objects

Senior Vice President Courseware Portfolio Management:

 Marcia J. Horton

Director, Portfolio Management: Engineering, Computer

 Science & Global Editions: Julian Partridge

Portfolio Manager: Matt Goldstein

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Amanda Brands

Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications,

 Inc. (LSC): Maura Zaldivar-Garcia

Inventory Manager: Ann Lam

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Cover Designer: Joyce Wells

Cover Photo: Shutterstock/Tim UR

Printer/Binder: LSC Communications, Inc.

Full-Service Project Management: Sasibalan Chidambaram,

 SPi Global

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on

appropriate page within text.

Copyright © 2019, 2016, 2013 by Pearson Education, Inc., Hoboken, New Jersey 07030. All rights reserved. Manufactured in the

United States of America. This publication is protected by copyright and permissions should be obtained from the publisher prior

to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within

the Pearson Education Global Rights & Permissions department, please visit http://www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in

initial caps or all caps.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their

 respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive

purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of

Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its

affiliates, authors, licensees or distributors.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the

documents and related graphics published as part of the services for any purpose. All such documents and related graphics

are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and

conditions with regard to this information, including all warranties and conditions of merchantability. Whether express,

implied or statutory, fitness for a particular purpose, title and non infringement. In no event shall microsoft and/or its

respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from

loss of use, data or profits, whether in an action of contract. Negligence or other tortious action, arising out of or in

connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors changes

are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/

or changes in the product(s) and/or the program(s) described herein at any time partial screen shots may be viewed in full

within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and

other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

Names: Gaddis, Tony, author.

Title: Starting out with Java. From control structures through objects / Tony

 Gaddis, Haywood Community College.

Description: Seventh edition. | NY, NY : Pearson Education, Inc., [2019] |

 Includes index.

Identifiers: LCCN 2017060354| ISBN 9780134802213 | ISBN 0134802217

Subjects: LCSH: Java (Computer program language) | Data structures (Computer

 science) | Object-oriented programming (Computer science)

Classification: LCC QA76.73.J38 G333 2019 | DDC 005.13/3--dc23 LC record

 available at https://lccn.loc.gov/2017060354

1 18

ISBN 10: 0-13-480221-7

ISBN 13: 978-0-13-480221-3

https://lccn.loc.gov/2017060354
http://www.pearsoned.com/permissions/

v

Contents in Brief

Chapter 1 Introduction to Computers and Java 1

Chapter 2 Java Fundamentals 27

Chapter 3 Decision Structures 111

Chapter 4 Loops and Files 189

Chapter 5 Methods 269

Chapter 6 A First Look at Classes 317

Chapter 7 Arrays and the ArrayList Class 403

Chapter 8 A Second Look at Classes and Objects 493

Chapter 9 Text Processing and More about Wrapper Classes 557

Chapter 10 Inheritance 611

Chapter 11 Exceptions and Advanced File I/O 701

Chapter 12 JavaFX: GUI Programming and Basic Controls 759

Chapter 13 JavaFX: Advanced Controls 823

Chapter 14 JavaFX: Graphics, Effects, and Media 909

Chapter 15 Recursion 999

Chapter 16 Databases 1027

Index 1109

Appendices A–M Companion Website

Case Studies 1–7 Companion Website

Chapters 17–20 Companion Website

Preface xxvi

Chapter 1 Introduction to Computers and Java 1

1.1 Introduction .1
1.2 Why Program?. .1
1.3 Computer Systems: Hardware and Software .2

Hardware . 2

Software . 5

1.4 Programming Languages. .6
What Is a Program?. 6

A History of Java . 8

1.5 What Is a Program Made Of? .8
Language Elements . 8

Lines and Statements. 11

Variables . 11

The Compiler and the Java Virtual Machine . 12

Java Software Editions . 13

Compiling and Running a Java Program. 14

1.6 The Programming Process. .16
Software Engineering. 18

1.7 Object-Oriented Programming. .19
Review Questions and Exercises 21

Programming Challenge 25

Chapter 2 Java Fundamentals 27

2.1 The Parts of a Java Program. .27
2.2 The print and println Methods, and the Java API33
2.3 Variables and Literals .39

Displaying Multiple Items with the + Operator . 40

Be Careful with Quotation Marks . 41

More about Literals . 42

Identifiers . 42

Class Names . 44

Contents

2.4 Primitive Data Types .44
The Integer Data Types . 46

Floating-Point Data Types . 47

The boolean Data Type . 50

The char Data Type . 50

Variable Assignment and Initialization . 52

Variables Hold Only One Value at a Time . 53

2.5 Arithmetic Operators .54
Integer Division . 57

Operator Precedence . 57

Grouping with Parentheses . 59

The Math Class . 62

2.6 Combined Assignment Operators .63
2.7 Conversion between Primitive Data Types. .65

Mixed Integer Operations . 67

Other Mixed Mathematical Expressions. 68

2.8 Creating Named Constants with final .69
2.9 The String Class .70

Objects Are Created from Classes . 71

The String Class . 71

Primitive Type Variables and Class Type Variables 71

Creating a String Object. 72

2.10 Scope .76
2.11 Comments .78
2.12 Programming Style .83
2.13 Reading Keyboard Input. .85

Reading a Character . 89

Mixing Calls to nextLine with Calls to Other Scanner Methods. 89

2.14 Dialog Boxes .93
Displaying Message Dialogs . 93

Displaying Input Dialogs. 94

An Example Program. 94

Converting String Input to Numbers . 96

2.15 Common Errors to Avoid .99
Review Questions and Exercises 100

Programming Challenges 106

Chapter 3 Decision Structures 111

3.1 The if Statement .111
Using Relational Operators to Form Conditions 113

Putting It All Together . 114

Programming Style and the if Statement . 117

Be Careful with Semicolons . 117

Having Multiple Conditionally Executed Statements 118

Flags . 118

viii Contents

 Contents ix

Comparing Characters. 119

3.2 The if-else Statement .120
3.3 Nested if Statements .122
3.4 The if-else-if Statement .128
3.5 Logical Operators .134

The Precedence of Logical Operators . 139

Checking Numeric Ranges with Logical Operators. 140

3.6 Comparing String Objects .142
Ignoring Case in String Comparisons. 146

3.7 More about Variable Declaration and Scope.147
3.8 The Conditional Operator (Optional) .149
3.9 The switch Statement .150
3.10 Displaying Formatted Output with System.out.printf

and String.format .160
Format Specifier Syntax . 163

Precision . 164

Specifying a Minimum Field Width . 164

Flags . 167

Formatting String Arguments. 170

The String.format Method. 172

3.11 Common Errors to Avoid .174
Review Questions and Exercises 175

Programming Challenges 181

Chapter 4 Loops and Files 189

4.1 The Increment and Decrement Operators .189
The Difference between Postfix and Prefix Modes 192

4.2 The while Loop .193
The while Loop Is a Pretest Loop . 196

Infinite Loops. 196

Don’t Forget the Braces with a Block of Statements 197

Programming Style and the while Loop . 198

4.3 Using the while Loop for Input Validation .200
4.4 The do-while Loop .204
4.5 The for Loop .207

The for Loop Is a Pretest Loop. 210

Avoid Modifying the Control Variable in the Body of the for Loop 211

Other Forms of the Update Expression. 211

Declaring a Variable in the for Loop’s Initialization Expression 211

Creating a User Controlled for Loop . 212

Using Multiple Statements in the Initialization and Update Expressions. . . 213

4.6 Running Totals and Sentinel Values .216
Using a Sentinel Value . 219

4.7 Nested Loops .221
4.8 The break and continue Statements (Optional)229

x Contents

4.9 Deciding Which Loop to Use .229
4.10 Introduction to File Input and Output. .230

Using the PrintWriter Class to Write Data to a File 230

Appending Data to a File. 236

Specifying the File Location . 237

Reading Data from a File. 237

Reading Lines from a File with the nextLine Method 238

Adding a throws Clause to the Method Header 241

Checking for a File’s Existence . 245

4.11 Generating Random Numbers with the Random Class.249
4.12 Common Errors to Avoid .255
Review Questions and Exercises 256

Programming Challenges 262

Chapter 5 Methods 269

5.1 Introduction to Methods .269
void Methods and Value-Returning Methods . 270

Defining a void Method . 271

Calling a Method. 272

Layered Method Calls . 276

Using Documentation Comments with Methods 277

5.2 Passing Arguments to a Method. .279
Argument and Parameter Data Type Compatibility 281

Parameter Variable Scope . 282

Passing Multiple Arguments . 282

Arguments Are Passed by Value . 284

Passing Object References to a Method . 285

Using the @param Tag in Documentation Comments 288

5.3 More about Local Variables .290
Local Variable Lifetime. 292

Initializing Local Variables with Parameter Values. 292

5.4 Returning a Value from a Method .293
Defining a Value-Returning Method . 293

Calling a Value-Returning Method . 294

Using the @return Tag in Documentation Comments 296

Returning a boolean Value. 300

Returning a Reference to an Object . 300

5.5 Problem Solving with Methods .302
Calling Methods That Throw Exceptions . 305

5.6 Common Errors to Avoid .305
Review Questions and Exercises 306

Programming Challenges 311

 Contents xi

Chapter 6 A First Look at Classes 317

6.1 Objects and Classes .317
Classes: Where Objects Come From . 318

Classes in the Java API . 319

Primitive Variables vs. Objects . 321

6.2 Writing a Simple Class, Step by Step .324
Accessor and Mutator Methods . 338

The Importance of Data Hiding. 338

Avoiding Stale Data . 339

Showing Access Specification in UML Diagrams 339

Data Type and Parameter Notation in UML Diagrams 339

Layout of Class Members. 340

6.3 Instance Fields and Methods .341
6.4 Constructors .346

Showing Constructors in a UML Diagram . 348

Uninitialized Local Reference Variables . 348

The Default Constructor. 348

Writing Your Own No-Arg Constructor. 349

The String Class Constructor. 350

6.5 Passing Objects as Arguments .358
6.6 Overloading Methods and Constructors .370

The BankAccount Class. 372

Overloaded Methods Make Classes More Useful 378

6.7 Scope of Instance Fields .378
Shadowing . 379

6.8 Packages and import Statements. .380
Explicit and Wildcard import Statements. 380

The java.lang Package . 381

Other API Packages . 381

6.9 Focus on Object-Oriented Design: Finding the Classes
and Their Responsibilities. .382
Finding the Classes . 382

Identifying a Class’s Responsibilities . 385

This Is Only the Beginning . 388

6.10 Common Errors to Avoid .388
Review Questions and Exercises 389

Programming Challenges 394

Chapter 7 Arrays and the ArrayList Class 403

7.1 Introduction to Arrays. .403
Accessing Array Elements. 405

xii Contents

Inputting and Outputting Array Contents . 406

Java Performs Bounds Checking . 409

Watch Out for Off-by-One Errors . 410

Array Initialization. 411

Alternate Array Declaration Notation . 412

7.2 Processing Array Elements .413
Array Length . 415

The Enhanced for Loop . 416

Letting the User Specify an Array’s Size . 417

Reassigning Array Reference Variables. 419

Copying Arrays . 420

7.3 Passing Arrays as Arguments to Methods .422
7.4 Some Useful Array Algorithms and Operations426

Comparing Arrays . 426

Summing the Values in a Numeric Array . 427

Getting the Average of the Values in a Numeric Array 428

Finding the Highest and Lowest Values in a Numeric Array. 428

The SalesData Class . 429

Partially Filled Arrays . 437

Working with Arrays and Files . 438

7.5 Returning Arrays from Methods .439
7.6 String Arrays .441

Calling String Methods from an Array Element 443

7.7 Arrays of Objects .444
7.8 The Sequential Search Algorithm. .447
7.9 Two-Dimensional Arrays .450

Initializing a Two-Dimensional Array. 454

The length Field in a Two-Dimensional Array . 455

Displaying All the Elements of a Two-Dimensional Array 457

Summing All the Elements of a Two-Dimensional Array. 457

Summing the Rows of a Two-Dimensional Array 458

Summing the Columns of a Two-Dimensional Array 458

Passing Two-Dimensional Arrays to Methods . 459

Ragged Arrays . 461

7.10 Arrays with Three or More Dimensions .462
7.11 The Selection Sort and the Binary Search Algorithms463

The Selection Sort Algorithm . 463

The Binary Search Algorithm . 466

7.12 Command-Line Arguments and Variable-Length Argument Lists468
Command-Line Arguments . 469

Variable-Length Argument Lists . 470

7.13 The ArrayList Class .472
Creating and Using an ArrayList Object . 473

Using the Enhanced for Loop with an ArrayList 474

The ArrayList Class’s toString method . 475

Removing an Item from an ArrayList. 476

 Contents xiii

Inserting an Item. 477

Replacing an Item . 478

Capacity . 479

Storing Your Own Objects in an ArrayList . 479

Using the Diamond Operator for Type Inference 480

7.14 Common Errors to Avoid .481
Review Questions and Exercises 481

Programming Challenges 486

Chapter 8 A Second Look at Classes and Objects 493

8.1 Static Class Members .493
A Quick Review of Instance Fields and Instance Methods 493

Static Members . 494

Static Fields . 494

Static Methods. 497

8.2 Passing Objects as Arguments to Methods. .500
8.3 Returning Objects from Methods .503
8.4 The toString Method .505
8.5 Writing an equals Method. .509
8.6 Methods That Copy Objects. .512

Copy Constructors . 514

8.7 Aggregation. .515
Aggregation in UML Diagrams . 523

Security Issues with Aggregate Classes . 523

Avoid Using null References . 525

8.8 The this Reference Variable .528
Using this to Overcome Shadowing . 529

Using this to Call an Overloaded Constructor from Another Constructor . . 530

8.9 Enumerated Types .531
Enumerated Types Are Specialized Classes . 532

Switching On an Enumerated Type . 538

8.10 Garbage Collection. .540
The finalize Method . 542

8.11 Focus on Object-Oriented Design: Class Collaboration542
Determining Class Collaborations with CRC Cards. 545

8.12 Common Errors to Avoid .546
Review Questions and Exercises 547

Programming Challenges 551

Chapter 9 Text Processing and More about Wrapper Classes 557

9.1 Introduction to Wrapper Classes .557
9.2 Character Testing and Conversion with the Character Class558

Character Case Conversion . 563

9.3 More String Methods .566

xiv Contents

Searching for Substrings . 566

Extracting Substrings . 572

Methods That Return a Modified String . 576

The Static valueOf Methods. 577

9.4 The StringBuilder Class .579
The StringBuilder Constructors . 580

Other StringBuilder Methods . 581

The toString Method . 584

9.5 Tokenizing Strings .589
9.6 Wrapper Classes for the Numeric Data Types594

The Static toString Methods . 594

The toBinaryString, toHexString, and toOctalString Methods 594

The MIN_VALUE and MAX_VALUE Constants. 595

Autoboxing and Unboxing. 595

9.7 Focus on Problem Solving: The TestScoreReader Class597
9.8 Common Errors to Avoid .601
Review Questions and Exercises 601

Programming Challenges 605

Chapter 10 Inheritance 611

10.1 What Is Inheritance?. .611
Generalization and Specialization . 611

Inheritance and the “Is a” Relationship . 612

Inheritance in UML Diagrams . 620

The Superclass’s Constructor . 621

Inheritance Does Not Work in Reverse . 623

10.2 Calling the Superclass Constructor .624
When the Superclass Has No Default or No-Arg Constructors 630

Summary of Constructor Issues in Inheritance. 631

10.3 Overriding Superclass Methods .632
Overloading versus Overriding. 637

Preventing a Method from Being Overridden. 640

10.4 Protected Members .641
Package Access . 646

10.5 Chains of Inheritance .647
Class Hierarchies . 653

10.6 The Object Class .653
10.7 Polymorphism. .655

Polymorphism and Dynamic Binding . 656

The “Is-a” Relationship Does Not Work in Reverse 658

The instanceof Operator. 659

10.8 Abstract Classes and Abstract Methods .660
Abstract Classes in UML. 666

10.9 Interfaces. .667
An Interface is a Contract . 669

 Contents xv

Fields in Interfaces . 673

Implementing Multiple Interfaces . 673

Interfaces in UML. 673

Default Methods . 674

Polymorphism and Interfaces . 676

10.10 Anonymous Inner Classes. .681
10.11 Functional Interfaces and Lambda Expressions684
10.12 Common Errors to Avoid .689
Review Questions and Exercises 690

Programming Challenges 696

Chapter 11 Exceptions and Advanced File I/O 701

11.1 Handling Exceptions .701
Exception Classes. 702

Handling an Exception . 703

Retrieving the Default Error Message. 707

Polymorphic References to Exceptions . 710

Using Multiple catch Clauses to Handle Multiple Exceptions. 710

The finally Clause . 718

The Stack Trace . 720

Handling Multiple Exceptions with One catch Clause 721

When an Exception Is Not Caught. 723

Checked and Unchecked Exceptions. 724

11.2 Throwing Exceptions. .725
Creating Your Own Exception Classes . 728

Using the @exception Tag in Documentation Comments. 731

11.3 Advanced Topics: Binary Files, Random Access Files, and
Object Serialization .732
Binary Files . 732

Random Access Files . 739

Object Serialization . 744

Serializing Aggregate Objects . 748

11.4 Common Errors to Avoid .749
Review Questions and Exercises 749

Programming Challenges 755

Chapter 12 JavaFX: GUI Programming and Basic Controls 759

12.1 Graphical User Interfaces .759
Event-Driven GUI Programs . 761

12.2 Introduction to JavaFX .762
Controls . 762

Stages and Scenes . 763

The Application Class. 763

12.3 Creating Scenes. .765

xvi Contents

Creating Controls. 766

Creating Layout Containers . 766

Creating a Scene Object. 767

Adding the Scene Object to the Stage . 768

Setting the Size of the Scene . 770

Aligning Controls in an HBox Layout Container 770

12.4 Displaying Images. .772
Loading Images from an Internet Location . 775

Setting the Size of an Image . 775

Preserving the Image’s Aspect Ratio . 775

Changing an ImageView’s Image . 776

12.5 More about the HBox, VBox, and GridPane Layout Containers.776
The HBox Layout Container . 777

The VBox Layout Container . 782

The GridPane Layout Container . 784

Using Multiple Layout Containers in the Same Screen 791

12.6 Button Controls and Events .792
Handling Events . 794

Writing Event Handlers . 794

Registering an Event Handler. 795

12.7 Reading Input with TextField Controls .799
12.8 Using Anonymous Inner Classes and Lambda Expressions

to Handle Events. .803
Using Anonymous Inner Classes to Create Event Handlers. 803

Using Lambda Expressions to Create Event Handlers. 806

12.9 The BorderPane Layout Container. .808
12.10 The ObservableList Interface .812
12.11 Common Errors to Avoid .814
Review Questions and Exercises 814

Programming Challenges 818

Chapter 13 JavaFX: Advanced Controls 823

13.1 Styling JavaFX Applications with CSS .823
Type Selector Names . 824

Style Properties . 825

Applying a Stylesheet to a JavaFX Application . 826

Applying Styles to the Root Node. 830

Specifying Multiple Selectors in the Same Style Definition 832

Working with Colors . 832

Creating a Custom Style Class Name . 834

ID Selectors . 836

Inline Style Rules . 837

13.2 RadioButton Controls .838
Determining in Code Whether a RadioButton Is Selected. 839

Selecting a RadioButton in Code . 839

 Contents xvii

Responding to RadioButton Clicks . 844

13.3 CheckBox Controls .848
Determining in Code Whether a CheckBox Is Selected 848

Selecting a CheckBox in Code . 849

Responding to CheckBox Clicks. 853

13.4 ListView Controls .853
Retrieving the Selected Item. 855

Retrieving the Index of the Selected Item . 856

Responding to Item Selection with an Event Handler. 859

Adding Items versus Setting Items . 860

Initializing a ListView with an Array or an ArrayList 861

Selection Modes. 862

Retrieving Multiple Selected Items . 863

Working With the Elements of an ObservableList. 866

Converting an ObservableList to an Array . 867

Using Code to Select an Item in a ListView . 868

ListView Orientation. 868

Creating ListViews of Objects Other Than String. 869

13.5 ComboBox Controls .874
Retrieving the Selected Item. 875

Responding to ComboBox Item Selection with an Event Handler 877

Editable ComboBoxes . 879

13.6 Slider Controls .880
13.7 TextArea Controls .885
13.8 Menus .887

Assigning Mnemonics to Menu Items . 895

13.9 The FileChooser Class .897
Displaying a FileChooser Dialog Box . 898

13.10 Using Console Output to Debug a GUI Application898
13.11 Common Errors to Avoid .902
Review Questions 902

Programming Challenges 906

Chapter 14 JavaFX: Graphics, Effects, and Media 909

14.1 Drawing Shapes .909
The Screen Coordinate System . 909

The Shape Class and Its Subclasses . 910

The Line Class . 911

Changing the Stroke Color . 914

The Circle Class . 914

The Rectangle Class . 918

The Ellipse Class . 921

The Arc Class . 924

The Polygon Class . 928

The Polyline Class . 931

xviii Contents

The Text Class . 933

Rotating Nodes . 936

Scaling Nodes . 938

14.2 Animation .940
The TranslateTransition Class. 941

The RotateTransition Class . 944

The ScaleTransition Class . 949

The StrokeTransition Class . 952

The FillTransition Class . 953

The FadeTransition Class . 954

Controlling the Animation . 956

Specifying an Interpolator . 956

14.3 Effects .958
The DropShadow Class. 958

The InnerShadow Class. 961

The ColorAdjust Class. 962

The BoxBlur, GaussianBlur, and MotionBlur Classes 962

The SepiaTone Class . 965

The Glow Class . 966

The Reflection Class. 967

Combining Effects . 967

14.4 Playing Sound Files .969
Registering an EndOfMedia Event Handler . 971

14.5 Playing Videos. .974
14.6 Handling Key Events .979

Using an Anonymous Inner Class to Register a Key Event Handler

to the Scene . 980

Using a Lambda Expression to Register a Key Event Handler

to the Scene . 981

14.7 Handling Mouse Events .986
14.8 Common Errors to Avoid .992
Review Questions 992

Programming Challenges 995

Chapter 15 Recursion 999

15.1 Introduction to Recursion. .999
15.2 Solving Problems with Recursion .1002

Direct and Indirect Recursion. 1006

15.3 Examples of Recursive Methods .1007
Summing a Range of Array Elements with Recursion. 1007

Drawing Concentric Circles . 1008

The Fibonacci Series . 1011

Finding the Greatest Common Divisor . 1012

15.4 A Recursive Binary Search Method. .1014

 Contents xix

15.5 The Towers of Hanoi .1017
15.6 Common Errors to Avoid .1021
Review Questions and Exercises 1022

Programming Challenges 1025

Chapter 16 Databases 1027

16.1 Introduction to Database Management Systems.1027
JDBC . 1028

SQL . 1029

Using a DBMS . 1029

Java DB . 1030

Creating the CoffeeDB Database . 1030

Connecting to the CoffeeDB Database. 1030

Connecting to a Password-Protected Database 1032

16.2 Tables, Rows, and Columns .1033
Column Data Types . 1035

Primary Keys . 1035

16.3 Introduction to the SQL SELECT Statement .1036
Passing an SQL Statement to the DBMS. 1038

Specifying Search Criteria with the WHERE Clause 1048

Sorting the Results of a SELECT Query . 1054

Mathematical Functions . 1055

16.4 Inserting Rows. .1058
Inserting Rows with JDBC . 1060

16.5 Updating and Deleting Existing Rows. .1062
Updating Rows with JDBC . 1063

Deleting Rows with the DELETE Statement. 1067

Deleting Rows with JDBC . 1067

16.6 Creating and Deleting Tables .1071
Removing a Table with the DROP TABLE Statement 1074

16.7 Creating a New Database with JDBC .1074
16.8 Scrollable Result Sets .1076
16.9 Result Set Metadata .1077
16.10 Relational Data .1084

Joining Data from Multiple Tables . 1086

An Order Entry System . 1087

16.11 Advanced Topics. .1100
Transactions . 1100

Stored Procedures . 1101

16.12 Common Errors to Avoid .1102
Review Questions and Exercises 1102

Programming Challenges 1107

Index 1109

xx Contents

The following appendices, online chapters, and online case studies are avail-

able on the book’s online resource page at www.pearson.com/cs-resources.

Online Appendices:

Appendix A: The ASCII/Unicode Characters
Appendix B: Operator Precedence and Associativity
Appendix C: Java Key Words
Appendix D: Installing the JDK and Using the JDK Documentation
Appendix E: Using the javadoc Utility
Appendix F: More about the Math Class
Appendix G: Packages
Appendix H: Working with Records and Random - Access Files
Appendix I: Configuring Java DB
Appendix J: The QuickSort Algorithm
Appendix K: Named Colors
Appendix L: Answers to Checkpoints Questions
Appendix M: Answers to Odd-Numbered Review Questions

Online Chapters:

Chapter 17: GUI Applications with Swing – Part 1
Chapter 18: GUI Applications with Swing – Part 2
Chapter 19: Applets and More
Chapter 20: Creating JavaFX Applications with Scene Builder

Online Case Studies:

Case Study 1: Calculating Sales Commission
Case Study 2: The Amortization Class
Case Study 3: The PinTester Class
Case Study 4: Parallel Arrays
Case Study 5: The FeetInches Class
Case Study 6: The SerialNumber Class
Case Study 7: A Simple Text Editor Application

http://www.pearson.com/cs-resources

Chapter 1 Compiling and Running a Java Program, p. 14
Using an IDE, p. 14
Your First Java Program, p. 25

Chapter 2 Displaying Console Output, p. 33
Declaring Variables, p. 39
Simple Math Expressions, p. 55
The Miles-per-Gallon Problem, p. 107

Chapter 3 The if Statement, p. 111
The if-else Statement, p. 120
The if-else-if Statement, p. 129
The Time Calculator Problem, p. 182

Chapter 4 The while Loop, p. 193
The Pennies for Pay Problem, p. 263

Chapter 5 Passing Arguments to a Method, p. 279
Returning a Value from a Method, p. 293
The Retail Price Calculator Problem, p. 311

Chapter 6 Writing Classes and Creating Objects, p. 325
Initializing an Object with a Constructor, p. 346
The Personal Information Class Problem, p. 395

Chapter 7 Accessing Array Elements in a Loop, p. 407
Passing an Array to a Method, p. 422
The Charge Account Validation Problem, p. 487

Chapter 8 Returning Objects from Methods, p. 503
Aggregation, p. 515
The BankAccount, Class Copy Constructor Problem, p. 552

Chapter 9 The Sentence Capitalizer Problem, p. 605

Chapter 10 Inheritance, p. 611
Polymorphism, p. 655
The Employee and Productionworker Classes Problem, p. 696

Chapter 11 Handling Exceptions, p. 701
The Exception Project Problem, p. 757

LOCATION OF VIDEONOTES IN THE TEXT

(continued on the next page)

Chapter 12 Introduction to JavaFX, p. 762
Creating Scenes, p. 765
Displaying Images, p. 772
The HBox Layout Container, p. 777
The VBox Layout Container, p. 782
The GridPane Layout Container, p. 784
Button Controls and Events, p. 792
The TextField Control, p. 799
Using Anonymous Inner Classes as Event Handlers, p. 803
Using Lambda Expressions as Event Handlers, p. 806
The Latin Translator Problem, p. 818

Chapter 13 JavaFX and CSS, p. 823
RadioButton Controls, p. 838
CheckBox Controls, p. 848
ListView Controls, p. 853
ComboBox Controls, p. 874
Slider Controls, p. 880,
The Dorm and Meal Plan Calculator Problem, p. 906

Chapter 14 Drawing Shapes with JavaFX, p. 909
JavaFX Animation, p. 940
JavaFX Effects, p. 958
Playing Sound Files with JavaFX, p. 970
Playing Videos with JavaFX, p. 974
Handling Key Events in JavaFX, p. 979
Handling Mouse Events in JavaFX, p. 986
The Coin Toss Problem, p. 996

Chapter 15 Reducing a Problem with Recursion, p. 1003
The Recursive Power Problem, p. 1026

Chapter 16 The Customer Inserter Problem, p. 1107

LOCATION OF VIDEONOTES IN THE TEXT (continued)

Preface

Welcome to Starting Out with Java: From Control Structures through Objects,

 Seventh Edition. This book is intended for a one-semester or a two-quarter CS1

course. Although it is written for students with no prior programming background, even

experienced students will benefit from its depth of detail.

Control Structures First, Then Objects

This text first introduces the student to the fundamentals of data types, input and output,

control structures, methods, and objects created from standard library classes.

Next, the student learns to use arrays of primitive types and reference types. After this, the

student progresses through more advanced topics, such as inheritance, polymorphism, the

creation and management of packages, GUI applications, recursion, and database program-

ming. From early in the book, applications are documented with javadoc comments. As the

student progresses through the text, new javadoc tags are covered and demonstrated.

As with all the books in the Starting Out With … series, the hallmark of this text is its clear,

friendly, and easy-to-understand writing. In addition, it is rich in example programs that

are concise and practical.

Changes in the Seventh Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the

previous edition. The most significant change in this edition is the switch from Swing to

JavaFX in the chapters that focus on GUI development. Although Swing is not officially

deprecated, Oracle has announced that JavaFX has replaced Swing as the standard GUI

library for Java.1

In this edition, we have added the following new chapters:

• Chapter 12 JavaFX: GUI Programming and Basic Controls This chapter presents the

basics of developing graphical user interface (GUI) applications with JavaFX. Funda-

mental controls, layout containers, and the basic concepts of event-driven program-

ming are covered.

• Chapter 13 JavaFX: Advanced Controls This chapter discusses CSS styling and

advanced user interface controls.

1 http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6

xxiii

• Chapter 14 JavaFX: Graphics, Effects, and Media This chapter discusses 2D shapes,

animation, visual effects, playing audio and video, and responding to mouse and key-

board events.

The Swing and Applet material that appeared in the previous edition is still available on the

book’s companion Web site, as the following online chapters:

• The previous Chapter 12 A First Look At GUI Applications is now available online

as Chapter 17.

• The previous Chapter 13 Advanced GUI Applications is now available online as

 Chapter 18.

• The previous Chapter 14 Applets and More is now available online as Chapter 19.

Note: Chapter 15 from the previous edition has also been moved to the book’s companion

Web site as Chapter 20 Creating JavaFX Applications with Scene Builder. Although Oracle

no longer officially supports Scene Builder, it is still available as an open source tool at http://

http://gluonhq.com/labs/scene-builder/

In addition to the new JavaFX chapters, the Database chapter, which is now Chapter 15, has

been updated to use JavaFX instead of Swing for its GUI applications. We have also added

several new, motivational programming problems throughout the book.

Organization of the Text

The text teaches Java step-by-step. Each chapter covers a major set of topics and builds

knowledge as students progress through the book. Although the chapters can be easily taught

in their existing sequence, there is some flexibility. Figure P-1 shows chapter dependencies.

Each box represents a chapter or a group of chapters. An arrow points from a chapter to

the chapter that must be previously covered.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Java. This chapter provides an introduc-

tion to the field of computer science and covers the fundamentals of hardware, software,

and programming languages. The elements of a program, such as key words, variables,

operators, and punctuation, are discussed by examining a simple program. An overview of

entering source code, compiling, and executing a program is presented. A brief history of

Java is also given.

Chapter 2: Java Fundamentals. This chapter gets students started in Java by introduc-

ing data types, identifiers, variable declarations, constants, comments, program output, and

simple arithmetic operations. The conventions of programming style are also introduced.

Students learn to read console input with the Scanner class and with dialog boxes using

JOptionPane.

Chapter 3: Decision Structures. In this chapter students explore relational operators

and relational expressions and are shown how to control the flow of a program with the if,

if-else, and if-else-if statements. Nested if statements, logical operators, the conditional

operator, and the switch statement are also covered. The chapter discusses how to compare

String objects with the equals, compareTo, equalsIgnoreCase, and compareToIgnoreCase

xxiv Preface

http://gluonhq.com/labs/scene-builder/

 Preface xxv

Figure P-1 Chapter dependencies

Chapters 1 - 7 (Cover in Order)

Java Fundamentals

Depend On

Chapter 9

Text Processing and

Wrapper Classes

Chapter 10

Inheritance

Chapter 15

Recursion

Chapter 16

Databases

Chapter 11

Exceptions and

Advanced File I/O

Chapter 12
JavaFX: GUI Programming

and Basic Controls

Chapter 13

JavaFX: Advanced

Controls

Chapter 14

JavaFX: Graphics,

E�ects, and Media

Depends On

Depends On
Depends On

Some examples in

Chapter 16 use JavaFX,

which is introduced

in Chapter 12.

One example in

Chapter 15 uses the JavaFX

Circle class, which is introduced

in Chapter 14.

Depends On

Chapter 8

A Second Look at

Classes and Objects

methods. Formatting numeric output with the System.out.printf method and the

String.format method is discussed.

Chapter 4: Loops and Files. This chapter covers Java’s repetition control structures.

The while loop, do-while loop, and for loop are taught, along with common uses for

these devices. Counters, accumulators, running totals, sentinels, and other application-

related topics are discussed. Simple file operations for reading and writing text files are

included.

xxvi Preface

Chapter 5: Methods. In this chapter students learn how to write void methods, value-

returning methods, and methods that do and do not accept arguments. The concept of

functional decomposition is discussed.

Chapter 6: A First Look at Classes. This chapter introduces students to designing classes

for the purpose of instantiating objects. Students learn about class fields and methods, and

UML diagrams are introduced as a design tool. Then constructors and overloading are

discussed. A BankAccount class is presented as a case study, and a section on object-

oriented design is included. This section leads the students through the process of identifying

classes and their responsibilities within a problem domain. There is also a section that briefly

explains packages and the import statement.

Chapter 7: Arrays and the ArrayList Class. In this chapter students learn to create

and work with single and multi-dimensional arrays. Numerous array-processing techniques

are demonstrated, such as summing the elements in an array, finding the highest and low-

est values, and sequentially searching an array. Other topics, including ragged arrays and

variable-length arguments (varargs), are also discussed. The ArrayList class is introduced,

and Java’s generic types are briefly discussed and demonstrated.

Chapter 8: A Second Look at Classes and Objects. This chapter shows students how to

write classes with added capabilities. Static methods and fields, interaction between objects,

passing objects as arguments, and returning objects from methods are discussed. Aggregation

and the “has a” relationship is covered, as well as enumerated types. A section on object-

oriented design shows how to use CRC cards to determine the collaborations among classes.

Chapter 9: Text Processing and More about Wrapper Classes. This chapter discusses

the numeric and Character wrapper classes. Methods for converting numbers to strings,

testing the case of characters, and converting the case of characters are covered. Autoboxing

and unboxing are also discussed. More String class methods are covered, including using the

split method to tokenize strings. The chapter also covers the StringBuilder class.

Chapter 10: Inheritance. The study of classes continues in this chapter with the subjects

of inheritance and polymorphism. The topics covered include superclasses, subclasses, how

constructors work in inheritance, method overriding, polymorphism and dynamic binding,

protected and package access, class hierarchies, abstract classes, abstract methods, anony-

mous inner classes, interfaces, and lambda expressions.

Chapter 11: Exceptions and Advanced File I/O. In this chapter students learn to

develop enhanced error trapping techniques using exceptions. Handling exceptions is cov-

ered, as well as developing and throwing custom exceptions. The chapter discusses advanced

techniques for working with sequential access, random access, text, and binary files.

Chapter 12: JavaFX: GUI Programming and Basic Controls. This chapter presents the

basics of developing graphical user interface (GUI) applications with JavaFX. Fundamental

controls, layout containers, and the basic concepts of event-driven programming are covered.

Chapter 13: JavaFX: Advanced Controls. This chapter discusses CSS styling

and advanced user interface controls, such as RadioButtons, CheckBoxes, ListViews,

 ComboBoxes, Sliders, and TextAreas. Menu systems and FileChoosers are also covered.

 Preface xxvii

Chapter 14: JavaFX: Graphics, Effects, and Media. This chapter discusses 2D shapes,

animation, visual effects, playing audio and video, and responding to mouse and keyboard

events.

Chapter 15: Recursion. This chapter presents recursion as a problem-solving technique.

Numerous examples of recursive methods are demonstrated.

Chapter 16: Databases. This chapter introduces the student to database programming.

The basic concepts of database management systems and SQL are first introduced. Then the

student learns to use JDBC to write database applications in Java. Relational data is covered,

and numerous example programs are presented throughout the chapter.

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement that

concisely summarizes the focus of the section.

Example Programs. The text has an abundant number of complete and partial example

programs, each designed to highlight the current topic. In most cases the programs are prac-

tical, real-world examples.

Program Output. Each example program is followed by a sample of its output, which

shows students how the program functions.

 Checkpoints. Checkpoints, highlighted by the checkmark icon, appear at intervals through-

out each chapter. They are designed to check students’ knowledge soon after learning a new

topic. Answers for all Checkpoint questions are provided in Appendix K, which can be

downloaded from the book’s resource page at www.pearson.com/cs-resources.

NOTE: Notes appear at several places throughout the text. They are short explanations

of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different program-

ming problems and appear regularly throughout the text.

WARNING! Warnings caution students about certain Java features, programming tech-

niques, or practices that can lead to malfunctioning programs or lost data.

In the Spotlight. Many of the chapters provide an In the Spotlight

section that presents a programming problem, along with detailed,

 step-by-step analysis showing the student how to solve it.

VideoNotes. A series of videos, developed specifically for this book, are available at www

.pearson.com/cs-resources. Icons appear throughout the text alerting the student to videos

about specific topics.

http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources

xxviii Preface

Case Studies. Case studies that simulate real-world business applications are introduced

throughout the text and are provided on the book’s resource page at www.pearson.com/

cs-resources.

Common Errors to Avoid. Each chapter provides a list of common errors and explana-

tions of how to avoid them.

Review Questions and Exercises. Each chapter presents a thorough and diverse set of

review questions and exercises. They include Multiple Choice and True/False, Find the Error,

Algorithm Workbench, and Short Answer.

Programming Challenges. Each chapter offers a pool of programming challenges

designed to solidify students’ knowledge of topics at hand. In most cases the assignments

present real-world problems to be solved.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items

are available on the Gaddis Series resource page at www.pearson.com/cs-resources:

• The source code for each example program in the book

• Access to the book’s companion VideoNotes

• Appendixes A–M (listed in the Contents)

• A collection of seven valuable Case Studies (listed in the Contents)

• Online Chapters 17–20 (listed in the Contents)

• Links to download the Java™ Development Kit

• Links to download numerous programming environments including jGRASP™,

Eclipse™, TextPad™, NetBeans™, JCreator, and DrJava

Online Practice and Assessment with MyLab Programming

MyLab Programming helps students fully grasp the logic, semantics, and syntax of program-

ming. Through practice exercises and immediate, personalized feedback, MyLab Program-

ming improves the programming competence of beginning students, who often struggle

with the basic concepts and paradigms of popular high-level programming languages. A

self-study and homework tool, the MyLab Programming course consists of hundreds of

small practice exercises organized around the structure of this textbook. For students, the

system automatically detects errors in the logic and syntax of their code submissions and

offers targeted hints that enable students to figure out what went wrong—and why. For

instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the

code inputted by students for review.

MyLab Programming is offered to users of this book in partnership with Turing’s Craft, the

makers of the CodeLab interactive programming exercise system. For a full demonstration,

to see feedback from instructors and students, or to get started using MyLab Programming

in your course, visit www.pearson.com/mylab/programming.

http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/mylab/programming

 Preface xxix

Instructor Resources

The following supplements are available to qualified instructors:

• Answers to all of the Review Questions

• Solutions for the Programming Challenges

• PowerPoint Presentation slides for each chapter

• Computerized Test Banks

• Source Code

• Lab Manual

• Student Files for the Lab Manual

• Solutions to the Lab Manual

Visit the Pearson Instructor Resource Center (www.pearson.com) or contact your local Pear-

son representative for information on how to access these resources.

Acknowledgments

There have been many helping hands in the development and publication of this book. We

would like to thank the following faculty reviewers for their helpful suggestions and expertise:

Reviewers For This Edition

John Bono

George Mason University

Irene Bruno

George Mason University

Jackie Horton

University of Vermont

Mohammad T. Islam

Southern Connecticut State University

David Krebs

University of Pittsburgh

Reviewers of Previous Editions

Ahmad Abuhejleh

University of Wisconsin, River Falls

Colin Archibald

Valencia Community College

Ijaz Awani

Savannah State University

Bill Bane

Tarleton State University

N. Dwight Barnette

Virginia Tech

Asoke Bhattacharyya

Saint Xavier University, Chicago

Marvin Bishop

Manhattan College

Heather Booth

University of Tennessee, Knoxville

David Boyd

Valdosta University

Julius Brandstatter

Golden Gate University

Kim Cannon

Greenville Tech

Jesse Cecil

College of the Siskiyous

James Chegwidden

Tarrant County College

Kay Chen

Bucks County Community College

http://www.pearson.com

xxx Preface

Brad Chilton

Tarleton State University

Diane Christie

University of Wisconsin, Stout

Cara Cocking

Marquette University

Jose Cordova

University of Louisiana, Monroe

Walter C. Daugherity

Texas A & M University

Michael Doherty

University of the Pacific

Jeanne M. Douglas

University of Vermont

Sander Eller

California Polytechnic University,

Pomona

Brooke Estabrook-Fishinghawk

Mesa Community College

Mike Fry

Lebanon Valley College

David Goldschmidt

College of St. Rose

Georgia R. Grant

College of San Mateo

Carl Stephen Guynes

University of North Texas

Nancy Harris

James Madison University

Chris Haynes

Indiana University

Ric Heishman

Northern Virginia Community College

Deedee Herrera

Dodge City Community College

Mary Hovik

Lehigh Carbon Community College

Brian Howard

DePauw University

Alan Jackson

Oakland Community College (MI)

Norm Jacobson

University of California, Irvine

Zhen Jiang

West Chester University

Stephen Judd

University of Pennsylvania

Neven Jurkovic

Palo Alto College

Dennis Lang

Kansas State University

Jiang Li

Austin Peay State University

Harry Lichtbach

Evergreen Valley College

Michael A. Long

California State University, Chico

Cheng Luo

Coppin State University

Tim Margush

University of Akron

Blayne E. Mayfield

Oklahoma State University

Scott McLeod

Riverside Community College

Dean Mellas

Cerritos College

Georges Merx

San Diego Mesa College

Martin Meyers

California State University,

Sacramento

Pati Milligan

Baylor University

Laurie Murphy

Pacific Lutheran University

Steve Newberry

Tarleton State University

 Preface xxxi

Lynne O’Hanlon

Los Angeles Pierce College

Merrill Parker

Chattanooga State Technical Commu-

nity College

Bryson R. Payne

North Georgia College and State

University

Rodney Pearson

Mississippi State University

Peter John Polito

Springfield College

Charles Robert Putnam

California State University, Northridge

Y. B. Reddy

Grambling State University

Elizabeth Riley

Macon State College

Felix Rodriguez

Naugatuck Valley Community College

Diane Rudolph

John A Logan College

Carolyn Schauble

Colorado State University

Bonnie Smith

Fresno City College

Daniel Spiegel

Kutztown University

Caroline St. Clair

North Central College

Karen Stanton

Los Medanos College

Timothy Urness

Drake University

Peter van der Goes

Rose State College

Tuan A Vo

Mt. San Antonio College

Xiaoying Wang

University of Mississippi

Yu Wu

University of North Texas

Zijiang Yang

Western Michigan University

I also want to thank everyone at Pearson for making the Starting Out With … series so suc-

cessful. I have worked so closely with the team at Pearson that I consider them among my

closest friends. I am extremely fortunate to have Matt Goldstein as my editor, and Meghan

Jacoby as Editorial Assistant. They have guided me through the process of revising this

book, as well as many others. I am also fortunate to have Demetrius Hall as my marketing

manager. His hard work is truly inspiring, and he does a great job of getting this book out

to the academic community. The production team, led by Amanda Brands, worked tirelessly

to make this book a reality. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Out With … series of textbooks. He has

nearly two decades of experience teaching computer science courses, primarily at Haywood

Community College. Tony is a highly acclaimed instructor who was previously selected as

the North Carolina Community College “Teacher of the Year” and has received the Teaching

Excellence award from the National Institute for Staff and Organizational Development. The

Starting Out With … series includes introductory textbooks covering programming logic

and design, C++, Java™, Microsoft® Visual Basic®, Microsoft® Visual C#, Python, Alice,

and App Inventor, all published by Pearson.

http://www.pearson.com/mylab/programming

1

TOPICS

Introduction to Computers
and Java

C
H

A
P

T
E

R

1

 1.1 Introduction

 1.2 Why Program?

 1.3 Computer Systems: Hardware and

Software

 1.4 Programming Languages

 1.5 What Is a Program Made Of?

 1.6 The Programming Process

 1.7 Object-Oriented Programming

1.1 Introduction
This book teaches programming using Java. Java is a powerful language that runs on prac-

tically every type of computer. It can be used to create large applications, small programs,

mobile applications, and code that powers a Web site. Before plunging right into learning

Java, however, this chapter will review the fundamentals of computer hardware and soft-

ware, and then take a broad look at computer programming in general.

1.2 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Every profession has tools that make the job easier to do. Carpenters use hammers, saws, and

measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics technicians

use probes, scopes, and meters. Some tools are unique and can be categorized as belonging to

a single profession. For example, surgeons have certain tools that are designed specifically for

surgical operations. Those tools probably aren’t used by anyone other than surgeons. There

are some tools, however, that are used in several professions. Screwdrivers, for instance, are

used by mechanics, carpenters, and many others.

The computer is a tool used by so many professions that it cannot be easily categorized. It

can perform so many different jobs that it is perhaps the most versatile tool ever made. To the

accountant, computers balance books, analyze profits and losses, and prepare tax reports.

To the factory worker, computers control manufacturing machines and track production.

To the mechanic, computers analyze the various systems in an automobile and pinpoint

hard-to-find problems. The computer can do such a wide variety of tasks because it can be

2 Chapter 1 Introduction to Computers and Java

programmed. It is a machine specifically designed to follow instructions. Because of the com-

puter’s programmability, it doesn’t belong to any single profession. Computers are designed

to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms com-

puters into the specialized tools of many trades. Without programmers, the users of computers

would have no software, and without software, computers would not be able to do anything.

Computer programming is both an art and a science. It is an art because every aspect of a

program should be carefully designed. Here are a few of the things that must be designed

for any real-world computer program:

• The logical flow of the instructions

• The mathematical procedures

• The layout of the programming statements

• The appearance of the screens

• The way information is presented to the user

• The program’s “user friendliness”

• Manuals, help systems, and/or other forms of written documentation

There is also a science to programming. Because programs rarely work right the first time

they are written, a lot of analyzing, experimenting, correcting, and redesigning is required.

This demands patience and persistence of the programmer. Writing software demands dis-

cipline as well. Programmers must learn special languages such as Java because computers

do not understand English or other human languages. Programming languages have strict

rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software like

designing a car: Both cars and programs should be functional, efficient, powerful, easy to

use, and pleasing to look at.

1.3 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software

components.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as we

generally think of it, is not an individual device, but a system of devices. Like the instruments

in a symphony orchestra, each device plays its own part. A typical computer system consists

of the following major components:

• The central processing unit (CPU)

• Main memory

• Secondary storage devices

• Input devices

• Output devices

The organization of a computer system is shown in Figure 1-1.

 1.3 Computer Systems: Hardware and Software 3

Let’s take a closer look at each of these devices.

The CPU

At the heart of a computer is its central processing unit, or CPU. The CPU’s job is to fetch

instructions, follow the instructions, and produce some resulting data. Internally, the central

processing unit consists of two parts: the control unit and the arithmetic and logic unit (ALU).

The control unit coordinates all of the computer’s operations. It is responsible for determining

where to get the next instruction and regulating the other major components of the computer

with control signals. The arithmetic and logic unit, as its name suggests, is designed to perform

mathematical operations. The organization of the CPU is shown in Figure 1-2.

Figure 1-1 The organization of a computer system

Input

Devices

Output

Devices

Secondary

Storage Devices

Central Processing

Unit

Main Memory

(RAM)

Figure 1-2 The organization of the CPU

Instruction

(Input)
Result

(Output)

Arithmetic

and Logic

Unit

Control

Unit

A program is a sequence of instructions stored in the computer’s memory. When a computer

is running a program, the CPU is engaged in a process known formally as the fetch/decode/

execute cycle. The steps in the fetch/decode/execute cycle are as follows:

4 Chapter 1 Introduction to Computers and Java

Fetch The CPU’s control unit fetches, from main memory, the next instruction in the

sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes

the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as the

ALU, a disk drive, or some other device). The signal causes the component to

perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random access memory, or RAM, the computer’s main memory is a

device that holds information. Specifically, RAM holds the sequences of instructions in the

programs that are running and the data those programs are using.

Memory is divided into sections that hold an equal amount of data. Each section is made

of eight “switches” that may be either on or off. A switch in the on position usually rep-

resents the number 1, whereas a switch in the off position usually represents the number

0. The computer stores data by setting the switches in a memory location to a pattern that

represents a character or a number. Each of these switches is known as a bit, which stands

for binary digit. Each section of memory, which is a collection of eight bits, is known as a

byte. Each byte is assigned a unique number known as an address. The addresses are ordered

from lowest to highest. A byte is identified by its address in much the same way a post office

box is identified by an address. Figure 1-3 shows a series of bytes with their addresses. In

the illustration, sample data is stored in memory. The number 149 is stored in the byte at

address 16, and the number 72 is stored in the byte at address 23.

RAM is usually a volatile type of memory, used only for temporary storage. When the com-

puter is turned off, the contents of RAM are erased.

Figure 1-3 Memory bytes and their addresses

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even

when there is no power to the computer. Frequently used programs are stored in secondary

memory and loaded into main memory as needed. Important data, such as word processing

documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk drive

stores data by magnetically encoding it onto a spinning circular disk. Solid state drives, which

store data in solid-state memory, are increasingly becoming popular. A solid-state drive has

no moving parts, and operates faster than a traditional disk drive. Most computers have

 1.3 Computer Systems: Hardware and Software 5

some sort of secondary storage device, either a traditional disk drive or a solid-state drive,

mounted inside their case. External drives are also available, which connect to one of the

computer’s communication ports. External drives can be used to create backup copies of

important data or to move data to another computer.

In addition to external drives, many types of devices have been created for copying data, and

for moving it to other computers. Universal Serial Bus drives, or USB drives are small devices

that plug into the computer’s USB (Universal Serial Bus) port, and appear to the system as a

disk drive. These drives do not actually contain a disk, however. They store data in a special

type of memory known as flash memory. USB drives are inexpensive, reliable, and small

enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also

popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded

as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits and

thus read the encoded data. Optical discs hold large amounts of data, and because record-

able CD and DVD drives are now commonplace, they make a good medium for creating

backup copies of data.

Input Devices

Input is any data the computer collects from the outside world. The device that collects the

data and sends it to the computer is called an input device. Common input devices are the

keyboard, mouse, scanner, and digital camera. Disk drives, optical drives, and USB drives

can also be considered input devices because programs and data are retrieved from them and

loaded into the computer’s memory.

Output Devices

Output is any data the computer sends to the outside world. It might be a sales report, a

list of names, or a graphic image. The data is sent to an output device, which formats and

presents it. Common output devices are monitors and printers. Disk drives, USB drives, and

CD recorders can also be considered output devices because the CPU sends data to them to

be saved.

Software
As previously mentioned, software refers to the programs that run on a computer. There are

two general categories of software: operating systems and application software. An operat-

ing system is a set of programs that manages the computer’s hardware devices and controls

their processes. Most all modern operating systems are multitasking, which means they are

capable of running multiple programs at once. Through a technique called time sharing, a

multitasking system divides the allocation of hardware resources and the attention of the

CPU among all the executing programs. UNIX, Linux, Mac OS, and Windows are multi-

tasking operating systems.

Application software refers to programs that make the computer useful to the user. These

programs solve specific problems or perform general operations that satisfy the needs of the

user. Word processing, spreadsheet, and database packages are all examples of application

software.

6 Chapter 1 Introduction to Computers and Java

1.4 Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform

a task. A programming language is a special language used to write com-

puter programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions

that enable the computer to solve a problem or perform a task. For example, suppose we

want the computer to calculate someone’s gross pay. The following is a list of things the

computer should do to perform this task.

1. Display a message on the screen: “How many hours did you work?”
2. Allow the user to enter the number of hours worked.
3. Once the user enters a number, store it in memory.
4. Display a message on the screen: “How much do you get paid per hour?”
5. Allow the user to enter an hourly pay rate.
6. Once the user enters a number, store it in memory.
7. Once both the number of hours worked and the hourly pay rate are entered, multiply

the two numbers and store the result in memory.
8. Display a message on the screen that shows the amount of money earned. The message

must include the result of the calculation performed in Step 7.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined

steps for performing a task or solving a problem. Notice that these steps are sequentially

ordered. Step 1 should be performed before Step 2, and so forth. It is important that these

instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algorithm,

it is not ready to be executed on a computer. A computer’s CPU can only process instructions

that are written in machine language. If you were to look at a machine language program,

you would see a stream of binary numbers (numbers consisting of only 1s and 0s). The binary

numbers form machine language instructions, which the CPU interprets as commands. Here

is an example of what a machine language instruction might look like:

1011010000000101

 Checkpoint

www.myprogramminglab.com

1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What does the term multitasking mean?

 1.4 Programming Languages 7

As you can imagine, the process of encoding an algorithm in machine language is very

tedious and difficult. In addition, each different type of CPU has its own machine language.

If you wrote a machine language program for computer A and then wanted to run it on

computer B, which has a different type of CPU, you would have to rewrite the program in

computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the

task of programming. A program can be written in a programming language, which is much

easier to understand than machine language, and then translated into machine language.

Programmers use software to perform this translation. Many programming languages have

been created. Table 1-1 lists a few of the well-known ones.

Table 1-1 Programming languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose, procedural

programming language. It was originally designed to be simple enough for begin-

ners to learn.

FORTRAN FORmula TRANslator is a procedural language designed for programming com-

plex mathematical algorithms.

COBOL Common Business-Oriented Language is a procedural language designed for busi-

ness applications.

Pascal Pascal is a structured, general-purpose, procedural language designed primarily

for teaching programming.

C C is a structured, general-purpose, procedural language developed at Bell

Laboratories.

C+ + Based on the C language, C+ + offers object-oriented features not found in C.

C+ + was also invented at Bell Laboratories.

C# Pronounced “C sharp.” It is a language invented by Microsoft for developing

applications based on the Microsoft .NET platform.

Java Java is an object-oriented language invented at Sun Microsystems, and is now

owned by Oracle. It may be used to develop stand-alone applications that operate

on a single computer, or applications that run over the Internet from a Web server.

JavaScript JavaScript is a programming language that can be used in a Web site to perform

simple operations. Despite its name, JavaScript is not related to Java.

Perl A general-purpose programming language used widely on Internet servers.

PHP A programming language used primarily for developing Web server applications

and dynamic Web pages.

Python Python is an object-oriented programming language used in both business and

academia. Many popular Web sites contain features developed in Python.

Ruby Ruby is a simple but powerful object-oriented programming language. It can

be used for a variety of purposes, from small utility programs to large Web

applications.

Visual Basic Visual Basic is a Microsoft programming language and software development envi-

ronment that allows programmers to create Windows-based applications quickly.

8 Chapter 1 Introduction to Computers and Java

A History of Java
In 1991 a team was formed at Sun Microsystems (a company that is now owned by

Oracle) to speculate about the important technological trends that might emerge in the

near future. The team, which was named the Green Team, concluded that computers

would merge with consumer appliances. Their first project was to develop a handheld

device named *7 (pronounced star seven) that could be used to control a variety of home

entertainment devices. For the unit to work, it had to use a programming language that

could be processed by all the devices it controlled. This presented a problem because

different brands of consumer devices use different processors, each with its own machine

language.

Because no such universal language existed, James Gosling, the team’s lead engineer, cre-

ated one. Programs written in this language, which was originally named Oak, were not

translated into the machine language of a specific processor, but were translated into an

intermediate language known as byte code. Another program would then translate the byte

code into machine language that could be executed by the processor in a specific consumer

device.

Unfortunately, the technology developed by the Green Team was ahead of its time. No cus-

tomers could be found, mostly because the computer-controlled consumer appliance industry

was just beginning. But rather than abandoning their hard work and moving on to other

projects, the team saw another opportunity: the Internet. The Internet is a perfect environ-

ment for a universal programming language such as Oak. It consists of numerous different

computer platforms connected together in a single network.

To demonstrate the effectiveness of its language, which was renamed Java, the team used

it to develop a Web browser. The browser, named HotJava, was able to download and run

small Java programs known as applets. This gave the browser the capability to display ani-

mation and interact with the user. HotJava was demonstrated at the 1995 SunWorld con-

ference before a wowed audience. Later the announcement was made that Netscape would

incorporate Java technology into its Navigator browser. Other Internet companies rapidly

followed, increasing the acceptance and the influence of the Java language. Today, Java is

very popular for developing not only applets for developing Web applications, mobile apps,

and desktop applications.

1.5 What Is a Program Made Of?

CONCEPT: There are certain elements that are common to all programming

languages.

Language Elements
All programming languages have some things in common. Table 1-2 lists the common

elements you will find in almost every language.

 1.5 What Is a Program Made Of? 9

Let’s look at an example Java program and identify an instance of each of these elements.

Code Listing 1-1 shows the code listing with each line numbered.

Table 1-2 The common elements of a programming language

Language Element Description

Key Words These are words that have a special meaning in the programming lan-

guage. They may be used for their intended purpose only. Key words are

also known as reserved words.

Operators Operators are symbols or words that perform operations on one or more

operands. An operand is usually an item of data, such as a number.

Punctuation Most programming languages require the use of punctuation characters.

These characters serve specific purposes, such as marking the beginning or

ending of a statement, or separating items in a list.

Programmer-Defined

Names

Unlike key words, which are part of the programming language, these

are words or names that are defined by the programmer. They are used

to identify storage locations in memory and parts of the program that are

created by the programmer. Programmer-defined names are often called

identifiers.

Syntax These are rules that must be followed when writing a program. Syntax

dictates how key words and operators may be used, and where punctua-

tion symbols must appear.

NOTE: The line numbers are not part of the program. They are included to help point

out specific parts of the program.

Code Listing 1-1 Payroll.java

 1 public class Payroll

 2 {

 3 public static void main(String[] args)

 4 {

 5 int hours = 40;

 6 double grossPay, payRate = 25.0;

 7

 8 grossPay = hours * payRate;

 9 System.out.println("Your gross pay is $" + grossPay);

10 }

11 }

10 Chapter 1 Introduction to Computers and Java

Key Words (Reserved Words)

Two of Java’s key words appear in line 1: public and class. In line 3, the words public,

static, and void are all key words. The words int in line 5 and double in line 6 are also

key words. These words, which are always written in lowercase, each have a special meaning

in Java and can only be used for their intended purpose. As you will see, the programmer

is allowed to make up his or her own names for certain things in a program. Key words,

however, are reserved and cannot be used for anything other than their designated purpose.

Part of learning a programming language is learning the commonly used key words, what

they mean, and how to use them.

Table 1-3 shows a list of the Java key words1.

1Java 9 also introduces a set of restricted words that are treated as key words under certain

 circumstances. See Appendix C for the full list.

Table 1-3 The Java key words

abstract const final int public throw

assert continue finally interface return throws

boolean default float long short transient

break do for native static true

byte double goto new strictfp try

case else if null super void

catch enum implements package switch volatile

char extends import private synchronized while

class false instanceof protected this

Programmer-Defined Names

The words hours, payRate, and grossPay that appear in the program in lines 5, 6, 8, and 9

are programmer-defined names. They are not part of the Java language but are names made up

by the programmer. In this particular program, these are the names of variables. As you will

learn later in this chapter, variables are the names of memory locations that may hold data.

Operators

In line 8 the following line appears:

grossPay = hours * payRate;

The = and * symbols are both operators. They perform operations on items of data,

known as operands. The * operator multiplies its two operands, which in this example

are the variables hours and payRate. The = symbol is called the assignment operator. It

takes the value of the expression that appears at its right and stores it in the variable whose

name appears at its left. In this example, the = operator stores in the grossPay variable

the result of the hours variable multiplied by the payRate variable. In other words,

the statement says, “the grossPay variable is assigned the value of hours times payRate.”

 1.5 What Is a Program Made Of? 11

Punctuation

Notice that lines 5, 6, 8, and 9 end with a semicolon. A semicolon in Java is similar to a

period in English: It marks the end of a complete sentence (or statement, as it is called in

programming jargon). Semicolons do not appear at the end of every line in a Java program,

however. There are rules that govern where semicolons are required and where they are

not. Part of learning Java is learning where to place semicolons and other punctuation

symbols.

Lines and Statements
Often, the contents of a program are thought of in terms of lines and statements. A line is

just that—a single line as it appears in the body of a program. Code Listing 1-1 is shown

with each of its lines numbered. Most of the lines contain something meaningful; however,

line 7 is empty. Blank lines are only used to make a program more readable.

A statement is a complete instruction that causes the computer to perform some action. Here

is the statement that appears in line 9 of Code Listing 1-1:

System.out.println("Your gross pay is $" + grossPay);

This statement causes the computer to display a message on the screen. Statements can be

a combination of key words, operators, and programmer-defined names. Statements often

occupy only one line in a program, but sometimes they are spread out over more than one

line.

Variables
The most fundamental way that a Java program stores an item of data in memory is with a

variable. A variable is a named storage location in the computer’s memory. The data stored in

a variable may change while the program is running (hence the name “variable”). Notice that

in Code Listing 1-1 the programmer-defined names hours, payRate, and grossPay appear

in several places. All three of these are the names of variables. The hours variable is used

to store the number of hours the user has worked. The payRate variable stores the user’s

hourly pay rate. The grossPay variable holds the result of hours multiplied by payRate,

which is the user’s gross pay.

Variables are symbolic names made up by the programmer that represent locations in the

computer’s RAM. When data is stored in a variable, it is actually stored in RAM. Assume that

a program has a variable named length. Figure 1-4 illustrates the way the variable name

represents a memory location.

In Figure 1-4, the variable length is holding the value 72. The number 72 is actually

stored in RAM at address 23, but the name length symbolically represents this storage

location. If it helps, you can think of a variable as a box that holds data. In Figure 1-4, the

number 72 is stored in the box named length. Only one item may be stored in the box

at any given time. If the program stores another value in the box, it will take the place of

the number 72.

12 Chapter 1 Introduction to Computers and Java

The Compiler and the Java Virtual Machine
When a Java program is written, it must be typed into the computer and saved to a file. A

text editor, which is similar to a word processing program, is used for this task. The Java

programming statements written by the programmer are called source code, and the file they

are saved in is called a source file. Java source files end with the .java extension.

After the programmer saves the source code to a file, he or she runs the Java compiler. A compiler

is a program that translates source code into an executable form. During the translation process,

the compiler uncovers any syntax errors that may be in the program. Syntax errors are mistakes

that the programmer has made that violate the rules of the programming language. These errors

must be corrected before the compiler can translate the source code. Once the program is free of

syntax errors, the compiler creates another file that holds the translated instructions.

Most programming language compilers translate source code directly into files that con-

tain machine language instructions. These are called executable files because they may be

executed directly by the computer’s CPU. The Java compiler, however, translates a Java

source file into a file that contains byte code instructions. Byte code instructions are not

machine language, and therefore cannot be directly executed by the CPU. Instead, they are

executed by the Java Virtual Machine (JVM). The JVM is a program that reads Java byte

code instructions and executes them as they are read. For this reason, the JVM is often called

an interpreter, and Java is often referred to as an interpreted language. Figure 1-5 illustrates

the process of writing a Java program, compiling it to byte code, and running it.

Although Java byte code is not machine language for a CPU, it can be considered as machine

language for the JVM. You can think of the JVM as a program that simulates a computer

whose machine language is Java byte code.

Portability

The term portable means that a program may be written on one type of computer and then run

on a wide variety of computers, with little or no modification necessary. Because Java byte code is

the same on all computers, compiled Java programs are highly portable. In fact, a compiled Java

program may be run on any computer that has a Java Virtual Machine. Figure 1-6 illustrates the

concept of a compiled Java program running on Windows, Linux, Mac, and UNIX computers.

With most other programming languages, portability is achieved by the creation of a com-

piler for each type of computer that the language is to run on. For example, in order for

the C+ + language to be supported by Windows, Linux, and Mac computers, a separate

C+ + compiler must be created for each of those environments. Compilers are very complex

programs, and more difficult to develop than interpreters. For this reason, a JVM has been

developed for many types of computers.

Figure 1-4 A variable name represents a location in memory

 1.5 What Is a Program Made Of? 13

Figure 1-5
Program development process

Byte Code

File

Figure 1-6 Java byte code may be run on any computer
with a Java Virtual Machine

Byte Code

File

Java Software Editions
The software that you use to create Java programs is referred to as the JDK (Java Develop-

ment Kit) or the SDK (Software Development Kit). There are the following different editions

of the JDK available from Oracle:

• Java SE—The Java Standard Edition provides all the essential software tools necessary

for writing Java applications.

• Java EE—The Java Enterprise Edition provides tools for creating large business appli-

cations that employ servers and provide services over the Web.

• Java ME—The Java Micro Edition provides a small, highly optimized runtime environ-

ment for consumer products such as cell phones, pagers, and appliances.

These editions of Java may be downloaded from Oracle by going to:

http://java.oracle.com

NOTE: You can follow the instructions in Appendix D, which can be downloaded from

the book’s companion Web site, to install the JDK on your system. You can access the

book’s companion Web site by going to www.pearsonhighered.com/gaddis.

http://java.oracle.com
http://www.pearsonhighered.com/gaddis

14 Chapter 1 Introduction to Computers and Java

At the operating system command prompt, make sure you are in the same directory or folder

where the Java program that you want to compile is located. Then, use the javac command,

in the following form:

javac Filename

Filename is the name of a file that contains the Java source code. As mentioned earlier, this

file has the .java extension. For example, if you want to compile the Payroll.java file, you

would execute the following command:

javac Payroll.java

This command runs the compiler. If the file contains any syntax errors, you will see one

or more error messages and the compiler will not translate the file to byte code. When

this happens you must open the source file in a text editor and fix the error. Then you

can run the compiler again. If the file has no syntax errors, the compiler will translate it

to byte code. Byte code is stored in a file with the .class extension, so the byte code for

the Payroll.java file will be stored in Payroll.class, which will be in the same directory or

folder as the source file.

To run the Java program, you use the java command in the following form:

java ClassFilename

ClassFilename is the name of the .class file that you wish to execute; however, you do not

type the .class extension. For example, to run the program that is stored in the Payroll.class

file, you would enter the following command:

java Payroll

This command runs the Java interpreter (the JVM) and executes the program.

Integrated Development Environments

In addition to the command prompt programs, there are also several Java integrated devel-

opment environments (IDEs). These environments consist of a text editor, compiler, debug-

ger, and other utilities integrated into a package with a single set of menus. A program is

compiled and executed with a single click of a button, or by selecting a single item from a

menu. Figure 1-7 shows a screen from the NetBeans IDE.

TIP: In Windows click Start, go to All Programs, and then go to Accessories. Click Com-

mand Prompt on the Accessories menu. A command prompt window should open.

Compiling and Running a Java Program
Compiling a Java program is a simple process. Once you have installed the JDK, go to your

operating system’s command prompt.

Compiling and
Running a Java

Program

VideoNote

Using an IDE

VideoNote

 1.5 What Is a Program Made Of? 15

 Checkpoint

 www.myprogramminglab.com

1.8 Describe the difference between a key word and a programmer-defined symbol.

1.9 Describe the difference between operators and punctuation symbols.

1.10 Describe the difference between a program line and a statement.

1.11 Why are variables called “variable”?

1.12 What happens to a variable’s current contents when a new value is stored there?

1.13 What is a compiler?

1.14 What is a syntax error?

1.15 What is byte code?

1.16 What is the JVM?

Figure 1-7 An integrated development environment (IDE) (Oracle Corporate Counsel)

16 Chapter 1 Introduction to Computers and Java

1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design,

creation, testing, and debugging activities.

Now that you have been introduced to what a program is, it’s time to consider the process

of creating a program. Quite often when inexperienced students are given programming

assignments, they have trouble getting started because they don’t know what to do first. If

you find yourself in this dilemma, the following steps may help.

1. Clearly define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools to create a model of the program.
4. Check the model for logical errors.
5. Enter the code and compile it.
6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as

necessary.
7. Run the program with test data for input.
8. Correct any runtime errors found while running the program. Repeat Steps 5 through

8 as many times as necessary.
9. Validate the results of the program.

These steps emphasize the importance of planning. Just as there are good ways and bad

ways to paint a house, there are good ways and bad ways to create a program. A good

program always begins with planning. With the pay-calculating algorithm that was

presented earlier in this chapter serving as our example, let’s look at each of the steps

in more detail.

1. Clearly define what the program is to do

This step commonly requires you to identify the purpose of the program, the data that is to

be input, the processing that is to take place, and the desired output. Let’s examine each of

these requirements for the pay-calculating algorithm.

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay rate. The result is the user’s

gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer

Before you create a program on the computer, you should first create it in your mind. Try

to imagine what the computer screen will look like while the program is running. If it helps,

draw pictures of the screen, with sample input and output, at various points in the program.

For instance, Figure 1-8 shows the screen we might want produced by a program that imple-

ments the pay-calculating algorithm.

 1.6 The Programming Process 17

In this step, you must put yourself in the shoes of the user. What messages should the pro-

gram display? What questions should it ask? By addressing these concerns, you can deter-

mine most of the program’s output.

3. Use design tools to create a model of the program

While planning a program, the programmer uses one or more design tools to create a model

of the program. For example, pseudocode is a cross between human language and a pro-

gramming language and is especially helpful when designing an algorithm. Although the

computer can’t understand pseudocode, programmers often find it helpful to write an algo-

rithm in a language that’s “almost” a programming language, but still very similar to natural

language. For example, here is pseudocode that describes the pay-calculating algorithm:

Get payroll data.

Calculate gross pay.

Display gross pay.

Although this pseudocode gives a broad view of the program, it doesn’t reveal all the pro-

gram’s details. A more detailed version of the pseudocode follows:

Display “How many hours did you work?”

Input hours.

Display “How much do you get paid per hour?”

Input rate.

Store the value of hours times rate in the pay variable.

Display the value in the pay variable.

Notice that the pseudocode uses statements that look more like commands than the English

statements that describe the algorithm in Section 1.4. The pseudocode even names variables

and describes mathematical operations.

4. Check the model for logical errors

Logical errors are mistakes that cause the program to produce erroneous results. Once a

model of the program is assembled, it should be checked for these errors. For example, if

pseudocode is used, the programmer should trace through it, checking the logic of each step.

If an error is found, the model can be corrected before the next step is attempted.

5. Enter the code and compile it

Once a model of the program has been created, checked, and corrected, the programmer is

ready to write source code on the computer. The programmer saves the source code to a file

Figure 1-8 Screen produced by the pay-calculating algorithm

18 Chapter 1 Introduction to Computers and Java

and begins the process of compiling it. During this step the compiler will find any syntax

errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many
times as necessary

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated

until the program is free of compile-time errors.

7. Run the program with test data for input

Once an executable file is generated, the program is ready to be tested for runtime errors. A

runtime error is an error that occurs while the program is running. These are usually logical

errors, such as mathematical mistakes.

Testing for runtime errors requires that the program be executed with sample data or sample

input. The sample data should be such that the correct output can be predicted. If the pro-

gram does not produce the correct output, a logical error is present in the program.

8. Correct any runtime errors found while running the program. Repeat Steps
5 through 8 as many times as necessary

When runtime errors are found in a program, they must be corrected. You must identify the

step where the error occurred and determine the cause. If an error is a result of incorrect

logic (such as an improperly stated math formula), you must correct the statement or state-

ments involved in the logic. If an error is due to an incomplete understanding of the program

requirements, then you must restate the program purpose and modify the program model

and source code. The program must then be saved, recompiled, and retested. This means

Steps 5 though 8 must be repeated until the program reliably produces satisfactory results.

9. Validate the results of the program

When you believe you have corrected all the runtime errors, enter test data and determine

whether the program solves the original problem.

Software Engineering
The field of software engineering encompasses the whole process of crafting computer

software. It includes designing, writing, testing, debugging, documenting, modifying, and

maintaining complex software development projects. Like traditional engineers, software

engineers use a number of tools in their craft. Here are a few examples:

• Program specifications

• Diagrams of screen output

• Diagrams representing the program components and the flow of data

• Pseudocode

• Examples of expected input and desired output

• Special software designed for testing programs

Most commercial software applications are large and complex. Usually a team of program-

mers, not a single individual, develops them. It is important that the program requirements

be thoroughly analyzed and divided into subtasks that are handled by individual teams, or

individuals within a team.

 1.7 Object-Oriented Programming 19

1.7 Object-Oriented Programming

CONCEPT: Java is an object-oriented programming (OOP) language. OOP is a

method of software development that has its own practices, concepts, and

vocabulary.

There are primarily two methods of programming in use today: procedural and object-ori-

ented. The earliest programming languages were procedural, meaning a program was made

of one or more procedures. A procedure is a set of programming statements that, together,

perform a specific task. The statements might gather input from the user, manipulate data

stored in the computer’s memory, and perform calculations or any other operation necessary

to complete the procedure’s task.

Procedures typically operate on data items that are separate from the procedures. In a pro-

cedural program, the data items are commonly passed from one procedure to another, as

shown in Figure 1-9.

 Checkpoint

 www.myprogramminglab.com

1.17 What four items should you identify when defining what a program is to do?

1.18 What does it mean to “visualize a program running”? What is the value of such an

activity?

1.19 What is pseudocode?

1.20 Describe what a compiler does with a program’s source code.

1.21 What is a runtime error?

1.22 Is a syntax error (such as misspelling a key word) found by the compiler or when

the program is running?

1.23 What is the purpose of testing a program with sample data or input?

Figure 1-9 Data is passed among procedures

http://www.myprogramminglab.com

20 Chapter 1 Introduction to Computers and Java

As you might imagine, the focus of procedural programming is on the creation of procedures

that operate on the program’s data. The separation of data and the code that operates on the

data often leads to problems, however. For example, the data is stored in a particular format,

which consists of variables and more complex structures that are created from variables. The

procedures that operate on the data must be designed with that format in mind. But, what

happens if the format of the data is altered? Quite often, a program’s specifications change,

resulting in a redesigned data format. When the structure of the data changes, the code that

operates on the data must also be changed to accept the new format. This results in added

work for programmers and a greater opportunity for bugs to appear in the code.

This has helped influence the shift from procedural programming to object-oriented pro-

gramming (OOP). Whereas procedural programming is centered on creating procedures,

object-oriented programming is centered on creating objects. An object is a software entity

that contains data and procedures. The data contained in an object is known as the object’s

attributes. The procedures, or behaviors, that an object performs are known as the object’s

methods. The object is, conceptually, a self-contained unit consisting of data (attributes) and

procedures (methods). This is illustrated in Figure 1-10.

OOP addresses the problem of code/data separation through encapsulation and data hiding.

Encapsulation refers to the combining of data and code into a single object. Data hiding

refers to an object’s ability to hide its data from code that is outside the object. Only the

object’s methods may then directly access and make changes to the object’s data. An object

typically hides its data, but allows outside code to access the methods that operate on the

data. As shown in Figure 1-11, the object’s methods provide programming statements outside

the object with indirect access to the object’s data.

When an object’s internal data is hidden from outside code and access to that data is restricted

to the object’s methods, the data is protected from accidental corruption. In addition, the

programming code outside the object does not need to know about the format or internal

structure of the object’s data. The code only needs to interact with the object’s methods.

Figure 1-10 An object contains data
and procedures

Figure 1-11 Code outside the object interacts
with the object’s methods

 Review Questions and Exercises 21

When a programmer changes the structure of an object’s internal data, he or she also modi-

fies the object’s methods so they may properly operate on the data. The way in which outside

code interacts with the methods, however, does not change.

These are just a few of the benefits of object-oriented programming. Because Java is fully

object-oriented, you will learn much more about OOP practices, concepts, and terms as you

progress through this book.

 Checkpoint

 www.myprogramminglab.com

1.24 In procedural programming, what two parts of a program are typically separated?

1.25 What are an object’s attributes?

1.26 What are an object’s methods?

1.27 What is encapsulation?

1.28 What is data hiding?

Review Questions and Exercises

Multiple Choice

1. This part of the computer fetches instructions, carries out the operations commanded

by the instructions, and produces some outcome or resultant information.

a. memory

b. CPU

c. secondary storage

d. input device

2. A byte is made up of eight

a. CPUs

b. addresses

c. variables

d. bits

3. Each byte is assigned a unique

a. address

b. CPU

c. bit

d. variable

4. This type of memory can hold data for long periods of time—even when there is no

power to the computer.

a. RAM

b. primary storage

c. secondary storage

d. CPU storage

http://www.myprogramminglab.com

