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Preface

Welcome to Starting Out with Java: From Control Structures through Objects, 

 Seventh Edition. This book is intended for a one-semester or a two-quarter CS1 

course. Although it is written for students with no prior programming background, even 

experienced students will benefit from its depth of detail.

Control Structures First, Then Objects

This text first introduces the student to the fundamentals of data types, input and output, 

control structures, methods, and objects created from standard library classes.

Next, the student learns to use arrays of primitive types and reference types. After this, the 

student progresses through more advanced topics, such as inheritance, polymorphism, the 

creation and management of packages, GUI applications, recursion, and database program-

ming. From early in the book, applications are documented with javadoc comments. As the 

student progresses through the text, new javadoc tags are covered and demonstrated.

As with all the books in the Starting Out With … series, the hallmark of this text is its clear, 

friendly, and easy-to-understand writing. In addition, it is rich in example programs that 

are concise and practical.

Changes in the Seventh Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the 

previous edition. The most significant change in this edition is the switch from Swing to 

JavaFX in the chapters that focus on GUI development. Although Swing is not officially 

deprecated, Oracle has announced that JavaFX has replaced Swing as the standard GUI 

library for Java.1

In this edition, we have added the following new chapters:

• Chapter 12 JavaFX: GUI Programming and Basic Controls This chapter presents the 

basics of developing graphical user interface (GUI) applications with JavaFX. Funda-

mental controls, layout containers, and the basic concepts of event-driven program-

ming are covered.

• Chapter 13 JavaFX: Advanced Controls This chapter discusses CSS styling and 

advanced user interface controls.

1 http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
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• Chapter 14 JavaFX: Graphics, Effects, and Media This chapter discusses 2D shapes, 

animation, visual effects, playing audio and video, and responding to mouse and key-

board events.

The Swing and Applet material that appeared in the previous edition is still available on the 

book’s companion Web site, as the following online chapters:

• The previous Chapter 12 A First Look At GUI Applications is now available online 

as Chapter 17.

• The previous Chapter 13 Advanced GUI Applications is now available online as 

 Chapter 18.

• The previous Chapter 14 Applets and More is now available online as Chapter 19.

Note: Chapter 15 from the previous edition has also been moved to the book’s companion 

Web site as Chapter 20 Creating JavaFX Applications with Scene Builder. Although Oracle 

no longer officially supports Scene Builder, it is still available as an open source tool at http://

http://gluonhq.com/labs/scene-builder/

In addition to the new JavaFX chapters, the Database chapter, which is now Chapter 15, has 

been updated to use JavaFX instead of Swing for its GUI applications. We have also added 

several new, motivational programming problems throughout the book.

Organization of the Text

The text teaches Java step-by-step. Each chapter covers a major set of topics and builds 

knowledge as students progress through the book. Although the chapters can be easily taught 

in their existing sequence, there is some flexibility. Figure P-1 shows chapter dependencies. 

Each box represents a chapter or a group of chapters. An arrow points from a chapter to 

the chapter that must be previously covered.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Java. This chapter provides an introduc-

tion to the field of computer science and covers the fundamentals of hardware, software, 

and programming languages. The elements of a program, such as key words, variables, 

operators, and punctuation, are discussed by examining a simple program. An overview of 

entering source code, compiling, and executing a program is presented. A brief history of 

Java is also given.

Chapter 2: Java Fundamentals. This chapter gets students started in Java by introduc-

ing data types, identifiers, variable declarations, constants, comments, program output, and 

simple arithmetic operations. The conventions of programming style are also introduced. 

Students learn to read console input with the Scanner class and with dialog boxes using 

JOptionPane.

Chapter 3: Decision Structures. In this chapter students explore relational operators 

and relational expressions and are shown how to control the flow of a program with the if, 

if-else, and if-else-if statements. Nested if statements, logical operators, the conditional 

operator, and the switch statement are also covered. The chapter discusses how to compare 

String objects with the equals, compareTo, equalsIgnoreCase, and compareToIgnoreCase 

xxiv Preface

http://gluonhq.com/labs/scene-builder/


 Preface xxv

Figure P-1  Chapter dependencies

Chapters 1 - 7 (Cover in Order)

Java Fundamentals

Depend On

Chapter 9

Text Processing and 

Wrapper Classes

Chapter 10

Inheritance

Chapter 15

Recursion

Chapter 16

Databases

Chapter 11

Exceptions and 

Advanced File I/O

Chapter 12
JavaFX: GUI Programming 

and Basic Controls

Chapter 13

JavaFX: Advanced 

Controls

Chapter 14

JavaFX: Graphics, 

E�ects, and Media

Depends On

Depends On
Depends On

Some examples in

Chapter 16 use JavaFX,

which is introduced

in Chapter 12.

One example in

Chapter 15 uses the JavaFX

Circle class, which is introduced

in Chapter 14.

Depends On

Chapter 8

A Second Look at 

Classes and Objects

methods. Formatting numeric output with the System.out.printf method and the 

String.format method is discussed.

Chapter 4: Loops and Files. This chapter covers Java’s repetition control structures. 

The while loop, do-while loop, and for loop are taught, along with common uses for 

these devices. Counters, accumulators, running totals, sentinels, and other application-

related topics are discussed. Simple file operations for reading and writing text files are 

included.
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Chapter 5: Methods. In this chapter students learn how to write void methods, value-

returning methods, and methods that do and do not accept arguments. The concept of 

functional decomposition is discussed.

Chapter 6: A First Look at Classes. This chapter introduces students to designing classes 

for the purpose of instantiating objects. Students learn about class fields and methods, and 

UML diagrams are introduced as a design tool. Then constructors and overloading are 

discussed. A BankAccount class is presented as a case study, and a section on object-

oriented design is included. This section leads the students through the process of identifying 

classes and their responsibilities within a problem domain. There is also a section that briefly 

explains packages and the import statement.

Chapter 7: Arrays and the ArrayList Class. In this chapter students learn to create 

and work with single and multi-dimensional arrays. Numerous array-processing techniques 

are demonstrated, such as summing the elements in an array, finding the highest and low-

est values, and sequentially searching an array. Other topics, including ragged arrays and 

variable-length arguments (varargs), are also discussed. The ArrayList class is introduced, 

and Java’s generic types are briefly discussed and demonstrated.

Chapter 8: A Second Look at Classes and Objects. This chapter shows students how to 

write classes with added capabilities. Static methods and fields, interaction between objects, 

passing objects as arguments, and returning objects from methods are discussed. Aggregation 

and the “has a” relationship is covered, as well as enumerated types. A section on object-

oriented design shows how to use CRC cards to determine the collaborations among classes.

Chapter 9: Text Processing and More about Wrapper Classes. This chapter discusses 

the numeric and Character wrapper classes. Methods for converting numbers to strings, 

testing the case of characters, and converting the case of characters are covered. Autoboxing 

and unboxing are also discussed. More String class methods are covered, including using the 

split method to tokenize strings. The chapter also covers the StringBuilder class.

Chapter 10: Inheritance. The study of classes continues in this chapter with the subjects 

of inheritance and polymorphism. The topics covered include superclasses, subclasses, how 

constructors work in inheritance, method overriding, polymorphism and dynamic binding, 

protected and package access, class hierarchies, abstract classes, abstract methods, anony-

mous inner classes, interfaces, and lambda expressions.

Chapter 11: Exceptions and Advanced File I/O. In this chapter students learn to 

develop enhanced error trapping techniques using exceptions. Handling exceptions is cov-

ered, as well as developing and throwing custom exceptions. The chapter discusses advanced 

techniques for working with sequential access, random access, text, and binary files.

Chapter 12: JavaFX: GUI Programming and Basic Controls. This chapter presents the 

basics of developing graphical user interface (GUI) applications with JavaFX. Fundamental 

controls, layout containers, and the basic concepts of event-driven programming are covered.

Chapter 13: JavaFX: Advanced Controls. This chapter discusses CSS styling 

and advanced user interface controls, such as RadioButtons, CheckBoxes, ListViews, 

 ComboBoxes, Sliders, and TextAreas. Menu systems and FileChoosers are also covered.
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Chapter 14: JavaFX: Graphics, Effects, and Media. This chapter discusses 2D shapes, 

animation, visual effects, playing audio and video, and responding to mouse and keyboard 

events.

Chapter 15: Recursion. This chapter presents recursion as a problem-solving technique. 

Numerous examples of recursive methods are demonstrated.

Chapter 16: Databases. This chapter introduces the student to database programming. 

The basic concepts of database management systems and SQL are first introduced. Then the 

student learns to use JDBC to write database applications in Java. Relational data is covered, 

and numerous example programs are presented throughout the chapter.

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement that 

concisely summarizes the focus of the section.

Example Programs. The text has an abundant number of complete and partial example 

programs, each designed to highlight the current topic. In most cases the programs are prac-

tical, real-world examples.

Program Output. Each example program is followed by a sample of its output, which 

shows students how the program functions.

  Checkpoints. Checkpoints, highlighted by the checkmark icon, appear at intervals through-

out each chapter. They are designed to check students’ knowledge soon after learning a new 

topic. Answers for all Checkpoint questions are provided in Appendix K, which can be 

downloaded from the book’s resource page at www.pearson.com/cs-resources.

NOTE: Notes appear at several places throughout the text. They are short explanations 

of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different program-

ming problems and appear regularly throughout the text.

WARNING! Warnings caution students about certain Java features, programming tech-

niques, or practices that can lead to malfunctioning programs or lost data.

In the Spotlight. Many of the chapters provide an In the Spotlight 

section that presents a programming problem, along with detailed, 

 step-by-step analysis showing the student how to solve it.

VideoNotes. A series of videos, developed specifically for this book, are available at www 

.pearson.com/cs-resources. Icons appear throughout the text alerting the student to videos 

about specific topics.

http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
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Case Studies. Case studies that simulate real-world business applications are introduced 

throughout the text and are provided on the book’s resource page at www.pearson.com/

cs-resources.

Common Errors to Avoid. Each chapter provides a list of common errors and explana-

tions of how to avoid them.

Review Questions and Exercises. Each chapter presents a thorough and diverse set of 

review questions and exercises. They include Multiple Choice and True/False, Find the Error, 

Algorithm Workbench, and Short Answer.

Programming Challenges. Each chapter offers a pool of programming challenges 

designed to solidify students’ knowledge of topics at hand. In most cases the assignments 

present real-world problems to be solved.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items 

are available on the Gaddis Series resource page at www.pearson.com/cs-resources:

• The source code for each example program in the book

• Access to the book’s companion VideoNotes

• Appendixes A–M (listed in the Contents)

• A collection of seven valuable Case Studies (listed in the Contents)

• Online Chapters 17–20 (listed in the Contents)

• Links to download the Java™ Development Kit

• Links to download numerous programming environments including jGRASP™, 

Eclipse™, TextPad™, NetBeans™, JCreator, and DrJava

Online Practice and Assessment with MyLab Programming

MyLab Programming helps students fully grasp the logic, semantics, and syntax of program-

ming. Through practice exercises and immediate, personalized feedback, MyLab Program-

ming improves the programming competence of beginning students, who often struggle 

with the basic concepts and paradigms of popular high-level programming languages. A 

self-study and homework tool, the MyLab Programming course consists of hundreds of 

small practice exercises organized around the structure of this textbook. For students, the 

system automatically detects errors in the logic and syntax of their code submissions and 

offers targeted hints that enable students to figure out what went wrong—and why. For 

instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the 

code inputted by students for review.

MyLab Programming is offered to users of this book in partnership with Turing’s Craft, the 

makers of the CodeLab interactive programming exercise system. For a full demonstration, 

to see feedback from instructors and students, or to get started using MyLab Programming 

in your course, visit www.pearson.com/mylab/programming.

http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com/mylab/programming


 Preface xxix

Instructor Resources

The following supplements are available to qualified instructors:

• Answers to all of the Review Questions

• Solutions for the Programming Challenges

• PowerPoint Presentation slides for each chapter

• Computerized Test Banks

• Source Code

• Lab Manual

• Student Files for the Lab Manual

• Solutions to the Lab Manual

Visit the Pearson Instructor Resource Center (www.pearson.com) or contact your local Pear-

son representative for information on how to access these resources.
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 1.1 Introduction

 1.2 Why Program?

 1.3 Computer Systems: Hardware and 

Software

 1.4 Programming Languages

 1.5 What Is a Program Made Of?

 1.6 The Programming Process

 1.7 Object-Oriented Programming

1.1 Introduction
This book teaches programming using Java. Java is a powerful language that runs on prac-

tically every type of computer. It can be used to create large applications, small programs, 

mobile applications, and code that powers a Web site. Before plunging right into learning 

Java, however, this chapter will review the fundamentals of computer hardware and soft-

ware, and then take a broad look at computer programming in general.

1.2 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Every profession has tools that make the job easier to do. Carpenters use hammers, saws, and 

measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics technicians 

use probes, scopes, and meters. Some tools are unique and can be categorized as belonging to 

a single profession. For example, surgeons have certain tools that are designed specifically for 

surgical operations. Those tools probably aren’t used by anyone other than surgeons. There 

are some tools, however, that are used in several professions. Screwdrivers, for instance, are 

used by mechanics, carpenters, and many others.

The computer is a tool used by so many professions that it cannot be easily categorized. It 

can perform so many different jobs that it is perhaps the most versatile tool ever made. To the 

accountant, computers balance books, analyze profits and losses, and prepare tax reports. 

To the factory worker, computers control manufacturing machines and track production. 

To the mechanic, computers analyze the various systems in an automobile and pinpoint 

hard-to-find problems. The computer can do such a wide variety of tasks because it can be 



2 Chapter 1  Introduction to Computers and Java

programmed. It is a machine specifically designed to follow instructions. Because of the com-

puter’s programmability, it doesn’t belong to any single profession. Computers are designed 

to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms com-

puters into the specialized tools of many trades. Without programmers, the users of computers 

would have no software, and without software, computers would not be able to do anything.

Computer programming is both an art and a science. It is an art because every aspect of a 

program should be carefully designed. Here are a few of the things that must be designed 

for any real-world computer program:

• The logical flow of the instructions

• The mathematical procedures

• The layout of the programming statements

• The appearance of the screens

• The way information is presented to the user

• The program’s “user friendliness”

• Manuals, help systems, and/or other forms of written documentation

There is also a science to programming. Because programs rarely work right the first time 

they are written, a lot of analyzing, experimenting, correcting, and redesigning is required. 

This demands patience and persistence of the programmer. Writing software demands dis-

cipline as well. Programmers must learn special languages such as Java because computers 

do not understand English or other human languages. Programming languages have strict 

rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software like 

designing a car: Both cars and programs should be functional, efficient, powerful, easy to 

use, and pleasing to look at.

1.3 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software 

components.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as we 

generally think of it, is not an individual device, but a system of devices. Like the instruments 

in a symphony orchestra, each device plays its own part. A typical computer system consists 

of the following major components:

• The central processing unit (CPU)

• Main memory

• Secondary storage devices

• Input devices

• Output devices

The organization of a computer system is shown in Figure 1-1.
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Let’s take a closer look at each of these devices.

The CPU

At the heart of a computer is its central processing unit, or CPU. The CPU’s job is to fetch 

instructions, follow the instructions, and produce some resulting data. Internally, the central 

processing unit consists of two parts: the control unit and the arithmetic and logic unit (ALU). 

The control unit coordinates all of the computer’s operations. It is responsible for determining 

where to get the next instruction and regulating the other major components of the computer 

with control signals. The arithmetic and logic unit, as its name suggests, is designed to perform 

mathematical operations. The organization of the CPU is shown in Figure 1-2.

Figure 1-1 The organization of a computer system
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Figure 1-2 The organization of the CPU
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A program is a sequence of instructions stored in the computer’s memory. When a computer 

is running a program, the CPU is engaged in a process known formally as the fetch/decode/ 

execute cycle. The steps in the fetch/decode/execute cycle are as follows:
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Fetch The CPU’s control unit fetches, from main memory, the next instruction in the 

sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes 

the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as the 

ALU, a disk drive, or some other device). The signal causes the component to 

perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random access memory, or RAM, the computer’s main memory is a 

device that holds information. Specifically, RAM holds the sequences of instructions in the 

programs that are running and the data those programs are using.

Memory is divided into sections that hold an equal amount of data. Each section is made 

of eight “switches” that may be either on or off. A switch in the on position usually rep-

resents the number 1, whereas a switch in the off position usually represents the number 

0. The computer stores data by setting the switches in a memory location to a pattern that 

represents a character or a number. Each of these switches is known as a bit, which stands 

for binary digit. Each section of memory, which is a collection of eight bits, is known as a 

byte. Each byte is assigned a unique number known as an address. The addresses are ordered 

from lowest to highest. A byte is identified by its address in much the same way a post office 

box is identified by an address. Figure 1-3 shows a series of bytes with their addresses. In 

the illustration, sample data is stored in memory. The number 149 is stored in the byte at 

address 16, and the number 72 is stored in the byte at address 23.

RAM is usually a volatile type of memory, used only for temporary storage. When the com-

puter is turned off, the contents of RAM are erased.

Figure 1-3 Memory bytes and their addresses

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even 

when there is no power to the computer. Frequently used programs are stored in secondary 

memory and loaded into main memory as needed. Important data, such as word processing 

documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk drive 

stores data by magnetically encoding it onto a spinning circular disk. Solid state drives, which 

store data in solid-state memory, are increasingly becoming popular. A solid-state drive has 

no moving parts, and operates faster than a traditional disk drive. Most computers have 
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some sort of secondary storage device, either a traditional disk drive or a solid-state drive, 

mounted inside their case. External drives are also available, which connect to one of the 

computer’s communication ports. External drives can be used to create backup copies of 

important data or to move data to another computer.

In addition to external drives, many types of devices have been created for copying data, and 

for moving it to other computers. Universal Serial Bus drives, or USB drives are small devices 

that plug into the computer’s USB (Universal Serial Bus) port, and appear to the system as a 

disk drive. These drives do not actually contain a disk, however. They store data in a special 

type of memory known as flash memory. USB drives are inexpensive, reliable, and small 

enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also 

popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded 

as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits and 

thus read the encoded data. Optical discs hold large amounts of data, and because record-

able CD and DVD drives are now commonplace, they make a good medium for creating 

backup copies of data.

Input Devices

Input is any data the computer collects from the outside world. The device that collects the 

data and sends it to the computer is called an input device. Common input devices are the 

keyboard, mouse, scanner, and digital camera. Disk drives, optical drives, and USB drives 

can also be considered input devices because programs and data are retrieved from them and 

loaded into the computer’s memory.

Output Devices

Output is any data the computer sends to the outside world. It might be a sales report, a 

list of names, or a graphic image. The data is sent to an output device, which formats and 

presents it. Common output devices are monitors and printers. Disk drives, USB drives, and 

CD recorders can also be considered output devices because the CPU sends data to them to 

be saved.

Software
As previously mentioned, software refers to the programs that run on a computer. There are 

two general categories of software: operating systems and application software. An operat-

ing system is a set of programs that manages the computer’s hardware devices and controls 

their processes. Most all modern operating systems are multitasking, which means they are 

capable of running multiple programs at once. Through a technique called time sharing, a 

multitasking system divides the allocation of hardware resources and the attention of the 

CPU among all the executing programs. UNIX, Linux, Mac OS, and Windows are multi-

tasking operating systems.

Application software refers to programs that make the computer useful to the user. These 

programs solve specific problems or perform general operations that satisfy the needs of the 

user. Word processing, spreadsheet, and database packages are all examples of application 

software.
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1.4 Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform 

a task. A programming language is a special language used to write com-

puter programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions 

that enable the computer to solve a problem or perform a task. For example, suppose we 

want the computer to calculate someone’s gross pay. The following is a list of things the 

computer should do to perform this task.

1. Display a message on the screen: “How many hours did you work?”
2. Allow the user to enter the number of hours worked.
3. Once the user enters a number, store it in memory.
4. Display a message on the screen: “How much do you get paid per hour?”
5. Allow the user to enter an hourly pay rate.
6. Once the user enters a number, store it in memory.
7. Once both the number of hours worked and the hourly pay rate are entered, multiply 

the two numbers and store the result in memory.
8. Display a message on the screen that shows the amount of money earned. The message 

must include the result of the calculation performed in Step 7.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined 

steps for performing a task or solving a problem. Notice that these steps are sequentially 

ordered. Step 1 should be performed before Step 2, and so forth. It is important that these 

instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algorithm, 

it is not ready to be executed on a computer. A computer’s CPU can only process instructions 

that are written in machine language. If you were to look at a machine language program, 

you would see a stream of binary numbers (numbers consisting of only 1s and 0s). The binary 

numbers form machine language instructions, which the CPU interprets as commands. Here 

is an example of what a machine language instruction might look like:

1011010000000101

 Checkpoint

www.myprogramminglab.com

1.1 Why is the computer used by so many different people, in so many different 

professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What does the term multitasking mean?
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As you can imagine, the process of encoding an algorithm in machine language is very 

tedious and difficult. In addition, each different type of CPU has its own machine language. 

If you wrote a machine language program for computer A and then wanted to run it on 

computer B, which has a different type of CPU, you would have to rewrite the program in 

computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the 

task of programming. A program can be written in a programming language, which is much 

easier to understand than machine language, and then translated into machine language. 

Programmers use software to perform this translation. Many programming languages have 

been created. Table 1-1 lists a few of the well-known ones.

Table 1-1 Programming languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose, procedural 

programming language. It was originally designed to be simple enough for begin-

ners to learn.

FORTRAN FORmula TRANslator is a procedural language designed for programming com-

plex mathematical algorithms.

COBOL Common Business-Oriented Language is a procedural language designed for busi-

ness applications.

Pascal Pascal is a structured, general-purpose, procedural language designed primarily 

for teaching programming.

C C is a structured, general-purpose, procedural language developed at Bell 

Laboratories.

C+ + Based on the C language, C+ +  offers object-oriented features not found in C. 

C+ +  was also invented at Bell Laboratories.

C# Pronounced “C sharp.” It is a language invented by Microsoft for developing 

applications based on the Microsoft .NET platform.

Java Java is an object-oriented language invented at Sun Microsystems, and is now 

owned by Oracle. It may be used to develop stand-alone applications that operate 

on a single computer, or applications that run over the Internet from a Web server.

JavaScript JavaScript is a programming language that can be used in a Web site to perform 

simple operations. Despite its name, JavaScript is not related to Java.

Perl A general-purpose programming language used widely on Internet servers.

PHP A programming language used primarily for developing Web server applications 

and dynamic Web pages.

Python Python is an object-oriented programming language used in both business and 

academia. Many popular Web sites contain features developed in Python.

Ruby Ruby is a simple but powerful object-oriented programming language. It can 

be used for a variety of purposes, from small utility programs to large Web 

applications.

Visual Basic Visual Basic is a Microsoft programming language and software development envi-

ronment that allows programmers to create Windows-based applications quickly.
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A History of Java
In 1991 a team was formed at Sun Microsystems (a company that is now owned by 

Oracle) to speculate about the important technological trends that might emerge in the 

near future. The team, which was named the Green Team, concluded that computers 

would merge with consumer appliances. Their first project was to develop a handheld 

device named *7 (pronounced star seven) that could be used to control a variety of home 

entertainment devices. For the unit to work, it had to use a programming language that 

could be processed by all the devices it controlled. This presented a problem because 

different brands of consumer devices use different processors, each with its own machine 

language.

Because no such universal language existed, James Gosling, the team’s lead engineer, cre-

ated one. Programs written in this language, which was originally named Oak, were not 

translated into the machine language of a specific processor, but were translated into an 

intermediate language known as byte code. Another program would then translate the byte 

code into machine language that could be executed by the processor in a specific consumer 

device.

Unfortunately, the technology developed by the Green Team was ahead of its time. No cus-

tomers could be found, mostly because the computer-controlled consumer appliance industry 

was just beginning. But rather than abandoning their hard work and moving on to other 

projects, the team saw another opportunity: the Internet. The Internet is a perfect environ-

ment for a universal programming language such as Oak. It consists of numerous different 

computer platforms connected together in a single network.

To demonstrate the effectiveness of its language, which was renamed Java, the team used 

it to develop a Web browser. The browser, named HotJava, was able to download and run 

small Java programs known as applets. This gave the browser the capability to display ani-

mation and interact with the user. HotJava was demonstrated at the 1995 SunWorld con-

ference before a wowed audience. Later the announcement was made that Netscape would 

incorporate Java technology into its Navigator browser. Other Internet companies rapidly 

followed, increasing the acceptance and the influence of the Java language. Today, Java is 

very popular for developing not only applets for developing Web applications, mobile apps, 

and desktop applications.

1.5 What Is a Program Made Of?

CONCEPT: There are certain elements that are common to all programming 

languages.

Language Elements
All programming languages have some things in common. Table 1-2 lists the common 

elements you will find in almost every language.
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Let’s look at an example Java program and identify an instance of each of these elements. 

Code Listing 1-1 shows the code listing with each line numbered.

Table 1-2 The common elements of a programming language

Language Element Description

Key Words These are words that have a special meaning in the programming lan-

guage. They may be used for their intended purpose only. Key words are 

also known as reserved words.

Operators Operators are symbols or words that perform operations on one or more 

operands. An operand is usually an item of data, such as a number.

Punctuation Most programming languages require the use of punctuation characters. 

These characters serve specific purposes, such as marking the beginning or 

ending of a statement, or separating items in a list.

Programmer-Defined 

Names

Unlike key words, which are part of the programming language, these 

are words or names that are defined by the programmer. They are used 

to identify storage locations in memory and parts of the program that are 

created by the programmer. Programmer-defined names are often called 

identifiers.

Syntax These are rules that must be followed when writing a program. Syntax 

dictates how key words and operators may be used, and where punctua-

tion symbols must appear.

NOTE: The line numbers are not part of the program. They are included to help point 

out specific parts of the program.

Code Listing 1-1  Payroll.java

 1  public class Payroll

 2  {

 3    public static void main(String[] args)

 4    {

 5      int hours = 40;

 6      double grossPay, payRate = 25.0;

 7

 8      grossPay = hours * payRate;

 9      System.out.println("Your gross pay is $" + grossPay);

10    }

11  }
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Key Words (Reserved Words)

Two of Java’s key words appear in line 1: public and class. In line 3, the words public, 

static, and void are all key words. The words int in line 5 and double in line 6 are also 

key words. These words, which are always written in lowercase, each have a special meaning 

in Java and can only be used for their intended purpose. As you will see, the programmer 

is allowed to make up his or her own names for certain things in a program. Key words, 

however, are reserved and cannot be used for anything other than their designated purpose. 

Part of learning a programming language is learning the commonly used key words, what 

they mean, and how to use them.

Table 1-3 shows a list of the Java key words1.

1Java 9 also introduces a set of restricted words that are treated as key words under certain 

 circumstances. See Appendix C for the full list.

Table 1-3  The Java key words

abstract const final int public throw

assert continue finally interface return throws

boolean default float long short transient

break do for native static true

byte double goto new strictfp try

case else if null super void

catch enum implements package switch volatile

char extends import private synchronized while

class false instanceof protected this

Programmer-Defined Names

The words hours, payRate, and grossPay that appear in the program in lines 5, 6, 8, and 9 

are programmer-defined names. They are not part of the Java language but are names made up 

by the programmer. In this particular program, these are the names of variables. As you will 

learn later in this chapter, variables are the names of memory locations that may hold data.

Operators

In line 8 the following line appears:

grossPay = hours * payRate;

The = and * symbols are both operators. They perform operations on items of data, 

known as operands. The * operator multiplies its two operands, which in this example 

are the variables hours and payRate. The = symbol is called the assignment operator. It 

takes the value of the expression that appears at its right and stores it in the variable whose 

name appears at its left. In this example, the = operator stores in the grossPay variable 

the result of the hours variable multiplied by the payRate variable. In other words, 

the statement says, “the grossPay variable is assigned the value of hours times payRate.”
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Punctuation

Notice that lines 5, 6, 8, and 9 end with a semicolon. A semicolon in Java is similar to a 

period in English: It marks the end of a complete sentence (or statement, as it is called in 

programming jargon). Semicolons do not appear at the end of every line in a Java program, 

however. There are rules that govern where semicolons are required and where they are 

not. Part of learning Java is learning where to place semicolons and other punctuation 

symbols.

Lines and Statements
Often, the contents of a program are thought of in terms of lines and statements. A line is 

just that—a single line as it appears in the body of a program. Code Listing 1-1 is shown 

with each of its lines numbered. Most of the lines contain something meaningful; however, 

line 7 is empty. Blank lines are only used to make a program more readable.

A statement is a complete instruction that causes the computer to perform some action. Here 

is the statement that appears in line 9 of Code Listing 1-1:

System.out.println("Your gross pay is $" + grossPay);

This statement causes the computer to display a message on the screen. Statements can be 

a combination of key words, operators, and programmer-defined names. Statements often 

occupy only one line in a program, but sometimes they are spread out over more than one 

line.

Variables
The most fundamental way that a Java program stores an item of data in memory is with a 

variable. A variable is a named storage location in the computer’s memory. The data stored in 

a variable may change while the program is running (hence the name “variable”). Notice that 

in Code Listing 1-1 the programmer-defined names hours, payRate, and grossPay appear 

in several places. All three of these are the names of variables. The hours variable is used 

to store the number of hours the user has worked. The payRate variable stores the user’s 

hourly pay rate. The grossPay variable holds the result of hours multiplied by payRate, 

which is the user’s gross pay.

Variables are symbolic names made up by the programmer that represent locations in the 

computer’s RAM. When data is stored in a variable, it is actually stored in RAM. Assume that 

a program has a variable named length. Figure 1-4 illustrates the way the variable name 

represents a memory location.

In Figure 1-4, the variable length is holding the value 72. The number 72 is actually 

stored in RAM at address 23, but the name length symbolically represents this storage 

location. If it helps, you can think of a variable as a box that holds data. In Figure 1-4, the 

number 72 is stored in the box named length. Only one item may be stored in the box 

at any given time. If the program stores another value in the box, it will take the place of 

the number 72.
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The Compiler and the Java Virtual Machine
When a Java program is written, it must be typed into the computer and saved to a file. A 

text editor, which is similar to a word processing program, is used for this task. The Java 

programming statements written by the programmer are called source code, and the file they 

are saved in is called a source file. Java source files end with the .java extension.

After the programmer saves the source code to a file, he or she runs the Java compiler. A compiler 

is a program that translates source code into an executable form. During the translation process, 

the compiler uncovers any syntax errors that may be in the program. Syntax errors are mistakes 

that the programmer has made that violate the rules of the programming language. These errors 

must be corrected before the compiler can translate the source code. Once the program is free of 

syntax errors, the compiler creates another file that holds the translated instructions.

Most programming language compilers translate source code directly into files that con-

tain machine language instructions. These are called executable files because they may be 

executed directly by the computer’s CPU. The Java compiler, however, translates a Java 

source file into a file that contains byte code instructions. Byte code instructions are not 

machine language, and therefore cannot be directly executed by the CPU. Instead, they are 

executed by the Java Virtual Machine (JVM). The JVM is a program that reads Java byte 

code instructions and executes them as they are read. For this reason, the JVM is often called 

an interpreter, and Java is often referred to as an interpreted language. Figure 1-5 illustrates 

the process of writing a Java program, compiling it to byte code, and running it.

Although Java byte code is not machine language for a CPU, it can be considered as machine 

language for the JVM. You can think of the JVM as a program that simulates a computer 

whose machine language is Java byte code.

Portability

The term portable means that a program may be written on one type of computer and then run 

on a wide variety of computers, with little or no modification necessary. Because Java byte code is 

the same on all computers, compiled Java programs are highly portable. In fact, a compiled Java 

program may be run on any computer that has a Java Virtual Machine. Figure 1-6 illustrates the 

concept of a compiled Java program running on Windows, Linux, Mac, and UNIX computers.

With most other programming languages, portability is achieved by the creation of a com-

piler for each type of computer that the language is to run on. For example, in order for 

the C+ +  language to be supported by Windows, Linux, and Mac computers, a separate 

C+ +  compiler must be created for each of those environments. Compilers are very complex 

programs, and more difficult to develop than interpreters. For this reason, a JVM has been 

developed for many types of computers.

Figure 1-4 A variable name represents a location in memory
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Figure 1-5  
Program development process

Byte Code

File

Figure 1-6 Java byte code may be run on any computer 
with a Java Virtual Machine

Byte Code

File

Java Software Editions
The software that you use to create Java programs is referred to as the JDK (Java Develop-

ment Kit) or the SDK (Software Development Kit). There are the following different editions 

of the JDK available from Oracle:

• Java SE—The Java Standard Edition provides all the essential software tools necessary 

for writing Java applications.

• Java EE—The Java Enterprise Edition provides tools for creating large business appli-

cations that employ servers and provide services over the Web.

• Java ME—The Java Micro Edition provides a small, highly optimized runtime environ-

ment for consumer products such as cell phones, pagers, and appliances.

These editions of Java may be downloaded from Oracle by going to:

http://java.oracle.com

NOTE: You can follow the instructions in Appendix D, which can be downloaded from 

the book’s companion Web site, to install the JDK on your system. You can access the 

book’s companion Web site by going to www.pearsonhighered.com/gaddis.

http://java.oracle.com
http://www.pearsonhighered.com/gaddis
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At the operating system command prompt, make sure you are in the same directory or folder 

where the Java program that you want to compile is located. Then, use the javac command, 

in the following form:

javac  Filename

Filename is the name of a file that contains the Java source code. As mentioned earlier, this 

file has the .java extension. For example, if you want to compile the Payroll.java file, you 

would execute the following command:

javac Payroll.java

This command runs the compiler. If the file contains any syntax errors, you will see one 

or more error messages and the compiler will not translate the file to byte code. When 

this happens you must open the source file in a text editor and fix the error. Then you 

can run the compiler again. If the file has no syntax errors, the compiler will translate it 

to byte code. Byte code is stored in a file with the .class extension, so the byte code for 

the Payroll.java file will be stored in Payroll.class, which will be in the same directory or 

folder as the source file.

To run the Java program, you use the java command in the following form:

java  ClassFilename

ClassFilename is the name of the .class file that you wish to execute; however, you do not 

type the .class extension. For example, to run the program that is stored in the Payroll.class 

file, you would enter the following command:

java Payroll

This command runs the Java interpreter (the JVM) and executes the program.

Integrated Development Environments

In addition to the command prompt programs, there are also several Java integrated devel-

opment environments (IDEs). These environments consist of a text editor, compiler, debug-

ger, and other utilities integrated into a package with a single set of menus. A program is 

compiled and executed with a single click of a button, or by selecting a single item from a 

menu. Figure 1-7 shows a screen from the NetBeans IDE.

TIP: In Windows click Start, go to All Programs, and then go to Accessories. Click Com-

mand Prompt on the Accessories menu. A command prompt window should open.

Compiling and Running a Java Program
Compiling a Java program is a simple process. Once you have installed the JDK, go to your 

operating system’s command prompt.

Compiling and 
Running a Java 

Program

VideoNote

Using an IDE

VideoNote
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1.8 Describe the difference between a key word and a programmer-defined symbol.

1.9 Describe the difference between operators and punctuation symbols.

1.10 Describe the difference between a program line and a statement.

1.11 Why are variables called “variable”?

1.12 What happens to a variable’s current contents when a new value is stored there?

1.13 What is a compiler?

1.14 What is a syntax error?

1.15 What is byte code?

1.16 What is the JVM?

Figure 1-7 An integrated development environment (IDE) (Oracle Corporate Counsel)
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1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design, 

creation, testing, and debugging activities.

Now that you have been introduced to what a program is, it’s time to consider the process 

of creating a program. Quite often when inexperienced students are given programming 

assignments, they have trouble getting started because they don’t know what to do first. If 

you find yourself in this dilemma, the following steps may help.

1. Clearly define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools to create a model of the program.
4. Check the model for logical errors.
5. Enter the code and compile it.
6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as 

necessary.
7. Run the program with test data for input.
8. Correct any runtime errors found while running the program. Repeat Steps 5 through 

8 as many times as necessary.
9. Validate the results of the program.

These steps emphasize the importance of planning. Just as there are good ways and bad 

ways to paint a house, there are good ways and bad ways to create a program. A good 

program always begins with planning. With the pay-calculating algorithm that was 

presented earlier in this chapter serving as our example, let’s look at each of the steps 

in more detail.

1. Clearly define what the program is to do

This step commonly requires you to identify the purpose of the program, the data that is to 

be input, the processing that is to take place, and the desired output. Let’s examine each of 

these requirements for the pay-calculating algorithm.

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay rate. The result is the user’s 

gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer

Before you create a program on the computer, you should first create it in your mind. Try 

to imagine what the computer screen will look like while the program is running. If it helps, 

draw pictures of the screen, with sample input and output, at various points in the program. 

For instance, Figure 1-8 shows the screen we might want produced by a program that imple-

ments the pay-calculating algorithm.
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In this step, you must put yourself in the shoes of the user. What messages should the pro-

gram display? What questions should it ask? By addressing these concerns, you can deter-

mine most of the program’s output.

3. Use design tools to create a model of the program

While planning a program, the programmer uses one or more design tools to create a model 

of the program. For example, pseudocode is a cross between human language and a pro-

gramming language and is especially helpful when designing an algorithm. Although the 

computer can’t understand pseudocode, programmers often find it helpful to write an algo-

rithm in a language that’s “almost” a programming language, but still very similar to natural 

language. For example, here is pseudocode that describes the pay-calculating algorithm:

Get payroll data.

Calculate gross pay.

Display gross pay.

Although this pseudocode gives a broad view of the program, it doesn’t reveal all the pro-

gram’s details. A more detailed version of the pseudocode follows:

Display “How many hours did you work?”

Input hours.

Display “How much do you get paid per hour?”

Input rate.

Store the value of hours times rate in the pay variable.

Display the value in the pay variable.

Notice that the pseudocode uses statements that look more like commands than the English 

statements that describe the algorithm in Section 1.4. The pseudocode even names variables 

and describes mathematical operations.

4. Check the model for logical errors

Logical errors are mistakes that cause the program to produce erroneous results. Once a 

model of the program is assembled, it should be checked for these errors. For example, if 

pseudocode is used, the programmer should trace through it, checking the logic of each step. 

If an error is found, the model can be corrected before the next step is attempted.

5. Enter the code and compile it

Once a model of the program has been created, checked, and corrected, the programmer is 

ready to write source code on the computer. The programmer saves the source code to a file 

Figure 1-8 Screen produced by the pay-calculating algorithm



18 Chapter 1  Introduction to Computers and Java

and begins the process of compiling it. During this step the compiler will find any syntax 

errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many 
times as necessary

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated 

until the program is free of compile-time errors.

7. Run the program with test data for input

Once an executable file is generated, the program is ready to be tested for runtime errors. A 

runtime error is an error that occurs while the program is running. These are usually logical 

errors, such as mathematical mistakes.

Testing for runtime errors requires that the program be executed with sample data or sample 

input. The sample data should be such that the correct output can be predicted. If the pro-

gram does not produce the correct output, a logical error is present in the program.

8. Correct any runtime errors found while running the program. Repeat Steps 
5 through 8 as many times as necessary

When runtime errors are found in a program, they must be corrected. You must identify the 

step where the error occurred and determine the cause. If an error is a result of incorrect 

logic (such as an improperly stated math formula), you must correct the statement or state-

ments involved in the logic. If an error is due to an incomplete understanding of the program 

requirements, then you must restate the program purpose and modify the program model 

and source code. The program must then be saved, recompiled, and retested. This means 

Steps 5 though 8 must be repeated until the program reliably produces satisfactory results.

9. Validate the results of the program

When you believe you have corrected all the runtime errors, enter test data and determine 

whether the program solves the original problem.

Software Engineering
The field of software engineering encompasses the whole process of crafting computer 

software. It includes designing, writing, testing, debugging, documenting, modifying, and 

maintaining complex software development projects. Like traditional engineers, software 

engineers use a number of tools in their craft. Here are a few examples:

• Program specifications

• Diagrams of screen output

• Diagrams representing the program components and the flow of data

• Pseudocode

• Examples of expected input and desired output

• Special software designed for testing programs

Most commercial software applications are large and complex. Usually a team of program-

mers, not a single individual, develops them. It is important that the program requirements 

be thoroughly analyzed and divided into subtasks that are handled by individual teams, or 

individuals within a team.
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1.7 Object-Oriented Programming

CONCEPT: Java is an object-oriented programming (OOP) language. OOP is a 

method of software development that has its own practices, concepts, and 

vocabulary.

There are primarily two methods of programming in use today: procedural and object-ori-

ented. The earliest programming languages were procedural, meaning a program was made 

of one or more procedures. A procedure is a set of programming statements that, together, 

perform a specific task. The statements might gather input from the user, manipulate data 

stored in the computer’s memory, and perform calculations or any other operation necessary 

to complete the procedure’s task.

Procedures typically operate on data items that are separate from the procedures. In a pro-

cedural program, the data items are commonly passed from one procedure to another, as 

shown in Figure 1-9.

 Checkpoint

  www.myprogramminglab.com

1.17 What four items should you identify when defining what a program is to do?

1.18 What does it mean to “visualize a program running”? What is the value of such an 

activity?

1.19 What is pseudocode?

1.20 Describe what a compiler does with a program’s source code.

1.21 What is a runtime error?

1.22 Is a syntax error (such as misspelling a key word) found by the compiler or when 

the program is running?

1.23 What is the purpose of testing a program with sample data or input?

Figure 1-9 Data is passed among procedures

http://www.myprogramminglab.com
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As you might imagine, the focus of procedural programming is on the creation of procedures 

that operate on the program’s data. The separation of data and the code that operates on the 

data often leads to problems, however. For example, the data is stored in a particular format, 

which consists of variables and more complex structures that are created from variables. The 

procedures that operate on the data must be designed with that format in mind. But, what 

happens if the format of the data is altered? Quite often, a program’s specifications change, 

resulting in a redesigned data format. When the structure of the data changes, the code that 

operates on the data must also be changed to accept the new format. This results in added 

work for programmers and a greater opportunity for bugs to appear in the code.

This has helped influence the shift from procedural programming to object-oriented pro-

gramming (OOP). Whereas procedural programming is centered on creating procedures, 

object-oriented programming is centered on creating objects. An object is a software entity 

that contains data and procedures. The data contained in an object is known as the object’s 

attributes. The procedures, or behaviors, that an object performs are known as the object’s 

methods. The object is, conceptually, a self-contained unit consisting of data (attributes) and 

procedures (methods). This is illustrated in Figure 1-10.

OOP addresses the problem of code/data separation through encapsulation and data hiding. 

Encapsulation refers to the combining of data and code into a single object. Data hiding 

refers to an object’s ability to hide its data from code that is outside the object. Only the 

object’s methods may then directly access and make changes to the object’s data. An object 

typically hides its data, but allows outside code to access the methods that operate on the 

data. As shown in Figure 1-11, the object’s methods provide programming statements outside 

the object with indirect access to the object’s data.

When an object’s internal data is hidden from outside code and access to that data is restricted 

to the object’s methods, the data is protected from accidental corruption. In addition, the 

programming code outside the object does not need to know about the format or internal 

structure of the object’s data. The code only needs to interact with the object’s methods. 

Figure 1-10 An object contains data 
and procedures

Figure 1-11 Code outside the object interacts 
with the object’s methods
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When a programmer changes the structure of an object’s internal data, he or she also modi-

fies the object’s methods so they may properly operate on the data. The way in which outside 

code interacts with the methods, however, does not change.

These are just a few of the benefits of object-oriented programming. Because Java is fully 

object-oriented, you will learn much more about OOP practices, concepts, and terms as you 

progress through this book.
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1.24 In procedural programming, what two parts of a program are typically separated?

1.25 What are an object’s attributes?

1.26 What are an object’s methods?

1.27 What is encapsulation?

1.28 What is data hiding?

Review Questions and Exercises

Multiple Choice

1. This part of the computer fetches instructions, carries out the operations commanded 

by the instructions, and produces some outcome or resultant information.

a. memory

b. CPU

c. secondary storage

d. input device

2. A byte is made up of eight

a. CPUs

b. addresses

c. variables

d. bits

3. Each byte is assigned a unique

a. address

b. CPU

c. bit

d. variable

4. This type of memory can hold data for long periods of time—even when there is no 

power to the computer.

a. RAM

b. primary storage

c. secondary storage

d. CPU storage

http://www.myprogramminglab.com

