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Help students see the connections 
between problem types and 
understand how to solve them

The new 11th Edition of College Physics incorporates data from thousands 

of surveyed students detailing their use and reliance on worked examples, video 

tutorials, and just-in-time remediation when working homework problems and 

preparing for exams. Driven by how students actually use the text and media, this 

edition offers multiple resources to help students see patterns and make connections 

between problem types, helping them to develop an understanding of problem-solving 

approaches, rather than simply plugging in an equation. Mastering Physics gives 

students additional problem sets with wrong answer specific feedback, hints, and links 

end-of-chapter problems directly to the Pearson eText for additional guidance.



Help develop a greater 
understanding of . . .

NEW! Example Variation 
Problems build in difficulty by 

adjusting scenarios, changing 

the knowns vs. unknowns, and 

adding complexity and a step 

of reasoning to provide the 

most helpful range of related 

problems that use the same 

fundamental approach to solve. 

These scaffolded problem sets 

help students see patterns and 

make connections between 

problems types that can be 

solved applying the same 

fundamental principles so 

that they are less surprised by 

variations on problems when 

exam time comes. They are 

assignable in Mastering Physics.

UPDATED! Worked 
Examples follow a 

consistent and explicit 

global problem-solving 

strategy drawn from 

educational research 

that shows students 

find access to worked 

examples at the point 

of need most helpful. 

This 3-step approach 

emphasizes setting up 

a problem effectively 

before any attempts 

to solve it as well as 

the importance of 

reflecting on whether 

the answer is sensible. 

This focus helps 

students understand 

how to solve problems 

rather than hunting 

for an equation they 

can plug in.

P. 212

P. 124



Problem-Solving skills

Bridging Problems 

at the end of each 

chapter help students 

move from single 

concept worked 

examples to multi-

concept problems. New! 

Assignable as Tutorials 

in Mastering Physics.

Video Tutor 
Solutions (VTSs) for 
every Example and 
Bridging Problem in 

the book walk students 

through the problem-

solving process, providing 

a virtual teaching assistant 

on a round-the-clock basis. 

New VTSs correspond to 

new and revised worked 

examples.

P. 422



Tools that build conceptual 
understanding . . .

NEW! Test Your 
Understanding 
problems are 

added strategically 

throughout the 

chapters, helping 

students complete 

an important step of 

ensuring that their 

answer makes sense 

in the real world. Test 

Your Understanding 

problems in the 

eText provide the 

full solution when 

students mouseover 

a problem.

NEW! Direct Measurement Videos show real situations of physical 

phenomena. Grids, rulers, and frame counters appear as overlays, helping students 

to make precise measurements of quantities such as position and time. Students 

then apply these quantities along with physics concepts to solve problems and 

answer questions about the motion of the objects in the video. The problems are 

assignable in Mastering and can be used to replace or supplement traditional 

word problems, or as open-ended questions to help develop problem-solving skills.

P. 287



even before students come to class

Interactive  
Pre- lecture Videos 

provide an introduction 

to topics with embedded 

assessment to help 

students prepare before 

lecture and to help 

professors identify 

student misconceptions.

NEW! 30 
Quantitative   
Pre-lecture Videos 
now complement the 

conceptual Interactive 

Pre-lecture Videos. 

These videos are 

designed to expose 

students to concepts 

before class and 

help them learn how 

problems for a specific 

concept are worked.



Reach every student . . .

NEW! College Physics is now available in Pearson eText. Pearson eText is a simple-to-use, mobile-

optimized, personalized reading experience available within Mastering. It allows students to easily highlight, 

take notes, and review key vocabulary all in one place—even when offline. Seamlessly integrated videos, rich 

media, and interactive self-assessment questions engage students and give them access to the help they need, 

when they need it. Pearson eText is available within Mastering when packaged with a new book; students can 

also purchase Mastering with Pearson eText online.



with Mastering Physics

Dynamic Study Modules in 
Mastering Physics help students 

study effectively—and at their own pace—

by keeping them motivated and engaged. 

The assignable modules rely on the 

latest research in cognitive science, using 

methods—such as adaptivity, gamification, 

and intermittent rewards—to stimulate 

learning and improve retention. DSM are 

available to use on any mobile device.

The Physics Primer relies 

on videos, hints, and feedback to 

refresh students’ math skills in the 

context of physics and prepares 

them for success in the course. 

These tutorials can be assigned 

before the course begins or 

throughout the course as just-in-

time remediation. They ensure 

students practice and maintain 

their math skills, while tying 

together mathematical operations 

and physics analysis.



College Physics includes a full suite of instructor 

support materials in the Instructor Resources area 

in Mastering Physics. Resources include PowerPoint 

lecture outlines; all chapter summaries, key equations, 

and problem-solving strategies from the text; all 

figures and images from the text; plus a solutions 

manual and test bank.

Instructor support you can rely on

Instructors also have access to 

Learning Catalytics. With 

Learning Catalytics, you’ll hear from 

every student when it matters most. 

You pose a variety of questions that 

help students recall ideas, apply 

concepts, and develop critical-thinking 

skills. Your students respond using their 

own smartphones, tablets, or laptops. 

You can monitor responses with real-

time analytics and find out what your 

students do — and don’t — understand. 

Then, you can adjust your teaching 

accordingly and even facilitate peer-

to-peer learning, helping students stay 

motivated and engaged.
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TO THE STUDENT

HOW TO SUCCEED IN PHYSICS
“Is physics hard? Is it too hard for me?” Many students are apprehensive about their 

 physics course. However, while the course can be challenging, almost certainly it is not too 

hard for you. If you devote time to the course and use that time wisely, you can  succeed.

Here’s how to succeed in physics.

1. Spend time studying. The rule of thumb for college courses is that you should expect 

to study about 2 to 3 hours per week for each unit of credit, in addition to the time you 

spend in class. And budget your time: 3 hours every other day is much more effective 

than 33 hours right before the exam.

The good news is that physics is consistent. Once you’ve learned how to tackle one 

topic, you’ll use the same study techniques to tackle the rest of the course. So if you 

find you need to give the course extra time at first, do so and don’t worry—it’ll pay 

dividends as the course progresses.

2. Don’t miss class. Yes, you could borrow a friend’s notes, but listening and participating 

in class are far more effective. Of course, participating means paying active attention, 

and interacting when you have the chance!

3. Make this book work for you. This text is packed with decades of teaching experi-

ence—but to make it work for you, you must read and use it actively. Think about what 

the text is saying. Use the illustrations. Try to solve the Test Your Understanding prob-

lems on your own, before reading the solutions. If you underline, do so thoughtfully and 

not mechanically.

Use the Variation Problems to hone your problem solving skills. These problems 

represent progressive variations on the Key Examples. They are designed to help you 

recognize and exploit the underlying mathematical similarities of two closely related, 

yet seemingly completely different, physics problems. This is an important exam skill 

and it can serve you well!

A good practice is to skim the chapter before going to class to get a sense for the 

topic, and then read it carefully and work the examples after class.

4. Approach physics problems systematically. While it’s important to attend class and 

use the book, your real learning will happen mostly as you work problems—if you ap-

proach them correctly. Physics problems aren’t math problems. You need to approach 

them in a different way. (If you’re “not good at math,” this may be good news for you!) 

What you do before and after solving an equation is more important than the math it-

self. The worked examples in this book help you develop good habits by consistently 

following three steps—Set Up, Solve, and Reflect. (In fact, this global approach will 

help you with problem solving in all disciplines—chemistry, medicine, business, etc.)

5. Use campus resources. If you get stuck, get help. Your professor probably has office 

hours and email; use them. Use your TA or campus tutoring center if you have one. 

Partner with a friend to study together. But also try to get unstuck on your own before 

you go for help. That way, you’ll benefit more from the help you get.

6. Honestly assess your level of understanding. It is crucially important that you hon-

estly acknowledge those concepts and problems that you don't really understand. Too 

often, students simply tell themselves that they understand a point made in the lecture, 

or a homework problem, or a concept when, in fact, they don't. Or, even worse, they 

simply hope that certain questions will not appear on the next exam.

So remember, you can succeed in physics. Just devote time to the job, work lots of prob-

lems, and get help when you need it. Your book is here to help. Have fun!

SET UP

Think about the physics involved in the 

situation the problem describes. What 

information are you given and what do you 

need to find out? Which physics principles 

do you need to apply? Almost always you 

should draw a sketch and label it with the 

relevant known and unknown information. 

(Many of the worked examples in this 

book include hand-drawn sketches to 

coach you on what to draw.)

SOLVE

Based on what you did in Set Up, identify 

the physics and appropriate equation or 

equations and do the algebra. Because you 

started by thinking about the physics (and 

drawing a diagram), you’ll know which 

physics equations apply to the situation—

you’ll avoid the “plug and pray” trap of 

picking any equation that seems to have 

the right variables.

REFLECT

Once you have an answer, ask yourself 

whether it is plausible. If you calculated 

your weight on the Moon to be 

10,423 kg—you must have made a mistake 

somewhere! Next, check that your answer 

has the right units. Finally, think about 

what you learned from the problem that 

will help you later.

xvii



This page is intentionally left blank



PREFACE

College Physics places equal emphasis on conceptual, qualitative, and quantitative un-

derstanding. This classic text gives students a solid understanding of the fundamentals, 

helps them develop critical thinking, quantitative reasoning, and problem-solving skills, 

and sparks interest in physics with real-world applications. Informed by physics education 

research and data of thousands of student users of Mastering Physics, this edition empha-

sizes learning to solve physics problems in a variety of contexts, and applying physics to 

the real world.

This text provides a comprehensive introduction to physics. It is intended for students 

whose mathematics preparation includes high-school algebra and trigonometry but not 

calculus. The complete text may be taught in a two-semester or three-quarter course, and 

the book is also adaptable to a wide variety of shorter courses.

Complete and Two-Volume Editions

With Mastering Physics:

• Complete Edition: Chapters 0–30

(ISBN 978-0-134-87947-5)

Without Mastering Physics:

• Complete Edition: Chapters 0–30

(ISBN 978-0-134-87698-6)

• Volume 1: Chapters 0 –16

(ISBN 978-0-134-98732-2)

• Volume 2: Chapters 17–30

(ISBN 978-0-134-98731-6)

NEW TO THIS EDITION
• 83 new Test Your Understanding questions were added to the text. Now there is a 

Test Your Understanding box for every quantitative section of the book. These are in-

tended to help students complete the important step of ensuring that their answer makes 

sense in the real world.

• New! 180 Example Variation Problems build in difficulty by adjusting scenarios, 

changing the knowns vs. unknowns, and adding complexity and a step of reasoning 

to provide the most helpful range of related problems that use the same fundamental 

approach to solve. These scaffolded problem sets help students see patterns and make 

connections between problems types that can be solved by applying the same funda-

mental principles so that they are less surprised by variations on problems when exam 

time comes.

• Proportional Reasoning questions have been further developed. These are designed 

to help the students recognize and exploit algebraic relationships between relevant 

physical quantities. These types of questions commonly appear on physics exams.

• Streamlined and improved design. The eleventh edition is more concise than previ-

ous editions and now features an open, inviting presentation.

• Over 70 PhET simulations are provided in the study area of the Mastering Physics 

website. These powerful simulations allow students to interact productively with the 

physics concepts they are learning.

• Video Tutors bring key content to life throughout the text:

• Over 50 Video Tutor Demonstrations feature interactive “pause-and-predict” 

demonstrations of key concepts. The videos actively engage students and help 

 uncover misconceptions.

• Video Tutor Solutions accompany every Worked Example and Bridging 

Problem in the book. These narrated videos walk students through the prob-

lem-solving process, acting as a virtual teaching assistant on a round-the-clock 

basis. Students can access the Video Tutor Solutions using QR codes conveniently 

placed in the text, through links in the eText, or through the study area within 

Mastering Physics.

• Assignable Mastering Physics activities are based on the Pause and Predict Video 

Tutors and PhET simulations.

• Video Tutor Demonstrations with assessment allow the student to extend their 

understanding by answering a follow-up question.

• PhET tutorials prompt students to explore the PhET simulations and use them 

to answer questions and solve problems, helping them to make connections between 

real life phenomena and the underlying physics that explains such phenomena.

xix



xx    PREFACE

KEY FEATURES OF COLLEGE PHYSICS

• A systematic approach to problem solving. To solve problems with confidence, stu-

dents must learn to approach problems effectively at a global level, must understand the 

physics in question, and must acquire the specific skills needed for particular types of 

problems. The Tenth Edition provides research-proven tools for students to tackle each 

goal.

• Expanded Bridging Problems, now available in Mastering Physics, and additional 

Practice Problems provide extra support for students as they learn to solve prob-

lems in physics.

• Each worked example follows a consistent and explicit global problem-solving 

strategy drawn from educational research. This three-step approach puts special 

emphasis on how to set up the problem before trying to solve it, and the importance 

of how to reflect on whether the answer is sensible.

• New - Example Variation Problems build in difficulty by adjusting scenarios, 

changing the knowns vs. unknowns, and adding complexity and a step of reasoning 

to provide the most helpful range of related problems that use the same fundamen-

tal approach to solve. These scaffolded problem sets help students see patterns and 

make connections between problems types that can be solved, applying the same 

fundamental principles so that they are less surprised by variations on problems 

when exam time comes. Assignable in Mastering Physics.

• Worked example solutions model the steps and decisions students should use but 

often skip. Worked examples include new pencil diagrams: hand-drawn diagrams 

that show exactly what a student should draw in the set up step of solving the prob-

lem. Also included are practice problems for the worked examples. These practice 

problems are now assignable in Mastering Physics.

• Test Your Understanding problems help students practice their qualitative and quan-

titative understanding of the physics. These featured problems focus on skills of quan-

titative and proportional reasoning—skills that are key to success on the MCATs. The 

TYU’s use a multiple-choice format to elicit specific common misconceptions.

• Problem-solving strategies sections walk students through tactics for tackling partic-

ular types of problems—such as problems requiring Newton’s second law or energy 

conservation—and follow the same 3-step global approach (set up, solve, and reflect).

• Highly effective figures incorporate the latest ideas from educational research. 

Color is used only for strict pedagogical purposes—for instance, in mechanics, color 

is used to identify the object of interest, while all other objects are gray. Blue anno-

tated comments guide students in “reading” graphs and figures.

• Visual chapter summaries show each concept in words, math, and figures to rein-

force how to “translate” between different representations and address different student 

learning styles.

• Rich and diverse end-of-chapter problem sets. College Physics features the re-

nowned Sears/Zemansky problems, refined over five decades. We’ve used data from 

Mastering Physics to identify the strongest and most successful problems to retain for 

the tenth edition and we’ve added new problems. Multiple estimation questions were 

added to the Conceptual and Estimation Questions section of each chapter.

• Each chapter includes a set of multiple-choice problems that test the skills devel-

oped by the Test Your Understanding problems in the chapter text. The multiple-

choice format elicits specific common misconceptions, enabling students to pinpoint 

their misunderstandings.

• The General Problems contain many context-rich problems that require students to 

simplify and model more complex real-world situations. Many problems relate to the 

fields of biology and medicine; these are all labeled BIO.

• MCAT-style Passage Problems appear in each chapter and follow the format used in the 

MCAT exam. These problems require students to investigate multiple aspects of a real-

life physical situation, typically biological in nature, as described in a reading  passage.
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• Connections of physics to the student’s world. Even more in-margin applications 

provide diverse, interesting, and self-contained examples of physics at work in the 

world. Many of these real-world applications are related to the fields of biology and 

medicine and are labeled BIO.

• Writing that is easy to follow and rigorous. The writing is friendly yet focused; it 

conveys an exact, careful, straightforward understanding of the physics, with an em-

phasis on the connections between concepts.

INSTRUCTOR SUPPLEMENTS
Note: For convenience, all of the following instructor supplements can be accessed via 

Mastering Physics (www.masteringphysics.com).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University) and Brett 

Kraabel contain complete and detailed solutions to all end-of-chapter problems. All solu-

tions follow consistently the same Set Up/Solve/Reflect problem-solving framework used 

in the textbook. Download only from the Mastering Physics Instructor Area or from the 

Instructor Resource Center (www.pearsonhighered.com/irc).

The Instructor Resource Collection, available on Mastering Physics, provides all line 

figures from the textbook in JPEG format. In addition, all the key equations, problem-

solving strategies, tables, and chapter summaries are provided in editable Word format. 

Lecture outlines in PowerPoint are also included, along with over 70 PhET simulations as 

well as Video Tutor Demonstrations and Video Tutor Solutions.

Mastering Physics® (www.masteringphysics.com) is the most advanced, education-

ally effective, and widely used physics homework and tutorial system in the world. Eight 

years in development, it provides instructors with a library of extensively pre-tested end-

of-chapter problems and rich, multipart, multistep tutorials that incorporate a wide variety 

of answer types, wrong answer feedback, individualized help (comprising hints or simpler 

sub-problems upon request), all driven by the largest metadatabase of student problem-

solving in the world. NSF-sponsored published research (and subsequent studies) show 

that Mastering Physics has dramatic educational results. Mastering Physics allows instruc-

tors to build wide-ranging homework assignments of just the right difficulty and length 

and provides them with efficient tools to analyze both class trends and the work of any 

student in unprecedented detail.

Mastering Physics routinely provides instant and individualized feedback and guidance 

to more than 100,000 students every day. A wide range of tools and support makes Master-

ing Physics fast and easy for instructors and students to learn to use. Extensive class tests 

show that by the end of their course, an unprecedented eight of nine students recommend 

Mastering Physics as their preferred way to study physics and do homework.

Mastering Physics enables instructors to:

• Quickly build homework assignments that combine regular end-of-chapter problems 

and tutoring (through additional multistep tutorial problems that offer wrong-answer 

feedback and simpler problems upon request).

• Expand homework to include the widest range of automatically graded activities 

 available—from numerical problems with randomized values, through algebraic an-

swers, to free-hand drawing.

• Choose from a wide range of nationally pre-tested problems that provide accurate esti-

mates of time to complete and difficulty.

• After an assignment is completed, quickly identify not only the problems that were the 

trickiest for students but the individual problem types where students had trouble.

• Compare class results against the system’s worldwide average for each problem as-

signed, to identify issues to be addressed with just-in-time teaching.

• Check the work of individual students in detail, including time spent on each problem, 

what wrong answers they submitted at each step, how much help they asked for, and 

how many practice problems they worked.

http://www.masteringphysics.com
http://www.pearsonhighered.com/irc
http://www.masteringphysics.com
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NEW TO MASTERING PHYSICS
Teach your course your way: Your course is unique. So whether you’d like to build your 

own auto-graded assignments, foster student engagement during class, or give students 

anytime, anywhere access, Mastering gives you the flexibility to easily create your course 

to fit your needs.

• With Learning Catalytics, you’ll hear from every student when it matters most. You 

pose a variety of questions that help students recall ideas, apply concepts, and develop 

critical-thinking skills. Your students respond using their own smartphones, tablets, or 

laptops. You can monitor responses with real-time analytics and find out what your 

students do—and don’t—understand. Then, you can adjust your teaching accordingly, 

and even facilitate peer-to-peer learning, helping students stay motivated and engaged. 

• Dynamic Study Modules help students study effectively—and at their own pace. 

How? By keeping them motivated and engaged. The assignable modules rely on the 

latest research in cognitive science, using methods—such as adaptivity, gamification, 

and intermittent rewards—to stimulate learning and improve retention. Each module 

poses a series of questions about a course topic. These question sets adapt to each stu-

dent’s performance and offer personalized, targeted feedback to help them master key 

concepts. 

• The Physics Primer relies on videos, hints, and feedback to refresh students’ math 

skills in the context of physics and prepares them for success in the course. These tuto-

rials can be assigned before the course begins or throughout the course as just-in-time 

remediation. They ensure students practice and maintain their math skills, while tying 

together mathematical operations and physics analysis.

Empower each learner: Each student learns at a different pace. Personalized learning, 

including adaptive tools and wrong-answer feedback, pinpoints the precise areas where 

each student needs practice and gives all students the support they need—when and where 

they need it—to be successful.

• New–Direct Measurement Videos are short videos that show real situations of physi-

cal phenomena. Grids, rulers, and frame counters appear as overlays, helping students 

to make precise measurements of quantities such as position and time. Students then 

apply these quantities along with physics concepts to solve problems and answer ques-

tions about the motion of the objects in the video. The problems are assignable in 

Mastering and can be used to replace or supplement traditional word problems, or as 

open-ended questions to help develop problem-solving skills.

• Interactive Prelecture Videos provide an introduction to key topics with embedded 

assessment to help students prepare before lecture and to help professors identify stu-

dent misconceptions. 

• New–30 Quantitative Pre-lecture Videos now complement the conceptual Interactive 

Pre-lecture Videos. These videos are designed to expose students to concepts before 

class and help them learn how problems for a specific concept are worked.

• Test Your Understanding problems in the eText provide the full solution when stu-

dents mouseover a problem.

Deliver trusted content: We partner with highly respected authors to develop interactive 

content and course-specific resources that keep students on track and engaged.

• Video Tutor Demonstrations and Video Tutor Solutions tie directly to relevant con-

tent in the textbook and can be accessed through Mastering Physics or from QR codes 

in the textbook.

• Video Tutor Solutions (VTSs) for every Example and Bridging Problem in the 

book walk students through the problem-solving process, providing a virtual teaching 

assistant on a round-the-clock basis. New VTSs correspond to new and revised worked 

examples.

• Video Tutor Demonstrations (VTDs) feature “pause-and-predict” demonstrations of 

key physics concepts and incorporate assessment to engage students in understanding 

key concepts. New VTDs build on the existing collection, adding new topics for a more 

robust set of demonstrations.



 PREFACE    xxiii

• Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience 

available within Mastering. It allows students to easily highlight, take notes, and review 

key vocabulary all in one place—even when offline. Seamlessly integrated videos and 

other rich media engage students and give them access to the help they need, when they 

need it. 

• New–Enhanced End-of-Chapter Questions provide instructional support when and 

where students need it including links to the eText, Video Tutor Solutions, math reme-

diation and wrong-answer feedback for homework assignments.
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0-1

0 Mathematics Review

M
uch of the natural world is arranged in patterns that can be described by means 

of fairly simple mathematics. Like all sciences that seek to explain the natural 

world, physics relies on a certain amount of mathematics to express its concepts in 

precise ways. In studying physics, then, you will need some basic math skills in order to 

understand lectures, read this textbook, and succeed with your homework and on exams. 

We strongly recommend that you review the material in this chapter and practice with the 

end-of-chapter problems before you read further. The beauty of physics cannot be fully 

appreciated if you do not have adequate mastery of basic mathematical skills.

0.1 EXPONENTS

Exponents are used frequently in physics—for example, when describing areas or three-

dimensional space. When we write 34, the superscript 4 is called an exponent and the 

base number 3 is said to be raised to the fourth power. The quantity 34 is equal to 

3 * 3 * 3 * 3 = 81. Algebraic symbols can also be raised to a power—for example, x4. 

There are special names for the operation when the exponent is 2 or 3. When the exponent 

is 2, we say that the quantity is squared; thus, x2 means x is squared. When the exponent 

is 3, the quantity is cubed; x3 means x is cubed.

Note that x1
= x and that the exponent 1 is typically not written. Any quantity raised 

to the zero power is defined to be unity (that is, 1). Negative exponents are used for recip-

rocals: x-4
= 1>x4.

An exponent can also be a fraction, as in x1>4. The exponent 12 is called a square root, 

and the exponent 13 is called a cube root. For example, 16 can also be written as 61>2.

Most calculators have special keys for calculating numbers raised to a power—for in-

stance, a key labeled yx or one labeled x2.

Exponents obey several simple rules that follow directly from the meaning of raising a 

quantity to a power:

1. The product rule: 1xm21xn2 = xm + n.

For example, 13321322 = 35
= 243. To verify this result, note that 33

= 27, 32
= 9, 

and 1272192 = 243.

The spiral arrangement of buds on this 

Romanesco broccoli plant is a classic exam-

ple of how natural processes can give rise to 

geometrical patterns that can be expressed 

by means of mathematics. In this chapter, 

we will review the most important math-

ematical concepts used in this course.

LEARNING OUTCOMES

By the end of this chapter, you will be able to:

1. Use the rules for exponents to simplify 

algebraic expressions.

2. Express numbers in scientific notation 

and combine numbers in scientific  

notation by using addition, subtraction, 

multiplication, or division.

3. Use the quadratic formula to find both 

roots for a quadratic equation.

4. Solve a system of two equations with two 

unknown quantities.

5. Recognize direct, inverse, and inverse-

square relationships either algebraically or 

graphically and solve such a relationship 

for an unknown quantity.

6. Use tables of data to create linear graphs, 

which can be used to solve for an  

unknown quantity.

7. Solve both base-10 logarithm and  

natural logarithm equations for an  

unknown quantity.

8. Use geometric expressions to solve for 

angles, lengths, areas, and volumes in a 

particular problem.

9. Use trigonometric identities to relate the 

angles and sides of a right triangle and 

the law of cosines and the law of sines to 

relate the angles and sides of any triangle.
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2. The quotient rule: 
xm

xn = xm-n.

For example, 
33

32
= 33-2

= 31
= 3. To verify this result, note that 

33

32
=

27

9
= 3.

A special case of this rule is 
xm

xm = xm-m
= x0

= 1.

3. The first power rule: 1xm2n
= xmn.

For example, 12223
= 26

= 64. To verify this result, note that 22
= 4, so 12223

= 1423
= 64.

4. Other power rules:

1xy2m
= 1xm21ym2 and a x

y
bm

=

xm

ym  .

For example, 13 * 224
= 64

= 1296. To verify the first result, note that 34
= 81, 

24
= 16, and 18121162 = 1296.

If the base number is negative, it is helpful to know that 1-x2n
= 1-12nxn, and 1-12n is 

+1 if n is even and -1 if n is odd. You can verify easily the other power rules for any x and y.

Let’s start by simplifying the expression 
x3y-3xy4>3

x-4y1>31x223
 and calculating its numerical value when x = 6 and y = 3.

SOLUTION

SET UP AND SOLVE We simplify the expression as follows:

x3x

x-41x223
= x3x1x4x-6

= x3 + 1 + 4-6
= x2;

y-3y4>3
y1>3 = y-3 +

4
3
-

1
3 = y-2.

Therefore,

x3y-3xy4>3
x-4y1>31x223

= x2y-2
= x2a1

y
b2

= a x

y
b2

.

For x = 6 and y = 3, a x

y
b2

= a6

3
b2

= 4.

If we evaluate the original expression directly, we obtain

  
x3y-3xy4>3

x-4y1>31x223
=

163213-32162134>32
16-42131>321362432

  =
1216211>27216214.332
11>1296211.442146,6562 = 4.00,

which checks.

REFLECT This example demonstrates the usefulness of the rules for 

manipulating exponents. Often an intimidating-looking algebraic ex-

pression turns out to be quite simple once you have rearranged it.

 

EXAMPLE 0.1 Simplifying an exponential expression

If x4
= 81, what is x?

SOLUTION

SET UP AND SOLVE We raise each side of the equation to the 14 power: 

1x421>4
= 18121>4. Then 1x421>4

= x1
= x, so x = 18121>4 and 

x = +3 or x = -3. Either of these values of x gives x4
= 81.

REFLECT Notice that we raised both sides of the equation to the 1
4 

power. As explained later in this chapter, an operation performed on 

both sides of an equation does not affect the equation’s validity.

 

EXAMPLE 0.2 Solving an exponential expression for the base number

0.2 SCIENTIFIC NOTATION AND POWERS OF 10

In physics, we frequently encounter very large and very small numbers, and it is impor-

tant to use the proper number of significant figures when expressing a physical quantity. 

Both of these issues are addressed by using scientific notation, in which a quantity is 

expressed as a decimal number with one digit to the left of the decimal point, multi-

plied by the appropriate power of 10. If the power of 10 is positive, it is the number of 

places the decimal point is moved to the right to obtain the fully written-out number—for 
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example, 6.3 * 104
= 63,000. If the power of 10 is negative, it is the number of places 

the decimal point is moved to the left to obtain the fully written-out number—for example, 

6.56 * 10-3
=  0.00656. In going from 6.56 to 0.00656, we move the decimal point three 

places to the left, so 10-3 is the correct power of 10 to use when the number is written in 

scientific notation. Most calculators have keys for expressing a number in either decimal 

(floating-point) or scientific notation.

When two numbers written in scientific notation are multiplied (or divided), multiply 

(or divide) the decimal parts to get the decimal part of the result, and multiply (or divide) 

the powers of 10 to get the power-of-10 portion of the result. You may have to adjust the 

location of the decimal point in the answer to express it in scientific notation. For example,

 18.43 * 108212.21 * 10-52 = 18.43 * 2.2121108
* 10-52

 = 118.62 * 1108-52 = 18.6 * 103

 = 1.86 * 104.

Similarly,

5.6 * 10-3

2.8 * 10-6
= a 5.6

2.8
b * a 10-3

10-6
b = 2.0 * 10-3-1-62

= 2.0 * 103.

Your calculator can handle these operations for you automatically, but it is important 

for you to develop good “number sense” for scientific notation manipulations.

When you are adding, subtracting, multiplying, or dividing numbers, keeping the 

proper number of significant figures is important. See Section 1.5 to review how to keep 

the proper number of significant figures in these cases.

0.3 ALGEBRA

Solving equations

Throughout your study of physics, you will encounter equations written with symbols that 

represent quantities. An equation consists of an equal sign and quantities to its left and to 

its right. Every equation tells us that the combination of quantities on the left of the equal 

sign has the same value as (that is, equals) the combination on the right of the equal sign. For 

example, the equation y + 4 = x2
+ 8 tells us that y + 4 has the same value as x2

+ 8. 

If x = 3, then the equation y + 4 = x2
+ 8 says that y = 13.

Often, one of the symbols in an equation is considered to be the unknown, and we wish 

to solve for the unknown in terms of the other quantities. For example, we might wish to 

solve the equation 2x2
+ 4 = 22 for the value of x. Or we might wish to solve the equa-

tion x = v0t +
1
2 at2 for the unknown a in terms of x, t, and v0. Use the following rule to 

solve an equation: An equation remains true if any valid operation performed on one 

side of the equation is also performed on the other side. The operation could be adding 

or subtracting a number or symbol, multiplying or dividing by a number or symbol, or 

raising each side of the equation to the same power.

Here we will solve the simple equation 2x2
+ 4 = 22 for x.

SOLUTION

SET UP AND SOLVE First we subtract 4 from both sides. This gives 

2x2
= 18. Then we divide both sides by 2 to get x2

= 9. Finally, 

we raise both sides of the equation to the 1
2 power. (In other words, 

we take the square root of both sides of the equation.) This gives 

x = {19 = {3; that is, x = +  3 or  x = -  3. We can verify our 

answers by substituting our result back into the original equation: 

2x2
+ 4 = 21{322

+ 4 = 2192 + 4 = 18 + 4 = 22, so x = {3 

does satisfy the equation.

REFLECT Notice that a square root always has two possible val-

ues, one positive and one negative. For instance, 14 = {2 because 

122122 = 4 and 1-221-22 = 4. A calculator will give you only a 

positive root; it’s up to you to remember that there are actually two. 

Both roots are correct mathematically, but in a physics problem only 

one may represent the answer. For instance, if you can get dressed in 14 minutes, the only physically meaningful root is 2 minutes!

 

EXAMPLE 0.3 Solving a numerical equation
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The quadratic formula

Any equation of the form ax2
+ bx + c = 0 where a ∙ 0 is called a quadratic equation. 

Each quadratic equation has two solutions. For certain types of quadratic equations, we can 

use the rules of algebra we have already discussed to find the two solutions. If b ∙ 0 in a 

quadratic equation (meaning that the equation has no linear term), we can easily solve the 

equation ax2
+ c = 0 for x:

x = {A
-c

a
 .

For example, if a = 2 and c = -8, the equation is 2x2
- 8 = 0 and the solution is

x = {B
- 1-82

2
= {24 = {2.

The equation ax2
+ bx = 0 is also easily solved by factoring out an x on the left side 

of the equation, which gives x1ax + b2 = 0. (To factor out a quantity means to isolate  

it so that the rest of the expression is either multiplied or divided by that quantity.) The  

equation x1ax + b2 = 0 is true (that is, the left side equals zero) if either x = 0 or  

x = -
b

a
. These are the two solutions of the equation. For example, if a = 2 and b = 8, 

the equation is 2x2
+ 8x = 0 and the solutions are x = 0 and x = -

8

2
= -4.

But if the equation is in the form ax2
+ bx + c = 0, with a, b, and c all nonzero, we 

cannot use our simple methods to solve for x. In this case, the easiest way to find the two 

solutions is to use the quadratic formula:

QUADRATIC FORMULA

For a quadratic equation in the form ax2
+ bx + c = 0, where a, b, and c are real 

numbers and a ∙ 0, the solutions are given by the quadratic formula:

x =

-b { 2b2
- 4ac

2a
 .

Notes:

• In general, a quadratic equation has two roots (solutions), which may be real or 

 complex numbers.

• If b2
= 4ac, then the two roots are equal and real numbers.

• If b2
7 4ac, that is, b2

- 4ac is positive, then the two roots are unequal and real 

numbers.

• If b2
6 4ac, that is, b2

- 4ac is negative, then the roots are unequal complex  numbers 

and cannot represent physical quantities. In that case, the quadratic equation has 

 mathematical solutions but no physical solutions.

Now let’s solve for a parameter in a symbolic equation. Solve the equation x = v0t +
1
2 at2 for a.

SOLUTION

SET UP AND SOLVE We subtract v0t from both sides. This gives 

x - v0t =
1
2 at2. Now we multiply both sides by 2 and divide both sides 

by t2, giving

a =

21x-v0t2
t2

 .

REFLECT As we’ve indicated, it makes no difference whether the quan-

tities in an equation are represented by variables (such as x, v, and t) or 

by numerical values.

 

EXAMPLE 0.4 Solving a symbolic equation
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Simultaneous equations

If a problem has two unknowns—for example, x and y—then we need two independent 

equations in x and y (that is, two equations for x and y, where one equation is not simply 

a multiple of the other) to determine their values uniquely. Such equations are called  

simultaneous equations because we solve them together. A typical procedure is to 

solve one equation for x in terms of y and then substitute the result into the second equa-

tion to obtain an equation in which y is the only unknown. We then solve this equation 

for y and use the value of y in either of the original equations in order to solve for x. A 

pair of equations in which all quantities are symbols can be combined to eliminate one 

of the common unknowns. In general, to solve for n unknowns, we must have n indepen-

dent equations. Simultaneous equations can also be solved graphically by plotting both 

equations using the same scale on the same graph paper. The solutions are the coordi-

nates of the points of intersection of the graphs.

Throughout this text, we will make extensive use of the quadratic formula in analyzing 

the motion of freely falling objects.

Let’s apply the quadratic formula to a specific case. Find the values of x that satisfy the equation 

2x2
- 2x = 24.

SOLUTION

SET UP AND SOLVE First we write the equation in the standard form 

ax2
+ bx + c = 0: 2x2

- 2x - 24 = 0. Then a = 2, b = -2, and 

c = -24. Next, the quadratic formula gives the two roots as

  x =

- 1-22 { 21-222
- 41221-242

122122
 =

+2 { 24 + 192

4
=

2 { 14

4
 ,

so x = 4 or x = -3. If x represents a physical quantity that takes only 

nonnegative values, then the negative root x = -3 is nonphysical and 

is discarded.

REFLECT As we’ve mentioned, when an equation has more than one 

mathematical solution or root, it’s up to you to decide whether one or 

the other or both represent the true physical answer. (If neither solution 

seems physically plausible, you should review your work.)

 

EXAMPLE 0.5 Solving a quadratic equation

Solve this pair of equations for x and y:

  x + 4y = 14

  3x - 5y = -9.

SOLUTION

SET UP AND SOLVE The first equation, once rearranged, gives 

x = 14 - 4y. Substituting this expression for x in the second equation 

yields, successively, 3114 - 4y2 - 5y = -9, 42 - 12y - 5y = -9, 

and -17y = -51. Thus, y =

-51

-17
= 3. Then x = 14 - 4y =   

14 - 12 = 2. We can verify that x = 2, y = 3 satisfies both equations.

An alternative approach is to multiply the first equation by -3, 

which gives us -3x - 12y = -42. Adding this to the second equation 

gives, successively, 3x - 5y + 1-3x2 + 1-12y2 = -9 + 1-422,
-17y = -51, and y = 3, which agrees with our earlier result.

REFLECT As shown by the alternative approach, simultaneous equa-

tions can be solved in more than one way. The basic methods we  

describe are easy to keep straight; other methods may be quicker, but 

they may require more insight or forethought. Use the method you’re 

comfortable with.

 

EXAMPLE 0.6 Solving two equations in two unknowns
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0.4 ALGEBRAIC RELATIONSHIPS AND PROPORTIONAL 

REASONING

The essence of physics is to describe and verify the relationships among physical quanti-

ties. The relationships are often simple. For example, two quantities may be directly pro-

portional to each other, they may be inversely proportional to each other, or one quantity 

may be inversely proportional to the square of the other quantity.

Direct relationship

Two quantities are said to be directly proportional to each other if an increase (or  

decrease) of the first quantity causes an increase (or decrease) of the second quantity by 

the same factor. If y is directly proportional to x, the direct proportionality is written as 

y ∝ x.The ratio y>x is a constant, say, k; that is, 
y1

x1
=

y2

x2
= k. For example, the ratio 

of the circumference C to the diameter d of a circle is always p (pi), which we often 

approximate with the value 3.14. Therefore, the circumference of a circle is directly pro-

portional to its diameter as C = pd, where p is the constant of proportionality. Another 

simple example of direct proportionality is the stretching or compression of an ordinary 

helical spring (discussed in Section 5.4). The spring has a certain length at rest, and 

that length increases, when a force F pulls on it, as shown in Figure 0.1. If the amount 

of stretch is not too great, the amount of force F, measured in newtons, on the spring  

and the amount of stretch ∆L are directly proportional to each other. (The newton, 

abbreviated N, is the SI unit for force. The ∆ symbol means “change in,” so in this 

case ∆L represents the change in length.) Thus, F = k∆L, where k is the constant of 

proportionality.

In general, in a direct proportion, 
a

b
=

c

d
. Multiplying both sides by bd, we find

bd #
a

b
= bd #

c

d
 or a # d = b # c.

Graph of direct proportionality relationship

When y is directly proportional to x, y = kx, and the graph of y versus x is a straight line 

passing through the origin, as shown in Figure 0.2. In the graph, the change of the quantity 

x is labeled as ∆x (which is often called “run”), and the corresponding change in y is la-

beled as ∆y (which is often called “rise”). We have

∆x = x2 - x1

∆y = y2 - y1,

We can also use the substitution technique to solve symbolic equations that have no numbers in them. Use 

the equations v = v0 + at and x = v0t +
1
2 at2 to obtain an equation for x that does not contain a.

SOLUTION

SET UP AND SOLVE We solve the first equation for a:

a =

v - v0

t
 .

We substitute this expression into the second equation:

  x = v0t +
1

2
 av - v0

t
b t2

= v0t +
1

2
 vt -

1

2
 v0t

 =
1

2
 v0t +

1

2
 vt = av0 + v

2
b t.

REFLECT When you solve a physics problem, it’s often best to work 

with symbols for all but the final step of the problem. Once you’ve 

 arrived at the final equation, you can plug in numerical values and solve 

for an answer.

 

EXAMPLE 0.7 Solving two symbolic equations in two unknowns

∆L =  0.10 m

u

F =  2.0 N

Figure 0.1

x

∆y

(x2, y2)

(x1, y1)

∆x

y

Figure 0.2
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where (x1, y1) and (x2, y2) are coordinates of the two points on the line. The constant of 

proportionality between ∆y and ∆x is also k. Thus,

∆y = k∆x.

The steepness of the line is measured by the ratio ∆y>∆x and is called the slope of the 

line. Thus,

Slope =

∆y

∆x
= k.

The slope of a line can be positive, negative, zero, or undefined, as shown in  

Figure 0.3.

Note: Slope positive means y increases as x increases; slope negative means y 

 decreases as x increases; slope zero means y does not change—that is, the line is paral-

lel to the x axis; slope undefined means x does not change—that is, the line is parallel 

to the y axis.

Slope

positive

x

y

(a)

Slope

negative

x

y

(b)

Slope

zero

x

y

(c)

Slope

undefined

x

y

(d)

Figure 0.3

If y is directly proportional to x, and x = 2 when y = 8, what is y when x = 10?

SOLUTION

SET UP AND SOLVE Since y is directly proportional to x, we have 

y1

x1

=

y2

x2

= k.

Substituting the values, we get 
y

10
=

8

2
.

Multiplying both sides by 2 and 10 to get rid of the fractions gives 

2y = 10 # 8 = 80.

Then we divide by 2 to isolate y: y =

80

2
= 40.

REFLECT This simple problem gives you the strategy for how to solve 

problems in direct proportion. Note that x has increased by a factor of 5, 

so y must also increase by the same factor.

 

EXAMPLE 0.8 Solving for a quantity in direct proportion

Here we will use the concept of direct proportionality to analyze a spring system. Consider a spring that is 

suspended vertically from a fixed support. When a weight of 2.0 newtons is attached to the bottom of the 

spring, the spring stretches by 0.10 m. Determine the spring constant of the spring.

SOLUTION

SET UP AND SOLVE We have the force, F = 2.0 N, and the stretch, 

∆L = 0.10 m. The sketch of the problem is shown in Figure 0.1. The 

applied weight and the amount of stretch are related by a direct propor-

tion expressed as F = k∆L. Using this equation, we can solve for the 

stiffness constant:

k =

F

∆L
=

2.0 N

0.10 m
= 20 N>m.

REFLECT The spring constant in this equation is the constant of propor-

tionality. Its unit is the ratio of the units of F and ∆L.

 

EXAMPLE 0.9 Solving for the stiffness constant of a spring

Inverse proportion

When one quantity increases and a second quantity decreases in such a way that their 

product stays the same, they are said to be in inverse proportion. In inverse proportion, 

when one quantity approaches zero, the other quantity becomes extremely large, so that 

the product remains the same. For example, the product of the pressure and volume of 

an ideal gas remains constant if the temperature of the gas is maintained constant (as you 

will find in Section 15.2). Mathematically, if y is in inverse proportion to x, then y ∝ 1>x. 

This gives y = k>x, or xy = k, where k is the constant of proportionality. That is, when x 

changes from x1 to x2, y changes from y1 to y2 so that x1y1 = x2y2 = k. This type of be-

havior is illustrated in Figure 0.4 (for an arbitrary choice of k = 100).

x

y

25

20

15

10

5

0
0 5 10 15 20 25

Figure 0.4
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Inverse-square proportion

Inverse-square dependence is common in the laws of nature. For example, the force of grav-

ity due to a particle decreases as the inverse square of the distance from the particle (as ex-

pressed by Newton’s law of gravitation in Section 6.3). Similarly, the electrostatic force due 

to a point electric charge decreases as the square of the distance from the charge (as ex-

pressed by Coulomb’s law in Section 17.4). The intensity of sound and of light also decreases 

as the inverse square of the distance from a point source (as you will find in Section 12.10). 

(Intensity in these cases is a measure of the power of the sound or light per unit area.)

Mathematically, if y varies inversely with the square of x, then

y ∝
1

x2
 or y =

k

x2
 or x2y = k,

where k is the constant of proportionality. That is, when x changes from x1 to x2, y changes 

from y1 to y2 so that x 1
2 y1 = x 2

2 y2 = k. Or

y1

y2
=

x 2
2 

x 2
1 

 .

This relationship is illustrated in Figure 0.5 (for an arbitrary choice of k = 100).

As we will learn (in Chapter 15), if the temperature of an ideal gas is kept constant, its pressure P is  

inversely proportional to its volume V. A cylindrical flask is fitted with an airtight piston and contains an 

ideal gas. Initially, the pressure of the inside gas is 11 * 104 pascals (Pa), and the volume of the gas is 

8.0 * 10-3 m3. Assuming that the system is always at the temperature of 330 kelvins (K), determine the 

volume of the gas when its pressure increases to 24 * 104 Pa.

SOLUTION

SET UP AND SOLVE Since the pressure P is inversely proportional to 

the volume V, the product PV remains constant; that is,

P1V1 = P2V2.

We divide by P2 to solve for V2 : V2 =

P1V1

P2

 .

In this problem, P1 = 11 * 104 Pa, V1 = 8.0 * 10-3 m3, and P2 =  

24 * 104 Pa. Substituting the values of P1,V1, and P2, we solve for V2:

 V2 =

111 * 104 Pa2 * 18.0 * 10-3 m32
24 * 104 Pa

=

11 * 8.0

24
* 10-3 m3

 = 3.7 * 10-3 m3.

REFLECT Since the pressure increased, the final volume has decreased, 

as we expect in an inverse proportion. Note that the pascal (Pa) and 

kelvin (K) are the SI units for pressure and temperature, respectively.

 

EXAMPLE 0.10 Solving for a quantity (volume of an ideal gas) in inverse proportion

x

y

25

20

15

10

5

0
0 5 10 15 20 25

Figure 0.5

As we will discover (in Chapter 12), if a source of sound emits uniformly in all directions, then the inten-

sity I of the emitted sound at a distance r from the source is given by the equation I = k>r2, where k is a 

constant of proportionality. If the sound intensity is 0.05 watt>meter2 1W>m22 at a distance of 0.5 m from 

the source, find the sound intensity at a distance of 20 m from the source.

SOLUTION

SET UP AND SOLVE The intensity of sound is given by the equation 

I = k>r2. We apply this equation to solve the problem. However, we do 

not need to know the value of the constant k. In this problem, we have 

the initial distance, r1 = 0.5 m, sound intensity, I1 = 0.05 W>m2, and 

final distance, r2 = 20 m; the intensity I2 is to be determined.

From the inverse-square relationship, we have (where the variables 

x and y have been replaced by r and I in the equation)

I1

I2

=

r  2
2  

r 2
1 

 .

We take the reciprocal of both sides and multiply by I1 to solve for I2:

  I2 = I1

r  2
1  

r  2
2  

= 10.05 W>m22  
10.5 m22

120 m22

  = 3.1 * 10-5 W>m2.

REFLECT As the distance increases, the intensity decreases. Note that 

because the intensity decreases as the square of the distance, the  result 

for intensity is less than it would have been in the case of a simple  

inverse proportion.

 

EXAMPLE 0.11 Solving for a quantity (sound intensity) that varies as the inverse square
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0.5 DATA-DRIVEN PROBLEMS

Physics is an experimental science. In much of the current research in physics, sophisti-

cated instruments are used to take precise measurements. But we can also learn a lot about 

the way the world works by conducting simple experiments. These experiments provide 

data that can be analyzed to determine how two variables relate to each other as well as to 

calculate some unknown physical quantity. Whether we measure the period of a pendulum 

with a stopwatch or the speed of a spinning disk as it slows to a stop with a tachometer, we 

can use the data we gather to verify the expressions relating two physical quantities that 

we will encounter throughout the text.

So, what can we do with our data once we have gathered them? First, we can organize 

data into a table. Often, this allows us to notice any obvious patterns, such as whether the 

values in one column increase by a constant amount when we increase the values in the 

other column in a systematic way. Second, we can plot our data, putting the values from 

one column in our table on the x axis and values from the other on the y axis. Using a 

graph is often the best way to identify the particular relationship between the two quanti-

ties we have measured. In the preceding sections, we have seen what the graphs look like 

for the most common mathematical relationships, such as when two variables are linearly 

related or inversely related. A graph will often show us how two variables are related to 

each other. We can then compare this relationship to the predicted relationship as given by 

an equation that we have derived in the text.

Often we can create a linear plot with our data from which we can determine some 

unknown value. For example, we will learn (in Chapter 14) that if we heat an object, its 

length increases. The specific increase in length, ∆L, is directly proportional to the in-

crease in temperature ∆T. As a simple experiment, we can measure the length of the ob-

ject at different temperatures. Table 0.1 shows the calculated temperature changes and the 

corresponding changes in the length of the object that we determine from our measure-

ments. The data from the table are plotted in the ∆L-versus-∆T  graph in Figure 0.6. As 

we can see, because our two variables are directly proportional, the data in the plot lie 

along a straight line. The slope of this line has a physical meaning and is related to the 

coefficient of thermal expansion of the material.

If our variables are related in some other way, however, then we need to create 

a new plot so that our data still lie along a straight line. For example, we will learn (in 

Chapter 12) that the frequency f of a wave traveling through a medium is inversely pro-

portional to the wavelength of the wave (which is denoted by the Greek letter lambda l).  

The frequency and wavelength measurements listed in Table 0.2 are plotted in Figure 0.7a,  

where we have put the frequencies on the x axis and the wavelengths on the y axis. 

Notice that the shape of the plot is the same as the shape in Figure 0.4, where x and y 

are inversely proportional. To make a linear plot, we need to change our plot so that the 

inverse of the frequency (or 1>f ) is on the x axis. As we can see in Figure 0.7b, when  

we make a plot of l versus 1>f , the data lie along a straight line. This process is known as 

linearizing the data. Again, the slope of the line in Figure 0.7b has a physical meaning; in 

this case, it represents the speed of the wave.

Once we have linearized the data, we can find the best-fit line and use it to determine 

the slope and y-intercept. The slope of the best-fit line for the data can often be used to 

∆L (m)

∆T (°C)

1.5 *  10-3

1.2 *  10-3

9 *  10-4

6 *  10-4

3 *  10-4

0
10

Best-fit line

0 20 30 40 50

Figure 0.6

TABLE 0.1 Data from temperature  

and length measurements

∆T (°C) ∆L (m)

10.0 2.57 * 10-4

20.0 5.09 * 10-4

30.0 7.68 * 10-4

40.0 1.03 * 10-3

50.0 1.28 * 10-3

TABLE 0.2 Data from frequency  

and wavelength measurements

Frequency (Hz) Wavelength (m)

200 0.0750

300 0.0500

400 0.0375

500 0.0300

600 0.0250

(a)

(b)

0.0750

0.0500

0.0250

0
0.0010 0.002 0.003 0.004 0.005

l (m)

1
f

f and l are

inversely related.

1
f
and l are

linearly related.

0.0750

0.0500

0.0250

0
1000 200 300 400 500 600

l (m)

f (Hz)

(s)

Figure 0.7
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calculate other physical parameters, many of which might be difficult or even impossible 

to measure directly. In our first example, if we know the length of the solid object at our 

initial temperature, then we can use the slope of the best-fit line to calculate the coefficient 

of linear expansion for the object. Similarly, the slope of the linearized data in our second 

example tells us the speed of the wave as it travels through the medium. Fortunately, this 

process of using plots created from relatively simple measurements is powerful and can be 

used across the entire breadth of introductory physics. Let’s look at two simple examples 

of an object in motion to see how this process works.

Suppose you step out your front door to go for a jog. You 

are wearing a stopwatch and an appropriately calibrated 

pedometer, so you can keep track of both how long and 

how far you run. You walk for the first minute and record 

the readings of the pedometer every 15 seconds. At the 

1-minute mark, you start jogging and then record the pe-

dometer readings every 15 seconds for the next minute 

as well. Table 0.3 lists both the time and distance mea-

surements for the 2 minutes during which you collected 

data. What was your average speed during each minute?

TABLE 0.3 Data for Example 0.12

Elapsed time (s)

Distance from  

starting point (m)

15.0 22.5

30.0 45.0

45.0 67.5

60.0 90.0

75.0

90.0

105.0

120.0

127.5

165.0

202.5

240.0

and t = 60 s. Because all of the data points lie along the best-fit line, 

we could use any two points during the first minute to compute the 

slope. If we use the data at t = 0 s and t = 60 s, we calculate the slope 

during the first minute as

m1 =

∆y

∆x
=

90 m - 0 m

60 s - 0 s
= 1.5 m>s.

Repeating the process for the second minute with the data at t = 60 s 

and t = 120 s, we see that the slope during the second minute is

m2 =

240 m - 90 m

120 s - 60 s
= 2.5 m>s.

Therefore, your speed was 1.5 m>s during the first minute and 2.5 m>s 

during the second minute.

REFLECT Looking at the plot of the data, we see that the slope of the 

line segment over the second minute is clearly steeper than the slope of 

the line segment over the first minute. This is the graphical way of rep-

resenting the fact that you traveled with a greater speed when you were 

jogging than when you were walking.

Because it is such a common source of error for students, it is 

worth pointing out that we always need to use two points that lie along 

a line to calculate its slope. Simply dividing the y value of a single data 

point by the x value may seem to get you the correct answer for the 

first minute, but that is only because you hadn’t traveled any distance 

yet when you started your watch at t = 0 s. Notice that just dividing 

a distance by a time will not give you the correct answer during the 

second minute. 

EXAMPLE 0.12 Going for a run

SOLUTION

SET UP For an object moving at a constant speed, the distance the 

 object travels is related to its speed by d = vt, where d is the dis-

tance from the starting point, t is the time elapsed, and v is the object’s 

speed. We can compare the equation d = vt to the equation of a line, 

y = mx + b. Then we recognize that if we put t on the x axis and d 

on the y axis of the graph, the slope of the best-fit line must be equal 

to your speed. Figure 0.8 shows the graph of our data, with time on the  

x axis and the distance traveled from the starting point on the y axis. As 

we can see from the graph, the data don’t follow a single line over the 

entire 2-minute span, but rather are broken up into two line segments, 

one over the first minute and the other over the second.

SOLVE To calculate the speed you traveled during the first minute, we 

need to start by calculating the slope of the line segment between t = 0 s  

250

200

150

100

50

0
300 60 9015 45 75 105 120

d (m)

t (s)

Figure 0.8
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0.6 LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Exponential functions and logarithms are used for many natural phenomena (such as 

 radioactive decay) where the rate of increase or decrease of a quantity is proportional to 

the current value of that quantity. We also work with exponential growth and decay in the 

study of electric circuits.

We will encounter two types of logarithms: the common logarithm and the natural 

logarithm. The base-10 logarithm, or common logarithm (log), of a number y is the 

power to which 10 must be raised to obtain y: y = 10log y. For example, 1000 = 103, so 

log110002 = 3; we must raise 10 to the power 3 to obtain 1000. Most calculators have a 

key for calculating the log of a number.

Sometimes we are given the log of a number and asked to find the number. That 

is, if log y = x and x is given, what is y? To solve for y, we write an equation in which 

10 is raised to the power equal to either side of the original equation: 10log y
= 10x. 

You release a marble from the top of a long, straight track as shown in Figure 0.9. You have set up a digital 

camera that will take a picture every 0.50 second starting at the instant you release the marble. You can then 

use the pictures to measure how far down the track the marble has rolled in half-second increments. Your 

measurements for the time of each picture and the distances the marble had rolled are given in Table 0.4. 

What is the acceleration of the marble as it rolls down the track?

SOLUTION

SET UP As we will discuss when we begin using Newton’s laws of 

 motion, the acceleration of the marble must be constant as it rolls down 

the track because the track is straight rather than curved. For an ob-

ject that experiences a constant acceleration and starts from rest, the 

 distance d it travels as a function of time t is given by d =
1
2 at2, where a 

is the object’s acceleration. Figure 0.10a shows a plot of distance versus 

time for the data in Table 0.4. As we can see, the graph is nonlinear. 

To linearize the data, we need to create a plot of distance versus time 

squared, as shown in Figure 0.10b. Then we can compare d =
1
2 at2 to 

y = mx + b. We see that if we put t2 on the x axis and d on the y axis, 

then the slope of the best-fit line is equal to 12a.

SOLVE The slope of the best-fit line shown in Figure 0.10b is  

m = 0.149 m>s2. (Because the data do not lie exactly on the best-fit 

line, it is often convenient to use a plotting program to calculate the 

slope of the best-fit line.) Using m =
1
2 a, we calculate the acceleration 

of the marble to be a = 2m = 0.298 m>s2.

REFLECT Being able to compare a physics equation to y = mx + b is 

a useful skill when dealing with data. The comparison helps us deter-

mine which graph we need to make to linearize the data in addition to 

which expression from the physics equation is equal to the value of the 

slope or y-intercept. 

EXAMPLE 0.13 Rolling a marble down a track

Figure 0.9

TABLE 0.4 Data for Example 0.13

Time (s) Distance from release point (m)

0.50 0.0409

1.00 0.154

1.50 0.334

2.00 0.597

2.50 0.935

(a)

d and t are

quadratically

related.

Best-fit line

y =  0.149t2 +  0.003

1.000

0.750

0.500

0.250

0
1.00 2.00.5 1.5 2.5

d (m)

t (s)

(b)

1.000

0.750

0.500

0.250

0
2.00 4.01.0 3.0 5.0 6.0

d (m)

t2 (s2)

Figure 0.10
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But 10log y
= y, so y = 10x. In this case, y is called the antilog of x. For example, if 

log y = -2.0, then y = 10-2.0
= 1.0 * 10-2

= 0.010.

The log of a number is positive if the number is greater than 1. The log of a number is 

negative if the number is less than 1 but greater than zero. The log of zero or of a negative 

number is not defined, and log 1 = 0.

Another base that occurs frequently in physics is the quantity e = 2.718. c The 

natural logarithm (ln) of a number y is the power to which e must be raised to obtain  

y: y = eln y. If x = ln y, then y = ex, which is called an exponential function, also  written 

as exp (x). Most calculators have keys for ln x and for ex. For example, ln 10.0 = 2.30, 

and if ln x = 3.00, then x =  e3.00
= 20.1. Note that ln 1 = 0. A plot of the function 

y = ex is shown in Figure 0.11. If we were to plot y = e-x, it would be a curve that is a 

reflection of Figure 0.11 about the y axis.

Logarithms with any choice of base, including base 10 or base e, obey several simple 

and useful rules:

1. log1ab2 = log a + log b. 2. log a a

b
b = log a - log b. 3. log1an2 = n log a.

A particular example of the second rule is (because log 1 = 0)

loga 1

a
b = log 1 - log a = - log a.

x

exp (x)

55

45

35

25

15

5

-5
0

1-1-2 2 3 4

Figure 0.11

Now let’s apply the logarithmic rules to the equation 12 = e-aT and solve for T in terms of a.

SOLUTION

SET UP AND SOLVE We take the natural logarithm of both sides of the 

equation: ln11
2 2 = - ln 2 and ln1e-aT2 = -aT. The equation thus be-

comes -aT = - ln 2, and it follows that T =

ln 2

a
 .

REFLECT The equation y = eax expresses y in terms of the exponen-

tial function eax. The general rules for exponents in Section 0.1 apply 

when the base is e, so exey
= ex + y, exe-x

= ex + 1-x2
= e0

= 1, and 

1ex22
= e2x.

 

EXAMPLE 0.14 Solving a logarithmic equation

Area

A =  ab

Area A =  pr2

Radius

Circumference

C =  2pr =  pd

Diameter

d =  2r

Surface area

A =  4pr2

Volume

V =  abc

Volume

V =  pr2h

Volume

V =    pr3  

Radius

h

r

b

r

Radius

r

a

b c

a

4

3

Figure 0.12

0.7 AREAS AND VOLUMES

Figure 0.12 illustrates formulas for the areas and volumes of common geometric shapes:

• A rectangle with length a and width b has area A = ab.

• A rectangular solid (a box) with length a, width b, and height c has volume V = abc.

• A circle with radius r has diameter d = 2r, circumference C = 2pr = pd, and area 

A = pr2
= pd2>4.

• A sphere with radius r has surface area A = 4pr2 and volume V =
4
3pr3.

• A cylinder with radius r and height h has volume V = pr2h.

0.8 PLANE GEOMETRY AND TRIGONOMETRY

We present some useful results about angles:

1. Interior angles that are formed when two straight lines intersect are equal. For example, 

in Figure 0.13, the two angles u and f are equal.

2. When two parallel lines are intersected by a diagonal straight line, the alternate interior 

angles are equal. For example, in Figure 0.14, the two angles u and f are equal.

3. When the sides of one angle are each perpendicular to the corresponding sides of a 

second angle, the two angles are equal. For example, in Figure 0.15, the two angles u 

and f are equal.

4. The sum of the angles on one side of a straight line is 180°. In Figure 0.16, u + f = 180°.

5. The sum of the angles in any triangle is 180°.
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Similar triangles

Triangles are similar if they have the same shape but different sizes or orientations. 

Similar triangles have equal corresponding angles and equal ratios of corresponding sides. 

If the two triangles in Figure 0.17 are similar, then u1 = u2, f1 = f2, g1 = g2, and 

a1

a2
=

b1

b2

=

c1

c2
 .

If two similar triangles are the same size, they are said to be congruent. If triangles 

are congruent, one can be flipped and rotated so that it can be placed precisely on top of 

the other.

Right triangles and trig functions

In a right triangle, one angle is 90°. Therefore, the other two acute angles (“acute” 

means less than 90°) have a sum of 90°. In Figure 0.18, u + f = 90°. The side op-

posite the right angle is called the hypotenuse (side c in the figure). In a right triangle, 

the square of the length of the hypotenuse equals the sum of the squares of the lengths 

of the other two sides. For the triangle in Figure 0.18, c2
= a2

+ b2. This formula is 

called the Pythagorean theorem.

If two right triangles have the same value for one acute angle, then the two triangles are 

similar and have the same ratio of corresponding sides. This statement allows us to define 

the functions sine, cosine, and tangent, which are ratios of a pair of sides. These functions, 

called trigonometric functions or trig functions, depend on only one of the angles in the 

right triangle. For an angle u, these functions are written sin u, cos u, and tan u.

In terms of the triangle in Figure 0.18, the sine, cosine, and tangent of the angle u are:

sin u =

opposite side

hypotenuse
=

a

c
 ,

cos u =

adjacent side

hypotenuse
=

b

c
 , and

tan u =

opposite side

adjacent side
=

a

b
 .

Note that tan u =

sin u

cos u
 . For angle f, sin f =

b

c
 , cos f =

a

c
 , and tan f =

b

a
 .

In physics, angles are expressed in either degrees or radians, where p radians = 180°. 

(For more on radians, see Section 9.1.) Most calculators have a key for switching between 

degrees and radians. Always be sure that your calculator is set to the appropriate angular 

measure.

Inverse trig functions—denoted, for example, by sin-1x (or arcsin x)—have a value 

equal to the angle that has the value x for the trig function. For example, sin 30° = 0.500, 

so sin-110.5002 = arcsin 10.5002 = 30°. Note that sin-1x does not mean 
1

sin x
 . 

Also, note that when you determine an angle using inverse trigonometric functions, the 

Interior angles formed when two

straight lines intersect are equal:

u =  f

u f

Figure 0.13

When two parallel lines are intersected

by a diagonal straight line, the alternate

interior angles are equal:

             u =  f

u

f

Figure 0.14

90°

90°

When the sides of one angle are each

perpendicular to the corresponding sides of

a second angle, the two angles are equal:

u =  f

u

f

Figure 0.15

The sum of the angles on one

side of a straight line is 180°:

u +  f =  180°

u
f

Figure 0.16

b1

b2

a1

a2

c1

c2

f1

u1

u2

g1

g2

f2

Two similar triangles: Same shape but not

necessarily the same size

Figure 0.17

Hypotenuse
c

90°

a

b

u

f

For a right triangle:

u +  f =  90°

c
2 =  a2 +  b2 (Pythagorean theorem)

Figure 0.18
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calculator always gives you the smallest correct angle, which may or may not be the right 

answer. Use the knowledge of which quadrant you are working in to determine the correct 

angle in the situation.

In the next two examples, we apply the trigonometric functions to problems involving 

right triangles. It is important that you feel comfortable with these examples because we 

use similar techniques throughout the text when dealing with vector quantities.

A right triangle has one angle of 30° and one side with length 8.0 cm, as shown in 

Figure 0.19. What is the angle f, and what are the lengths x and y of the other two 

sides of the triangle?

SOLUTION

SET UP AND SOLVE We have f + 30° = 90°, so f = 60°. Then 

tan 30° =
8.0 cm

x
, so x =

8.0 cm

 tan 30o = 13.9 cm. To find y, we use the  

Pythagorean theorem: y2
= 18.0 cm22

+ 113.9 cm22, so y = 16.0 cm.

Or we can say sin 30° = 8.0 cm>y, so y = 8.0 cm>sin 30o =  

16 cm, which agrees with the earlier result.

REFLECT Notice how we used the Pythagorean theorem in combina-

tion with a trig function. You will use these tools constantly in physics, 

so make sure that you can employ them with confidence.

 

EXAMPLE 0.15 Using trigonometry I

8.0 cm

y

x

90°
30°

f

Figure 0.19

A right triangle has two sides with lengths as shown in Figure 0.20. What is the length x of the third side of 

the triangle, and what is the angle u in degrees?

SOLUTION

SET UP AND SOLVE The Pythagorean theorem applied to this right triangle  

gives 13.0 m22
+ x2

= 15.0 m22, so x =  215.0 m22
- 13.0 m22 

=  4.0 m. (Since x is a length, we take the positive root of the equation.) 

We also have

cos u =

3.0 m

5.0 m
= 0.60, so u = cos-110.602 = 53°.

REFLECT In this case, we knew 

the lengths of two sides but none 

of the acute angles, so we used 

the Pythagorean theorem first 

and then an appropriate trig 

function.

 

EXAMPLE 0.16 Using trigonometry II

u

x

3.0 m

5.0 m

90°

Figure 0.20

In a right triangle, all angles are in the range from 0° to 90°, and the sine, cosine, and 

tangent of the angles are all positive. This must be the case, since the trig functions are 

ratios of lengths. But for other applications, such as finding the components of vectors, 

calculating the oscillatory motion of a mass on a spring, or describing wave motion, it is 

useful to define the sine, cosine, and tangent for angles outside that range. Graphs of sin u 

and cos u are given in Figure 0.21. The values of sin u and cos u vary between +1 and -1. 

Each function is periodic, with a period of 360°. Note the range of angles between 0° and 

360° for which each function is positive and negative. The two functions sin u and cos u are 

shifted 90° relative to each other. When one is zero, the other has its maximum magnitude 

(i.e., its maximum or minimum value).

For any triangle (see Figure 0.22)—in other words, not necessarily a right triangle—

these two relationships apply:

1. 
sin a

a
=

sin b

b
=

sin g

c
 (law of sines).

2. c2
= a2

+ b2
- 2ab cos g (law of cosines).

cosu

90°0°

-1

1

180° 270°360°
u

sinu

90°0°

-1

1

180° 270°360°
u

Figure 0.21



0-15Problems

Some of the relationships among trig functions are called trig identities. The following 

list includes many of the most useful trig identities in introductory physics:

Useful trigonometric identities

sin21u2 + cos21u2 = 1

sin1-u2 = -sin1u2
cos1-u2 = cos1u2
sin 2u = 2 sin u cos u

cos 2u = cos2 u - sin2 u = 2 cos2 u - 1 = 1 - 2 sin2 u

sin1u { f2 = sin u cos f { cos u sin f

cos1u { f2 = cos u cos f | sin u sin f

sin 1180° - u2 = sin u

cos 1180° - u2 = -cos u

sin190° - u2 = cos u

cos190° - u2 = sin u

For small angle u (in radians),

cos u ≈ 1 -
u2

2
≈ 1

sin u ≈ u

a

b

g

b

ac

Figure 0.22

PROBLEMS

0.1 Exponents

Use the exponent rules to simplify the following expressions:

 1. 1-3x4y222  2. 
1234422

1824

 3. a8x3y2

2y5
b2

 4. a - x-4y-4

x2y-2
b5

0.2 Scientific Notation and Powers of 10

Express the following expressions in scientific notation:

 5. 475000  6. 0.00000472

 7. 123 * 10-6  8. 
8.3 * 105

7.8 * 102

0.3 Algebra

Solve the following equations using any method:

 9. 4x + 6 = 9x - 14

 10. E = mc2, solve for c in terms of E and m.

 11. 4x2
+ 6 = 3x2

+ 18

 12. -196 = -9.8t2

 13. x2
- 5x + 6 = 0

 14. 1x - 521x + 32 = 0

 15. 4.9t2
+ 2t - 20 = 0

 16. 5x - 4y = 1, 6y = 10x - 4

 17. 2x + 3 = 5y, 
2

3
y - 1 = -4x

0.4 Algebraic Relationships and Proportional Reasoning

 18. If x is proportional to y and x = 2 when y = 10, what is the value 

of x when y = 8?

 19. The gravitational force F on an object is directly proportional to 

the object’s mass m. If the force on an object with m = 1 kg is 

F = 9.8 N, what is the force on an object with m = 2.8 kg?

 20. According to the ideal-gas law (Section 15.2), the volume of an 

ideal gas is directly proportional to its temperature in kelvins (K) if 

the pressure of the gas is constant. An ideal gas occupies a volume of 

4.0 liters at 100 K. Determine its volume when it is heated to 300 K  

while held at a constant pressure.

 21. For a sound coming from a point source, the amplitude of sound is 

inversely proportional to the distance. If the displacement ampli-

tude of an air molecule in a sound wave is 4.8 * 10-6 m at a point 

1.0 m from the source, what would be the displacement amplitude 

of the same sound when the distance increases to 4.0 m?

 22. If an object is moving at a constant speed v, then the time the object 

takes to traverse a distance d is inversely proportional to its speed v.  

If it takes a car 1 h to travel a distance of 60 mi, how long will it 

take the car to travel the same distance if it slows down to one-third 

of its original speed?

 23. The force of gravity on an object (which we experience as the ob-

ject’s weight) varies inversely as the square of the distance from the 

center of the earth. Determine the force of gravity on an astronaut 

when he is at a height of 6000 km from the surface of the earth if 

he weighs 700 newtons (N) when on the surface of the earth. The 

radius of the earth is 6.38 * 106 m. (If the astronaut is in orbit, he 

will float “weightlessly,” but gravity still acts on him—he and his 

spaceship appear weightless because they are falling freely in their 

orbit around the earth.)

0.5 Data-Driven Problems

 24. The data in Table 0.5 are expected to obey 

the relationship y = kxn, where k is a posi-

tive constant and n is a positive integer. 

Make several plots of the y values from the 

table as a function of xn, where x represents 

the corresponding x values and n is an in-

teger of your choosing. Find the value of n 

that produces a linearized plot. From your 

linearized plot, determine the value of k.

TABLE 0.5

x value y value

0.40 0.125

0.80 0.512

1.2 1.73

1.4 2.75

1.8 5.83
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TABLE 0.6

Weight (lb) Reading (lb)

0.5 0.7

1.0 1.2

1.5 1.7

2.0 2.2

 25. You are trying to determine 

whether a produce scale is prop-

erly calibrated. To do this, you 

put known weights on the scale 

and record the scale’s reading 

for each. Your results are given 

in Table 0.6.  Make a plot with 

the readings on the y axis and 

the weights on the x axis. Are the scale readings accurate? If not, 

 describe in what way they are inaccurate.

0.6 Logarithmic and Exponential Functions

 26. Use the properties of logarithms and write each expression in terms 

of logarithms of x, y, and z.

a. log 1x4y2z82 b. log2x3y7 c. logB
x2y6

z3

 27. Simplify the expression.

a. 4 log x + log y - 3 log 1x + y2
b. log1xy + x22-  log1xz + yz2 + 2 log z

 28. If b = 10 log a I

10-12
b , find b when I = 10-4.

 29. If 40 = 10 log a 5

r2
b , solve for r.

 30. N = N0 e-10.2102t. If N0 = 2.00 * 106, solve for t when N =  

2.50 * 104.

0.7 Areas and Volumes

 31. (a) Compute the circumference and area of a circle of radius 0.12 m.  

(b) Compute the surface area and volume of a sphere of radius 

0.21 m. (c) Compute the total surface area and volume of a rect-

angular solid of length 0.18 m, width 0.15 m, and height 0.8 m.  

(d) Compute the total surface area and volume of a cylinder of ra-

dius 0.18 m and height 0.33 m.

0.8 Plane Geometry and Trigonometry

 32. A right triangle has a hypotenuse of length 20 cm and another side 

of length 16 cm. Determine the third side of the triangle and the 

other two angles of the triangle.

 33. In a stairway, each step is set back 30 cm from the next lower step. 

If the stairway rises at an angle of 36° with the horizontal, what is 

the height of each step?

 34. A ladder is leaning against a building. The ladder has a length of 3 m,  

and the foot of the ladder is 0.5 m from the base of the building. (a) 

What angle does the ladder make with the horizontal? (b) How far 

above ground level is the top of the ladder?

 35. A right triangle has a height of 1 m and a base of 2 m. Find the hy-

potenuse and all of the angles of the triangle.



1

1 Models, Measurements,  
and Vectors

LEARNING OUTCOMES

By the end of this chapter, you will be able to:

1. Define the fundamental units in SI for 

length, mass, and time.

2. Convert from one unit to another within 

the metric system and between metric 

and British units for length and mass.

3. Use SI base units to calculate derived 

units for a physical quantity and de- 

termine whether an expression is dimen-

sionally consistent.

4. Determine the number of significant  

figures in a given number and use the 

rules for adding, subtracting, multiplying, 

and dividing numbers to determine the 

significant figures in a calculated value.

5. Describe a vector in terms of its mag-

nitude and direction or in unit vector 

notation.

6. Determine the magnitude and direction  

of a vector given its components.

7. Determine the components of a vector 

given its magnitude and direction.

8. Multiply a vector by a scalar and deter-

mine changes in both the vector’s magni-

tude and direction.

9. Add or subtract two or more vectors both 

graphically and analytically.

T
he study of physics is an adventure, one that can be challenging and sometimes frus-

trating, but it is ultimately richly rewarding and satisfying. Studying physics will 

appeal to both your sense of beauty and your rational intelligence. Physics explains 

how the aurora borealis lights up the northern skies as well as how a marble rolls down an 

inclined plane. Both of these phenomena—one exotic and almost magical, the other mun-

dane and commonplace—are governed by the laws of physics.

Physics attempts to describe the world around us in terms of rigorous mathematical 

models. The ultimate goal is not only to understand the physical world but also to develop 

the tools necessary to predict its behavior. Our present understanding of the physical world 

has been built on foundations laid by scientific giants such as Galileo, Newton, and Einstein. 

You can share some of the excitement of their historic discoveries when you learn to use 

physics to solve practical problems and to gain insight into everyday phenomena.

In this opening chapter, we go over some important preliminaries that we’ll need 

throughout our study. We start with the philosophical framework in which we operate—

the nature of physical theory and the role of idealized models in representing physical sys-

tems. We then discuss systems of units that are used to describe physical quantities, such 

as length and time, and we examine the precision of a number, often described by means 

of significant figures. We look at examples of problems for which we can’t or don’t want 

to make precise calculations, but for which rough estimates can be interesting and useful. 

Finally, we use vectors to describe and analyze many physical quantities, such as velocity 

and force, that have direction as well as magnitude.

1.1 INTRODUCTION

Physics is an experimental science. Physicists observe the phenomena of nature and try 

to discover patterns and principles that relate these phenomena. These patterns are called 

physical theories or, when they are very broad and well established, physical laws. The  

development of physical theory requires creativity at every stage. The physicist has to learn 

to ask appropriate questions, design experiments to try to answer those questions, and 

draw appropriate conclusions from the results. Figure 1.1 shows two famous experimental 

In the game of pool, a player first strikes 

the cue ball, which then rolls to impact 

the other balls on the table. Although the 

collective motion of the pool balls can be 

quite complex, it is, in fact, governed by the 

laws of physics. It is the task of the player 

to adjust the speed and direction of the cue 

ball in order to obtain the desired result, 

which in this case is to sink a specific ball 

in one of the pockets.
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facilities, one old and one new. The Leaning Tower of Pisa is where Galileo studied the 

physics of free fall. The Chandra X-ray Observatory is in orbit around the earth and is cur-

rently being used to unravel the early history of the universe.

According to legend, Galileo Galilei (1564–1642) dropped light and heavy objects 

from the top of the Leaning Tower of Pisa to find out whether they would fall at the same 

rate or at different rates. Galileo recognized that only an experimental investigation could 

answer this question. From the results of his experiments, he had to make the inductive 

leap to the principle, or theory, that the rate at which an object falls is independent of its 

weight.

The development of physical theory is always a two-way process that starts and ends 

with observations or experiments. The study of physics does not merely involve the col-

lection of facts and development of principles; it also involves the process by which we 

arrive at general principles that describe the behavior of the physical universe. And there 

is always the possibility that new observations will require revision of a theory. We can 

disprove a theory by finding a phenomenon that is inconsistent with it, but we can never 

prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly do 

not fall at the same rate. This doesn’t mean that our statement of Galileo’s theory is wrong, 

however; it is simply incomplete. One complicating feature is air resistance. If we drop 

the feather and the cannonball in vacuum, they do fall at the same rate. Our statement of 

Galileo’s theory is valid for bodies that are heavy enough that air resistance has almost no 

effect on them. A feather or a parachute clearly does not have this property.

Every physical theory has a range of validity and a boundary outside of which it is not 

applicable. The range of Galileo’s work with falling bodies was greatly extended half a 

century later by Newton’s laws of motion and his law of gravitation. Nearly all the princi-

ples in this book are so solidly established by experimental evidence that they have earned 

the title physical law. Yet there are some areas of physics in which present-day research 

is continuing to broaden our understanding of the physical world. We’ll discuss some ex-

amples of these areas later (in the final four chapters of the book).

An essential part of the interplay between theory and experiment is learning how 

to apply physical principles to practical problems. At various points in our study, we’ll  

discuss systematic problem-solving procedures that will help you set up problems and 

solve them efficiently and accurately. Learning to solve problems is absolutely essential; 

you don’t know physics unless you can do physics. This means learning not only the gen-

eral principles but also how to apply them in a variety of specific situations.

APPLICATION Where are the tunes 
coming from? These dancers may not real-

ize it, but they are enjoying the application 

of fundamental principles of physics that 

make their music possible. In later chap-

ters, we will learn about electric charge and 

current and how batteries are used to store 

electric potential energy. We will see how 

this energy can be harnessed to perform the 

mechanical work of producing sound waves 

that we hear as music.

(a) (b)

Figure 1.1 Two research laboratories. (a) The Leaning Tower of Pisa (Italy). According to legend, Galileo 
studied the motion of freely falling objects by dropping them from the tower. He is also said to have gained 
insights into pendulum motion by observing the swinging of the chandelier in the cathedral to the left of the 
tower. (b) The Chandra X-ray Observatory, the first orbital observatory to capture and probe X-ray radiation 
from hot, turbulent regions of the universe.
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1.2 IDEALIZED MODELS

In everyday conversation, we often use the word model to mean either a small-scale rep-

lica, such as a model train or airplane, or a human figure that displays articles of clothing. 

In physics, a model is a simplified version of a physical system that would be too com-

plicated to analyze in full without the simplifications.

Here’s an example: We want to analyze the motion of a baseball thrown through the 

air. How complicated is this problem? The ball is neither perfectly spherical nor perfectly 

rigid; it flexes a little and spins as it moves through the air. Wind and air resistance influ-

ence its motion, the earth rotates beneath it, the ball’s weight varies a little as its distance 

from the center of the earth changes, and so on. If we try to include all these features, the 

analysis gets pretty hopeless. Instead, we invent a simplified version of the problem. We 

ignore the size and shape of the ball and represent it as a particle—that is, as an object that 

has no size and is completely localized at a single point in space. We ignore air resistance, 

treating the ball as though it moves in vacuum; we forget about the earth’s rotation, and 

we make the weight of the ball exactly constant. Now we have a problem that is simple 

enough to deal with: The ball is a particle moving along a simple parabolic path. (We’ll 

analyze this model in detail in Chapter 3.)

The point is that we have to overlook quite a few minor effects in order to concentrate 

on the most important features of the motion. That’s what we mean by making an idealized 

model of the system. Of course, we have to be careful not to overlook too much. If we ignore 

the effect of gravity completely, then when we throw the ball, it will travel in a straight line 

and disappear into space, never to be seen again! We need to use some judgment and creativ-

ity to construct a model that simplifies a system without throwing out its essential features.

When we analyze a system or predict its behavior on the basis of a model, we al-

ways need to remember that the validity of our predictions is limited by the validity of the 

model. If the model represents the real system quite precisely, then we expect predictions 

made from it to agree quite closely with the actual behavior of the system. Going back to 

Pisa with Galileo once more, we see that our statement of his theory of falling objects cor-

responds to an idealized model that does not include the effects of air resistance, the rota-

tion of the earth, or the variation of weight with height. This model works well for a bullet 

and a cannonball, not so well for a feather.

The concept of an idealized model is of the utmost importance in all of physical sci-

ence and technology. In applying physical principles to complex systems, we always make 

extensive use of idealized models, and it is important to be aware of the assumptions we 

are making. Indeed, the principles of physics themselves are stated in terms of idealized 

models; we speak about point masses, rigid bodies, ideal insulators, and so on. Idealized 

models will play a crucial role in our discussion of physical theories and their applications 

to specific problems throughout this book.

1.3 STANDARDS AND UNITS

Any number that is used to describe an observation of a physical phenomenon quantita-

tively is called a physical quantity. Some physical quantities are so fundamental that we 

can define them only by describing a procedure for measuring them. Such a definition is 

called an operational definition. For instance, we might use a ruler to measure a length 

or a stopwatch to measure a time interval. In other cases, we define a physical quantity by 

describing a way to calculate the quantity from other quantities that we can measure. For 

example, we might define the average speed of a moving object as the distance traveled 

(measured with a ruler) divided by the time of travel (measured with a stopwatch).

BIO APPLICATION How can I find 
lunch in the dark? Insect-eating bats 

utilize the laws of physics in their quest for 

prey in a process known as echolocation. To 

locate and capture an insect, these flying 

mammals first emit an extremely rapid se-

ries of 20 to 200 bursts of high-frequency 

sound. Without using a stopwatch or cal-

culator, the bats are able to determine the 

insect’s position by sensing the direction 

of the reflected sound waves and the time 

it takes for these waves to reach their ears. 

Luckily for us, the sounds bats emit are 

above the range of human hearing; they 

can be higher than 100 decibels, or about 

as loud as a typical smoke alarm.

DEFINITION OF UNITS

When we measure a physical quantity, we always compare it with some reference 

standard for that quantity. If a number is used to specify the value of that quantity,  

then it must carry with it a unit that reflects the quantity’s physical manifestation. For 

example, when we say that a rope is 30 meters long, we mean that it is 30 times as 

long as a meterstick, which we define to be 1 meter long. Here meter is the unit  

associated with the physical property of length.



4 CHAPTER 1 Models, Measurements, and Vectors

To make precise measurements, we need definitions of units of measurement that do not 

change and that can be duplicated by observers in various locations. When the metric system 

was established in 1791 by the Paris Academy of Sciences, the meter was defined as one ten-

millionth of the distance from the equator to the north pole (Figure 1.2), and the second was 

defined as the time it takes for a pendulum 1 meter long to swing from one side to the other.

These definitions were cumbersome and hard to duplicate precisely, and in more recent 

years they have been replaced by more refined definitions. Since 1889, the definitions of the 

basic units have been established by an international organization, the General Conference 

on Weights and Measures. The system of units defined by this organization is based on the 

metric system, and since 1960 it has been known officially as the International System, or 

SI (the abbreviation for the French equivalent, Système International).

Time

From 1889 until 1967, the unit of time was defined in terms of the length of the day, di-

rectly related to the time of the earth’s rotation. The present standard, adopted in 1967, is 

much more precise. It is based on an atomic clock that uses the energy difference between 

the two lowest energy states of the cesium atom. Electromagnetic radiation (microwaves) 

of precisely the proper frequency causes transitions from one of these states to the other. 

One second is defined as the time required for 9,192,631,770 cycles of this radiation.

Length

In 1960, an atomic standard for the meter was established, using the orange-red light emitted 

by atoms of krypton in a glow discharge tube. In November 1983, the standard of length was 

changed again, in a more radical way. The new definition of the meter is the distance light travels 

(in vacuum) in 1>299,792,458 second. The adoption of this definition has the effect, in turn, 

of defining the speed of light to be precisely 299,792,458 m>s; we then define the meter to be 

consistent with this number and with the atomic-clock definition of the second. This approach 

provides a much more precise standard of length than the one based on a wavelength of light.

Mass

Until recently the unit of mass, the kilogram (abbreviated kg), was defined to be the 

mass of a metal cylinder kept at the International Bureau of Weights and Measures in 

France (Fig. 1.3). This was a very inconvenient standard to use. Since 2018 the value of 

the  kilogram has been based on a fundamental constant of nature called Planck’s constant 

(symbol h), whose defined value h = 6.62607015 × 10−34 kg · m2/s is related to those of the 

kilogram, meter, and second. Given the values of the meter and the second, the masses of 

objects can be experimentally determined in terms of h. (We’ll explain the meaning of h in 

Chapter 28.) The gram (which is not a fundamental unit) is 0.001 kilogram.

Prefixes

Once the fundamental units have been defined, it is easy to introduce larger and smaller units 

for the same physical quantities. One of the great strengths of the metric system is that these 

other units are related to the fundamental units by multiples of 10 or 1>10. (By comparison, 

the British system bristles with inconvenient factors such as 12, 16, and 36.) Thus, 1 kilo-

meter 11 km2 is 1000 meters, 1 centimeter 11 cm2 is 1>100 meter, and so on. We usually 

express these multiplicative factors in exponential notation, typically called scientific notation 

or powers-of-10 notation—for example, 1000 = 103 and 1>100 = 10-2. With this notation,

1 km = 103 m, 1 cm = 10-2 m.

The names of additional units are derived by adding a prefix to the name of the funda-

mental unit. For example, the prefix “kilo-,” abbreviated k, means a unit larger by a factor 

of 1000; thus,

1 kilometer = 1 km = 103 meters = 103 m,

1 kilogram = 1 kg = 103 grams = 103 g,

1 kilowatt = 1 kW = 103 watts = 103 W.

The meter was originally defined as

1>10,000,000 of this distance.

107 m

North Pole

Equator

Figure 1.2 The original definition of the 
meter, from 1791.

Figure 1.3 Until 2018 a metal cylinder was 
used to define the value of the kilogram. (The 
one shown here, a copy of the one in France, 
was maintained by the U.S. National Institute 
of Standards and Technology.) Today the 
kilogram is defined in terms of one of the 
fundamental constants of nature.
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TABLE 1.1 Prefixes for powers of 10

Power of 10 Prefix Abbreviation

10-18 atto- a

10-15 femto- f

10-12 pico- p

10-9 nano- n

10-6 micro- m

10-3 milli- m

10-2 centi- c

103 kilo- k

106 mega- M

109 giga- G

1012 tera- T

1015 peta- P

1018 exa- E

(g) 10
-14

 m

Radius of an

atomic nucleus

(f) 10
-10

 m

Radius of an

atom

(e) 10
-5

 m

Diameter of a

red blood cell

(d) 1 m

Human

dimensions

(c) 10
7
 m

Diameter of

the earth

(b) 10
11

 m

Distance to

the sun

(a) 10
26

 m

Limit of the

observable

universe

Figure 1.4 The laws of physics apply over an incredibly wide range of system sizes—from the  
cosmological scales of galaxies to the subnuclear realms of protons and neutrons.

Table 1.1 lists the standard SI prefixes with their meanings and abbreviations. Note 

that most of these are multiples of 103.

When pronouncing unit names with prefixes, accent the first syllable: KIL-o-gram, 

KIL-o-meter, CEN-ti-meter, and MIC-ro-meter. (Kilometer is sometimes pronounced 

kil-OM-eter.)

Here are some examples of the use of multiples of 10 and their prefixes with the units 

of length, mass, and time. Additional time units are also included. Figure 1.4 gives you an 

idea of the range of length scales studied in physics.

Length

1 nanometer = 1 nm = 10-9 m (a few times the size of an atom)

1 micrometer = 1 mm = 10-6 m (size of some bacteria and cells)

1 millimeter = 1 mm = 10-3 m (size of the point of a ballpoint pen)

1 centimeter = 1 cm = 10-2 m (diameter of your little finger)

1 kilometer = 1 km = 103 m (distance traveled in a 10-minute walk)

Mass

1 microgram = 1 mg = 10-9 kg (mass of a 1 mm length of hair)

1 milligram = 1 mg = 10-6 kg (mass of a grain of salt)

1 gram = 1 g = 10-3 kg (mass of a paper clip)

1 kilogram = 1 kg = 103 g (mass of a 1 liter bottle of water)

Time

1  nanosecond = 1 ns = 10-9 s (time required for a personal computer to add two 

numbers)

1 microsecond = 1 ms = 10-6 s (time required for a 10-year-old personal computer  

  to add two numbers)

1 millisecond = 1 ms = 10-3 s (time required for sound to travel 0.35 m)

1 minute = 1 min = 60 s

1 hour = 1 h = 3600 s

1 day = 1 day = 86,400 s

British units

Finally, we mention the British system of units. These units are used only in the United 

States and a few other countries, and in most of those countries they are being replaced by 

SI units. Even in the United States, we now use metric units in many everyday contexts; 
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we speak about 4 liter engines, 50 mm lenses, 10 km races, 2 liter soda bottles, and so on. 

British units are now officially defined in terms of SI units:

Length: 1 inch = 2.54 cm (exactly).

Force: 1 pound = 4.448221615260 newtons (exactly).

The fundamental British unit of time is the second, defined the same way as in SI. 

British units are used only in mechanics and thermodynamics; there is no British system 

of electrical units. In this book, we use SI units in almost all examples and problems, but 

in the early chapters we occasionally give approximate equivalents in British units.

SI measurement of your hand

With your hand flat and your fingers and thumb close together, the 

width of your hand is about

A. 50 cm.

B. 10 cm.

C. 10 mm.

Test Your Understanding of SECTION 1.3

SOLUTION If you’re not familiar with metric units of length, you can 

use your body to develop intuition for them. One meter (100 cm) is 

slightly more than a yard, so the distance from elbow to fingertips is 

about 50 cm; this eliminates answer A. Ten millimeters (1 cm) is about 

the width of your little finger. Ten centimeters is about 4 inches and is 

about the width of your hand. The correct answer is B. 

1.4  DIMENSIONAL CONSISTENCY AND UNIT 

CONVERSIONS

We use equations to express relationships among physical quantities that are represented 

by algebraic symbols. Most algebraic symbols for physical quantities denote both a num-

ber and a dimension. For example, if the symbol d represents distance, then it must have 

dimensions of length. If the symbol v represents speed, then it must have dimensions of 

length per time. The dimensions themselves can be expressed in a variety of units. For in-

stance, the dimension of length can be expressed in meters, feet, inches, miles, and so on. 

However, independent of which units are used, an equation must always be dimensionally 

consistent. You can’t add apples and pomegranates; two terms may be added or equated 

only if they have the same dimensions. For example, if a body moving with constant speed 

v travels a distance d in a time t, these quantities are related by the equation

d = vt (distance = speed * time2.
If d has dimensions of length and is measured in meters, then the product vt must also 

have dimensions of length and be expressed in meters. So, we may write

10 m = (2 m>s)(5 s).

Because the unit 1>s cancels the unit s in the last factor, the product vt does have units of 

meters, as it must. In calculations, with respect to multiplication and division, units are 

treated just like algebraic symbols.

APPLICATION A $125 million unit 
consistency error. In 1998, the Mars 

Climate Orbiter was sent by NASA to orbit 

Mars at an altitude above the Martian atmo-

sphere; instead, it entered the atmosphere 

in 1999 and burned up! The key error that 

led to this disaster was a miscommunica-

tion between the Jet Propulsion Laboratory 

(JPL) and the spacecraft engineers who 

built the orbiter. The engineers specified 

the amount of thrust required to steer the 

craft’s trajectory in units of British pounds, 

while the JPL assumed the numbers were in 

SI units of newtons. Thus, each correction 

of the trajectory applied a force 4.45 times 

greater than needed. Although there were 

other compounding errors, this unit incon-

sistency was a major factor in the failure of 

the mission and the loss of the orbiter.

DIMENSIONAL CONSISTENCY OF EQUATIONS

You cannot add, subtract, or equate quantities of different dimensions in an equation. 

However, you can multiply and divide quantities that have different dimensions.

Notes:

• The dimensional consistency rules hold true whether you are dealing with numbers 

or algebraic expressions.

• Always write numbers with the correct units and carry the units through the 

calculation.


