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Preface

To the Student
As you begin this course, I invite you to think about your rea-

sons for enrolling in it. Why are you taking general chemis-

try? More generally, why are you pursuing a college education? 

If you are like most college students taking general chemistry, 

part of your answer is probably that this course is required for 

your major and that you are pursuing a college education so 

you can get a good job some day. Although these are good rea-

sons, I would like to suggest a better one. I think the primary 

reason for your education is to prepare you to live a good life. 

You should understand chemistry—not for what it can get 

you—but for what it can do to you. Understanding chemistry, 

I believe, is an important source of happiness and fulfillment. 

Let me explain.

Understanding chemistry helps you to live life to its full-

est for two basic reasons. The first is intrinsic: through an 

understanding of chemistry, you gain a powerful apprecia-

tion for just how rich and extraordinary the world really is. 

The second reason is extrinsic: understanding chemistry 

makes you a more informed citizen—it allows you to engage 

with many of the issues of our day. In other words, under-

standing chemistry makes you a deeper and richer person and 

makes your country and the world a better place to live. These 

reasons have been the foundation of education from the very 

beginnings of civilization.

How does chemistry help prepare you for a rich life and 

conscientious citizenship? Let me explain with two exam-

ples. My first one comes from the very first page of Chapter 1 

of this book. There, I ask the following question: What is the 

most important idea in all of scientific knowledge? My answer 

to that question is this: the behavior of matter is deter-

mined by the properties of molecules and atoms. That 

simple statement is the reason I love chemistry. We humans 

have been able to study the substances that compose the 

world around us and explain their behavior by reference to 

particles so small that they can hardly be imagined. If you 

have never realized the remarkable dependence of the world 

we can see on the world we cannot, you have missed out on a 

fundamental truth about our universe. To have never encoun-

tered this truth is like never having read a play by Shakespeare 

or seen a sculpture by Michelangelo—or, for that matter, like 

never having discovered that the world is round. It robs you 

of an amazing and unforgettable experience of the world and 

the human ability to understand it.

My second example demonstrates how science literacy 

helps you to be a better citizen. Although I am largely sympa-

thetic to the environmental movement, a lack of science lit-

eracy within some sectors of that movement and the resulting 

anti-environmental backlash create confusion that impedes 

real progress and opens the door to what could be misin-

formed policies. For example, I have heard conservative pun-

dits say that volcanoes emit more carbon dioxide—the most 

significant greenhouse gas—than does petroleum combus-

tion. I have also heard a liberal environmentalist say that we 

have to stop using hair spray because it is causing holes in the 

ozone layer that will lead to global warming. Well, the claim 

about volcanoes emitting more carbon dioxide than petro-

leum combustion can be refuted by the basic tools you will 

learn to use in Chapter 4 of this book. We can easily show that 

volcanoes emit only 1/50th as much carbon dioxide as petro-

leum combustion. As for hair spray depleting the ozone layer 

and thereby leading to global warming, the chlorofluorocar-

bons that deplete ozone have been banned from hair spray 

since 1978, and ozone depletion has nothing to do with global 

warming anyway. People with special interests or axes to grind 

can conveniently distort the truth before an ill-informed pub-

lic, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not 

just to satisfy the requirement for your major and not just to 

get a good job some day, but to help you to lead a fuller life 

and to make the world a little better for everyone. I wish you 

the best as you embark on the journey to understanding the 

world around you at the molecular level. The rewards are well 

worth the effort.

To the Professor
First and foremost, thanks to all of you who adopted this book 

in its previous editions. You helped to make this book one of 

the most popular general chemistry textbooks in the world. I 

am grateful beyond words. Second, I have listened carefully to 

your feedback on the previous edition. The changes you see in 

this edition are the direct result of your input, as well as my 

own experience using the book in my general chemistry 

courses. If you have reviewed content or have contacted me 

directly, you will likely see your suggestions reflected in the 

changes I have made. Thank you.

Higher education in science is changing. Foremost 

among those changes is a shift toward active learning. A flood 

of recent studies has demonstrated that General Chemistry 

students learn better when they are active in the learning 

process. However, implementing active learning can be a dif-

ficult and time-consuming process. One of my main goals in 

this revision is to give you, the professor, a range of tools to 

easily implement active learning in your class. My goal is 
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simple: I want to make it easy for you to engage your students in 

active learning before class, during class, and after class.

■	 BEFORE CLASS Although the term active learning 

has been applied mainly to in-class learning, the main 

idea—that we learn better when we are actively engaged—

applies to all of learning. I have developed two main 

tools to help students prepare for class in an active way. 

The first tool is a complete library of 3– to 6–minute 

Key Concept Videos (KCVs) that, with this edition, span 

virtually all of the key concepts in a general chemistry 

course. The videos introduce a key concept and encour-

age active learning because they stop in the middle and 

pose a question that must be answered before the video 

continues playing. Each video also has an associated 

follow-up question that can be assigned using Master-

ing Chemistry. You can assign a video before each one 

of your classes to get your students thinking about the 

concepts for that day. A second tool for use before class 

is active reading. Each chapter in the book now contains 

10–12 Conceptual Connection questions. These questions 

are live in the ebook, assignable in Mastering Chemis-

try, and contain wrong answer feedback. Instead of pas-

sively reading the assigned material with no account-

ability, you can now encourage your students to engage 

in active reading, in which they read a bit and then an-

swer a question that probes their comprehension and 

gives them immediate feedback.

■	 DURING CLASS By delivering some content through 

key concept videos and active reading before class, you 

can make room in your lecture to pose questions to your 

students that make the class experience active as well. 

This book features two main tools for in-class use. The 

first tool is Learning Catalytics, which allows you to pose 

many di�erent types of questions to your students dur-

ing class. Instead of passively listening to your lecture, 

students interact with the concepts you present through 

questions you pose. Your students can answer the ques-

tions individually, or you can pair them with a partner 

or small group. A second tool for in-class use is the Ques-

tions for Group Work. These questions appear in the end-

of-chapter material and are specifically designed to be 

answered in small groups.

■	 AFTER CLASS Active learning can continue after class 

with two additional tools. The first is another library of 

3– to 6–minute videos called Interactive Worked Examples 

(IWEs). Each IWE video walks a student through the 

solution to a chemistry problem. Like the KCVs, the IWE 

video stops in the middle and poses a question that must 

be answered before the video continues playing. Each 

video also has an associated follow-up problem that 

can be assigned using Mastering Chemistry. The second 

tool for after (or outside of) class active learning is Active 

Exam Preparation. Research studies suggest that students 

who take a pretest before an exam do better on the exam, 

especially if the pretest contains immediate feedback. 

Each chapter in this book contains a Self-Assessment Quiz 

that you can use to easily make a pretest for any of your 

exams. The Self-Assessment Quizzes are live in the ebook, 

assignable in Mastering Chemistry, and contain wrong 

answer feedback. Simply choose the questions that you 

want from each of the quizzes that span the chapters on 

your exam, and you can create an assignable pretest that 

students can use to actively prepare for your exams.

Although we have added many active learning tools to this 

edition and made other changes as well, the book’s goal 

remains the same: to present a rigorous and accessible treatment 

of general chemistry in the context of relevance. Teaching general 

chemistry would be much easier if all of our students had 

exactly the same level of preparation and ability. But alas, that 

is not the case. My own courses are populated with students 

with a range of backgrounds and abilities in chemistry. The 

challenge of successful teaching, in my opinion, is figuring 

out how to instruct and challenge the best students while not 

losing those with lesser backgrounds and abilities. My strategy 

has always been to set the bar relatively high, while at the 

same time providing the motivation and support necessary to 

reach the high bar. That is exactly the philosophy of this book. 

We do not have to compromise rigor in order to make chemis-

try accessible to our students. In this book, I have worked hard 

to combine rigor with accessibility—to create a book that does 

not dilute the content and yet can be used and understood by 

any student willing to put in the necessary effort.

Principles of Chemistry: A Molecular Approach is 

first and foremost a student-oriented book. My main goal 

is to motivate students and get them to achieve at the highest 

possible level. As we all know, many students take general chem-

istry because it is a requirement; they do not see the connection 

between chemistry and their lives or their intended careers. 

Principles of Chemistry: A Molecular Approach strives to make 

those connections consistently and effectively. Unlike other 

books, which often teach chemistry as something that happens 

only in the laboratory or in industry, this book teaches chemis-

try in the context of relevance. It shows students why chemistry 

is important to them, to their future careers, and to their world.

Second, Principles of Chemistry: A Molecular 

Approach is a pedagogically driven book. In seeking to 

develop problem-solving skills, a consistent approach (Sort, 

Strategize, Solve, and Check) is applied, usually in a two- or 

three-column format. In the two-column format, the left col-

umn shows the student how to analyze the problem and 

devise a solution strategy. It also lists the steps of the solution, 

explaining the rationale for each one, while the right column 

shows the implementation of each step. In the three-column 

format, the left column outlines the general procedure for 

solving an important category of problems that is then 

applied to two side-by-side examples. This strategy allows stu-

dents to see both the general pattern and the slightly different 

ways in which the procedure may be applied in differing con-

texts. The aim is to help students understand both the concept 

of the problem (through the formulation of an explicit concep-

tual plan for each problem) and the solution to the problem.

Third, Principles of Chemistry: A Molecular 

Approach is a visual book. Wherever possible, I use images 
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to deepen the student’s insight into chemistry. In developing 

chemical principles, multipart images help show the connec-

tion between everyday processes visible to the unaided eye 

and what atoms and molecules are actually doing. Many of 

these images have three parts: macroscopic, molecular, and 

symbolic. This combination helps students to see the rela-

tionships between the formulas they write down on paper 

(symbolic), the world they see around them (macroscopic), 

and the atoms and molecules that compose that world 

(molecular). In addition, most figures are designed to teach 

rather than just to illustrate. They are rich with annotations 

and labels intended to help the student grasp the most impor-

tant processes and the principles that underlie them. In this 

edition, the art program has been thoroughly revised in two 

major ways. First, navigation of the more complex figures has 

been reoriented to track from left to right whenever possible. 

Second, figure captions have been migrated into the image 

itself as an “author voice” that explains the image and guides 

the reader through it. The resulting images are rich with 

information but also clear and quickly understood.

Fourth, Principles of Chemistry: A Molecular 

Approach is a “big-picture” book. At the beginning of 

each chapter, a short paragraph helps students to see the key 

relationships between the different topics they are learning. 

Through a focused and concise narrative, I strive to make the 

basic ideas of every chapter clear to the student. Interim sum-

maries are provided at selected spots in the narrative, making 

it easier to grasp (and review) the main points of important 

discussions. And to make sure that students never lose sight of 

the forest for the trees, each chapter includes several Concep-

tual Connections, which ask them to think about concepts and 

solve problems without doing any math. I want students to 

learn the concepts, not just plug numbers into equations 

to churn out the right answer. This philosophy is also integral 

to the Key Concept Videos, which concisely reinforce student 

appreciation of the core concepts in each chapter.

Lastly, Principles of Chemistry: A Molecular 

Approach is a book that delivers the depth of cover-

age faculty want. We do not have to cut corners and water 

down the material in order to get our students interested. We 

have to meet them where they are, challenge them to the 

highest level of achievement, and support them with enough 

pedagogy to allow them to succeed.

I hope that this book supports you in your vocation of 

teaching students chemistry. I am increasingly convinced of 

the importance of our task. Please feel free to contact me with 

any questions or comments about the book.

Nivaldo J. Tro

nivatro@gmail.com

What’s New in This Edition?
The book has been extensively revised and contains more 

small changes than can be detailed here. The most significant 

changes to the book and its supplements are listed below:

■	 NEW INTERACTIVE VIDEOS I have added 16 new 

Key Concept Videos (KCVs) and 24 new Interactive Worked 

Examples (IWEs) to the media package that accompanies 

the book. The video library now contains nearly 200 inter-

active videos. These tools are designed to help professors 

engage their students in active learning.

■	 NEW IN-CHAPTER QUESTIONS WITH FEEDBACK 

I have added approximately 67 new Conceptual Connec-

tion questions throughout the book and have changed 

the format to multiple choice (with wrong answer feed-

back in the ebook or through Mastering Chemistry). 

Each chapter now has 10–12 of these embedded assign-

able questions. These questions transform the reading 

process from passive to active and hold students ac-

countable for reading assignments.

■	 NEW MISSED THIS? FEATURE I have added a new 

feature called MISSED THIS? to the Self-Assessment Quiz-

zes and to the Problems by Topic section of the end-of-

chapter problems. This feature lists the resources that 

students can use to learn how to answer the question or 

solve the problem. The resources include chapter sec-

tions to read, Key Concept Videos (KCVs) to watch, and In-

teractive Worked Examples (IWEs) to view. Students often 

try to solve an assigned question or problem before doing 

any reading or reviewing; they seek resources only after 

they have missed the question or problem. The MISSED 

THIS? feature guides them to reliable resources that pro-

vide just-in-time instruction.

■	 NEW FOR PRACTICE FEEDBACK I have enhanced 

64 of the in-chapter For Practice problems (which im-

mediately follow an in-chapter worked example) with 

feedback that can be accessed in the ebook or through 

Mastering Chemistry.

■	 REVISED ART PROGRAM The art program has been 

extensively revised. Navigation of the more complex fig-

ures has been reoriented to track from left to right, and 

many figure captions have been broken up and have been 

moved into the image itself as an “author voice” that ex-

plains the image and guides the reader through it.

■	 REVISED DATA INTERPRETATION AND ANALY-

SIS QUESTIONS The Data Interpretation and Analysis 

questions that accompany each chapter have been exten-

sively revised to make them clearer and more accessible 

to students.

■	 NEW SECTION ON DATA INTERPRETATION AND 

ANALYSIS I have added a new section to Chapter 1 

(Section 1.9) on the general topic of analyzing and inter-

preting data. This section introduces the skills required 

to address many of the revised data interpretation and 

analysis questions.

■	 NEW HOW TO . . . FEATURE All guidance for essential 

skills such as problem-solving techniques, drawing Lewis 

structures, and naming compounds is now presented in 

a consistent, step-by-step numbered list called How To…

■	 REVISED CHAPTER 4 Chapter 4 in the previous edi-

tion covered both stoichiometry and chemical reac-

tions in solution. In this edition, this content has been 

mailto:nivatro@gmail.com
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expanded slightly and has been divided into two more 

focused chapters, so that Chapter 4 is now focused on 

stoichiometry and Chapter 5 on chemical reactions in 

solution. This new organization lessens the cognitive 

load for students and allows each chapter to be more  

direct and focused. All subsequent chapters have been  

renumbered accordingly.

■	 NEW ACTIVITY SERIES CONTENT I added a new 

subsection to Section 5.9 entitled The Activity Series: Pre-

dicting Whether a Redox Reaction Is Spontaneous. The new 

section includes new figures, tables, and a new worked 

example.

■	 NEW READY-TO-GO LEARNING MODULES These 

online modules o�er students easy access to the best 

Tro content in Mastering Chemistry without needing to 

have it assigned.

■	 NEW TWO-TIER OBJECTIVES A system of two-tier 

objectives is being applied to the text and to the Master-

ing Chemistry assets. The two tiers are Learning Objec-

tives, or LOs, and Enabling Objectives, or EOs. The LOs 

are broad, high-level objectives that summarize the over-

all learning goal, while the EOs are the building block 

skills that enable students to achieve the LO. The learn-

ing objectives are given in the Learning Outcomes table 

at the end of the chapter.

■	 REVISED DATA All the data throughout the book have 

been updated to reflect the most recent measurements 

available. These updates include Figure 4.2: Carbon  

Dioxide in the Atmosphere; Figure 4.3: Global Temperatures; 

the unnumbered figure in Section 7.10 of U.S. Energy Con-

sumption; Figure 7.12: Energy Consumption by Source; Table 

7.6: Changes in National Average Pollutant Levels, 1990–

2016; Figure 15.19: Ozone Depletion in the Antarctic Spring; 

Figure 17.15: Sources of U.S. Energy; Figure 17.16: Acid Rain; 

and Figure 17.18: U.S. Sulfur Dioxide Pollutant Levels.

■	 REVISED CHAPTER OPENERS Many chapter- 

opening sections and (or) the corresponding art—includ-

ing Chapters 1, 3, 4, 5, 6, 7, 10, 11, 18, 19, and 20—have 

been replaced or modified.
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NIVALDO J. TRO

FOURTH EDITION

PRINCIPLES OF

CHEMISTRY
A MOLECULAR APPROACH

Nivaldo Tro’s Principles of Chemistry: A Molecular Approach presents chemistry 

visually through multi-level images—macroscopic, molecular, and symbolic representations—to help 

students see the connections between the world they see around them, the atoms and molecules 

that compose the world, and the formulas they write down on paper. The 4th Edition pairs digital, 

pedagogical innovation with insights from learning design and educational research to create an active, 

integrated, and easy-to-use framework. The new edition introduces a fully integrated book and media 

package that streamlines course setup, actively engages students in becoming expert problem solvers, 

and makes it possible for professors to teach the general chemistry course easily and effectively.

Actively Engage Students to Become Expert 
Problem Solvers and Critical Thinkers



Learn core concepts...

Key Concept Videos 
combine artwork from 

the textbook with 2D and 

3D animations to create 

a dynamic on-screen 

viewing and learning 

experience. The 4th 

edition includes 16 new 

videos, for a total of 74.

These short videos include 

narration and brief live-

action clips of author 

Nivaldo Tro explaining 

every key concept in 

general chemistry. All 

Key Concept Videos 

are available on mobile 

devices, embedded in 

Pearson eText, and are 

assignable in Mastering 

Chemistry.



Newly Interactive Conceptual Connections allow students to interact with all conceptual 

connections within the Pearson eText, so that they can study on their own and test their understanding in 

real time. Complete with answer-specific feedback written by the author himself, these interactives help 

students extinguish misconceptions and deepen their understanding of important topics, making reading 

an active experience.

before students even come to class



With Learning 
Catalytics, you’ll hear 

from every student when 

it matters most. You pose 

a variety of questions 

that help students recall 

ideas, apply concepts, and 

develop critical-thinking 

skills. Your students 

respond using their own 

smartphones, tablets, or 

laptops.

Actively engage students...

You can monitor responses with real-time analytics and find out what your students  

do — and don’t — understand. Then, you can adjust your teaching accordingly, and even 

facilitate peer-to-peer learning, helping students stay motivated and engaged. Learning 

Catalytics includes prebuilt questions for every key topic in General Chemistry.



with in-class activities

Questions for 
Group Work allow 

students to collaborate 

and apply problem-

solving skills on questions 

covering multiple 

concepts. The questions 

can be used in or out 

of the classroom, and 

the goal is to foster 

collaborative learning 

and encourage students 

to work together as a 

team to solve problems. 

All questions for group 

work are pre-loaded into 

Learning Catalytics for 

ease of assignment.

Numerous ideas for 
in-class activities can 

be found in the Ready-to-

Go Teaching Modules in 

the Instructor Resources 

in Mastering Chemistry. 

There, instructors will 

find the most effective 
activities, problems, and 

questions from the text, 

Mastering, and Learning 

Catalytics, to use in class.

QUESTIONS FOR GROUP WORK Active Classroom Learning

Discuss these questions with the group and record your consensus 
answer.

139. Explain why 1-propanol (CH3CH2CH2OH) is miscible in both 

water (H2O) and hexane (C6H6) when hexane and water are 

barely soluble in each other.

140. Have each group member make a flashcard with one of the 

following on the front: ∆Hsoln, ∆Hlattice, ∆Hsolvent, ∆Hmix, and 

∆Hhydration. On the back of the card, each group member should 

describe (in words) the ∆H process his or her card lists and how 

that ∆H relates to other ∆H values mathematically. Each mem-

ber presents his or her ∆H to the group. After everyone has pre-

sented, members should trade cards and quiz each other.

141. Complete the following table by adding increases, decreases, or 

no e�ect:

Increasing 

Temperature

Increasing 

Pressure

solubility of gas in water

solubility of a solid in water

142. When 13.62 g (about one tablespoon) of table sugar (sucrose, 

C12H22O11) is dissolved in 241.5 mL of water (density 0.997 g/mL), 

the final volume is 250.0 mL (about one cup). Have each group 

member calculate one of the following for the solution and pres-

ent his or her answer to the group:

a. mass percent

b. molarity

c. molality

143. Calculate the expected boiling and freezing point for the solu-

tion in the previous problem. If you had to bring this syrup to 

the boiling point for a recipe, would you expect it to take much 

more time than it takes to boil the same amount of pure water? 

Why or why not? Would the syrup freeze in a typical freezer 

(-18 °C)? Why or why not?

p. 628



Master problem-solving...

PROBLEMS BY TOPIC

Solution Concentration and Solution Stoichiometry

21. Calculate the molarity of each solution. 

MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.1

a. 3.25 mol of LiCl in 2.78 L solution

b. 28.33 g C6H12O6 in 1.28 L of solution

c. 32.4 mg NaCl in 122.4 mL of solution

22. Calculate the molarity of each solution.

a. 0.38 mol of LiNO3 in 6.14 L of solution

b. 72.8 g C2H6O in 2.34 L of solution

c. 12.87 mg KI in 112.4 mL of solution

23. What is the molarity of NO3
-  in each solution?  

MISSED THIS? Read Sections 5.2, 5.4; Watch KCV 5.2, IWE 5.1

a. 0.150 M KNO3

b. 0.150 M Ca(NO3)2

c. 0.150 M Al(NO3)3

24. What is the molarity of Cl -  in each solution?

a. 0.200 M NaCl

b. 0.150 M SrCl2

c. 0.100 M AlCl3

25. How many moles of KCl are contained in each solution? 

MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.2

a. 0.556 L of a 2.3 M KCl solution

b. 1.8 L of a 0.85 M KCl solution

c. 114 mL of a 1.85 M KCl solution

26. What volume of 0.200 M ethanol solution contains each 

amount in moles of ethanol?

a. 0.45 mol ethanol

b. 1.22 mol ethanol

c. 1.2 * 10 - 2 mol ethanol

27. A laboratory procedure calls for making 400.0 mL of a 1.1 M 

NaNO3 solution. What mass of NaNO3 (in g) is needed? 

MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.2

28. A chemist wants to make 5.5 L of a 0.300 M CaCl2 solution. 

What mass of CaCl2 (in g) should the chemist use?

29. If 123 mL of a 1.1 M glucose solution is diluted to 500.0 mL, 

what is the molarity of the diluted solution? 

MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.3

30. If 3.5 L of a 4.8 M SrCl2 solution is diluted to 45 L, what is the 

molarity of the diluted solution?

31. To what volume should you dilute 50.0 mL of a 12 M stock 

HNO3 solution to obtain a 0.100 M HNO3 solution? 

MISSED THIS? Read Section 5.2; Watch KCV 5.2, IWE 5.3

32. To what volume should you dilute 25 mL of a 10.0 M H2SO4

solution to obtain a 0.150 M H2SO4 solution?

33. Consider the precipitation reaction: 

MISSED THIS? Read Section 5.3; Watch IWE 5.4

2 Na3PO4(aq) + 3 CuCl2(aq) ¡ Cu3(PO4)2(s) + 6 NaCl(aq)

What volume of 0.175 M Na3PO4 solution is necessary to 

completely react with 95.4 mL of 0.102 M CuCl2?

34. Consider the reaction:

Li2S(aq) + Co(NO3)2(aq) ¡ 2 LiNO3(aq) + CoS(s)

What volume of 0.150 M Li2S solution is required to completely 

react with 125 mL of 0.150 M Co(NO3)2?

35. What is the minimum amount of 6.0 M H2SO4 necessary to 

produce 25.0 g of H2(g) according to the reaction between 

aluminum and sulfuric acid? 

MISSED THIS? Read Section 5.3; Watch IWE 5.4

2 Al(s) + 3 H2SO4(aq) ¡ Al2(SO4)3(aq) + 3 H2(g)

36. What is the molarity of ZnCl2 that forms when 25.0 g of zinc 

completely reacts with CuCl2 according to the following reac-

tion? Assume a final volume of 275 mL.

Zn(s) + CuCl2(aq) ¡ ZnCl2(aq) + Cu(s)

Interactive Worked Examples are digital versions of select worked examples from the text 

that instruct students how to break down problems using Tro’s “Sort, Strategize, Solve, and Check” 

technique. The Interactive Worked Examples pause in the middle and require the student to interact 

by completing a step in the example. Each example has a follow-up question that is assignable in 

Mastering Chemistry. There are 24 new Interactive Worked Examples for a total of 125.

p. 204

NEW! MISSED 
THIS? appears in  

the end-of-chapter 

Self-Assessment 

Quizzes and each 

odd-numbered 

Problems by Topic 

exercise. MISSED 

THIS? provides 

sections to read 

and videos to watch 

to help students 

remediate where 

necessary.



with tools students can use 
after class

Newly Interactive Self-
Assessment Quizzes, 

complete with answer-specific 
feedback, allow students to quiz 

themselves within the Pearson 

eText, so that they can study 

on their own and test their 

understanding in real time. The 

Self-Assessment Quizzes are 

also assignable in Mastering 

Chemistry. Professors can use 

questions from these quizzes to 

prepare a pretest on Mastering 

Chemistry.  Research has shown 

that this kind of active exam 

preparation improves students' 

exam scores. 

NEW! Ready-to-Go  
Practice Modules 

in the Mastering 

Chemistry Study Area 

help students master 

the toughest topics 

(as identified by 

professors and fellow 

students completing 

homework and 

practicing for 

exams). Key Concept 

Videos, Interactive 

Worked Examples, 

and problem sets 

with answer-specific 

feedback are all in 

one easy to navigate 

place to keep 

students focused 

and give them the 

scaffolded support 

they need to succeed. 



Extensively updated 
art program better 

directs students’ attention 

to key elements in 

the art and promotes 

understanding of the 

processes depicted. Dozens 

of figures in the 4th 
Edition were reviewed by 

learning design specialists 

to ensure they are clearly 

navigable for students and 

now include more helpful 

annotations and labels to 

help readers focus on key 

concepts.

Teach with art based on learning 
design principles

180 CHAPTER 5 Introduction to Solutions and Aqueous Reactions

Precipitation Reaction

2  KI(aq) + Pb(NO3)2(aq)
(soluble)(soluble)

   PbI2(s)        2 KNO3(aq)
(insoluble)       (soluble)

When a potassium iodide solution 
is mixed with a lead(II) nitrate 
solution, a yellow lead(II) iodide 
precipitate forms.

2 KI(aq)
(soluble)

Pb(NO3)2(aq)
(soluble)

2 KNO3(aq)
(soluble)

PbI2(s)
(insoluble)

+

+

K+

I-

Pb2+

NO3
-

+

PbI2

K+

NO3
-

◀ FIGURE 5.13 Precipitation of 
Lead(II) Iodide

Precipitation reactions do not always occur when two aqueous solutions are mixed. For 

example, if we combine solutions of KI(aq) and NaCl(aq), nothing happens (Figure 5.14▶):

KI(aq) + NaCl(aq) ¡ NO REACTION

The key to predicting precipitation reactions is to understand that only insoluble 

compounds form precipitates. In a precipitation reaction, two solutions containing soluble 

compounds combine and an insoluble compound precipitates. Consider the precipita-

tion reaction described previously:

2 KI(aq)
soluble

+ Pb(NO3)2

soluble

(aq) ¡ PbI2(s)
insoluble

+ 2 KNO3(aq)
soluble

KI and Pb(NO3)2 are both soluble, but the precipitate, PbI2, is insoluble. Before mixing, 

KI(aq) and Pb(NO3)2(aq) are both dissociated in their respective solutions:

KI(aq) Pb(NO3)2(aq)

Pb2+

I-

K+

NO3
-



Tro’s multipart 
images help students 

see the relationship 

between the formulas 

they write down on paper 

(symbolic), the world 

they see around them 

(macroscopic), and the 

atoms and molecules 

that compose the world 

(molecular).

The instant that the solutions come into contact, all four ions are present:

KI(aq) and Pb(NO3)2(aq)

Pb2+

I-

K+

NO3
-

Now, new compounds—one or both of which might be insoluble—are possible. Specifi-

cally, the cation from either compound can pair with the anion from the other to form 

possibly insoluble products:

K I KNO3

Pb (NO3)2 PbI2

Original compounds Possible products

If the possible products are both soluble, no reaction occurs and no precipitate forms. If 

one or both of the possible products are insoluble, a precipitation reaction occurs. In 

this case, KNO3 is soluble, but PbI2 is insoluble. Consequently, PbI2 precipitates.

To predict whether a precipitation reaction will occur when two solutions are mixed 

and to write an equation for the reaction, we use the procedure that follows. The steps 

are outlined in the left column, and two examples illustrating how to apply the proce-

dure are shown in the center and right columns.

EACTION

aq)

) I ,

aq)

PbI2(s) and KNO3(aq)

PbI2

K+

NO3
-

No Reaction

NaCl(aq)KI(aq) No reaction

K+

I-

I-

Na+

Na+Cl-

Cl-

K+

+

NaCl(aq)KI(aq) No reaction+

When a potassium iodide 
solution is mixed with a 
sodium chloride solution, 
no reaction occurs.

◀ FIGURE 5.14 No Precipitation

5.5 Precipitation Reactions 181
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Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience available 

within Mastering. It allows students to easily highlight, take notes, and review key vocabulary all 

in one place—even when offline. Seamlessly integrated videos, rich media, and interactive self-
assessment questions engage students and give them access to the help they need, when they need 

it. Pearson eText is available within Mastering when packaged with a new book; students can also 

purchase Mastering with Pearson eText online.

Deliver trusted content with  
Pearson eText 



Improve learning with Dynamic 
Study Modules 

Dynamic Study 
Modules in 
Mastering Chemistry  

help students study 

effectively—and at their 

own pace—by keeping 

them motivated and 

engaged. The assignable 

modules rely on the latest 

research in cognitive 

science, using methods—

such as adaptivity, 

gamification, and 
intermittent rewards—to 

stimulate learning and 

improve retention. 

Each module poses a series of questions about a course topic. These question sets adapt to each student’s 

performance and offer personalized, targeted feedback to help them master key concepts. With Dynamic 
Study Modules, students build the confidence they need to deepen their understanding, participate 

meaningfully, and perform better—in and out of class.



Instructor support you can rely on

NIVALDO J. TRO

FOURTH EDITION

PRINCIPLES OF

CHEMISTRY
A MOLECULAR APPROACH

Principles of Chemistry: 
A Molecular Approach includes a 

full suite of instructor support materials 

in the Instructor Resources area in 

Mastering Chemistry. Resources include 

new Ready-to-Go Teaching Modules; 

accessible PowerPoint lecture outlines; 

all images and worked examples from 

the text; all Key Concept Videos and 

Interactive Worked Examples; plus an 

instructor resource manual and test 

bank.

Ready-to-Go Study Tools provide organized material for every tough topic in General 

Chemistry. The modules – created for and by instructors – provide easy-to-use before and after class 

assignments, in-class activities with clicker questions, and questions in Learning Catalytics™. The 

modules are easily accessed via Mastering Chemistry.
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W
hat do you think is the most important idea in all of 

human knowledge? This question has many possible 

answers—some practical, some philosophical, and some 

scientific. If we limit ourselves to scientific answers, mine would be 

this: the properties of matter are determined by the properties 

of atoms and molecules. Atoms and molecules determine how 

matter behaves—if they were different, matter would be different. 

The properties of water molecules determine how water behaves, 

the properties of sugar molecules determine how sugar behaves, 

and the properties of the molecules that compose our bodies 

determine how our bodies behave. The understanding of matter 

at the molecular level gives us unprecedented control over that 
matter. For example, our understanding of the details of the mole-

cules that compose living organisms has revolutionized biology 

over the last 50 years.

The most 
incomprehensible thing 
about the universe 
is that it is 
comprehensible.
—ALBERT EINSTEIN (1879–1955)

Matter, Measurement, 
and Problem Solving1 
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This image portrays the Disneyland ride, Adventure Thru Inner 
Space. The premise of the ride is that you enter a microscope and 
get shrunk down to the size of an atom. The red and white spheres 
shown here depict oxygen and hydrogen atoms bound together to 
form water molecules.

WATCH NOW!

KEY CONCEPT VIDEO 1.1

Atoms and Molecules
		  As I sat in the “omnimover” and listened to the narrator’s voice telling 

me that I was shrinking down to the size of an atom, I grew apprehensive but curious. 

Just minutes before, while waiting in line, I witnessed what appeared to be full-sized 

humans entering a microscope and emerging from the other end many times smaller.  

I was seven years old, and I was about to ride Adventure Thru Inner Space, a Disneyland 
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ride (in Tomorrowland) that simulated what it would be like to shrink to the size of an 

atom. The ride began with darkness and shaking, but then the shaking stopped and giant 

snowflakes appeared. The narrator explained that you were in the process of shrinking 

to an ever-smaller size (which explains why the snowflakes grew larger and larger). Soon, 

you entered the wall of the snowflake itself and began to see water molecules all around 

you. These also grew larger as you continued your journey into inner space and eventu-

ally ended up within the atom itself. Although this Disneyland ride bordered on being 

corny, and although it has since been shut down, it was my favorite ride as a young child.

That ride sparked my interest in the world of atoms and molecules, an interest that 

has continued and grown to this day. I am a chemist because I am obsessed with the con-

nection between the “stuff” around us and the atoms and molecules that compose that 

stuff. More specifically, I love the idea that we humans have been able to figure out the 

connection between the properties of the stuff around us and the properties of atoms and 

molecules. Atoms are submicroscopic particles that are the fundamental building blocks 

of ordinary matter. Free atoms are rare in nature; instead they bind together in specific 

geometrical arrangements to form molecules. A good example of a molecule is the 

water molecule, which I remember so well from the Disneyland ride.

A water molecule is composed of one oxygen atom bound to two hydrogen atoms in 

the shape shown at left. The exact properties of the water molecule—the atoms that 

compose it, the distances between those atoms, and the geometry of how the atoms are 

bound together—determine the properties of water. If the molecule were different, water 

would be different. For example, if water contained two oxygen atoms instead of just 

one, it would be a molecule like this:

Hydrogen peroxide molecule

Hydrogen
atoms

Oxygen
atoms

This molecule is hydrogen peroxide, which you may have encountered if you have 

ever bleached your hair. A hydrogen peroxide molecule is composed of two oxygen 

atoms and two hydrogen atoms. This seemingly small molecular difference results in a 

huge difference in the properties of water and hydrogen peroxide. Water is the familiar 

and stable liquid we all drink and bathe in. Hydrogen peroxide, in contrast, is an unsta-

ble liquid that, in its pure form, burns the skin on contact and is used in rocket fuel. 

When you pour water onto your hair, your hair simply becomes wet. However, if you put 

diluted hydrogen peroxide on your hair, a chemical reaction occurs that strips your hair 

of its color.

The details of how specific atoms bond to form a molecule—in a straight line, at a 

particular angle, in a ring, or in some other pattern—as well as the type of atoms in the 

molecule, determine everything about the substance that the molecule composes. If we 

want to understand the substances around us, we must understand the atoms and mol-

ecules that compose them—this is the central goal of chemistry. A good simple defini-

tion of chemistry is

Chemistry—the science that seeks to understand the behavior of 

matter by studying the behavior of atoms and molecules.

Throughout this book, we explore the connection between atoms and molecules and 

the matter they compose. We seek to understand how differences on the atomic or 

molecular level affect the properties on the macroscopic level. Before we move on, let’s 

examine one more example that demonstrates this principle. Consider the structures of 

graphite and diamond.

Hydrogen
atoms

Oxygen
atom

Water molecule

The hydrogen peroxide we use as 
an antiseptic or bleaching agent is 
considerably diluted.

The term atoms in this definition can 
be interpreted loosely to include 
atoms that have lost or gained 
electrons.
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Graphite is the slippery black substance (often 

called pencil lead) that you have probably used in a 

mechanical pencil. Diamond is the brilliant gemstone 

found in jewelry. Graphite and diamond are both com-

posed of exactly the same atoms—carbon atoms. The 

striking differences between the substances are a result 

of how those atoms are arranged. In graphite, the 

atoms are arranged in sheets. The atoms within each 

sheet are tightly bound to each other, but the sheets are 

not tightly bound to other sheets. Therefore the sheets 

can slide past each other, which is why the graphite in 

a pencil leaves a trail as you write. In diamond, by con-

trast, the carbon atoms are all bound together in a 

three-dimensional structure where layers are strongly 

bound to other layers, resulting in the strong, nearly 

unbreakable substance. This example illustrates how 

even the same atoms can compose vastly different sub-

stances when they are bound together in different pat-

terns. Such is the atomic and molecular world—small 

differences in atoms and molecules can result in large 

differences in the substances that they compose.

	 1.2	 The Scientific Approach to Knowledge
		  Throughout history, humans have approached knowledge about the phys-

ical world in different ways. For example, the Greek philosopher Plato (427–347 b.c.e.) 

thought that the best way to learn about reality was—not through the senses—but 

through reason. He believed that the physical world was an imperfect representation of 

a perfect and transcendent world (a world beyond space and time). For him, true knowl-

edge came, not through observing the real physical world, but through reasoning and 

thinking about the ideal one.

The scientific approach to knowledge, however, is exactly the opposite of Plato’s. 

Scientific knowledge is empirical—it is based on observation and experiment. Scientists 

observe and perform experiments on the physical world to learn about it. Some observa-

tions and experiments are qualitative (noting or describing how a process happens), but 

many are quantitative (measuring or quantifying something about the process). For 

example, Antoine Lavoisier (1743–1794), a French chemist who studied combustion 

(burning), made careful measurements of the mass of objects before and after burning 

them in closed containers. He noticed that there was no change in the total mass of 

material within the container during combustion. In doing so, Lavoisier made an 

important observation about the physical world.

Observations often lead scientists to formulate a hypothesis, a tentative interpre-

tation or explanation of the observations. For example, Lavoisier explained his observa-

tions on combustion by hypothesizing that when a substance burns, it combines with a 

component of air. A good hypothesis is falsifiable, which means that it makes predic-

tions that can be confirmed or refuted by further observations. Scientists test hypotheses 

by experiments, highly controlled procedures designed to generate observations that 

confirm or refute a hypothesis. The results of an experiment may support a hypothesis 

or prove it wrong—in which case the scientist must modify or discard the hypothesis.

In some cases, a series of similar observations leads to the development of a scientific 

law, a brief statement that summarizes past observations and predicts future ones. 

Lavoisier summarized his observations on combustion with the law of conservation 

of mass, which states, “In a chemical reaction, matter is neither created nor destroyed.” 

This statement summarized his observations on chemical reactions and predicted the 

outcome of future observations on reactions. Laws, like hypotheses, are also subject to 

experiments, which can support them or prove them wrong.

Graphite structure Diamond structure

Although some Greek philosophers, 
such as Aristotle, did use observation 
to attain knowledge, they did 
not emphasize experiment and 
measurement to the extent that 
modern science does.

▲ French chemist Antoine Lavoisier 
with his wife, Marie, who helped 
him in his work by illustrating his 
experiments and translating scientific 
articles from English. Lavoisier, who 
also made significant contributions 
to agriculture, industry, education, 
and government administration, 
was executed during the French 
Revolution.  
(The Metropolitan Museum of Art)
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Scientific laws are not laws in the same sense as civil or governmental laws. Nature 

does not follow laws in the way that we obey the laws against speeding or running a stop 

sign. Rather, scientific laws describe how nature behaves—they are generalizations about 

what nature does. For that reason, some people find it more appropriate to refer to them 

as principles rather than laws.

One or more well-established hypotheses may form the basis for a scientific theory. 

A scientific theory is a model for the way nature is and tries to explain not merely what 

nature does but why. As such, well-established theories are the pinnacle of scientific 

knowledge, often predicting behavior far beyond the observations or laws from which 

they were developed. A good example of a theory is the atomic theory proposed by 

English chemist John Dalton (1766–1844). Dalton explained the law of conservation of 

mass, as well as other laws and observations of the time, by proposing that matter is 

composed of small, indestructible particles called atoms. Since these particles are merely 

rearranged in chemical changes (and not created or destroyed), the total amount of mass 

remains the same. Dalton’s theory is a model for the physical world—it gives us insight 

into how nature works and, therefore, explains our laws and observations.

Finally, the scientific approach returns to observation to test theories. For example, 

scientists can test the atomic theory by trying to isolate single atoms or by trying to 

image them (both of which, by the way, have already been accomplished). Theories are 

validated by experiments; however, theories can never be conclusively proven because 

some new observation or experiment always has the potential to reveal a flaw. Notice 

that the scientific approach to knowledge begins with observation and ends with obser-

vation. An experiment is in essence a highly controlled procedure for generating critical 

observations designed to test a theory or hypothesis. Each new set of observations has 

the potential to refine the original model. Figure 1.1▼ summarizes one way to map the 

scientific approach to knowledge. Scientific laws, hypotheses, and theories are all sub-

ject to continued experimentation. If a law, hypothesis, or theory is proved wrong by an 

experiment, it must be revised and tested with new experiments. Over time, the scien-

tific community eliminates or corrects poor theories and laws, and valid theories and 

laws—those consistent with experimental results—remain.

Established theories with strong experimental support are the most powerful pieces 

of scientific knowledge. You may have heard the phrase “That is just a theory,” as if theo-

ries are easily dismissible. Such a statement reveals a deep misunderstanding of the 

nature of a scientific theory. Well-established theories are as close to truth as we get in 

science. The idea that all matter is made of atoms is “just a theory,” but it has over  

200 years of experimental evidence to support it. It is a powerful piece of scientific 

knowledge on which many other scientific ideas are based.

One last word about the scientific approach to knowledge: some people wrongly 

imagine science to be a strict set of rules and procedures that automatically leads to inar-

guable, objective facts. This is not the case. Even our diagram of the scientific approach 

to knowledge is only an idealization of real science, useful to help us see the key distinc-

tions of science. Real science requires hard work, care, creativity, and even a bit of luck. 

In Dalton’s time, people thought 
atoms were indestructible. Today, 
because of nuclear reactions, we 
know that atoms can be broken apart 
into their smaller components.

Test

Confirm

(or revise law)

Confirm

(or revise hypothesis)

Confirm

(or revise theory)

Test

Test

Hypothesis

Law

Theory

Observations Experiments Experiments

The Scientific Approach

▼ FIGURE 1.1  The Scientific 
Approach to Knowledge 
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Scientific theories do not just arise out of data—men and women of genius and creativ-

ity craft theories. A great theory is not unlike a master painting, and many see a similar 

kind of beauty in both. (For more on this aspect of science, see the accompanying box 

entitled Thomas S. Kuhn and Scientific Revolutions.)

THE NATURE OF SCIENCE  |

W
hen scientists talk about science, they often talk in ways 
that imply that theories are “true.” Further, they talk as 
if they arrive at theories in logical and unbiased ways. 

For example, a theory central to chemistry that we have 
discussed in this chapter is John Dalton’s atomic theory—the 
idea that all matter is composed of atoms. Is this theory “true”? 
Was it reached in logical, unbiased ways? Will this theory still be 
around in 200 years?

The answers to these questions depend on how we view 
science and its development. One way to view science—let’s call 
it the traditional view—is as the continual accumulation of 
knowledge and the building of increasingly precise theories. In 
this view, a scientific theory is a model of the world that reflects 
what is actually in nature. New observations and experiments 
result in gradual adjustments to theories. Over time, theories get 
better, giving us a more accurate picture of the physical world.

In the twentieth century, a different view of scientific knowledge 
began to develop. A book by Thomas Kuhn (1922–1996), 
published in 1962 and entitled The Structure of Scientific 
Revolutions, challenged the traditional view. Kuhn’s ideas came 
from his study of the history of science, which, he argued, does not 
support the idea that science progresses in a smooth, cumulative 
way. According to Kuhn, science goes through fairly quiet periods 
that he called normal science. In these periods, scientists make 
their data fit the reigning theory, or paradigm. Small inconsistencies 
are swept aside during periods of normal science. However, when 
too many inconsistencies and anomalies develop, a crisis emerges. 
The crisis brings about a revolution and a new reigning theory. 
According to Kuhn, the new theory is usually quite different from 

the old one; it not only helps us to make sense of new or 
anomalous information, but it also enables us to see accumulated 
data from the past in a dramatically new way.

Kuhn further contended that theories are held for reasons 
that are not always logical or unbiased, and that theories are not 
true models—in the sense of a one-to-one mapping—of the 
physical world. Because new theories are often so different from 
the ones they replace, he argued, and because old theories 
always make good sense to those holding them, they must not 
be “True” with a capital T; otherwise “truth” would be constantly 
changing.

Kuhn’s ideas created a controversy among scientists and 
science historians that continues to this day. Some, especially 
postmodern philosophers of science, have taken Kuhn’s ideas 
one step further. They argue that scientific knowledge is 
completely biased and lacks any objectivity. Most scientists, 
including Kuhn, would disagree. Although Kuhn pointed out that 
scientific knowledge has arbitrary elements, he also said, 
“Observation . . . can and must drastically restrict the range of 
admissible scientific belief, else there would be no science.” In 
other words, saying that science contains arbitrary elements is 
quite different from saying that science itself is arbitrary.

QUESTION  In his book, Kuhn stated, “A new theory . . . is seldom 

or never just an increment to what is already known.” From your 
knowledge of the history of science, can you think of any examples 
that support Kuhn’s statement? Do you know of any instances in 
which a new theory or model was drastically different from the one it 
replaced?

Thomas S. Kuhn and Scientific Revolutions

	 1.3	 The Classification of Matter WATCH NOW!

KEY CONCEPT VIDEO 1.3

Classifying Matter
		  Matter is anything that occupies space and has mass. Your desk, your 

chair, and even your body are all composed of matter. Less obviously, the air around you 

is also matter—it too occupies space and has mass. We call a specific instance of matter—

such as air, water, or sand—a substance. We classify matter according to its state (its 

physical form) and its composition (the basic components that make it up).

1.1 

Cc 
Conceptual 
Connection

 ANSWER NOW!LAWS AND THEORIES  Which statement best explains the di�erence 

between a law and a theory?

(a)	 A law is truth; a theory is mere speculation.

(b)	 A law summarizes a series of related observations; a theory gives the underlying 

reasons for them.

(c)	 A theory describes what nature does; a law describes why nature does it.
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The States of Matter: Solid, Liquid, and Gas
Matter exists in three different states: solid, liquid, and gas. In solid matter, atoms 

or molecules pack closely to each other in fixed locations. Although the atoms and 

molecules in a solid vibrate, they do not move around or past each other. Conse-

quently, a solid has a fixed volume and rigid shape. Ice, aluminum, and diamond 

are examples of solids. Solid matter may be crystalline, in which case its atoms or 

molecules are in patterns with long-range, repeating order (Figure 1.2▼), or it may be 

amorphous, in which case its atoms or molecules do not have any long-range order. 

Table salt and diamond are examples of crystalline solids; the well-ordered geometric 

shapes of salt and diamond crystals reflect the well-ordered geometric arrangement 

of their atoms (although this is not the case for all crystalline solids). Examples of 

amorphous solids include glass and plastic. In liquid matter, atoms or molecules pack 

about as closely as they do in solid matter, but they are free to move relative to each 

other, giving liquids a fixed volume but not a fixed shape. Liquids assume the shape 

of their containers. Water, alcohol, and gasoline are all substances that are liquids at 

room temperature.

The state of matter changes 
from solid to liquid to gas with 
increasing temperature.

Glass and other amorphous solids 
can be thought of, from one point 
of view, as intermediate between 
solids and liquids. Their atoms 
are fixed in position at room 
temperature, but they have no 
long-range structure and do not 
have distinct melting points.

Crystalline Solid:
Atoms are arranged in a regular
three-dimensional pattern

Diamond
C (s, diamond)

▲ FIGURE 1.2  Crystalline 
Solid  Diamond (first discussed 
in Section 1.1) is a crystalline 
solid composed of carbon atoms 
arranged in a regular, repeating 
pattern.

In gaseous matter, atoms or molecules have a lot of space between them and are free 

to move relative to one another, making gases compressible (Figure 1.3▶). When you 

squeeze a balloon or sit down on an air mattress, you force the atoms and molecules into 

a smaller space so that they are closer together. Gases always assume the shape and vol-

ume of their containers. Substances that are gases at room temperature include helium, 

nitrogen (the main component of air), and carbon dioxide.

Solid matter Gaseous matterLiquid matter

▲ In a solid, the atoms or molecules are fixed in place and can only vibrate. In a liquid, although the 
atoms or molecules are closely packed, they can move past one another, allowing the liquid to flow 
and assume the shape of its container. In a gas, the atoms or molecules are widely spaced, making 
gases compressible as well as fluid (able to flow).
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Classifying Matter by Composition: Elements, 
Compounds, and Mixtures
In addition to classifying matter according to its state, we classify it according to its com-

position, as shown in the following chart:

▲ FIGURE 1.3  The 
Compressibility of Gases  Gases 
can be compressed—squeezed into a 
smaller volume—because there is so 
much empty space between atoms or 
molecules in the gaseous state.

A solid is not compressible. A gas is compressible.

Variable composition?

Heterogeneous Homogeneous

MixturePure Substance

CompoundElement

Uniform throughout?
Separable into simpler

substances?No

No

NoYes

Yes

Yes

Matter

Helium Pure water Wet sand Tea with sugar
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The first division in the classification of matter is between a pure substance and a 

mixture. A pure substance is made up of only one component, and its composition is 

invariant (it does not vary from one sample to another). The components of a pure sub-

stance can be individual atoms or groups of atoms joined together. For example, helium, 

water, and table salt (sodium chloride) are all pure substances. Each of these substances is 

made up of only one component: helium is made up of helium atoms, water is made up of 

water molecules, and sodium chloride is made up of sodium chloride units. The composi-

tion of a pure sample of any one of these substances is always exactly the same (because 

you can’t vary the composition of a substance made up of only one component).

A mixture, by contrast, is composed of two or more components in proportions 

that can vary from one sample to another. For example, sweetened tea, composed pri-

marily of water molecules and sugar molecules (with a few other substances mixed in), is 

a mixture. We can make tea slightly sweet (a small proportion of sugar to water) or very 

sweet (a large proportion of sugar to water) or any level of sweetness in between.

We categorize pure substances themselves into two types—elements and 

compounds—depending on whether or not they can be broken down (or decomposed) 

into simpler substances. Helium, which we just noted is a pure substance, is also a good 

example of an element, a substance that cannot be chemically broken down into sim-

pler substances. Water, also a pure substance, is a good example of a compound, a 

substance composed of two or more elements (in this case, hydrogen and oxygen) in a 

fixed, definite proportion. On Earth, compounds are more common than pure elements 

because most elements combine with other elements to form compounds.

We also categorize mixtures into two types—heterogeneous and homogeneous—

depending on how uniformly the substances within them mix. Wet sand is a heterogeneous 

mixture, one in which the composition varies from one region of the mixture to another. 

Sweetened tea is a homogeneous mixture, one with the same composition throughout. 

Homogeneous mixtures have uniform compositions because the atoms or molecules that 

compose them mix uniformly. Heterogeneous mixtures are made up of distinct regions 

because the atoms or molecules that compose them separate. Here again we see that the 

properties of matter are determined by the atoms or molecules that compose it.

Classifying a substance according to its composition is not always obvious and 

requires that we either know the true composition of the substance or are able to test it 

in a laboratory. For now, we focus on relatively common substances that you are likely to 

have encountered. Throughout this course, you will gain the knowledge to understand 

the composition of a larger variety of substances.

All known elements are listed in 
the periodic table in the inside 
front cover of this book.

Separating Mixtures
Chemists often want to separate a mixture into its components. Such separations can 

be easy or difficult, depending on the components in the mixture. In general, mix-

tures are separable because the different components have different physical or chemi-

cal properties. We can use various techniques that exploit these differences to achieve 

 ANSWER NOW! 1.2 

Cc
Conceptual 
Connection

PURE SUBSTANCES AND MIXTURES  In these images, a blue 

circle represents an atom of one type of element, and a red square represents an atom of 

a second type of element. Which image is a pure substance?

(a) (b) (c)  

None of the these

(d) 
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separation. For example, we can separate a mixture 

of sand and water by decanting—carefully pour-

ing off—the water into another container. A 

homogeneous mixture of liquids can usually be 

separated by distillation, a process in which the 

mixture is heated to boil off the more volatile (easily  

vaporizable) liquid. The volatile liquid is then recon-

densed in a condenser and collected in a separate flask 

(Figure 1.4▲). If a mixture is composed of an insoluble solid 

and a liquid, we can separate the two by filtration, in which the 

mixture is poured through filter paper in a funnel (Figure 1.5▲).

Condenser

Distillation

Cooling
water out

Mixture
Pure
liquid

Cooling
water in

When a mixture of 
liquids with different 
boiling points is heated...

... the most volatile 
component boils first.

The vapor is then cooled and 
collected as pure liquid.

▲FIGURE 1.4  Separating Substances by Distillation 

Stirring rodWhen a mixture
of a liquid and a
solid is poured
through filter
paper...

... the filter paper
traps the solid.

The liquid component
passes through
and is collected.

Funnel

Filtration

Water molecules change from liquid
to gaseous state: physical change.

H2O(l) H2O(g)

▲ FIGURE 1.6  Boiling, a Physical 
Change  When water boils, it 
turns into a gas but does not alter 
its chemical identity—the water 
molecules are the same in both the 
liquid and gaseous states. Boiling is a 
physical change, and the boiling point 
of water is a physical property.

▲ FIGURE 1.5  Separating 
Substances by Filtration 

	
1.4

	 Physical and Chemical 
Changes and Physical and 
Chemical Properties

Every day we witness changes in matter: ice melts, iron rusts, gasoline burns, fruit rip-

ens, and water evaporates. What happens to the molecules or atoms that compose these 

substances during such changes? The answer depends on the type of change. Changes 

that alter only state or appearance, but not composition, are physical changes. The 

atoms or molecules that compose a substance do not change their identity during a physi-

cal change. For example, when water boils, it changes its state from a liquid to a gas, but 

the gas remains composed of water molecules, so this is a physical change (Figure 1.6▲).
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In contrast, changes that alter the composition of matter are chemical changes. 

During a chemical change, atoms rearrange, transforming the original substances into 

different substances. For example, the rusting of iron is a chemical change. The atoms 

that compose iron (iron atoms) combine with oxygen molecules from air to form iron 

oxide, the orange substance we call rust (Figure 1.7◀). Figure 1.8▶ illustrates other 

examples of physical and chemical changes.

Physical and chemical changes are manifestations of physical and chemical properties. 

A physical property is a property that a substance displays without changing its composi-

tion, whereas a chemical property is a property that a substance displays only by 

changing its composition via a chemical change. The smell of gasoline is a physical prop-

erty—gasoline does not change its composition when it exhibits its odor. The flammability 

of gasoline, in contrast, is a chemical property—gasoline does change 

its composition when it burns, turning into completely new sub-

stances (primarily carbon dioxide and water). Physical properties 

include odor, taste, color, appearance, melting point, boiling point, 

and density. Chemical properties include corrosiveness, flammability, 

acidity, toxicity, and other such characteristics.

The differences between physical and chemical changes are not 

always apparent. Only chemical examination can confirm whether 

a particular change is physical or chemical. In many cases, however, 

we can identify chemical and physical changes based on what we 

know about the changes. Changes in the state of matter, such as 

melting or boiling, or changes in the physical condition of matter, 

such as those that result from cutting or crushing, are typically 

physical changes. Changes involving chemical reactions—often 

evidenced by temperature or color changes—are chemical changes.

A physical change results in 
a different form of the same 
substance, while a chemical 
change results in a completely 
different substance.

Iron atoms

Iron oxide
(rust)

Iron combines with oxygen to form iron oxide: chemical change.

4 Fe + 3 O2 2 Fe2O3

▲ FIGURE 1.7  Rusting, a 
Chemical Change  When iron rusts, 
the iron atoms combine with oxygen 
atoms to form a different chemical 
substance, the compound iron oxide. 
Rusting is a chemical change, and the 
tendency of iron to rust is a chemical 
property. A more detailed exploration 
of this reaction can be found in 
Section 20.9.

EXAMPLE 1.1	 Physical and Chemical Changes and Properties

Determine whether each change is physical or chemical. What kind of property 

(chemical or physical) is demonstrated in each case?

(a)	 the evaporation of rubbing alcohol

(b)	 the burning of lamp oil

(c)	 the bleaching of hair with hydrogen peroxide

(d)	 the formation of frost on a cold night

SOLUTION

(a)	 When rubbing alcohol evaporates, it changes from liquid to gas, but it 

remains alcohol—this is a physical change. The volatility (the ability to 

evaporate easily) of alcohol is therefore a physical property.

(b)	 Lamp oil burns because it reacts with oxygen in air to form carbon dioxide 

and water—this is a chemical change. The flammability of lamp oil is 

therefore a chemical property.

(c)	 Applying hydrogen peroxide to hair changes pigment molecules in hair that 

give it color—this is a chemical change. The susceptibility of hair to 

bleaching is therefore a chemical property.

(d)	 Frost forms on a cold night because water vapor in air changes its state to 

form solid ice—this is a physical change. The temperature at which water 

freezes is therefore a physical property.

FOR PRACTICE 1.1  Determine whether each change is physical or chemical. What 

kind of property (chemical or physical) is demonstrated in each case?

(a)	 A copper wire is hammered flat.

(b)	 A nickel dissolves in acid to form a blue-green solution.

(c)	 Dry ice sublimes without melting.

(d)	 A match ignites when struck on a flint.

Answers to For Practice and For 
More Practice problems can be 
found in Appendix IV.
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Solid sugar Dissolved sugar

C12H22O11(s) C12H22O11(aq)

Propane
Carbon dioxide 

and water

C3H8(g) + 5 O2(g) 3 CO2(g) + 4 H2O(g)

Gaseous carbon
dioxide

Solid carbon dioxide
(dry ice)

CO2(g)CO2(s)

Physical Change versus Chemical Change

(a) Dry ice subliming. 

(b) Sugar dissolving.                                         

(c) Propane gas burning. Chemical composition altered: Chemical change

Chemical composition unaltered: Physical change

Chemical composition unaltered: Physical change

▲ FIGURE 1.8  Physical and Chemical Changes  (a) The sublimation (the state change from 
a solid to a gas) of dry ice (solid CO2) is a physical change. (b) The dissolution of sugar is a physical 
change. (c) The burning of propane is a chemical change.
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1.5

	 Energy: A Fundamental Part of 
Physical and Chemical Change

		  The physical and chemical changes discussed in Section 1.4 are usually accom-

panied by energy changes. For example, when water evaporates from your skin (a physical 

change), the water molecules absorb energy from your body, making you feel cooler. When 

you burn natural gas on the stove (a chemical change), energy is released, heating the food 

you are cooking. Understanding the physical and chemical changes of matter—that is, 

understanding chemistry—requires that you understand energy changes and energy flow.

The scientific definition of energy is the capacity to do work. Work is defined as the 

action of a force through a distance. For instance, when you push a box across the floor 

or pedal your bicycle across the street, you have done work.

Force acts through distance; work is done.

The total energy of an object is a sum of its kinetic energy (the energy associated 

with its motion) and its potential energy (the energy associated with its position or 

composition). For example, a weight held several meters above the ground has potential 

energy due to its position within Earth’s gravitational field (Figure 1.9◀). If you drop the 

weight, it accelerates, and its potential energy is converted to kinetic energy. When the 

weight hits the ground, its kinetic energy is converted primarily to thermal energy, 

the energy associated with the temperature of an object. Thermal energy is actually a 

type of kinetic energy because it is associated with the motion of the individual atoms or 

molecules that make up an object. When the weight hits the ground, its kinetic energy is 

essentially transferred to the atoms and molecules that compose the ground, raising the 

temperature of the ground ever so slightly.

The first principle to note about how energy changes as the weight falls to the 

ground is that energy is neither created nor destroyed. The potential energy of the weight 

becomes kinetic energy as the weight accelerates toward the ground. The kinetic energy 

then becomes thermal energy when the weight hits the ground. The total amount of 

thermal energy that is released through the process is exactly equal to the initial poten-

tial energy of the weight. The idea that energy is neither created nor destroyed is known 

as the law of conservation of energy. Although energy can change from one type 

into another, and although it can flow from one object to another, the total quantity of 

energy does not change—it remains constant.

1.3 

Cc
Conceptual 
Connection

CHEMICAL AND PHYSICAL CHANGES  The diagram on the left 

represents liquid water molecules in a pan. Which of the three diagrams (a, b, or c) best 

represents the water molecules after they have been vaporized by boiling?

 ANSWER NOW!

(a) (b) (c)

10 kg
Weight on top of
building has high
potential energy
(unstable).

Potential energy
is converted to
kinetic energy.

Thermal energy

Dropped weight
has low potential
energy (stable).

▲ FIGURE 1.9  Energy 
Conversions  Gravitational potential 
energy is converted into kinetic 
energy when the weight is dropped. 
The kinetic energy is converted mostly 
to thermal energy when the weight 
strikes the ground.

In Chapter 21 we will discuss how 
energy conservation is actually part 
of a more general law that allows 
for the interconvertibility of mass 
and energy.


