

Introductory MIS

Experiencing MIS, 8/e

Kroenke & Boyle ©2019

Using MIS, 11/e

Kroenke & Boyle ©2020

Management Information Systems, 16/e

Laudon & Laudon ©2020

Essentials of MIS, 13/e

Laudon & Laudon ©2019

Processes, Systems, and Information: An

Introduction to MIS, 3/e

McKinney & Kroenke ©2019

Information Systems Today, 8/e

Valacich & Schneider ©2018

Introduction to Information Systems, 3/e

Wallace ©2018

Database

Hands-on Database, 2/e

Conger ©2014

Modern Database Management, 13/e

Hoffer, Ramesh, & Topi ©2019

Database Concepts, 9/e

Kroenke, Auer, Vandenberg, Yoder ©2020

Database Processing, 15/e

Kroenke, Auer, Vandenberg, Yoder ©2019

Systems Analysis and Design

Modern Systems Analysis and Design, 9/e

Valacich & George ©2020

Systems Analysis and Design, 10/e

Kendall & Kendall ©2019

Decision Support Systems

Business Intelligence, Analytics, and Data

Science, 4/e

Sharda, Delen & Turban ©2018

Analytics, Data Science,

and Artificial Intelligence:

Systems for Decision Support, 11/e

Sharda, Delen & Turban ©2020

Networking & Security

Business Data Networks and Security, 11/e

Panko & Panko ©2019

Corporate Computer Security, 4/e

Boyle & Panko ©2015

Electronic Commerce

E-commerce 2019: Business, Technology,

Society, 15/e

Laudon & Traver ©2020

Project Management

Project Management: Process, Technology

and Practice

Vaidyanathan ©2013

OTHER MIS TITLES OF INTEREST

Modern Systems
Analysis and Design
Joseph S. Valacich
University of Arizona

Joey F. George
Iowa State University

N I N T H

EDIT ION

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained
in the documents and related graphics published as part of the services for any purpose. All such documents and
related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information, including all warranties and conditions of mer-
chantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no
event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical er-
rors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make
improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen
shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2020, 2017, 2014 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030 or its affiliates. All
Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and per-
mission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For in-
formation regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global
Rights and Permissions Department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in
the United States and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the
property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress
are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship
between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Valacich, Joseph S., 1959- author. | George, Joey F., author.
Title: Modern systems analysis and design / Joseph S. Valacich, University of
 Arizona, Joey F. George, Iowa State University.
Description: 9th edition. | Boston : Pearson, [2018] | Includes
 bibliographical references and index.
Identifiers: LCCN 2018052268| ISBN 9780135172759 (alk. paper) |
 ISBN 0135172756 (alk. paper)
Subjects: LCSH: System design. | System analysis.
Classification: LCC QA76.9.S88 H6197 2018 | DDC 005.1/2--dc20 LC record available at
 https://lccn.loc.gov/2018052268

2015013648

10 9 8 7 6 5 4 3 2 1

Vice President of Courseware Portfolio Management:
 Andrew Gilfillan
Executive Portfolio Manager: Samantha Lewis
Team Lead, Content Production: Laura Burgess
Content Producer: Faraz Sharique Ali
Portfolio Management Assistant: Bridget Daly
Director of Product Marketing: Brad Parkins
Director of Field Marketing: Jonathan Cottrell
Product Marketing Manager: Heather Taylor
Field Marketing Manager: Bob Nisbet
Product Marketing Assistant: Liz Bennett
Field Marketing Assistant: Derrica Moser
Senior Operations Specialist: Diane Peirano
Senior Art Director: Mary Seiner
Interior and Cover Design: Pearson CSC

Cover Photo: ParabolStudio/Shutterstock
Chapter Opener Photo: spainter_vfx/Shutterstock
Part Opener Photo: ParabolStudio/Shutterstock
Senior Product Model Manager: Eric Hakanson
Manager, Digital Studio: Heather Darby
Course Producer, MyLab MIS: Jaimie Noy
Digital Studio Producer: Tanika Henderson
Full-Service Project Manager: Pearson CSC, Freddie
 Domini and Sindhuja Vadlamani
Full Service Vendor: Pearson CSC
Manufacturing Buyer: LSC Communications, Maura
 Zaldivar-Garcia
Text Printer/Bindery: LSC Communications
Cover Printer: Phoenix Color

ISBN 10: 0-13-517275-6
ISBN 13: 978-0-13-517275-9

http://www.pearsoned.com/permissions/

To my mother, Mary Valacich. You are the best!
—Joe

To my parents, John and Loree George.
—Joey

This page intentionally left blank

v

Preface xix

PART ONE Foundations for Systems Development 1

 1 The Systems Development Environment 3

 2 The Origins of Software 23

 3 Managing the Information Systems Project 40

Appendix: Object-Oriented Analysis and Design: Project Management 74

PART TWO Planning 83

 4 Identifying and Selecting Systems Development Projects 85

 5 Initiating and Planning Systems Development Projects 109

PART THREE Analysis 143

 6 Determining System Requirements 145

 7 Structuring System Process Requirements 179

Appendix 7A: Object-Oriented Analysis and Design: Use Cases 213

Appendix 7B: Object-Oriented Analysis and Design: Activity Diagrams 228

Appendix 7C: Business Process Modeling 233

 8 Structuring System Data Requirements 242

Appendix: Object-Oriented Analysis and Design: Object Modeling–Class

Diagrams 277

PART FOUR Design 295

 9 Designing Databases 297

 10 Designing Forms and Reports 339

 11 Designing Interfaces and Dialogues 367

 12 Designing Distributed and Internet Systems 403

PART FIVE Implementation and Maintenance 437

 13 System Implementation 439

 14 Maintaining Information Systems 471

GLOSSARY OF TERMS 489

GLOSSARY OF ACRONYMS 496

INDEX 497

Brief Contents

This page intentionally left blank

vii

Preface xix

PART ONE Foundations for Systems Development

AN OVERVIEW OF PART ONE 2

 1 The Systems Development Environment 3
Learning Objectives 3

Introduction 3

A Modern Approach to Systems Analysis and Design 5

Developing Information Systems and the Systems Development Life Cycle 6

The Heart of the Systems Development Process 11
The Traditional Waterfall SDLC 12

Agile Methodologies 14
eXtreme Programming 15

Scrum 16

Agile in Practice 17

Object-Oriented Analysis and Design 18

Our Approach to Systems Development 20

Summary 21

Key Terms 21

Review Questions 21

Problems and Exercises 22

Field Exercises 22

References 22

 2 The Origins of Software 23
Learning Objectives 23

Introduction 23

Systems Acquisition 23
Outsourcing 24

Sources of Software 25

Choosing Off-the-Shelf Software 31

Validating Purchased Software Information 33

Reuse 34

Summary 36

Key Terms 37

Review Questions 37

Contents

viii CONTENTS

Problems and Exercises 37

Field Exercises 37

References 38

BEC CASE: THE ORIGINS OF SOFTWARE 39
Case Questions 39

 3 Managing the Information Systems Project 40
Learning Objectives 40

Introduction 40

Pine Valley Furniture Company Background 40

Managing the Information Systems Project 42
Initiating a Project 46

Planning the Project 48

Executing the Project 55

Closing Down the Project 58

Representing and Scheduling Project Plans 59
Representing Project Plans 61

Calculating Expected Time Durations Using PERT 61

Constructing a Gantt Chart and Network Diagram at Pine Valley Furniture 62

Using Project Management Software 65
Establishing a Project Start Date 66

Entering Tasks and Assigning Task Relationships 66

Selecting a Scheduling Method to Review Project Reports 67

Summary 69

Key Terms 69

Review Questions 70

Problems and Exercises 70

Field Exercises 72

References 72

Appendix: Object-Oriented Analysis and Design: Project Management 74

Learning Objectives 74

Unique Characteristics of an OOSAD Project 74

Define the System as a Set of Components 74
Complete Hard Problems First 74
Using Iterations to Manage the Project 76
Don’t Plan Too Much Up Front 76
How Many and How Long Are Iterations? 78
Project Activity Focus Changes Over the Life of a Project 78

Summary 80

Review Question 80

Problems and Exercises 80

BEC CASE: MANAGING THE INFORMATION SYSTEMS PROJECT 81
Case Questions 81

PINE
VALLEY
FURNITURE

PINE
VALLEY
FURNITURE

PINE
VALLEY
FURNITURE

 CONTENTS ix

PART TWO Planning

AN OVERVIEW OF PART TWO 84

 4 Identifying and Selecting Systems Development Projects 85
Learning Objectives 85

Introduction 85

Identifying and Selecting Systems Development Projects 86
The Process of Identifying and Selecting IS Development Projects 87

Deliverables and Outcomes 91

Corporate and Information Systems Planning 92
Corporate Strategic Planning 93

Information Systems Planning 95

Electronic Commerce Applications: Identifying and Selecting Systems Development
Projects 102

Internet Basics 102

Pine Valley Furniture WebStore 103

Summary 104

Key Terms 104

Review Questions 105

Problems and Exercises 105

Field Exercises 106

References 106

BEC CASE: IDENTIFYING AND SELECTING SYSTEMS DEVELOPMENT
PROJECTS 108
Case Questions 108

 5 Initiating and Planning Systems Development Projects 109
Learning Objectives 109

Introduction 109

Initiating and Planning Systems Development Projects 109

The Process of Initiating and Planning is Development Projects 110
Deliverables and Outcomes 111

Assessing Project Feasibility 112
Assessing Economic Feasibility 113

Assessing Technical Feasibility 121

Assessing Other Feasibility Concerns 124

Building and Reviewing the Baseline Project Plan 125
Building the Baseline Project Plan 125

Reviewing the Baseline Project Plan 130

Electronic Commerce Applications: Initiating and Planning Systems Development Projects 135
Initiating and Planning Systems Development Projects for Pine Valley Furniture’s WebStore 135

Summary 137

Key Terms 137

PINE
VALLEY
FURNITURE

PINE
VALLEY
FURNITURE

x CONTENTS

Review Questions 138

Problems and Exercises 138

Field Exercises 139

References 139

BEC CASE: INITIATING AND PLANNING SYSTEMS DEVELOPMENT PROJECTS 141
Case Questions 141

PART THREE Analysis

AN OVERVIEW OF PART THREE 144

 6 Determining System Requirements 145
Learning Objectives 145

Introduction 145

Performing Requirements Determination 145
The Process of Determining Requirements 146

Deliverables and Outcomes 147

Traditional Methods for Determining Requirements 148
Interviewing and Listening 148

Interviewing Groups 152

Directly Observing Users 153

Analyzing Procedures and Other Documents 154

Contemporary Methods for Determining System
Requirements 159

Joint Application Design 160

Using Prototyping During Requirements Determination 162

Radical Methods for Determining System Requirements 164
Identifying Processes to Reengineer 165

Disruptive Technologies 166

Requirements Determination Using Agile Methodologies 167
Continual User Involvement 167

Agile Usage-Centered Design 168

The Planning Game from eXtreme Programming 168

Electronic Commerce Applications: Determining System
Requirements 170

Determining System Requirements for Pine Valley Furniture’s
WebStore 171

Summary 173

Key Terms 174

Review Questions 174

Problems and Exercises 175

Field Exercises 175

References 176

BEC CASE: DETERMINING SYSTEM REQUIREMENTS 177
Case Questions 178

PINE
VALLEY
FURNITURE

 CONTENTS xi

 7 Structuring System Process Requirements 179
Learning Objectives 179

Introduction 179

Process Modeling 179
Modeling a System’s Process for Structured Analysis 180

Deliverables and Outcomes 180

Data Flow Diagramming Mechanics 181
Definitions and Symbols 181

Developing DFDs: An Example 183

Data Flow Diagramming Rules 186

Decomposition of DFDs 187

Balancing DFDs 190

An Example DFD 192

Using Data Flow Diagramming in the Analysis Process 195
Guidelines for Drawing DFDs 195

Using DFDs as Analysis Tools 197

Using DFDs in Business Process Reengineering 198

Modeling Logic with Decision Tables 199

Electronic Commerce Application: Process Modeling Using Data Flow Diagrams 203
Process Modeling for Pine Valley Furniture’s WebStore 203

Summary 205

Key Terms 205

Review Questions 206

Problems and Exercises 206

Field Exercises 212

References 212

Appendix 7A: Object-Oriented Analysis and Design: Use Cases 213

Learning Objectives 213

Introduction 213

Use Cases 213
What Is a Use Case? 213
Use Case Diagrams 214
Definitions and Symbols 215

Written Use Cases 218
Level 219
The Rest of the Template 219

Electronic Commerce Application: Process Modeling Using Use Cases 221

Writing Use Cases for Pine Valley Furniture’s WebStore 223

Summary 226

Key Terms 226

Review Questions 226

Problems and Exercises 226

Field Exercise 227

References 227

Hoosier
Burger

PINE
VALLEY
FURNITURE

xii CONTENTS

Appendix 7B: Object-Oriented Analysis and Design: Activity Diagrams 228

Learning Objectives 228

Introduction 228

When to Use an Activity Diagram 231

Problems and Exercises 231

Reference 232

Appendix 7C: Business Process Modeling 233

Learning Objective 233

Introduction 233

Basic Notation 233

Business Process Example 237

Summary 238

Key Terms 238

Review Questions 238

Problems and Exercises 238

Field Exercises 239

References 239

BEC CASE: STRUCTURING SYSTEM PROCESS REQUIREMENTS 240

Case Questions 241

 8 Structuring System Data Requirements 242
Learning Objectives 242

Introduction 242

Conceptual Data Modeling 243
The Conceptual Data Modeling Process 244

Deliverables and Outcomes 245

Gathering Information for Conceptual Data Modeling 246

Introduction to E-R Modeling 248
Entities 248

Attributes 250

Candidate Keys and Identifiers 251

Other Attribute Types 252

Relationships 253

Conceptual Data Modeling and the E-R Model 254
Degree of a Relationship 255

Cardinalities in Relationships 257

Naming and Defining Relationships 258

Associative Entities 259

Summary of Conceptual Data Modeling with E-R Diagrams 261

Representing Supertypes and Subtypes 261

Business Rules 262
Domains 263

Triggering Operations 265

 CONTENTS xiii

Role of Packaged Conceptual Data Models: Database Patterns 266
Universal Data Models 266

Industry-Specific Data Models 266

Benefits of Database Patterns and Packaged Data Models 266

Electronic Commerce Application: Conceptual Data Modeling 267
Conceptual Data Modeling for Pine Valley Furniture’s WebStore 267

Summary 271

Key Terms 271

Review Questions 272

Problems and Exercises 273

Field Exercises 275

References 276

Appendix: Object-Oriented Analysis and Design: Object Modeling—Class Diagrams 277

Learning Objectives 277

Introduction 277

Representing Objects and Classes 277

Types of Operations 278

Representing Associations 279

Representing Associative Classes 281

Representing Stereotypes for Attributes 282

Representing Generalization 282

Representing Aggregation 285

An Example of Conceptual Data Modeling at Hoosier Burger 286

Summary 289

Key Terms 289

Review Questions 290

Problems and Exercises 290

References 291

BEC CASE: STRUCTURING SYSTEM DATA REQUIREMENTS 292
Case Questions 293

PART FOUR Design

AN OVERVIEW OF PART FOUR 296

 9 Designing Databases 297
Learning Objectives 297

Introduction 297

Database Design 297
The Process of Database Design 298

Deliverables and Outcomes 300

The Relational Database Model 303

Well-Structured Relations 303

PINE
VALLEY
FURNITURE

Hoosier
Burger

xiv CONTENTS

Normalization 304
Rules of Normalization 305

Functional Dependence and Primary Keys 305

Second Normal Form 306

Third Normal Form 306

Transforming E-R Diagrams into Relations 307
Represent Entities 308

Represent Relationships 308

Summary of Transforming E-R Diagrams to Relations 312

Merging Relations 312
An Example of Merging Relations 312

View Integration Problems 313

Logical Database Design for Hoosier Burger 314

Physical File and Database Design 317
Designing Fields 317

Choosing Data Types 318

Controlling Data Integrity 319

Designing Physical Tables 320

Arranging Table Rows 323

Designing Controls for Files 327

Physical Database Design for Hoosier Burger 328

Electronic Commerce Application: Designing Databases 329
Designing Databases for Pine Valley Furniture’s WebStore 330

Summary 332

Key Terms 333

Review Questions 334

Problems and Exercises 334

Field Exercises 335

References 336

BEC CASE: DESIGNING DATABASES 337
Case Questions 338

 10 Designing Forms and Reports 339
Learning Objectives 339

Introduction 339

Designing Forms and Reports 339
The Process of Designing Forms and Reports 341

Deliverables and Outcomes 342

Formatting Forms and Reports 346
General Formatting Guidelines 346

Highlighting Information 348

Color versus No Color 350

Displaying Text 351

Designing Tables and Lists 351

Paper versus Electronic Reports 355

Hoosier
Burger

Hoosier
Burger

PINE
VALLEY
FURNITURE

 CONTENTS xv

Assessing Usability 357
Usability Success Factors 357

Measures of Usability 358

Electronic Commerce Applications: Designing Forms and Reports for Pine Valley
Furniture’s WebStore 359

General Guidelines 359

Designing Forms and Reports at Pine Valley Furniture 359

Lightweight Graphics 360

Forms and Data Integrity Rules 360

Stylesheet-Based HTML 361

Summary 361

Key Terms 361

Review Questions 362

Problems and Exercises 362

Field Exercises 363

References 363

BEC CASE: DESIGNING FORMS AND REPORTS 365
Case Questions 365

 11 Designing Interfaces and Dialogues 367
Learning Objectives 367

Introduction 367

Designing Interfaces and Dialogues 367
The Process of Designing Interfaces and Dialogues 367

Deliverables and Outcomes 368

Interaction Methods and Devices 368
Methods of Interacting 368

Hardware Options for System Interaction 376

Designing Interfaces 378
Designing Layouts 378

Structuring Data Entry 381

Controlling Data Input 383

Providing Feedback 384

Providing Help 386

Designing Dialogues 388
Designing the Dialogue Sequence 389

Building Prototypes and Assessing Usability 391

Designing Interfaces and Dialogues in Graphical Environments 393
Graphical Interface Design Issues 393

Dialogue Design Issues in a Graphical Environment 395

Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley
Furniture’s WebStore 395

General Guidelines 396

Designing Interfaces and Dialogues at Pine Valley Furniture 397

Menu-Driven Navigation with Cookie Crumbs 397

PINE
VALLEY
FURNITURE

PINE
VALLEY
FURNITURE

xvi CONTENTS

Summary 398

Key Terms 398

Review Questions 399

Problems and Exercises 399

Field Exercises 400

References 400

BEC CASE: DESIGNING INTERFACES AND DIALOGUES 401
Case Questions 402

 12 Designing Distributed and Internet Systems 403
Learning Objectives 403

Introduction 403

Designing Distributed and Internet Systems 403
The Process of Designing Distributed and Internet Systems 403

Deliverables and Outcomes 404

Designing LAN and Client/Server Systems 405
Designing Systems for LANs 405

Designing Systems for a Client/Server Architecture 407

Cloud Computing 411
What Is Cloud Computing? 411

Managing the Cloud 415

Service-Oriented Architecture 418

Web Services 419

Designing Internet Systems 420
Internet Design Fundamentals 421

Site Consistency 422

Design Issues Related to Site Management 424

Electronic Commerce Application: Designing a Distributed Advertisement Server
for Pine Valley Furniture’s WebStore 427

Advertising on Pine Valley Furniture’s WebStore 427

Designing the Advertising Component 428

Designing the Management Reporting Component 429

Summary 430

Key Terms 430

Review Questions 432

Problems and Exercises 432

Field Exercises 433

References 434

BEC CASE: DESIGNING DISTRIBUTED AND INTERNET SYSTEMS 435
Case Questions 435

PINE
VALLEY
FURNITURE

 CONTENTS xvii

PART FIVE Implementation and Maintenance

AN OVERVIEW OF PART FIVE 438

 13 System Implementation 439
Learning Objectives 439

Introduction 439

System Implementation 440
Coding, Testing, and Installation Processes 441

Deliverables and Outcomes from Coding, Testing, and Installation 441

Deliverables and Outcomes from Documenting the System, Training Users, and Supporting
Users 442

Software Application Testing 443
Seven Different Types of Tests 444

The Testing Process 446

Combining Coding and Testing 448

Acceptance Testing by Users 449

Installation 450
Direct Installation 450

Parallel Installation 450

Single-Location Installation 451

Phased Installation 452

Planning Installation 452

Documenting the System 453
User Documentation 454

Training and Supporting Users 455
Training Information Systems Users 456

Supporting Information Systems Users 457

Organizational Issues in Systems Implementation 458
Why Implementation Sometimes Fails 459

Security Issues 461

Electronic Commerce Application: System Implementation and Operation for Pine Valley
Furniture’s WebStore 463

Developing Test Cases for the WebStore 463

Alpha and Beta Testing the WebStore 464

WebStore Installation 465

Project Closedown 465

Summary 466

Key Terms 466

Review Questions 467

Problems and Exercises 467

Field Exercises 468

References 469

BEC CASE: SYSTEM IMPLEMENTATION 470
Case Questions 470

PINE
VALLEY
FURNITURE

xviii CONTENTS

 14 Maintaining Information Systems 471
Learning Objectives 471

Introduction 471

Maintaining Information Systems 471
The Process of Maintaining Information Systems 472

Deliverables and Outcomes 473

Conducting Systems Maintenance 474
Types of Maintenance 474

The Cost of Maintenance 475

Managing Maintenance 477

Role of Automated Development Tools in Maintenance 482

Website Maintenance 482

Electronic Commerce Application: Maintaining an Information System for Pine Valley
Furniture’s WebStore 484

Maintaining Pine Valley Furniture’s WebStore 484

Cannot Find Server 484

Summary 485

Key Terms 486

Review Questions 486

Problems and Exercises 487

Field Exercises 487

References 487

GLOSSARY OF TERMS 489

GLOSSARY OF ACRONYMS 496

INDEX 497

PINE
VALLEY
FURNITURE

xix

Preface
DESCRIPTION

Modern Systems Analysis and Design, Ninth Edition, covers the concepts, skills, meth-
odologies, techniques, tools, and perspectives essential for systems analysts to suc-
cessfully develop information systems. The primary target audience is upper-division
undergraduates in a management information systems (MIS) or computer informa-
tion systems curriculum; a secondary target audience is MIS majors in MBA and MS
programs. Although not explicitly written for the junior college and professional de-
velopment markets, this book can also be used by these programs.

We have over 60 years of combined teaching experience in systems analysis and
design and have used that experience to create this newest edition of Modern Systems
Analysis and Design. We provide a clear presentation of the concepts, skills, and tech-
niques that students need to become effective systems analysts who work with others
to create information systems for businesses. We use the systems development life
cycle (SDLC) model as an organizing tool throughout the book to provide students
with a strong conceptual and systematic framework. The SDLC in this edition has five
phases and a circular design.

With this text, we assume that students have taken an introductory course on
computer systems and have experience designing programs in at least one program-
ming language. We review basic system principles for those students who have not
been exposed to the material on which systems development methods are based.
We also assume that students have a solid background in computing literacy and a
general understanding of the core elements of a business, including basic terms as-
sociated with the production, marketing, finance, and accounting functions.

NEW TO THE NINTH EDITION

The following features are new to the Ninth Edition:

• New material. To keep up with the changing environment for systems develop-
ment, Chapter 1 has undergone a thorough revision, with a renewed focus on
agile methodologies. While the book has long included material on eXtreme
Programming, we now also include a section on Scrum.

• Updated content. Throughout the book, the content in each chapter has been
updated where appropriate. We have expanded our coverage of multiple
topics in Chapter 2. Another example of an updated chapter is Chapter 13,
where we have updated and extended the section on information systems
security. Chapter 13 also includes new examples of systems implementation
failure. All screenshots come from current versions of leading software prod-
ucts. We have also made a special effort to update our reference lists, purging
out-of-date material and including current references. Throughout the book
figures, tables, and related content have been updated and refreshed.

• Dropped material. In our efforts to keep the book current and to streamline
it, the coverage of some things was dropped from this edition. Chapters 1, 6
and 7 no longer include computer assisted systems engineering (CASE) tools.
We also made some changes in the appendices to Chapter 7. We deleted the
appendix on UML sequential diagrams. Appendix 7A is still about use cases,

xx PREFACE

and Appendix 7B is still about activity diagrams, but Appendix 7C is now
about Business Process Management Notation.

• Organization. We have retained the organization of the book first introduced
in the Sixth Edition, with the only change being the deletion of the former
Appendix 7C. We have 14 chapters and 5 appendices. The first appendix fol-
lows Chapter 1. Three appendices follow Chapter 7. The fifth appendix follows
Chapter 8. This streamlined organization worked well in the Sixth, Seventh
and Eighth Editions, so we decided to continue with it and improve on it.

• Approach to presentation of object-oriented material. We generally retain our
approach to object-orientation (OO) from the last edition. Brief appendices
related to the object-oriented approach continue to appear immediately after
related chapters. The OO appendices appear as follows: Chapter 3 features
a special OO section on IS project management. Chapter 7 now has two OO
appendices: one on use cases and one about activity diagrams. (The third
appendix to Chapter 7 is about Business Process Management Notation,
which is not part of UML, although it is governed by the Object Management
Group (OMG).) Chapter 8 has a special section on object-oriented database
design. The rationale for this organization is the same as in the past: to cleanly
separate out structured and object-oriented approaches so that instructors
not teaching OO can bypass it. On the other hand, instructors who want to
expose their students to object-orientation can now do so with minimal effort
devoted to finding the relevant OO material.

• Updated illustrations of technology. Screen captures have been updated through-
out the text to show examples using the latest versions of programming and
Internet development environments (including the latest versions of .NET,
Visio, and Microsoft Office) and user interface designs. Many references to
Websites are provided for students to stay current with technology trends that
affect the analysis and design of information systems.

Themes of Modern Systems Analysis and Design

1. Systems development is firmly rooted in an organizational context. The suc-
cessful systems analyst requires a broad understanding of organizations, orga-
nizational culture, and organizational operations.

2. Systems development is a practical field. Coverage of current practices as well
as accepted concepts and principles is essential in a textbook.

3. Systems development is a profession. Standards of practice, a sense of con-
tinuing personal development, ethics, and a respect for and collaboration
with the work of others are general themes in the textbook.

4. Systems development has significantly changed with the explosive growth in
databases, data-driven systems architectures, the Internet, and agile method-
ologies. Systems development and database management can be and should
be taught in a highly coordinated fashion. The text is compatible with the
Ho�er, Ramesh, and Topi database text, Modern Database Management, Thir-
teenth Edition, also published by Pearson. The proper linking of these two
textbooks is a strategic opportunity to meet the needs of the IS academic
field.

5. Success in systems analysis and design requires not only skills in methodolo-
gies and techniques, but also project management skills for managing time,
resources, and risks. Thus, learning systems analysis and design requires a
thorough understanding of the process as well as the techniques and deliver-
ables of the profession.

 PREFACE xxi

Given these themes, this textbook emphasizes the following:

• A business, rather than a technology, perspective;

• The role, responsibilities, and mind-set of the systems analyst as well as the
systems project manager, rather than those of the programmer or business
manager; and

• The methods and principles of systems development, rather than the spe-
cific tools or tool-related skills of the field.

DISTINCTIVE FEATURES

The following are some of the distinctive features of Modern Systems Analysis and
Design:

1. This book is organized in parallel to the Ho�er, Ramesh, and Topi database
text, Modern Database Management, Thirteenth Edition (2019), which will fa-
cilitate consistency of frameworks, definitions, methods, examples, and no-
tations to better support systems analysis and design and database courses
adopting both texts. Even with the strategic compatibilities between this text
and Modern Database Management, each of these books is designed to stand
alone as a market leader.

2. The grounding of systems development in the typical architecture for systems in
modern organizations, including database management and Web-based systems.

3. A clear linkage of all dimensions of systems description and modeling—
process, decision, and data modeling—into a comprehensive and compatible
set of systems analysis and design approaches. Such a broad coverage is nec-
essary so that students understand the advanced capabilities of the many sys-
tems development methodologies and tools that are automatically generating
a large percentage of code from design specifications.

4. Extensive coverage of oral and written communication skills, including
 systems documentation, project management, team management, and a va-
riety of systems development and acquisition strategies (e.g., life cycle, pro-
totyping, object orientation, Joint Application Development [JAD], systems
re- engineering, and agile methodologies).

5. Consideration of standards for the methodologies of systems analysis and the
platforms on which systems are designed.

6. Discussion of systems development and implementation within the context
of change management, conversion strategies, and organizational factors in
systems acceptance.

7. Careful attention to human factors in systems design that emphasize usability
in both character-based and graphical user interface situations.

8. Visual development products are illustrated and the current limitations tech-
nologies are highlighted.

9. The text includes a separate chapter on systems maintenance. Given the type
of job many graduates first accept and the large installed base of systems, this
chapter covers an important and often neglected topic in systems analysis and
design texts.

PEDAGOGICAL FEATURES

The pedagogical features of Modern Systems Analysis and Design reinforce and apply
the key content of the book.

xxii PREFACE

Three Illustrative Fictional Cases

The text features three fictional cases, described in the following text.
Pine Valley Furniture (PVF): In addition to demonstrating an electronic business-

to-consumer shopping Website, several other systems development activities from
PVF are used to illustrate key points. PVF is introduced in Chapter 3 and revisited
throughout the book. As key systems development life cycle concepts are presented,
they are applied and illustrated with this descriptive case. For example, in Chapter 5
we explore how PVF plans a development project for a customer tracking system. A
margin icon identifies the location of the case segments.

Hoosier Burger (HB): This second illustrative case is introduced in Chapter 7 and
revisited throughout the book. HB is a fictional fast-food restaurant in Bloomington,
Indiana. We use this case to illustrate how analysts would develop and implement an auto-
mated food-ordering system. A margin icon identifies the location of the case segments.

Petrie Electronics: This fictional retail electronics company is used as an extended
project case at the end of 12 of the 14 chapters, beginning with Chapter 2. Designed
to bring the chapter concepts to life, this case illustrates how a company initiates,
plans, models, designs, and implements a customer loyalty system. Discussion ques-
tions are included to promote critical thinking and class participation. Suggested
solutions to the discussion questions are provided in the Instructor’s Manual.

End-of-Chapter Material

We developed an extensive selection of end-of-chapter materials that are designed to
accommodate various learning and teaching styles.

• Chapter Summary. Reviews the major topics of the chapter and previews the
connection of the current chapter with future ones.

• Key Terms. Designed as a self-test feature, students match each key term in the
chapter with a definition.

• Review Questions. Test students’ understanding of key concepts.

• Problems and Exercises. Test students’ analytical skills and require them to apply
key concepts.

• Field Exercises. Give students the opportunity to explore the practice of
systems analysis and design in organizations.

• Margin Term Definitions. Each key term and its definition appear in the margin.
Glossaries of terms and acronyms appear at the back of the book.

• References. References are located at the end of each chapter. The total number
of references in this text amounts to over 100 books, journals, and Websites
that can provide students and faculty with additional coverage of topics.

USING THIS TEXT

As stated earlier, this book is intended for mainstream systems analysis and design
courses. It may be used in a one-semester course on systems analysis and design or
over two quarters (first in a systems analysis and then in a systems design course).
Because this book text parallels Modern Database Management, chapters from this
book and from Modern Database Management can be used in various sequences suit-
able for your curriculum. The book will be adopted typically in business schools or
departments, not in computer science programs. Applied computer science or com-
puter technology programs may also adopt the book.

The typical faculty member who will find this book most interesting is someone who

• has a practical, rather than technical or theoretical, orientation;

• has an understanding of databases and the systems that use databases; and

• uses practical projects and exercises in their courses.

Hoosier
Burger

PINE
VALLEY
FURNITURE

 PREFACE xxiii

More specifically, academic programs that are trying to better relate their sys-
tems analysis and design and database courses as part of a comprehensive under-
standing of systems development will be especially attracted to this book.

The outline of the book generally follows the systems development life cycle,
which allows for a logical progression of topics; however, it emphasizes that vari-
ous approaches (e.g., prototyping and iterative development) are also used, so
what appears to be a logical progression often is a more cyclic process. Part One
provides an overview of systems development and previews the remainder of the
book. Part One also introduces students to the many sources of software that they
can draw on to build their systems and to manage projects. The remaining four
parts provide thorough coverage of the five phases of a generic systems develop-
ment life cycle, interspersing coverage of alternatives to the SDLC as appropriate.
Some chapters may be skipped depending on the orientation of the instructor or
the students’ background. For example, Chapter 3 (Managing the Information
Systems Project) can be skipped or quickly reviewed if students have completed
a course on project management. Chapter 4 (Identifying and Selecting Systems
Development Projects) can be skipped if the instructor wants to emphasize sys-
tems development once projects are identified or if there are fewer than 15 weeks
available for the course. Chapters 8 (Structuring System Data Requirements) and
9 (Designing Databases) can be skipped or quickly scanned (as a refresher) if stu-
dents have already had a thorough coverage of these topics in a previous database
or data structures course. The sections on object orientation in Chapters 3, 7, and
8 can be skipped if faculty wish to avoid object-oriented topics. Finally, Chapter 14
(Maintaining Information Systems) can be skipped if these topics are beyond the
scope of your course.

Because the material is presented within the flow of a systems development
project, it is not recommended that you attempt to use the chapters out of sequence,
with a few exceptions: Chapter 9 (Designing Databases) can be taught after Chapters
10 (Designing Forms and Reports) and 11 (Designing Inferfaces and Dialogues), but
Chapters 10 and 11 should be taught in sequence.

THE SUPPLEMENT PACKAGE:
HTTP://WWW.PEARSONHIGHERED.COM/VALACICH

A comprehensive and flexible technology support package is available to enhance
the teaching and learning experience. All instructor supplements are available on
the text Website: http://www.pearsonhighered.com/valacich.

Instructor Resources

At the Instructor Resource Center, www.pearsonhighered.com/irc, instructors can
easily register to gain access to a variety of instructor resources available with this
text in downloadable format. If assistance is needed, our dedicated technical support
team is ready to help with the media supplements that accompany this text. Visit
http://support.pearson.com/getsupport for answers to frequently asked questions
and toll-free user support phone numbers.

The following supplements are available with this text:

• Instructor’s Manual

• Test Bank

• TestGen® Computerized Test Bank

• PowerPoint Presentation

http://www.pearsonhighered.com/valacich
http://www.pearsonhighered.com/irc
http://support.pearson.com/getsupport

xxiv PREFACE

ACKNOWLEDGMENTS

The authors have been blessed by considerable assistance from many people on all
aspects of preparation of this text and its supplements. We are, of course, respon-
sible for what eventually appears between the covers, but the insights, corrections,
contributions, and prodding of others have greatly improved our manuscript. Over
the years, dozens of people have reviewed the various editions of this textbook. Their
contributions have stimulated us, frequently prompting us to include new topics and
innovative pedagogy. We greatly appreciate the efforts of the many faculty and prac-
ticing systems analysts who have reviewed this text.

We extend a special note of thanks to Jeremy Alexander, who was instrumental
in conceptualizing and writing the PVF WebStore feature that appears in Chapters 4
through 14. The addition of this feature has helped make those chapters more mod-
ern and innovative.

We also wish to thank Atish Sinha of the University of Wisconsin–Milwaukee
for writing the original version of some of the object-oriented analysis and design
material. Dr. Sinha, who has been teaching this topic for several years to both under-
graduates and MBA students, executed a challenging assignment with creativity and
cooperation.

We are also indebted to our undergraduate and MBA students, who have given
us many helpful comments as they worked with drafts of this text, and our thanks
go to Fred McFadden (University of Colorado, Colorado Springs), Mary Prescott
(University of South Florida), Ramesh Venkataraman (Indiana University), and
Heikki Topi (Bentley University) for their assistance in coordinating this text with its
companion book, Modern Database Management, also by Pearson Education.

Finally, we have been fortunate to work with a large number of creative and
insightful people at Pearson, who have added much to the development, format, and
production of this text. We have been thoroughly impressed with their commitment
to this text and to the IS education market. These people include: Samantha Lewis
(Executive Portfolio Manager), Madeline Houpt (Portfolio Management Assistant),
Faraz Sharique Ali (Content Producer) at Pearson, and Freddie Domini and Sindhuja
Vadlamani (Full-Service Project Management) at Pearson CSC.

The writing of this text has involved thousands of hours of time from the au-
thors and from all of the people listed previously. Although our names will be visibly
associated with this book, we know that much of the credit goes to the individuals
and organizations listed here for any success it might achieve. It is important for the
reader to recognize all the individuals and organizations that have been committed
to the preparation and production of this book.

Joseph S. Valacich, Tucson, Arizona
Joey F. George, Ames, Iowa

Chapter 1

The Systems Development Environment

Chapter 2

The Origins of Software

Foundations for Systems
Development

Chapter 3

Managing the Information Systems

Project

PART ONE

1

2

You are beginning a journey that will enable you to
build on every aspect of your education and experience.
Becoming a systems analyst is not a goal; it is a path to a
rich and diverse career that will allow you to exercise and
continue to develop a wide range of talents. We hope that
this introductory part of the text helps open your mind to
the opportunities of the systems analysis and design field
and to the engaging nature of systems work.

Chapter 1 shows you what systems analysis and
design is all about and how it has evolved over the past
several decades. As businesses and systems have become
more sophisticated and more complex, there has been
an increasing emphasis on speed in systems analysis and
design. Systems development began as an art, but most
businesspeople soon realized this was not a tenable long-
term solution to developing systems to support business
processes. Systems development became more structured
and more like engineering, and managers stressed the
importance of planning, project management, and docu-
mentation. The focus of systems analysis and design has
shifted to agile development. The evolution of systems
analysis and design and the current focus on agility are
explained in Chapter 1. It is also important, however,
that you remember that systems analysis and design exists
within a multifaceted organizational context that involves
other organizational members and external parties.
Understanding systems development requires an under-
standing not only of each technique, tool, and method,
but also of how these elements complement and support
each other within an organizational setting.

As you read this book, you’ll also discover that the
systems analysis and design field is constantly adapting to
new situations due to a strong commitment to constant
improvement. Our goal in this book is to provide you with
a mosaic of the skills needed to work effectively in any
environment where you may find yourself, armed with

OVERVIEW

the knowledge to determine the best practices for that
situation and argue for them effectively.

Chapter 2 presents an introduction to the many
sources from which software and software components can
be obtained. Back when systems analysis and design was
an art, all systems were written from scratch by in-house
experts. Businesses had little choice. Now in-house devel-
opment is much rarer, so it becomes crucial that systems
analysts understand the software industry and the many
different sources of software. Chapter 2 provides an initial
map of the software industry landscape and explains most
of the many choices available to systems analysts.

Chapter 3 addresses a fundamental characteristic
of life as a systems analyst: working within the framework
of projects with constrained resources. All systems-related
work demands attention to deadlines, working within bud-
gets, and coordinating the work of various people. The
very nature of the systems development life cycle (SDLC)
implies a systematic approach to a project, which is a group
of related activities leading to a final deliverable. Projects
must be planned, started, executed, and completed. The
planned work of the project must be represented so that
all interested parties can review and understand it. In your
job as a systems analyst, you will have to work within the
schedule and other project plans, and thus it is important to
understand the management process controlling your work.

Finally, Part I introduces the Petrie Electronics case.
The Petrie case helps demonstrate how what you learn in
each chapter might fit into a practical organizational situa-
tion. The case begins after Chapter 2; the remaining book
chapters through Chapter 13 each have an associated case
installment. The first section introduces the company and
its existing information systems. This introduction provides
insights into Petrie, which will help you understand the
company more completely when we look at the require-
ments and design for new systems in later case sections.

PART ONE

Foundations for Systems Development

3

connecting organizations with their partners and their
customers. The overwhelming majority of business use of
the Web is business-to-business applications. These applica-
tions run the gamut of everything businesses do, including
transmitting orders and payments to suppliers, fulfilling
orders and collecting payments from customers, maintain-
ing business relationships, and establishing electronic mar-
ketplaces where businesses can shop online for the best
deals on resources they need for assembling their prod-
ucts and services. Regardless of the technology involved,
understanding the business and how it functions is the key
to successful systems analysis and design, even in the fast-
paced, technology-driven environment that organizations
find themselves in today.

With the challenges and opportunities of dealing with
rapid advances in technology, it is difficult to imagine a
more exciting career choice than information technology
(IT), and systems analysis and design is a big part of the IT
landscape. Furthermore, analyzing and designing informa-
tion systems will give you the chance to understand organi-
zations at a depth and breadth that might take many more
years to accomplish in other careers.

An important (but not the only) result of systems anal-
ysis and design is application software, software designed to
support a specific organizational function or process, such
as inventory management, payroll, or market analysis. In
addition to application software, the total information sys-
tem includes the hardware and systems software on which
the application software runs, documentation and training
materials, the specific job roles associated with the overall
system, controls, and the people who use the software along
with their work methods. Although we will address all of

The world runs on information systems. Information sys-
tems form the foundation for every major organizational
activity and industry, from retail to healthcare to manufac-
turing to logistics. Systems consist of computer hardware,
software, networks, and the people who oversee their oper-
ation and the people who use them. Information systems
analysis and design is the complex, challenging, and
stimulating organizational process that a team of business
and systems professionals uses to develop and maintain
information systems. Although advances in information
technology continually give us new capabilities, the analy-
sis and design of information systems is driven from an
organizational perspective. An organization might consist
of a whole enterprise, specific departments, or individual
work groups. Organizations can respond to and antici-
pate problems and opportunities through innovative use
of information technology. Information systems analysis
and design is therefore an organizational improvement
process. Systems are built and rebuilt for organizational
benefits. Benefits result from adding value during the pro-
cess of creating, producing, and supporting the organiza-
tion’s products and services. Thus the analysis and design
of information systems is based on your understanding
of the organization’s objectives, structure, and processes,
as well as your knowledge of how to exploit information
technology for advantage.

Information systems support almost everything
organizations do, whether the systems are developed for
internal use, for exchanges with business partners, or
for interactions with customers. Networks, especially the
Internet—especially the World Wide Web—are crucial for

 1.3 describe the agile methodologies, eXtreme Pro-
gramming, and Scrum; and

 1.4 explain object-oriented analysis and design and
the Rational Unified Process (RUP).

Learning Objectives

After studying this chapter, you should be able to

 1.1 define information systems analysis and design;

 1.2 describe the information systems development life
cycle (SDLC);

The Systems Development
Environment1

Introduction

4 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Systems analyst
The organizational role most respon-
sible for the analysis and design of infor-
mation systems.

these various dimensions of the overall system, we will emphasize application software
development—your primary responsibility as a systems analyst.

In the early years of computing, analysis and design was considered an art or a
craft. Rapid growth in the need for systems in the 1970s resulted in a highly structured
approach to systems analysis and design. While the structured approach is still in use,
current approaches focus on rapid and constant software delivery, managed by small
teams of talented developers. This approach, called agile development, has become
standard for most organizations that develop systems. In fact, 94% of companies report
that they practice agile in their systems development efforts (VersionOne, 2017). Our
goal is to help you develop the knowledge and skills needed to understand and follow
structured and agile processes. Central to analysis and design (and to this book) are
various methodologies, techniques, and tools that have been developed, tested, and
widely used over the years to assist people like you during systems analysis and design.

Methodologies are comprehensive, multiple-step approaches to systems develop-
ment that will guide your work and influence the quality of your final product—the
information system. A methodology adopted by an organization will be consistent with
its general management style (e.g., an organization’s orientation toward consensus
management will influence its choice of systems development methodology). Most
methodologies incorporate several development techniques.

Techniques are particular processes that you, as an analyst, will follow to help
ensure that your work is well thought out, complete, and comprehensible to others
on your project team. Techniques provide support for a wide range of tasks, includ-
ing gathering information to determine what your system should do, planning and
managing the activities in a systems development project, diagramming the system’s
logic, and designing the system’s interface and outputs.

Tools are typically computer programs that make it easy to use and benefit from
techniques and to faithfully follow the guidelines of the overall development method-
ology. To be effective, techniques and tools must both be consistent with an organiza-
tion’s systems development methodology. Techniques and tools must make it easy for
systems developers to conduct the steps called for in the methodology. These three
elements—methodologies, techniques, and tools—work together to form an organi-
zational approach to systems analysis and design (see Figure 1-1).

Although many people in organizations are responsible for systems analysis and
design, in most organizations the systems analyst has the primary responsibility. When

Application software
Computer software designed to support
organizational functions or processes.

FIGURE 1-1
An organizational approach to systems
analysis and design is driven by method-
ologies, techniques, and tools.

(Sources: Top: Monkey Business
Images/Shutterstock; Left: Benchart/
Shutterstock; Right: Lifestyle Graphic/
Shutterstock)

Methodologies Tools

Techniques

Information systems analysis
and design
The complex organizational process
whereby computer-based information
systems are developed and maintained.

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 5

you begin your career in systems development, you will most likely begin as a systems
analyst or as a business analyst. The primary role of a systems analyst is to study the
problems and needs of an organization in order to determine how people, methods,
and information technology can best be combined to bring about improvements in
the organization. A systems analyst helps system users and other business managers
define their requirements for new or enhanced information services. As such, a sys-
tems analyst is an agent of change and innovation.

In the rest of this chapter, we will examine the systems approach to analysis and
design. You will learn how systems analysis and design has changed over the decades
as computing has become more central to business. You will learn about the systems
development life cycle, which provides the basic overall structure of the systems devel-
opment process and of this book. This chapter ends with a discussion of some of the
methodologies, techniques, and tools created to support the systems development
process. We consider both the structured and the agile approaches to systems analysis
and design.

A MODERN APPROACH TO SYSTEMS ANALYSIS AND
DESIGN

The analysis and design of computer-based information systems began in the 1950s.
Since then, the development environment has changed dramatically, driven by orga-
nizational needs as well as by rapid changes in the technological capabilities of com-
puters. In the 1950s, development focused on the processes the software performed.
Because computer power was a critical resource, efficiency of processing became the
main goal. Computers were large, expensive, and not very reliable. Emphasis was
placed on automating existing processes, such as purchasing or payroll, often within
single departments. All applications had to be developed in machine language or
assembly language, and they had to be developed from scratch because there was no
software industry. Because computers were so expensive, computer memory was also
at a premium, so system developers conserved as much memory as possible for data
storage.

The first procedural, or third-generation, computer programming languages did
not become available until the beginning of the 1960s. Computers were still large and
expensive, but the 1960s saw important breakthroughs in technology that enabled the
development of smaller, faster, less expensive computers—minicomputers—and the
beginnings of the software industry. Most organizations still developed their applica-
tions from scratch using their in-house development staff. Systems development was
more an art than a science. This view of systems development began to change in the
1970s, however, as organizations started to realize how expensive it was to develop
customized information systems for every application. Systems development came to
be more disciplined as many people worked to make it more like engineering. Early
database management systems, using hierarchical and network models, helped bring
discipline to the storage and retrieval of data. The development of database manage-
ment systems helped shift the focus of systems development from processes first to
data first.

The 1980s were marked by major breakthroughs in computing in organizations,
as microcomputers became key organizational tools. The software industry expanded
greatly as more and more people began to write off-the-shelf software for microcom-
puters. Developers began to write more and more applications in fourth-generation
languages, which, unlike procedural languages, instructed a computer on what to
do instead of how to do it. Computer-aided software engineering (CASE) tools were
developed to make systems developers’ work easier and more consistent. As computers
continued to get smaller, faster, and cheaper, and as the operating systems for comput-
ers moved away from line prompt interfaces to windows- and icon-based interfaces,
organizations moved to applications with more graphics. Organizations developed

6 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

less software in-house and bought relatively more from software vendors. The systems
developer’s job went through a transition from builder to integrator.

The systems development environment of the late 1990s focused on systems
integration. Developers used visual programming environments, such as Visual Basic,
to design the user interfaces for systems that run on client/server platforms. The data-
base, which may be relational or object-oriented, and which may have been developed
using software from firms such as Oracle, resided on the server. In many cases, the
application logic resided on the same server. Alternatively, an organization may have
decided to purchase its entire enterprise-wide system from companies such as SAP
AG or Oracle. Enterprise-wide systems are large, complex systems that consist of a
series of independent system modules. Developers assemble systems by choosing and
implementing specific modules. Starting in the middle years of the 1990s, more and
more systems development efforts focused on the Internet, especially the Web.

Today there is continued focus on developing systems for the Internet and for
firms’ intranets and extranets. More and more, systems implementation involves a
three-tier design, with the database on one server, the application on a second server,
and client logic located on user machines. Another important development is the move
to wireless system components. Wireless devices can access Web-based applications
from almost anywhere. Finally, the trend continues toward assembling systems from
programs and components purchased off the shelf. In many cases, organizations do not
develop the application in-house. They don’t even run the application in-house, choos-
ing instead to use the application on a per-use basis by accessing it through the cloud.

DEVELOPING INFORMATION SYSTEMS AND THE SYSTEMS
DEVELOPMENT LIFE CYCLE

Whether they rely on structured or agile approaches, or on a hybrid, most organizations
find it beneficial to use a standard set of steps, called a systems development methodology,
to develop and support their information systems. Like many processes, the development
of information systems often follows a life cycle. For example, a commercial product fol-
lows a life cycle in that it is created, tested, and introduced to the market. Its sales increase,
peak, and decline. Finally, the product is removed from the market and replaced by
something else. The systems development life cycle (SDLC) is a common methodology
for systems development in many organizations; it features several phases that mark the
progress of the systems analysis and design effort. Every text book author and information
systems development organization uses a slightly different life-cycle model, with anywhere
from 3 to almost 20 identifiable phases.

The life cycle can be thought of as a circular process in which the end of the
useful life of one system leads to the beginning of another project that will develop a
new version or replace an existing system altogether (see Figure 1-2). At first glance,
the life cycle appears to be a sequentially ordered set of phases, but it is not. The
specific steps and their sequence are meant to be adapted as required for a project,
consistent with management approaches. For example, in any given SDLC phase, the
project can return to an earlier phase if necessary. Similarly, if a commercial product
does not perform well just after its introduction, it may be temporarily removed from
the market and improved before being reintroduced. In the SDLC, it is also possible
to complete some activities in one phase in parallel with some activities of another
phase. Sometimes the life cycle is iterative; that is, phases are repeated as required
until an acceptable system is found. Some people consider the life cycle to be a spiral,
in which we constantly cycle through the phases at different levels of detail (see
 Figure 1-3). However conceived, the systems development life cycle used in an orga-
nization is an orderly set of activities conducted and planned for each development
project. The skills required of a systems analyst apply to all life-cycle models. Software
is the most obvious end product of the life cycle; other essential outputs include docu-
mentation about the system and how it was developed, as well as training for users.

Systems development
methodology
A standard process followed in an orga-
nization to conduct all the steps neces-
sary to analyze, design, implement, and
maintain information systems.

Systems development life cycle
(SDLC)
The traditional methodology used to
develop, maintain, and replace informa-
tion systems.

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 7

Every medium-to-large corporation and every custom software producer will
have its own specific life cycle or systems development methodology in place (see
 Figure 1-4). Even if a particular methodology does not look like a cycle, and Figure 1-4
does not, you will probably discover that many of the SDLC steps are performed and
SDLC techniques and tools are used. Learning about systems analysis and design
from the life-cycle approach will serve you well no matter which systems development
methodology you use.

When you begin your first job, you will likely spend several weeks or months
learning your organization’s SDLC and its associated methodologies, techniques, and
tools. In order to make this book as general as possible, we follow a generic life-cycle
model, as described in more detail in Figure 1-5. Notice that our model is circular.
We use this SDLC as one example of a methodology but, more important, as a way to
arrange the topics of systems analysis and design. Thus, what you learn in this book,
you can apply to almost any life cycle you might follow, regardless of the approach
it is based on. As we describe this SDLC throughout the book, you will see that each
phase has specific outcomes and deliverables that feed important information to other
phases. At the end of each phase, a systems development project reaches a milestone
and, as deliverables are produced, they are often reviewed by parties outside the proj-
ect team. In the rest of this section, we provide a brief overview of each SDLC phase.
At the end of the section, we summarize this discussion in a table that lists the main
deliverables or outputs from each SDLC phase.

FIGURE 1-2
Systems development life cycle

DesignImplementation

Planning

Maintenance Analysis

FIGURE 1-3
Evolutionary model

Design
Implementation

Planning

Maintenance

Go/No Go Axis

Analysis

8 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

The first phase in the SDLC is planning. In this phase, someone identifies the
need for a new or enhanced system. In larger organizations, this recognition may be
part of a corporate and systems planning process. Information needs of the organiza-
tion as a whole are examined, and projects to meet these needs are proactively identi-
fied. The organization’s information system needs may result from requests to deal
with problems in current procedures, from the desire to perform additional tasks, or

Planning
The first phase of the SDLC in which an
organization’s total information system
needs are identified, analyzed, prioritized,
and arranged.

FIGURE 1-4
U.S. Department of Justice’s systems
development life cycle

(Source: Diagram based on http://www

.justice.gov/archive/jmd/irm/lifecycle/ch1

.htm#para1.2

Top to bottom: Haveseen/Shutterstock;
Phovoir/Shutterstock; Bedrin/
Shutterstock; Pressmaster/Shutterstock;
Tiago Jorge da Silva Estima/
Shutterstock; Sozaijiten /Pearson
Education; DDekk/Shutterstock;
Rtguest/Shutterstock; Michaeljung/
Shutterstock; AleksaStudio/
Shutterstock)

Disposition

Operation and Maintenance

Implementation

Integration and Test

Development

Design

Requirements Analysis

Planning

System Concept Development

Initiation

FIGURE 1-5
SDLC-based guide to this book

DesignImplementation

Chapters 9–12Chapter 13

Planning

Chapters 4–5

MaintenanceChapter 14 Analysis Chapters 6–8

http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm#para1.2

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 9

from the realization that information technology could be used to capitalize on an
existing opportunity. These needs can then be prioritized and translated into a plan
for the information systems department, including a schedule for developing new
major systems. In smaller organizations (as well as in large ones), determination of
which systems to develop may be affected by ad hoc user requests submitted as the
need for new or enhanced systems arises, as well as from a formalized information
planning process. In either case, during project identification and selection, an orga-
nization determines whether resources should be devoted to the development or
enhancement of each information system under consideration. The outcome of the
project identification and selection process is a determination of which systems devel-
opment projects should be undertaken by the organization, at least in terms of an
initial study.

Two additional major activities are also performed during the planning phase:
the formal, yet still preliminary, investigation of the system problem or opportunity at
hand, and the presentation of reasons why the system should or should not be devel-
oped by the organization. A critical step at this point is determining the scope of the
proposed system. The project leader and initial team of systems analysts also produce
a specific plan for the proposed project the team will follow using the remaining SDLC
steps. This baseline project plan customizes the standardized SDLC and specifies the
time and resources needed for its execution. The formal definition of a project is
based on the likelihood that the organization’s information systems department is
able to develop a system that will solve the problem or exploit the opportunity and
determine whether the costs of developing the system outweigh the benefits it could
provide. The final presentation of the business case for proceeding with the subse-
quent project phases is usually made by the project leader and other team members
to someone in management or to a special management committee with the job of
deciding which projects the organization will undertake.

The second phase in the SDLC is analysis. During this phase, the analyst thor-
oughly studies the organization’s current procedures and the information systems
used to perform organizational tasks. Analysis has two subphases. The first is require-
ments determination. In this subphase, analysts work with users to determine what the
users want from a proposed system. The requirements determination process usually
involves a careful study of any current systems, manual and computerized, that might
be replaced or enhanced as part of the project. In the second part of analysis, analysts
study the requirements and structure them according to their interrelationships and
eliminate any redundancies. The output of the analysis phase is a description of (but
not a detailed design for) the alternative solution recommended by the analysis team.
Once the recommendation is accepted by those with funding authority, the analysts
can begin to make plans to acquire any hardware and system software necessary to
build or operate the system as proposed.

The third phase in the SDLC is design. During design, analysts convert the
description of the recommended alternative solution into logical and then physical
system specifications. Analysts aid in the design of all aspects of the system, from input
and output screens to reports, databases, and computer processes. That part of the
design process that is independent of any specific hardware or software platform is
referred to as logical design. Theoretically, the system could be implemented on any
hardware and systems software. The idea is to make sure that the system functions as
intended. Logical design concentrates on the business aspects of the system and tends
to be oriented to a high level of specificity.

In a traditional structured approach, once the overall high-level design of the
system is worked out, the analysts begin turning logical specifications into physical ones.
This process is referred to as physical design. As part of physical design, analysts design
the various parts of the system to perform the physical operations necessary to facilitate
data capture, processing, and information output. This can be done in many ways, from
creating a working model of the system to be implemented to writing detailed specifica-
tions describing all the different parts of the system and how they should be built. In

Analysis
The second phase of the SDLC in which
system requirements are studied and
structured.

Design
The third phase of the SDLC in which
the description of the recommended
solution is converted into logical and
then physical system specifications.

Logical design
The part of the design phase of the
SDLC in which all functional features of
the system chosen for development in
analysis are described independently of
any computer platform.

Physical design
The part of the design phase of the
SDLC in which the logical specifications
of the system from logical design are
transformed into technology-specific
details from which all programming
and system construction can be
accomplished.

10 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

many cases, the working model becomes the basis for the actual system to be used.
During physical design, the analyst team must determine many of the physical details
necessary to build the final system, from the programming language the system will be
written in, to the database system that will store the data, to the hardware platform on
which the system will run. Often the choices of language, database, and platform are
already decided by the organization or by the client, and at this point these information
technologies must be taken into account in the physical design of the system. In a
structured approach, the final product of the design phase is the physical system speci-
fications in a form ready to be turned over to programmers and other system builders
for construction. In an agile approach, which you will read more about in the following
sections, logical and physical design become part of the same iterative process, and
detailed specifications are replaced with multiple working releases of the software.

The fourth phase in the SDLC is implementation. In a structured process, the
physical system specifications, whether in the form of a detailed model or as detailed
written specifications, are turned over to programmers as the first part of the imple-
mentation phase. During implementation, analysts turn system specifications into a
working system that is tested and then put into use. Implementation includes coding,
testing, and installation. During coding, programmers write the programs that make up
the system. During testing, programmers and analysts test individual programs and the
entire system in order to find and correct errors. Following an agile approach, programs
are tested as soon as they are written, leading to functional software in a short period
of time. During installation, the new system becomes part of the daily activities of the
organization. Application software is installed, or loaded, on existing or new hardware,
and users are introduced to the new system and trained. Testing and installation should
be planned for as early as the project initiation and planning phase; both testing and
installation require extensive analysis in order to develop exactly the right approach.

Implementation activities also include initial user support such as the finaliza-
tion of documentation, training programs, and ongoing user assistance. Note that
documentation and training programs are finalized during implementation; docu-
mentation is produced throughout the life cycle, and training (and education) occurs
from the inception of a project. Implementation can continue for as long as the system
exists because ongoing user support is also part of implementation. Despite the best
efforts of analysts, managers, and programmers, however, installation is not always a
simple process. Many well-designed systems have failed because the installation pro-
cess was faulty. Even a well-designed system can fail if implementation is not well man-
aged. Because the project team usually manages implementation, we stress
implementation issues throughout this book.

The fifth and final phase in the SDLC is maintenance. When a system (includ-
ing its training, documentation, and support) is operating in an organization, users
sometimes find problems with how it works and often think of better ways to perform
its functions. Also, the organization’s needs with respect to the system change over
time. In maintenance, programmers make the changes that users ask for and modify
the system to reflect evolving business conditions. These changes are necessary to keep
the system running and useful. In a sense, maintenance is not a separate phase but a
repetition of the other life-cycle phases required to study and implement the needed
changes. One might think of maintenance as an overlay on the life cycle rather than
as a separate phase. The amount of time and effort devoted to maintenance depends
a great deal on the performance of the previous phases of the life cycle. There inevi-
tably comes a time, however, when an information system is no longer performing as
desired, when maintenance costs become prohibitive, or when an organization’s needs
have changed substantially. Such problems indicate that it is time to begin designing
the system’s replacement, thereby completing the loop and starting the life cycle over
again. Often the distinction between major maintenance and new development is not
clear, which is another reason maintenance often resembles the life cycle itself.

The SDLC is a highly linked set of phases whose products feed the activities in
subsequent phases. Table 1-1 summarizes the outputs or products of each phase based

Implementation
The fourth phase of the SDLC, in
which the information system is coded,
tested, installed, and supported in the
organization.

Maintenance
The final phase of the SDLC, in which
an information system is systematically
repaired and improved.

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 11

on the in-text descriptions. The chapters on the SDLC phases will elaborate on the
products of each phase as well as on how the products are developed.

Throughout the SDLC, the systems development project itself must be carefully
planned and managed. The larger the systems project, the greater the need for project
management. Several project management techniques have been developed over the
past decades, and many have been made more useful through automation. Chapter 3
contains a more detailed treatment of project planning and management techniques.
Next, we will discuss some of the criticisms of the SDLC and present alternatives devel-
oped to address those criticisms.

THE HEART OF THE SYSTEMS DEVELOPMENT PROCESS

The SDLC provides a convenient way to think about the processes involved in
systems development and the organization of this book. The different phases
are clearly defined, their relationships to one another are well specified, and the
sequencing of phases from one to the next, from beginning to end, has a compel-
ling logic. In many ways, though, the SDLC is fiction. Although almost all systems
development projects adhere to some type of life cycle, the exact location of activi-
ties and the specific sequencing of steps can vary greatly from one project to the
next. Current practice combines the activities traditionally thought of as belonging
to analysis, design, and implementation into a single process. Instead of systems
requirements being produced in analysis, systems specifications being created in
design, and coding and testing being done at the beginning of implementation,
current practice combines all of these activities into a single analysis–design–code–
test process (Figure 1-6). These activities are the heart of systems development, as
we suggest in Figure 1-7. This combination of activities is typical of current prac-
tices in agile methodologies. Two well-known instances of agile methodologies are
eXtreme Programming and Scrum, although there are other variations. We will
introduce you to agile, eXtreme Programming, and Scrum, but first it is important
that you learn about the problems with the traditional SDLC. You will read about
these problems next. Then you will read about the agile approach, eXtreme Pro-
gramming, and Scrum.

Phase Products, Outputs, or Deliverables

Planning Priorities for systems and projects; an architecture for data, networks, and
selection hardware, and information systems management are the result
of associated systems

Detailed steps, or work plan, for project

Specification of system scope and planning and high-level system require-
ments or features

Assignment of team members and other resources

System justification or business case

Analysis Description of current system and where problems or opportunities exist,
with a general recommendation on how to fix, enhance, or replace cur-
rent system

Explanation of alternative systems and justification for chosen alternative

Design Functional, detailed specifications of all system elements (data, processes,
inputs, and outputs)

Technical, detailed specifications of all system elements (programs, files,
network, system software, etc.)

Acquisition plan for new technology

Implementation Code, documentation, training procedures, and support capabilities

Maintenance New versions or releases of software with associated updates to documen-
tation, training, and support

TABLE 1-1 Products of SDLC Phases

12 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

The Traditional Waterfall SDLC

There are several criticisms of the traditional life-cycle approach to systems develop-
ment; one relates to the way the life cycle is organized. To better understand these
criticisms, it is best to see the form in which the life cycle has traditionally been por-
trayed, the so-called waterfall (Figure 1-8). Note how the flow of the project begins
in the planning phase and from there runs “downhill” to each subsequent phase,
just like a stream that runs off a cliff. Although the original developer of the waterfall
model, W. W. Royce, called for feedback between phases in the waterfall, this feedback
came to be ignored in implementation (Martin, 1999). It became too tempting to
ignore the need for feedback and to treat each phase as complete unto itself, never
to be revisited once finished.

Traditionally, one phase ended and another began once a milestone had been
reached. The milestone usually took the form of some deliverable or prespecified
output from the phase. For example, the design deliverable is the set of detailed

FIGURE 1-6
Analysis–design–code–test loop

Code

Analysis

DesignTest

FIGURE 1-7
Heart of systems development

DesignImplementation

Planning

Maintenance Analysis

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 13

physical design specifications. Once the milestone had been reached and the new
phase initiated, it became difficult to go back. Even though business conditions con-
tinued to change during the development process and analysts were pressured by
users and others to alter the design to match changing conditions, it was necessary
for the analysts to freeze the design at a particular point and go forward. The enor-
mous amount of effort and time necessary to implement a specific design meant that
it would be very expensive to make changes in a system once it was developed. The
traditional waterfall life cycle, then, had the property of locking users into require-
ments that had been previously determined, even though those requirements might
have changed.

Yet another criticism of the traditional waterfall SDLC is that the role of system
users or customers was narrowly defined (Kay, 2002). User roles were often rel-
egated to the requirements determination or analysis phases of the project, where
it was assumed that all of the requirements could be specified in advance. Such an
assumption, coupled with limited user involvement, reinforced the tendency of the
waterfall model to lock in requirements too early, even after business conditions
had changed.

In addition, under the traditional waterfall approach, nebulous and intangible
processes such as analysis and design are given hard-and-fast dates for completion,
and success is overwhelmingly measured by whether those dates are met. The focus
on milestone deadlines, instead of on obtaining and interpreting feedback from the
development process, leads to too little focus on doing good analysis and design. The
focus on deadlines leads to systems that do not match users’ needs and that require
extensive maintenance, unnecessarily increasing development costs. Finding and fix-
ing a software problem after the delivery of the system is often far more expensive than
finding and fixing it during analysis and design (Griss, 2003). The result of focusing
on deadlines rather than on good practice is unnecessary rework and maintenance
effort, both of which are expensive. According to some estimates, maintenance costs
account for 40 to 70 percent of systems development costs (Dorfman and Thayer,
1997). Given these problems, people working in systems development began to look
for better ways to conduct systems analysis and design.

FIGURE 1-8
Traditional waterfall SDLC

Maintenance

Planning

Analysis

Physical

Design

Implementation

Logical

Design

14 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

AGILE METHODOLOGIES

Many approaches to systems analysis and design have been developed over the years.
In February 2001, many of the proponents of these alternative approaches met in Utah
(U.S.) and reached a consensus on several of the underlying principles their various
approaches contained. This consensus turned into a document they called “The Agile
Manifesto” (Table 1-2). According to Fowler (2003), the agile methodologies share
three key principles: (1) a focus on adaptive rather than predictive methodologies,
(2) a focus on people rather than roles, and (3) a focus on self-adaptive processes.

The agile methodologies group argues that software development method-
ologies adapted from engineering generally do not fit with real-world software
development (Fowler, 2003). In engineering disciplines, such as civil engineering,
requirements tend to be well understood. Once the creative and difficult work of
design is completed, construction becomes very predictable. In addition, construction
may account for as much as 90 percent of the total project effort. For software, on the
other hand, requirements are rarely well understood, and they change continually
during the lifetime of the project. Construction may account for as little as 15 percent
of the total project effort, with design constituting as much as 50 percent. Applying
techniques that work well for predictable, stable projects, such as bridge building, tend

The Manifesto for Agile Software Development

Seventeen anarchists agree:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

❍❍ Individuals and interactions over processes and tools.

❍❍ Working software over comprehensive documentation.

❍❍ Customer collaboration over contract negotiation.

❍❍ Responding to change over following a plan.

That is, while we value the items on the right, we value the items on the left more. We follow
the following principles:

❍❍ Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

❍❍ Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

❍❍ Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

❍❍ Businesspeople and developers work together daily throughout the project.

❍❍ Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

❍❍ The most efficient and effective method of conveying information to and within a develop-
ment team is face-to-face conversation.

❍❍ Working software is the primary measure of progress.

❍❍ Continuous attention to technical excellence and good design enhances agility.

❍❍ Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

❍❍ Simplicity—the art of maximizing the amount of work not done—is essential.

❍❍ The best architectures, requirements, and designs emerge from self-organizing teams.

❍❍ At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
(www.agileAlliance.org)

(Source: http://agilemanifesto.org/ © 2001, the above authors. This declaration may be freely
copied in any form, but only in its entirety through this notice.)

TABLE 1-2 The Agile Manifesto

http://www.agilealliance.org/
http://agilemanifesto.org/

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 15

not to work well for fluid, design-heavy projects such as writing software, say the agile
methodology proponents. What is needed are methodologies that embrace change
and that are able to deal with a lack of predictability. One mechanism for dealing with
a lack of predictability, which all agile methodologies share, is iterative development
(Martin, 1999). Iterative development focuses on the frequent production of working
versions of a system that have a subset of the total number of required features. Itera-
tive development provides feedback to customers and developers alike.

The agile methodologies’ focus on people is an emphasis on individuals rather
than on the roles that people perform (Fowler, 2003). The roles that people fill, of sys-
tems analyst or tester or manager, are not as important as the individuals who fill those
roles. Fowler argues that the application of engineering principles to systems develop-
ment has resulted in a view of people as interchangeable units instead of a view of people
as talented individuals, each bringing something unique to the development team.

The agile methodologies promote a self-adaptive software development pro-
cess. As software is developed, the process used to develop it should be refined and
improved. Development teams can do this through a review process, often associated
with the completion of iterations. The implication is that, as processes are adapted,
one would not expect to find a single monolithic methodology within a given corpora-
tion or enterprise. Instead, one would find many variations of the methodology, each
of which reflects the particular talents and experience of the team using it.

Agile methodologies are not for every project. Fowler (2003) recommends an
agile or adaptive process if your project involves

• unpredictable or dynamic requirements,
• responsible and motivated developers, and
• customers who understand the process and will get involved.

A more engineering-oriented, predictable process may be called for if the devel-
opment team exceeds 100 people or if the project is operating under a fixed-price
or fixed-scope contract. In fact, whether a systems development project is organized
in terms of agile or more traditional methodologies depends on many different con-
siderations. If a project is considered to be high-risk and highly complex, and has a
development team made up of hundreds of people, then more traditional methods
will apply. Less risky, smaller, and simpler development efforts lend themselves more
to agile methods. Other determining factors include organizational practice and stan-
dards, and the extent to which different parts of the system will be contracted out to
others for development. Obviously, the larger the proportion of the system that will be
outsourced, the more detailed the design specifications will need to be so that subcon-
tractors can understand what is needed. Although not universally agreed upon, the
key differences between these development approaches are listed in Table 1-3, which
is based on work by Boehm and Turner (2004). These differences can be used to help
determine which development approach would work best for a particular project.

Many different individual methodologies come under the umbrella of agile
methodologies. Fowler (2003) lists the Crystal family of methodologies, Adaptive Soft-
ware Development, Scrum, Feature Driven Development, and others as agile method-
ologies. eXtreme Programming is discussed next, followed by a discussion of Scrum.

eXtreme Programming

eXtreme Programming is an approach to software development put together by
Beck and Andres (2004). It is distinguished by its short cycles, incremental plan-
ning approach, focus on automated tests written by programmers and customers
to monitor the development process, and reliance on an evolutionary approach
to development that lasts throughout the lifetime of the system. Key emphases of
eXtreme Programming are its use of two-person programming teams, described later,
and having a customer on-site during the development process. The relevant parts
of eXtreme Programming that relate to design specifications are (1) how planning,

16 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

analysis, design, and construction are all fused into a single phase of activity; and (2)
its unique way of capturing and presenting system requirements and design specifica-
tions. With eXtreme Programming, all phases of the life cycle converge into a series
of activities based on the basic processes of coding, testing, listening, and designing.

Under this approach, coding and testing are intimately related parts of the same
process. The programmers who write the code also develop the tests. The emphasis is
on testing those things that can break or go wrong, not on testing everything. Code is
tested very soon after it is written. The overall philosophy behind eXtreme Program-
ming is that the code will be integrated into the system it is being developed for and
tested within a few hours after it has been written. If all the tests run successfully, then
development proceeds. If not, the code is reworked until the tests are successful.

Another part of eXtreme Programming that makes the code-and-test process
work more smoothly is the practice of pair programming. All coding and testing is
done by two people working together to write code and develop tests. Beck says that
pair programming is not one person typing while the other one watches; rather, the
two programmers work together on the problem they are trying to solve, exchanging
information and insight and sharing skills. Compared to traditional coding practices,
the advantages of pair programming include: (1) more (and better) communication
among developers, (2) higher levels of productivity, (3) higher-quality code, and (4)
reinforcement of the other practices in eXtreme Programming, such as the code-and-
test discipline (Beck & Andres, 2004). Although the eXtreme Programming process
has its advantages, just as with any other approach to systems development, it is not
for everyone and is not applicable to every project.

Scrum

Scrum originated in 1995 and was developed by Jeff Sutherland and Ken Schwaber
(Schwaber & Sutherland, 2011). It has become the most popular methodology for
agile, with 58 percent of companies reporting using it (VersionOne, 2017). The second

Factor Agile Methods Traditional Methods

Size Well matched to small products and
teams. Reliance on tacit knowledge
limits scalability.

Methods evolved to handle large
products and teams. Hard to tailor
down to small projects.

Criticality Untested on safety-critical products.
Potential difficulties with simple
design and lack of documentation.

Methods evolved to handle highly
critical products. Hard to tailor
down to products that are not
critical.

Dynamism Simple design and continuous refac-
toring are excellent for highly
dynamic environments but a source
of potentially expensive rework for
highly stable environments.

Detailed plans and Big Design Up
Front, excellent for highly stable
environment but a source of expen-
sive rework for highly dynamic
environments.

Personnel Requires continuous presence of a
critical mass of scarce experts. Risky
to use non-agile people.

Needs a critical mass of scarce
experts during project definition
but can work with fewer later in the
project, unless the environment is
highly dynamic.

Culture Thrives in a culture where people feel
comfortable and empowered by
having many degrees of freedom
(thriving on chaos).

Thrives in a culture where people feel
comfortable and empowered by
having their roles defined by clear
practices and procedures (thriving
on order).

(Source: Boehm, Barry; Turner, Richard, Balancing Agility and Discipline: A Guide for the Per-
plexed, 1st Ed., © 2004. Reprinted and electronically reproduced by permission of Pearson
Education, Inc. New York, NY.)

TABLE 1-3 Five Critical Factors That Distinguish Agile and Traditional Approaches
to Systems Development

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 17

most popular methodology is a blend of Scrum and eXtreme Programming, used by
10 percent of companies. Scrum represents a framework that includes Scrum teams
and their associated roles, events, artifacts, and rules. Each team consists of three
roles: the product owner, the development team, and the Scrum master. The owner
is essentially accountable for the product and the work that produces it. The develop-
ment team is small, within the preferred range of three to nine. The Scrum master is
there to teach and enforce the rules.

Scrum is designed for speed and for multiple functional product releases. The
primary unit is the Sprint, which typically runs for two weeks to a month. Each Sprint is
a complete project in and of itself. It starts with an eight-hour sprint planning meeting,
which focuses on two questions: What will need to be delivered by the end of the sprint,
and how will the team accomplish that work? The Sprint Goal provides guidance for
the team for the duration of the sprint. During the sprint, there is a Daily Standup, a
15-minute meeting held to essentially evaluate what progress has been made within the
last 24 hours and what still needs to be done. At the end of the sprint, there are two
other meetings: the Sprint Review (four hours) and the Sprint Retrospective (three
hours). While the review focuses on the product, what has been accomplished, and
what needs to be done in the next sprint, the Retrospective is broader. It also focuses
on the performance of the team and how it can improve in the next sprint. There are
three primary artifacts in the Scrum process. The first is the Product Backlog. This is
an ordered list of everything that might be included in the product, in other words, a
list of potential requirements. The list includes “all features, functions, requirements,
enhancements and fixes” (Schwaber & Sutherland, 2011, p. 12) that make up all the
changes to be made to the product. The Sprint Backlog is a subset of the Product
Backlog, consisting of only those items to be addressed in a particular sprint. Finally,
the Increment is the sum of all the Product Backlog items completed during a sprint.
Each Increment must be in complete enough form to be usable, whether or not the
Product Owner decides to release it. It is called an Increment because it represents an
increment of total functionality for the product. Each Increment is thoroughly tested,
not only as a standalone, but in conjunction with all prior Increments.

Agile in Practice

Several studies have investigated agile methods in practice. A survey of over 100 agile
projects found three primary critical success factors for agile development (Chow &
Cao, 2008). The first is delivery strategy, which refers to the continuous delivery of
working software in short time scales. The second is following agile software engineer-
ing practices. That means managers and programmers must continually focus on tech-
nical excellence and simple design. The third critical success factor is team capability,
which refers to the agile principle of building projects around motivated individuals.

Another study found that, once implemented, agile methods can lead to
improved job satisfaction and productivity on the part of programmers (Dyba &
Dingsoyr, 2008). They can also lead to increased customer satisfaction, even though
the role of on-site customer representative can be tiring and so not sustainable for
very long. Agile methods tend to work best in small projects. In some instances, it may
make sense to combine them with traditional development methods.

The best programmers for agile methods have faith in their own abilities and
good interpersonal skills and trust. To succeed, agile teams need to balance a high
level of individual autonomy with a high level of team responsibility and corporate
responsibility. However, high levels of team autonomy are a two-edged sword. On the
one hand, highly autonomous teams tend to be more efficient. They are able to take
actions that reduce the time, cost, and resources needed to develop a system. In fact,
agile projects undertaken by efficient teams tended to come in on time, on budget,
and with the needed software functionality. On the other hand, highly autonomous
teams also have more ability to say no to new user demands. Users may not be entirely
happy with the resulting system if too many of their demands are declined.

18 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

A detailed study of one agile development effort showed that some of the key
principles of agile development had to be modified to help ensure success (Fruhling &
DeVreede, 2006). For example, in the agile project studied, pair programming was not
always used, especially when resources were needed elsewhere. Second, the process of
writing the test case first and then the code was followed until the system became too
complex. Third, the customer was not located in the same place as the programmers.
Instead, the customer stayed in contact through regular meetings and continual e-mail
and phone communication. Even with these modifications, the resulting system was
considered a success—fewer than 10 updates were issued because of errors and none
were issued because of implementing the wrong functionalities. Working together,
the users and developers were able to clarify system requirements and create a user
interface that was easy to learn and use.

In conclusion, agile development offers managers and programmers more
choice in their efforts to produce good systems that come in on time and at or under
budget. Agile methods are an integral methodology for systems analysis and design.
Over time, we will come to understand them better, as well as how best to use them
for the benefit of developers and users.

OBJECT-ORIENTED ANALYSIS AND DESIGN

There is no question that object-oriented analysis and design (OOAD) is the standard
for systems development (we elaborate on this approach later throughout the book).
OOAD is often called the third approach to systems development, after the process-
oriented and data-oriented approaches. The object-oriented approach combines data
and processes (called methods) into single entities called objects. Objects usually cor-
respond to the real things an information system deals with, such as customers, sup-
pliers, contracts, and rental agreements. Putting data and processes together in one
place recognizes the fact that there are a limited number of operations for any given
data structure, and the object-oriented approach makes sense even though typical
systems development keeps data and processes independent of each other. The goal
of OOAD is to make systems elements more reusable, thus improving system quality
and the productivity of systems analysis and design.

Another key idea behind object orientation is inheritance. Objects are organized
into object classes, which are groups of objects sharing structural and behavioral
characteristics. Inheritance allows the creation of new classes that share some of the
characteristics of existing classes. For example, from a class of objects called “person,”
you can use inheritance to define another class of objects called “customer.” Objects
of the class “customer” would share certain characteristics with objects of the class
“person”: They would both have names, addresses, phone numbers, and so on.
Because “person” is the more general class and “customer” is more specific, every
customer is a person but not every person is a customer.

As you might expect, a computer programming language is required that can
create and manipulate objects and classes of objects in order to create object-oriented
information systems. Several object-oriented programming languages have been cre-
ated (e.g., C++, Python, and Java). In fact, object-oriented languages were developed
first, and object-oriented analysis and design techniques followed. In general, the
primary task of object-oriented analysis is identifying objects and defining their struc-
ture and behavior and their relationships. The primary tasks of object-oriented design
are modeling the details of the objects’ behavior and communication with other
objects so that system requirements are met, and re-examining and redefining objects
to better take advantage of inheritance and other benefits of object orientation.

The object-oriented approach to systems development shares the iterative devel-
opment approach of the agile methodologies. Some say that the current focus on
agility in systems development is nothing more than the mainstream acceptance of
object-oriented approaches that have been germinating for years, so this similarity

Object-oriented analysis
and design (OOAD)
Systems development methodologies
and techniques based on objects rather
than data or processes.

Object
A structure that encapsulates (or
packages) attributes and methods that
operate on those attributes. An object
is an abstraction of a real-world thing
in which data and processes are placed
together to model the structure and
behavior of the real-world object.

Inheritance
The property that occurs when entity
types or object classes are arranged in a
hierarchy and each entity type or object
class assumes the attributes and
methods of its ancestors, that is, those
higher up in the hierarchy. Inheritance
allows new but related classes to be
derived from existing classes.

Object class
A logical grouping of objects that have
the same (or similar) attributes and
behaviors (methods).

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 19

should come as no surprise (Fowler, 2003). One of the most popular realizations
of the iterative approach for object-oriented development is the Rational Unified
 Process (RUP), which is based on an iterative, incremental approach to systems devel-
opment. RUP has four phases: inception, elaboration, construction, and transition
(see Figure 1-9).

In the inception phase, analysts define the scope, determine the feasibility of the
project, understand user requirements, and prepare a software development plan. In
the elaboration phase, analysts detail user requirements and develop a baseline archi-
tecture. Analysis and design activities constitute the bulk of the elaboration phase. In
the construction phase, the software is actually coded, tested, and documented. In the
transition phase, the system is deployed, and the users are trained and supported. As
is evident from Figure 1-9, the construction phase is generally the longest and the most
resource intensive. The elaboration phase is also long, but less resource intensive. The
transition phase is resource intensive but short. The inception phase is short and the
least resource intensive. The areas of the rectangles in Figure 1-9 provide an estimate
of the overall resources allocated to each phase.

Each phase can be further divided into iterations. The software is developed
incrementally as a series of iterations. The inception phase will generally entail a single
iteration. The scope and feasibility of the project is determined at this stage. The
elaboration phase may have one or two iterations and is generally considered the most
critical of the four phases (Kruchten, 2000). The elaboration phase is mainly about
systems analysis and design, although other activities are also involved. At the end of
the elaboration phase, the architecture of the project should have been developed.
The architecture includes a vision of the product, an executable demonstration of the
critical pieces, a detailed glossary and a preliminary user manual, a detailed construc-
tion plan, and a revised estimate of planned expenditures.

Although the construction phase mainly involves coding, which is accomplished
in several iterations, revised user requirements could require analysis and design. The
components are developed or purchased and used in the code. As each executable
is completed, it is tested and integrated. At the end of the construction phase, a beta
version of the project is released that should have operational capabilities. The transi-
tion phase entails correcting problems, beta testing, user training, and conversion of

Rational Unified Process (RUP)
An object-oriented systems development
methodology. RUP establishes four phases
of development: inception, elaboration,
construction, and transition. Each phase
is organized into a number of separate
iterations.

FIGURE 1-9
Phases of OOAD-based development

Resource

Time

Inception Elaboration Construction Transition

20 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

the product. The transition phase is complete when the project objectives meet the
acceptance criteria. Once acceptance criteria have been met, the product can then
be released for distribution.

OUR APPROACH TO SYSTEMS DEVELOPMENT

Much of the criticism of the SDLC has been based on abuses of the life-cycle perspec-
tive, both real and imagined. One of the criticisms based in reality is that reliance
on the life-cycle approach forced intangible and dynamic processes, such as analysis
and design, into timed phases that were doomed to fail (Martin, 1999). Developing
software is not like building a bridge, and the same types of engineering processes
cannot always be applied (Fowler, 2003), even though viewing software development
as a science rather than an art has no doubt resulted in vast improvements in the
process and the resulting products. Another criticism with its basis in fact is that
life-cycle reliance has resulted in massive amounts of process and documentation,
much of which seems to exist for its own sake. Too much process and documenta-
tion does slow down development, hence the streamlining that underlies the agile
methodologies and the admonition from agile developers that source code is enough
documentation. A criticism of the SDLC that is based more on fiction is that all ver-
sions of the SDLC are waterfall-like, with no feedback between steps. Another false
criticism is that a life-cycle approach necessarily limits the involvement of users in the
earliest stages of the process. Yet agile methodologies advocate an analysis–design–
code–test sequence that is a cycle (Figure 1-6), and users can be and are involved
in every step of this cycle; thus, cycles in and of themselves do not necessarily limit
user involvement.

Despite the criticisms of a life-cycle approach to systems analysis and design, the
view of systems analysis and design taking place in a cycle continues to be pervasive,
and, we think, true as well. There are many types of cycles, from the waterfall to the
analysis–design–code–test cycle, and they all capture the iterative nature of systems
development. The waterfall approach may be losing its relevance, but the cycle in
 Figure 1-6 is gaining in popularity, and the analysis–design–code–test cycle is embed-
ded in a larger organizational cycle. Although we typically use the terms systems analysis
and design and systems development interchangeably, perhaps it is better to think about
systems analysis and design as being the cycle in Figure 1-6 and systems development
as being the larger cycle in Figure 1-2. The analysis–design–code–test cycle largely
ignores the organizational planning that precedes it and the organizational instal-
lation and systems maintenance that follow, yet they are all important aspects of the
larger systems development effort. And to us, the best, clearest way to think about
both efforts is in terms of cycles.

Therefore, in this book you will see Figure 1-2 at the beginning of almost every
chapter. We will use our SDLC as an organizing principle in this book, with activities
and processes arranged according to whether they fit under the category of planning,
analysis, design, implementation, or maintenance. To some extent, we will artificially
separate activities and processes so that each one can be individually studied and
understood. Once individual components are clearly understood, it is easier to see
how they fit with other components, and eventually it becomes easy to see the whole.
Just as we may artificially separate activities and processes, we may also construct arti-
ficial boundaries between phases of the SDLC. Our imposition of boundaries should
never be interpreted as hard-and-fast divisions. In practice, as we have seen with the
agile methodologies and in the introduction to OOAD, phases and parts of phases
may be combined for speed, understanding, and efficiency. Our intent is to introduce
the pieces in a logical manner, so that you can understand all the pieces and how to
assemble them in the best way for your systems development purposes. Yet the over-
all structure of the cycle, of iteration, remains throughout. Think of the cycle as an
organizing and guiding principle.

 CHAPTER 1 THE SYSTEMS DEVELOPMENT ENVIRONMENT 21

SUMMARY

This chapter introduced you to information systems analy-
sis and design, the complex organizational process whereby
computer-based information systems are developed and
maintained. You read about how systems analysis and design
in organizations has changed over the past several decades.
You also learned about the basic framework that guides
systems analysis and design—the systems development life
cycle (SDLC), with its five major phases: planning, analysis,
design, implementation, and maintenance. The SDLC life

cycle has had its share of criticism, which you read about.
Agile methodologies have been developed to address those
criticisms. Two of the most well-known methodologies that
follow the agile perspective are eXtreme Programming and
Scrum. You were also briefly introduced to object-oriented
analysis and design. All these approaches share the underly-
ing idea of iteration, as manifested in the systems develop-
ment life cycle and the analysis–design–code–test cycle of
the agile methodologies.

Match each of the key terms above with the definition that best fits it.

KEY TERMS

 1.1 Analysis

 1.2 Application software

 1.3 Design

 1.4 Implementation

 1.5 Information systems analysis and

design

 1.6 Inheritance

 1.7 Logical design

 1.8 Maintenance

 1.9 Object

 1.10 Object class

 1.11 Object-oriented analysis and design

(OOAD)

 1.12 Physical design

 1.13 Planning

 1.14 Rational Unified Process

(RUP)

 1.15 Systems analyst

 1.16 Systems development life cycle

(SDLC)

 1.17 Systems development methodology

REVIEW QUESTIONS

 1.18 What is information systems analysis and design?

 1.19 How has systems analysis and design changed over time?

 1.20 List and explain the different phases in the SDLC.

 1.21 List and explain some of the problems with the traditional
waterfall SDLC.

____ The complex organizational process whereby computer-

based information systems are developed and maintained.

____ Computer software designed to support organizational

functions or processes.

____ The organizational role most responsible for the analysis

and design of information systems.

____ A standard process followed in an organization to conduct

all the steps necessary to analyze, design, implement, and

maintain information systems.

____ The traditional methodology used to develop, maintain,

and replace information systems.

____ The first phase of the SDLC, in which an organization’s total

information system needs are identified, analyzed, prioritized,

and arranged.

____ The second phase of the SDLC, in which system requirements

are studied and structured.

____ The third phase of the SDLC, in which the description of

the recommended solution is converted into logical and

then physical system specifications.

____ The part of the design phase of the SDLC in which all func-

tional features of the system chosen for development are

described independently of any computer platform.

____ The part of the design phase of the SDLC in which the

logical specifications of the system from logical design are

transformed into technology-specific details from which all

programming and system construction can be accomplished.

____ The fourth phase of the SDLC, in which the information

system is coded, tested, installed, and supported in the

organization.

____ The final phase of the SDLC, in which an information sys-

tem is systematically repaired and improved.

____ Systems development methodologies and techniques based

on objects rather than data or processes.

____ A structure that encapsulates (or packages) attributes and the

methods that operate on those attributes. It is an abstraction

of a real-world thing in which data and processes are placed

together to model the structure and behavior of the real-

world object.

____ The property that occurs when entity types or object classes

are arranged in a hierarchy and each entity type or object

class assumes the attributes and methods of its ancestors—

that is, those higher up in the hierarchy. The property allows

new but related classes to be derived from existing classes.

____ A logical grouping of objects that have the same (or similar)

attributes and behaviors (methods).

____ An object-oriented systems development methodology. This

methodology establishes four phases of development, each

of which is organized into a number of separate iterations:

inception, elaboration, construction, and transition.

22 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Beck, K., & Andres, C. (2004). eXtreme Programming eXplained.
Upper Saddle River, NJ: Addison-Wesley.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline.
Boston: Addison-Wesley.

Chow, T. & Cao, D-B. (2008). A survey study of critical success
factors in agile software projects. The Journal of Systems and

Software, 81, 961–971.
Dorfman, M., & Thayer, R. M. (eds). (1997). Software engineering.

Los Alamitos, CA: IEEE Computer Society Press.
Dyba, T. & Dingsoyr, T. (2008). Empirical studies of agile software

development: A systematic review. Information and Software

Technology, 50, 833–859.
Fowler, M. (2003, December). The new methodologies. Retrieved

February 3, 2009 from http://martinfowler.com/articles/
newMethodology.html.

Fruhling, A. & De Vreede, G. J. (2006). Field experiences with
eXtreme Programming: Developing an emergency response
system. Journal of MIS, 22(4), 39–68.

Griss, M. (2003). Ranking IT productivity improvement strategies.
Accessed February 3, 2009 from http://martin.griss.com/
pub/WPGRISS01.pdf.

Kay, R. (2002, May 14). QuickStudy: System Development Life
Cycle. Computerworld. Retrieved February 3, 2009 from
http://www.computerworld.com.

Kruchten, P. (2000). From waterfall to iterative lifecycle—A Tough

transition for project managers (Rational Software White Paper
TP-173 5/00). Retrieved February 3, 2009 from http://www
.ibm.com/developerworks/rational.

Martin, R. C. (1999). Iterative and Incremental Development I.
Retrieved October 12, 2012 from http://www.objectmentor
.com/resources/ articles/IIDI.pdf.

Schwaber, K. & Sutherland, J. (2011). The scrum guide. Accessed at
http://www.scrum.org/scrumguides, 1/12/12.

VersionOne. 2017. 11th Annual State of Agile Report. Retrieved
March 13, 2018 from http://www.versionone.com/
resources/.

REFERENCES

PROBLEMS AND EXERCISES

 1.28 Why is it important to use systems analysis and design meth-
odologies when building a system? Why not just build the
system in whatever way appears to be “quick and easy”? What
value is provided by using an “engineering” approach?

 1.29 Compare Figures 1-2 and 1-3. What similarities and differ-
ences do you see?

 1.30 Compare Figures 1-2 and 1-4. Can you match steps in
 Figure 1-4 with phases in Figure 1-2? How might you explain
the differences between the two figures?

 1.31 Compare Figures 1-2 and 1-8. How does Figure 1-8 illustrate
some of the problems of the traditional waterfall approach
that are not illustrated in Figure 1-2? How does converting
Figure 1-8 into a circle (like Figure 1-2) fix these problems?

 1.32 Explain how object-oriented analysis and design differs
from the traditional approach. Why isn’t RUP (Figure 1-9)
represented as a cycle? Is that good or bad? Explain your
response.

FIELD EXERCISES

 1.33 Choose an organization that you interact with regularly and list
as many different “systems” (computer-based or not) as you can
that are used to process transactions, provide information to
managers and executives, help managers and executives make
decisions, aid group decision making, capture knowledge and
provide expertise, help design products and/or facilities, and
assist people in communicating with one another. Draw a dia-
gram that shows how these systems interact (or should interact)
with one another. Are these systems well integrated?

 1.34 Imagine an information system built without using a systems
analysis and design methodology and without any thinking
about the SDLC. Use your imagination and describe any
and all problems that might occur, even if they seem a bit
extreme or absurd. (The problems you will describe have
probably occurred in one setting or another.)

 1.35 Choose a relatively small organization that is just beginning
to use information systems. What types of systems are being
used? For what purposes? To what extent are these systems

integrated with one another? With systems outside the orga-
nization? How are these systems developed and controlled?
Who is involved in systems development, use, and control?

 1.36 Use the Web to find out more about the agile methodolo-
gies. Write a report on what the movement toward agility
means for the future of systems analysis and design.

 1.37 You may want to keep a personal journal of ideas and obser-
vations about systems analysis and design while you are study-
ing this book. Use this journal to record comments you hear,
summaries of news stories or professional articles you read,
original ideas or hypotheses you create, and questions that
require further analysis. Keep your eyes and ears open for
anything related to systems analysis and design. Your instruc-
tor may ask you to turn in a copy of your journal from time to
time in order to provide feedback and reactions. The journal
is an unstructured set of personal notes that will supplement
your class notes and can stimulate you to think beyond the
topics covered within the time limitations of most courses.

 1.22 Explain what is meant by agile methodologies.

 1.23 What is eXtreme Programming?

 1.24 What is Scrum?

 1.25 Describe what we have learned about agile methodologies
in practice.

 1.26 When would you use agile methodologies versus an
engineering-based approach to development?

 1.27 What is object-oriented analysis and design?

http://www.versionone.com/resources/
http://www.versionone.com/resources/
http://www.scrum.org/scrumguides
http://www.objectmentor.com/resources/%E2%80%90articles/IIDI.pdf
http://www.objectmentor.com/resources/%E2%80%90articles/IIDI.pdf
http://www.ibm.com/developerworks/rational
http://www.ibm.com/developerworks/rational
http://www.computerworld.com/
http://martin.griss.com/pub/WPGRISS01.pdf
http://martin.griss.com/pub/WPGRISS01.pdf
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html

23

is outsourcing, in which all or part of an organization’s
information systems, their development, and their main-
tenance are given over to another organization. You will
then read about six different sources of software: (1) infor-
mation technology services firms, (2) packaged software
providers, (3) vendors of enterprise-wide solution software,
(4) cloud computing, (5) open-source software, and (6)
the organization itself when it develops software in-house.
You will learn about criteria to evaluate software from these
different sources. The chapter closes with a discussion of
reuse and its impact on software development.

SYSTEMS ACQUISITION

Although there will always be some debate about when
and where the first administrative information system was
developed, there is general agreement that the first such
system in the United Kingdom was developed at J. Lyons
& Sons. In the United States, the first administrative infor-
mation system was General Electric’s (GE) payroll system,
which was developed in 1954 (Computer History Museum,
2003). At that time, and for many years afterward, obtain-
ing an information system meant one thing only: in-house
development. The software industry did not even come
into existence until a decade after GE’s payroll system was
implemented.

Since GE’s payroll system was built, in-house devel-
opment has become a progressively smaller piece of all
the systems development work that takes place in and for
organizations. Internal corporate information systems
departments now spend a smaller and smaller proportion
of their time and effort on developing systems from scratch.

As you learned in Chapter 1, there was a time, not too
long ago, when no systems analysts and no symbolic com-
puter programming languages existed. Yet people still
wrote and programmed applications for computers. Even
though today’s systems analyst has dozens of program-
ming languages and development tools to work with, you
could easily argue that systems development is even more
difficult now than it was years ago. Then, as well as even
more recently, certain issues were decided for you: If you
wanted to write application software, you did it in-house,
and you wrote the software from scratch. Today there are
many different sources of software, and many of you read-
ing this book will end up working for firms that produce
software, rather than in the information systems depart-
ment of a corporation. But for those of you who do go on
to work in a corporate information systems department,
the focus is no longer exclusively on in-house develop-
ment. Instead, the focus will be on where to obtain the
many pieces and components that you will combine into
the application system you have been asked to create. You
and your peers will still write code, mainly to make all
the different pieces work together, but more and more
of your application software will be written by someone
else. Even though you will not write the code, you will still
use the basic structure and processes of the systems analy-
sis and design life cycle to build the application systems
your organization demands. The organizational process
of systems development remains the focus for the rest of
the book, but first you need to know more about where
software originates in today’s development environment.

In this chapter, you will learn about the various sources
of software for organizations. The first source considered

 2.3 discuss how to evaluate off-the-shelf software; and

 2.4 explain reuse and its role in software development.

Learning Objectives

After studying this chapter, you should be able to

 2.1 explain outsourcing;

 2.2 describe six different sources of software;

The Origins of Software2

Introduction

24 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

Companies continue to spend relatively little time and money on traditional software
development and maintenance. Instead, they invest in packaged software, open-source
software, and outsourced services. Organizations today have many choices when seek-
ing an information system. We will start with a discussion of outsourcing development
and operation and then move on to a presentation on the sources of software.

Outsourcing

If one organization develops or runs a computer application for another organiza-
tion, that practice is called outsourcing. Outsourcing includes a spectrum of working
arrangements. At one extreme is having a firm develop and run your application on its
computers—all you do is supply input and take output. A common example of such an
arrangement is a company that runs payroll applications for clients so that clients do
not have to develop an independent in-house payroll system. Instead, they simply pro-
vide employee payroll information to the company, and, for a fee, the company returns
completed paychecks, payroll accounting reports, and tax and other statements for
employees. For many organizations, payroll is a very cost-effective operation when out-
sourced in this way. Another example of outsourcing would be if you hired a company
to run your applications at your site on your computers. In some cases, an organization
employing such an arrangement will dissolve some or all of its information systems (IS)
unit and fire all of its IS employees. Often the company brought in to run the organi-
zation’s computing will rehire many of the organization’s original IS unit employees.

Outsourcing is big business. Some organizations outsource the information tech-
nology (IT) development of many of their IT functions at a cost of billions of dollars.
Most organizations outsource at least some aspect of their information systems activi-
ties. Global outsourcing revenues in 2017 were estimated at $88.9 billion USD, with
$64.3 billion USD due to IT outsourcing (Statistica, 2018). Individual outsourcing
vendors, such as HPE, IBM, and Accenture, typically sign large contracts for their
services. These vendors have multiple outsourcing contracts in place with many dif-
ferent firms all over the world.

Why would an organization outsource its information systems operations? As we
saw in the payroll example, outsourcing may be cost-effective. If a company special-
izes in running payroll for other companies, it can leverage the economies of scale it
achieves from running one stable computer application for many organizations into
very low prices. Outsourcing also provides a way for firms to leapfrog their current
position in information systems and to turn over development and operations to out-
side staff who possess knowledge and skills not found internally (Ketler & Willems,
1999). Other reasons for outsourcing include

• freeing up internal resources,
• increasing the revenue potential of the organization,
• reducing time to market,
• increasing process efficiencies, and
• outsourcing noncore activities.

An organization may move to outsourcing and dissolve its entire information
processing unit for political reasons as well, such as overcoming operating problems
the organization faces in its information systems unit. For example, the City of Grand
Rapids, Michigan, hired an outside firm to run its computing center 50 years ago in
order to better manage its computing center employees. Union contracts and civil
service constraints then in force made it difficult to fire people, so the City brought
in a facilities management organization to run its computing operations, and it was
able to get rid of problem employees at the same time. As mentioned earlier, another
reason for total outsourcing is that an organization’s management may feel its core
mission does not involve managing an information systems unit and that it might
achieve more effective computing by turning over all its operations to a more experi-
enced, computer-oriented company.

Outsourcing
The practice of turning over responsibil-
ity for some or all of an organization’s
information systems applications and
operations to an outside firm.

 CHAPTER 2 THE ORIGINS OF SOFTWARE 25

Although you have most likely heard about outsourcing in terms of IT jobs from
all over the world going to India, it turns out that the global outsourcing marketplace
is much more complicated. According to a 2017 report by ATKearney (2017), India
is the number one outsourcing nation, while China is close behind, and Malaysia is
third. Despite much turmoil in the overall outsourcing market over the years, the top
three rankings have not changed since ATKearney’s first report on outsourcing in
2003. Not all of the 2017 top 10 outsourcing countries are located in Asia. Although
seven are in Asia, three are in Latin America (Brazil, Chile, and Colombia). Even the
United States is an outsourcing nation, number 22 on the ATKearney list. In fact,
Indian outsourcing firms, such as Wipro, Infosys, and Tata Consulting, operate offices
in the United States. As Indian firms have become so successful at offshoring, and as
currencies have fluctuated, it has become more expensive for firms to contract with
Indian companies, so many firms have started to look elsewhere. Many U.S. firms have
turned to what is called nearshoring, or contracting with companies in Latin American
countries. Many of these countries are no more than one time zone away, and they
maintain some of the labor cost advantages that are eroding in India (King, 2008a).
Mexico, number 13 on the list, is increasingly seen as a complement to India and
other offshore locations. It is also becoming more common for firms to distribute their
outsourcing work across vendors in several countries at the same time.

Analysts need to be aware of outsourcing as an alternative. When generating
alternative system development strategies for a system, as an analyst you should consult
organizations in your area that provide outsourcing services. It may well be that at least
one such organization has already developed and is running an application very close
to what your users are asking for. Perhaps outsourcing the replacement system should
be one of your alternatives. Knowing what your system requirements are before you
consider outsourcing means that you can carefully assess how well the suppliers of
outsourcing services can respond to your needs. However, should you decide not to
consider outsourcing, you need to determine whether some software components of
your replacement system should be purchased and not built in-house.

Sources of Software

We can group the sources of software into six major categories: information technol-
ogy services firms, packaged software producers, enterprise-wide solutions, cloud com-
puting vendors, open-source software, and in-house developers (Figure 2-1). These
various sources represent points along a continuum of options, with many hybrid
combinations along the way.

Information Technology Services Firms If a company needs an information sys-
tem but does not have the expertise or the personnel to develop the system in-house,
and a suitable off-the-shelf system is not available, the company will likely consult an
information technology services firm. IT services firms help companies develop cus-
tom information systems for internal use, or they develop, host, and run applications
for customers, or they provide other services. Note in Table 2-1 that many of the lead-
ing software companies in the world specialize in IT services, which includes custom
systems development. These firms employ people with expertise in the development
of information systems. Their consultants may also have expertise in a given business
area. For example, consultants who work with banks understand financial institutions
as well as information systems. Consultants use many of the same methodologies,
techniques, and tools that companies use to develop systems in-house.

It may surprise you to see IBM listed as a top global software producer; some
people still think of it as primarily a hardware company. Yet IBM has been moving
away from a reliance on hardware development for many years. IBM long ago solidi-
fied its move into services and consulting. IBM is also well known for its development
of Web server and middleware software. Other leading IT services firms include tra-
ditional consulting firms, such as Computer Sciences Corp., Accenture, and HPE

26 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

(Hewlett-Packard Enterprise). HPE, another company formerly focused on hardware,
has also made the transition to an IT services firm.

Packaged Software Producers The growth of the software industry has been
phenomenal since its beginnings in the mid-1960s. Some of the largest computer com-
panies in the world are companies that produce software exclusively. A good example
is Microsoft, probably the best-known software company in the world. The majority
of Microsoft’s revenue comes from its software sales, mostly of its Windows operating

FIGURE 2-1

Sources of application software

(Sources: Middle: Pixachi/Shutterstock,
Clockwise starting with upper left:
Kamira/Shutterstock; Amit John/
Pearson India Education Services Pvt.
Ltd; Dmitry Kalinovsky/Shutterstock;
1000 Words/Shutterstock; Aa Amie/
Shutterstock; Le Do/Shutterstock)

Cloud Computing

IT Services Firms

Packaged Software

Providers

In-House

Open Source

ERP Providers

Specialization Example Firms or Websites

IT Services Accenture

Computer Sciences Corporation (CSC)

IBM

HPE

Packaged Software Providers Intuit

Microsoft

Oracle

SAP AG

Symantec

Enterprise Software Solutions Oracle

SAP AG

Cloud Computing Amazon.com

Google

IBM

Microsoft

Salesforce.com

Open Source SourceForge.net

TABLE 2-1 Leading Software Firms and Their Development Specializations

http://amazon.com/
http://sourceforge.net/
http://salesforce.com/

 CHAPTER 2 THE ORIGINS OF SOFTWARE 27

systems and its personal productivity software, the Microsoft Office Suite. Also listed
in Table 2-1, Oracle is exclusively a software company known primarily for its database
software, but Oracle also makes enterprise systems. Another company on the list, SAP,
is also a software-focused company that develops enterprise-wide system solutions. You
will read more about Oracle and SAP shortly, in the section on enterprise systems.

Software companies develop what are sometimes called prepackaged or off-the-
shelf systems. Microsoft’s Word (Figure 2-2) and Intuit’s Quicken, QuickBooks, and
TurboTax are popular examples of such software. The packaged software development
industry serves many market segments. Their software offerings range from general,
broad-based packages, such as productivity tools, to very narrow, niche packages, such
as software to help manage a day care center. Software companies develop software
to run on many different computer platforms, from microcomputers to large main-
frames. The companies range in size from just a few people to thousands of employees.

Software companies consult with system users after the initial software design
has been completed and an early version of the system has been built. The systems are
then tested in actual organizations to determine whether there are any problems or if
any improvements can be made. Until testing is completed, the system is not offered
for sale to the public.

Some off-the-shelf software systems cannot be modified to meet the specific,
individual needs of a particular organization. Such application systems are sometimes

FIGURE 2-2

A document created in Microsoft’s Word

(Source: Microsoft Corporation.)

28 PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT

called turnkey systems. The producer of a turnkey system will make changes to the
software only when a substantial number of users ask for a specific change. However,
other off-the-shelf application software can be modified or extended, by the producer
or by the user, to more closely fit the needs of the organization. Even though many
organizations perform similar functions, no two organizations do the same thing in
quite the same way. A turnkey system may be good enough for a certain level of per-
formance, but it will never perfectly match the way a given organization does business.
A reasonable estimate is that off-the-shelf software can at best meet 70 percent of an
organization’s needs. Thus, even in the best case, 30 percent of the software system
does not match the organization’s specifications.

Enterprise Solutions Software As mentioned in Chapter 1, many firms have
chosen complete software solutions, called enterprise solutions or enterprise resource
 planning (ERP) systems, to support their operations and business processes. These
ERP software solutions consist of a series of integrated modules. Each module supports
an individual, traditional business function, such as accounting, distribution, manu-
facturing, or human resources. The difference between the modules and traditional
approaches is that the modules are integrated to focus on business processes rather
than on business functional areas. For example, a series of modules will support the
entire order entry process, from receiving an order, to adjusting inventory, to shipping,
to billing, to after-the-sale service. The traditional approach would use different systems
in different functional areas of the business, such as a billing system in accounting and
an inventory system in the warehouse. Using enterprise software solutions, a firm can
integrate all parts of a business process in a unified information system. All aspects of
a single transaction occur seamlessly within a single information system, rather than as
a series of disjointed, separate systems focused on business functional areas.

The benefits of the enterprise solutions approach include a single repository of
data for all aspects of a business process and the flexibility of the modules. A single
repository ensures more consistent and accurate data, as well as less maintenance. The
modules are flexible because additional modules can be added as needed once the
basic system is in place. Added modules are immediately integrated into the existing
system. However, there are disadvantages to enterprise solutions software. The systems
are very complex, so implementation can take a long time to complete. Organizations
typically do not have the necessary expertise in-house to implement the systems, so
they must rely on consultants or employees of the software vendor, which can be very
expensive. In some cases, organizations must change how they do business in order
to benefit from a migration to enterprise solutions.

Several major vendors provide enterprise solution software. The best known is
probably SAP AG, the German firm mentioned earlier, known for its flagship prod-
uct R/3. SAP AG was founded in 1972, but most of its growth has occurred since
1992. Since 2010, SAP has been one of the largest suppliers of software in the world.
Another major vendor of enterprise solutions is Oracle Corp., a U.S.-based firm, per-
haps better known for its database software. Oracle captured a large share of the ERP
market through its own financial systems and through the acquisition of other ERP
vendors. At the end of 2004, Oracle acquired PeopleSoft, Inc., a U.S. firm founded in
1987. PeopleSoft began with enterprise solutions that focused on human resources
management and expanded to cover financials, materials management, distribution,
and manufacturing before Oracle acquired them. Global revenues for ERP software
was $82.2 billion USD in 2016, with the top 10 firms accounting for 28.5 percent of
the market (Pang, 2017). SAP controlled the largest single slice of the market, at
7 percent. ERP revenues are expected to hit $84.7 billion USD by 2021.

Cloud Computing Another method for organizations to obtain applications is
to rent them or license them from third-party providers who run the applications at
remote sites. Users have access to the applications through the Internet or through vir-
tual private networks. The application provider buys, installs, maintains, and upgrades

Enterprise resource planning
(ERP) systems
A system that integrates individual tra-
ditional business functions into a series
of modules so that a single transaction
occurs seamlessly within a single infor-
mation system rather than several sepa-
rate systems.

 CHAPTER 2 THE ORIGINS OF SOFTWARE 29

the applications. Users pay on a per-use basis or they license the software, typically
month to month. Although this practice has been known by many different names
over the years, today it is part of cloud computing. Cloud computing refers to the
provision of applications or related services over the Internet, where customers do
not have to invest in the hardware and software resources needed to run and main-
tain the applications. You may have seen the Internet referred to as a cloud in other
contexts, which comes from how the Internet is depicted on computer network dia-
grams. A well-known example of cloud computing is Google Docs, Sheets, and Slides,
where users can share and create documents, spreadsheets, and presentations, respec-
tively (Figure 2-3). Another well-known example is Salesforce.com, which provides
customer relationship management software online. Cloud computing encompasses
many areas of technology, including software as a service (often referred to as SaaS),
which includes Salesforce.com, and hardware as a service, which includes Amazon
Web Services and allows companies to order server capacity and storage on demand.

The global market for public cloud computing was estimated at $209.2 billion
USD in 2016, and it is projected to grow to $383.3 billion USD by 2020 (Gartner, 2017).
The software as a service sector accounts for about 20 percent of the total. The com-
panies most likely to profit immediately from the growth in cloud computing are those
that can quickly adjust their product lines to meet the needs of cloud computing.
These include such well-known names as IBM, which has built multiple cloud comput-
ing centers worldwide; Microsoft, whose Azure platform supports the development and
operation of business applications and consumer services on its own servers; and
 Amazon.com, which provides storage and capacity from its own servers to customers.

Cloud computing
The provision of computing resources,
including applications, over the Internet,
so customers do not have to invest in
the computing infrastructure needed to
run and maintain the resources.

FIGURE 2-3

A presentation edited in Google Slides

 (Source: Reprinted by permission from
Joey F. George.)

http://amazon.com/
http://salesforce.com/
http://salesforce.com/

