
iii

Chapter 1 Tutorial 1-1: Starting Visual Studio and Setting
Up the Environment . 28

Tutorial 1-2: Starting a New Visual C# Project 30

Tutorial 1-3: Saving and Closing a Project 32

Tutorial 1-4: Opening an Existing Project 40

Tutorial 1-5: Getting Familiar with the Visual
Studio Environment . 41

Chapter 2 Tutorial 2-1: Creating the GUI for the Hello World Application . . 61

Tutorial 2-2: Writing Code for the Hello World Application 75

Tutorial 2-3: Creating the Language Translator Application 86

Tutorial 2-4: Creating the Flags Application 94

Tutorial 2-5: Creating the Card Flip Application 98

Solving the Clickable Number Images Problem 113

Chapter 3 Tutorial 3-1: The Birth Date String Application 126

Tutorial 3-2: Calculating Fuel Economy 147

Tutorial 3-3: Creating the Sale Price Calculator Application
with Currency Formatting . 153

Tutorial 3-4: Creating the Test Average Application
with Exception Handling . 161

Tutorial 3-5: Creating the Change Counter Application 170

Tutorial 3-6: Single-stepping through an Application’s
Code at Runtime . 186

Solving the Tip, Tax, and Total Problem 196

Chapter 4 Tutorial 4-1: Completing the Test Score Average Application . . . 206

Tutorial 4-2: Completing the Payroll with Overtime Application 212

Tutorial 4-3: Completing the Loan Qualifier Application 218

Tutorial 4-4: Calculating Fuel Economy 241

Tutorial 4-5: Creating the Color Theme Application 250

Tutorial 4-6: Creating the Time Zone Application 257

Solving the Mass and Weight Problem 266

Chapter 5 Tutorial 5-1: Using a Loop to Calculate an Account Balance . . . 277

Tutorial 5-2: Enhancing the Ending Balance Application 280

Tutorial 5-3: Using the for Loop . 290

Tutorial 5-4: Writing Data to a Text File 301

Tutorial 5-5: Appending Data to the Friend.txt File 306

Tutorial 5-6: Using a Loop to Read to the End of a File 314

Tutorial 5-7: Calculating a Running Total 318

Tutorial 5-8: Simulating Coin Tosses . 328

Tutorial 5-9: Creating a Load Event Handler 333

Solving the Celsius to Fahrenheit Table Problem 340

VideoNote

Locations of VideoNotes
www.pearson.com/cs-resources

Chapter 6 Tutorial 6-1: Creating and Calling Methods 349

Tutorial 6-2: Passing an Argument to a Method 356

Tutorial 6-3: Using an Output Parameter 367

Tutorial 6-4: Writing a Value-Returning Method 376

Tutorial 6-5: Modularizing Input Validation with a Boolean
Method . 379

Tutorial 6-6: Practicing the Step Into Command 385

Tutorial 6-7: Practicing the Step Over Command 386

Tutorial 6-8: Practicing the Step Out Command 387

Solving the Kinetic Energy Problem . 392

Chapter 7 Tutorial 7-1: Using an Array to Hold a List of Random
Lottery Numbers . 407

Tutorial 7-2: Processing an Array . 432

Tutorial 7-3: Completing the Seating Chart Application 447

Tutorial 7-4: Completing the Test Score List Application 460

Tutorial 7-5: Completing the Random Card Application 467

Solving the Total Sales Problem . 474

Chapter 8 Tutorial 8-1: Completing the Password Validation
Application . 485

Tutorial 8-2: Completing the Telephone Format Application . . 498

Tutorial 8-3: Completing the Telephone Unformat Application 502

Tutorial 8-4: Completing the CSV Reader Application 509

Solving the Sum of Numbers in a String Problem 522

Chapter 9 Tutorial 9-1: Completing the Phonebook Application 535

Tutorial 9-2: Completing the Color Spectrum Application 552

Tutorial 9-3: Storing Names and Birthdays in a Dictionary: . . . 564

Tutorial 9-4: Using a Dictionary to Simulate a Deck of Cards . 566

Solving the Course Information Problem 578

Chapter 10 Tutorial 10-1: Creating and Using the Coin Class 588

Tutorial 10-2: Creating and Using the CellPhone Class 598

Tutorial 10-3: Creating and Using the BankAccount Class . . . 603

Tutorial 10-4: Completing the Cell Phone Inventory
Application . 612

Tutorial 10-5: Creating an Application with Two Forms 630

Tutorial 10-6: Accessing a Control on a Different Form 635

Tutorial 10-7: Creating a Simple Logging Utility with a Static
Class: . 643

Solving the Pet Class Problem . 652

Chapter 11 Tutorial 11-1: Creating and Testing the SavingsAccount and
CDAccount Classes . 664

Tutorial 11-2: Completing the Polymorphism Application 677

Tutorial 11-3: Completing the Computer Science Student
Application . 684

Solving the Employee and Production–Worker Classes
Problem . 712

Chapter 12 Tutorial 12-1: Starting the Phone Book Application and Creating
the Phonelist.mdf Database . 721

Tutorial 12-2: Completing the Phone Book Application 729

iv Locations of VideoNotes

Tutorial 12-3: Creating the Products Application and Using a
Details View . 738

Tutorial 12-4: Creating the Product Lookup Application 749

Tutorial 12-5: Creating the Multiform Products Application . . 752

Tutorial 12-6: Creating the Product Queries Application 764

Tutorial 12-7: Creating the Product Queries Application 773

Tutorial 12-8: Creating the Product Search Application 777

Solving the Personnel Database Problem 787

Chapter 13 Tutorial 13-1: Working with List Methods and Lambdas . . . 811

Solving the List Manipulator Problem. 818

Chapter 14 Tutorial 14-1: Completing the Student Roster Application 827

Tutorial 14-2: Modifying the Student Roster Application 835

Tutorial 14-3: Completing the Team Player Application 849

Tutorial 14-4: Completing the Phonelist Names Application . . 859

Tutorial 14-5: Completing the Product Reports Application . . 864

Tutorial 14-6: Completing the QueryDataSource
Application . 871

Solving the Unique Words Problem . 881

 Locations of VideoNotes v

vi

Brief Contents

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Introduction to Visual C# 51

Chapter 3 Processing Data 117

Chapter 4 Making Decisions 201

Chapter 5 Loops, Files, and Random Numbers 271

Chapter 6 Modularizing Your Code with Methods 343

Chapter 7 Arrays and Lists 397

Chapter 8 Text Processing 479

Chapter 9 Structures, Enumerated Types, and Dictionaries 525

Chapter 10 Introduction to Classes 581

Chapter 11 Inheritance, Polymorphism, and Interfaces 655

Chapter 12 Databases 715

Chapter 13 Delegates, Anonymous Methods, and
Lambda Expressions 789

Chapter 14 Language-Integrated Query (LINQ) 821

Appendix A C# Primitive Data Types 883

Appendix B Additional User Interface Controls 885

Appendix C ASCII/Unicode Characters 905

Appendix D Answers to Checkpoint Questions 907

Appendix E Installing LINQ to SQL Classes in Visual Studio 929

Index 931

vii

Contents

 Preface xiii

 Attention Students xx

Chapter 1 Introduction to Computers and Programming 1

1.1 Introduction . 1

1.2 Hardware and Software . 2

1.3 How Computers Store Data. 7

1.4 How a Program Works . 11

1.5 Graphical User Interfaces . 18

1.6 Objects . 21

1.7 The Program Development Process . 23

1.8 Getting Started with the Visual Studio Environment 27

TUTORIAL 1-1: Starting Visual Studio and Setting Up the Environment 28

TUTORIAL 1-2: Starting a New Visual C# Project . 30

TUTORIAL 1-3: Saving and Closing a Project . 32

TUTORIAL 1-4: Opening an Existing Project . 40

TUTORIAL 1-5: Getting Familiar with the Visual Studio Environment 41

Key Terms 43 • Review Questions 44 • Programming Problems 49

Chapter 2 Introduction to Visual C# 51

2.1 Getting Started with Forms and Controls . 51

2.2 Creating the GUI for Your First Visual C# Application:
The Hello World Application. 60

TUTORIAL 2-1: Creating the GUI for the Hello World Application 61

2.3 Introduction to C# Code . 65

2.4 Writing Code for the Hello World Application . 75

TUTORIAL 2-2: Writing Code for the Hello World Application. 75

2.5 Label Controls . 78

TUTORIAL 2-3: Creating the Language Translator Application. 86

2.6 Making Sense of IntelliSense . 89

2.7 PictureBox Controls . 90

TUTORIAL 2-4: Creating the Flags Application . 94

TUTORIAL 2-5: Creating the Card Flip Application. 98

2.8 Comments, Blank Lines, and Indentation . 102

2.9 Writing the Code to Close an Application’s Form. 104

2.10 Dealing with Syntax Errors. 105

Key Terms 107 • Review Questions 107 • Programming Problems 112

viii Contents

Chapter 3 Processing Data 117

3.1 Reading Input with TextBox Controls . 117

3.2 A First Look at Variables . 120

TUTORIAL 3-1: The Birth Date String Application . 126

3.3 Numeric Data Types and Variables . 131

3.4 Performing Calculations . 137

3.5 Inputting and Outputting Numeric Values . 142

TUTORIAL 3-2: Calculating Fuel Economy . 147

3.6 Formatting Numbers with the ToString Method. 150

TUTORIAL 3-3: Creating the Sale Price Calculator Application with
Currency Formatting . 153

3.7 Simple Exception Handling . 157

TUTORIAL 3-4: Creating the Test Average Application with
Exception Handling. 161

3.8 Using Named Constants . 165

3.9 Declaring Variables as Fields . 166

TUTORIAL 3-5: Creating the Change Counter Application 170

3.10 Using the Math Class . 174

3.11 More GUI Details . 176

3.12 Using the Debugger to Locate Logic Errors. 185

TUTORIAL 3-6: Single-stepping through an Application’s Code at Runtime 186

Key Terms 191 • Review Questions 191 • Programming Problems 196

Chapter 4 Making Decisions 201

4.1 Decision Structures and the if Statement . 201

TUTORIAL 4-1: Completing the Test Score Average Application 206

4.2 The if-else Statement . 210

TUTORIAL 4-2: Completing the Payroll with Overtime Application 211

4.3 Nested Decision Structures . 216

TUTORIAL 4-3: Completing the Loan Qualifier Application 218

4.4 Logical Operators. 227

4.5 bool Variables and Flags . 232

4.6 Comparing Strings. 232

4.7 Preventing Data Conversion Exceptions with the TryParse Methods 236

TUTORIAL 4-4: Calculating Fuel Economy . 241

4.8 Input Validation . 244

4.9 Radio Buttons and Check Boxes . 245

TUTORIAL 4-5: Creating the Color Theme Application. 250

4.10 The switch Statement . 252

4.11 Introduction to List Boxes . 255

TUTORIAL 4-6: Creating the Time Zone Application . 257

Key Terms 261 • Review Questions 261 • Programming Problems 265

Chapter 5 Loops, Files, and Random Numbers 271

5.1 More about ListBoxes. 271

5.2 The while Loop . 273

TUTORIAL 5-1: Using a Loop to Calculate an Account Balance 277

 Contents ix

TUTORIAL 5-2: Enhancing the Ending Balance Application 280

5.3 The ++ and −− operators . 284

5.4 The for Loop . 285

TUTORIAL 5-3: Using the for Loop . 290

5.5 The do-while Loop . 293

5.6 Using Files for Data Storage. 295

TUTORIAL 5-4: Writing Data to a Text File. 301

TUTORIAL 5-5: Appending Data to the Friend.txt File . 306

TUTORIAL 5-6: Using a Loop to Read to the End of a File 314

TUTORIAL 5-7: Calculating a Running Total. 318

5.7 The OpenFileDialog and SaveFileDialog Controls. 321

5.8 Random Numbers . 326

TUTORIAL 5-8: Simulating Coin Tosses. 328

5.9 The Load Event. 332

TUTORIAL 5-9: Creating a Load Event Handler . 333

Key Terms 336 • Review Questions 336 • Programming Problems 339

Chapter 6 Modularizing Your Code with Methods 343

6.1 Introduction to Methods . 343

6.2 void Methods . 345

TUTORIAL 6-1: Creating and Calling Methods . 349

6.3 Passing Arguments to Methods. 353

TUTORIAL 6-2: Passing an Argument to a Method . 356

6.4 Passing Arguments by Reference. 364

TUTORIAL 6-3: Using an Output Parameter . 367

6.5 Value-Returning Methods . 371

TUTORIAL 6-4: Writing a Value-Returning Method . 376

TUTORIAL 6-5: Modularizing Input Validation with a Boolean Method 379

6.6 Debugging Methods . 384

TUTORIAL 6-6: Practicing the Step Into Command. 385

TUTORIAL 6-7: Practicing the Step Over Command . 386

TUTORIAL 6-8: Practicing the Step Out Command . 387

Key Terms 389 • Review Questions 389 • Programming Problems 392

Chapter 7 Arrays and Lists 397

7.1 Value Types and Reference Types . 397

7.2 Array Basics . 400

TUTORIAL 7-1: Using an Array to Hold a List of Random
Lottery Numbers . 407

7.3 Working with Files and Arrays . 412

7.4 Passing Arrays as Arguments to Methods . 415

7.5 Some Useful Array Algorithms. 422

TUTORIAL 7-2: Processing an Array . 432

7.6 Advanced Algorithms for Sorting and Searching Arrays 437

7.7 Two-Dimensional Arrays . 444

TUTORIAL 7-3: Completing the Seating Chart Application 447

7.8 Jagged Arrays . 453

x Contents

7.9 The List Collection . 454

TUTORIAL 7-4: Completing the Test Score List Application 460

7.10 The ImageList Control . 465

TUTORIAL 7-5: Completing the Random Card Application 467

Key Terms 470 • Review Questions 470 • Programming Problems 474

Chapter 8 Text Processing 479

8.1 Introduction . 479

8.2 Working with Characters . 479

TUTORIAL 8-1: Completing the Password Validation Application 485

8.3 Working with Substrings . 489

TUTORIAL 8-2: Completing the Telephone Format Application 498

TUTORIAL 8-3: Completing the Telephone Unformat Application 502

8.4 Tokenizing Strings . 506

TUTORIAL 8-4: Completing the CSV Reader Application 509

8.5 The String.Format Method . 514

Key Terms 519 • Review Questions 519 • Programming Problems 521

Chapter 9 Structures, Enumerated Types, and Dictionaries 525

9.1 Introduction . 525

9.2 Structures. 525

TUTORIAL 9-1: Completing the Phonebook Application. 535

9.3 The DateTime and TimeSpan Structures . 541

9.4 Enumerated Types . 549

TUTORIAL 9-2: Completing the Color Spectrum Application 552

9.5 Dictionaries . 556

TUTORIAL 9-3: Storing Names and Birthdays in a Dictionary. 564

TUTORIAL 9-4: Using a Dictionary to Simulate a Deck of Cards. 566

Key Terms 572 • Review Questions 572 • Programming Problems 575

Chapter 10 Introduction to Classes 581

10.1 Introduction to Classes . 581

TUTORIAL 10-1: Creating and Using the Coin Class . 588

10.2 Properties . 593

TUTORIAL 10-2: Creating and Using the CellPhone Class 598

10.3 Parameterized Constructors and Overloading . 602

TUTORIAL 10-3: Creating and Using the BankAccount Class 603

10.4 Storing Class Type Objects in Arrays and Lists . 611

TUTORIAL 10-4: Completing the Cell Phone Inventory Application 612

10.5 Finding the Classes and Their Responsibilities in a Problem 616

10.6 Application of Classes: Creating Multiple Forms in a Project 625

TUTORIAL 10-5: Creating an Application with Two Forms. 630

TUTORIAL 10-6: Accessing a Control on a Different Form 635

10.7 Static Class Members . 639

TUTORIAL 10-7: Creating a Simple Logging Utility with a Static Class 643

Key Terms 648 • Review Questions 648 • Programming Problems 652

 Contents xi

Chapter 11 Inheritance, Polymorphism, and Interfaces 655

11.1 Inheritance . 655

TUTORIAL 11-1: Creating and Testing the SavingsAccount
and CDAccount Classes . 664

11.2 Polymorphism . 672

TUTORIAL 11-2: Completing the Polymorphism Application 677

11.3 Abstract Classes . 682

TUTORIAL 11-3: Completing the Computer Science Student Application 684

11.4 Extension Methods. 688

TUTORIAL 11-4: Creating Extension Methods . 693

11.5 Interfaces . 696

TUTORIAL 11-5: Writing and Implementing an Interface 699

Key Terms 708 • Review Questions 708 • Programming Problems 712

Chapter 12 Databases 715

12.1 Introduction to Database Management Systems . 715

12.2 Tables, Rows, and Columns. 717

12.3 Creating a Database in Visual Studio. 720

TUTORIAL 12-1: Starting the Phone Book Application and
Creating the Phonelist.mdf Database . 721

12.4 The DataGridView Control. 729

TUTORIAL 12-2: Completing the Phone Book Application 729

12.5 Connecting to an Existing Database and Using Details View Controls. . . . 736

TUTORIAL 12-3: Creating the Products Application and Using a Details View . . . 738

12.6 More About Data-Bound Controls. 746

TUTORIAL 12-4: Creating the Product Lookup Application 749

TUTORIAL 12-5: Creating the Multiform Products Application 752

12.7 Selecting Data with the SQL Select Statement . 758

TUTORIAL 12-6: Creating the Product Queries Application 764

TUTORIAL 12-7: Creating the Product Queries Application 773

TUTORIAL 12-8: Creating the Product Search Application 777

Key Terms 783 • Review Questions 783 • Programming Problems 787

Chapter 13 Delegates, Anonymous Methods, and Lambda
Expressions 789

13.1 Delegates . 789

13.2 Anonymous Methods . 795

13.3 Lambda Expressions. 797

13.4 Built-In Delegates: Action, Func, and Predicate 803

TUTORIAL 13-1: Working with List Methods and Lambdas 811

Key Terms 815 • Review Questions 815 • Programming Challenges 818

Chapter 14 Language-Integrated Query (LINQ) 821

14.1 Introduction to LINQ . 821

TUTORIAL 14-1: Completing the Student Roster Application 827

14.2 LINQ Method Syntax . 831

TUTORIAL 14-2: Modifying the Student Roster Application 835

xii Contents

14.3 More LINQ Extension Methods . 837

TUTORIAL 14-3: Completing the Team Player Application 849

14.4 Using LINQ to Query a Database. 854

TUTORIAL 14-4: Completing the Phonelist Names Application 859

TUTORIAL 14-5: Completing the Product Reports Application 864

TUTORIAL 14-6: Completing the QueryDataSource Application 871

Key Terms 878 • Review Questions 878 • Programming Problems 881

Appendix A C# Primitive Data Types. 883

Appendix B Additional User Interface Controls . 885

Appendix C ASCII/Unicode Characters. 905

Appendix D Answers to Checkpoint Questions . 907

Appendix E Installing LINQ to SQL Classes in Visual Studio 929

Index . 931

xiii

Preface

Welcome to Starting Out with Visual C#, Fifth Edition. This book is intended

for an introductory programming course and is ideal for students with no

prior experience. Students who are new to programming will appreciate the clear, down-

to-earth explanations and the detailed walk-throughs that are provided by the hands-on

tutorials. More experienced students will appreciate the depth of detail as they learn

about the .NET Framework, databases, Language-Integrated Query, and other topics.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,

friendly, and easy-to-understand writing. In addition, it is rich in example programs that are

concise and practical. The programs in this book include short examples that highlight specific

programming topics, as well as more involved examples that focus on problem solving. Each

chapter provides numerous hands-on tutorials that guide the student through each step of the

development of an application. In addition to detailed, step-by-step instructions, the tutorials

also provide the application’s completed code and screen captures of the completed forms.

New to This Edition

The biggest changes in this edition appear in the last half of the book. Some of the chap-

ters have been reorganized, and two new chapters have been added. Here is a summary of

the reorganization:

• The ImageList control is now covered along with Arrays and Lists in Chapter 7.

Since an ImageList is a collection of images, it is fitting that this control be covered

in the same chapter as Arrays and Lists.

• Chapter 8 has been split into two chapters, with new material added to both of the

resulting chapters. In this edition, Chapter 8 is titled Text Processing and Chapter 9

is titled Structures, Enumerated Types, and Dictionaries.

• Two new chapters have been added. In this edition, Chapter 13 is titled Delegates and

Lambda Expressions and Chapter 14 is titled Language-Integrated Query (LINQ).

An abundance of new topics and improvements has been added to this edition:

• var Keyword: This edition introduces the var keyword for variable declaration.

• Advanced String Formatting: Chapter 8 includes a new section on formatting strings

with the String.Format method.

• Working with Dates and Times: Chapter 9 includes a new section about working

with dates and times. The section covers the DateTime and TimeSpan data types, as

well as the DateTimePicker control.

• Dictionaries: Chapter 9 includes a new section on the Dictionary collection. The

student learns to store and work with data as key–value pairs in dictionaries.

• More Use of Auto-Properties: In the previous editions, property declarations were

almost always written with explicitly declared backing fields, even when the properties

were simply used to set and get a value. Where possible, those property declarations

have been rewritten as auto-properties.

• Object Initializer Syntax: Object initializer syntax is introduced in Chapters 8 and

10 as an alternative way to declare and initialize structures and class instances.

• Static Members: Chapter 10 has a new section on static fields, properties, methods,

and classes.

• Sealed Classes and Methods: Chapter 11 has a new discussion on using the sealed

keyword to prevent classes from being inherited from, and to prevent methods from

being overridden.

xiv Preface

• Extension Methods: Chapter 11 covers extension methods, which allow you to

extend classes that you cannot inherit from, as well as the primitive data types.

• Interfaces: Chapter 11 now includes a section on writing and using interfaces.

• Delegates: Chapter 13 introduces the student to delegates.

• Anonymous Methods: Chapter 13 also introduces anonymous methods, which go

hand-in-hand with delegates.

• Lambda Expressions: Chapter 13 concludes by showing the student how to use a

lambda expression to concisely create a delegate and anonymous method.

• Language-Integrated Query (LINQ): Chapter 14 introduces LINQ, and shows how

to query simple data structures such as arrays and Lists using LINQ to Objects, and

how to query databases using LINQ to SQL.

A GUI-Based Approach

Beginning students are more motivated to learn programming when their applications

have some sort of graphical element, such as a graphical user interface (GUI). Students

using this book will learn to create GUI-based, event-driven, Visual C# applications. The

Visual Studio environment is used to create forms that are rich with user interface con-

trols and graphical images.

Learn to Use Objects Early, Learn to Write Classes Later

This book explains what an object is very early and shows the student how to create

objects from classes that are provided by the .NET Framework. It then introduces the

student to the fundamentals of input and output, control structures, methods, arrays and

lists, and file operations. Then, the student learns to write his or her own classes and

explores the topics of inheritance and polymorphism.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming. This chapter begins

by giving a very concrete and easy-to-understand explanation of how computers work,

how data is stored and manipulated, and why we write programs in high-level languages.

In this chapter, the student learns what an object is and sees several examples by studying

the objects that make up a program’s GUI. The chapter discusses steps in the program-

ming development cycle. It also gives an introduction to the Visual Studio environment.

Chapter 2: Introduction to Visual C#. In this chapter, the student learns to create

forms with labels, buttons, and picture boxes and learns to modify control properties.

The student is introduced to C# code and learns the organizational structure of

namespaces, classes, and methods. The student learns to write simple event-driven appli-

cations that respond to button clicks or provide interaction through clickable images. The

importance of commenting code is also discussed.

Chapter 3: Processing Data. This chapter introduces variables and data types. It

discusses the use of local variables and variables declared as fields within a form class.

The student learns to create applications that read input from TextBox controls, perform

mathematical operations, and produce formatted output. The student learns about the

exceptions that can occur when the user enters invalid data into a TextBox and learns to

write simple exception-handling code to deal with those problems. Named constants are

introduced as a way of representing unchanging values and creating self-documenting,

maintainable code. The student also learns more intricacies of creating graphical user

interfaces. The chapter concludes with a discussion and tutorial on using the Visual Studio

debugger to locate logic errors by single-stepping through an application’s code.

Chapter 4: Making Decisions. In this chapter, the student learns about relational

operators and Boolean expressions and is shown how to control the flow of a program

 Preface xv

with decision structures. The if, if-else, and if-else-if statements are covered.

Nested decision structures, logical operators, and the switch statement are also discussed.

The student learns to use the TryParse family of methods to validate input and prevent

exceptions. Radio buttons, check boxes, and list boxes are introduced as ways to let the

user select items in a GUI.

Chapter 5: Loops, Files, and Random Numbers. This chapter shows the student

how to use loops to create repetition structures. The while loop, the for loop, and the

do-while loop are presented. Counters, accumulators, and running totals are also dis-

cussed. This chapter also introduces sequential file input and output and using text files.

The student learns various programming techniques for writing data to text files and

reading the contents of test files. The chapter concludes with a discussion of pseudoran-

dom numbers, their applications, and how to generate them.

Chapter 6: Modularizing Your Code with Methods. In this chapter, the student

first learns how to write and call void methods as well as value-returning methods. The

chapter shows the benefits of using methods to modularize programs and discusses the

top-down design approach. Then, the student learns to pass arguments to methods. Pass-

ing by value, by reference, and output parameters are discussed. The chapter concludes

with a discussion and tutorial on debugging methods with the Visual Studio step-into,

step-over, and step-out, commands.

Chapter 7: Arrays and Lists. Arrays and lists are reference-type objects in C# so this

chapter begins by discussing the difference between value type and reference type objects

in the C# language. Then, the student learns to create and work with single-dimensional

and two-dimensional arrays. The student learns to pass arrays as arguments to methods,

transfer data between arrays and files, work with partially filled arrays, and create jagged

arrays. Many examples of array processing are provided, including examples of finding

the sum, average, highest, and lowest values in an array. Finally, the student learns to

 create List objects and store data in them, and use the ImageList control, a data structure

for storing and retrieving images.

Chapter 8: Text Processing. This chapter discusses various techniques for working

with text. The topics include working with characters, working with substrings, tokeniz-

ing strings, and formatting strings.

Chapter 9: Structures, Enumerated Types, and Dictionaries. In this chapter, the

student learns to use structures to encapsulate several variables into a single item. The student

next learns to create and use enumerated types. Last, the student learns to use the Dictionary

collection from the .NET Framework to store and work with data as key–value pairs.

Chapter 10: Introduction to Classes. Up to this point, the student has extensively

used objects that are instances of .NET Framework classes. In this chapter, the student

learns to write classes to create his or her own objects with fields, methods, and construc-

tors. The student learns how to implement various types of properties within a class, includ-

ing auto-properties and read-only auto-properties. Creating arrays of objects and storing

objects in a List are also discussed. A primer on finding the classes in a problem as well as

their responsibilities is provided. The chapter shows the student how to create multiple form

classes in a project, instantiate those classes, and display them. A tutorial is given where the

student creates a multiform application in which the code in one form accesses controls on

another form. The chapter concludes by discussing static members and static classes.

Chapter 11: Inheritance, Polymorphism, and Interfaces. The study of

classes continues in this chapter with the subjects of inheritance and polymorphism.

The topics covered include base classes, derived classes, how constructors functions

work in inheritance, method overriding, and polymorphism. Abstract classes and

abstract methods are also discussed. The chapter discusses extension methods, and

concludes with a section on interfaces.

Chapter 12: Databases. This chapter introduces the student to basic database con-

cepts. The student first learns about tables, rows, and columns and how to create an SQL

Server database in Visual Studio. The student then learns how to connect a database to a

Visual C# application and display a table in a DataGridView control, a Details view, and

other data-bound controls. Finally, the student learns how to write SQL Select statements

to retrieve data from a table.

Chapter 13: Delegates and Lambda Expressions. Lambda expressions have

become commonplace in C# programming. Before the student can really understand

lambda expressions, he or she must first understand delegates and anonymous methods.

The goal of this chapter is to build a foundation of knowledge about how delegates and

anonymous methods work, and then build an understanding of lambda expressions.

Chapter 14: Language-Integrated Query (LINQ). This chapter begins by intro-

ducing the student to LINQ as a tool for querying the data in common data structures such

as arrays and Lists, using LINQ to Objects. It discusses both query syntax and method

syntax. Several useful LINQ extension methods are also discussed. The chapter concludes

with a section on LINQ to SQL and discusses how to use LINQ to query a database.

Appendix A: C# Primitive Data Types. This appendix gives an overview of the

primitive data types available in C#.

Appendix B: Additional User Interface Controls. This appendix shows how to

create a variety of controls such as ToolTips, combo boxes, scroll bars, TabControls,

WebBrowser controls, ErrorProvider components, and menu systems.

Appendix C: ASCII/Unicode Characters. This appendix lists the ASCII (American Stan-

dard Code for Information Interchange) character set, which is also the Latin Subset of Unicode.

Appendix D: Answers to Checkpoint Questions. This appendix provides the

answers to the Checkpoint questions that appear throughout each chapter in the book.

Appendix E: Installing LINQ to SQL. This appendix shows how to use the Visual

Studio Installer to download and install LINQ to SQL.

Organization of the Text

The text teaches Visual C# step by step. Each chapter covers a major set of programming

topics, introduces controls and GUI elements, and builds knowledge as the student pro-

gresses through the book. Although the chapters can be easily taught in their existing

sequence, there is some flexibility. Figure P-1 shows the chapter dependencies. As shown in

the figure, Chapters 1–7 present the fundamentals of Visual C# programming and should

be covered in sequence. Then, you can move directly to Chapter 8, 9, 10, or 12. Chapter 11

should be covered after Chapter 10. Then Chapter 13 and 14 can be covered in order.

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement.

This statement concisely summarizes the main point of the section.

Tutorials. Each chapter has several hands-on tutorials that guide the student through the

development of an application. Each tutorial provides detailed, step-by-step instructions,

as well as the application’s completed code and screen captures of the completed forms.

Example Programs. Each chapter has an abundant number of code examples designed

to highlight the current topic.

Notes. Notes appear at several places throughout the text. They are short explanations

of interesting or often misunderstood points relevant to the topic at hand.

xvi Preface

Chapters 1 - 7 (Cover in Order)

Programming and Visual

C# Fundamentals

Depend On

Chapter 8

Text Processing

Chapter 9

Structures, Enumerated

Types, and Dictionaries

Chapter 12

Introduction to

Databases

Chapter 11
Inheritance, Polymorphism,

and Interfaces

Depends On

Chapter 10

Introduction to

Classes

Chapter 13
Delegates and Lambda

Expressions

Chapter 14

Language Integrated

Query (LINQ)

Depends On

Depends On

Depends On

Figure P-1 Chapter dependencies

 Preface xvii

Tips. Tips advise the student on the best techniques for approaching different program-

ming or animation problems.

Warnings. Warnings caution students about programming techniques or practices that

can lead to malfunctioning programs or lost data.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.

They are designed to query the student’s knowledge quickly after learning a new topic.

The answers to the Checkpoint questions can be found in Appendix D.

Review Questions. Each chapter presents a thorough and diverse set of Review Questions.

They include Multiple Choice, True/False, Algorithm Workbench, and Short Answer.

Programming Problems. Each chapter offers a pool of Programming Problems

designed to solidify the student’s knowledge of the topics currently being studied.

VideoNotes. Each tutorial in the book has an accompanying online VideoNote that can

be accessed on the book’s companion Web site www.pearson.com/gaddis. Students can VideoNote

follow along with the author as he or she works through each tutorial in the videos. Also,

one programming problem at the end of each chapter has an accompanying VideoNote

that shows the student how to create the solution.

Supplements

Student The following supplementary material is available with the book:

• Source code and files required for the chapter tutorials are available at www.

pearson.com/cs-resources

• A complete set of online VideoNotes that take the student through each tutorial in

the book. Also, one programming problem from each chapter has an accompanying

VideoNote that helps the student create a solution. You may access the VideoNotes

by going to www.pearson.com/cs-resources.

Instructor The following supplements are available to qualified instructors:

• Answers to all Review Questions in the text

• Solutions for all Programming Problems in the text

• Completed versions of all tutorials

• PowerPoint presentation slides for every chapter

• Test bank

For information on how to access these supplements, visit the Pearson Education Instruc-

tor Resource Center at www.pearsonhighered.com/irc.

Acknowledgments

There were many helping hands in the development and publication of this text. I would

like to thank the following faculty reviewers for their helpful suggestions and expertise:

Matthew Alimagham

Spartanburg Community College

Carolyn Borne

Louisiana State University

Arthur E. Carter

Radford University

Sallie B. Dodson

Radford University

Elizabeth Freije

Indiana University—Purdue University, Indianapolis

Bettye J. Parham

Daytona State College

Wendy L. Payne

Gulf Coast State College

Jason Sharp

Tarleton State University

John Van Assen

York Technical College

Reginald White

Black Hawk College

Dawn R. Wick

Southwestern Community College

xviii Preface

I also want to thank everyone at Pearson for making the Starting Out With ... series so

 successful. I have worked so closely with the team at Pearson that I consider them among

my closest friends. I am extremely fortunate to have Matt Goldstein as my editor, and

Meghan Jacoby as Editorial Assistant. They have guided me through the process of revis-

ing this book, as well as many others. I am also fortunate to have Demetrius Hall and

Yvonne Vannatta as my marketing team. Their hard work is truly inspiring, and they do a

great job of getting this book out to the academic community. The production team, led by

Carole Snyder, worked tirelessly to make this book a reality. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony

has nearly 20 years experience teaching computer science courses at Haywood Commu-

nity College in North Carolina. He is a highly acclaimed instructor who was previously

selected as the North Carolina Community College Teacher of the Year and has received

the Teaching Excellence Award from the National Institute for Staff and Organizational

Development.

The Starting Out With series includes introductory books using the C++ programming

language, the Java™ programming language, Microsoft® Visual Basic®, Microsoft®

C#®, Python, Programming Logic and Design, MIT App Inventor, and Alice, all published

by Pearson Education.

 Preface xix

xx

Attention Students

Installing Visual Studio

To complete the tutorials and programming problems in this book, you need to install

Visual Studio 2017, or a later version, on your computer. We recommend that you

download Visual Studio Community 2017 from the following website, and install it on

your system:

www.visualstudio.com

Visual Studio Community 2017 is a free, full-featured development environment, and is a

perfect companion for this textbook.

Installing the Student Sample Program Files

The Student Sample Program files that accompany this book are available for download

from the book’s companion Web site at:

www.pearson.com/cs-resources

These files are required for many of the book’s tutorials. Simply download the Student

Sample Program files to a location on your hard drive where you can easily access them.

NOTE: If you are working in your school’s computer lab, there is a good chance

that Microsoft Visual Studio has already been installed. If this is the case, your

 instructor will show you how to start Visual Studio.

TOPICS

Introduction to Computers
and ProgrammingC

H
A

P
T

E
R

1.1 Introduction

1.2 Hardware and Software

1.3 How Computers Store Data

1.4 How a Program Works

1.5 Graphical User Interfaces

1.6 Objects

1.7 The Program Development Process

1.8 Getting Started with the Visual
Studio Environment

1.1 Introduction

1

1

Think about some of the different ways that people use computers. In school, students use

computers for tasks such as writing papers, searching for articles, sending e-mail, and

participating in online classes. At work, people use computers to analyze data, make pre-

sentations, conduct business transactions, communicate with customers and coworkers,

control machines in manufacturing facilities, and do many other things. At home, people

use computers for tasks such as paying bills, shopping online, staying connected with

friends and family, and playing computer games. And don’t forget that smart phones,

tablets, car navigation systems, and many other devices are computers as well. The uses of

computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed, which

means that computers are designed not to do just one job, but to do any job that their

programs tell them to do. A program is a set of instructions that a computer follows to

perform a task. For example, Figure 1-1 shows screens from two commonly used Microsoft

programs: Word and PowerPoint. Word is a word processing program that allows you to

create, edit, and print documents. PowerPoint allows you to create graphical slides and

use them as part of a presentation.

Programs are commonly referred to as software. Software is essential to a computer

because without software, a computer can do nothing. All the software that makes our

computers useful is created by individuals known as programmers, or software develop-

ers. A programmer, or software developer, is a person with the training and skills neces-

sary to design, create, and test computer programs. Computer programming is an exciting

and rewarding career. Today, programmers work in business, medicine, government,

law enforcement, agriculture, academics, entertainment, and almost every other field.

2 Chapter 1 Introduction to Computers and Programming

This book introduces you to the fundamental concepts of computer programming using

the C# programming language. Before we begin exploring those concepts, you need to

understand a few basic things about computers and how they work. This chapter provides

a solid foundation of knowledge that you will continually rely on as you study computer

science. First, we discuss the physical components that computers are commonly made of.

Then, we look at how computers store data and execute programs. Next, we introduce

you to two fundamental elements of modern software design: graphical user interfaces and

objects. Finally, we give a quick introduction to the software used to write C# programs.

 1.2 Hardware and Software

CONCEPT: The physical devices that a computer is made of are referred to as the

computer’s hardware. The programs that run on a computer are referred

to as software.

Hardware

Hardware refers to all the physical devices, or components, of which a computer is made. A

computer is not one single device but is a system of devices that all work together. Like the

different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you have probably seen sales literature listing

components such as microprocessors, memory, disk drives, video displays, graphics cards,

and so forth. Unless you already know a lot about computers or at least have a friend who

does, understanding what these different components do can be confusing. As shown in

Figure 1-2, a typical computer system consists of the following major components:

• The central processing unit (CPU)

• Main memory

• Secondary storage devices

• Input devices

• Output devices

Let’s take a closer look at each of these components.

Figure 1-1 A word processing program and a presentation program

 1.2 Hardware and Software 3

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the

computer is running or executing the program. The central processing unit, or CPU, is the

part of a computer that actually runs programs. The CPU is the most important compo-

nent in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-

ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two

Input

Devices

Output

Devices

Secondary

Storage Devices

Central Processing

Unit

Main Memory

(RAM)

Figure 1-2 Typical components of a computer system

Figure 1-3 The ENIAC computer

4 Chapter 1 Introduction to Computers and Programming

women in the photo are working with the historic ENIAC computer. The ENIAC, consid-

ered by many to be the world’s first programmable electronic computer, was built in 1945

to calculate artillery ballistic tables for the U.S. Army. This machine, which was primarily

one big CPU, was 8 feet tall and 100 feet long and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a

lab technician holding a modern-day microprocessor. In addition to being much smaller

than the old electromechanical CPUs in early computers, microprocessors are also much

more powerful.

Figure 1-4 A lab technician holds a modern microprocessor

Main Memory

You can think of main memory as the computer’s work area. This is where the computer

stores a program while the program is running, as well as the data that the program is

working with. For example, suppose you are using a word processing program to write an

essay for one of your classes. While you do this, both the word processing program and

the essay are stored in main memory.

Main memory is commonly known as random access memory, or RAM. It is called this

because the CPU is able to quickly access data stored at any random location in RAM.

RAM is usually a volatile type of memory that is used only for temporary storage while a

program is running. When the computer is turned off, the contents of RAM are erased.

Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even

when there is no power to the computer. Programs are normally stored in secondary

memory and loaded into main memory as needed. Important data, such as word process-

ing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk

drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state

drives, which store data in solid-state memory, are increasingly becoming popular. A

solid-state drive has no moving parts and operates faster than a traditional disk drive.

 1.2 Hardware and Software 5

Most computers have some sort of secondary storage device, either a traditional disk drive

or a solid-state drive, mounted inside their case. External storage devices are also avail-

able, which connect to one of the computer’s communication ports, or plug into a memory

slot. External storage devices can be used to create backup copies of important data or to

move data to another computer. For example, USB (Universal Serial Bus) drives and SD

(Secure Digital) memory cards are small devices that appear in the system as disk drives.

They are inexpensive, reliable, and small enough to be carried in your pocket.

Optical devices such as the compact disc (CD) and the digital versatile disc (DVD) are also

popular for data storage. Data is not recorded magnetically on an optical disc but is

encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the

pits and thus read the encoded data. Optical discs hold large amounts of data, and because

recordable CD and DVD drives are now commonplace, they are good mediums for creat-

ing backup copies of data.

Input Devices

Input is any data the computer collects from people and from other devices. The compo-

nent that collects the data and sends it to the computer is called an input device. Common

input devices are the keyboard, mouse, touchscreen, scanner, microphone, and digital

camera. Disk drives and optical drives can also be considered input devices because pro-

grams and data are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be a

sales report, a list of names, or a graphic image. The data is sent to an output device,

which formats and presents it. Common output devices are screens and printers. Storage

devices can also be considered output devices because the system sends data to them in

order to be saved.

Software

If a computer is to function, software is not optional. Everything that a computer does,

from the time you turn the power switch on until you shut the system down, is under the

control of software. There are two general categories of software: system software and

application software. Most computer programs clearly fit into one of these two categories.

Let’s take a closer look at each.

Figure 1-5 Memory chips

6 Chapter 1 Introduction to Computers and Programming

System Software

The programs that control and manage the basic operations of a computer are generally

referred to as system software. System software typically includes the following types

of programs:

Operating Systems

An operating system is the most fundamental set of programs on a computer. The

operating system controls the internal operations of the computer’s hardware, manages

all the devices connected to the computer, allows data to be saved to and retrieved

from storage devices, and allows other programs to run on the computer.

Utility Programs

A utility program performs a specialized task that enhances the computer’s operation

or safeguards data. Examples of utility programs are virus scanners, file-compression

programs, and data-backup programs.

Software Development Tools

The software tools that programmers use to create, modify, and test software are

referred to as software development tools. Assemblers, compilers, and interpreters,

which are discussed later in this chapter, are examples of programs that fall into

this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-

ware. These are the programs that people normally spend most of their time running on

their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-

monly used applications—Microsoft Word, a word processing program, and Microsoft

Powerpoint, a presentation program. Some other examples of application software are

spreadsheet programs, e-mail programs, Web browsers, and game programs.

 Checkpoint

 1.1 What is a program?

 1.2 What is hardware?

 1.3 List the five major components of a computer system.

 1.4 What part of the computer actually runs programs?

 1.5 What part of the computer serves as a work area to store a program and its data

while the program is running?

 1.6 What part of the computer holds data for long periods of time, even when there is

no power to the computer?

 1.7 What part of the computer collects data from people and from other devices?

 1.8 What part of the computer formats and presents data for people or other devices?

 1.9 What fundamental set of programs control the internal operations of the

 computer’s hardware?

 1.10 What do you call a program that performs a specialized task, such as a virus scanner,

a file-compression program, or a data-backup program?

 1.11 Word processing programs, spreadsheet programs, e-mail programs, Web browsers,

and game programs belong to what category of software?

 1.3 How Computers Store Data 7

 1.3 How Computers Store Data

CONCEPT: All data stored in a computer is converted to sequences of 0s and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is

enough memory to store only a letter of the alphabet or a small number. In order to do

anything meaningful, a computer has to have lots of bytes. Most computers today have

millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit

stands for binary digit. Computer scientists usually think of bits as tiny switches that can

be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional

sense. In most computer systems, bits are tiny electrical components that can hold either a

positive or a negative charge. Computer scientists think of a positive charge as a switch in

the on position and a negative charge as a switch in the off position. Figure 1-6 shows the

way that a computer scientist might think of a byte of memory: as a collection of switches

that are each flipped to either the on or the off position.

OFF

ON

OFF OFFOFF

ON ON ON

Figure 1-6 A byte thought of as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern

that represents the data. For example, the pattern shown on the left in Figure 1-7 shows how

the number 77 would be stored in a byte, and the pattern on the right shows how the letter

A would be stored in a byte. In a moment, you will see how these patterns are determined.

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

Figure 1-7 Bit patterns for the number 77 and the letter A

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether

the bit is turned on or off, it can represent one of two different values. In computer

systems, a bit that is turned off represents the number 0 and a bit that is turned on

8 Chapter 1 Introduction to Computers and Programming

represents the number 1. This corresponds perfectly to the binary numbering system.

In the binary numbering system (or binary, as it is usually called), all numeric values

are written as sequences of 0s and 1s. Here is an example of a number that is written

in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with the

rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as

shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values calcu-

lated. Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8,

and so forth.

1 0 0 1 1 1 0 1

2

2

2

2

2

2

2

2

Figure 1-8 The values of binary digits as powers of 2

 1

 2
 4
 8
 16
 32
 64

128

1 0 0 1 1 1 0 1

Figure 1-9 The values of binary digits

To determine the value of a binary number, you simply add up the position values of all

the 1s. For example, in the binary number 10011101, the position values of the 1s are 1,

4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all these position values is

157. So, the value of the binary number 10011101 is 157.

1 0 0 1 1 1 0 1

 1

 4
 8
 16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-10 Determining the value of 10011101

 1.3 How Computers Store Data 9

When all the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When

all the bits in a byte are set to 1 (turned on), then the byte holds the largest value that can

be stored in it. The largest value that can be stored in a byte is 1 + 2 + 4 + 8 + 16 + 32 +

64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than

1 byte. For example, suppose we put 2 bytes together. That gives us 16 bits. The position

values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown in

Figure 1-12, the maximum value that can be stored in 2 bytes is 65,535. If you need to

store a number larger than this, then more bytes are necessary.

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each

1 is represented by a bit in the on position, and each 0 is represented by a bit in the

off position.

128 + 16 + 8 + 4 + 1 = 157

128 64 32 16 8 4 2 1
Position

values

1

0

11 1 1

0 0

Figure 1-11 The bit pattern for 157

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position

values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-12 Two bytes used for a large number

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to

actually convert numbers to binary while programming. Knowing that this process is

taking place inside the computer will help you as you learn, and in the long term this

knowledge will make you a better programmer.

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary num-

ber. That includes characters such as letters and punctuation marks. When a character is

stored in memory, it is first converted to a numeric code. The numeric code is then stored

in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in

computer memory. Historically, the most important of these coding schemes is ASCII,

10 Chapter 1 Introduction to Computers and Programming

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and

so forth. Appendix C shows all the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by

almost all computer manufacturers. ASCII is limited, however, because it defines codes

for only 128 characters. To remedy this, the Unicode character set was developed in the

early 1990s. Unicode is an extensive encoding scheme that is compatible with ASCII and

can also represent the characters of many of the world’s languages. Today, Unicode is

quickly becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier you saw how numbers are stored in memory. Perhaps it occurred to you then that

the binary numbering system can be used to represent only integer numbers, beginning

with 0. Negative numbers and real numbers (such as 3.14159) cannot be represented

using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do

so they use encoding schemes along with the binary numbering system. Negative num-

bers are encoded using a technique known as two’s complement, and real numbers are

encoded in floating-point notation. You don’t need to know how these encoding

schemes work, only that they are used to convert negative numbers and real numbers to

binary format.

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe

anything that uses binary numbers. Digital data is data that is stored in binary, and a

digital device is any device that works with binary data. In this section, we have discussed

how numbers and characters are stored in binary, but computers also work with many

other types of digital data.

For example, consider the pictures that you take with your digital camera. These images

are composed of tiny dots of color known as pixels. (The term pixel stands for picture ele-

ment.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code that

represents the pixel’s color. The numeric code is stored in memory as a binary number.

65A
00

1

0

1

0 0 0

Figure 1-13 The letter A stored in memory as the number 65

TIP: The acronym ASCII is pronounced “askee.”

which stands for the American Standard Code for Information Interchange. ASCII is a set

of 128 numeric codes that represent the English letters, various punctuation marks, and

other characters. For example, the ASCII code for the uppercase letter A is 65. When you

type an uppercase A on your computer keyboard, the number 65 is stored in memory (as

a binary number, of course). This is shown in Figure 1-13.

 1.4 How a Program Works 11

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital

song is broken into small pieces known as samples. Each sample is converted to a binary

number, which can be stored in memory. The more samples that a song is divided into,

the more it sounds like the original music when it is played back. A CD-quality song is

divided into more than 44,000 samples per second!

 Checkpoint

 1.12 What amount of memory is enough to store a letter of the alphabet or a

small number?

 1.13 What do you call a tiny “switch” that can be set to either on or off?

 1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

 1.15 What is the purpose of ASCII?

 1.16 What encoding scheme is extensive enough to represent all the characters of many

of the languages in the world?

 1.17 What do the terms digital data and digital device mean?

 1.4 How a Program Works

CONCEPT: A computer’s CPU can understand only instructions written in machine

language. Because people find it very difficult to write entire

 programs in machine language, other programming languages have

been invented.

Earlier, we stated that the CPU is the most important component in a computer because it

is the part of the computer that runs programs. Sometimes the CPU is called the

“ computer’s brain” and is described as being “smart.” Although these are common

 metaphors, you should understand that the CPU is not a brain, and it is not smart. The

CPU is an electronic device that is designed to do specific things. In particular, the CPU is

designed to perform operations such as the following:

• Reading a piece of data from main memory

• Adding two numbers

• Subtracting one number from another number

• Multiplying two numbers

• Dividing one number by another number

• Moving a piece of data from one memory location to another

• Determining whether one value is equal to another value

10010101110
1
0
0
0

1
0101101

Figure 1-14 A digital image stored in binary format

12 Chapter 1 Introduction to Computers and Programming

As you can see from this list, the CPU performs simple operations on pieces of data. The

CPU does nothing on its own, however. It has to be told what to do, which is the purpose

of a program. A program is nothing more than a list of instructions that cause the CPU to

perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific

operation. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction

to perform an operation.1 It is written in 0s and 1s because CPUs understand only

 instructions that are written in machine language, and machine language instructions are

always written in binary.

A machine language instruction exists for each operation that a CPU is capable of per-

forming. For example, there is an instruction for adding numbers; there is an instruction

for subtracting one number from another; and so forth. The entire set of instructions that

a CPU can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs.

Some of the more well-known microprocessor companies are Intel, AMD, and

Motorola. If you look carefully at your computer, you might find a tag showing a

logo for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically

understood only by microprocessors of the same brand. For example, Intel micropro-

cessors understand the same instructions, but they do not understand instructions for

Motorola microprocessors.

The machine language instruction that was previously shown is an example of only

one instruction. It takes a lot more than one instruction, however, for the computer to

do anything meaningful. Because the operations that a CPU knows how to perform are

so basic in nature, a meaningful task can be accomplished only if the CPU performs

many operations. For example, if you want your computer to calculate the amount of

interest that you will earn from your savings account this year, the CPU will have to

perform a large number of instructions, carried out in the proper sequence. It is not

unusual for a program to contain thousands or even a million or more machine lan-

guage instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you

install a program on your computer, the program is typically copied to your computer’s

disk drive from a CD-ROM or perhaps downloaded from a Web site.

Although a program can be stored on a secondary storage device such as a disk drive, it

has to be copied into main memory, or RAM, each time the CPU executes it. For exam-

ple, suppose you have a word processing program on your computer’s disk. To execute

the program, you use the mouse to double-click the program’s icon. This causes the

program to be copied from the disk into main memory. Then, the computer’s CPU exe-

cutes the copy of the program that is in main memory. This process is illustrated in

Figure 1-15.

1The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a

value into the CPU.

 1.4 How a Program Works 13

Main memory

(RAM)

Disk drive
CPU

The program is copied

from secondary storage

to main memory.

The CPU executes

the program in

main memory.

Figure 1-15 A program being copied into main memory and then executed

CPU

Main memory

(RAM)

10111000

10100001

10011110

00011010

11011100

and so forth...

10100001

1
Fetch the next instruction

in the program.

Decode the instruction

to determine which

operation to perform.

3
Execute the instruction

(perform the operation).

2

Figure 1-16 The fetch-decode-execute cycle

When a CPU executes the instructions in a program, it is engaged in a process that is

known as the fetch-decode-execute cycle. This cycle, which consists of three steps, is

repeated for each instruction in the program. The steps are as follows:

 1. Fetch. A program is a long sequence of machine language instructions. The first step

of the cycle is to fetch, or read, the next instruction from memory into the CPU.

 2. Decode. A machine language instruction is a binary number that represents a com-

mand that tells the CPU to perform an operation. In this step the CPU decodes the

instruction that was just fetched from memory, to determine which operation it

should perform.

 3. Execute. The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

From Machine Language to Assembly Language

Computers can execute only programs that are written in machine language. As previ-

ously mentioned, a program can have thousands or even a million or more binary instruc-

tions, and writing such a program would be very tedious and time consuming.

Programming in machine language would also be very difficult because putting a 0 or a 1

in the wrong place would cause an error.

Although a computer’s CPU understands only machine language, it is impractical for

 people to write programs in machine language. For this reason, assembly language was

14 Chapter 1 Introduction to Computers and Programming

created in the early days of computing2 as an alternative to machine language. Instead of

using binary numbers for instructions, assembly language uses short words that are

known as mnemonics. For example, in assembly language, the mnemonic add typically

means to add numbers, mul typically means to multiply numbers, and mov typically means

to move a value to a location in memory. When a programmer uses assembly language to

write a program, he or she can write short mnemonics instead of binary numbers.

mov eax, Z

add eax, 2

mov Y, eax

and so forth...

Assembler
10111000

10100001

10011110

and so forth...

Assembly Language

Program

Machine Language

Program

Figure 1-17 An assembler translating an assembly language program to a machine

language program

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language

instructions, it is not without difficulties. Assembly language is primarily a direct substi-

tute for machine language, and like machine language, it requires that you know a lot

about the CPU. Assembly language also requires that you write a large number of instruc-

tions for even the simplest program. Because assembly language is so close in nature to

machine language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages

began to appear. A high-level language allows you to create powerful and complex pro-

grams without knowing how the CPU works and without writing large numbers of low-

level instructions. In addition, most high-level languages use words that are easy to

understand. For example, if a programmer were using COBOL (which was one of the

early high-level languages created in the 1950s), he or she would write the following

instruction to display the message Hello world on the computer screen:

DISPLAY "Hello world"

2The first assembly language was most likely developed in the 1940s at Cambridge University for use with a

historical computer known as the EDSAC.

NOTE: There are many different versions of assembly language. It was mentioned

earlier that each brand of CPU has its own machine language instruction set. Each

brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU under-

stands only machine language, so a special program known as an assembler is used to

translate an assembly language program to a machine language program. This process is

shown in Figure 1-17. The CPU can then execute the machine language program that the

assembler creates.

 1.4 How a Program Works 15

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.

Department of Defense. The language is named in honor of Countess Ada

Lovelace, an influential and historical figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language

that was originally designed in the early 1960s to be simple enough for beginners

to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was

designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s and was designed

for business applications.

Pascal Pascal was created in 1970 and was originally designed for teaching programming.

The language was named in honor of the mathematician, physicist, and

philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose languages

developed at Bell Laboratories. The C language was created in 1972, and the C++

language was created in 1983.

C# Pronounced “c sharp,” this language was created by Microsoft around the year

2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop

programs that run on a single computer or over the Internet from a Web server.

JavaScript JavaScript, created in the 1990s, can be used in Web pages. Despite its name,

JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has become

popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increasingly

becoming a popular language for programs that run on Web servers.

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and

software development environment that allows programmers to create Windows-

based applications quickly. VB was originally created in the early 1990s.

Doing the same thing in assembly language would require several instructions and an

intimate knowledge of how the CPU interacts with the computer’s video circuitry. As you

can see from this example, high-level languages allow programmers to concentrate on the

tasks they want to perform with their programs rather than the details of how the CPU

will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists sev-

eral of the more well-known languages.

Keywords, Operators, and Syntax: An Overview

Each high-level language has its own set of predefined words that the programmer must use

to write a program. The words that make up a high-level programming language are known

as keywords or reserved words. Each keyword has a specific meaning and cannot be used

for any other purpose. Table 1-2 shows the keywords in the C# programming language.

16 Chapter 1 Introduction to Computers and Programming

In addition to keywords, programming languages have operators that perform various

operations on data. For example, all programming languages have math operators that

perform arithmetic. In C#, as well as most other languages, the + sign is an operator that

adds two numbers. The following adds 12 and 75:

12 + 75

There are numerous other operators in the C# language, many of which you will learn

about as you progress through this text.

In addition to keywords and operators, each language also has its own syntax, which is a

set of rules that must be strictly followed when writing a program. The syntax rules dic-

tate how keywords, operators, and various punctuation characters must be used in a

program. When you are learning a programming language, you must learn the syntax

rules for that particular language.

The individual instructions that you use to write a program in a high-level programming

language are called statements. A programming statement can consist of keywords, oper-

ators, punctuation, and other allowable programming elements, arranged in the proper

sequence to perform an operation.

Compilers and Interpreters

Because the CPU understands only machine language instructions, programs that are

written in a high-level language must be translated into machine language. Depending on

the language in which a program has been written, the programmer will use either a com-

piler or an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate

machine language program. The machine language program can then be executed any

Table 1-2 The C# keywords

abstract as base bool

break byte case catch

char checked class const

continue decimal default delegate

do double else enum

event explicit extern false

finally fixed float for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

ulong unchecked unsafe ushort

using virtual void volatile

while

 1.4 How a Program Works 17

Display "Hello,
Earthling"

and so forth...

High-level language

program

Compiler
10111000

10100001

10011110

and so forth...

10111000

10100001

10011110

and so forth...

Machine language
program

Machine language
program

CPU

The compiler is used

to translate the high-level
language program to a

machine language program.

The machine language

program can be executed
at any time, without using

the compiler.

1

2

Figure 1-18 Compiling a high-level program and executing it

The interpreter translates each high-level instruction to

its equivalent machine language instructions and

immediately executes them.

This process is repeated for each high-level instruction.

Display "Hello,

Earthling"

and so forth...

program

Interpreter 10100001

Machine language

instruction

CPU

Figure 1-19 Executing a high-level program with an interpreter

Some programming languages use an interpreter, which is a program that both translates

and executes the instructions in a high-level language program. As the interpreter reads

each individual instruction in the program, it converts it to a machine language instruc-

tion and then immediately executes it. This process repeats for every instruction in the

program. This process is illustrated in Figure 1-19. Because interpreters combine transla-

tion and execution, they typically do not create separate machine language programs.

time it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and

executing are two different processes.

The statements that a programmer writes in a high-level language are called source code,

or simply code. Typically, the programmer types a program’s code into a text editor and

then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler

to translate the code into a machine language program or an interpreter to translate and

execute the code. If the code contains a syntax error, however, it cannot be translated. A

syntax error is a mistake such as a misspelled keyword, a missing punctuation character,

or the incorrect use of an operator. When this happens, the compiler or interpreter dis-

plays an error message, indicating that the program contains a syntax error. The pro-

grammer corrects the error and then attempts once again to translate the program.

18 Chapter 1 Introduction to Computers and Programming

 Checkpoint

 1.18 A CPU understands instructions that are written only in what language?

 1.19 A program has to be copied into what type of memory each time the CPU

 executes it?

 1.20 When a CPU executes the instructions in a program, it is engaged in what process?

 1.21 What is assembly language?

 1.22 What type of programming language allows you to create powerful and complex

programs without knowing how the CPU works?

 1.23 Each language has a set of rules that must be strictly followed when writing a pro-

gram. What is this set of rules called?

 1.24 What do you call a program that translates a high-level language program into a

separate machine language program?

 1.25 What do you call a program that both translates and executes the instructions in a

high-level language program?

 1.26 What type of mistake is usually caused by a misspelled keyword, a missing

 punctuation character, or the incorrect use of an operator?

 1.5 Graphical User Interfaces

CONCEPT: A graphical user interface allows the user to interact with a program using

graphical elements such as icons, buttons, and dialog boxes.

Programmers commonly use the term user to describe any hypothetical person that might

be using a computer and its programs. A computer’s user interface is the part of the com-

puter with which the user interacts. One part of the user interface consists of hardware

devices, such as the keyboard and the video display. Another part of the user interface

involves the way that the computer’s operating system and application software accepts

commands from the user. For many years, the only way that the user could interact with

a computer was through a command line interface. A command line interface, which is

also known as a console interface, requires the user to type commands. If a command is

typed correctly, it is executed and the results are displayed. If a command is not typed cor-

rectly, an error message is displayed. Figure 1-20 shows the Windows command prompt

window, which is an example of a command line interface.

Many computer users, especially beginners, find command line interfaces difficult to use. This

is because there are many commands to be learned, and each command has its own syntax,

much like a programming statement. If a command isn’t entered correctly, it will not work.

NOTE: Human languages also have syntax rules. Do you remember when you took

your first English class and you learned all those rules about commas, apostrophes,

capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when

speaking and writing, other people usually understand what they mean. Unfortu-

nately, compilers and interpreters do not have this ability. If even a single syntax error

appears in a program, the program cannot be compiled or executed.

 1.5 Graphical User Interfaces 19

In the 1980s, a new type of interface known as a graphical user interface came into use in

commercial operating systems. A graphical user interface, or GUI (pronounced “gooey”),

allows the user to interact with the operating system and application programs through

graphical elements on the screen. GUIs also popularized the use of the mouse as an input

device. Instead of requiring the user to type commands on the keyboard, GUIs allow the

user to point at graphical elements and click the mouse button to activate them.

Much of the interaction with a GUI is done through windows that display information

and allow the user to perform actions. Figure 1-21 shows an example of a window that

allows the user to change the system’s Internet settings. Instead of typing cryptic com-

mands, the user interacts with graphical elements such as icons, buttons, and slider bars.

Figure 1-20 A command line interface

Figure 1-21 A window in a graphical user interface

20 Chapter 1 Introduction to Computers and Programming

Event-Driven GUI Programs

In a text-based environment, such as a command line interface, programs determine the

order in which things happen. For example, Figure 1-22 shows the interaction that has

taken place in a text environment with a program that calculates an employee’s gross pay.

First, the program told the user to enter the number of hours worked. In the figure, the

user entered 40 and pressed the  key. Next, the program told the user to enter his or her

hourly pay rate. In the figure, the user entered 50.00, and pressed the  key. Then, the

program displayed the user’s gross pay. As the program was running, the user had no

choice but to enter the data in the order requested.

Figure 1-22 Interaction with a program in a text environment

Figure 1-23 A GUI program

Because GUI programs must respond to the actions of the user, they are said to be event

driven. The user causes events, such as the clicking of a button, and the program responds

to those events.

This book focuses exclusively on the development of GUI applications using the C# pro-

gramming language. As you work through this book, you will learn to create applications

that interact with the user through windows containing graphical objects. You will also

learn how to program your applications to respond to the events that take place as the

user interacts with them.

 Checkpoint

 1.27 What is a user interface?

 1.28 How does a command line interface work?

In a GUI environment, however, the user determines the order in which things happen.

For example, Figure 1-23 shows a GUI program that calculates an employee’s gross pay.

Notice that there are boxes in which the user enters the number of hours worked and the

hourly pay rate. The user can enter the hours and the pay rate in any order he or she

wishes. If the user makes a mistake, the user can erase the data that was entered and

retype it. When the user is ready to calculate the area, he or she uses the mouse to click the

Calculate Gross Pay button and the program performs the calculation.

 1.6 Objects 21

 1.29 When the user runs a program in a text-based environment, such as the command

line, what determines the order in which things happen?

 1.30 What is an event-driven program?

 1.6 Objects

CONCEPT: An object is a program component that contains data and performs

 operations. Programs use objects to perform specific tasks.

Have you ever driven a car? If so, you know that a car is made of a lot of components. A

car has a steering wheel, an accelerator pedal, a brake pedal, a gear shifter, a speedometer,

and numerous other devices with which the driver interacts. There are also a lot of com-

ponents under the hood, such as the engine, the battery, the radiator, and so forth. A car

is not just one single object, but rather a collection of objects that work together.

This same notion also applies to computer programming. Most programming languages

that are used today are object oriented. When you use an object-oriented language, you

create programs by putting together a collection of objects. In programming, an object is

not a physical device, however, like a steering wheel or a brake pedal. Instead, it is a soft-

ware component that exists in the computer’s memory. In software, an object has two

general capabilities:

• An object can store data. The data stored in an object are commonly called fields,

or properties.

• An object can perform operations. The operations that an object can perform are

called methods.

When you write a program using an object-oriented language, you use objects to accom-

plish specific tasks. Some objects have a visual part that can be seen on the screen. For

example, Figure 1-24 shows the wage-calculator program that we discussed in the previ-

ous section. The graphical user interface is made of the following objects:

Form object A window that is displayed on the screen is called a Form object.

Figure 1-24 shows a Form object that contains several other graph-

ical objects.

Label objects A Label object displays text on a form. The form shown in Figure

1-24 contains two Label objects. One of the Label objects displays

the text Number of Hours Worked and the other Label object dis-

plays the text Hourly Pay Rate.

TextBox objectsLabel objects

Button objects

Form object

Figure 1-24 Objects used in a GUI

22 Chapter 1 Introduction to Computers and Programming

TextBox objects A TextBox object appears as a rectangular region that can accept key-

board input from the user. The form shown in Figure 1-24 has two

TextBox objects: one in which the user enters the number of hours

worked and another in which the user enters the hourly pay rate.

Button objects A Button object appears on a form as a button with a caption

written across its face. When the user clicks a Button object with

the mouse, an action takes place. The form in Figure 1-24 has two

Button objects. One shows the caption Calculate Gross Pay. When

the user clicks this button, the program calculates and displays the

gross pay. The other button shows the caption Exit. When the user

clicks this button, the program ends.

Forms, Labels, TextBoxes, and Buttons are just a few of the objects that you will learn to

use in C#. As you study this book, you will create applications that incorporate many dif-

ferent types of objects.

Visible versus Invisible Objects

Objects that are visible in a program’s GUI are commonly referred to as controls. We

could say that the form shown in Figure 1-24 contains two Label controls, two TextBox

controls, and two Button controls. When an object is referred to as a control, it simply

means that the object plays a role in a program’s GUI.

Not all objects can be seen on the screen, however. Some objects exist only in memory for

the purpose of helping your program perform some task. For example, there are objects that

read data from files, objects that generate random numbers, objects that store and sort large

collections of data, and so forth. These types of objects help your program perform tasks,

but they do not directly display anything on the screen. When you are writing a program,

you will use objects that can help your program perform its tasks. Some of the objects that

you use will be controls (visible in the program’s GUI), and other objects will be invisible.

Classes: Where Objects Come From

Objects are very useful, but they don’t just magically appear in your program. Before a

specific type of object can be used, that object has to be created in memory. And, before

an object can be created in memory, you must have a class for the object.

A class is code that describes a particular type of object. It specifies the data that an object

can hold (the object’s fields and properties), and the actions that an object can perform

(the object’s methods). You will learn much more about classes as you progress through

this book, but for now, just think of a class as a code “blueprint” that can be used to cre-

ate a particular type of object.

The .NET Framework

C# is a very popular programming language, but there are a lot of things it cannot do by itself.

For example, you cannot use C# alone to create a GUI, read data from files, work with data-

bases, or many of the other things that programs commonly need to do. C# provides only the

basic keywords and operators that you need to construct a program.

So, if the C# language doesn’t provide the classes and other code necessary for creating GUIs

and performing many other advanced operations, where do those classes and code come

from? The answer is the .NET Framework. The .NET Framework is a collection of classes

and other code that can be used, along with a programming language such as C#, to create

programs for the Windows operating system. For example, the .NET Framework provides

classes to create Forms, TextBoxes, Labels, Buttons, and many other types of objects.

 1.7 The Program Development Process 23

When you use Visual C# to write programs, you are using a combination of the C# lan-

guage and the .NET Framework. As you work through this book you will not only learn

C#, but you will also learn about many of the classes and other features provided by the

.NET Framework.

Writing Your Own Classes

The .NET Framework provides many prewritten classes ready for use in your programs.

There will be times, however, that you will wish you had an object to perform a specific

task, and no such class will exist in the .NET Framework. This is not a problem because

in C# you can write your own classes that have the specific fields, properties, and methods

that you need for any situation. In Chapter 10, you will learn to create classes for the

specific objects that you need in your programs.

 Checkpoint

 1.31 What is an object?

 1.32 What type of language is used to create programs by putting together a collection

of objects?

 1.33 What two general capabilities does an object have?

 1.34 What term is commonly used to refer to objects such as TextBoxes, Labels, and

Buttons that are visible in a program’s graphical user interface?

 1.35 What is the purpose of an object that cannot be seen on the screen and exists only

in memory?

 1.36 What is a class?

 1.37 What is the .NET Framework?

 1.38 Why might you need to write your own classes?

 1.7 The Program Development Process

CONCEPT: Creating a program requires several steps, which include designing the

program’s logic, creating the user interface, writing code, testing,

and debugging.

The Program Development Cycle

Previously in this chapter, you learned that programmers typically use high-level languages

such as C# to create programs. There is much more to creating a program than writing code,

however. The process of creating a program that works correctly typically requires the six

phases shown in Figure 1-25. The entire process is known as the program development cycle.

Understand the

Program’s Purpose

Design the

Program’s GUI

Design the

Program’s Logic
Write the Code

Correct Syntax

Errors

Test the Program &

Correct Logic Errors

Figure 1-25 The program development cycle

24 Chapter 1 Introduction to Computers and Programming

Let’s take a closer look at each stage in the cycle.

 1 Understand the Program’s Purpose

When beginning a new programming project, it is essential that you understand

what the program is supposed to do. Most programs perform the following three-

step process:

Step 1. Input is received.

Step 2. Some process is performed on the input.

Step 3. Output is produced.

Input is any data that the program receives while it is running. Once input is received,

some process, such as a mathematical calculation, is usually performed on it. The

results of the process are then sent out of the program as output. If you can identify

these three elements of a program (input, process, and output), then you are on your

way to understanding what the program is supposed to do.

For example, suppose you have been asked to write a program to calculate and dis-

play the gross pay for an hourly paid employee. Here is a summary of the program’s

input, process, and output:

Input:

• Input the number of hours that the employee worked.

• Input the employee’s hourly pay rate.

Process:

• Multiply the number of hours worked by the hourly pay rate. The result is the

employee’s gross pay.

Output:

• Display the employee’s gross pay on the screen.

 2. Design the GUI

Once you clearly understand what the program is supposed to do, you can begin

 designing its GUI. Often, you will find it helpful to draw a sketch of each form that

the program displays. For example, if you are designing a program that calculates

gross pay, Figure 1-26 shows how you might sketch the program’s form.

Notice that the sketch identifies each type of control (GUI object) that will appear on

the form. The TextBox controls will allow the user to enter input. The user will type the

number of hours worked into one of the TextBoxes and the employee’s hourly pay rate

into the other TextBox. Notice that Label controls are placed on the form to tell the

user what data to enter. When the user clicks the Button control that reads Calculate

Number of Hours Worked

Hourly Pay Rate

Calculate

Gross Pay
Exit

TextBox control

TextBox control

Button control Button control

Label control

Label control

Figure 1-26 Form sketch

 1.7 The Program Development Process 25

Gross Pay, the program will display the employee’s gross pay on the screen in a pop-up

window. When the user clicks the Button control that reads Exit, the program will end.

Once you are satisfied with the sketches that you have created for the program’s

forms, you can begin creating the actual forms on the computer. As a Visual C#

programmer, you have a powerful environment known as Visual Studio at your dis-

posal. Visual Studio gives you a “what you see is what you get” editor that allows

you to visually design a program’s forms. You can use Visual Studio to create the

program’s forms, place all the necessary controls on the forms, and set each control’s

properties so it has the desired appearance. For example, Figure 1-27 shows the

 actual form that you might create for the wage-calculator program, which calculates

gross pay.

Figure 1-27 Form for the wage-calculator program

 3. Design the Program’s Logic

In this phase you break down each task that the program must perform into a se-

ries of logical steps. For example, if you look back at Figure 1-27, notice that the

pay-calculating program’s form has a Button control that reads Calculate Gross

Pay. When the user clicks this button, you want the program to display the em-

ployee’s gross pay. Here are the steps that the program should take to perform

that task:

Step 1. Get the number of hours worked from the appropriate TextBox.

Step 2. Get the hourly pay rate from the appropriate TextBox.

Step 3. Calculate the gross pay as the number of hours worked times the hourly pay rate.

Step 4. Display the gross pay in a pop-up window.

This is an example of an algorithm, which is a set of well-defined, logical steps that

must be taken to perform a task. An algorithm that is written out in this manner,

in plain English statements, is called pseudocode. (The word pseudo means fake,

so pseudocode is fake code.) The process of informally writing out the steps of an

algorithm in pseudocode before attempting to write any actual code is very help-

ful when you are designing a program. Because you do not have to worry about

breaking any syntax rules, you can focus on the logical steps that the program

must perform.

Flowcharting is another tool that programmers use to design programs. A flow-

chart is a diagram that graphically depicts the steps of an algorithm. Figure 1-28

shows how you might create a flowchart for the wage-calculator algorithm.

 Notice that there are three types of symbols in the flowchart: ovals, parallelo-

grams, and a rectangle. Each of these symbols represents a step in the algorithm,

as described here:

• The ovals, which appear at the top and bottom of the flowchart, are called termi-

nal symbols. The Start terminal symbol marks the program’s starting point and

the End terminal symbol marks the program’s ending point.

26 Chapter 1 Introduction to Computers and Programming

• Parallelograms are used as input symbols and output symbols. They represent

steps in which the program reads input or displays output.

• Rectangles are used as processing symbols. They represent steps in which the

program performs some process on data, such as a mathematical calculation.

End

Start

Calculate the gross pay as

the number of hours worked

times the hourly pay rate

Get the hours worked

from the appropriate

TextBox

Display the gross pay

in a pop-up window

Get the hourly pay rate

from the appropriate

TextBox

Figure 1-28 Flowchart for the wage-calculator program

The symbols are connected by arrows that represent the “flow” of the program. To

step through the symbols in the proper order, you begin at the Start terminal and

follow the arrows until you reach the End terminal.

 4. Write the Code

Once you have created a program’s GUI and designed algorithms for the program’s

tasks, you are ready to start writing code. During this process, you will refer to the

pseudocode or flowcharts that you created in Step 3 and use Visual Studio to write

C# code.

 5. Correct Syntax Errors

You previously learned in this chapter that a programming language such as C# has

rules, known as syntax, that must be followed when writing a program. A language’s

syntax rules dictate things such as how keywords, operators, and punctuation char-

acters can be used. A syntax error occurs if the programmer violates any of these

rules. If the program contains a syntax error or even a simple mistake such as a mis-

spelled keyword, the program cannot be compiled or executed.

Virtually all code contains syntax errors when it is first written, so the program-

mer will typically spend some time correcting these. Once all the syntax errors and

simple typing mistakes have been corrected, the program can be compiled and trans-

lated into an executable program.

 1.8 Getting Started with the Visual Studio Environment 27

 6 Test the Program and Correct Logic Errors

Once the code is in an executable form, you must then test it to determine wheth-

er any logic errors exist. A logic error is a mistake that does not prevent the

program from running but causes it to produce incorrect results. (Mathematical

mistakes are common causes of logic errors.) If the program produces incorrect

results, the programmer must debug the code. This means that the programmer

finds and corrects logic errors in the program. Sometimes, during this process, the

programmer discovers that the program’s original design must be changed. In this

event, the program development cycle starts over and continues until no errors

can be found.

 Checkpoint

 1.39 List the six steps in the program development cycle.

 1.40 What is an algorithm?

 1.41 What is pseudocode?

 1.42 What is a flowchart?

 1.43 What do each of the following symbols mean in a flowchart?

• Oval

• Parallelogram

• Rectangle

 1.8 Getting Started with the Visual
Studio Environment

CONCEPT: Visual Studio provides a collection of tools that you use to build Visual

C# applications. The first step in using Visual C# is learning about

these tools.

To follow the tutorials in this book, and create Visual C# applications, you will need to

install Visual Studio on your computer. Visual Studio is a professional integrated devel-

opment environment (IDE), which means that it provides all the necessary tools for cre-

ating, testing, and debugging software. It can be used to create applications not only

with Visual C#, but also with other languages such as Visual Basic and Visual C++. If

you are using a school’s computer lab, there’s a good chance that Visual Studio has been

installed.

If you do not have access to Visual Studio, you can install Visual Studio Community Edi-

tion, a free programming environment that is available for download from Microsoft at

www.visualstudio.com.

Visual Studio is a customizable environment. If you are working in your school’s com-

puter lab, there’s a chance that someone else has customized the programming environ-

ment to suit his or her own preferences. If this is the case, the screens that you see may not

match exactly the ones shown in this book. For that reason it’s a good idea to reset the

programming environment before you create a Visual C# application. Tutorial 1-1 guides

you through the process.

28 Chapter 1 Introduction to Computers and Programming

Tutorial 1-1:

Starting Visual Studio and Setting Up the Environment

Step 1: Depending on your operating system, use one of the following procedures to

start Visual Studio:

• Windows 10: In the Windows search bar, start typing Visual Studio. When

you see Visual Studio 2017 (or another version) appear in the search results,

click it.

• Windows 8: On the Start screen, simply start typing Visual Studio. As you

type, the search results will appear on the right edge of the screen. When you

see Visual Studio 2017 (or another version) appear, click it.

Step 2: Figure 1-29 shows the Visual Studio environment. The screen shown in the fig-

ure is known as the Start Page. By default, the Start Page is displayed when you

start Visual Studio, but you may not see it because it can be disabled.

Notice the check box in the bottom left corner of the Start Page that reads Show

page on startup. If this box is not checked, the Start Page will not be displayed

when you start Visual Studio. If you do not see the Start Page, you can always

display it by clicking View on the menu bar at the top of the screen and then

clicking Start Page.

Figure 1-29 Visual Studio Start Page

Step 3: In a school computer lab, it is possible that the Visual Studio environment

has been set up for a programming language other than Visual C#. To make

sure that Visual Studio looks and behaves as described in this book, you

should make sure that Visual C# is selected as the programming environ-

ment. Perform the following:

VideoNote

Tutorial 1-1:
Starting
Visual Studio
and Setting
Up the
Environment

 1.8 Getting Started with the Visual Studio Environment 29

• As shown in Figure 1-30, click Tools on the menu bar and then click Import

and Export Settings. . . .

• On the screen that appears next, select Reset all settings and click the

Next > button.

• On the screen that appears next, select No, just reset settings, overwriting my

current settings. Click the Next > button.

• The window shown in Figure 1-31 should appear next. Select Visual C# and

then click the Finish button. After a moment you should see a Reset Complete

window. Click the Close button and continue with the next step in the

 tutorial.

Figure 1-30 Selecting Tools and then Import and Export Settings . . .

Figure 1-31 Selecting Visual C# Development Settings

Step 4: Now you will reset Visual Studio’s window layout to the default configuration.

As shown in Figure 1-32, click Window on the menu bar and then click Reset

Window Layout. Next you will see a dialog box asking Are you sure you want

to restore the default window layout for the environment? Click Yes.

30 Chapter 1 Introduction to Computers and Programming

The Visual Studio environment is now set up so you can follow the remaining

tutorials in this book. If you are working in your school’s computer lab, it is

probably a good idea to go through these steps each time you start Visual Stu-

dio. If you are continuing with the next tutorial, leave Visual Studio running.

You can exit Visual Studio at any time by clicking File on the menu bar and

then clicking Exit.

Figure 1-32 Resetting the window layout

Starting a New Project

Each Visual C# application that you create is called a project. When you are ready to cre-

ate a new application, you start a new project. Tutorial 1-2 leads you through the steps of

starting a new Visual C# project.

Tutorial 1-2:

Starting a New Visual C# Project

Step 1: If Visual Studio is not already running, start it as you did in Tutorial 1-1.

Step 2: Click File on the menu bar at the top of the screen, then select New, and then

select Project. After doing this, the New Project window shown in Figure 1-33

should be displayed.

Step 3: At the left side of the window, under Installed Templates, make sure Visual C#

is selected. Then, select Windows Forms App (.NET Framework), as shown in

Figure 1-33.

Step 4: At the bottom of the New Project window, you see a Name text box. This is

where you enter the name of your project. The Name text box will be auto-

matically filled in with a default name. In Figure 1-33 the default name is

 WindowsFormsApp1. Change the project name to My First Project, as shown

in Figure 1-34.

Just below the Name text box you will see a Location text box and a Solution

name text box.

VideoNote

Tutorial 1-2:
Starting a
New Visual
C# Project

 1.8 Getting Started with the Visual Studio Environment 31

• The Location text box shows where a folder will be created to hold the proj-

ect. If you wish to change the location, click the Browse button and select the

desired location.

• A solution is a container that holds a project, and the Solution name text

box shows the name of the solution that will hold this project. By default,

the solution name is the same as the project name. For all the projects that

you create in this book, you should keep the solution name the same as the

project name.

Make sure

Visual C#

is selected

Select Windows
Forms App2

1

Figure 1-33 The New Project window

Change the project

name to My First

Project

Figure 1-34 Changing the project name to My First Project

NOTE: As you work through this book, you will create a lot of Visual C#

projects. As you do, you will find that default names such as WindowsFormsApp1

do not help you remember what each project does; therefore, you should

always change the name of a new project to something that describes the

 project’s purpose.

Step 5. Click the Ok button to create the project. It might take a moment for the

project to be created. Once it is, the Visual Studio environment should

appear, similar to Figure 1-35. Notice that the name of the project, My First

Project, is displayed in the title bar at the top of the Visual Studio window.

Leave Visual Studio running and complete the next tutorial.

32 Chapter 1 Introduction to Computers and Programming

Figure 1-35 The Visual Studio environment with a new project open

Tutorial 1-3:

Saving and Closing a Project

As you work on a project, you should get into the habit of saving it often. In this tutorial

you will save the My First Project application and then close it.

Step 1: Visual Studio should still be running from the previous tutorial. To save

the project that is currently open, click File on the menu bar and then select

Save All.

Step 2: To close the project, click File on the menu bar and then click Close Solution.

The Visual Studio Environment

The Visual Studio environment consists of a number of windows that you will use on a

regular basis. Figure 1-36 shows the locations of the following windows that appear

within the Visual Studio environment: the Designer window, the Solution Explorer

 window, and the Properties window. Here is a brief summary of each window’s

purpose:

• The Designer Window

You use the Designer window to create an application’s GUI. The Designer win-

dow shows the application’s form and allows you to visually design its appearance

by placing the desired controls that will appear on the form when the application

executes.

VideoNote

Tutorial 1-3:
Saving and
Closing a
Project

 1.8 Getting Started with the Visual Studio Environment 33

Displaying the Solution Explorer and Properties Windows

If you do not see the Solution Explorer or the Properties window, you can follow these

steps to make them visible:

• If you do not see the Solution Explorer window, click View on the menu bar. On the

View menu, click Solution Explorer.

• If you do not see the Properties window, click View on the menu bar. On the View

menu, click Properties.

Using Auto Hide

Many windows in Visual Studio have a feature known as Auto Hide. When you see the

pushpin icon in a window’s title bar, as shown in Figure 1-37, you know that the window

has Auto Hide capability. You click the pushpin icon to turn Auto Hide on or off for

a window.

Designer window

Solution Explorer

window

Properties

window

Figure 1-36 The Designer window, Solution Explorer window, and Properties window

• The Solution Explorer Window

A solution is a container for holding Visual C# projects. (We discuss solutions in

greater detail in a moment.) When you create a new C# project, a new solution is

automatically created to contain it. The Solution Explorer window allows you to

navigate among the files in a Visual C# project.

• The Properties Window

A control’s appearance and other characteristics are determined by the control’s

properties. When you are creating a Visual C# application, you use the Properties

window to examine and change a control’s properties.

Remember that Visual Studio is a customizable environment. You can move the

 various windows around, so they may not appear in the exact locations shown in

Figure 1-36 on your system.

34 Chapter 1 Introduction to Computers and Programming

Pushpin icon

Figure 1-37 Auto Hide pushpin icon

Solution
Explorer

tab

Properties
tab

Figure 1-38 The Solution Explorer and Properties windows hidden

When Auto Hide is turned on, the window is displayed only as a tab along one of the

edges of the Visual Studio environment. This feature gives you more room to view

your application’s forms and code. Figure 1-38 shows how the Solution Explorer and

Properties windows appear when their Auto Hide feature is turned on. Notice the

tabs that read Solution Explorer and Properties along the right edge of the screen.

(Figure 1-38 also shows a Team Explorer tab. We do not discuss the Team Explorer

in this book.)

The Menu Bar and the Standard Toolbar

You’ve already used the Visual Studio menu bar several times. This is the bar at the top of

the Visual Studio window that provides menus such as File, Edit, View, Project, and so

forth. As you progress through this book, you will become familiar with many of the menus.

 1.8 Getting Started with the Visual Studio Environment 35

The Toolbox

The Toolbox is a window that allows you to select the controls that you want to use in an

application’s user interface. When you want to place a Button, Label, TextBox, or other

control on an application’s form, you select it in the Toolbox. You will use the Toolbox

extensively as you develop Visual C# applications.

The Toolbox typically appears on the left side of the Visual Studio environment. If the

Toolbox is in Auto Hide mode, its tab will appear as shown in Figure 1-40. Figure 1-41

shows the Toolbox opened, with Auto Hide turned off.

The Toolbox is divided into sections, and each section has a name. In Figure 1-41 you can

see the All Windows Forms and Common Controls sections. If you scroll the Toolbox,

you will see many other sections. Each section can be opened or closed.

Navigate

Backward

Navigate

Forward

Save

Save

All

New

Project

Open

File

Undo

Redo

Start

Debugging

Solution

Configuration

Find

Solution

Platform

Figure 1-39 Visual Studio toolbar buttons

Table 1-3 Visual Studio toolbar buttons

Toolbar Button Description

Navigate Backward Moves to the previously active tab in the Designer

window

Navigate Forward Moves to the next active tab in the Designer window

New Project Starts a new project

Open File Opens an existing file

Save Saves the file named by filename

Save All Saves all the files in the current project

Undo Undoes the most recent operation

Redo Redoes the most recently undone operation

Solution Configurations Configures your project’s executable code

Solution Platform Lets you select the platform on which the application

will run

Start Debugging Starts debugging (running) your program

Find Searches for text in your application code

Below the menu bar is the standard toolbar. The standard toolbar contains buttons that

execute frequently used commands. All commands that are displayed on the toolbar may

also be executed from a menu, but the standard toolbar gives you quicker access to them.

Figure 1-39 identifies the standard toolbar buttons that you will use most often, and

Table 1-3 gives a brief description of each.

36 Chapter 1 Introduction to Computers and Programming

Figure 1-41 The Toolbox opened (Auto Hide turned off)

NOTE: If you do not see the Toolbox or its tab along the side of the Visual Studio

environment, click View on the menu bar and then click Toolbox.

If you want to open a section of the Toolbox, you simply click on its name tab. To close

the section, click on its name tab again. In Figure 1-41, the Common Controls section is

open. You use the Common Controls section to access controls that you frequently need,

such as Buttons, Labels, and TextBoxes. You can move any section to the top of the list

by dragging its name with the mouse.

Using ToolTips

A ToolTip is a small rectangular box that pops up when you hover the mouse pointer

over a button on the toolbar or in the Toolbox for a few seconds. The ToolTip box

 contains a short description of the button’s purpose. Figure 1-42 shows the ToolTip that

appears when the cursor is left sitting on the Save All button. Use a ToolTip whenever you

cannot remember a particular button’s function.

Toolbox tab

Figure 1-40 The Toolbox tab (Auto Hide turned on)

 1.8 Getting Started with the Visual Studio Environment 37

Docked and Floating Windows

Figure 1-41 shows the Toolbox, Solution Explorer, and Properties windows when they

are docked, which means they are attached to one of the edges of the Visual Studio win-

dow. Alternatively, the windows can be floating. You can control whether a window is

docked or floating as follows:

• To change a window from docked to floating, right-click its title bar and select Float.

• To change a window from floating to docked, right-click its title bar and

select Dock.

Figure 1-43 shows Visual Studio with the Toolbox, Solution Explorer, and Properties

windows floating. When a window is floating, you can click and drag it by its title bar

Figure 1-42 Save All ToolTip

Figure 1-43 Toolbox, Solution Explorer, and Properties windows floating

