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To the Student

With the hope that this work will stimulate  

an interest in Engineering Mechanics  

and provide an acceptable guide to its understanding.
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The main purpose of this book is to provide the student with a clear and thorough 
presentation of the theory and application of engineering mechanics. To achieve this 
objective, this work has been shaped by the comments and suggestions of hundreds 
of reviewers in the teaching profession, as well as many of the author’s students. 

New to this Edition
Expanded Answer Section. The answer section in the back of the book now 
includes additional information related to the solution of select Fundamental 
Problems in order to offer the student some guidance in solving the problems.

Re-writing of Text Material. Further clarification of some concepts has 
been included in this edition, and throughout the book the accuracy has been 
enhanced, and important definitions are now in boldface throughout the text to 
highlight their importance.

Additional Fundamental Problems. Some new fundamental problems 
have been added along with their partial solutions which are given in the back of 
the book. 

New Photos. The relevance of knowing the subject matter is reflected by the 
real-world applications depicted in the over 15 new or updated photos placed 
throughout the book. These photos generally are used to explain how the relevant 
principles apply to real-world situations and how materials behave under load.

New Problems. There are approximately 30% new problems that have been 
added to this edition, which involve applications to many different fields of 
engineering.

PREFACE
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Hallmark Features
Besides the new features mentioned, other outstanding features that define the 
contents of the book include the following:

Organization and Approach. Each chapter is organized into well-defined 
sections that contain an explanation of specific topics, illustrative example problems, 
and a set of homework problems. The topics within each section are placed into 
subgroups defined by boldface titles. The purpose of this is to present a structured 
method for introducing each new definition or concept and to make the book 
convenient for later reference and review.

Chapter Contents. Each chapter begins with an illustration demonstrating a 
broad-range application of the material within the chapter. A bulleted list of the 
chapter contents is provided to give a general overview of the material that will 
be covered.

Emphasis on Free-Body Diagrams. Drawing a free-body diagram is 
particularly important when solving problems, and for this reason this step is strongly 
emphasized throughout the book. In particular, special sections and examples are 
devoted to show how to draw free-body diagrams. Specific homework problems 
have also been added to develop this practice.

Procedures for Analysis. A general procedure for analyzing any mechanics 
problem is presented at the end of the first chapter. Then this procedure is customized 
to relate to specific types of problems that are covered throughout the book. This 
unique feature provides the student with a logical and orderly method to follow when 
applying the theory. The example problems are solved using this outlined method in 
order to clarify its numerical application. Realize, however, that once the relevant 
principles have been mastered and enough confidence and judgment have been 
obtained, the student can then develop his or her own procedures for solving problems.

Important Points. This feature provides a review or summary of the most 
important concepts in a section and highlights the most significant points that should 
be known when applying the theory to solve problems.

Fundamental Problems. These problem sets are selectively located just after 
most of the example problems. They provide students with simple applications of 
the concepts, and therefore, the chance to develop their problem-solving skills 
before attempting to solve any of the standard problems that follow. In addition, 
they can be used for preparing for exams, and they can be used at a later time when 
preparing for the Fundamentals in Engineering Exam. The partial solutions are 
given in the back of the book.
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Conceptual Understanding. Through the use of photographs placed 
throughout the book, the theory is applied in a simplified way in order to illustrate 
some of its more important conceptual features and instill the physical meaning of 
many of the terms used in the equations. 

Homework Problems. Apart from the Fundamental and Conceptual type 
problems mentioned previously, other types of problems contained in the book 
include the following:

• Free-Body Diagram Problems. Some sections of the book contain 
introductory problems that only require drawing the free-body diagram for the 
specific problems within a problem set. These assignments will impress upon the 
student the importance of mastering this skill as a requirement for a complete 
solution of any equilibrium problem.

• General Analysis and Design Problems. The majority of problems in the 
book depict realistic situations encountered in engineering practice. Some of these 
problems come from actual products used in industry. It is hoped that this realism 
will both stimulate the student’s interest in engineering mechanics and provide a 
means for developing the skill to reduce any such problem from its physical 
description to a model or symbolic representation to which the principles of 
mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either SI 
or FPS units. Furthermore, in any set, an attempt has been made to arrange the 
problems in order of increasing difficulty except for the end of chapter review 
problems, which are presented in random order.

• Computer Problems. An effort has been made to include a few problems that 
may be solved using a numerical procedure executed on either a desktop computer 
or a programmable pocket calculator. The intent here is to broaden the student’s 
capacity for using other forms of mathematical analysis without sacrificing the 
time needed to focus on the application of the principles of mechanics. Problems 
of this type, which either can or must be solved using numerical procedures, are 
identified by a “square” symbol (j) preceding the problem number.

The many homework problems in this edition, have been placed into two different 
categories. Problems that are simply indicated by a problem number have an 
answer and in some cases an additional numerical result given in the back of the 
book. An asterisk (*) before every fourth problem number indicates a problem 
without an answer.

Accuracy. As with the previous editions, apart from the author, the accuracy of 
the text and problem solutions has been thoroughly checked by Kai Beng Yap, a 
practicing engineer, and a team of specialists at EPAM, including Georgii Kolobov, 
Ekaterina Radchenko, and Artur Akberov. Thanks are also due to Keith Steuer 
from Snow College and Mike Freeman, Professor Emeritus at the University of 
Alabama.
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Contents
The book is divided into 11 chapters, in which the principles are first applied to 
simple, then to more complicated situations. In a general sense, each principle is 
applied first to a particle, then a rigid body subjected to a coplanar system of forces, 
and finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The 
vector properties of a concurrent force system are introduced in Chapter 2. This 
theory is then applied to the equilibrium of a particle in Chapter 3. Chapter 4 
contains a general discussion of both concentrated and distributed force systems 
and the methods used to simplify them. The principles of rigid-body equilibrium 
are developed in Chapter 5 and then applied to specific problems involving the 
equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of 
internal forces in beams and cables in Chapter 7. Applications to problems involving 
frictional forces are discussed in Chapter 8, and topics related to the center of 
gravity and centroid are treated in Chapter 9. If time permits, sections involving 
more advanced topics, indicated by stars (★), may be covered. Most of these topics 
are included in Chapter 10 (area and mass moments of inertia) and Chapter 11 
(virtual work and potential energy). Note that this material also provides a suitable 
reference for basic principles when it is discussed in more advanced courses. Finally, 
Appendix A provides a review and list of mathematical formulas needed to solve 
the problems in the book.

Alternative Coverage. At the discretion of the instructor, some of the 
material may be presented in a different sequence with no loss of continuity. For 
example, it is possible to introduce the concept of a force and all the necessary 
methods of vector analysis by first covering Chapter 2 and Section 4.2 (the cross 
product). Then after covering the rest of Chapter 4 (force and moment systems), the 
equilibrium methods of Chapters 3 and 5 can be discussed.
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Cranes such as this one are required to lift extremely large loads. Their design is 
based on the basic principles of statics and dynamics, which form the subject matter 
of engineering mechanics.

1CHAPTER  



3

GENERAL 

PRINCIPLES

 ■ To provide an introduction to the basic quantities and idealizations 

of mechanics.

 ■ To state Newton’s Laws of Motion and Gravitation.

 ■ To review the principles for applying the SI system of units.

 ■ To examine the standard procedures for performing numerical 

calculations.

 ■ To present a general guide for solving problems.

CHAPTER OBJECTIVES

1.1 MECHANICS

Mechanics is a branch of the physical sciences that is concerned with the 
state of rest or motion of bodies that are subjected to the action of forces. 
In general, this subject can be subdivided into three branches: rigid-body 

mechanics, deformable-body mechanics, and fluid mechanics. In this book 
we will study rigid-body mechanics since it is a basic requirement for 
the study of the mechanics of deformable bodies and the mechanics of 
fluids. Furthermore, rigid-body mechanics is essential for the design and 
analysis of many types of structural members, mechanical components, 
or electrical devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics. 
Statics deals with the equilibrium of bodies, that is, those that are either 
at rest or move with a constant velocity; whereas dynamics is concerned 
with the accelerated motion of bodies. We can consider statics as a 
special case of dynamics, in which the acceleration is zero; however, 
statics deserves separate treatment in engineering education since many 
objects are designed with the intention that they remain in equilibrium.
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1

Historical Development. The subject of statics developed at 
a very early time because its principles can be formulated simply from 
measurements of geometry and force. For example, the writings of 
Archimedes (287–212 B.C.) deal with the principle of the lever. Studies 
of the pulley, inclined plane, and wrench are also recorded in ancient 
writings—at times when the requirements for engineering were limited 
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement 
of time, this subject developed much later. Galileo Galilei (1564–1642) 
was one of the first major contributors to this field. His work consisted 
of experiments using pendulums and falling bodies. The most significant 
contributions in dynamics, however, were made by Isaac Newton 
(1642–1727), who is noted for his formulation of the three fundamental 
laws of motion and the law of universal gravitational attraction. Shortly 
after these laws were postulated, important techniques for their 
application were developed by other scientists and engineers, some of 
whom will be mentioned throughout the book.

1.2 FUNDAMENTAL CONCEPTS

Before we begin our study of engineering mechanics, it is important 
to understand the meaning of certain fundamental concepts and 
principles.

Basic Quantities. The following four quantities are used 
throughout mechanics.

Length. Length is used to locate the position of a point in space and 
thereby describe the size of a physical system. Once a standard unit of 
length is defined, one can then use it to define distances and geometric 
properties of a body as multiples of this unit.

Time. Time is conceived as a succession of events. Although the 
principles of statics are time independent, this quantity plays an important 
role in the study of dynamics.

Mass. Mass is a measure of a quantity of matter that is used to compare 
the action of one body with that of another. This property manifests itself 
as a gravitational attraction between two bodies and provides a measure 
of the resistance of matter to a change in velocity.

Force. In general, force is considered as a “push” or “pull” exerted by 
one body on another. This interaction can occur when there is direct 
contact between the bodies, such as a person pushing on a wall, or it 
can occur through a distance when the bodies are physically separated. 
Examples of the latter type include gravitational, electrical, and magnetic 
forces. In any case, a force is completely characterized by its magnitude, 
direction, and point of application.
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1

Idealizations. Models or idealizations are used in mechanics in 
order to simplify application of the theory. Here we will consider three 
important idealizations.

Particle. A particle has a mass, but a size that can be neglected.  
For example, the size of the earth is insignificant compared to the size 
of its orbit, and therefore the earth can be modeled as a particle when 
studying its orbital motion. When a body is idealized as a particle,  
the principles of mechanics reduce to a rather simplified form since 
the geometry of the body will not be involved in the analysis of the 
problem.

Rigid Body. A rigid body can be considered as a combination of a 
large number of particles in which all the particles remain at a fixed 
distance from one another, both before and after applying a load.  
This model is important because the body’s shape does not change 
when a load is applied, and so we do not have to consider the type 
of material from which the body is made. In most cases the actual 
deformations occurring in structures, machines, mechanisms, and the 
like are relatively small, and the rigid-body assumption is suitable for 
analysis.

Concentrated Force. A concentrated force represents the effect 
of a loading which is assumed to act at a point on a body. We can 
represent a load by a concentrated force, provided the area over which 
the load is applied is very small compared to the overall size of the 
body. An example would be the contact force between a wheel and 
the ground.

Three forces act on the ring. Since these 
forces all meet at a point, then for any 
force analysis, we can assume the ring to be 
represented as a particle. 

Steel is a common engineering material that does not deform very much under load. 
Therefore, we can consider this railroad wheel to be a rigid body acted upon by the 
concentrated force of the rail.
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1

Newton’s Three Laws of Motion. Engineering mechanics is 
formulated on the basis of Newton’s three laws of motion, the validity 
of which is based on experimental observation. These laws apply to the 
motion of a particle as measured from a nonaccelerating reference frame. 
They may be briefly stated as follows.

First Law. A particle originally at rest, or moving in a straight line with 
constant velocity, tends to remain in this equilibrium state provided the 
particle is not subjected to an unbalanced force, Fig. 1–1a.

Action–reaction

force of A on B

force of B on A

F F

A B

(c)

Fig. 1–1

Third Law. The mutual forces of action and reaction between two 
particles are equal, opposite, and collinear, Fig. 1–1c.

*Stated another way, the unbalanced force acting on the particle is proportional to the time 
rate of change of the particle’s linear momentum.

Equilibrium

v

F2F1

F3

(a)

Second Law. A particle acted upon by an unbalanced force F 
experiences an acceleration a that has the same direction as the force and 
a magnitude that is directly proportional to the force, Fig. 1–1b.* If the 
particle has a mass m, this law may be expressed mathematically as

 F = ma (1–1)

Accelerated motion

a
F

(b)
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1

Newton’s Law of Gravitational Attraction. Shortly after 
formulating his three laws of motion, Newton postulated a law governing the 
gravitational attraction between any two particles. Stated mathematically,

 F = G 
m1m2

r2
 (1–2)

where

F = force of gravitation between the two particles

G = universal constant of gravitation; according to experimental  
  evidence, G = 66.73(10 - 12) m3> (kg # s2)

m1, m2 = mass of each of the two particles

r = distance between the two particles

Weight. According to Eq. 1–2, any two particles or bodies have a 
mutual attractive (gravitational) force acting between them. In the case 
of a particle located at or near the surface of the earth, however, the 
only gravitational force having any sizable magnitude is that between 
the earth, because of its very large mass, and the particle. Consequently, 
this force, called the weight, will be the only gravitational force we will 
consider.

From Eq. 1–2, if the particle has a mass m1 = m, and we assume the 
earth is a nonrotating sphere of constant density and having a mass 
m2 = Me, then if r is the distance between the earth’s center and the 
particle, the weight W of the particle becomes

W = G 
mMe

r2

If we let g = GMe>r2, we have

 W = mg  (1–3)

If we allow the particle to fall downward, then neglecting air resistance, 
the only force acting on the particle is its weight, and so Eq. 1–1 becomes 
W = ma. Comparing this result with Eq. 1–3, we see that a = g.  
In other words, g is the acceleration due to gravity. Since it depends on r, 
then the weight of the particle or body is not an absolute quantity. Instead, 
its magnitude depends upon the elevation where the measurement was 
made. For most engineering calculations, however, g is determined at sea 
level and at a latitude of 45°, which is considered the “standard location.”

1.3 UNITS OF MEASUREMENT

The four basic quantities—length, time, mass, and force—are not all 
independent from one another; in fact, they are related by Newton’s 
second law of motion, F = ma. Because of this, the units used to measure 
these quantities cannot all be selected arbitrarily. The equality F = ma is 
maintained only if three of the four units, called base units, are defined 
and the fourth unit is then derived from the equation.

The astronaut’s weight is diminished since 
she is far removed from the gravitational 
field of the earth.
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1 9.81 N

1 kg

(a)

32.2 lb

1 slug

(b)

Fig. 1-2

TABLE 1–1 Systems of Units

Name Length Time Mass Force

International 
System of Units 

SI

meter

m

second

s

kilogram

kg

newton*

N

¢kg # m
s2

≤
U.S. Customary

FPS
foot

ft

second

s

slug*

¢ lb # s2

ft
≤

pound

lb

*Derived unit.

SI Units. The International System of units, abbreviated SI after the 
French “Système International d’Unités,” is a modern version of the metric 
system which has received worldwide recognition. As shown in Table 1–1, 
the SI system defines length in meters (m), time in seconds (s), and mass 
in kilograms (kg).† The unit of force, called a newton (N), is derived from 
F = ma. Thus, 1 newton is equal to a force required to give 1 kilogram of 
mass an acceleration of 1 m>s2 (N = kg # m>s2). Think of this force as the 
weight of a small apple.

If the weight of a body located at the “standard location” is to 
be determined in newtons, then Eq. 1–3 must be applied. Here 
measurements give g = 9.806 65 m>s2; however, for calculations, the 
value g = 9.81 m>s2 will be used. Thus,

 W = mg   (g = 9.81 m>s2) (1–4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs 
19.62 N, and so on, Fig. 1–2a.

U.S. Customary. In the U.S. Customary system of units (FPS) 
length is measured in feet (ft), time in seconds (s), and force in pounds (lb),  
Table   1–1. The unit of mass, called a slug, is derived from F = ma.  
Hence, 1 slug is equal to the amount of matter accelerated at 1 ft>s2 when 
acted upon by a force of 1 lb (slug = lb # s2>ft).

Therefore, if the measurements are made at the “standard location,” 
where g = 32.2 ft>s2, then from Eq. 1–3,

 m =

W

g
   (g = 32.2 ft>s2) (1–5)

And so a body weighing 32.2 lb has a mass of 1 slug, a 64.4-lb body has a 
mass of 2 slugs, and so on, Fig. 1–2b.

† Historically, the meter was defined as 1/10,000,000 the distance from the Equator to 
the North Pole, and the kilogram is 1/1000 of a cubic meter of water.
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Conversion of Units. Table 1–2 provides a set of direct conversion 
factors between FPS and SI units for the basic quantities. Also, in the 
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile), 

1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

TABLE 1–2 Conversion Factors

Quantity

Unit of 

Measurement (FPS)

Equals Unit of 

Measurement (SI)

Force lb 4.448 N

Mass slug 14.59 kg

Length ft 0.3048 m

TABLE 1–3 Prefixes

Exponential Form Prefix SI Symbol

Multiple

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

Submultiple

0.001 10-3 milli m

0.000 001 10-6 micro m

0.000 000 001 10-9 nano n

1.4  THE INTERNATIONAL SYSTEM  

OF UNITS

The SI system of units is used extensively in this book since it is intended 
to become the worldwide standard for measurement. Therefore, we will 
now present some of the rules for its use and some of its terminology 
relevant to engineering mechanics.

Prefixes. When a numerical quantity is either very large or very 
small, the units used to define its size may be modified by using a prefix. 
Some of the prefixes used in the SI system are shown in Table 1–3. Each 
represents a multiple or submultiple of a unit which, if applied successively, 
moves the decimal point of a numerical quantity to every third place.* For 
example, 4 000 000 N = 4 000 kN 1kilo-newton2 = 4 MN 1mega-newton2,   or     
0.005 m = 5 mm 1milli-meter2. Notice that the SI system does not include 
the multiple deca (10) or the submultiple centi (0.01), which form part of the 
metric system. Except for some volume and area measurements, the use of 
these prefixes is generally avoided in science and engineering.

*The kilogram is the only base unit that is defined with a prefix.
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Rules for Use. Here are a few of the important rules that describe 
the proper use of the various SI symbols:

• Quantities defined by several units which are multiples of one 
another are separated by a dot to avoid confusion with prefix 
notation, as indicated by N = kg # m>s2

= kg # m # s - 2. Also, m # s 
(meter-second), whereas ms (milli-second).

• The exponential power on a unit having a prefix refers to both 
the unit and its prefix. For example, mN2

= (mN)2
= mN # mN. 

Likewise, mm2 represents (mm)2
= mm # mm.

• With the exception of the base unit the kilogram, in general avoid 
the use of a prefix in the denominator of composite units. For 
example, do not write N>mm, but rather kN>m; also, m>mg should 
be written as Mm>kg.

• When performing calculations, represent the numbers in terms of 
their base or derived units by converting all prefixes to powers of 10. 
The final result should then be expressed using a single prefix. Also, 
after calculation, it is best to keep numerical values between 0.1 and 
1000; otherwise, a suitable prefix should be chosen. For example,

 (50 kN)(60 nm) = 350(103) N4 360(10 - 9) m4
 = 3000(10 - 6) N # m = 3(10 - 3) N # m = 3 mN # m

1.5 NUMERICAL CALCULATIONS

Numerical work in engineering practice is most often performed by 
using handheld calculators and computers. It is important, however, that 
the answers to any problem be reported with justifiable accuracy using 
appropriate significant figures. In this section we will discuss these topics 
together with some other important aspects involved in all engineering 
calculations.

Dimensional Homogeneity. The terms of any equation used to 
describe a physical process must be dimensionally homogeneous; that is, 
each term must be expressed in the same units. Provided this is the case, 
all the terms of an equation can then be combined if numerical values 
are substituted for the variables. Consider, for example, the equation 
s = vt +

1
2 at2, where, in SI units, s is the position in meters, m, t is time in 

seconds, s, v is velocity in m>s and a is acceleration in m>s2. Regardless of 
how this equation is evaluated, it maintains its dimensional homogeneity. 
In the form stated, each of the three terms is expressed in meters 3m, (m>s)s, (m>s2)s2

  4  or solving for a, a = 2s>t2 - 2v>t, the terms are 
each expressed in units of m>s2 3m>s2, m>s2, (m>s) >s4 .

Keep in mind that problems in mechanics always involve the solution 
of dimensionally homogeneous equations, and so this fact can then be 
used as a partial check for algebraic manipulations of an equation.
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Significant Figures. The number of significant figures contained 
in any number determines the accuracy of the number. For instance, 
the number 4981 contains four significant figures. However, if zeros 
occur at the end of a whole number, it may be unclear as to how many 
significant figures the number represents. For example, 23 400 might 
have three (234), four (2340), or five (23 400) significant figures. To avoid 
these ambiguities, we will use engineering notation to report a result. 
This requires that numbers be rounded off to the appropriate number 
of significant digits and then expressed in multiples of (103), such as 
(103), (106), or (10–9). For instance, if 23 400 has five significant figures, 
it is written as 23.400(103), but if it has only three significant figures, it is 
written as 23.4(103).

If zeros occur at the beginning of a number that is less than one, 
then the zeros are not significant. For example, 0.008 21 has three  
significant figures. Using engineering notation, this number is expressed 

as 8.21110-32 . Likewise, 0.000 582 can be expressed as 0.582110-32  or 

582110-62 .

Rounding Off Numbers. Rounding off a number is necessary 
so that the accuracy of the result will be the same as that of the problem 
data. As a general rule, any numerical figure ending in a number greater 
than five is rounded up and a number less than five is not rounded up. The 
rules for rounding off numbers are best illustrated by examples. Suppose 
the number 3.5587 is to be rounded off to three significant figures. 
Because the fourth digit (8) is greater than 5, the third number is rounded 
up to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 9.39. If we 
round off 1.341 to three significant figures, because the fourth digit (1) 
is less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 and 9.871 
becomes 9.87. There is a special case for any number that ends in a 5. As a 
general rule, if the digit preceding the 5 is an even number, then this digit 
is not rounded up. If the digit preceding the 5 is an odd number, then it 
is rounded up. For example, 75.25 rounded off to three significant digits 
becomes 75.2, 0.1275 becomes 0.128, and 0.2555 becomes 0.256.

Calculations. When a sequence of calculations is performed, it is 
best to store the intermediate results in the calculator. In other words, do 
not round off calculations until expressing the final result. This procedure 
maintains precision throughout the series of steps to the final solution. 
In this book we will generally round off the answers to three significant 

figures since most of the data in engineering mechanics, such as geometry 
and loads, may be reliably measured to this accuracy.
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1.6  GENERAL PROCEDURE FOR 

ANALYSIS

Attending a lecture, reading this book, and studying the example 
problems helps, but the most effective way of learning the principles of 

engineering mechanics is to solve problems. To be successful at this, it is 
important to always present the work in a logical and orderly manner, as 
suggested by the following sequence of steps:

• Read the problem carefully and try to correlate the actual physical 
situation with the theory studied.

• Tabulate the problem data and draw to a large scale any necessary 
diagrams.

• Apply the relevant principles, generally in mathematical form. When 
writing any equations, be sure they are dimensionally homogeneous.

• Solve the necessary equations, and report the answer with no more 
than three significant figures.

• Study the answer with technical judgment and common sense to 
determine whether or not it seems reasonable.

When solving problems, do the work as 
neatly as possible. Being neat will stimulate 
clear and orderly thinking, and vice versa.

• Statics is the study of bodies that are at rest or move with constant 
velocity.

• A particle has a mass but a size that can be neglected, and a rigid 
body does not deform under load.

• A force is considered as a “push” or “pull” of one body on another.

• Concentrated forces are assumed to act at a point on a body.

• Newton’s three laws of motion should be memorized.

• Mass is measure of a quantity of matter that does not change 
from one location to another. Weight refers to the gravitational 
attraction of the earth on a body or quantity of mass. Its magnitude 
depends upon the elevation at which the mass is located.

• In the SI system the unit of force, the newton, is a derived unit. 
The meter, second, and kilogram are base units.

• Prefixes G, M, k, m, m, and n are used to represent large and small 
numerical quantities. Their exponential size should be known, 
along with the rules for using the SI units.

• Perform numerical calculations with several significant figures, 
and then report the final answer to three significant figures.

• Algebraic manipulations of an equation can be checked in part by 
verifying that the equation remains dimensionally homogeneous.

• Know the rules for rounding off numbers.

IMPORTANT POINTS
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EXAMPLE 1.1

Convert 2 km>h to m>s. How many ft>s is this?

SOLUTION
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are 
arranged in the following order, so that a cancellation of the units can 
be applied:

 2 km>h =

2 km

h
¢ 1000 m

km
≤ ¢ 1 h

3600 s
≤

 =
2000 m

3600 s
= 0.556 m>s Ans.

From Table 1–2, 1 ft = 0.3048 m. Thus,

 0.556 m>s = a 0.556 m

s
b a 1 ft

0.3048 m
b

 = 1.82 ft>s Ans.

Note:  Remember to round off the final answer to three significant 

figures.

EXAMPLE 1.2

Convert the quantities 300 lb # s and 52 slug>ft3 to appropriate SI units.

SOLUTION
Using Table 1–2, 1 lb = 4.448 N.

 300 lb # s = 300 lb # sa 4.448 N

1 lb
b

  = 1334.4 N # s = 1.33 kN # s Ans.

Since 1 slug = 14.59 kg and 1 ft = 0.3048 m, then

 52 slug>ft3
=

52 slug

ft3
a 14.59 kg

1 slug
b a 1 ft

0.3048 m
b3

 = 26.8(103) kg>m3

 = 26.8 Mg>m3 Ans.
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EXAMPLE 1.3

Evaluate each of the following and express with SI units having an 
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2,  
(c) 45 MN3>900 Gg.

SOLUTION
First convert each number to base units, perform the indicated 
operations, then choose an appropriate prefix.

Part (a)

 (50 mN)(6 GN) = 350(10-3) N4 36(109) N4
 = 300(106) N2

 = 300(106) N2a 1 kN

103 N
b a 1 kN

103 N
b

 = 300 kN2 Ans. 

Note: Keep in mind the convention kN2
= (kN)2

= 106 N2.

Part (b)

 (400 mm)(0.6 MN)2
= 3400(10-3) m4 30.6(106) N42

 = 3400(10-3) m4 30.36(1012) N24
 = 144(109) m # N2

 = 144 Gm # N2 Ans. 

We can also write

 144(109) m # N2
= 144(109) m # N2a 1 MN

106 N
b a 1 MN

106 N
b

 = 0.144 m # MN2 Ans.

Part (c)

 
45 MN3

900 Gg
=

45(106 N)3

900(106) kg

 = 50(109) N3>kg

 = 50(109) N3a 1 kN

103 N
b3 1

kg

 = 50 kN3>kg Ans.



 PROBLEMS 15

1

The answers to all but every fourth problem (asterisk) 
are given in the back of the book.

1–1. Round off the following numbers to three significant 
figures: (a) 3.455 55 m, (b) 45.556 s, (c) 5555 N, (d) 4525 kg.

1–2. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) kN>ms, (b) Mg>mN,  (c) MN>(kg # ms).

1–3. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) Mg>mm, (b) mN >ms, (c) mm # Mg.

*1–4. What is the weight in newtons of an object that has a 
mass of (a) 8 kg, (b) 0.04 mg, (c) 760 Mg?

1–5. Represent each of the following as a number between 
0.1 and 1000 using an appropriate prefix: (a) 45 320 kN,  
(b) 568(105) mm, (c) 0.005 63 mg.

1–6. Round off the following numbers to three significant 
figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, (d) 7555 kg.

1–7. Represent each of the following quantities in the correct  
SI form using an appropriate prefix: (a) 0.000 431 kg,  
(b) 35.3(103) N, (c) 0.005 32 km.

*1–8. Represent each of the following combinations 
of units in the correct SI form: (a) Mg>ms, (b) N>mm,   
(c) mN>(kg # ms).

1–9. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) m>ms, (b) mkm, (c) ks>mg, (d) km # mN.

1–10. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) GN # mm, (b) kg>mm, (c) N>ks2, (d) kN>ms.

1–11. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:  
(a) mMN, (b) N>mm, (c) MN>ks2, (d) kN>ms.

PROBLEMS

*1–12. Water has a density of 1.94 slug>ft3. What is the 
density expressed in SI units? Express the answer to three 
significant figures.

1–13. The density (mass>volume) of aluminum is 
5.26 slug>ft3. Determine its density in SI units. Use an  
appropriate prefix.

1–14. Evaluate each of the following to three significant  
figures and express each answer in SI units using an  
appropriate prefix: (a) (212 mN)2, (b) (52 800 ms)2,  
(c) [548(106)]1>2 ms.

1–15. Using the SI system of units, show that Eq. 1–2 is 
a dimensionally homogeneous equation which gives F 
in  newtons. Determine to three significant figures the 
 gravitational force acting between two spheres that are 
touching each other. The mass of each sphere is 200 kg and 
the radius is 300 mm.

*1–16. Evaluate each of the following to three significant 
 figures and express each answer in SI units using an  appropriate 
prefix: (a) (200 kN)2, (b) (0.005 mm)2, (c) (400 m)3.

1–17. If a car is traveling at 55 mi>h, determine its speed in 
kilometers per hour and meters per second.

1–18. Evaluate (204 mm)(0.004 57 kg)>(34.6 N) to three 
significant figures and express the answer in SI units using 
an appropriate prefix.

1–19. The specific weight (wt.>vol.) of brass is 520 lb>ft3.  
Determine its density (mass>vol.) in SI units. Use an  
appropriate prefix.

*1–20. If a man weighs 155 lb on earth, specify (a) his 
mass in slugs, (b) his mass in kilograms, and (c) his weight in 
 newtons. If the man is on the moon, where the acceleration 
due to gravity is gm = 5.30 ft>s2, determine (d) his weight in 
pounds, and (e) his mass in kilograms.

1–21. Two particles have a mass of 8 kg and 12 kg,  
respectively. If they are 800 mm apart, determine the force 
of gravity acting between them. Compare this result with 
the weight of each particle.



This electric transmission tower is stabilized by cables that exert forces on the tower 
at their points of connection. In this chapter we will show how to express these 
forces as Cartesian vectors, and then determine their resultant. 

2CHAPTER 



17

FORCE 

VECTORS

 ■ To show how to add forces and resolve them into components 

using the parallelogram law.

 ■ To express force and position in Cartesian vector form and 

explain how to determine the vector’s magnitude and direction.

 ■ To introduce the dot product in order to use it to find the angle 

between two vectors or the projection of one vector onto another.

CHAPTER OBJECTIVES

2.1 SCALARS AND VECTORS

Many physical quantities in engineering mechanics are measured using 
either scalars or vectors.

Scalar. A scalar is any positive or negative physical quantity that can 
be completely specified by its magnitude. Examples of scalar quantities 
include length, mass, and time.

Vector. A vector is any physical quantity that requires both a 
magnitude and a direction for its complete description. Examples of 
vectors encountered in statics are force, position, and moment. A vector 
is shown graphically by an arrow, Fig. 2–1. The length of the arrow 
represents the magnitude of the vector, and the angle u between the 
vector and a fixed axis defines the direction of its line of action. The head 
or tip of the arrow indicates the sense of direction of the vector.

In print, vector quantities are represented by boldface letters such as 
A, and the magnitude of a vector is italicized, A. For handwritten work, 
it is often convenient to denote a vector quantity by simply drawing an 
arrow above it, A  

S
.

Line of action

Sense

Magnitude A

u Direction

Fig. 2–1
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2.2 VECTOR OPERATIONS

Multiplication and Division of a Vector by a Scalar. If 
a vector is multiplied or divided by a positive scalar, its magnitude is 
changed by that amount. Multiplying or dividing by a negative scalar 
will also change the directional sense of the vector. Graphic examples of 

these operations are shown in Fig. 2–2.

A

A

2A

0.5

Scalar multiplication and division

2A

2

Fig. 2–2

A A

B

B

R

(a) (c)(b)

R 5 A 1 B

A

B

Parallelogram law

P

Fig. 2–3

Vector Addition. When adding two vectors together it is important 
to account for both their magnitudes and their directions. To do this 
we must use the parallelogram law of addition. To illustrate, the two 
component vectors A and B in Fig. 2–3a are added to form a resultant 

vector R = A + B using the following procedure:

• First join the tails of the components at a point to make them 
concurrent, Fig. 2–3b.

• From the head of B, draw a line parallel to A. Draw another line 
from the head of A that is parallel to B. These two lines intersect at 
point P to form the adjacent sides of a parallelogram.

• The diagonal of this parallelogram that extends to P forms R, which 
then represents the resultant vector R = A + B, Fig. 2–3c.
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We can also add B to A, Fig. 2–4a, using the triangle rule, which is a special 
case of the parallelogram law, whereby vector B is added to vector A in 
a “head-to-tail” fashion, i.e., by connecting the tail of B to the head of A, 
Fig. 2–4b. The resultant R extends from the tail of A to the head of B. In 
a similar manner, R can also be obtained by adding A to B, Fig. 2–4c. By 
comparison, it is seen that vector addition is commutative; in other words, 
the vectors can be added in either order, i.e., R = A + B = B + A.

A

A

B

B

R

R

R 5 A 1 B R 5 B 1 A

(b)

Triangle rule Triangle rule

(c)

A

B

(a)

Fig. 2–4

As a special case, if the two vectors A and B are collinear, i.e., 
both have the same line of action, the parallelogram law reduces to an 
algebraic or scalar addition R = A + B, as shown in Fig. 2–5.

Vector Subtraction. The resultant of the difference between two 
vectors A and B of the same type may be expressed as

R′ = A - B = A + 1-B2
This vector sum is shown graphically in Fig. 2–6. Subtraction is therefore 
defined as a special case of addition, so the rules of vector addition also 
apply to vector subtraction.

A B

R

Addition of collinear vectors

R 5 A 1 B

Fig. 2–5

R9
A

BB

A

B

AR9
or

Parallelogram law Triangle construction

Vector subtraction

Fig. 2–6
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2.3 VECTOR ADDITION OF FORCES

Experimental evidence has shown that a force is a vector quantity since 
it has a specified magnitude, direction, and sense and it adds according 
to the parallelogram law. Two common problems in statics involve 
either finding the resultant force, knowing its components, or resolving 
a known force into two components. We will now describe how each of 
these problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces F1 and 
F2 acting on the pin in Fig. 2–7a are added together to form the resultant 
force FR = F1 + F2, using the parallelogram law as shown in Fig. 2–7b. 
From this construction, or using the triangle rule, Fig. 2–7c, we can apply 
the law of cosines or the law of sines to the triangle in order to obtain the 
magnitude of the resultant force and its direction.

FR 5 F1 1 F2

FRFR

F1 F1 F1

F2 F2

F2

(c)(b)(a)

Fig. 2–7

Finding the Components of a Force. Sometimes it is necessary 
to resolve a force into two components in order to study its pulling or 
pushing effect in two specific directions. For example, in Fig. 2–8a, F is to 
be resolved into two components along the two members, defined by the 
u and  axes. In order to determine the magnitude of each component, a 
parallelogram is constructed first, by drawing lines starting from the tip  
of F, one line parallel to u, and the other line parallel to . These lines intersect 
the  and u axes, forming a parallelogram. The force components Fu and F  are 
established by simply joining them to the tail of F, to the intersection points 
on the u and  axes, Fig. 2–8b. This parallelogram can be reduced to a triangle, 
which represents the triangle rule, Fig. 2–8c. From this, the law of sines can be 
applied to determine the unknown magnitudes of the components.

Fu
F
y

F
y u

Using the parallelogram law the supporting 
force F can be resolved into components 
acting along the u and  axes. 

FR

F2F1

The parallelogram law must be used to 
determine the resultant of the two forces 
acting on the hook.
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Addition of Several Forces. If more than two forces are to be 
added, successive applications of the parallelogram law can be carried out 
in order to obtain the resultant force. For example, if three forces F1, F2, 
F3 act at a point O,  Fig. 2–9, the resultant of any two of the forces is found, 
say, F1 + F2, and then this resultant is added to the third force, yielding 
the resultant of all three forces; i.e., FR = 1F1 + F22 + F3. Using the 
parallelogram law to add more than two forces, as shown here, generally 
requires extensive geometric and trigonometric calculation to determine 
the magnitude and direction of the resultant. Instead, problems of this 
type are easily solved by using the “rectangular-component method,” 
which is explained in the next section.

F

u

(b)

F

FuFu

(c)

F

u

(a)

F
v

F
v

v v

Fig. 2–8

F1

F2

F1 1 F2 FR

F3
O

Fig. 2–9

FR

F1 1 F2

F1

F3

F2

The resultant force FR on the hook requires 
the addition of F1 + F2, then this resultant is 
added to F3.
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Problems that involve the addition of two forces can be solved as 
follows:

Parallelogram Law.

• Sketch the two “component” forces F1 and F2 added together 
according to the parallelogram law, yielding the resultant force 
FR that forms the diagonal of the parallelogram, Fig. 2–10a.

• If a force F is to be resolved into components along two axes 
u and v, then start at the head of force F and construct lines 
parallel to the axes, thereby forming the parallelogram, Fig. 2–10b.  
The sides of the parallelogram represent the components, Fu and F .

• Label all the known and unknown force magnitudes and the angles 
on the sketch and identify the two unknowns as the magnitude 
and direction of FR, or the magnitudes of its components.

Trigonometry.

• Redraw a half portion of the parallelogram to illustrate the 
triangular head-to-tail addition of the components.

• From this triangle, the magnitude of the resultant force can 
be determined using the law of cosines, and its direction is 
determined from the law of sines. The magnitudes of two 
force components are determined from the law of sines. The 
formulas are given in Fig. 2–10c.

PROCEDURE FOR ANALYSIS

• A scalar is a positive or negative number.

• A vector is a quantity that has a magnitude, direction, and sense.

• Multiplication or division of a vector by a scalar will change 
the magnitude of the vector. The sense of the vector will 
change if the scalar is negative.

• Vectors are added or subtracted using the parallelogram law or 
the triangle rule.

• As a special case, if the vectors are collinear, the resultant is 
formed by an algebraic or scalar addition.

IMPORTANT POINTS

A

C

B

b

(c)

c

a

Sine law:

sin a sin b sin c
A B

5 5
C

Cosine law:

C 5   A
2 1 B

2 2 2AB cos c

FR

F1

F2

F

Fu

u

(b)

(a)

v

F
v

Fig. 2–10
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EXAMPLE 2.1

The screw eye in Fig. 2–11a is subjected to two forces, F1 and F2. 

Determine the magnitude and direction of the resultant force.

(c)

FR 150 N

100 N
158

1158

u

f

Fig. 2–11

FR

908 2 258 5 658

108

158

100 N

A

6581158

150 N

(b)

3608 2 2(658)

2

u

5 1158

F1 5 100 N

F2 5 150 N
108

158

(a)

SOLUTION

Parallelogram Law. The parallelogram is formed by drawing a 
line from the head of F1 that is parallel to F2, and another line from 
the head of F2 that is parallel to F1. The resultant force FR extends to 
where these lines intersect at point A, Fig. 2–11b. The two unknowns 
are the magnitude of FR and the angle u (theta).

Trigonometry. From the parallelogram, the vector triangle is 
constructed, Fig. 2–11c. Using the law of cosines

 FR = 21100 N22 + 1150 N22 - 21100 N21150 N2 cos 115°

 = 210 000 + 22 500 - 30 0001-0.42262 = 212.6 N

 = 213 N Ans.

Applying the law of sines to determine u,

 
150 N

sin u
=

212.6 N

sin 115°
  sin u =

150 N

212.6 N
 (sin 115°) 

 u = 39.8°

Thus, the direction f (phi) of FR, measured from the horizontal, is

 f = 39.8° + 15.0° = 54.8° Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows FR to have a 

magnitude larger than its components and a direction that is between them.
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EXAMPLE 2.2

Resolve the horizontal 600-lb force in Fig. 2–12a into components 
acting along the u and v axes and determine the magnitudes of these 
components.

u

308

308

308

308

308 308

308

600 lb

(a)

u

C

B

A

600 lb

(b)

Fu

F
v

(c)

600 lb

Fu

F
v

v

v

1208

1208 1208

Fig. 2–12

SOLUTION
The parallelogram is constructed by extending a line from the head 
of the 600-lb force parallel to the v axis until it intersects the u axis at 
point B, Fig. 2–12b. The arrow from A to B represents Fu. Similarly, the 
line extended from the head of the 600-lb force drawn parallel to the 
u axis intersects the v axis at point C, which gives F

v
.

The vector addition using the triangle rule is shown in Fig. 2–12c.  The two 
unknowns are the magnitudes of Fu and F

v
.  Applying the law of sines,

 
Fu

sin 120°
=

600 lb

sin 30°

  Fu = 1039 lb Ans.

 
F

v

sin 30°
=

600 lb

sin 30°

   F
v
= 600 lb Ans.

NOTE: The result for Fu shows that sometimes a component can have a 

greater magnitude than the resultant.
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EXAMPLE 2.3

Determine the magnitude of the component force F in Fig. 2–13a and 
the magnitude of the resultant force FR if FR is directed along the 
positive y axis.

y

458

458 458

458

200 lb

308

308

308

(a)

F

y

458

200 lb

(b)

F

758

608608

200 lb

(c)

F

FR FR

Fig. 2–13

SOLUTION
The parallelogram law of addition is shown in Fig. 2–13b, and the 
triangle rule is shown in Fig. 2–13c.  The magnitudes of FR and F are 
the two unknowns.  They can be determined by applying the law of 
sines.

 
F

sin 60°
=

200 lb

sin 45°

  F = 245 lb Ans.

 
FR

sin 75°
=

200 lb

sin 45°

  FR = 273 lb Ans.
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EXAMPLE 2.4

It is required that the resultant force acting on the eyebolt in Fig. 2–14a  
be directed along the positive x axis and that F2 have a minimum 
magnitude. Determine this magnitude, the angle u, and the 
corresponding resultant force.

SOLUTION
The triangle rule for FR = F1 + F2 is shown in Fig. 2–14b. Since the 
magnitudes (lengths) of FR and F2 are not specified, then F2 can 
actually be any vector that has its head touching the line of action of 
FR, Fig. 2–14c. However, as shown, the magnitude of F2 is a minimum 
or the shortest length when its line of action is perpendicular to the 
line of action of FR, that is, when

 u = 90° Ans.

Since the vector addition now forms the shaded right triangle, the two 
unknown magnitudes can be obtained by trigonometry.

  FR = 1800 N2cos 60° = 400 N Ans.

  F2 = 1800 N2sin 60° = 693 N Ans.

Fig. 2–14

x

(a)

F2

F1 5 800 N

u

608

x

(b)

FR

F2F1 5 800 N

u
608

x

(c)

FR

F2

F1 5 800 N

u 5 908

608
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2

F2–4. Resolve the 30-lb force into components along the  
u and v axes, and determine the magnitude of each of these 
components.

30 lb

u

v

308

158

 Prob. F2–4

F2–5. The force F = 450 lb acts on the frame. Resolve this 
force into components acting along members AB and AC, 
and determine the magnitude of each component.

A

C

B

450 lb

458

308

Prob. F2–5

F2–6. If force F is to have a component along the u axis of 
Fu = 6 kN, determine the magnitude of F and the magnitude 
of its component F

v
 along the v axis.

u

v

F
458

1058

 Prob. F2–6

F2–1. Determine the magnitude of the resultant force and 
its direction measured clockwise from the positive x axis.

x

2 kN

6 kN

458
608

 Prob. F2–1

F2–2. Two forces act on the hook. Determine the magnitude 
of the resultant force.

308

408

500 N

200 N

 Prob. F2–2

F2–3. Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis.

y

x

800 N

600 N

308

 Prob. F2–3

FUNDAMENTAL PROBLEMS

Partial solutions and answers to all Fundamental Problems are given in the back of the book.
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2

*2–4. Determine the magnitudes of the two components 
of F along members AB and AC. Set F = 500 N.

  2–5. Solve Prob. 2–4 with F = 350 lb.

2–1. Determine the magnitude of the resultant 
force FR = F1 + F2 and its orientation u, measured 
counterclockwise from the positive x axis.

2–2. Determine the magnitude of the resultant 
force F′R = F1 - F2 and its orientation u, measured 
counterclockwise from the positive x axis.

PROBLEMS

F2 5 310 lb

F1 5 260 lb

y

x

458

12
13

5

Probs. 2–1/2

2–3. Two forces are applied at the end of a screw 
eye in order to remove the post. Determine the angle 
u10° … u … 90°2 and the magnitude of force F so that 
the resultant force acting on the post is directed vertically 
upward and has a magnitude of 750 N.

u

F

308
500 N

y

x

Prob. 2–3

F

C

B

A

308

458

Probs. 2–4/5

2–6. Determine the magnitude of the resultant force 
FR = F1 + F2 and its direction, measured clockwise from 
the positive u axis.

2–7. Resolve the force F1 into components along the u  
and v axes and determine the magnitudes of the components.

*2–8. Resolve the force F2 into components along the u 
and v axes and determine the magnitudes of the components.

u

v

758

308

308

F1 5 4 kN

F2 5 6 kN

Probs. 2–6/7/8
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2

2–13. The pelvis P is connected to the femur F at A using 
three different muscles, which exert the forces shown on the 
femur. Determine the resultant force and specify its orientation 
u, measured counterclockwise from the positive x axis.

2–9. Determine the magnitude of the resultant force 
FR = F1 + F2 and its orientation u, measured clockwise 
from the positive x axis.

2–10. Determine the magnitude of the resultant  
force FR = F1 + F3 and its orientation u, measured  
counter clockwise from the positive x axis.

F3 5 250 N

F2 5 360 N

F1 5 400 N

x

y

308

458

308

Probs. 2–9/10

2–11. If u = 60°, determine the magnitude of the resultant 
force and its direction measured clockwise from the horizontal.

*2–12. Determine the angle u for connecting member A to 
the plate so that the resultant force of FA and FB is directed 
horizontally to the right. Also, what is the magnitude of the 
resultant force?

A

B

FA 5 8 kN

FB 5 6 kN

408

u

Probs. 2–11/12

60 N

A

P

F

120 N

80 N

13

5

12

x

y

308

Prob. 2–13

2–14. If the resultant force acting on the support is to be 
1200  lb, directed horizontally to the right, determine the 
force F in rope A and the corresponding angle u.

60
900 lb

A

B

F

Prob. 2–14

2–15. The plate is subjected to the forces acting on 
members A and B. If u = 60°, determine the magnitude 
of the resultant of these forces and its direction measured 
clockwise from the positive x axis.

*2–16. Determine the angle u for connecting member B  
to the plate so that the resultant of FA and FB is directed 
along the positive x axis. What is the magnitude of the 
resultant force?

y

x

FA 5 400 lb

FB 5 500 lb 

308
A

B
u

Probs. 2–15/16
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2

A

x

B

FA 5 8 kN

FB 5 6 kN

408

u

Probs. 2–19/20

2–17. Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F′ = F1 + F2 and then finding 
FR = F′ + F3.

2–18. Determine the magnitude and direction of the 
resultant FR = F1 + F2 + F3 of the three forces by first 
finding the resultant F′ = F2 + F3 and then finding 
FR = F′ + F1.

y

x

F2 5 20 N

F1 5 30 N

208

3

5

4 F3 5 50 N

Probs. 2–17/18

2–19. The plate is subjected to the two forces at A and B. If 
u = 60°, determine the magnitude of the resultant force and 
its direction measured from the positive x axis.

*2–20. Determine the angle u for connecting member A 
to the plate so that the resultant of FA and FB is directed 
along the positive x axis. Also, what is the magnitude of the 
resultant force?

2–21. Determine the design angle u 10° … u … 90°2 
for member AB so that the 400-lb horizontal force has a 
component of 500 lb directed from A toward C. What is 
the component of force acting along member AB? Take 
f = 40°.

2–22. Determine the design angle f 10° … f … 90°2 
between members AB and AC so that the 400-lb horizontal 
force has a component of 600 lb which acts up to the 
right, in the direction from B toward A. Also calculate the 
magnitude of the force component along AC. Take u = 30°.

A
400 lb

u

f
B

C

Probs. 2–21/22

2–23. Determine the magnitude of the two towing forces 
FB and FC if the resultant force has a magnitude FR = 10 kN 
and is directed along the positive x axis. Set u = 15°.

*2–24. If the resultant FR of the two forces acting on the 
jet aircraft is to be directed along the positive x axis and 
have a magnitude of 10 kN, determine the angle u of the 
cable attached to the truck at B so that FB is a minimum. 
What is the magnitude of force in each cable when this 
occurs?

FB

FC

208

x

C

B

A
u

Probs. 2–23/24
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*2–28. If F1 = F2 = 30 lb, determine the angles u and f  
so that the resultant force is directed along the positive  
x axis and has a magnitude of FR = 20 lb.

2–25. The 500-lb force is to be resolved into two components 
acting along the axis of the struts AB and AC. If the component 
of force along AC is required to be 300 lb, directed from A to C, 
determine the magnitude of the force acting along AB and the 
angle u of the 500-lb force.

CB

A

F 5 500 lb

608 458

u

Prob. 2–25

2–26. Determine the magnitude and direction u of FA so 
that the resultant force is directed along the positive x axis 
and has a magnitude of 1250 N.

2–27. Determine the magnitude of the resultant force acting 
on the ring at O, if FA = 750 N and u = 45°. What is its 
direction, measured counterclockwise from the positive x axis?

x
308

y

O

B

A

F 5 800 N

FA

B

u

Probs. 2–26/27

y x

2F

1F

f

u

Prob. 2–28

2–29. If the resultant force of the two tugboats is 3 kN, 
directed along the positive x axis, determine the required 
magnitude of force FB and its direction u.

2–30. If FB = 3 kN and u = 45°, determine the magnitude 
of the resultant force and its direction measured clockwise 
from the positive x axis.

2–31. If the resultant force of the two tugboats is required to be 
directed toward the positive x axis, and FB is to be a minimum, 
determine the magnitude of FR and FB and the angle u.

x

y
A

B

FB

FA 5 2 kN

308

C

u

Probs. 2–29/30/31
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2.4  ADDITION OF A SYSTEM  

OF COPLANAR FORCES

When a force is resolved into two components along the x and y axes, 
the components are then called rectangular components. For analytical 
work we can represent these components in one of two ways, using either 
scalar or Cartesian vector notation.

Scalar Notation. The rectangular components of force F shown 
in Fig. 2–15a are found using the parallelogram law, so that F = Fx + Fy.  
Because these components form a right triangle, they can be  

determined from

Fx = F cos u  and  Fy = F sin u

Instead of using the angle u, however, the direction of F can also be 
defined using a small “slope” triangle, as in the example shown in Fig. 2–15b. 
Since this triangle and the larger shaded triangle are similar, the proportional 
length of the sides gives

Fx

F
=

a

c
 

or

Fx = F a a

c
b

and

 
Fy

F
=

b

c

or

 Fy = -F ab

c
b

Here the y component is a negative scalar since Fy is directed along the 
negative y axis.

It is important to keep in mind that this positive and negative 
scalar notation is to be used only for calculations, not for graphical 
representations in figures. Throughout the text, the head of a vector 

arrow in any figure indicates the sense of the vector graphically; algebraic 
signs are not used for this purpose. Thus, the vectors in Figs. 2–15a and 
2–15b are designated by using boldface (vector) notation.* Whenever 
italic symbols are written near vector arrows in figures, they indicate the 
magnitude of the vector, which is always a positive quantity.

Fy

Fx

(b)

F

y

x

a
b

c

Fig. 2–15

(a)

F

y

x

Fx

Fy

u

*Negative signs are used only in figures with boldface notation when showing equal but 
opposite pairs of vectors, as in Fig. 2–2.
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Cartesian Vector Notation. It is also possible to represent 
the x  and y components of a force in terms of Cartesian unit vectors  
i and j. They are called unit vectors because they have a dimensionless 
magnitude of 1, and so they can be used to designate the directions of the 
x and y axes, respectively, Fig. 2–16.*

Since the magnitude of each component of F is always a positive 

quantity, which is represented by the (positive) scalars Fx and Fy, then we 
can express F as a Cartesian vector,

F = Fx i + Fy  j

Coplanar Force Resultants. We can use either of the two 
methods just described to determine the resultant of several coplanar 
forces. To do this, each force is first resolved into its x and y components, 
and then the respective components are added using scalar algebra since 
they are collinear. The resultant force is then formed by adding the 
resultant components using the parallelogram law. For example, consider 
the three concurrent forces in Fig. 2–17a, which have x and y components 
shown in Fig. 2–17b. Using Cartesian vector notation, each force is first 
represented as a Cartesian vector, i.e.,

F1 = F1x i + F1y j

F2 = -F2x i + F2y j

F3 = F3x i - F3y j

The vector resultant, Fig. 2–17c, is therefore

 FR = F1 + F2 + F3

 = F1x i + F1y  j - F2x i + F2y  j + F3x i -  F3y j

 = 1F1x - F2x + F3x2  i + 1F1y + F2y - F3y2  j

 = 1FR2x i + 1FR2y  j 

If scalar notation is used, then indicating the positive directions of 
components along the x and y axes with symbolic arrows, we have

 +
¡
   1FR2x = F1x - F2x + F3x

 +  c   1FR2y = F1y + F2y - F3y

Notice that these are the same results as the i and j components of FR 
determined above.

F

Fx

Fy

y

x

i

j

Fig. 2–16

(b)

x

y

F2x

F2y
F1y

F1x

F3x

F3y

Fig. 2–17

F3

F1

F2

(a)

x

y

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., î and ĵ. 
Also, realize that Fx and Fy in Fig. 2–16 represent the magnitudes of the components, which 
are always positive scalars. The directions are defined by i and j. If instead we used scalar 
notation, then Fx and Fy could be positive or negative scalars, since they would account for 
both the magnitude and direction of the components.

F1

F2

F3F4

y

x

The resultant force of the four cable forces 
acting on the post can be determined by 
adding algebraically the separate x and y 
components of each cable force. This 
resultant FR produces the same pulling effect 
on the post as all four cables. 
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In general then, the components of the resultant force of any number 
of coplanar forces can be represented by the algebraic sum of the x and y 
components of all the forces, i.e.,

 
1FR2x = ΣFx1FR2y = ΣFy

 (2–1)

Once these components are determined, they may be sketched 
along the x and y axes with their proper sense of direction, and the 
resultant force can be determined from vector addition, Fig. 2–17c. From 
this sketch, the magnitude of FR is then found from the Pythagorean 
theorem; that is,

FR = 21FR22
x + 1FR22

y

Also, the angle u, which specifies the direction of the resultant force, is 
determined from trigonometry:

u = tan-1 2 1FR2y

1FR2x

2
The above concepts are illustrated numerically in the examples which 
follow.

(c)

x

y

FR(FR)y

(FR)x

u

Fig. 2–17 (cont.)

• The resultant of several coplanar forces can easily be 
determined if an x, y coordinate system is established and the 
forces are resolved into components along the axes.

• The direction of each force is specified by the angle its line of 
action makes with one of the axes, or by a slope triangle.

• The orientation of the x and y axes is arbitrary, and their 
positive direction can be specified by the Cartesian unit vectors 
i and j.

• The x and y components of the resultant force are simply the 
algebraic addition of the components of all the coplanar forces.

• The magnitude of the resultant force is determined from the 
Pythagorean theorem, and when the resultant components are 
sketched on the x and y axes, Fig. 2–17c, the direction u of the 
resultant can be determined from trigonometry.

IMPORTANT POINTS


