

This page intentionally left blank

SOME SIGNIFICANT DATES IN THE HISTORY OF PHYSICS

са. 320 вс	Aristotle describes motion in terms of natural tendencies.
са. 250 вс	Archimedes discovers the principle of buoyancy.
ca. ad 150	Ptolemy refines the Earth-centered system of the world.
1543	Copernicus publishes his Sun-centered system of the world.
1575–1596	Brahe measures precise positions of the planets in the sky.
1609	Galileo first uses a telescope as an astronomical tool.
1609/1619	Kepler publishes three laws of planetary motion.
1634	Galileo advances understanding of accelerated motion.
1661	Boyle relates pressure and volume of gases at constant temperature.
1676	Roemer demonstrates that light has finite speed.
1678	Huygens develops a wave theory of light.
1687	Newton presents the theory of mechanics in his Principia.
1738	Bernoulli explains the behavior of gases in terms of molecular motions.
1747	Franklin suggests the conservation of electrical "fire" (charge).
1780	Galvani discovers "animal electricity."
1785	Coulomb precisely determines the law of electric force.
1795	Cavendish measures the gravitational constant G.
1798	Rumford argues that heat is a form of motion.
1800	Volta invents the battery.
1802	Young uses wave theory to account for interference.
1811	Avogadro suggests that, at equal temperature and pressure, all gases have equal numbers of molecules per unit volume.
1815–1820	Young and others provide evidence for the wave nature of light.
1820	Oersted discovers the magnetic effect of an electric current.
1820	Ampère establishes the law of force between current-carrying wires.
1821	Fraunhofer invents the diffraction grating.
1824	Carnot states that heat cannot be transformed wholly to work.
1831	Faraday and Henry discover electromagnetic induction.
1842–1843	Mayer and Joule suggest a general law of energy conservation.
1846	Adams and Leverrier predict the existence of the planet Neptune.
1865	Maxwell gives the electromagnetic theory of light.
1869	Mendeleev organizes the elements into a periodic table.
1877	Boltzmann relates entropy to probability.
1885	Balmer finds numerical regularity in the spectrum of hydrogen.
1887	Michelson and Morley fail to detect the ether.
1888	Hertz generates and detects radio waves.
1895	Roentgen discovers X-rays.
1896	Bequerel discovers radioactivity.
1897	Thomson identifies cathode rays as negative corpuscles (electrons).

This page intentionally left blank

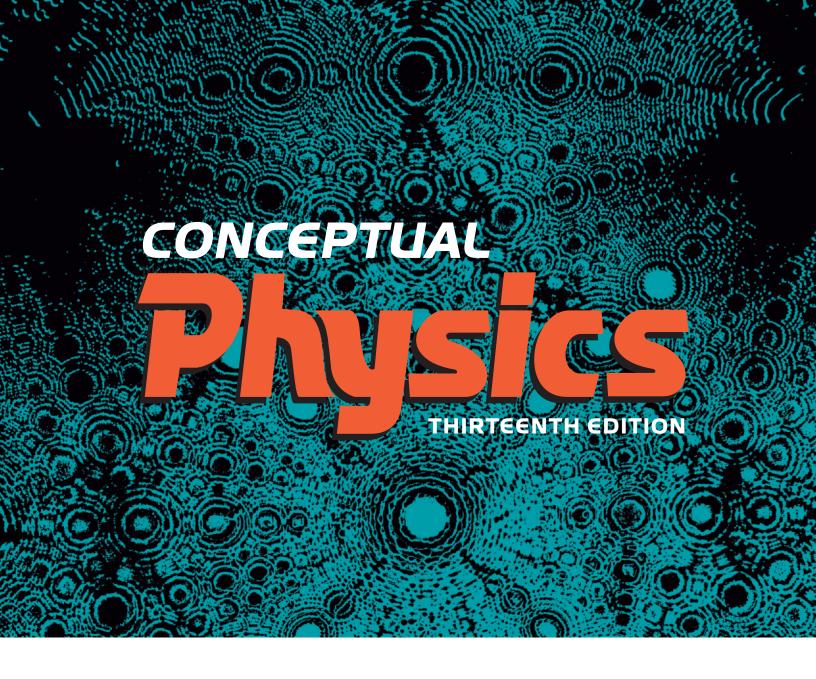
	1																	18	P m
1	1 H 1.0079	2	_										13	14	15	16	17	2 He 4.003	RIOD
	3	4					6						5	6	7	8	9	10	Ō
2	Li 6.941	Be 9.012					Gro	oup					B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.180	
	11	12	-										10.011	12.011	14.007	15.999	10.990	18	A
3	Na	Mg	-		-	6	-	0	•	4.0		40	AI	Si	P	S	CI	Ar	ω
J	22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948	—
рс	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	m
Period	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	0
Pe	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.845	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.8	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	-
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe	— —
	85.468	87.62	88.906	91.224	92.906	95.94	98	101.07	102.906	106.42	107.868	112.411	114.82	118.71	121.76	127.60	126.905	131.29	m
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	m
6		Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	- F
	132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	209	210	222	<u> </u>
_	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	Ξ
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	<u> </u>
	223	226.025	227.028	265	268	270	269	277	276	281	280	285	284	289	289	293	294	294	Z
																			S
					58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Lantha	nides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			_0.110		140.115	140.908	144.24	145	150.36	151.964	157.25	158.925	162.5	164.93	167.26	168.934	173.04	174.967	
					90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Acti	inides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
					232.038	231.036	238.029	237	244	243	247	247	251	253	257	259	259	256	

Metal
Metalloid
Nonmetal

Atomic masses are averaged by isotopic abundance on the Earth's surface, expressed in atomic mass units. Conventional IUPAC atomic masses are provided as recommended by G. Kaptay in *J. Min. Metall. Sect. BMetall. 48 (1) B (2012)153 159*. For radioactive elements, this is commonly the whole number nearest the most stable isotope of that element. The elements here are color coded to indicate metal, metalloid, or nonmetal. But please recognize that the heaviest elements, such as 104 and greater, are highly unstable existing only for a fraction of a second within a laboratory setting. Any metallic properties they might exhibit are not discernible.

CELEBRATING 50 YEARS OF CONCEPTUAL PHYSICS

Conceptual Physics began as a compilation of Paul Hewitt's classroom lectures at City College of San Francisco—published in 1971 by Little, Brown and Company as its first college science textbook. Successive editions testify to its success, each occurring, on average, at four-year intervals. Covers for the first three editions honored Erwin Muller's historic micrograph of atoms at the tip of a sharp needle. The fourth edition cover is the author's photo of interference colors reflected by oily water. The author's son James tossed grains of rice into a pond next to the Exploratorium to create wave interference for the photo on the fifth edition cover. Up to this point, all photos and Paul's hand-drawn illustrations were black and white. A second color was added for the sixth edition. Subsequent editions sported full-color art and photos. Not shown are the covers for editions six through nine. The sixth edition featured a blend of bubble-chamber particle tracks and flowing water, the seventh featured lightning bolts as viewed through a diffraction grating, the eighth of the aurora borealis, and the ninth of Hawaiian lava flow. Covers that are shown pick up with edition ten, of elementary particle tracks blended with sky and water, edition eleven with solar cells on the ISS, the only edition that shows humans. A close-up of solar cells on Earth is on the cover of the twelfth edition. Not indicated, are the increases in cover size from $7" \times 9"$ for the first three editions to the present $8\frac{1}{2}" \times 11"$. This array of textbook covers marks a half century of physics presented as a study of nature's rules—relevant at all times.



1900	Planck introduces the quantum idea.
1905	Einstein introduces the light corpuscle (photon) concept.
1905	Einstein advances the special theory of relativity.
1911	Rutherford reveals the nuclear atom.
1913	Bohr gives a quantum theory of the hydrogen atom.
1915	Einstein advances the general theory of relativity.
1923	Compton's experiments confirm the existence of the photon.
1924	de Broglie advances the wave theory of matter.
1925	Goudsmit and Uhlenbeck establish the spin of the electron.
1925	Pauli states the exclusion principle.
1926	Schrödinger develops the wave theory of quantum mechanics.
1927	Heisenberg proposes the uncertainty principle.
1928	Dirac blends relativity and quantum mechanics in a theory of the electron.
1929	Hubble discovers the expanding universe.
1932	Anderson discovers antimatter in the form of the positron.
1932	Chadwick discovers the neutron.
1934	Fermi proposes a theory of the annihilation and creation of matter.
1938	Meitner and Frisch interpret results of Hahn and Strassmann as nuclear fission.
1939	Bohr and Wheeler give a detailed theory of nuclear fission.
1942	Fermi builds and operates the first nuclear reactor.
1945	Oppenheimer's Los Alamos team creates a nuclear explosion.
1947	Bardeen, Brattain, and Shockley develop the transistor.
1956	Reines and Cowan identify the antineutrino.
1957	Feynman and Gell-Mann explain weak interactions with a "left-handed" neutrino.
1960	Maiman invents the laser.
1965	Penzias and Wilson discover background radiation in the universe left over from the Big Bang.
1967	Bell and Hewish discover pulsars, which are neutron stars.
1969	Gell-Mann suggests quarks as the building blocks of nucleons.
1977	Lederman and his team discover the bottom quark.
1981	Binning and Rohrer invent the scanning tunneling microscope.
1987	Bednorz and Müller discover high-temperature superconductivity.
1995	Cornell and Wieman create a "Bose–Einstein condensate" at 20 billionths of a degree.
1998	Perlmutter, Schmidt, and Riess discover the accelerated expansion of the universe.
2000	
2000	Pogge and Martini provide evidence for supermassive black holes in other galaxies.
2000	Fermilab group identifies the tau neutrino, the last member of the lepton particle group.
2003	Scientists studying radiation in space put the age of the universe at 13.7 billion years.
2004	Geim and Novoselov discover graphene, a one-atom-thick form of carbon.
2005	Gerald Gabrielse measures the magnetism of the electron to 1 part in a trillion. U.S.–Russian team identifies elements number 116 and 118.
2006	
2012	CERN laboratory announces the discovery of the long-sought Higgs boson.
2015	LIGO team detects gravitational waves from coalescing black holes.
2018	Jarillo-Herrero discovers superconductivity in graphene.
2019	Event Horizon Telescope obtains first image of a supermassive black hole.
2020	The catalog of exoplanets (planets orbiting other stars) grows to more than 4,330.

This page intentionally left blank

This page intentionally left blank

written and illustrated by

Paul G. Hewitt

City College of San Francisco

Content Management: Harry Misthos, Deborah Harden, and Jeanne Zalesky
Content Production: Heidi Allgair, Mary Tindle, Lori Newman, Kristen Flathman Product Management: Jessica Moro Product Marketing: Candace Madden Rights and Permissions: Ben Ferrini and Matt Perry Developmental Editor: Judith Brand

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content

Cover Image by Dr. Erwin Mueller/Science

Copyright © 2021, 2015, 2010 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text on pages C-1–C-5, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Hewitt, Paul G., author.
Title: Conceptual physics / written and illustrated by Paul G. Hewitt, City College of San Francisco.
Description: Thirteenth edition. | Hoboken, NJ : Pearson, 2021. | Includes index.
Identifiers: LCCN 2020053299 (print) | LCCN 2020053300 (ebook) | ISBN 9780135746264 (hardcover) | ISBN 9780135745847
Subjects: LCSH: Physics--Textbooks.
Classification: LCC QC23.2 .H488 2021 (print) | LCC QC23.2 (ebook) | DDC 530--dc23

LC record available at https://lccn.loc.gov/2020053299

LC ebook record available at https://lccn.loc.gov/2020053300

ScoutAutomatedPrintCode

Access Code Card ISBN-10: 0-135-74584-5 ISBN-13: 978-0-135-74584-7

Rental ISBN-10: 0-135-74626-4 ISBN-13: 978-0-135-74626-4 To my everything—my wife Lillian

Contents in Brief

Conceptual Physics Photo Album	xvi
To the Student	xviii
To the Instructor	xix
Acknowledgments	xxii
About Science	2

1 About Science

PART ONE

Mechanics

	Newton's First Law of Motion–Inertia Linear Motion	24 44
4	Newton's Second Law of Motion	64
5	Newton's Third Law of Motion	84
6	Momentum	104
7	Energy	126
8	Rotational Motion	152
9	Gravity	184
10	Projectile and Satellite Motion	210

PART TWO

Properties of Matter	237
11 The Atomic Nature of Matter	238
12 Solids	260
13 Liquids	280
14 Gases	304

PART THREE Hoat

Heat	325
15 Temperature, Heat, and Expansion	326
16 Heat Transfer	346
17 Change of Phase	366
18 Thermodynamics	384

PART FOUR

Sound

19	Vibrations and Waves	406
20	Sound	426
21	Musical Sounds	446

	ectricity and Magnetism	461
22	Electrostatics	462
23	Electric Current	488
24	Magnetism	512
25	Electromagnetic Induction	530
	<u> </u>	

PART SIX Light

23

405

549

550
572
592
622
644
666

PART SEVEN

Atomic and Nuclear Physics 687

32 The Atom and the Quantum	688
33 The Atomic Nucleus and Radioactivity	704
34 Nuclear Fission and Fusion	728

PART EIGHT Dalatit

Relativity	751	
35 Special T36 General '	752 782	
AUTHOR PROP	ILE	798
APPENDIX A	On Measurement and Unit Conversions	800
APPENDIX B	More About Motion	804
APPENDIX C	Graphing	808
APPENDIX D	Vector Applications	811
APPENDIX E	Exponential Growth and Doubling Time	814
ODD-NUMBER	ED ANSWERS	S-1
GLOSSARY		G-1
CREDITS	C-1	
INDEX	I-1	

Contents in Detail

	Con	<i>ceptual Physics</i> Photo Album	xvi
	To t	he Student	xviii
	To t	he Instructor	xix
	Ack	nowledgments	xxii
1	Ab	out Science	2
	1.1	Scientific Measurements	3
		How Eratosthenes Measured the Size of Earth	5 3
		PRACTICING PHYSICS	5
		Size of the Moon	6
		Distance to the Moon	7
		Distance to the Sun	8
		Size of the Sun	9
		Mathematics—The Language of Science	10
	1.2	Scientific Methods	11
		The Scientific Attitude	11
		Dealing with Misconceptions	14
	1.3	Science, Art, and Religion	15
		FAKE SCIENCE	16
	1.4	Science and Technology	16
		RISK ASSESSMENT	17
	1.5	Physics—The Basic Science	17
	1.6	In Perspective	19
PA	RT O	NE	
Μ	ecł	nanics	23
2	Ne	wton's First Law	
	of	Motion-Inertia	24

ot	Motion–Inertia	24
2.1	Aristotle on Motion	25
	ARISTOTLE (384–322 BC)	26
	Copernicus and the Moving Earth	27
2.2	Galileo's Experiments	27
	Leaning Tower	27
	Inclined Planes	27
	GALILEO GALILEI (1564–1642)	28
2.3	Newton's First Law of Motion	30
	PERSONAL ESSAY	31
2.4	Net Force and Vectors	32

	2.5	The Equilibrium Rule	33
		PRACTICING PHYSICS	34
	2.6	Support Force	35
	2.7	Equilibrium of Moving Things	36
	2.8	The Moving Earth	36
3	Lir	near Motion	44
	3.1	Speed	45
		Instantaneous Speed	45
		Average Speed	46
		Motion Is Relative	47
	3.2	Velocity	47
		Constant Velocity	48
		Changing Velocity	48
	3.3	Acceleration	48
		Acceleration on Galileo's Inclined Planes	50
	3.4	Free Fall	51
		How Fast	51
		How Far	53
		How Quickly "How Fast" Changes	55
		HANG TIME	56
	3.5	Velocity Vectors	56
4	Ne	wton's Second Law	
	of	Motion	64
	4.1	Forces	65
	4.2	Friction	66
	4.3	Mass and Weight	68
		Mass Resists Acceleration	71
	4.4	Newton's Second Law of Motion	72
	4.5	When Acceleration Is g—Free Fall	73
	4.6	When Acceleration Is Less Than	
		<i>g</i> —Nonfree Fall	74
		PROBLEM SOLVING	77
5	Ne	ewton's Third Law	
	of	Motion	84
	5.1	Forces and Interactions	85
	5.2	Newton's Third Law of Motion	87
		Simple Rule to Identify Action and Reaction	88
		Defining Your System	88
			ix

	5.3	Action and Reaction on Different Masse	
	5.4	PRACTICING PHYSICS: TUG-OF-WAR Vectors and the Third Law	92 93
	5.5	Summary of Newton's Three Laws	97
	5.5	Summary of Newton's Three Laws	21
6	Mo	omentum	104
	6.1	Momentum	105
	6.2	Impulse	107
	6.3	Impulse-Momentum Relationship	107
		Case 1: Increasing Momentum	108
		Case 2: Decreasing Momentum Over	
		a Long Time	108
		Case 3: Decreasing Momentum Over	440
		a Short Time	110
	6.4	Bouncing	111
	6.5	Conservation of Momentum	112
		CONSERVATION LAWS	114
	6.6	Collisions	115
		PROBLEM SOLVING	117
	6.7	More Complicated Collisions	118
7	En	ergy	126
	7.1	Work	128
	7.2	Power	130
		Mechanical Energy	131
	7.3	Potential Energy	131
	7.4	Kinetic Energy	133
	7.5	Work–Energy Theorem	134
	7.6	Conservation of Energy	136
		CIRCUS PHYSICS	137
		JUNK SCIENCE	138
	7.7		138
	7.8	Efficiency	139
	7.9	Major Sources of Energy	141
		Recycled Energy	144
8	Ro	tational Motion	152
	8.1	Circular Motion	153
		WHEELS ON RAILROAD TRAINS	156
	8.2	Centripetal Force	157
		PRACTICING PHYSICS:	
		WATER-BUCKET SWING	158
	8.3	Centrifugal Force	159
		Centrifugal Force in a Rotating	
		Reference Frame	159
		Simulated Gravity	160

CONTENTS

х

8.4	Rotational Inertia	162
8.5	Torque	165
8.6	Center of Mass and Center	
	of Gravity	166
	Locating the Center of Gravity	168
	Stability	169
8.7	Angular Momentum	171
8.8	Conservation of Angular	
	Momentum	172

184

9 Gravity

9.1	The Universal Law of Gravity	185
9.2	The Universal Gravitational	
	Constant, G	187
9.3	Gravity and Distance:	
	The Inverse-Square Law	189
9.4	Weight and Weightlessness	190
9.5	Ocean Tides	192
	TIDAL CALENDARS	195
	Tides in the Earth and Atmosphere	196
	Tidal Bulges on the Moon	196
9.6	Gravitational Fields	197
	Gravitational Field Inside a Planet	198
	Einstein's Theory of Gravitation	200
9.7	Black Holes	200
9.8	Universal Gravitation	202

10 Projectile and Satellite Motion

Satellite Motion	
10.1 Projectile Motion	212
Projectiles Launched Horizontally	212
Projectiles Launched at an Angle	214
PRACTICING PHYSICS:	
HANDS-ON DANGLING BEADS	215
HANG TIME REVISITED	218
10.2 Fast-Moving Projectiles—Satellites	218
10.3 Circular Satellite Orbits	220
10.4 Elliptical Orbits	222
WORLD MONITORING BY SATELLITE	224
10.5 Kepler's Laws of Planetary Motion	224
FINDING YOUR WAY	225
10.6 Energy Conservation and	
Satellite Motion	226
10.7 Escape Speed	227

PART TWO

Properties of Matter 237

11 The Atomic Nature of Matter 238

11.1	The Atomic Hypothesis	239
	FALLING ALICE	240
11.2	Characteristics of Atoms	240
11.3	Atomic Imagery	242
11.4	Atomic Structure	244
	The Elements	245
11.5	The Periodic Table of the Elements	246
	Relative Sizes of Atoms	249
11.6	Isotopes	250
11.7	Molecules	251
11.8	Compounds and Mixtures	252
11.9	Antimatter	253
	Dark Matter	254

12 Solids

12.1	Crystal Structure	261
	CRYSTAL POWER	263
12.2	Density	263
12.3	Elasticity	264
12.4	Tension and Compression	266
	PRACTICING PHYSICS: STICK STRENGTH	267
12.5	Arches	268
	ADDITIVE MANUFACTURING OR	
	3-D PRINTING	270
12.6	Scaling	270

260

280

13 Liquids

	P	001
13.1	Pressure	281
13.2	Pressure in a Liquid	283
	WATER AND ITS HISTORY	286
13.3	Buoyancy	287
13.4	Archimedes' Principle	288
	ARCHIMEDES AND THE GOLD CROWN	289
13.5	What Makes an Object Sink or Float?	289
13.6	Flotation	291
	FLOATING MOUNTAINS	292
13.7	Pascal's Principle	293
13.8	Surface Tension	295
13.9	Capillarity	296

14 Gases	304
14.1 The Atmosphere	305
14.2 Atmospheric Pressure	306
The Barometer	308
14.3 Boyle's Law	310
14.4 Buoyancy of Air	312
14.5 Bernoulli's Principle	313
Applications of Bernoulli's Prince	iple 314
NEWTONIAN AIR LIFT	315
PRACTICING PHYSICS	316
14.6 Plasma	317
Plasma in the Everyday World	317
Plasma Power	318
PART THREE	
**	

Heat	325

5 Temperature, Heat, and		
Expansion	326	
15.1 Temperature	327	
15.2 Heat	329	
Measuring Heat	331	
15.3 Specific Heat Capacity	331	
15.4 The High Specific Heat Capacity		
of Water	332	
15.5 Thermal Expansion	334	
Expansion of Water	336	
LIFE AT THE EXTREMES	338	
16 Heat Transfer	346	

16.1 Conduction	347
16.2 Convection	349
PRACTICING PHYSICS	351
16.3 Radiation	351
Emission of Radiant Energy	352
Absorption of Radiant Energy	353
Reflection of Radiant Energy	354
Cooling at Night by Radiation	355
16.4 Newton's Law of Cooling	356
16.5 The Greenhouse Effect	357
16.6 Climate Change	358
16.7 Solar Power	359
SPREADING SOLAR ENERGY	359
16.8 Controlling Heat Transfer	360

XII CONTENTS

17 Change of Phase 17.1 Evaporation 17.2 Condensation *Condensation in the Atmosphere Fog and Clouds*17.3 Boiling *Geysers Boiling Is a Cooling Process*

Boiling and Freezing at the Same Time	373
17.4 Melting and Freezing	373
Regelation	374
17.5 Energy and Changes of Phase	375
PRACTICING PHYSICS	378

366

367

369

370 371

371

372

372

384

405

18 Thermodynamics

18.1 Absolute Zero	386
Internal Energy	387
18.2 First Law of Thermodynamics	388
18.3 Adiabatic Processes	389
18.4 Meteorology and the First Law	389
18.5 Second Law of Thermodynamics	392
Heat Engines	393
THERMODYNAMICS DRAMATIZED!	395
18.6 Energy Tends to Disperse	396
18.7 Entropy	398

PART FOUR Sound

19	Vib	orations and Waves	406
	19.1	Good Vibrations	407
		Vibration of a Pendulum	408
	19.2	Wave Description	409
	19.3	Wave Motion	410
		PRACTICING PHYSICS	411
		Transverse Waves	411
		Longitudinal Waves	412
	19.4	Wave Speed	413
	19.5	Wave Interference	414
		Standing Waves	414
	19.6	Doppler Effect	416
		Bow Waves	417
	19.8	Shock Waves	419

20 Sound 426 20.1 Nature of Sound 427 Media That Transmit Sound 428 20.2 Sound in Air 428 430 LOUDSPEAKER Speed of Sound in Air 430 ■ PRACTICING PHYSICS 431 431 Energy in Sound Waves MEASURING WAVES 432 20.3 Reflection of Sound 432 20.4 Refraction of Sound 433 **20.5** Forced Vibrations 435 435 Natural Frequency **20.6** Resonance 436 **20.7** Interference 437 **20.8** Beats 439 RADIO BROADCASTS 440

21 Musical Sounds

21.1 Noise and Music	447
21.2 Pitch	448
21.3 Sound Intensity and Loudness	449
21.4 Quality	450
21.5 Musical Instruments	451
21.6 Fourier Analysis	453
21.7 From Analog to Digital	454

446

PART FIVE

Electricity and Magnetism 461

22	Ele	ctrostatics	462
	22.1	Electric Forces	464
	22.2	Electric Charges	464
	22.3	Conservation of Charge	465
		ELECTRONICS TECHNOLOGY AND SPARKS	466
	22.4	Coulomb's Law	467
	22.5	Conductors and Insulators	468
		Semiconductors	469
		Transistors	469
		Superconductors	469
	22.6	Charging	470
		Charging by Friction and Contact	470
		Charging by Induction	470

	22.7	Charge Polarization	472
		MICROWAVE OVEN	473
	22.8	Electric Field	474
		Electric Shielding	476
	22.9	Electric Potential	478
		Electric Energy Storage	480
		Van de Graaff Generator	481
23	Ele	ctric Current	488
	23.1	Flow of Charge and Electric Current	489
	23.2	Voltage Sources	490
	23.3	Electrical Resistance	491
	23.4	Ohm's Law	492
		Ohm's Law and Electric Shock	493
	23.5	Direct Current and Alternating	
		Current	495
		Converting AC to DC	496
	23.6	Speed and Source of Electrons	
		in a Circuit	496
	23.7	Electric Power	499
	23.8	Electric Circuits	500
		Series Circuits	500
		Parallel Circuits	501
		FUEL CELLS	502
		COMBINING RESISTORS IN A CIRCUIT	503

Parallel Circuits and Overloading

24 Magnetism

Safety Fuses

24.1	Magnetism	513
24.2	Magnetic Poles	514
24.3	Magnetic Fields	515
24.4	Magnetic Domains	516
24.5	Electric Currents and Magnetic Fields	518
	PRACTICING PHYSICS	519
24.6	Electromagnets	519
	Superconducting Electromagnets	520
24.7	Magnetic Forces	520
	On Moving Charged Particles	520
	On Current-Carrying Wires	521
	Electric Meters	521
	Electric Motors	522
24.8	Earth's Magnetic Field	523
	Cosmic Rays	524
24.9	Biomagnetism	525
	MRI: MAGNETIC RESONANCE IMAGING	526

contents **xiii**

25	Ele	ctromagnetic Induction	530
	25.1	Electromagnetic Induction	531
	25.2	Faraday's Law	533
	25.3	Generators and Alternating Current	534
	25.4	Power Production	535
		Turbogenerator Power	535
		MHD Power	535
	25.5	Transformers	536
	25.6	Self-Induction	539
	25.7	Magnetic Braking	540
	25.8	Power Transmission	540
	25.9	Field Induction	541

PART SIX

503 504

512

Ligh	nt
------	----

26	Pro	operties of Light	550
	26.1	Electromagnetic Waves	552
	26.2	Electromagnetic Wave Velocity	552
	26.3	The Electromagnetic Spectrum	553
		FRACTAL ANTENNAS	555
	26.4	Transparent Materials	555
	26.5	Speed of Light in a Transparent	
		Medium	557
	26.6	Opaque Materials	559
		Shadows	559
	26.7	Solar and Lunar Eclipses	560
	26.8	Seeing Light—The Eye	563
27	Col	lor	572
	27.1	Color in Our World	573
	27.2	Selective Reflection	574
	27.3	Selective Transmission	575
	27.4	Mixing Colored Lights	576
		Primary Colors	577
		Complementary Colors	577
	27.5	Mixing Colored Pigments	578
		The Color Black	580
	27.6	Sky Colors	580
		Why the Sky Is Blue	581
		Why Sunsets Are Red	582
		PRACTICING PHYSICS	583
		Why an Eclipsed Moon Is Red	583
		Why Clouds Are White	584

	27.7	Water Colors	585
		Why Water Is Greenish Blue	585
		Why Deep Water Is Black	586
	D		500
28	Ret	lection and Refraction	592
	28.1	Reflection	593
		Principle of Least Time	594
	28.2	Law of Reflection	595
		Plane Mirrors	595
		Diffuse Reflection	597
	28.3	Refraction	598
		Index of Refraction	600
		Mirage	601
	28.4	Cause of Refraction	602
		■ ISAAC NEWTON AND HIS STUDY	
		OF LIGHT	603
	28.5	Dispersion	604
	28.6	The Rainbow	605
		Alterations in Sky Brightness	606
	28.7	Total Internal Reflection	607
	28.8	Lenses	609
		Image Formation by a Lens	611
		PINHOLE CAMERA	611
	28.9	Lens Defects	613

29 Light Waves

29.1	Huygens' Principle	623
	Diffraction	625
	X-Ray Diffraction	627
29.3	Superposition and Interference	628
	Young's Double Slit Experiment	628
29.4	Single-Color Thin-Film Interference	631
	Interference Colors	632
	PRACTICING PHYSICS	634
29.5	Polarization	634
	Three-Dimensional Viewing	636
29.6	Holography	638

622

644

30 Light Emission

30.1	Light Emission	645
30.2	Excitation	646
30.3	Emission Spectra	648
30.4	Incandescence	650
30.5	Absorption Spectra	651
30.6	Fluorescence	652

30.7 Phosphorescence	654
30.8 Lamps	655
Incandescent Lamp	655
Fluorescent Lamp	655
Light-Emitting Diode	656
30.9 Lasers	657

31 Light Quanta 666

31.1	Birth of the Quantum Theory	667
31.2	Quantization and Planck's Constant	668
	CONSTANTS IN NATURE	670
31.3	Photoelectric Effect	670
	Photovoltaic Cells	672
31.4	Wave–Particle Duality	673
31.5	Double-Slit Experiment	674
31.6	Particles as Waves:	
	Electron Diffraction	675
31.7	Uncertainty Principle	678
31.8	Complementarity	680
	PREDICTABILITY AND CHAOS	681

PART SEVEN Atomic and Nuclear Physics

687

704

32 The Atom and the Quantum 688

32.1 Discovery of the Atomic Nucleus	689
32.2 Discovery of the Electron	690
UNIQUE OR IDENTICAL	693
32.3 Atomic Spectra: Clues to	
Atomic Structure	693
32.4 Bohr Model of the Atom	694
32.5 Explanation of Quantized Energy	
Levels: Electron Waves	696
32.6 Quantum Mechanics	697
32.7 Correspondence Principle	699
HIGGS BOSON	700

33 The Atomic Nucleus and Radioactivity

33.1 X-rays and Radioactivity	705
33.2 Alpha, Beta, and Gamma Rays	707
33.3 Neutrinos	708

	33.4	Environmental Radiation	709
		Units of Radiation	710
		Doses of Radiation	711
		Radioactive Tracers	712
	33.5	The Atomic Nucleus and the	
		Strong Force	712
	33.6	Radioactive Half-Life	715
	33.7	Radiation Detectors	716
	33.8	Transmutation of Elements	718
		Natural Transmutation	718
		Artificial Transmutation	720
	33.9	Radiometric Dating	720
		FOOD IRRADIATION	722
34	Nu	clear Fission and Fusion	728
	34.1	Nuclear Fission	730

34.1 Nuclear Fission	730
34.2 Nuclear Fission Reactors	732
	734
34.3 The Breeder Reactor	735
The Thorium Reactor	736
34.4 Fission Power	736
34.5 Mass–Energy Equivalence	738
PHYSICS AT AIRPORT SECURITY	741
34.6 Nuclear Fusion	742
34.7 Controlling Fusion	744

751

PART EIGHT Relativity

35 Special Theory of Relativity	752
35.1 Motion Is Relative	753
Michelson–Morley Experiment	754
35.2 Postulates of the Special Theory	
of Relativity	755
35.3 Simultaneity	756
35.4 Spacetime and Time Dilation	758
CLOCKWATCHING ON A	
TROLLEY CAR RIDE	761
The Twin Trip	762

	35.5	Addition of Velocities	768
		Space Travel	768
		CENTURY HOPPING	770
	35.6	Length Contraction	770
	35.7	Relativistic Momentum	772
	35.8	Mass, Energy, and $E = mc^2$	773
	35.9	The Correspondence Principle	776
36	Ge	neral Theory of Relativity	782
	36.1	Principle of Equivalence	784
	36.2	Bending of Light by Gravity	785
	36.3	Gravity and Time: Gravitational Red Shift	787
	36.4	Gravity and Space: Motion	
		of Mercury	789
	36.5	Gravity, Space, and a New Geometry	790
	36.6	Gravitational Waves	792
	36.7	Newtonian and Einsteinian	
		Gravitation	793
AUT	HOR	PROFILE	798
APP	ENDI	XA	
On I	Measu	arement and Unit Conversions	800
	ENDI		
More About Motion			804
	ENDI		
Graț	phing		808
ΔΡΡ	ENDI	X D	
		oplications	811
	1		
	ENDI		
Exp	onent	tial Growth and Doubling Time	814
Odd-	Num	oered Answers	S-1
Gloss	sary		G-1
Cred	its		C-1
Index	ĸ		I-1

Conceptual Physics Photo Album

onceptual Physics is a very personal book, reflected in its many photographs of family, along with friends and colleagues worldwide. Many of these people are identified in chapter-opening photos, and, with some exceptions, I'll not repeat their names here. Family and friends whose photos are Part Openers, however, are listed. The book opens on page 1 with great-nephew Evan Suchocki sitting on my lap pondering life's opportunities with his pet chick.

Part One opens on page 23 with little Ian Evans, son of teacher friends Bart and Jill Evans. Part Two opens on page 237 with little Georgia Hernandez, my delightful great-great-niece. Part Three opens on page 325 with four-year-old Francesco Ming Giovannuzzi, grandson of friend Tsing Bardin, page 280. Part Four opens on page 405 with Abby Dijamco, daughter of my last CCSF teaching assistant, dentist Stella Dijamco. In Part Five on page 461 is my great-great-nephew Richard Hernandez, older brother to Georgia. Part Six opens on page 549 with my granddaughter Gracie Hewitt at age four. Part Seven opens with another granddaughter, Kara Mae Hurrell, as a four-year-old tot in a pot on page 687. Part Eight opens on page 751 with young London Dixon, the daughter of my physician's medical assistant, April Dixon.

The two friends most influential in my transition from a life of sign painting to a life of physics are Burl Grey, page 33, and Jacque Fresco, pages 152, 153. For success as an author I credit my friend and physics mentor, Ken Ford, pages 426, 752, to whom previous editions have been dedicated. Longtime best friend Huey Johnson, known as Dan, page 384, has also been personally influential.

Family photos include my first wife, Millie, on page 350. My eldest daughter is Jean Hurrell, page 261, and with her children Marie and Kara Mae on page 499, and both granddaughters shown separately on pages 67 and 102. Jean's husband Phil tinkers with electricity on page 488. My son Paul is with his daughter Grace, page 84, and doing some thermodynamics on page 389. Gracie plays music on page 446 and further speculates about science on page 549.

Son Paul's former wife Ludmila is shown with Polaroids on page 636, and their son Alex skateboards on pages 104, 170. My daughter Leslie at age 16 is on page 249, a colorized photo that has been a trademark of *Conceptual Physics* since the third edition. Since then Leslie has been my earth-science coauthor of the *Conceptual Physical Science* textbooks. A more recent photo with her husband Bob Abrams, page 550. Their children, Megan and Emily, are on pages 349 and 210. A grand slam grandchildren photo is on page 579. My late son James is on page 171 with his best friend Robert Baruffaldi, also his cousin. Other photos of James are on pages 450 and 613. James left me my first grandson, Manuel, pages 268, 331, 436.

Millie's relatives include nephew Mike Luna, page 232. Grand-niece Angela Hendricks, page 656, is a teacher and amateur photographer who graciously supplied photos of her cousins Georgia Hernandez and her older brother Richard Hernandez on pages 294, 321, 426, 446 and 461, and her own child Hudson, page 294. Hudson also appears with his dad Jake Hendricks on page 97. Grand-niece Alejuandra Luna leans on Newton's third law, page 102. Great nephew Isaac Jones uses a sparkler, page 329, as his dad Terrence used back in the sixth and seventh editions. Terrence Jones is now on page 326.

A year after Millie's passing in 2004, I married my friend of many years, Lillian Lee. Lillian has wonderfully assisted me in all steps of textbook production, including ancillaries. Of the many photos of Lil throughout this edition, I'll mention two favorites: One with her pet bird Sneezlee on page 580, and the photo with me illustrating the essence of Newton's third law—you cannot touch without being touched on page 92. Lillian's dad, Wai Tsan Lee, shows magnetic induction on page 517, and mom, Siu Bik Lee, making excellent use of solar energy on page 360 and with solar images on page 611. Lillian's niece Serena Sinn excels in sports, page 126. Lil's nephew Erik Wong with his sister Allison nicely illustrate thermodynamics on page 395.

Photos of my siblings begin with my sister Marjorie, author and theologian emerita at Claremont School of Theology in Claremont, California, illustrating reflection on page 596. Marjorie's daughter, occupational therapist Cathy Candler, page 157, and her son Garth Orr, page 260. Marjorie's daughter Joan Lucas's two children, SpaceX engineer Mike Lucas, page 772, and lawyer Alexandra Lucas, page 550. Marjorie's multitalented son, John Suchocki, page 366, the creator of Conceptual Academy, a chemistry professor and author, and my coauthor of the Conceptual Physical Science and Conceptual Integrated Science textbooks; he's also a singer-songwriter known as John Andrew strumming his guitar, pages 406, 533. The group listening to music, page 454, is of John and Tracy's Hawaii long-ago wedding party. My brother Dave and his wife Barbara pump water on page 309. Their electrician son Davey is on page 505, and the

yum photos of solar cells, page 360, and the GPS unit, page 782, is courtesy of their daughter Dotty Jean Allen. My youngest brother Steve and his daughter Gretchen are shown on page 100. Steve's son, Navy pilot Travis is on page 176, and Steve's teacher daughter Stephanie on pages 619 and 782.

Photos of City College of San Francisco physicsinstructor friends open several chapters and are named there. Others include Diana Lininger Markham, pages 152, 182. Fred Cauthen, pages 146, 540. Norman Whitlatch, page 454. Dave Wall, page 550. Roger King, pages 354, 688. Jill Evans, pages, 64, 140, and 488, and Chelcie Liu, page 44.

Suppliers of physics equipment are friends David and Christine Vernier of Vernier Software, page 126, Paul Stokstad of PASCO, page 152, and Peter Rea of Arbor Scientific, page 215.

The following people are personal American friends in order of appearance: Judith Brand, whose skillful edits grace this entire edition, page 2. David Vasquez, pages 2, 143. Will Maynez, pages 24, 116, 341, and 504. Sue Johnson, Huey Johnson's wife, p 44. Lab Manual author Dean Baird, pages 44, 45, 366, 557, 562, and 583. Paul Doherty, pages 84, 85, 550. David Kagan, pages 84, 688. Howie Brand from college days, pages 104, 384. David Manning, pages 120, 177, 304, and his daughter Brady, page 59. Bob Miner, page 129, his wife Ana, page 24, and Ana's daughter Estefania, page 368. Tenny Lim, page 133, draws her bow, a photo that has appeared in every book since the sixth edition. Tenny again on pages 184, 185. Young Andrea Wu, page 150. Marshall Ellenstein, pages 158, 302, 622, 623. Alexei Cogan, page 169. Alan Davis with son William, page 184, and William again, page 512, and a photo taken by his mom Fe, page 589. Chuck Stone, page 213. John Hubisz, page 260. Ray Serway, page 280. Evan Jones, page 304. Fred Myers, pages 304, 305, 512, 592, 712. Helen Yan, pages 346, 347, 622. Dennis McNelis, page 353, and his grandson Myles Dooley, page 423. Exploratorium physicist Ron Hipschman on pages 184, 366, 367, 373, 644. Childhood best friend Paul Ryan is on page 378. Huey and Sue Johnson's grandson Bay Johnson, page 452. Ryan Patterson, page 436. Elan Lavie, page 462. Kirby Perchbacher, pages 286 and 462. Karen Jo Matsler, pages 542 and 592. Bruce Novak, page 554, and his mom Greta Novak on page 302. Charlie Spiegel, page 559. Suzanne Lyons and children Simone and Tristan, page 572. Carlos Vasquez, page 572. Jeff Wetherhold, page 572. Bree Barnett Dreyfuss, page 622. Phil Wolf, page 666. Brad Huff, page 692. Stanley Micklavzina, page 704, Walter Steiger, page 717. Brenda Skoczelas, page 752. Mike and Jane Jukes, pages 780 and 796.

The physics community is global. International friends in order of appearance: My protégé Einstein Dhayal (India), pages 2, 530. Cedric and Anne Linder (Sweden), pages 24, 25. Carl Angell (Norway), page 44. Derek Muller (Canada), pages 104, 105. Peter Hopkinson (Canada), pages 122, 592. Bilal Gunes (Turkey), page 152. Ed van den Berg (Netherlands), page 184, and his wife Daday, page 488. Tomas Brage (Sweden), page 184, and with Barbara Brage, page 384. Ole Anton and Aage Mellem (Norway), page 326. Anette Zetterberg (Sweden), page 326, and husband P. O. page 384, with son Johan on page 304. Johan's wife Sara Bloomberg on page 282. Z. Tugba Kahyaoglu (Turkey), pages 462, 530. Mona El Tawil-Nassar (Egypt), page 480. David Housden (New Zealand), page 502. Roger Rasool (Australia), pages 704 and 716.

These are photographs of people very dear to me, which makes *Conceptual Physics* all the more a labor of love.

To the Student

You know you can't enjoy a game unless you know its rules; whether it's a ball game, a computer game, or simply a party game. Likewise, you can't fully appreciate your surroundings until you understand the rules of nature. Physics is the study of these rules, which show how everything in nature is beautifully connected. So the main reason to study physics is to enhance the way you see the physical world. You'll see the mathematical structure of physics in frequent equations, but more than being recipes for computation, you'll see the equations as guides to thinking.

I enjoy physics, and you will too — because you'll understand it. If you get hooked and take a follow-up course, then you can focus on mathematical problems. Go for comprehension of concepts now, and if computation follows, it will be with understanding. Enjoy your physics!

PAUL G. HEWIT

To the Instructor

he sequence of chapters in this Thirteenth Edition is identical to that in the previous edition. Personality profiles continue with every chapter, highlighting a scientist, teacher, or historical figure who complements the chapter material. Each chapter begins with a photo montage of educators, and sometimes their students, who bring life to the learning of physics.

As in the previous edition, Chapter 1, "About Science," begins your course on a high note with coverage of early measurements of the Earth and distances to the Moon and the Sun. New to this edition is how an extension of Eratosthenes' measurements to calculating distances between far-apart schools. And also, a way that students can measure the distance to the Moon with a pea.

Part One, "Mechanics," begins with Chapter 2, which, as in the previous edition, presents a brief historical overview of Aristotle and Galileo, progressing to Newton's first law and to mechanical equilibrium. Force vectors are introduced, primarily for forces that are parallel to one another. Vectors are extended to velocity in the following Chapter 3, and Chapter 5 treats both force and velocity vectors and their components. Vector treatment is gradual, and, understandable.

Chapter 3, "Linear Motion," is the only chapter in Part One that is devoid of physics laws. Kinematics has no laws, only definitions, mainly for *speed*, *velocity*, and *acceleration*—likely the least exciting concepts that your course has to offer. Too often kinematics becomes a pedagogical "black hole" of instruction—too much time for too little physics. Being more math than physics, the kinematics equations can appear to the student as the most intimidating in the book. Although the experienced eye doesn't see them as such, this is how *students* first see them:

$$\mathbf{s} = \mathbf{s}_0 + \delta \mathbf{i}$$
$$\mathbf{s} = \mathbf{s}_0 \mathbf{i} + \frac{1}{2} \delta \mathbf{i}^2$$
$$\mathbf{s}^2 = \mathbf{s}_0^2 + 2\delta \mathbf{s}$$
$$\mathbf{s}_a = \frac{1}{2}(\mathbf{s}_0 + \mathbf{s})$$

If you wish to reduce class size, display these equations on the first day and announce that class effort for much of the term will be on making sense of them. Don't we do much the same with the standard symbols?

Ask any college graduate two questions: What is the acceleration of an object in free fall? What keeps Earth's interior hot? You'll see what their education focused on because many more will correctly answer the first question than the second. Traditionally, physics courses have been top-heavy in kinematics with little or no coverage of modern physics. Radioactive decay almost never gets the attention given to falling bodies. So my recommendation is to pass quickly through Chapter 3, making the distinction between velocity and acceleration, and then to move on to Chapter 4, "Newton's Second Law of Motion," where the concepts of velocity and acceleration find their application.

Chapter 5 continues with Newton's third law. Many third-law examples via vectors and their components should bring clarity to this commonly misunderstood law of motion. More on vectors is found in Appendix D and especially in the *Practice Book*.