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Authoritative. Accurate. Accessible.

Brock Biology of Microorganisms is the leading microbiology text for 

majors, setting the standard for impeccable scholarship, accuracy, a visually 

stunning art program, and the use of cutting-edge research to illustrate 

basic concepts. 





Genomics, and the various “omics” it has spawned, is 

woven into every chapter of the text, providing students 

with concrete examples of how powerful tools have 

allowed microbiologists to probe deeper and farther into 

the microbial world than ever before.

Concepts in Microbiology

NEW! Marginal annotations highlight some of the best 

material available for instructors to assign in Mastering 

Microbiology, guiding students along their journey with 

insightful materials that support and strengthen the 

learning experience.



Cutting-Edge Content

NEW! Thirty-four Microbiology 
Now chapter opening vignettes 

were composed for this edition, each 

designed to introduce a chapter’s theme 

through a recent discovery in the field of 

microbiology. These exciting accounts will 

draw students into the chapter and show 

how the chapter content connects with 

real-world problems.

NEW! Several new Explore 
the Microbial World features 

provide fascinating stories that 

highlight how important chapter 

concepts have evolved from 

research in the microbial world.



NEW! A section on 
immunotherapy highlights 

exciting advancements in the 

use of genetic engineering and  

molecular immunology to treat 

cancer.

NEW! The chapter on the 
human microbiome now 
includes a new section 
on the human virome, 
describing how metagenomics 

is aiding the discovery and 

isolation of many new viruses. 

Extensive coverage is provided 

of the impact of early life events 

on the development of the 

newborn gut microbiome and 

of recent successes in probiotic 

therapy for preventing newborn 

intestinal diseases.



Empower Each Learner

NEW! Dynamic Study Modules help students study 

course topics by adapting to their performance in real time. 

Students build the confidence they need to deepen their 

understanding, participate meaningfully, and perform 

better — in and out of class. Available on smartphones, 

tablets, and computers.

Mastering is so much more than homework. The 

Pearson Study Area allows students to access 

multiple study tools in one place. They don’t need 

to search Google to find study tools that align with 

their course materials. Students have access to 

practice quizzes, videos and animations, vocabulary 

tools, and more.



Get students engaged with 
content by assigning a variety of 

questions in Mastering Microbiology. 

These include: 

•	Reading Questions

•	Art-Based Activities 

•	Coaching Activities and more

Interactive Microbiology is a dynamic suite of interactive tutorials and animations that teach key microbiology concepts 

including Operons, Biofilms and Quorum Sensing, Complement, Human Microbiota, and Antibiotic Resistance. Interactive 

Microbiology actively engages students with each topic, enabling them to learn from manipulating variables, predicting 

outcomes, and answering formative and summative assessment questions. Each tutorial presents the concept within a real 

healthcare scenario in order to emphasize problem solving and interest students from the beginning. 

with Mastering Microbiology



Pearson eText: A Whole New Reading 
Experience

NEW! Pearson eText is a simple-to-use, 

mobile-optimized, and personalized reading 

experience available within Mastering. It 

allows students to easily highlight, take 

notes, and review key vocabulary all in 

one place—even when off-line. Seamlessly 

integrated videos and other rich media 

engage students and give them access to 

the help they need, when they need it. 

Pearson eText App now 

enables students to access their 

eText and associated study tools 

and notebook off-line. All they 

need to do is download the app!
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Preface

W
elcome to the best learning resource in microbiology education 

today: the visually stunning 16th Edition of Brock Biology of 

Microorganisms (BBOM). The 16th Edition is the most student-friendly 

and accessible edition yet and presents the most exciting and recent 

picture of the science of microbiology available today. For three gen-

erations, both students and instructors alike have praised the accuracy, 

authority, consistency, and teachability of BBOM for exploring the 

principles of microbiology in a readable, connected, and visually 

appealing way.

Both students and instructors will bene�t from at least four important 

strengths of the 16th Edition: (1) our approach of using cutting-edge 

research to solidify basic concepts; (2) the seamless integration of molec-

ular and ecological microbiology with coverage of evolution, diversity, 

the immune system, and infectious diseases; (3) the spectacular art pro-

gram complemented with striking and compelling photos; and (4) the 

wide assortment of teaching and learning tools that accompany the 

book itself. With an extremely strong author team that employs experts 

in each major theme, BBOM 16th Edition leads the way in presenting 

the essential principles of microbiology that students need to master 

today.

What’s New in the 16th Edition?
The 16th Edition guides students through the six major themes of micro-

biology as outlined by the American Society for Microbiology Confer-

ence on Undergraduate Education (ASMCUE): Evolution, Cell Structure 

and Function, Metabolic Pathways, Information Flow and Genetics, 

Microbial Systems, and the Impact of Microorganisms. With new and 

revised artwork complemented by over 60 new photos, BBOM 16th Edi-

tion (16e) presents microbiology as the visual science it is. Thirty-four 

new MicrobiologyNow chapter-opening vignettes were composed for 

this edition, each designed to introduce a chapter’s theme through a 

recent discovery in the �eld of microbiology. These exciting accounts will 

naturally draw students into the chapter and show how the chapter’s 

content connects with real-world problems. Several new Explore the 

Microbial World features were also developed for this edition, each 

designed to give students a feel for exciting special topics in microbiol-

ogy and to fuel their scienti�c curiosity.

Genomics, and all of the various “omics” it has spawned, support 

content in every chapter of BBOM 16e, re�ecting the reality of how 

omics has transformed all of biology, especially microbiology. The result 

is a robust and modern treatment of microbiology that guides students 

through the maze of omics with concrete examples of how these power-

ful tools have allowed microbiologists to probe deeper and farther into 

the microbial world than ever before.

To reinforce the learning experience, the 16e debuts a new pedagogi-

cal aid called Key Concepts. These brief summaries of each chapter part 

are written in clear and straightforward language that give students a 

heads-up as to what is coming in the following sections. Complementing 

the Key Concepts, each numbered section is summarized in the chapter 

review and accompanied by a review question that links concept review 

with concept mastery.

BBOM 16e is supported by Mastering Microbiology, Pearson’s 

online homework, tutorial, and assessment system that assists stu-

dents in pacing their learning and keeps instructors current on class 

performance. Mastering Microbiology includes a new feature, 

Dynamic Study Modules, which adapt to the student’s performance 

in real time to help each student’s study of course topics. Students 

build the con�dence they need to deepen their understanding, par-

ticipate meaningfully, and perform better in and out of class. Other 

highlights include chapter-speci�c reading quizzes, MicroLab Tutori-

als, MicrobiologyNow coaching activities, Clinical Case and MicroCa-

reer coaching activities, animation quizzes, MCAT Prep questions, and 

many additional study and assessment tools. Collectively, the content 

and presentation of BBOM 16e, coupled with the powerful learning 

tools of Mastering Microbiology, create an unparalleled educational 

experience in microbiology.

Revision Highlights

UNIT 1 The Foundations of Microbiology

Chapter 1

• The microbial world is introduced in an exciting and novel way by 

weaving together core concepts in microbiology with the historical 

events that led to their discovery. The foundations of microbiology 

are revealed through introductions to microscopy, laboratory cul-

tivation, microbial evolution, and the molecular principles that

unify all life.

• Some highlights: Vibrant new images help connect students with

the diverse and numerous ways in which microbiology impacts our 

world. Coverage of cell size and morphology is introduced here

rather than in Chapter 2 in order to draw students into the micro-

scopic world early on and introduce them to actual microbes and

their properties.

Chapter 2

• In the microbial world, cellular structures are tightly linked to cell

functions, and Chapter 2 offers a complete guide to the features

that de�ne and differentiate microbial cells and their functions.

Updated coverage of nutrient transport here rather than in the

growth chapter places this critical cellular activity �rmly within the 

context of the cell envelope.

• Some highlights: Electron cryotomography has provided new

insight into cell biology and is incorporated in new views of pep-

tidoglycan structure, S-layers, and diversity in cell envelope orga-

nization. Vivid new illustrations developed from cutting-edge
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microscopic images of the �agellum, the archaellum, and the  

rotating proteins that confer gliding motility provide a fresh new 

look at how these structures move prokaryotic cells about their 

environments.

Chapter 3

•	 This chapter remains focused on the fundamentals of metabolism 

and has been revised to simplify metabolic concepts and empha-

size the modularity of metabolism. The chapter starts with the 

essential principles and then provides examples of their applica-

tion while guiding the student though the major metabolic pro-

cesses that de�ne microbial life.

•	 Some highlights: New art provides greater clarity and realism in 

understanding electron transport reactions, making this process 

easier to understand and easier to teach. Modularity of metabolism 

and the importance of the proton motive force receive greater 

emphasis by providing simple examples of chemolithotrophy and 

phototrophy to reinforce the student’s understanding of energy 

conservation as a unifying concept in biology. Updates to fermen-

tation clarify and distinguish this process from anaerobic respira-

tion, and an overview of autotrophy and nitrogen fixation 

emphasize the connectivity between anabolic and catabolic pro-

cesses in the cell.

Chapter 4

•	 This chapter on microbial growth and its control moves up one 

slot from the previous edition to better prepare students for deal-

ing with concepts in molecular biology and genetics where micro-

bial growth plays a central role.

•	 Some highlights: The essentials of microbial nutrition and labora-

tory culture are introduced here with a segue to counting methods 

and quantitative aspects of microbial growth. The dynamics of 

microbial growth are emphasized with exciting new coverage of 

the bio�lm mode of growth and alternatives to binary �ssion. The 

latter includes organisms that display budding division such as 

Caulobacter—the prime model for developmental studies of bac-

teria—and bacteria that grow by hyphal extensions characteristic 

of �lamentous bacteria such as Streptomyces, a major producer of 

antibiotics.

Chapter 5

•	 This introduction to virology moves up from its position in 

Unit 2 in the previous edition to round out the foundations of 

microbiology theme of Unit 1. This move gives earlier visibility 

to the importance of viruses as microbes, clearly explains how 

they differ from cells, and lays the necessary groundwork for 

dealing with the genetics, genomics, and molecular biology that 

follows in Unit 2.

•	 Some highlights: Emphasis remains on the basic principles of 

virology including how viruses and cells can be viewed as both 

similar and different and how methods for replicating viruses 

resemble those for growing cells. Bacteriophage T4 is used as a 

model lytic virus, and coverage of eukaryotic viruses is expanded 

beyond just animal viruses to include some major viruses of plants. 

This highly visual chapter is embellished with over a dozen new 

photos of exciting, newly discovered viruses along with supporting 

art that underscores the fundamentals of virology.

UNIT 2 Molecular Biology and Genetics

Chapter 6

•	 Moved forward two slots from its position in the previous edition 

to better �t as the kick-off to Unit 2, this chapter lays the necessary 

groundwork in molecular biology for tackling microbial genetics 

and genomics and the fast-moving �elds of synthetic biology, 

molecular microbial ecology and diversity, the human microbi-

ome, and diagnostic microbiology.

•	 Some highlights: Reorganized coverage of DNA supercoiling pre-

cedes new and more realistic depictions of the seminal processes 

of replication, transcription, and translation. New coverage of tran-

scriptional processes in Archaea and their relationship to those in 

Eukarya and updated coverage of protein secretion round out this 

essential primer in microbe molecular biology that every student 

needs to master.

Chapter 7

•	 Because microbes must coordinate cellular processes to optimize 

their chances for survival and reproduction, Chapter 7 is central to 

Unit 2 in describing how prokaryotic cells control the seminal pro-

cesses of replication, transcription, and translation. Microbial 

regulatory systems are highly diverse and sometimes tiered, but an 

appreciation for how control systems work is key to understanding 

metabolic diversity, pathogenesis, and synthetic biology.

•	 Some highlights: Reorganized and expanded coverage of gene 

expression in Bacteria and Archaea including activation and repres-

sion/derepression as well as chemotaxis and global controls. New 

coverage of two-component systems for regulating nitrogen assim-

ilation and updated coverage of the phosphate regulon, heat shock 

response, and riboswitch activity exemplify the comprehensive 

nature of this chapter.

Chapter 8

•	 This chapter continues the molecular theme of Unit 2 by building 

on the major topics of Chapters 4, 6, and 7 in the context of the 

mechanisms that underlie microbial growth and differentiation. 

Knowledge of the molecular biology of microbial growth is cen-

tral to mastering the biology of microbial populations and is 

keenly relevant to the topics of antibiotic ef�cacy, antibiotic resis-

tance and persistence, and infectious disease microbiology in 

general.

•	 Some highlights: New high-resolution time-course images high-

light the molecular processes of growth and cell shape determina-

tion. We expand coverage of bio�lm formation and the signaling 

molecule cyclic-di-GMP in Bacteria and provide new coverage of 

bio�lm formation in Archaea. The chapter also includes new cover-

age of endospore germination and phenotypic heterogeneity to 

encompass more topics within the evolving �eld of microbial 

growth from a molecular perspective.

Chapter 9

•	 This chapter rounds out Unit 2 by discussing the foundation for 

microbial diversity—how microbes undergo genetic change while 

still maintaining genomic integrity. This essential primer of micro-

bial genetics also lays the groundwork for tackling the hot areas of 
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microbial omics and synthetic biology and provides the funda-

mental background necessary to comprehend the most recent con-

cepts of microbial evolution that will unfold in later chapters.

•	 Some highlights: New and updated visual depictions of DNA 

exchange between microbes as well as updated coverage on natural 

competence and the role of pili in DNA uptake. Reorganized and 

new coverage of barriers to DNA transfer including CRISPR, the 

important bacterial and archaeal “immune system” whose applica-

tions are revolutionizing biology and clinical medicine.

UNIT 3: Genomics, Synthetic Biology,  
and Evolution

Chapter 10

•	 Because the genome is the blueprint for all biological traits, this 

chapter kicks off Unit 3 by discussing not only microbial genom-

ics, but also methods to assay large pools of biological molecules. 

Various omics studies can be combined to provide a detailed pic-

ture of the vast range of capabilities possessed by a speci�c microbe 

or groups of microbes, which is essential to the topics of genetic 

engineering, synthetic biology, and microbial ecology.

•	 Some highlights: New and exciting coverage of functional genom-

ics and high-throughput techniques to determine the role of indi-

vidual genes. Reorganized and updated coverage of microbial 

genome content, proteomic applications, and systems biology 

highlight the ever-advancing �eld of omics.

Chapter 11

•	 This chapter continues the theme of Unit 3 by focusing on the 

unique genomes of viruses and the diverse mechanisms by which 

viral genomes are replicated. Knowledge of the molecular biology 

underlying viral replication is central not only to understanding 

how viruses infect their hosts and how they persist, but also for 

developing new clinical strategies for treating viral diseases of 

humans and other animals.

•	 Some highlights: New coverage of viral taxonomy precedes 

updated coverage of viruses that infect Archaea. Reorganized topics 

of bacteriophage genome replication and regulation of lysogeny 

in lambda directly link to foundational material in Chapter 5.

Chapter 12

•	 This high-energy chapter entitled “Biotechnology and Synthetic 

Biology” covers the essential tools of twenty-�rst-century biotech-

nology and describes how they have been applied to yield game-

changing medical and other commercial products from the 

activities of genetically engineered microbes. Expanded coverage is 

provided of the rapidly advancing �elds of synthetic biology and 

CRISPR genome editing—the latest revolutions to hit biology since 

discovery of the polymerase chain reaction (PCR). Text and art 

have been updated throughout.

•	 Some highlights: New coverage of how biobricks contribute to the 

construction of synthetic pathways and synthetic cells; the use of 

recombineering to revolutionize molecular cloning; genetically 

engineered delivery of human therapeutic agents; refactoring met-

abolic pathways; targeted microbial delivery of human drugs; and 

how gene drives could �nally conquer malaria.

Chapter 13

•	 This chapter on microbial evolution was moved from the diver-

sity unit into Unit 3 to emphasize its now closer ties to the unit 

theme of genomics. In addition to origin of life coverage, the 

chapter now focuses on how evolution affects the genome and 

ultimately the biology of the organism. The chapter ends with 

streamlined coverage of microbial systematics and the de�nition 

of a microbial species as a prelude to coverage of microbial diver-

sity in Unit 4.

•	 Some highlights: New and expanded coverage of the evolution of 

both cells and viruses, including new art on cellular origins from 

hydrothermal systems and early bioenergetics; more extensive dis-

cussion of the mechanisms of microbial evolution from a genomic 

perspective, including genomic changes that occur during both 

vertical and horizontal gene transmission; broadened coverage of 

experimental evolution and genome dynamics.

UNIT 4 Microbial Diversity

Chapter 14

•	 Recent years have seen a �urry of fundamental new discoveries 

about how anaerobic organisms conserve energy. Chapter 14 has 

been updated to integrate information from new discoveries that 

lie at the heart of diverse metabolic pathways, including the dis-

covery of electron bifurcation and energy-converting hydrogenases.

•	 Chapter 14 now includes a new introductory section that sum-

marizes foundational principles of microbial physiology. This 

new section boils the diversity of the microbial world down into 

a few key principles that students can follow throughout the 

chapter. In addition, the chapter includes new art illustrating 

electron bifurcation, as well as electron �ow in organisms such 

as sulfate reducers and methanogens. Old favorites throughout 

the chapter are also updated to account for recent discoveries in 

the �eld.

Chapter 15

•	 Chapter 15 has been reorganized and updated to emphasize rela-

tionships between metabolic and ecological diversity. New photos 

have been added to emphasize the morphological diversity of 

anoxygenic phototrophs and to demonstrate how microorganisms 

work together to modify their environments.

Chapter 16

•	 Chapter 16 has new coverage of dif�cult-to-cultivate bacteria, such 

as Acidobacteria, Planctomycetes, and Fusobacteria. The widespread 

application of metagenomic techniques have revealed that these 

Bacteria are of considerable importance in a range of habitats, 

including the human microbiome, but have only recently been 

obtained in laboratory culture.

Chapter 17

•	 Metagenomics has contributed greatly to our knowledge of 

archaeal diversity. Chapter 17 now exploits this and unveils the 

TACK, DPANN, and Asgard Archaea, some of which are the closest 

known relatives of the eukaryotes. We also update the diversity of 

mechanisms of methanogenesis in the archaeal domain.



Chapter 22

•	 This chapter on the built environment shows how humans create 

new microbial habitats through construction of buildings, sup-

porting infrastructure, and habitat modification, and which 

microbes take advantage of these habitats and why.

•	 Some highlights: The microbial metabolism of biologically pro-

duced and manufactured chlorinated organics has been expanded, 

as has the basis for the bioremediation of major chemical pollut-

ants. How microbes are responding to the mountains of plastics 

contaminating the environment and the discovery of novel bacte-

ria capable of degrading plastic bottles are described. New technol-

ogy that improves the ef�ciency of wastewater treatment using 

granular sludge technology is presented, and the microbial 

response to the excessive use of common household cleansers is 

considered.

Chapter 23

•	 A chapter devoted to nonhuman microbial symbioses describes the 

major microbial partners that live in symbiotic associations with 

other microbes, with plants, and with animals other than humans.

•	 Some highlights: Newly revised section on symbioses between 

microorganisms addresses the ecological signi�cance of phototroph 

switching in lichens and how certain bacterial species use electri-

cally conductive structures to form intimate symbiotic associations. 

Several updates include how insect symbionts are used to combat 

transmission of major viral diseases of humans and how defensive 

chemicals produced by symbionts protect insects from predation. 

Detailed coverage is given to the elaborate “cross-talk” between 

microbe and animal needed to establish the squid light organ.

UNIT 6 Microbe–Human Interactions  
and the Immune System

Chapter 24

•	 A chapter on the human microbiome launches the unit on 

microbe–human interactions and the immune system by introduc-

ing and updating advances in our understanding of the microbes 

that inhabit the human body and their relationship to health and 

disease.

•	 Some highlights: The discovery of ultrasmall bacteria in the mouth 

parasitizing other bacteria brings a new twist to the microbial ecol-

ogy of the oral cavity. A new section on the human virome describes 

how metagenomics is driving the discovery and isolation of inter-

esting new viruses. Extensive coverage is devoted to the impact of 

early-life events on the development of the newborn gut microbi-

ome and of recent successes in probiotic therapy for preventing 

newborn intestinal diseases.

Chapter 25

•	 Beginning with this chapter, the book shifts its focus to pathogenic 

microorganisms, the immune system, and disease. Part I of this 

chapter addresses microbial adherence, colonization and invasion, 

and pathogenicity, including important sections on virulence and 

virulence attenuation. Part II highlights key enzymes and toxins 

produced by microbes that contribute to pathogenesis.

Chapter 18

•	 Along with major updates on eukaryotic phylogeny, a new section 

is devoted to the haptophytes, including the globally and ecologi-

cally important coccolithophore Emiliania huxleyi. Coccolitho-

phores play a major role in regulating global climate, illustrating 

the power that microbes exert over our biosphere.

UNIT 5 Microbial Ecology and 
Environmental Microbiology

Chapter 19

•	 The chapter begins a unit on ecology and environmental microbi-

ology. The modern tools of the microbial ecologist are described 

with examples of how each has helped sculpt the science.

•	 Some highlights: A new method to visualize protein synthesis in 

single cells allows study of microbial activity in the environment. 

Metabolomics exploits new methods in mass spectrometry to 

unravel the complex metabolic interactions sustaining microbial 

communities. Nanosensor technologies are revealing how 

microbes alter the chemical landscape of three-dimensional sur-

faces. A new section explores multi-omics, which combines mul-

tiple state-of-the-art analytical tools to more fully characterize 

microbial communities.

Chapter 20

•	 The properties and microbial diversity of major microbial ecosys-

tems including soils and aquatic systems are compared and con-

trasted in exciting ways.

•	 Some highlights: Expansive coverage of surface-attached micro-

bial communities and how those communities are responding 

to plastic pollution of the environment. New understanding of 

the ecology of iron-oxidizing bacteria revealed by the isolation 

of new members of this biogeochemically signi�cant group. The 

discovery in deep ocean sediments of novel Archaea that link this 

domain with Eukarya. Extensive coverage of marine viruses, their 

abundance and diversity, and how they alter the physiology of 

organisms they infect. Humans traveling to 10,000-meter depths 

in the oceans discover the most pressure-tolerant bacterium 

known.

Chapter 21

•	 Extensive coverage of the major nutrient cycles in nature and the 

microbes that catalyze them are presented in a fashion that allows 

the cycles to be taught as individual entities or as interrelated met-

abolic loops.

•	 Some highlights: Expanded coverage of the biogeochemistry of 

sulfur compounds highlights the importance of volatile microbial 

products such as dimethyl sul�de for cloud formation. Advances 

in the biochemistry of extracellular electron transfer add new 

understanding to how the ecology and diversity of microorganisms 

drive the biogeochemical cycling of iron and manganese. The mys-

tery of how methane is generated (typically a strictly anoxic pro-

cess) in highly oxygenated ocean surface waters is solved by 

discoveries in the phosphorus cycle described in a new Explore the 

Microbial World.
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•	 Some highlights: The updated text includes expanded coverage of 

bacterial adhesins supported by a new, two-part �gure that high-

lights new discoveries in staphylococcal adherence. Revised cover-

age of virulence attenuation includes new artwork to show how 

this principle can be exploited for development of effective vac-

cines. An updated discussion of botulinum toxins re�ects new �nd-

ings and clearly presents both the neurotoxic mechanism and the 

surprising clinical utility of these extremely potent substances.

Chapter 26

•	 Chapter 26 opens with an overview of the immune system and 

the body’s �rst-line barriers to infection. This is followed by a 

brief discussion of hematopoiesis before focusing on innate 

immune responses to pathogen invasion. The chapter provides a 

natural progression into adaptive immune responses covered in 

Chapter 27.

•	 Some highlights: In addition to a new chapter opener highlighting 

breakthroughs that link Alzheimer’s disease to microbial infection, 

this chapter contains heavily edited text that includes a more com-

prehensive discussion of leukocyte diversity and an all-new 

description of the role of amyloid-β protein as an innate defense 

in the brain. Other highlights include expanded coverage of inter-

ferons and the role of natural killer cells as the primary effectors of 

antibody-dependent cell-mediated cytotoxicity. Finally, a fascinat-

ing new Explore the Microbial World highlights the role of pattern 

recognition receptors in establishing host–microbe mutualisms 

using hydrothermal vent tube worms as an example.

Chapter 27

•	 Chapter 27 begins with an essential discussion of the principles 

that de�ne adaptive immunity: speci�city, immune memory, lym-

phocyte selection, and immune tolerance. This is followed by sec-

tions that discuss the functional mechanisms of the key cells and 

proteins (immunoglobulins, major histocompatibility complexes, 

and T cell receptors) that drive adaptive immunity.

•	 Some highlights: The text has been heavily edited throughout, and 

this has produced a clearer and more informative presentation of 

B and T lymphocyte selection and tolerance, including a new dis-

cussion of T-dependent versus T-independent antigens. In addi-

tion, a new section dedicated to T cell activation and anergy clearly 

presents the important concept of the second signal required for 

T cell activation.

Chapter 28

•	 The newly reorganized Chapters 28 and 29 have emerged from 

materials presented in Chapter 28 of the 15th edition. Treating 

immune disorders and antimicrobial therapy (Chapter 28) sepa-

rately from clinical diagnostic methods (Chapter 29) has produced 

a more teachable format, making these topics more accessible for 

students and easier for the instructor to plan course assignments.

•	 Some highlights: The text progresses smoothly from immune dis-

orders and de�ciencies to methods used to train and hone the 

immune response for disease prevention and treatment. New cover-

age of mRNA and plant-based vaccines shares the latest innovations 

in vaccinology. An all-new section on immunotherapy, supported 

by vibrant new artwork, highlights exciting advancements in the use 

of genetic engineering and molecular immunology to treat cancer.

UNIT 7 Infectious Diseases

Chapter 29

•	 To bring better focus to the material, this chapter is now solely 

dedicated to the clinical microbiology laboratory and includes 

information on lab safety, healthcare-associated infections, and a 

wide array of both culture-dependent and culture-independent 

techniques used to diagnose infectious diseases.

•	 Some highlights: The chapter launches with the description of an 

exciting new method of diagnosing tuberculosis—humanity’s most 

notorious scourge. The text has been edited throughout for better 

organization and clarity, and art modi�cations help clarify com-

plex diagnostic techniques. Updated terminology includes an 

introduction to point-of-care diagnostics.

Chapter 30

•	 This chapter introduces the topics and terminology of the science 

of epidemiology and public health. Historical and modern exam-

ples throughout emphasize key concepts such as emerging (and 

reemerging) diseases, epidemics and pandemics, and the public 

health threat associated with the development and use of weapon-

ized microorganisms.

•	 Some highlights: incorporation of the most up-to-date statistics 

available on disease incidence and outbreaks throughout the text 

and in �gures and tables, as well as an all-new section supported 

by photos on the emergence of the important healthcare-associated 

pathogen Clostridioides (Clostridium) difficile.

Chapter 31

•	 This is the �rst of four highly visual chapters that take an ecological 

approach to pathogenic microorganisms by considering infectious 

diseases based on their modes of transmission. Bacterial and viral 

diseases transmitted person to person by way of airborne particles, 

direct contact, or sexual contact are the focus here.

•	 Some highlights: Statistical data regarding key emerging and 

reemerging diseases, including measles, pertussis, in�uenza, hepa-

titis, HIV/AIDS, gonorrhea, and syphilis have been updated to 

re�ect the most recent data available; an all-new discussion with 

supporting photo of the neglected tropical disease yaws helps 

impart knowledge and awareness of this lingering scourge.

Chapter 32

•	 In this chapter we examine pathogens transmitted to humans 

through either an animal vector or soil-contaminated wounds or 

objects. Many of these diseases have high morbidity and mortality 

rates, and in most cases, effective vaccines are not yet available.

•	 Some highlights: The text and �gures include the most up-to-

date statistics for diseases throughout the chapter, including 

rabies, hantavirus, spotted fever rickettsiosis, ehrlichiosis and 

anaplasmosis, Lyme disease, and the major tropical hemorrhagic 

fevers. In addition, the text now includes updated discussions of 

the emergence of key tickborne diseases in the United States and 

coverage of new strategies against dengue fever, including 

description of a new vaccine and the use of the bacterial endo-

symbiont Wolbachia to control the dengue virus–infected mos-

quito population.
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Chapter 34

•	 Eukaryotic pathogens present a special challenge to medicine 

because, on a cellular level, they are not that different from our 

own cells. Thus, it can be dif�cult to �nd selective targets for che-

motherapeutic drugs. Yet the microbes highlighted in this highly 

visual chapter cause some of the most devastating and prevalent 

diseases today.

•	 Some highlights: New color photos adorn the chapter, including 

two stunning �uorescent micrographs of Entamoeba histolytica, the 

causative agent of amebic dysentery. Broader coverage of distinc-

tive features of several diseases, including cyclosporiasis, toxoplas-

mosis, and malaria, has been seamlessly incorporated. All statistics 

have been updated with the most recent surveillance data to yield 

a global picture of fungal and parasitic diseases.

Chapter 33

•	 Pathogens in contaminated water or food are easily transmitted to 

humans, with waterborne diseases being especially common in 

developing countries lacking adequate water treatment facilities. 

This chapter highlights the most prevalent water- and foodborne 

diseases and emphasizes the importance of clean water and proper 

food preparation and preservation in preventing these physically 

uncomfortable and occasionally fatal illnesses.

•	 Some highlights: Updated statistics have been incorporated for all 

major water- and foodborne diseases, including Campylobacter 

infections, which have now overtaken salmonellosis as the leading 

cause of bacterial food infection in the United States. New discus-

sions cover recently elucidated norovirus pathology and new food 

safety developments, including the use of eBeam technology and 

bacteriophage sprays. A new overview �gure of cholera infection 

integrates photos with artwork to emphasize key aspects of this 

devastating and all too common disease.
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ASM Recommended Curriculum Guidelines  
for Undergraduate Microbiology

T
he American Society for Microbiology (ASM) endorses a concept-

based curriculum for undergraduate microbiology, emphasizing 

skills and concepts that have lasting importance beyond the classroom 

and laboratory. The ASM (in its Curriculum Guidelines for Understanding 

Microbiology Education) recommends deep understanding of 27 key con-

cepts, 4 scienti�c thinking competencies, and 7 key skills. These guide-

lines follow scienti�c literacy reports and recommendations from the 

American Association for the Advancement of Science and the Howard 

Hughes Medical Institute by encouraging an active learning, student-

based course. Consider these guiding statements as you progress through 

this book and master principles, problem solving, and laboratory skills 

in microbiology.

ASM Guideline Concepts  
and Statements

Evolution: Chapters 1, 9, 10–14, 20, 30
•	 Cells, organelles (e.g., mitochondria and chloroplasts), and all major 

metabolic pathways evolved from early prokaryotic cells.

•	 Mutations and horizontal gene transfer, with the immense variety  

of microenvironments, have selected for a huge diversity of microor-

ganisms.

•	 Traditional concept of species is not readily applicable to microbes 

due to asexual reproduction and the frequent occurrence of horizon-

tal gene transfer.

•	 Evolutionary relatedness of organisms is best re�ected in phylogenetic 

trees.

•	 Human impact on the environment in�uences the evolution of  

microorganisms (e.g., emerging diseases and the selection of antibi-

otic resistance).

Cell Structure and Function: Chapters 1, 2, 5, 8, 

11, 18
•	 Structure and function of microorganisms have been revealed by the 

use of microscopy (including bright-�eld, phase contrast, �uores-

cence, super-resolution, and electron).

•	 Bacteria have unique cell structures that can be targets for antibiotics, 

immunity, and phage infection.

•	 Bacteria and Archaea have specialized structures (e.g., �agella, endo-

spores, and pili) that often confer critical capabilities.

•	 While microscopic eukaryotes (for example, fungi, protozoa, and 

algae) carry out some of the same processes as bacteria, many of the 

cellular properties are fundamentally different.

•	 Replication cycles of viruses (lytic and lysogenic) differ among viruses 

and are determined by their unique genomes.

Metabolic Pathways: Chapters 1, 3, 4, 7, 8, 12, 14
•	 Bacteria and Archaea exhibit extensive, and often unique, metabolic 

diversity (e.g., nitrogen �xation, methane production, anoxygenic 

photosynthesis).

•	 Interactions of microorganisms among themselves and with their 

environment are determined by their metabolic abilities (e.g., quorum 

sensing, oxygen consumption, nitrogen transformations).

•	 Survival and growth of any microorganism in a given environment 

depends on its metabolic characteristics.

•	 Growth of microorganisms can be controlled by physical, chemical, 

mechanical, or biological means.

Information Flow and Genetics: Chapters 1, 5–13
•	 Genetic variations can impact microbial functions (e.g., in bio�lm 

formation, pathogenicity, and drug resistance).

•	 Although the central dogma is universal in all cells, the processes of 

replication, transcription, and translation differ in Bacteria, Archaea, 

and eukaryotes.

•	 Regulation of gene expression is in�uenced by external and internal 

molecular cues and/or signals.

•	 Synthesis of viral genetic material and proteins is dependent on  

host cells.

•	 Cell genomes can be manipulated to alter cell function.

Microbial Systems: Chapters 1, 15–34
•	 Microorganisms are ubiquitous and live in diverse and dynamic  

ecosystems.

•	 Many bacteria in nature live in bio�lm communities.

•	 Microorganisms and their environment interact with and modify each 

other.

•	 Microorganisms, cellular and viral, can interact with both human and 

nonhuman hosts in bene�cial, neutral, or detrimental ways.

Impact of Microorganisms: Chapters 1, 6–8, 12, 

19–34
•	 Microbes are essential for life as we know it and the processes that 

support life (e.g., in biogeochemical cycles and plant and/or animal 

microbiota).

•	 Microorganisms provide essential models that give us fundamental 

knowledge about life processes.

•	 Humans utilize and harness microorganisms and their products.

•	 Because the true diversity of microbial life is largely unknown, its 

effects and potential bene�ts have not been fully explored.
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Microbiology in Motion

The microbial world is strange and fierce. It is teeming with 

life, ancient, diverse, and constantly changing. Microorgan-

isms are Earth’s life support system, and from our first 

breath they influence nearly every moment of our lives. 

Microbes are in our water and our food, and we carry them 

on us and in us. Indeed, microbes abound in any natural 

environment that will support life, including many environ-

ments too hostile for higher life forms.

While the microbial world is invisible, we can explore it 

through the science of microbiology. Microbiology evolves at 

a breathtaking pace. Even the microscope continues to 

evolve, providing an ever more detailed picture of the 

microbial world. The image above was made with a fluores-

cence microscope that uses lasers, guided by a computer, to 

map the three-dimensional structure of cells. The image 

shows neighboring human cells with their nuclei stained 

blue and actin filaments stained green. These cells are 

infected with the foodborne bacterial pathogen Listeria 

monocytogenes, stained red.

Listeria are soil organisms that sometimes find their way 

into our food. In soils they infect other microbes such as 

amoebae. Our cells are similar in many ways to those of 

microscopic organisms, and so Listeria finds itself well 

adapted to live within us. This bacterium has the unique 

ability to hijack cellular systems, causing actin to polymerize 

and propel the cell like a rocket within the host cytoplasm. 

The force of this propulsion causes Listeria to penetrate 

adjacent cells (image, lower left), spreading the infection. 

Listeria can also invade host vacuoles (not shown), where it 

hides and survives. This persistent state can prolong 

infection and promote resistance to antibiotic therapy. 

Research on Listeria has provided new insights on the 

biology of this pathogen and an ever-changing view of a 

microbial world in motion.

Source: Kortebi, M., et al. 2017. Listeria monocytogenes switches 

from dissemination to persistence by adopting a vacuolar lifestyle in 

epithelial cells. PLoS Pathog. 13: e1006734.
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of disease and microbial biochemical diversity has relied on the 

ability to grow microorganisms in the laboratory.

The ability to grow microorganisms rapidly under controlled con-

ditions makes them highly useful for experiments that probe the 

fundamental processes of life. Most discoveries relating to the 

molecular and biochemical basis of life have been made using 

microorganisms. The study of molecules and their interactions is 

essential to defining the workings of microbial cells, and the tools 

of molecular biology and biochemistry are foundational to micro-

biology. Molecular biology has also provided a variety of tools to 

study microorganisms without need for their cultivation in the labo-

ratory. These molecular tools have greatly expanded our knowledge 

of microbial ecology and diversity. Finally, the tools of genomics 

and molecular genetics are also cornerstones of modern 

This chapter launches our journey into the microbial world. Here 

we will begin to discover what the science of microbiology is all 

about and what microorganisms are, what they do, and how they 

can be studied. We also place microbiology in historical context, as 

a process of scientific discovery driven by simple (yet powerful) 

experiments and insightful minds.

I • Exploring the Microbial World

The microbial world consists of microscopic organisms that

have defined structures, unique evolutionary histories, and are 

of enormous importance to the biosphere.

1.1  Microorganisms, Tiny Titans of the Earth

M
icroorganisms (also called microbes) are life forms too small

to be seen by the unaided human eye. These microscopic 

organisms are diverse in form and function, and they inhabit every 

environment on Earth that supports life. Many microbes are undif-

ferentiated single-celled organisms, but some can form complex 

structures, and some are even multicellular. Microorganisms typi-

cally live in complex microbial communities (Figure 1.1), and their 

activities are regulated by interactions with each other, with their 

environments, and with other organisms. The science of microbiol-

ogy is all about microorganisms, who they are, how they work, and 

what they do.

Microorganisms were teeming on the land and in the seas for bil-

lions of years before the appearance of plants and animals, and their 

diversity is staggering. Microorganisms represent a major fraction of 

Earth’s biomass, and their activities are essential to sustaining life. 

Indeed, the very oxygen (O2) we breathe is the result of microbial 

activities. Plants and animals are immersed in a world of microbes, 

and their evolution and survival are heavily influenced by microbial 

activities, by microbial symbioses, and by pathogens—those microbes 

that cause disease. Microorganisms are woven into the fabric of 

human life as well (Figure 1.2), from infectious diseases, to the food 

we eat, the water we drink, the fertility of our soils, the health of our 

animals, and even the fuel we put in automobiles. Microbiology is 

the study of the dominant form of life on Earth, and the effect that 

microbes have on our planet and all of the living things that call 

it home.

Microbiologists have many tools for studying microorganisms. 

Microbiology was born of the microscope, and microscopy is foun-

dational to microbiology. Microbiologists have developed an array 

of methods for visualizing microorganisms, and these microscopic 

techniques are essential to microbiology. The cultivation of micro-

organisms is also foundational to microbiology. A microbial culture 

is a collection of cells that have been grown in or on a nutrient 

medium. A medium (plural, media) is a liquid or solid nutrient 

mixture that contains all of the nutrients required for a microorgan-

ism to grow. In microbiology, we use the word growth to refer to 

the increase in cell number as a result of cell division. A single micro-

bial cell placed on a solid nutrient medium can grow and divide 

into millions or even billions of cells that form a visible colony 

(Figure 1.3). The formation of visible colonies makes it easier to see 

and grow microorganisms. Comprehension of the microbial basis 
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Figure 1.1  Microbial communities. (a) A bacterial community that developed in the 

depths of a small Michigan lake, including cells of various phototrophic bacteria. The 

bacteria were visualized using phase-contrast microscopy. (b) A bacterial community 

in a sewage sludge sample. The sample was stained with a series of dyes, each of 

which stained a specific bacterial group. From Journal of Bacteriology 178 : 

3496–3500, Fig. 2b. © 1996 American Society for Microbiology. (c) Colorized scanning 

electron micrograph of a microbial community scraped from a human tongue.
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Figure 1.2  Microbial applications. Microorganisms have major impacts on the world in which we live. In the chapters that follow we will 

learn how microorganisms impact our health, the foods we eat, the water we drink, and even the air we breathe. We will learn how 

microbes can be used to produce valuable products and the many ways in which microorganisms touch our lives.

microbiology and allow microbiologists to study the genetic basis 

of life, how genes evolve, and how they regulate the activities of cells.

In the next section, we explore the basic elements of microbial cell 

structure and summarize the major physiological activities that take 

place in all cells, regardless of their structure.

Check Your Understanding

• In what ways are microorganisms important to humans?

• Why are microbial cells useful for understanding the basis

of life?

• What is a microbial colony and how is one formed?

1.2  Structure and Activities  
of Microbial Cells

Microbial cells are living compartments that interact with their envi-

ronment and with other cells in dynamic ways. We purposely 

exclude viruses in most of this discussion because although they 

resemble cells in many ways, viruses are not cells but instead a spe-

cial category of microorganism. We consider the structure, diversity, 

and activities of viruses in Section 1.4 and in Chapters 5 and 11.

Elements of Microbial Structure

All cells have much in common and contain many of the same 

components (Figure 1.4). All cells have a permeability barrier called 

the cytoplasmic membrane that separates the inside of the cell, 

the cytoplasm, from the outside. The cytoplasm is an aqueous mix-

ture of macromolecules (for example proteins, lipids, nucleic 

acids, and polysaccharides), small organic molecules (mostly the 

precursors of macromolecules), various inorganic ions, and ribo-

somes. All cells also contain ribosomes, which are the structures 

responsible for protein synthesis. Some cells have a cell wall that 

lends structural strength to a cell. The cell wall is a relatively perme-

able structure located outside the cytoplasmic membrane and is a 

much stronger layer than the membrane itself. Cell walls are typi-

cally found in plant cells and most microorganisms but are not 

found in animal cells.

There are two fundamental cell types that differ categorically in 

cellular organization: those having prokaryotic cell structure, and 

those having eukaryotic cell structure (Figure 1.4). Cells having 

eukaryotic cell structure are found in a group of organisms called 

the Eukarya. This group includes plants and animals as well as 

diverse microbial eukaryotes such as algae, protozoa, and fungi. 

Eukaryotic cells contain an assortment of membrane-enclosed cyto-

plasmic structures called organelles (Figure 1.4b). These include, 

most prominently, the DNA-containing nucleus but also mitochon-

dria and chloroplasts, organelles that specialize in supplying the cell 

with energy, and various other organelles.

Prokaryotic cell structure is found within two different groups of 

organisms we know as Bacteria and Archaea. Prokaryotic cells have 

few internal structures, they lack a nucleus, and they typically lack 

organelles (Figure 1.4a). Bacteria and Archaea appeared long before 

the evolution of eukaryotes (Section 1.5). While all Archaea and 
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Activities of Microbial Cells

To be competitive in nature, a microorganism must survive and 

reproduce. Figure 1.5 considers structure and some of the activities 

that are performed by cells to drive survival and reproduction. All 

cells show some form of metabolism through which nutrients are 

acquired from the environment and transformed into new cellular 

materials and waste products. During these transformations, energy 

is used to support synthesis of new structures. Production of these 

new structures culminates in the division of the cell to form two 

cells. Microbial growth results from successive rounds of cell 

division.

Genes contain information that is used by the cell to perform the 

work of metabolism. Genes are decoded to form proteins that regu-

late cellular processes. Enzymes, those proteins that have catalytic 

activity, carry out reactions that supply energy and perform biosyn-

thesis within the cell. Enzymes and other proteins are synthesized 

during gene expression in the sequential processes of transcription 

and translation. Transcription is the process by which the informa-

tion encoded in DNA sequences is copied into an RNA molecule, 

and translation is the process whereby the information in an RNA 

molecule is used by a ribosome to synthesize a protein (Chapter 6). 

Gene expression and enzyme activity in a microbial cell are coordi-

nated and highly regulated to ensure that the cell remains optimally 

tuned to its surroundings. Ultimately, microbial growth requires 

replication of the genome through the process of DNA replication, 

followed by cell division. All cells carry out the processes of tran-

scription, translation, and DNA replication.

Microorganisms have the ability to sense and respond to 

changes in their local environment. Many microbial cells are capa-

ble of motility, typically by self-propulsion (Figure 1.5). Motility 

allows cells to relocate in response to environmental conditions. 

Some microbial cells undergo differentiation, which may result 

Bacteria have prokaryotic cell structure, these two groups diverged 

very early in the history of life and as a result many of their molecu-

lar and genetic characteristics differ at a fundamental level. Indeed, 

we will see later that in many ways Archaea and Eukarya are more 

similar to each other than either is to Bacteria.

Genes, Genomes, Nucleus, and Nucleoid

In addition to a cytoplasmic membrane and ribosomes, all cells also 

possess a DNA genome. The genome is the full set of genes in a cell. 

A gene is a segment of DNA that encodes a protein or an RNA 

molecule. The genome is the living blueprint of an organism; the 

characteristics, activities, and very survival of a cell are governed by 

its genome.

The genomes of prokaryotic cells and eukaryotic cells are orga-

nized into structures called chromosomes. In eukaryotic cells, DNA 

is present as several linear molecules (each one formed into its own 

chromosome) within the membrane-enclosed nucleus. By contrast, 

the genomes of Bacteria and Archaea are typically closed circular 

chromosomes (though some prokaryotic cells have linear chromo-

somes). The chromosome aggregates within the prokaryotic cell to 

form the nucleoid, a mass that is visible in the electron microscope 

(Figure 1.4a) but which is not enclosed by a membrane. Most pro-

karyotic cells have only a single chromosome, but many also contain 

one or more small circles of DNA distinct from that of the chromo-

some, called plasmids (Figure 1.4a). Plasmids typically contain 

genes that are not essential but often confer some special property 

on the cell (such as a unique metabolism, or antibiotic resistance). 

The genomes of Bacteria and Archaea are typically small and com-

pact, and most contain between 500 and 10,000 genes encoded by 

0.5 to 10 million base pairs of DNA. Eukaryotic cells typically have 

much larger and much less streamlined genomes than prokaryotic 

cells. A human cell, for example, contains approximately 3 billion 

base pairs, which encode about 20,000–25,000 genes.
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Figure 1.3  Microbial cells. (a) Bioluminescent (light-emitting) colonies of the bacterium Photobacterium grown in laboratory culture on a 

Petri plate. (b) A single colony can contain more than 10 million (107) individual cells. (c) Colorized scanning electron micrograph of cells of 

Photobacterium.
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Figure 1.5 occur in all cells. Metabolism, growth, and evolution, 

however, are universal and will be major areas of emphasis 

throughout this text.

We now move on to consider the diversity of cell shapes and sizes 

found in the microbial world.

Check Your Understanding

• What structures are universal to all type of cells?

• What processes are universal to all types of cells?

• What structures can be used to distinguish between

prokaryotic cells and eukaryotic cells?

1.3  Cell Size and Morphology
Microscopic examination of microorganisms immediately reveals 

their morphology, which is defined by cell size and shape. A variety 

of cell shapes pervade the microbial world, and although micro-

scopic by their very nature, microbial cells come in a variety of sizes. 

in the formation of modified cells specialized for growth, disper-

sal, or survival. Cells respond to chemical signals in their environ-

ment, including those produced by other cells of either the same 

or different species, and these signals often trigger new cellular 

activities. Microbial cells thus exhibit intercellular communica-

tion; that is, they are “aware” of their neighbors and can respond 

accordingly. Many prokaryotic cells can also exchange genes with 

neighboring cells, regardless of their species, in the process of 

horizontal gene transfer.

Evolution (Figure 1.5) results when genes in a population of 

cells change in sequence and frequency over time, leading to 

descent with modification. The evolution of microorganisms can 

be very rapid relative to the evolution of plants and animals. For 

example, the indiscriminate use of antibiotics in human and vet-

erinary medicine has selected for the proliferation of antibiotic 

resistance in pathogenic bacteria. The rapid pace of microbial evo-

lution can be attributed in part to the ability of microorganisms 

to grow very quickly and to acquire new genes though the process 

of horizontal gene transfer. Not all of the processes depicted in 
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Figure 1.4  Microbial cell structure. (a) (Left) Diagram of a prokaryotic cell. (Right) Electron micrograph of Heliobacterium modesticaldum 

(Bacteria, cell is about 1 mm in diameter) and Thermoproteus neutrophilus (Archaea, cell is about 0.5 mm in diameter). (b) (Left) Diagram of 
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relative scale, the bacterial cell in a is about the same size as the mitochondria of Saccharomyces in b.
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with the square of its size. This relationship means that, as cell size 

increases, it becomes advantageous to have cellular structures that 

facilitate transport and compartmentalize cellular activities as 

seen in eukaryotic cells. In contrast, since diffusion is rapid at 

small spatial scales, high metabolic rates can be maintained in 

small prokaryotic cells without a need for complex cellular 

structures.

It is possible, though unusual, for prokaryotic cells to be visible 

to the human eye; the largest are more than 600 mm (0.6 mm) long. 

To achieve this size, these bacteria must have traits that allow them 

to overcome diffusional limitation. The bacterium Epulopiscium  

fishelsoni (Figure 1.6a; Figure 1.9), which is found in the gut of the 

surgeonfish, can be more than 75 mm wide and 600 mm long 

(Table 1.1). One of the traits that allows this bacterium to get so 

large is that it can have more than 10,000 copies of its genome dis-

tributed throughout its cytoplasm, thereby preventing diffusional 

limitation between the genome and any region of the cytoplasm. 

Cells of the largest known bacterium, the sulfur-oxidizing chemoli-

thotroph Thiomargarita (Figure 1.6b, Table 1.1), are even larger than 

those of Epulopiscium, about 750 mm in diameter. Thiomargarita 

achieves this enormous size by having a large vacuole that fills the 

center of the cell. Hence, the cytoplasm of Thiomargarita occurs as a 

thin layer squeezed between the cytoplasmic membrane and this 

central vacuole. In this way, the cytoplasm is never more than 1 mm 

from the membrane. In addition, Thiomargarita, like Epulopiscium, 

also has many copies of its genome, which are distributed through-

out its cytoplasm.

Cell shape can be useful for distinguishing different microbial cells 

and often has ecological significance. Moreover, the very small size 

of most microbial cells has a profound effect on their ecology and 

dictates many aspects of their biology. We begin by considering cell 

size and then consider cell shape.

The Small World

A micrometer (mm or micron) is one-millionth of a meter in 

length. The unaided human eye has difficulty resolving objects that 

are less than 100 mm in diameter, but this is the scale of the micro-

bial world. Most prokaryotic cells are small, ranging between 0.5 

and 10 mm in length, but prokaryotic cells can vary widely in size. 

For example, the smallest prokaryotic cells are about 0.2 mm in 

diameter and the largest can be more than 600 mm long (Table 1.1). 

In contrast, most eukaryotic cells are larger on average than pro-

karyotic cells, being between 5 and 100 mm in length, but eukary-

otic cells can vary widely in size too. For example, the smallest 

eukaryotic microorganism known is about 0.8 mm in diameter 

and the largest eukaryotic cells can be many centimeters in length 

(Section 1.4).

Cell size is influenced fundamentally by cell structure. Eukary-

otic cells, owing to their complex intracellular structure and 

organelles (Figure 1.4), can actively transport molecules and mac-

romolecules within the cytoplasm. Prokaryotic cells, in contrast, 

rely on diffusion for transport through the cytoplasm and this 

limits their size. While diffusion is very fast at small distances, the 

rate of diffusion increases as the square of the distance traveled. 

Hence, the metabolic rate in a prokaryotic cell varies inversely 

Chance mutations in DNA cause 
new cells to have new properties, 
thereby promoting evolution. 
Phylogenetic trees built from 
DNA sequences capture 
evolutionary relationships 
between species. 

Evolution

Some cells can form new cell 
structures such as a spore.
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Figure 1.5  The properties of microbial cells. While cells are tremendously diverse in form and function, certain properties are shared  

by all cells.
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Surface-to-Volume Ratios, Growth Rates, and Evolution

For a cell, there are advantages to being small. Small cells have more 

surface area relative to cell volume and thus have a higher surface-

to-volume ratio than larger cells. To understand this principle, con-

sider a spherical cell. The volume of a sphere is a function of the 

cube of its radius (V =
4
3pr3), whereas its surface area is a function 

of the square of the radius (S = 4πr2). Therefore, the S/V ratio of a 

coccus is 3/r (Figure 1.7). As cell size increases, its S/V ratio decreases. 

At the opposite end of the spectrum from these large prokaryotic 

cells are very small prokaryotic cells. Exactly how small a cell can be 

is not precisely known. However, cells 0.2 mm in diameter exist (see 

Explore the Microbial World, “Tiny Cells”), and the lower limit is 

probably only a bit smaller than this. Ultimately, the lower limit to 

cell size is likely a function of the amount of space needed to house 

the essential biochemical components—proteins, nucleic acids, 

ribosomes and so on (Section 1.2)—that all cells need to survive 

and reproduce.

Organism Characteristics Morphology Size a (mm3) Cell volume (mm3)
Volumes compared  
to E. coli

Thiomargarita namibiensis Sulfur chemolithotroph Cocci in chains 750 200,000,000 100,000,000*

Epulopiscium fishelsoni   a Chemoorganotroph Rods with tapered ends   80 * 600 3,000,000 1,500,000*

Beggiatoa species a Sulfur chemolithotroph Filaments   50 * 160 1,000,000 500,000*

Achromatium oxaliferum Sulfur chemolithotroph Cocci   35 * 95 80,000 40,000*

Lyngbya majuscula Cyanobacterium Filaments     8 * 80 40,000 20,000*

Thiovulum majus Sulfur chemolithotroph Cocci   18 3,000 1,500*

Staphylothermus marinus a Hyperthermophile Cocci in irregular clusters   15 1,800 900*

Magnetobacterium bavaricum Magnetotactic bacterium Rods     2 * 10 30 15*

Escherichia coli Chemoorganotroph Rods     1 * 2 2 1*

Pelagibacter ubique a Marine chemoorganotroph Rods     0.2 * 0.5 0.014 0.007*

Ultra-small bacteria a Uncultured, from groundwater Variable  60.2 0.009 0.0045*

Mycoplasma pneumoniae Pathogenic bacterium Pleomorphic b     0.2 0.005 0.0025*

a Where only one number is given, this is the diameter of spherical cells. The values given are for the largest cell size observed in each species. For example, for  

T. namibiensis, an average cell is only about 200 mm in diameter. But on occasion, giant cells of 750 mm are observed. Likewise, an average cell of S. marinus is about  

1 mm in diameter. The species of Beggiatoa here is unclear, and E. fishelsoni, M. bavaricum, and P. ubique are not formally recognized names in taxonomy. For more  

on ultra-small bacteria, see Explore the Microbial World “Tiny Cells.”
b Mycoplasma is a bacterium that lacks a cell wall and can thus take on many shapes (pleomorphic means “many shapes”).

Source: Data obtained from Schulz, H.N., and B.B. Jørgensen. 2001. Annu. Rev. Microbiol. 55: 105–137, and Luef, B., et al. 2015. Nat. Commun. doi:10.1038/ncomms7372.

TABLE 1.1  Cell size and volume of some cells of Bacteria, from the largest to the smallest
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Figure 1.6  Two very large Bacteria. (a) Epulopiscium fishelsoni. The rod-shaped cell is about 600 mm (0.6 mm) long and 75 mm wide  

and is shown with four cells of the protist Paramecium (a microbial eukaryote), each of which is about 150 mm long. (b) Thiomargarita 

namibiensis, a large sulfur chemolithotroph and currently the largest known of all prokaryotic cells. Cell widths vary from 400 to 750 mm.
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of nutrients will support the synthesis of more small cells than large 

cells. We will see that cell morphology is also often predicated on 

the effect of cell shape on S/V ratio. For example, cell shapes that 

increase the overall membrane area of the cell, such as those having 

long thin appendages or invaginations, allow bacteria to increase 

their S/V ratio for a given mass of cytoplasm. We will see that pro-

karyotic cell morphology is remarkably diverse and different cell 

shapes can convey different benefits upon the cell.

Major Morphologies of Prokaryotic Cells

Common morphologies of prokaryotic cells are shown in Figure 1.8. 

A cell that is spherical or ovoid in morphology is called a coccus 

(plural, cocci). A cylindrically shaped cell is called a rod or a bacillus 

(plural, bacilli). A spiral-shaped cell is called a spirillum (plural, spi-

rilla). A cell that is slightly curved and comma-shaped is called a 

vibrio. A spirochete is a special kind of organism ( ▶ Section 15.17) 

that has a spiral shape but which differs from spirilla because the 

cells of spirochetes are flexible, whereas cells of spirilla are rigid. 

Some bacteria are irregular in shape. Appendages, such as stalks and 

hyphae, are used by some cells for attachment or to increase surface 

area. In addition, asymmetrical cell division such as budding can 

result in irregular and asymmetrical cell shapes.

Cell division has a major impact on morphology because cells 

that remain attached to each other can form distinctive shapes. For 

instance, some cocci occur in pairs (diplococci), some form long 

chains (streptococci), others occur in three-dimensional cubes (tet-

rads or sarcinae), and still others occur in grapelike clusters (staphy-

lococci). Filamentous bacteria are long, thin, rod-shaped bacteria 

that divide terminally and then form long filaments composed of 

many cells attached end to end.

The cell morphologies described here are representative but cer-

tainly not exhaustive; many variations of these morphologies are 

known. For example, there can be fat rods, thin rods, short rods, and 

long rods, rods that occur as single cells, as pairs of cells, or rods that 

To illustrate this, consider the S/V ratio for some of the cells of dif-

ferent sizes listed in Table 1.1: Pelagibacter ubique, 22; Escherichia coli, 

4.5; and E. fishelsoni (Figure 1.6a), 0.05. The S/V of a rod-shaped 

organism can be estimated as if it were a cylinder; hence, the S/V of 

the cell will decrease as its radius increases.

The S/V ratio of a cell controls many of its properties, including 

how fast it grows (its growth rate) and shape. Cellular growth rate 

depends in part on the rate at which cells exchange nutrients and 

waste products with their environment. As cell size decreases, the 

S/V ratio of the cell increases, and this means that small cells can 

exchange nutrients and wastes more rapidly (per unit cell volume) 

than can large cells. As a result, free-living cells that are smaller tend 

to be more efficient than those that are larger, and any given mass 
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Figure 1.7  Surface area and volume relationships in cells. As a cell increases in 

size, its S/V ratio decreases.
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Figure 1.8  Cell morphologies. Beside each drawing is a phase-contrast photomicrograph of cells showing that morphology. Coccus  

(cell diameter in photomicrograph, 1.5 mm); rod (1 mm); spirillum (1 mm); spirochete (0.25 mm); budding (1.2 mm); filamentous (0.8 mm). All 

photomicrographs are of species of Bacteria. Not all of these morphologies are known among the Archaea, but cocci, rods, and spirilla  

are common.
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Explore the Microbial World 

Viruses are very small microbes and range in 

diameter from as small as 20 nm to almost 

750 nm. Although no cells exist that are as 

small as most viruses, the recent discovery of 

ultra-small bacterial cells 1,2 has pushed the 

lower limits of cell size to what microbiolo-

gists feel must be very close to the minimal 

value. And, because microbiologists today can 

deduce amazing amounts of information 

about cells in nature without culturing them, 

the lack of laboratory cultures of these tiny 

cells has been only a minor impediment to 

understanding their biology in detail. 

Microbiologists collected groundwater, 

which travels through Earth’s deep subsurface, 

from a Colorado (USA) aquifer (Figure 1) and 

passed it through a membrane filter whose 

Electron cryotomography, a microscopic 

technique in which a specimen is examined 

at extremely cold temperatures without fixa-

tion (chemical treatment that can alter a cell’s 

morphology, see Section 1.10), showed the 

groundwater ultramicrobacteria to consist pri-

marily of oval-shaped cells about 0.2 mm in 

diameter (Figure 2). The volume of these cells 

was calculated to be about 1/200 that of a 

cell of the bacterium Escherichia coli (see 

Table 1.1) such that more than 200 of the 

small cells could fit into one E. coli cell! Each 

of the tiny cells contained about 50 ribo-

somes, which is also about 1/100 of the num-

ber present in a slowly growing (100-min 

generation time) cell of E. coli. The very small 

size of the groundwater ultramicrobacteria 

gives them an enormous surface-

to-volume ratio, and it is hypothe-

sized that this advantage benefits 

them in extracting resources 

from their nutrient-deficient 

habitat.

Despite the fact that the tiny 

groundwater bacteria have yet to 

be cultured in the laboratory, 

much is already known about 

them because their small 

genomes—less than 1 megabase 

(Mb) in size—were obtained and 

analyzed. 2 From a phylogenetic 

perspective, the different species 

detected were distantly related to 

major phyla of Bacteria known 

from environmental analyses of 

diverse environments but which 

have thus far defied laboratory cul-

ture. Further analyses showed 

that genes encoding the enzymes 

for several core metabolic path-

ways widely distributed among 

microorganisms were absent from 

the genomes of the groundwater ultramicro-

bacteria. This suggests a metabolically mini-

malist lifestyle for these tiny cells and a 

survival strategy of cross-feeding essential 

nutrients with neighboring species in their 

microbial community.

A strategy of obtaining nutrients from 

other organisms is one widely used in the 

microbial world. As we will see later in this 

book, many disease-causing (pathogenic or 

parasitic) bacteria have very small genomes 

that are missing many key genes otherwise 

necessary for a free-living lifestyle. However, 

the pathogenic or parasitic way of life of these 

microbes lets them "get away" with a minimal 

genomic complement because any essential 

molecules they are unable to biosynthesize 

are supplied by the host.

Although we do not yet know exactly how 

small a microbial cell can be, microbiologists 

are closing in on this number from environ-

mental analyses such as the Colorado ground-

water study. From the same samples that 

yielded ultra-small Bacteria in this study, 

ultra-small Archaea were also detected and 

found to contain small and highly reduced 

genomes. 2

It is thus likely that a large diversity of 

very small prokaryotic cells occurs in nature, 

and from the continued study of these tiny 

cells, more precise values for both the lower 

limits to cell size and the minimal genomic 

requirements for life should emerge. More-

over, theoretical considerations of cell size 

have shown that DNA and proteins dominate 

the volume of very small cells and that the 

theoretical lower limit to cell size agrees 

closely with the smallest bacteria observed in 

nature thus far. 3

1 Luef, B., et al. 2015. Nat. Commun. doi:10.1038/ncomms7372.
2 Castelle, C.J., et al. 2015. Curr. Biol. 25: 1–12.
3 Kempes, C.P., et al. 2016. ISME J. 10: 2145–2157.

Tiny Cells

Figure 1  Sampling the anoxic groundwater aquifer  

that parallels the Colorado River near Rifle, Colorado.

Figure 2  A tiny bacterial cell from anoxic ground‑ 

water that passed through a filter with 0.2@mm pores. 

The cell is not quite 0.2 mm in diameter.

pores were only 0.2 mm in diameter. The liquid 

that passed through the filter was then sub-

jected to microbiological analyses. Surprisingly, 

since filters with 0.2-mm pores have been 

used for decades to remove bacterial cells 

from solutions to generate “sterile solutions,” 

prokaryotic cells were present in the ground-

water filtrate. In fact, a diverse array of Bacte-

ria were present in the filtrate, revealing that 

the groundwater was inhabited by a microbial 

community of tiny cells 1 that microbiologists 

have come to call ultramicrobacteria.

9
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Bacteria

Bacteria have a prokaryotic cell structure (Figure 1.4a). Bacteria are 

often thought of as undifferentiated single cells with a length that 

ranges from 0.5 to 10 mm. While bacteria that fit this description are 

common, the Bacteria are actually tremendously diverse in appear-

ance, size, and function (Figure 1.9). Although most bacteria are unicel-

lular, some bacteria can differentiate to form multiple cell types and 

others are even multicellular (for example, Magnetoglobus, Figure 1.9).

Among the Bacteria, 30 major phylogenetic lineages (called 

phyla) have at least one species that has been grown in culture, 

though many more phyla exist which remain largely uncharacter-

ized. Some of these phyla contain thousands of described species 

while others contain only a few. More than 90% of cultivated bac-

teria belong to one of only four phyla: Actinobacteria, Firmicutes, 

Proteobacteria, and Bacteroidetes. The analyses of environmental 

DNA sequences provide evidence for the existence of at least 80 

bacterial phyla (Section 1.15).

Archaea

Like Bacteria, Archaea also have a prokaryotic cell structure 

(Figure 1.4a). The domain Archaea consists of five described phyla: 

Euryarchaeota, Crenarchaeota, Thaumarchaeota, Nanoarchaeota, and 

Korarchaeota. Archaea have historically been associated with extreme 

environments; the first isolates came from hot, salty, or acidic sites. 

But not all Archaea are extremophiles. Archaea are indeed common in 

form into filaments. As we will see, there are even square bacteria, 

hexagon-shaped bacteria, and star-shaped bacteria! Cell morpholo-

gies thus form a continuum, with some shapes, such as rods and 

cocci, being very common, whereas others, such as spiral, budding, 

and filamentous shapes, are less common.

Check Your Understanding

• What properties of the cell change as it gets smaller?

• Why is it that eukaryotic cells are typically larger than

prokaryotic cells?

• What traits have allowed the bacteria Epulopiscium and

Thiomargarita to have such large cells?

1.4  An Introduction to Microbial Life
As we have seen, microorganisms vary dramatically in size, shape, 

and structure. In this section we will learn more about different evo-

lutionary (phylogenetic) lineages of cells. All cells fall into one of 

three major groups: Bacteria, Archaea, or Eukarya. These three major 

cell lineages are called domains, and all known cellular organisms 

belong to one of these three domains. In addition, while much of 

our focus in this chapter is on cellular forms of life, not all microbes 

form cells. In this section, we will also consider viruses, which are a 

group of microorganisms that lack a cellular structure. All known 

microorganisms can be classified into one of these four groups.
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Figure 1.9  Microorganisms vary greatly in size and 

shape. The smallest known microbe is the circovirus 

(20 nm) and the largest shown here is the bacterium 

Epulopiscium (700 mm), which represents a 35,000-fold 

difference in length! Certain protozoa can be even 

larger than Epulopiscium (72 mm long) and are visible 

to the unaided eye. Included in the figure are Eukarya: 

Paramecium (300 mm * 85 mm), diatoms (Navicula, 

50 mm * 12 mm), yeast (Saccharomyces, 5 mm),  

and nanoflagellates (Cafeteria, 2 mm); Bacteria:  

Epulopiscium (700 mm * 80 mm), cyanobacteria 

(Oscillatoria, 10-mm-diameter multicellular filaments), 

Magnetoglobus (multicellular aggregate, 20 mm  

diameter), Spirochaetes (2–10 mm * 0.25 mm),  

Flexibacter (5–100 mm * 0.5 mm filaments),  

Escherichia coli (2 mm * 0.5 mm), Pelagibacter 

(0.4 mm * 0.15 mm), and Mycoplasma (0.2 mm); 

Archaea: Giganthauma (10-mm-diameter multicel‑ 

lular filament), Ignicoccus (6 mm), Nanoarchaeum  

(0.4 mm), Haloquadratum (2 mm), Methanosarcina 

(2 mm per cell in packet); and viruses: Pandoravirus 

(1 mm * 0.4 mm), T4 bacteriophage (200 nm * 90 nm), 

Influenza A virus (100 nm), Tobacco mosaic virus 

(300 nm * 20 nm), Circovirus (20 nm).
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infect, and different viruses are known to infect cells from all three 

domains of life. Viruses are often classified on the basis of their struc-

ture, genome composition, and host specificity. Viruses that infect 

bacteria are called bacteriophages (or phages, for short). Bacteriophages 

have been used as model systems to explore many aspects of viral biol-

ogy. While most viruses are considerably smaller than bacterial cells 

(Figure 1.9), there are also unusually large viruses such as the Pandora-

viruses, which can be more than 1 micrometer long and have a 

genome that contains as many as 2500 genes, larger than that of many 

bacteria! We will learn much more about viruses in Chapters 5 and 11.

  Check Your Understanding

•	 How are viruses different from Bacteria, Archaea, and Eukarya?

•	 What four bacterial phyla contain the largest number of well-

characterized species?

•	 What phylum of Archaea is common worldwide in soils and in 

the oceans?

the most extreme environments that support life, such as those associ-

ated with volcanic systems, and species of Archaea hold many of the 

records that define the chemical and physical limits of life as we know 

them. However, in addition to these, Archaea are found widely in 

nature in nonextreme environments. For example, methane-produc-

ing Archaea (methanogens) are common in wetlands and in the guts 

of animals (including humans) and have a major impact on the 

greenhouse gas composition of our atmosphere. In addition, species 

of Thaumarchaeota inhabit soils and oceans worldwide and are impor-

tant contributors to the global nitrogen cycle.

Archaea are also notable in that this domain lacks any known dis-

ease-causing (pathogenic or parasitic) species of plants or animals. 

Most described species of Archaea fall within the phyla Crenarchaeota 

and Euryarchaeota while only a handful of species have been described 

for the Nanoarchaeota, Korarchaeota, and Thaumarchaeota. Analysis of 

environmental DNA sequences indicate more than 12 archaeal phyla 

likely exist. We discuss Archaea in detail in Chapter 17.

Eukarya

Plants, animals, and fungi are the most well-known groups of 

Eukarya. These groups are phylogenetically relatively young com-

pared with Bacteria and Archaea, originating during an evolutionary 

burst called the Cambrian explosion, which began about 600 million 

years ago. The first eukaryotes, however, were unicellular microbes. 

Microbial eukaryotes, which include diverse algae and protozoa, 

may have first appeared as early as 2 billion years ago, well before 

the origin of plants, animals, and fungi (Section 1.5). The major 

lineages of Eukarya are traditionally called kingdoms instead of phyla. 

There are at least six kingdoms of Eukarya, and this diverse domain 

contains microorganisms as well as the plants and animals.

Microbial eukaryotes vary dramatically in size, shape, and physi-

ology (Figure 1.9). Among the smallest are the nanoflagellates, 

which are microbial predators that can be as small as 2 mm long. 

In addition, Ostreococcus, a genus of green algae that contains spe-

cies whose cells are only 0.8 mm in diameter, are smaller than 

many bacteria. The largest single-celled organisms are eukaryotes, 

but they are hardly microbial. Xenophyophores are amoeba-like, 

single-celled organisms that live exclusively in the deep oceans and 

can be up to 10 centimeters in length. In addition, plasmodial slime 

molds consisting of a single cytoplasmic compartment can be up 

to 30 cm in diameter. In Chapter 18 we consider microbial eukary-

otes in detail.

Viruses

Viruses are not found on the tree of life, and for a variety of reasons, 

it can be argued that they are not truly alive. Although viruses can 

replicate—a hallmark of cells—viruses are obligate parasites that can 

only replicate within the cytoplasm of a host cell. Viruses are not 

cells, and they lack the cytoplasmic membrane, cytoplasm, and ribo-

somes found in all forms of cellular life. Viruses do not carry out 

metabolic processes; instead, they take over the metabolic systems 

of infected cells and turn them into vessels for producing more 

viruses. Unlike cells, which all have genomes composed of double-

stranded DNA, viruses have genomes composed of DNA or RNA that 

can be either double- or single-stranded. Viral genomes are often 

quite small, with the smallest having only three genes. The small 

size of most viral genomes means that no genes are conserved 

among all viruses, or between all viruses and all cells.

Humans

Bacteria
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Eukarya
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Vascular 
plants

Mammals

Origin of Earth
(4.6 bya)

Bacteria
and Archaea

Phototrophic
bacteria

Cyanobacteria

Oxygen
absent

Oxygen
present

Transition to
an oxygenated
atmosphere

LUCA

Eukarya

 4
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M
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(b)
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Eukarya diverge from
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Bacteria and Archaea 
diverge ~3.8 bya

Present

Figure 1.10  A summary of life on Earth through time and origin of the cellular 

domains. (a) At its origin, Earth was sterile and anoxic. Cellular life, in the form of 

Bacteria and Archaea, was present on Earth by 3.8 billion years ago (bya). The 

evolution of phototrophic bacteria called Cyanobacteria caused Earth’s atmosphere 

to become oxygenated over time. While the first evidence for oxygen in Earth’s 

atmosphere appears 2.4 bya, current levels of atmospheric O2 were not achieved 

until 500–800 million years ago. (b) The three domains of cellular organisms are 

Bacteria, Archaea, and Eukarya. Bacteria and Archaea appeared first and Eukarya 

evolved later, diverging from the Archaea. LUCA, last universal common ancestor.
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Figure 1.11  Phototrophic microorganisms. The earli-

est phototrophs lived in microbial mats. (a) Microbial 

mats in the Great Sippewissett Marsh, a salt marsh in 

Massachusetts, USA. (b) Mats develop a cohesive 

structure that forms at the sediment surface. (c) A 

slice through the mat shows colored layers that form 

due to the presence of photopigments. Cyanobacteria 

form the green layer nearest the surface, purple sulfur 

bacteria form the purple and yellow layers below, and 

green sulfur bacteria form the bottommost green layer. 

The scale on the knife is in cm. (d) Purple sulfur bacte-

ria, (e) green sulfur bacteria, and (f) cyanobacteria 

imaged by bright-field and phase-contrast microscopy. 

Purple and green sulfur bacteria are anoxygenic 

phototrophs that appeared on Earth long before 

oxygenic phototrophs (that is, Cyanobacteria) evolved 

(see Figure 1.10a).

1.5  Microorganisms and the Biosphere
Microbes are the oldest form of life on Earth, and they have evolved 

to perform critical functions that sustain the biosphere. In this sec-

tion we will learn how microbes have changed our planet and how 

they continue to do so.

A Brief History of Life on Earth

Earth is about 4.6 billion years old, and microbial cells first appeared 

between 3.8 and 4.3 billion years ago (Figure 1.10). During the first 

2 billion years of Earth’s existence, its atmosphere was anoxic (O2 

was absent), and only nitrogen (N2), carbon dioxide (CO2), and a 

few other gases were present. Only microorganisms capable of 

anaerobic metabolism (that is, metabolisms that do not require 

O2) could survive under these conditions.

The evolution of phototrophic microorganisms—organisms that 

harvest energy from sunlight—occurred within 1 billion years of the 

formation of Earth (Figure 1.10a). The first phototrophs were anoxy-

genic (non-oxygen-producing), such as the purple sulfur bacteria 

and green sulfur bacteria we know today (Figure 1.11). Cyanobacte-

ria—oxygen-producing (oxygenic) phototrophs (Figure 1.11f )—

evolved nearly a billion years later (Figure 1.10a) and began the slow 

process of oxygenating Earth’s atmosphere. These early phototrophs 

lived in structures called microbial mats, which are still found on 

Earth today (Figure 1.11a–c). After the oxygenation of Earth’s atmo-

sphere, multicellular life forms eventually evolved, culminating in 

the plants and animals we know today. But plants and animals have 

only existed for about half a billion years. The timeline of life on 

Earth (Figure 1.10a) shows that 80% of life’s history was exclusively 

microbial, and thus in many ways, Earth can be considered a micro-

bial planet.

As evolutionary events unfolded, three major lineages of micro-

bial cells—the Bacteria, the Archaea, and the Eukarya (Figure 1.10b)—

were distinguished. All cellular organisms share certain characteristics 

(Figure 1.5) and as a result, certain genes are found in all cells. For 

example, approximately 60 genes are universally present in cells of 

all three domains. Examination of these genes reveals that all three 

domains have descended from a common ancestor, the last universal 

common ancestor (LUCA, Figure 1.10b). Over enormous periods of 

time, microorganisms derived from these three domains have 

evolved to fill every habitable environment on Earth.

Microbial Abundance and Activity in the Biosphere

Microorganisms are present everywhere on Earth that will support 

life. They constitute a major fraction of global biomass and are key 

reservoirs of nutrients essential for life. There are an estimated 

2 * 1030 microbial cells on Earth. To put this number in context, 

the universe in all its vast extent is estimated to contain merely 

7 * 1022 stars. The total amount of carbon present in all microbial 

cells is a significant fraction of Earth’s biomass (Figure 1.12). More-

over, the total amount of nitrogen and phosphorus (essential nutri-

ents for life) within microbial cells is almost four times that in all 

plant and animal cells combined. Microbes also represent a major 

fraction of the total DNA in the biosphere (about 31%), and their 

genetic diversity far exceeds that of plants and animals.
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worldwide, because most aquatic animals require O2 and die if it is 

not available. Only by understanding microorganisms and microbi-

ology can we predict and minimize the effects of human activity on 

the biosphere that sustains us.

Though diverse habitats are influenced strongly by microorgan-

isms, their contributions are easy to overlook because of their small 

sizes. Within the human body, for example, more microbial cells can 

be present than human cells, and more than 200 microbial genes 

are present for every human gene. These microbes provide benefits 

and services that are essential to human health. In later chapters, we 

will return to a consideration of the ways in which microorganisms 

affect animals, plants, and the entire global ecosystem. This is the 

science of microbial ecology, perhaps the most exciting subdisci-

pline of microbiology today. We will see that microbes are important 

to myriad issues of global importance to humans including climate 

change, agricultural productivity, and even energy policy.

We focus now on the effects of microbes on humans and human 

activities.

Check Your Understanding

• How old is Earth and when did cells first appear on Earth?

• Name the three domains of life. Which of these contain

eukaryotic life forms?

• Why were cyanobacteria so important in the evolution of

life on Earth?

1.6  The Impact of Microorganisms  
on Human Society

Microbiologists have made great strides in discovering how micro-

organisms function, and application of this knowledge has greatly 

advanced human health and welfare. Besides understanding micro-

organisms as agents of disease, microbiology has made great 

Microbes are even abundant in habitats that are much too harsh 

for other forms of life, such as volcanic hot springs, glaciers and ice-

covered regions, high-salt environments, extremely acidic or alkaline 

habitats, and deep in the sea or deep in the earth at extremely high 

pressure. Such microorganisms are called extremophiles and their 

properties define the physiochemical limits to life as we know it 

(Table 1.2). We will revisit many of these organisms in later chapters 

and discover the special structural and biochemical properties that 

allow them to thrive under extreme conditions.

All ecosystems are influenced to one extent or another by micro-

bial activities. The metabolic activities of microorganisms can change 

the habitats in which they live, both chemically and physically, and 

these changes can affect other organisms. For example, excess nutri-

ents added to a habitat can cause aerobic (O2-consuming) microor-

ganisms to grow rapidly and consume O2, rendering the habitat 

anoxic (O2-free). Many human activities release nutrients into the 

coastal oceans, thereby stimulating excessive microbial growth, 

which can cause enormous anoxic zones in these waters. These “dead 

Percent of global biomass

Major cellular sourcesElement

Carbon
Plant cell walls, protein, RNA,
DNA, membranes, peptidoglycan

Protein, RNA, DNA,
peptidoglycan

RNA, DNA, membranes

Nitrogen

Phosphorus

0 20 40 60 80 100
Microbial

Plant

Figure 1.12  Contribution of microbial cells to global biomass. Microorganisms 

comprise a significant fraction of the carbon (C) and a majority of the nitrogen (N) 

and phosphorus (P) in the biomass of all organisms on Earth. C, N, and P are the 

macronutrients required in the greatest quantity by living organisms. Animal 

biomass is a minor fraction (60.1%) of total global biomass and is not shown.

Extreme Descriptive term Genus, species Domain Habitat Minimum Optimum Maximum

Temperature

High Hyperthermophile Methanopyrus kandleri Archaea Undersea  

hydrothermal 

vents

90°C 106°C 122°C b

Low Psychrophile Psychromonas ingrahamii Bacteria Sea ice -12°C  c 5°C 10°C

pH

Low Acidophile Picrophilus oshimae Archaea Acidic hot springs -0.06 0.7 d 4

High Alkaliphile Natronobacterium gregoryi Archaea Soda lakes 8.5 10 e 12

Pressure Barophile (piezophile) Moritella yayanosii Bacteria Deep ocean 

sediments

500 atm 700 atmf 71000 atm

Salt (NaCl) Halophile Halobacterium salinarum Archaea Salterns 15% 25% 32% (saturation)

a The organisms listed are the current “record holders” for growth in laboratory culture at the extreme condition listed.
b Anaerobe showing growth at 122°C only under several atmospheres of pressure.
c The permafrost bacterium Planococcus halocryophilus can grow at -15°C and metabolize at -25°C. However, the organism grows optimally at 25°C and grows up  

to 37°C and thus is not a true psychrophile.
d P. oshimae is also a thermophile, growing optimally at 60°C.
e N. gregoryi is also an extreme halophile, growing optimally at 20% NaCl.
f M. yayanosii is also a psychrophile, growing optimally near 4°C.

TABLE 1.2   Classes and examples of extremophiles a
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Microorganisms, Agriculture, and Human Nutrition

Agriculture benefits from nutrient cycling performed by microor-

ganisms, in particular, the cycling of nitrogen, sulfur, and carbon 

compounds. For example, legumes are a diverse family of plants that 

include major crop species such as soybeans, peas, and lentils, 

among others. Legumes live in close association with bacteria that 

form structures called nodules on their roots. In the nodules, these 

bacteria convert atmospheric nitrogen (N2) into ammonia (NH3) 

through the process of nitrogen fixation. NH3 is the major nutrient 

found in fertilizer and is used as a nitrogen source for plant growth 

(Figure 1.14). In this way bacteria allow legumes to make their own 

fertilizer, thereby reducing the need for farmers to apply fertilizers 

produced industrially. When plants die they are decomposed by 

bacteria in the soil, and this process produces the nutrients that form 

the basis of soil fertility. Bacteria regulate nutrient cycles (Figure 

1.14), in soils and throughout the biosphere, transforming and recy-

cling the nutrients required by plants and animals.

Also of major agricultural importance are microorganisms that 

inhabit the rumen of ruminant animals, such as cattle and sheep. 

Ruminants, like most animals, lack enzymes for breaking down the 

polysaccharide cellulose, the major component of plant cell walls. 

The digestive tract of ruminants has a large specialized chamber 

called the rumen in which cellulose is digested. The rumen contains 

a dense and diverse community of microorganisms that digest and 

ferment cellulose. Without these symbiotic microorganisms, rumi-

nants could not digest plant matter like grass and hay, most of which 

consists of cellulose. Ruminants ultimately get their nutrition by 

metabolizing the waste products of microbial fermentation and by 

digesting dead microbial cells. Many domesticated and wild her-

bivorous mammals—including deer, bison, camels, giraffes, and 

goats—are also ruminants.

advances in understanding the important roles microorganisms play 

in food and agriculture, and microbiologists have exploited micro-

bial activities to produce valuable human products, generate energy, 

and clean up the environment.

Microorganisms as Agents of Disease

The statistics summarized in Figure 1.13 show how microbiologists 

and clinical medicine have combined to conquer infectious diseases 

in the past 120 years. At the beginning of the twentieth century, more 

than half of all humans died from infectious diseases caused by 

bacterial and viral pathogens. Today, however, infectious diseases 

are largely preventable due to advances in our understanding of 

microbiology. Microbiology has fueled advances in medicine such 

as vaccination and antibiotic therapy, advances in engineering such 

as water and wastewater treatment, advances in food safety such as 

pasteurization, and a better understanding of how microorganisms 

are transmitted. Infectious diseases now cause fewer than 5% of all 

deaths in countries where these interventions, made possible by 

microbiology, are readily available. However, while infectious dis-

eases are preventable, the World Health Organization has docu-

mented that they still account for more than a third of all deaths in 

countries where microbial interventions are less available, such as 

those having low-income economies. As we will see later in this 

chapter, the development of microbiology as a science can be traced 

to pioneering studies of infectious disease.

While pathogens and infectious disease remain a major threat to 

humanity, and combating these harmful organisms remains a major 

focus of microbiology, most microorganisms are not harmful to 

humans. In fact, most microorganisms are beneficial, and in many 

cases are even essential to human welfare and the functioning of the 

planet. We turn our attention to these microorganisms and micro-

bial activities now.

Deaths per 100,000 populationDeaths per 100,000 population
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Figure 1.13  Death rates for the leading causes of death in the United States: 1900 and 2016. Infectious diseases were the leading causes 

of death in 1900, whereas today they account for relatively few deaths. Kidney diseases can be caused by microbial infections or systemic 

sources (diabetes, cancers, toxicities, metabolic diseases, etc.). Data are from the United States National Center for Health Statistics and 

the Centers for Disease Control and Prevention.
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beneficial microbes have been used for thousands of years to 

improve food safety and to preserve foods (Figure 1.16). For exam-

ple, cheeses, yogurt, and buttermilk are all produced by microbial 

fermentation of dairy products. Microbial production of lactic acid 

in these foods improves their shelf life and prevents the growth of 

foodborne pathogens. Lactic acid–producing bacteria are used to 

produce a variety of sour-tasting foods, including sauerkraut, kim-

chi, pickles, and even certain sausages. Even the production of 

chocolate and coffee rely on microbial fermentation. Moreover, 

the fermentative activities of yeast are essential for baking (by gen-

erating carbon dioxide—CO2—to raise the dough), and for the 

production of alcoholic beverages (by generating alcohol). The 

products of microbial fermentation affect the flavor and taste of 

foods and can prevent spoilage as well as the growth of deleterious 

organisms.

Microorganisms and Industry

Microorganisms play important roles in all manner of human 

activity. The field of industrial microbiology is focused on the use of 

microorganisms as tools for major industries such as pharmaceu-

ticals and brewing (Figure 1.17). For example, in large industrial 

settings, naturally occurring microorganisms are grown on a mas-

sive scale in bioreactors called fermentors to make large amounts 

of products, such as antibiotics, enzymes, alcohol, and certain 

other chemicals, at relatively low cost. By contrast, biotechnology 

employs genetically engineered microorganisms to synthesize 

products of high commercial value, such as insulin or other human 

proteins, usually on a small scale.

Microorganisms can also be used to produce biofuels ( ▶ Sec

tion 12.19 and Figure 12.33). For example, as previously discussed, 

The human gastrointestinal (GI) tract lacks a rumen, but we too 

rely on microbial partners for our nutrition. Human enzymes lack 

the ability to break down complex carbohydrates (which can repre-

sent 10–30% of food energy) and so we rely on our gut microbiome 

for this purpose. The colon, or large intestine (Figure 1.15), follows 

the stomach and small intestine in the human digestive tract, and it 

contains about 1011 microbial cells per gram of colonic contents. 

Microbial cell numbers are low in the very acidic (pH 2) stomach 

(about 104 per gram) but increase to about 108 per gram near the 

end of the small intestine (pH 4–5) and then reach maximal num-

bers in the colon (pH 7) (Figure 1.15). The colon contains diverse 

microbial species that assist in the digestion of complex carbohy-

drates, and that synthesize vitamins and other nutrients essential to 

host nutrition. The gut microbiome develops from birth, but it can 

change over time with the human host. The composition of the gut 

microbiome has major effects on GI function and human health as 

we will see in Chapter 24.

Microorganisms and Food

Microbes are intimately associated with the foods we eat. Micro-

bial growth in food can cause food spoilage and foodborne dis-

ease. The manner in which we harvest and store food (for example, 

canning, refrigeration, drying, salting, etc.), the ways in which we 

cook it, and even the spices we use, have all been fundamentally 

influenced by the goal of eliminating harmful organisms from our 

food. Microbial food safety and prevention of food spoilage is a 

major focus of the food industry and a major cause of economic 

loss every year.

While some microbes can cause foodborne disease and food 

spoilage, not all microorganisms in foods are harmful. Indeed, 
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Figure 1.14  Microorganisms in modern agriculture. Root nodules on this soybean plant contain bacteria that fix atmospheric nitrogen 

(N2) to form nitrogenous compounds used by the plant. Ruminant animals such as cows and sheep require rumen microbes to digest 

cellulose from plants. Plant matter and animal wastes are decomposed in soil to produce nutrients that are the basis of soil fertility and 

which are required for plant growth.
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2 Lactic acid

Figure 1.16  Fermented foods. Major fermentations in various fermented foods. It is the fermentation product (ethanol, or lactic, propionic, 

or acetic acids) that both preserves the food and renders in it a characteristic flavor.
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(pH 2, 104
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(pH 4–5, up to 
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Figure 1.15  The human gastrointestinal tract. (a) Diagram of the human GI tract showing the major organs. (b) Scanning electron  

micrograph of microbial cells in the human colon (large intestine). Cell numbers in the colon can reach as high as 1011 per gram. As well  

as high numbers of cells, the microbial diversity in the colon is also quite high.

natural gas (methane, CH4) is a product of the anaerobic metabo-

lism of methanogenic Archaea. Ethyl alcohol (ethanol) is a major 

fuel supplement, which is produced by the microbial fermentation 

of glucose obtained from carbon-rich feedstocks such as sugarcane, 

corn, or rapidly growing grasses. Microorganisms can even convert 

waste materials, such as domestic refuse, animal wastes, and cellu-

lose, into ethanol and methane. In producing these biofuels, 

humans are simply exploiting the metabolic features of particular 

microbes, but at the same time, are reducing the use of fossil fuels. 

As we will document in Chapter 21, CO2 levels have been rising 
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blockages in factory settings and pipelines, in sewers, and even in 

water distribution systems. In addition, biofilms that grow on 

ships’ hulls can cause marked reductions in speed and efficiency. 

Biofilms can even grow in tanks that store oil and fuel, leading to 

spoilage of these products. We will learn that biofilms are also of 

great importance in medicine, as biofilms that form on implanted 

medical devices ( ▶ Section 4.9) can cause infections that are 

extremely difficult to treat.

As these examples show, the influence of microorganisms on 

humans is great and their activities are essential for the functioning 

of the planet. Or, as the famous French chemist and early microbi-

ologist Louis Pasteur so aptly put it: “The role of the infinitely small 

in nature is infinitely large.” Microscopes provide an essential portal 

through which microbiologists such as Pasteur gazed into the world 

of microbes. We therefore continue our introduction to the micro-

bial world with an overview of microscopy.

  Check Your Understanding

•	 How do microbes contribute to the nutrition of animals such as 

humans and cows?

•	 Describe several ways in which microorganisms are important 

in the food and agricultural industries.

•	 What is wastewater treatment and why is it important?

rapidly on Earth in the industrial era, and the link between this 

"greenhouse gas" and Earth’s rising temperatures is firm. Thus, as a 

sustainable fuel source, biofuels should help cool our planet and are 

one facet of the "green revolution" many countries support today.

Microorganisms are also used to clean up wastes. Wastewater 

treatment is essential to sanitation and human health. Wastewater 

treatment relies on microbes to treat water contaminated with 

human waste so that it can be reused or returned safely to the envi-

ronment. Waterborne diseases such as cholera and typhoid (major 

killers before the blossoming of microbiology: see gastroenteritis, 

Figure 1.13) can proliferate in the absence of proper wastewater 

treatment. Microbes can also be used to clean up industrial pollu-

tion in a process called bioremediation. In bioremediation, microor-

ganisms are used to transform spilled oil, solvents, pesticides, heavy 

metals, and other environmentally toxic pollutants into nontoxic 

forms. Bioremediation accelerates the cleanup process either by add-

ing special microorganisms to a polluted environment or by adding 

nutrients that stimulate indigenous microorganisms to degrade the 

pollutants. In either case the goal is to accelerate disappearance of 

the pollutant.

Microbes can grow in almost any environment containing liquid 

water, including structures made by humans. For example, 

microbes often grow on submerged surfaces, forming biofilms. Bio-

films that grow in pipes and drains can cause fouling and 

Biofilms: Microbes grow on surfaces and can
foul pipes and pipelines.

Bioremediation: Microbes are used to clean
contaminated environments.

Wastewater Treatment: Microbes are used to
clean wastewater.

Fermentation: Microbes are used at industrial
scale to make chemicals, solvents, enzymes,
and pharmaceuticals.

Biotechnology: Microbes can be genetically
modified to produce high-value products such
as pharmaceuticals and enzymes.

Biofuels: Microbes are used to convert biomass
into ethanol and wastes into natural gas
(methane).

Figure 1.17  Industrial microbiology. Microbes have major impacts on human industry. Microbes can be used to produce valuable  

products and biofuels and they can also be used to clean up our wastes. Microbial biofilms have major impacts on industry because  

biofilms can clog and corrode pipelines and holding tanks in factories, in ships, and in the oil industry.


