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Preface

The response of students and teachers to the first five editions of Linear Algebra and Its
Applications has been most gratifying. This Sixth Edition provides substantial support
both for teaching and for using technology in the course. As before, the text provides
a modern elementary introduction to linear algebra and a broad selection of interesting
classical and leading-edge applications. The material is accessible to students with the
maturity that should come from successful completion of two semesters of college-level
mathematics, usually calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the original
Linear Algebra Curriculum Study Group (LACSG), which were based on a careful
investigation of the real needs of the students and a consensus among professionals in
many disciplines that use linear algebra. Ideas being discussed by the second Linear
Algebra Curriculum Study Group (LACSG 2.0) have also been included. We hope this
course will be one of the most useful and interesting mathematics classes taken by
undergraduates.

What’s New in This Edition
The Sixth Edition has exciting new material, examples, and online resources. After talk-
ing with high-tech industry researchers and colleagues in applied areas, we added new
topics, vignettes, and applications with the intention of highlighting for students and
faculty the linear algebraic foundational material for machine learning, artificial intelli-
gence, data science, and digital signal processing.

Content Changes
• Since matrix multiplication is a highly useful skill, we added new examples in Chap-
ter 2 to show how matrix multiplication is used to identify patterns and scrub data.
Corresponding exercises have been created to allow students to explore using matrix
multiplication in various ways.

• In our conversations with colleagues in industry and electrical engineering, we heard
repeatedly how important understanding abstract vector spaces is to their work. After
reading the reviewers’ comments for Chapter 4, we reorganized the chapter, condens-
ing some of the material on column, row, and null spaces; moving Markov chains to
the end of Chapter 5; and creating a new section on signal processing.We view signals

x
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as an infinite dimensional vector space and illustrate the usefulness of linear trans-
formations to filter out unwanted “vectors” (a.k.a. noise), analyze data, and enhance
signals.

• By moving Markov chains to the end of Chapter 5, we can now discuss the steady
state vector as an eigenvector. We also reorganized some of the summary material on
determinants and change of basis to be more specific to the way they are used in this
chapter.

• In Chapter 6, we present pattern recognition as an application of orthogonality, and
the section on linear models now illustrates how machine learning relates to curve
fitting.

• Chapter 9 on optimization was previously available only as an online file. It has
now been moved into the regular textbook where it is more readily available to
faculty and students. After an opening section on finding optimal strategies to two-
person zero-sum games, the rest of the chapter presents an introduction to linear
programming—from two-dimensional problems that can be solved geometrically to
higher dimensional problems that are solved using the Simplex Method.

Other Changes
• In the high-tech industry, where most computations are done on computers, judging
the validity of information and computations is an important step in preparing and
analyzing data. In this edition, students are encouraged to learn to analyze their own
computations to see if they are consistent with the data at hand and the questions being
asked. For this reason, we have added “Reasonable Answers” advice and exercises to
guide students.

• We have added a list of projects to the end of each chapter (available online at
bit.ly/30IM8gT and in MyLab Math). Some of these projects were previously
available online and have a wide range of themes from using linear transformations
to create art to exploring additional ideas in mathematics. They can be used for group
work or to enhance the learning of individual students.

• Free-response writing exercises have been added to MyLab Math, allowing faculty to
ask more sophisticated questions online and create a paperless class without losing
the richness of discussing how concepts relate to each other and introductory proof
writing.

• The electronic interactive textbook has been changed fromWolfram CDF to Wolfram
Cloud format. This allows faculty and students to interact with figures and examples
on a wider variety of electronic, devices, without the need to install the CDF Player.

• PowerPoint lecture slides have been updated to cover all sections of the text and cover
them more thoroughly.

Distinctive Features

Early Introduction of Key Concepts
Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting ofR

n, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

http://bit.ly/30IM8gT
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A Modern View of Matrix Multiplication
Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of amatrix
rather than on the matrix entries. A central theme is to view a matrix–vector product Ax
as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.

Linear Transformations
Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transfor-
mations provide a dynamic and graphical view of matrix–vector multiplication.

Eigenvalues and Dynamical Systems
Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material is
spread over several weeks, students havemore time than usual to absorb and review these
critical concepts. Eigenvalues are motivated by and applied to discrete and continuous
dynamical systems, which appear in Sections 1.10, 4.8, and 5.9, and in five sections of
Chapter 5. Some courses reach Chapter 5 after about five weeks by covering Sections
2.8 and 2.9 instead of Chapter 4. These two optional sections present all the vector space
concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems
These topics receive a more comprehensive treatment than is commonly found in be-
ginning texts. The original Linear Algebra Curriculum Study Group has emphasized
the need for a substantial unit on orthogonality and least-squares problems, because
orthogonality plays such an important role in computer calculations and numerical linear
algebra and because inconsistent linear systems arise so often in practical work.

Pedagogical Features

Applications
A broad selection of applications illustrates the power of linear algebra to explain
fundamental principles and simplify calculations in engineering, computer science,
mathematics, physics, biology, economics, and statistics. Some applications appear
in separate sections; others are treated in examples and exercises. In addition, each
chapter opens with an introductory vignette that sets the stage for some application
of linear algebra and provides a motivation for developing the mathematics that
follows.

A Strong Geometric Emphasis
Every major concept in the course is given a geometric interpretation, because many
students learn better when they can visualize an idea. There are substantially more
drawings here than usual, and some of the figures have never before appeared in a linear
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algebra text. Interactive versions of these figures, and more, appear in the electronic
version of the textbook.

Examples
This text devotes a larger proportion of its expository material to examples than do most
linear algebra texts. There are more examples than an instructor would ordinarily present
in class. But because the examples are written carefully, with lots of detail, students can
read them on their own.

Theorems and Proofs
Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginner
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems
A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions often
contain helpful hints or warnings about the homework.

Exercises
The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that we have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Sixth Edition maintain the
integrity of the exercises from previous editions, while providing fresh problems for
students and instructors.

Exercises marked with the symbol T are designed to be worked with the aid of
a “matrix program” (a computer program, such as MATLAB, Maple, Mathematica,
MathCad, or Derive, or a programmable calculator withmatrix capabilities, such as those
manufactured by Texas Instruments).

True/False Questions
To encourage students to read all of the text and to think critically, we have developed
over 300 simple true/false questions that appear throughout the text, just after the com-
putational problems. They can be answered directly from the text, and they prepare
students for the conceptual problems that follow. Students appreciate these questions-
after they get used to the importance of reading the text carefully. Based on class testing
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and discussions with students, we decided not to put the answers in the text. (The Study
Guide tells the students where to find the answers to the odd-numbered questions.) An
additional 150 true/false questions (mostly at the ends of chapters) test understanding of
the material. The text does provide simple T/F answers to most of these supplementary
exercises, but it omits the justifications for the answers (which usually require some
thought).

Writing Exercises
An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at the
back of the text or a hint is provided and the solution is given in the Study Guide,
described below.

Projects
A list of projects (available online at bit.ly/30IM8gT) have been identified at the end
of each chapter. They can be used by individual students or in groups. These projects
provide the opportunity for students to explore fundamental concepts and applications
in more detail. Two of the projects even encourage students to engage their creative side
and use linear transformations to build artwork.

Reasonable Answers
Many of our students will enter a workforce where important decisions are being made
based on answers provided by computers and other machines. The Reasonable Answers
boxes and exercises help students develop an awareness of the need to analyze their
answers for correctness and accuracy.

Computational Topics
The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to us
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, analyze whether
the results are reasonable, then explain the results to other people. For this reason, many
exercises in the text ask you to explain or justify your calculations. A written explanation
is often required as part of the answer. If you are working on questions in MyLab Math,
keep a notebook for calculations and notes on what you are learning. For odd-numbered
exercises in the textbook, you will find either the desired explanation or at least a good
hint. Youmust avoid the temptation to look at such answers before you have tried to write
out the solution yourself. Otherwise, you are likely to think you understand something
when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box.
A glossary of terms is included at the end of the text. Important facts are stated as
theorems or are enclosed in tinted boxes, for easy reference. We encourage you to read
the Preface to learn more about the structure of this text. This will give you a framework
for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language—with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes
Wehope you read the Numerical Notes in the text, even if you are not using a computer or
graphing calculator with the text. In real life, most applications of linear algebra involve
numerical computations that are subject to some numerical error, even though that error
may be extremely small. The Numerical Notes will warn you of potential difficulties in
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using linear algebra later in your career, and if you study the notes now, you are more
likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.

Study Guide
To help you succeed in this course, we suggest that you use the Study Guide available
in MyLab Math and for purchase in print (ISBN 9780135851234). Not only will it help
you learn linear algebra, it also will show you how to study mathematics. At strategic
points in your textbook, marginal notes will remind you to check that section of the Study
Guide for special subsections entitled “Mastering Linear Algebra Concepts.” There you
will find suggestions for constructing effective review sheets of key concepts. The act
of preparing the sheets is one of the secrets to success in the course, because you will
construct links between ideas. These links are the “glue” that enables you to build a solid
foundation for learning and remembering the main concepts in the course.

The Study Guide contains a detailed solution to more than a third of the odd-
numbered exercises, plus solutions to all odd-numbered writing exercises for which
only a hint is given in the Answers section of this book. The Guide is separate from
the text because you must learn to write solutions by yourself, without much help. (We
know from years of experience that easy access to solutions in the back of the text slows
the mathematical development of most students.) The Guide also provides warnings of
common errors and helpful hints that call attention to key exercises and potential exam
questions.

If you have access to technology—MATLAB, Octave, Maple, Mathematica, or a TI
graphing calculator—you can save many hours of homework time. The Study Guide is
your “lab manual” that explains how to use each of these matrix utilities. It introduces
new commands when they are needed. You will also find that most software commands
you might use are easily found using an online search engine. Special matrix commands
will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. Many students have found the
strategies there very helpful, and we hope you will, too.
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1 Linear Equations in
Linear Algebra

..Introductory Example

LINEAR MODELS IN ECONOMICS
AND ENGINEERING
It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched cards
into the university’s Mark II computer. The cards contained
information about the U.S. economy and represented a
summary of more than 250,000 pieces of information
produced by the U.S. Bureau of Labor Statistics after two
years of intensive work. Leontief had divided the U.S.
economy into 500 “sectors,” such as the coal industry,
the automotive industry, communications, and so on.
For each sector, he had written a linear equation that
described how the sector distributed its output to the other
sectors of the economy. Because the Mark II, one of the
largest computers of its day, could not handle the resulting
system of 500 equations in 500 unknowns, Leontief had
distilled the problem into a system of 42 equations in
42 unknowns.

Programming the Mark II computer for Leontief’s
42 equations had required several months of effort, and he
was anxious to see how long the computer would take to
solve the problem. The Mark II hummed and blinked for
56 hours before finally producing a solution. We will
discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts at
Harvard in 1949 marked one of the first significant uses
of computers to analyze what was then a large-scale

mathematical model. Since that time, researchers in
many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and software
triggering a demand for even greater capabilities. Computer
science is thus intricately linked with linear algebra through
the explosive growth of parallel processing and large-scale
computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

� Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.
The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface

1



2 CHAPTER 1 Linear Equations in Linear Algebra

rocks and are measured by geophones attached to
mile-long cables behind the ship.

� Linear programming.Many important management
decisions today are made on the basis of linear
programming models that use hundreds of
variables. The airline industry, for instance, employs
linear programs that schedule flight crews, monitor
the locations of aircraft, or plan the varied schedules
of support services such as maintenance and
terminal operations.

� Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software

relies on linear algebra techniques and systems of
linear equations.

� Artificial intelligence. Linear algebra plays a key
role in everything from scrubbing data to facial
recognition.

� Signals and signal processing. From a digital
photograph to the daily price of a stock, important
information is recorded as a signal and processed
using linear transformations.

� Machine learning. Machines (specifically comput-
ers) use linear algebra to learn about anything from
online shopping preferences to speech recognition.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithmwill be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to
amatrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

..
1.1 Systems of Linear Equations

A linear equation in the variables x1; : : : ; xn is an equation that can be written in the
form

a1x1 C a2x2 C � � � C anxn D b (1)

where b and the coefficients a1; : : : ; an are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x1 � 5x2 C 2 D x1 and x2 D 2
�
p

6 � x1

�

C x3

are both linear because they can be rearranged algebraically as in equation (1):

3x1 � 5x2 D �2 and 2x1 C x2 � x3 D 2
p

6

The equations

4x1 � 5x2 D x1x2 and x2 D 2
p

x1 � 6

are not linear because of the presence of x1x2 in the first equation and
p

x1 in the second.
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A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, x1; : : : ; xn. An example is

2x1 � x2 C 1:5x3 D 8

x1 � 4x3 D �7
(2)

A solution of the system is a list .s1; s2; : : : ; sn/ of numbers that makes each equation a
true statement when the values s1; : : : ; sn are substituted for x1; : : : ; xn, respectively. For
instance, .5; 6:5; 3/ is a solution of system (2) because, when these values are substituted
in (2) for x1; x2; x3, respectively, the equations simplify to 8 D 8 and �7 D �7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

x1 � 2x2 D �1

�x1 C 3x2 D 3

The graphs of these equations are lines, which we denote by `1 and `2. A pair of numbers
.x1; x2/ satisfies both equations in the system if and only if the point .x1; x2/ lies on both
`1 and `2. In the system above, the solution is the single point .3; 2/, as you can easily
verify. See Figure 1.

2

3
/

/

x
2

x
1

1

2

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) x1 � 2x2 D �1

�x1 C 2x2 D 3

(b) x1 � 2x2 D �1

�x1 C 2x2 D 1

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.

1
2

2

3

x
2

x
1

(a)

/
/ 1

2

3

x
2

x
1

(b)

/

FIGURE 2 (a) No solution. (b) Infinitely many solutions.
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A system of linear equations has

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation
The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

(3)

with the coefficients of each variable aligned in columns, the matrix
2

4

1 �2 1

0 2 �8

5 0 �5

3

5

is called the coefficient matrix (or matrix of coefficients) of the system (3), and the
matrix

2

4

1 �2 1 0

0 2 �8 8

5 0 �5 10

3

5 (4)

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be written as 0 � x1 C 2x2 � 8x3 D 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the respective right sides of the equations.

The size of a matrix tells howmany rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 � 4 (read “3 by 4”) matrix. Ifm and
n are positive integers, an m � n matrix is a rectangular array of numbers with m rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System
This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(that is one with the same solution set) that is easier to solve.

Roughly speaking, use the x1 term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x2 term in the second equation to eliminate
the x2 terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.
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Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix nota-
tion, and the results are placed side by side for comparison:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

2

4

1 �2 1 0

0 2 �8 8

5 0 �5 10

3

5

Keep x1 in the first equation and eliminate it from the other equations. To do so, add �5

times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

�5 � Œequation 1�

C Œequation 3�

Œnew equation 3�

�5x1 C 10x2 � 5x3 D 0

5x1 � 5x3 D 10

10x2 � 10x3 D 10

The result of this calculation is written in place of the original third equation:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

10x2 � 10x3 D 10

2

4

1 �2 1 0

0 2 �8 8

0 10 �10 10

3

5

Now, multiply equation 2 by 1
2
in order to obtain 1 as the coefficient for x2. (This

calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

10x2 � 10x3 D 10

2

4

1 �2 1 0

0 1 �4 4

0 10 �10 10

3

5

Use the x2 in equation 2 to eliminate the 10x2 in equation 3. The “mental’’ computation
is

�10 � Œequation 2�

C Œequation 3�

Œnew equation 3�

�10x2 C 40x3 D �40

10x2 � 10x3 D 10

30x3 D �30

The result of this calculation is written in place of the previous third equation (row):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

30x3 D �30

2

4

1 �2 1 0

0 1 �4 4

0 0 30 �30

3

5

Now, multiply equation 3 by 1
30

in order to obtain 1 as the coefficient for x3. (This
calculation will simplify the arithmetic in the next step.)

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

2

4

1 �2 1 0

0 1 �4 4

0 0 1 �1

3

5
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The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

2

4

1 �2 1 0

0 1 �4 4

0 0 1 �1

3

5

Eventually, you want to eliminate the �2x2 term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the �4x3 and Cx3 terms in equations 2
and 1. The two “mental” calculations are

4 � Œequation 3�

C Œequation 2�

Œnew equation 2�

4x3 D �4

x2 � 4x3 D 4

x2 D 0

�1 � Œequation 3�

C Œequation 1�

Œnew equation 1�

� x3 D 1

x1 � 2x2 C x3 D 0

x1 � 2x2 D 1

It is convenient to combine the results of these two operations:

x1 � 2x2 D 1

x2 D 0

x3 D �1

2

4

1 �2 0 1

0 1 0 0

0 0 1 �1

3

5

Now, having cleaned out the column above the x3 in equation 3, move back to the x2 in
equation 2 and use it to eliminate the �2x2 above it. Because of the previous work with
x3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1
and obtain the system:

x1 D 1

x2 D 0

x3 D �1

2

4

1 0 0 1

0 1 0 0

0 0 1 �1

3

5

The work is essentially done. It shows that the only solution of the original system is

x
2

x
3

(1, 0, 21)

x
1

Each of the original equations
determines a plane in
three-dimensional space. The point
.1; 0; �1/ lies in all three planes.

.1; 0; �1/. However, since there are so many calculations involved, it is a good practice
to check the work. To verify that .1; 0; �1/ is a solution, substitute these values into the
left side of the original system, and compute:

1.1/ � 2.0/ C 1.�1/ D 1 � 0 � 1 D 0

2.0/ � 8.�1/ D 0 C 8 D 8

5.1/ � 5.�1/ D 5 C 5 D 10

The results agree with the right side of the original system, so .1; 0; �1/ is a solution of
the system.

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.1

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

1A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there is
a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant c, then multiplying the new row by 1=c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add �c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 39–42 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy
to perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions
Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10
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SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

2

4

1 �2 1 0

0 1 �4 4

0 0 1 �1

3

5

At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x2 and hence could determine x1 from equation 1. So a solution exists;
the system is consistent. (In fact, x2 is uniquely determined by equation 2 since x3 has
only one possible value, and x1 is therefore uniquely determined by equation 1. So the
solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

x2 � 4x3 D 8

2x1 � 3x2 C 2x3 D 1

4x1 � 8x2 C 12x3 D 1

(5)

SOLUTION The augmented matrix is
2

4

0 1 �4 8

2 �3 2 1

4 �8 12 1

3

5

To obtain an x1 in the first equation, interchange rows 1 and 2:
2

4

2 �3 2 1

0 1 �4 8

4 �8 12 1

3

5

To eliminate the 4x1 term in the third equation, add �2 times row 1 to row 3:
2

4

2 �3 2 1

0 1 �4 8

0 �2 8 �1

3

5 (6)

Next, use the x2 term in the second equation to eliminate the �2x2 term from the third
equation. Add 2 times row 2 to row 3:

2

4

2 �3 2 1

0 1 �4 8

0 0 0 15

3

5 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 � 3x2 C 2x3 D 1

x2 � 4x3 D 8

0 D 15

(8)

The equation 0 D 15 is a short form of 0x1 C 0x2 C 0x3 D 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1; x2; x3 that
satisfy (8) because the equation 0 D 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (it has no solution).

x2

x1

x3

The system is inconsistent because
there is no point that lies on all
three planes.

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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.... Reasonable Answers

.

Once you have one or more solutions to a system of equations, remember to check
your answer by substituting the solution you found back into the original equation.
For example, if you found .2; 1; �1/ was a solution to the system of equations

x1 � 2x2 C x3 D 2

x1 � 2x3 D �2

x2 C x3 D 3

you could substitute your solution into the original equations to get

2 � 2.1/ C .�1/ D �1 ¤ 2

2 � 2.�1/ D 4 ¤ �2

1 C .�1/ D 0 ¤ 3

It is now clear that there must have been an error in your original calculations. If
upon rechecking your arithmetic, you find the answer .2; 1; 2/, you can see that

2 � 2.1/ C .2/ D 2 D 2

2 � 2.2/ D �2 D �2

1 C 2 D 3 D 3

and you can now be confident you have a correct solution to the given system of
equations.

.....

.... Numerical Note

.

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals ˙:d1 � � � dp � 10r , where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated) to
the number of digits stored. “Roundoff error” is also introduced when a number
such as 1=3 is entered into the computer, since its decimal representation must
be approximated by a finite number of digits. Fortunately, inaccuracies in floating
point arithmetic seldom cause problems. The numerical notes in this book will
occasionally warn of issues that you may need to consider later in your career.

.....

Practice Problems

.

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]



10 CHAPTER 1 Linear Equations in Linear Algebra

.....

Practice Problems (Continued)

.

a. x1 C 4x2 � 2x3 C 8x4 D 12

x2 � 7x3 C 2x4 D �4

5x3 � x4 D 7

x3 C 3x4 D �5

b. x1 � 3x2 C 5x3 � 2x4 D 0

x2 C 8x3 D �4

2x3 D 3

x4 D 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.

2

4

1 5 2 �6

0 4 �7 2

0 0 5 0

3

5

3. Is .3; 4; �2/ a solution of the following system?

5x1 � x2 C 2x3 D 7

�2x1 C 6x2 C 9x3 D 0

�7x1 C 5x2 � 3x3 D �7

4. For what values of h and k is the following system consistent?

2x1 � x2 D h

�6x1 C 3x2 D k

1.1 Exercises
Solve each system in Exercises 1–4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. x1 C 5x2 D 7

�2x1 � 7x2 D �5

2. 2x1 C 4x2 D �4

5x1 C 7x2 D 11

3. Find the point .x1; x2/ that lies on the line x1 C 5x2 D 7 and
on the line x1 � 2x2 D �2. See the figure.

x2

x1

x1 1 5x2 5 7

x1 2 2x2 5 22

4. Find the point of intersection of the lines x1 � 5x2 D 1 and
3x1 � 7x2 D 5.

Consider eachmatrix in Exercises 5 and 6 as the augmentedmatrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

5.

2

6

6

4

1 �4 5 0 7

0 1 �3 0 6

0 0 1 0 2

0 0 0 1 �5

3

7

7

5

6.

2

6

6

4

1 �6 4 0 �1

0 2 �7 0 4

0 0 1 2 �3

0 0 3 1 6

3

7

7

5

In Exercises 7–10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

7.

2

6

6

4

1 7 3 �4

0 1 �1 3

0 0 0 1

0 0 1 �2

3

7

7

5

8.

2

4

1 1 2 0

0 1 7 0

0 0 2 �2

3

5

9.

2

6

6

4

1 �1 0 0 �4

0 1 �3 0 �7

0 0 1 �3 �1

0 0 0 0 4

3

7

7

5



1.1 Systems of Linear Equations 11

10.

2

6

6

4

1 �2 0 3 0

0 1 0 �4 0

0 0 1 0 0

0 0 0 1 0

3

7

7

5

Solve the systems in Exercises 11–14.

11. x2 C 4x3 D �4

x1 C 3x2 C 3x3 D �2

3x1 C 7x2 C 5x3 D 6

12. x1 � 3x2 C 4x3 D �4

3x1 � 7x2 C 7x3 D �8

�4x1 C 6x2 C 2x3 D 4

13. x1 � 3x3 D 8

2x1 C 2x2 C 9x3 D 7

x2 C 5x3 D �2

14. x1 � 3x2 D 5

�x1 C x2 C 5x3 D 2

x2 C x3 D 0

15. Verify that the solution you found to Exercise 11 is correct
by substituting the values you obtained back into the original
equations.

16. Verify that the solution you found to Exercise 12 is correct
by substituting the values you obtained back into the original
equations.

17. Verify that the solution you found to Exercise 13 is correct
by substituting the values you obtained back into the original
equations.

18. Verify that the solution you found to Exercise 14 is correct
by substituting the values you obtained back into the original
equations.

Determine if the systems in Exercises 19 and 20 are consistent. Do
not completely solve the systems.

19. x1 C 3x3 D 2

x2 � 3x4 D 3

� 2x2 C 3x3 C 2x4 D 1

3x1 C 7x4 D �5

20. x1 � 2x4 D �3

2x2 C 2x3 D 0

x3 C 3x4 D 1

�2x1 C 3x2 C 2x3 C x4 D 5

21. Do the three lines x1 � 4x2 D 1, 2x1 � x2 D �3, and
�x1 � 3x2 D 4 have a common point of intersection?
Explain.

22. Do the three planes x1 C 2x2 C x3 D 4, x2 � x3 D 1, and
x1 C 3x2 D 0 have at least one common point of intersec-
tion? Explain.

In Exercises 23–26, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

23.
�

1 h 4

3 6 8

�

24.
�

1 h �3

�2 4 6

�

25.
�

1 3 �2

�4 h 8

�

26.
�

2 �3 h

�6 9 5

�

In Exercises 27–34, key statements from this section are either
quoted directly, restated slightly (but still true), or altered in some
way that makes them false in some cases. Mark each statement
True or False, and justify your answer. (If true, give the approx-
imate location where a similar statement appears, or refer to a
definition or theorem. If false, give the location of a statement that
has been quoted or used incorrectly, or cite an example that shows
the statement is not true in all cases.) Similar true/false questions
will appear in many sections of the text and will be flagged with a
(T/F) at the beginning of the question.

27. (T/F) Every elementary row operation is reversible.

28. (T/F) Elementary row operations on an augmented matrix
never change the solution set of the associated linear system.

29. (T/F) A 5 � 6 matrix has six rows.

30. (T/F) Two matrices are row equivalent if they have the same
number of rows.

31. (T/F) The solution set of a linear system involving variables
x1; : : : ; xn is a list of numbers .s1; : : : ; sn/ that makes each
equation in the system a true statement when the values
s1; : : : ; sn are substituted for x1; : : : ; xn, respectively.

32. (T/F) An inconsistent system has more than one solution.

33. (T/F) Two fundamental questions about a linear system in-
volve existence and uniqueness.

34. (T/F) Two linear systems are equivalent if they have the same
solution set.

35. Find an equation involving g, h, and k that makes this aug-
mented matrix correspond to a consistent system:

2

4

1 �4 7 g

0 3 �5 h

�2 5 �9 k

3

5

36. Construct three different augmented matrices for linear sys-
tems whose solution set is x1 D �2, x2 D 1, x3 D 0.

37. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients c and d?
Justify your answer.

x1 C 3x2 D f

cx1 C dx2 D g
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38. Suppose a, b, c, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, c, and d?
Justify your answer.

ax1 C bx2 D f

cx1 C dx2 D g

In Exercises 39–42, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

39.

2

4

0 �2 5

1 4 �7

3 �1 6

3

5 ;

2

4

1 4 �7

0 �2 5

3 �1 6

3

5

40.

2

4

1 3 �4

0 �2 6

0 �5 9

3

5 ;

2

4

1 3 �4

0 1 �3

0 �5 9

3

5

41.

2

4

1 �2 1 0

0 5 �2 8

4 �1 3 �6

3

5 ;

2

4

1 �2 1 0

0 5 �2 8

0 7 �1 �6

3

5

42.

2

4

1 2 �5 0

0 1 �3 �2

0 �3 9 5

3

5 ;

2

4

1 2 �5 0

0 1 �3 �2

0 0 0 �1

3

5

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the

temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of ametal beam, with
negligible heat flow in the direction perpendicular to the plate. Let
T1; : : : ; T4 denote the temperatures at the four interior nodes of
the mesh in the figure. The temperature at a node is approximately
equal to the average of the four nearest nodes—to the left, above,
to the right, and below.2 For instance,

T1 D .10 C 20 C T2 C T4/=4; or 4T1 � T2 � T4 D 30

108

108

408

408

208 208

308 308

1 2

4 3

43. Write a system of four equations whose solution gives esti-
mates for the temperatures T1; : : : ; T4.

44. Solve the system of equations from Exercise 43. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145–149.

.....

Solutions to Practice Problems

.

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1=5. Or, replace equation 4 by
its sum with �1=5 times row 3. (In any case, do not use the x2 in equation 2 to
eliminate the 4x2 in equation 1. Wait until a triangular form has been reached
and the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1=2, and then use the equation to eliminate the x3 terms
above it.)

2. The system corresponding to the augmented matrix is

x1 C 5x2 C 2x3 D �6

4x2 � 7x3 D 2

5x3 D 0

The third equation makes x3 D 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x2 and x1. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.
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......

3. It is easy to check if a specific list of numbers is a solution. Set x1 D 3, x2 D 4, and
x3 D �2, and find that

5.3/ � .4/ C 2.�2/ D 15 � 4 � 4 D 7

�2.3/ C 6.4/ C 9.�2/ D �6 C 24 � 18 D 0

�7.3/ C 5.4/ � 3.�2/ D �21 C 20 C 6 D 5

Although the first two equations are satisfied, the third is not, so .3; 4; �2/ is not a
solution of the system. Notice the use of parentheses whenmaking the substitutions.
They are strongly recommended as a guard against arithmetic errors.

x
3

x
2

x
1

(3, 4, 22)

Since .3; 4; �2/ satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since .3; 4; �2/ does not
satisfy all three equations, it does
not lie on all three planes.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2x1 � x2 D h

0 D k C 3h

If k C 3h is nonzero, the system has no solution. The system is consistent for any
values of h and k that make k C 3h D 0.

..
1.2 Row Reduction and Echelon Forms

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.1 By using only the first part of the
algorithm, wewill be able to answer the fundamental existence and uniqueness questions
posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an aug-
mented matrix for a linear system. So the first part of this section concerns an arbitrary
rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

DEFINITION A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

1 The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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An echelonmatrix (respectively, reduced echelonmatrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as
2

4

2 �3 2 1

0 1 �4 8

0 0 0 5=2

3

5 and

2

4

1 0 0 29

0 1 0 16

0 0 1 3

3

5

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ( )
may have any nonzero value; the starred entries (�) may have any value (including zero).

2

6

6

4

� � �
0 � �
0 0 0 0

0 0 0 0

3

7

7

5

;

2

6

6

6

6

4

0 � � � � � � � �
0 0 0 � � � � � �
0 0 0 0 � � � � �
0 0 0 0 0 � � � �
0 0 0 0 0 0 0 0 �

3

7

7

7

7

5

The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.

2

6

6

4

1 0 � �
0 1 � �
0 0 0 0

0 0 0 0

3

7

7

5

;

2

6

6

6

6

4

0 1 � 0 0 0 � � 0 �
0 0 0 1 0 0 � � 0 �
0 0 0 0 1 0 � � 0 �
0 0 0 0 0 1 � � 0 �
0 0 0 0 0 0 0 0 1 �

3

7

7

7

7

5

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U , we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities use
the abbreviation RREF for reduced (row) echelon form. Some use REF for (row) echelon
form.]

Pivot Positions
When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
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in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

DEFINITION A pivot position in a matrix A is a location in A that corresponds to a leading 1 in
the reduced echelon form of A. A pivot column is a column of A that contains a
pivot position.

In Example 1, the squares ( ) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot posi-
tions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.

A D

2

6

6

4

0 �3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1 4 5 �9 �7

3

7

7

5

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this
position. A good choice is to interchange rows 1 and 4 (because the mental computations
in the next step will not involve fractions).

2

6

6

4

1 �
Pivot

4 5 �9 �7

�1 �2 �1 3 1

�2 �3 0 3 �1

0

6 Pivot column

�3 �6 4 9

3

7

7

5

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely in the second column. Choose the 2 in this position as the next pivot.

2

6

6

4

1 4 5 �9 �7

0 2 �

Pivot

4 �6 �6

0 5 10 �15 �15

0 �3

6 Next pivot column

�6 4 9

3

7

7

5

(1)

Add �5=2 times row 2 to row 3, and add 3=2 times row 2 to row 4.

2

6

6

4

1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 0 0

0 0 0 �5 0

3

7

7

5

(2)

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would



16 CHAPTER 1 Linear Equations in Linear Algebra

destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

2

6

6

4

1 4 5 �9 �7

0 2 4 �6 �6

0 0 0 �5�

Pivot

0

0

6 6 6 Pivot columns

0 0 0 0

3

7

7

5

General form:

2

6

6

4

� � � �
0 � � �
0 0 0 �
0 0 0 0 0

3

7

7

5

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot
columns.

A D

2

6

6

4

0�
�

�

Pivot positions

�3 �6 4 9

�1 �2 �1 3 1

�2 �3 0 3 �1

1

6 6 6 Pivot columns

4 5 �9 �7

3

7

7

5

(3)

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and �5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm
The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form.We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:

2

4

0 3 �6 6 4 �5

3 �7 8 �5 8 9

3 �9 12 �9 6 15

3

5

SOLUTION

Step 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

2

4

0 3 �6 6 4 �5

3 �7 8 �5 8 9

3

6 Pivot column

�9 12 �9 6 15

3

5
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Step 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

2

4

3�
Pivot

�9 12 �9 6 15

3 �7 8 �5 8 9

0 3 �6 6 4 �5

3

5

Step 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add �1 times row 1 to row 2.

2

4

3�
Pivot

�9 12 �9 6 15

0 2 �4 4 2 �6

0 3 �6 6 4 �5

3

5

Step 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

2

4

3 �9 12 �9 6 15

0 2 �

Pivot

�4 4 2 �6

0 3

6 New pivot column

�6 6 4 �5

3

5

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add �3=2 times the “top” row to the row below. This produces

2

4

3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

3

5
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:

2

4

3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 �

Pivot

4

3

5

Steps 1–3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

Step 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3 to rows 2 and 1.

2

4

3 �9 12 �9 0 �9

0 2 �4 4 0 �14

0 0 0 0 1 4

3

5

� Row 1 C .�6/ � row 3
� Row 2 C .�2/ � row 3

The next pivot is in row 2. Scale this row, dividing by the pivot.

2

4

3 �9 12 �9 0 �9

0 1 �2 2 0 �7

0 0 0 0 1 4

3

5 � Row scaled by 1
2

Create a zero in column 2 by adding 9 times row 2 to row 1.

2

4

3 0 �6 9 0 �72

0 1 �2 2 0 �7

0 0 0 0 1 4

3

5

� Row 1 C .9/ � row 2

Finally, scale row 1, dividing by the pivot, 3.

2

4

1 0 �2 3 0 �24

0 1 �2 2 0 �7

0 0 0 0 1 4

3

5

� Row scaled by 1
3

This is the reduced echelon form of the original matrix.

The combination of steps 1–4 is called the forward phase of the row reduction algo-
rithm. Step 5, which produces the unique reduced echelon form, is called the backward
phase.

.....

.... Numerical Note

.

In step 2 on page 17, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems
The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form

2

4

1 0 �5 1

0 1 1 4

0 0 0 0

3

5

There are three variables because the augmented matrix has four columns. The
associated system of equations is

x1 � 5x3 D 1

x2 C x3 D 4

0 D 0

(4)

The variables x1 and x2 corresponding to pivot columns in the matrix are called basic
variables.2 The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms
of the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x1

and the second for x2. (Ignore the third equation; it offers no restriction on the variables.)
8

ˆ

<

ˆ

:

x1 D 1 C 5x3

x2 D 4 � x3

x3 is free

(5)

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x1 and x2. For instance, when
x3 D 0, the solution is .1; 4; 0/; when x3 D 1, the solution is .6; 3; 1/. Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear systemwhose augmentedmatrix
has been reduced to

2

4

1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

3

5

SOLUTION The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The row reduction is completed next. The symbol
� before a matrix indicates that the matrix is row equivalent to the preceding matrix.

2

4

1 6 2 �5 �2 �4

0 0 2 �8 �1 3

0 0 0 0 1 7

3

5 �

2

4

1 6 2 �5 0 10

0 0 2 �8 0 10

0 0 0 0 1 7

3

5

�

2

4

1 6 2 �5 0 10

0 0 1 �4 0 5

0 0 0 0 1 7

3

5 �

2

4

1 6 0 3 0 0

0 0 1 �4 0 5

0 0 0 0 1 7

3

5

2 Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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There are five variables because the augmented matrix has six columns. The associated
system now is

x1 C 6x2 C 3x4 D 0

x3 � 4x4 D 5

x5 D 7

(6)

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x1, x3, and x5.
The remaining variables, x2 and x4, must be free. Solve for the basic variables to obtain
the general solution:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x1 D �6x2 � 3x4

x2 is free

x3 D 5 C 4x4

x4 is free

x5 D 7

(7)

Note that the value of x5 is already fixed by the third equation in system (6).

Parametric Descriptions of Solution Sets
The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

x1 C 5x2 D 21

x2 C x3 D 4

We could treat x2 as a parameter and solve for x1 and x3 in terms of x2, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution
Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

x1 � 7x2 C 2x3 � 5x4 C 8x5 D 10

x2 � 3x3 C 3x4 C x5 D �5

x4 � x5 D 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x2,
and then substitute the expressions for x2 and x4 into equation 1 and solve for x1.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

.....

.... Numerical Note

.

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (C; �; �; = )
on two real floating point numbers.3 For an n � .n C 1/ matrix, the reduction
to echelon form can take 2n3=3 C n2=2 � 7n=6 flops (which is approximately
2n3=3 flops when n is moderately large—say, n � 30/. In contrast, further
reduction to reduced echelon form needs at most n2 flops.

Existence and Uniqueness Questions
Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3x2 � 6x3 C 6x4 C 4x5 D �5

3x1 � 7x2 C 8x3 � 5x4 C 8x5 D 9

3x1 � 9x2 C 12x3 � 9x4 C 6x5 D 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to
2

4

3 �9 12 �9 6 15

0 2 �4 4 2 �6

0 0 0 0 1 4

3

5 (8)

The basic variables are x1, x2, and x5; the free variables are x3 and x4. There is no
equation such as 0 D 1 that would indicate an inconsistent system, so we could use back-
substitution to find a solution. But the existence of a solution is already clear in (8). Also,
the solution is not unique because there are free variables. Each different choice of x3

and x4 determines a different solution. Thus the system has infinitely many solutions.

When a system is in echelon form and contains no equation of the form 0 D b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3 Traditionally, a flop was only a multiplication or division because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan,Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19–20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

Œ 0 � � � 0 b � with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

.....

.... Reasonable Answers

.

Remember that each augmented matrix corresponds to a system of equations. If

you row reduce the augmented matrix

2

4

1 �2 1 2

1 �1 2 5

0 1 1 3

3

5 to get the matrix

2

4

1 0 3 8

0 1 1 3

0 0 0 0

3

5, the solution set is

8

ˆ

<

ˆ

:

x1 D 8 � 3x3

x2 D 3 � x3

x3 is free

The system of equations corresponding to the original augmented matrix is

x1 � 2x2 C x3 D 2

x1 � x2 C 2x3 D 5

x2 C x3 D 3

You can now check whether your solution is correct by substituting it into the
original equations. Notice that you can just leave the free variables in the solution.
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....

.8 � 3x3/ � 2.3 � x3/ C .x3/ D 8 � 3x3 � 6 C 2x3 C x3 D 2

.8 � 3x3/ � .3 � x3/ C 2.x3/ D 8 � 3x3 � 3 C x3 C 2x3 D 5

.3 � x3/ C .x3/ D 3 � x3 C x3 D 3

You can now be confident you have a correct solution to the system of equations
represented by the augmented matrix.

.....

Practice Problems

.

1. Find the general solution of the linear system whose augmented matrix is
�

1 �3 �5 0

0 1 �1 �1

�

2. Find the general solution of the system

x1 � 2x2 � x3 C 3x4 D 0

�2x1 C 4x2 C 5x3 � 5x4 D 3

3x1 � 6x2 � 6x3 C 8x4 D 2

3. Suppose a 4 � 7 coefficient matrix for a system of equations has 4 pivots. Is the
system consistent? If the system is consistent, how many solutions are there?

1.2 Exercises
In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1. a.

2

4

1 0 0 0

0 1 0 0

0 0 1 1

3

5 b.

2

4

1 0 1 0

0 0 1 0

0 0 0 1

3

5

c.

2

6

6

4

1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

3

7

7

5

d.

2

6

6

4

1 1 0 1 1

0 2 0 2 2

0 0 0 3 3

0 0 0 0 4

3

7

7

5

2. a.

2

4

1 1 0 1

0 0 1 1

0 0 0 0

3

5 b.

2

4

1 0 0 0

0 1 0 0

0 0 1 1

3

5

c.

2

6

6

4

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

3

7

7

5

d.

2

6

6

4

0 1 1 1 1

0 0 2 2 2

0 0 0 0 3

0 0 0 0 0

3

7

7

5

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

3.

2

4

1 2 3 4

4 5 6 7

6 7 8 9

3

5 4.

2

4

1 3 5 7

3 5 7 9

5 7 9 1

3

5

5. Describe the possible echelon forms of a nonzero 2 � 2

matrix. Use the symbols , �, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 � 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7–14.

7.
�

1 3 4 7

3 9 7 6

�

8.
�

1 4 0 7

2 7 0 11

�

9.
�

0 1 �6 5

1 �2 7 �4

�

10.
�

1 �2 �1 3

3 �6 �2 2

�

11.

2

4

3 �4 2 0

�9 12 �6 0

�6 8 �4 0

3

5 12.

2

4

1 �7 0 6 5

0 0 1 �2 �3

�1 7 �4 2 7

3

5

13.

2

6

6

4

1 �3 0 �1 0 �2

0 1 0 0 �4 1

0 0 0 1 9 �4

0 0 0 0 0 0

3

7

7

5
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14.

2

6

6

4

1 2 �5 �4 0 �5

0 1 �6 �4 0 2

0 0 0 0 1 0

0 0 0 0 0 0

3

7

7

5

You may find it helpful to review the information in the Reason-
able Answers box from this section before answering Exercises
15–18.

15. Write down the equations corresponding to the augmented
matrix in Exercise 9 and verify your answer to Exercise 9 is
correct by substituting the solutions you obtained back into
the original equations.

16. Write down the equations corresponding to the augmented
matrix in Exercise 10 and verify your answer to Exercise 10
is correct by substituting the solutions you obtained back into
the original equations.

17. Write down the equations corresponding to the augmented
matrix in Exercise 11 and verify your answer to Exercise 11
is correct by substituting the solutions you obtained back into
the original equations.

18. Write down the equations corresponding to the augmented
matrix in Exercise 12 and verify your answer to Exercise 12
is correct by substituting the solutions you obtained back into
the original equations.

Exercises 19 and 20 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

19. a.

2

4

� � �
0 � �
0 0 0

3

5

b.

2

4

0 � � �
0 0 � �
0 0 0 0

3

5

20. a.

2

4

� �
0 �
0 0 0

3

5

b.

2

4

� � � �
0 0 � �
0 0 0 �

3

5

In Exercises 21 and 22, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

21.
�

2 3 h

4 6 7

�

22.
�

1 �3 �2

5 h �7

�

In Exercises 23 and 24, choose h and k such that the system has
(a) no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

23. x1 C hx2 D 2

4x1 C 8x2 D k

24. x1 C 3x2 D 2

3x1 C hx2 D k

In Exercises 25–34, mark each statement True or False (T/F).
Justify each answer.4

25. (T/F) In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different
sequences of row operations.

26. (T/F) The echelon form of a matrix is unique.

27. (T/F) The row reduction algorithm applies only to augmented
matrices for a linear system.

28. (T/F) The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

29. (T/F) A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

30. (T/F)Reducing amatrix to echelon form is called the forward
phase of the row reduction process.

31. (T/F) Finding a parametric description of the solution set of
a linear system is the same as solving the system.

32. (T/F) Whenever a system has free variables, the solution set
contains a unique solution.

33. (T/F) If one row in an echelon form of an augmented matrix
is Œ0 0 0 0 5�, then the associated linear system is
inconsistent.

34. (T/F)A general solution of a system is an explicit description
of all solutions of the system.

35. Suppose a 3 � 5 coefficientmatrix for a system has three pivot
columns. Is the system consistent? Why or why not?

36. Suppose a system of linear equations has a 3 � 5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

37. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

38. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot in each column.
Explain why the system has a unique solution.

39. Restate the last sentence in Theorem 2 using the concept
of pivot columns: “If a linear system is consistent, then the
solution is unique if and only if .”

40. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

41. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system.

4 True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before the True or False
exercises in Section 1.1.
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Suppose that such a system happens to be consistent. Explain
why there must be an infinite number of solutions.

42. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

43. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

44. Suppose an n � .n C 1/ matrix is row reduced to reduced
echelon form. Approximately what fraction of the total num-
ber of operations (flops) is involved in the backward phase of
the reduction when n D 30? when n D 300?

Suppose experimental data are represented by a set of points
in the plane. An interpolating polynomial for the data is a
polynomial whose graph passes through every point. In scientific
work, such a polynomial can be used, for example, to estimate
values between the known data points. Another use is to create
curves for graphical images on a computer screen. One method for
finding an interpolating polynomial is to solve a system of linear
equations.

45. Find the interpolating polynomial p.t/ D a0 C a1t C a2t2

for the data .1; 12/, .2; 15/, .3; 16/. That is, find a0, a1, and
a2 such that

a0 C a1.1/ C a2.1/2 D 12

a0 C a1.2/ C a2.2/2 D 15

a0 C a1.3/ C a2.3/2 D 16

T 46. In a wind tunnel experiment, the force on a projectile due to
air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 lb) 0 2.90 14.8 39.6 74.3 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is travel-
ing at 750 ft/sec. Usep.t/ D a0 C a1t C a2t2 C a3t3 C a4t4

C a5t5.What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)5

5 Exercises marked with the symbol T are designed to be worked
with the aid of a “ Matrix program” (a computer program, such as
MATLAB, Maple, Mathematica, MathCad, Octave, or Derive, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

.....

Solutions to Practice Problems

.

1. The reduced echelon form of the augmented matrix and the corresponding system
x3

x1

x2

The general solution of the system
of equations is the line of
intersection of the two planes.

are
�

1 0 �8 �3

0 1 �1 �1

�

and
x1 � 8x3 D �3

x2 � x3 D �1

The basic variables are x1 and x2, and the general solution is

8

ˆ

<

ˆ

:

x1 D �3 C 8x3

x2 D �1 C x3

x3 is free

Note: It is essential that the general solution describe each variable, with any pa-
rameters clearly identified. The following statement does not describe the solution:

8

ˆ

<

ˆ

:

x1 D �3 C 8x3

x2 D �1 C x3

x3 D 1 C x2 Incorrect solution

This description implies that x2 and x3 are both free, which certainly is not the case.

2. Row reduce the system’s augmented matrix:
2

4

1 �2 �1 3 0

�2 4 5 �5 3

3 �6 �6 8 2

3

5 �

2

4

1 �2 �1 3 0

0 0 3 1 3

0 0 �3 �1 2

3

5

�

2

4

1 �2 �1 3 0

0 0 3 1 3

0 0 0 0 5

3

5
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.....

Solutions to Practice Problems (Continued)

.

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the
coefficient matrix. This means that when the coefficient matrix is row reduced, it
will not have a row of zeros, thus the corresponding row reduced augmented matrix
can never have a row of the form [0 0 � � � 0 b], where b is a nonzero number. By
Theorem 2, the system is consistent. Moreover, since there are seven columns in
the coefficient matrix and only four pivot columns, there will be three free variables
resulting in infinitely many solutions.

..
1.3 Vector Equations

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R
2

Amatrix with only one column is called a column vector or simply a vector. Examples
of vectors with two entries are

u D
�

3

�1

�

; v D
�

:2

:3

�

; w D
�

w1

w2

�

where w1 and w2 are any real numbers. The set of all vectors with two entries is denoted
by R

2 (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.1

Two vectors inR
2 are equal if and only if their corresponding entries are equal. Thus

�

4

7

�

and
�

7

4

�

are not equal, because vectors in R
2 are ordered pairs of real numbers.

Given two vectors u and v in R
2, their sum is the vector u C v obtained by adding

corresponding entries of u and v. For example,
�

1

�2

�

C
�

2

5

�

D
�

1 C 2

�2 C 5

�

D
�

3

3

�

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu
obtained by multiplying each entry in u by c. For instance,

if u D
�

3

�1

�

and c D 5; then cu D 5

�

3

�1

�

D
�

15

�5

�

1Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are complex numbers.
Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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The number c in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Given u D
�

1

�2

�

and v D
�

2

�5

�

, find 4u, .�3/v, and 4u C .�3/v.

SOLUTION

4u D
�

4

�8

�

; .�3/v D
�

�6

15

�

and

4u C .�3/v D
�

4

�8

�

C
�

�6

15

�

D
�

�2

7

�

Sometimes, for convenience (and also to save space), this text may write a column

vector such as
�

3

�1

�

in the form .3; �1/. In this case, the parentheses and the comma

distinguish the vector .3; �1/ from the 1 � 2 row matrix
�

3 �1
�

, written with brackets
and no comma. Thus

�

3

�1

�

¤
�

3 �1
�

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R
2

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point .a; b/

with the column vector
�

a

b

�

. So we may regard R
2 as the set of all points in the plane.

See Figure 1.

x
2

x
1

(2, 2)

(3, 21)(22, 21)

FIGURE 1 Vectors as points.
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FIGURE 2 Vectors with arrows.

The geometric visualization of a vector such as
�

3

�1

�

is often aided by including an

arrow (directed line segment) from the origin .0; 0/ to the point .3; �1/, as in Figure 2.
In this case, the individual points along the arrow itself have no special significance.2

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2 In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Parallelogram Rule for Addition

If u and v in R
2 are represented as points in the plane, then u C v corresponds to

the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Figure 3.
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FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectors u D
�

2

2

�

, v D
�

�6

1

�

, and u C v D
�

�4

3

�

are displayed

in Figure 4.
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FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, .0; 0/.

EXAMPLE 3 Let u D
�

3

�1

�

. Display the vectors u, 2u, and � 2
3
u on a graph.

SOLUTION See Figure 5, where u, 2u D
�

6

�2

�

, and � 2
3
u D

�

�2

2=3

�

are displayed.

The arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for � 2

3
u is two-thirds the length of the arrow for u, and the arrows

point in opposite directions. In general, the length of the arrow for cu is jcj times the
length of the arrow for u. [Recall that the length of the line segment from .0; 0/ to .a; b/

is
p

a2 C b2.
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FIGURE 5


