
Building Java Programs
A Back to Basics Approach

Fifth Edition

Stuart Reges
University of Washington

Marty Stepp
Stanford University

SVP, Courseware Portfolio Management:

Marcia Horton

Portfolio Manager: Matt Goldstein

Portfolio Manager Assistant: Meghan Jacoby

VP, Product Marketing: Roxanne McCarley

Director of Field Marketing: Tim Galligan

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Managing Content Producer: Scott Disanno

VP, Production & Digital Studio: Ruth Berry

Project Manager: Lakeside Editorial Services L.L.C.

Senior Specialist, Program Planning and Support:

Deidra Headlee

Cover Design: Jerilyn Bockorick

R&P Manager: Ben Ferrini

R&P Project Manager: Lav Kush Sharma/Integra

Publishing Services, Inc.

Cover Art: Marcell Faber/Shutterstock

Full-Service Project Management: Integra Software

Services Pvt. Ltd.

Composition: Integra Software Services Pvt. Ltd.

Printer/Binder: LSC Communications

Cover Printer: Phoenix Color

Text Font: Monotype

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the

development, research, and testing of the theories and programs to determine their effectiveness. The authors and

publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation

contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential

damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2020, 2017, 2014 and 2011 Pearson Education, Inc. or its affiliates. All rights reserved. Printed in the

United States of America. This publication is protected by copyright, and permission should be obtained from the

publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and

the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit

www.pearsonhighed.com/permissions/.

PEARSON, and MyLab Programming are exclusive trademarks in the U.S. and/or other countries owned by Pearson

Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their

respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or

descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization,

or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson

Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Reges, Stuart, author. | Stepp, Martin, author.

Title: Building Java programs: a back to basics approach / Stuart Reges,

 University of Washington, Marty Stepp, Stanford University.

Description: Fifth edition. | Hoboken, New Jersey: Pearson, 2019. | Includes index.

Identifiers: LCCN 2018050748 | ISBN 9780135471944 | ISBN 013547194X

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 R447 2019 | DDC 005.13/3—dc23 LC record available at https://lccn.loc.gov/2018050748

ISBN 10: 0- 13-547194- X

ISBN 13: 978-0-13-547194- 4

1 19

https://lccn.loc.gov/2018050748
http://www.pearsonhighed.com/permissions/

http://www.pearson.com/mylab/programming

v

Preface

The newly revised fifth edition of our Building Java Programs textbook is designed for

use in a two-course introduction to computer science. We have class-tested it with thou-

sands of undergraduates, most of whom were not computer science majors, in our CS1-

CS2 sequence at the University of Washington. These courses are experiencing record

enrollments, and other schools that have adopted our textbook report that students are

succeeding with our approach.

Introductory computer science courses are often seen as “killer” courses with high fail-

ure rates. But as Douglas Adams says in The Hitchhiker’s Guide to the Galaxy, “Don’t

panic.” Students can master this material if they can learn it gradually. Our textbook uses a

layered approach to introduce new syntax and concepts over multiple chapters.

Our textbook uses an “objects later” approach where programming fundamentals and

procedural decomposition are taught before diving into object-oriented programming.

We have championed this approach, which we sometimes call “back to basics,” and

have seen through years of experience that a broad range of scientists, engineers, and

others can learn how to program in a procedural manner. Once we have built a solid

foundation of procedural techniques, we turn to object-oriented programming. By the

end of the course, students will have learned about both styles of programming.

The Java language is always evolving, and we have made it a point of focus in recent

editions on newer features that have been added in Java 8 through 10. In the fourth edi-

tion we added a new Chapter 19 on Java’s functional programming features introduced

in Java 8. In this edition we integrate the JShell tool introduced in Java 9.

New to This Edition

The following are the major changes for our fifth edition:

• JShell integration. Java 9 introduced JShell, a utility with an interactive read-eval-

print loop (REPL) that makes it easy to type Java expressions and immediately see

their results. We find JShell to be a valuable learning tool that allows students to

explore Java concepts without the overhead of creating a complete program. We in-

troduce JShell in Chapter 2 and integrate JShell examples in each chapter throughout

the text.

• Improved Chapter 2 loop coverage. We have added new sections and figures in

Chapter 2 to help students understand for loops and create tables to find patterns in

nested loops. This new content is based on our interactions with our own students

as they solve programming problems with loops early in our courses.

vi Preface

• Revamped case studies, examples, and other content. We have rewritten or

revised sections of various chapters based on student and instructor feedback.

We have also rewritten the Chapter 10 (ArrayLists) case study with a new pro-

gram focusing on elections and ranked choice voting.

• Updated collection syntax and idioms. Recent releases of Java have introduced

new syntax and features related to collections, such as the <> “diamond operator;”

collection interfaces such as Lists, Sets, and Maps; and new collection methods.

We have updated our collection Chapters 10 and 11 to discuss these new features,

and we use the diamond operator syntax with collections in the rest of the text.

• Expanded self-checks and programming exercises. With each new edition we

add new programming exercises to the end of each chapter. There are roughly

fifty total problems and exercises per chapter, all of which have been class-tested

with real students and have solutions provided for instructors on our web site.

• New programming projects. Some chapters have received new programming

projects, such as the Chapter 10 ranked choice ballot project.

Features from Prior Editions

The following features have been retained from previous editions:

• Focus on problem solving. Many textbooks focus on language details when they

introduce new constructs. We focus instead on problem solving. What new prob-

lems can be solved with each construct? What pitfalls are novices likely to en-

counter along the way? What are the most common ways to use a new construct?

• Emphasis on algorithmic thinking. Our procedural approach allows us to

emphasize algorithmic problem solving: breaking a large problem into smaller

problems, using pseudocode to refine an algorithm, and grappling with the chal-

lenge of expressing a large program algorithmically.

• Layered approach. Programming in Java involves many concepts that are dif-

ficult to learn all at once. Teaching Java to a novice is like trying to build a house

of cards. Each new card has to be placed carefully. If the process is rushed and

you try to place too many cards at once, the entire structure collapses. We teach

new concepts gradually, layer by layer, allowing students to expand their under-

standing at a manageable pace.

• Case studies. We end most chapters with a significant case study that shows

students how to develop a complex program in stages and how to test it as it

is being developed. This structure allows us to demonstrate each new program-

ming construct in a rich context that can’t be achieved with short code examples.

Several of the case studies were expanded and improved in the second edition.

• Utility as a CS1+CS2 textbook. In recent editions, we added chapters that extend

the coverage of the book to cover all of the topics from our second course in com-

puter science, making the book usable for a two-course sequence. Chapters 12–19

explore recursion, searching and sorting, stacks and queues, collection implemen-

tation, linked lists, binary trees, hash tables, heaps, and more. Chapter 12 also

received a section on recursive backtracking, a powerful technique for exploring a

set of possibilities for solving problems such as 8 Queens and Sudoku.

This year also marks the release of our new Building Python Programs textbook,

which brings our “back to basics” approach to the Python language. In recent years

Python has seen a surge in popularity in introductory computer science classrooms. We

have found that our materials and approach work as well in Python as they do in Java,

and we are pleased to offer the choice of two languages to instructors and students.

Layers and Dependencies

Many introductory computer science books are language-oriented, but the early chap-

ters of our book are layered. For example, Java has many control structures (including

for-loops, while-loops, and if/else-statements), and many books include all of these

control structures in a single chapter. While that might make sense to someone who al-

ready knows how to program, it can be overwhelming for a novice who is learning how

to program. We find that it is much more effective to spread these control structures

into different chapters so that students learn one structure at a time rather than trying

to learn them all at once.

The following table shows how the layered approach works in the first six chapters:

Chapter Control Flow Data

Programming

Techniques Input/Output

1 methods String literals procedural

decomposition

println, print

2 definite loops (for) variables,

 expressions, int,

double

local variables,

class constants,

pseudocode

3 return values using objects parameters console input, 2D

graphics (optional)

4 conditional

(if/else)

char pre/post conditions,

throwing exceptions

printf

5 indefinite loops

(while)

boolean assertions,

robust programs

6 Scanner token/line-based

file processing

file I/O

Chapters 1–6 are designed to be worked through in order, with greater flexibility

of study then beginning in Chapter 7. Chapter 6 may be skipped, although the case

study in Chapter 7 involves reading from a file, a topic that is covered in Chapter 6.

Preface vii

viii Preface

The following is a dependency chart for the book:

Chapters 1–6

Programming Fundamentals

Chapter 7

Arrays

Chapter 8

Classes

Chapter 9

Functional Programming

(except Section 19.5)

Chapter 19

Section 19.5

Chapter 9

Inheritance,

Interfaces

Chapter 12

Recursion

Chapter 13

Searching,

Sorting

Chapter 10

ArrayLists

Chapter 11

Collections

Chapter 14

Stacks,

Queues

Chapter 15

Implementing

Collections

Chapter 16

Linked Lists

Chapter 17

Binary Trees

Chapter 18

Hashing,

Heaps

Supplements

http://www.buildingjavaprograms.com/

Answers to all self-check problems appear on our web site and are accessible to

anyone. Our web site has the following additional resources for students:

• Online-only supplemental chapters, such as a chapter on creating Graphical

User Interfaces

• Source code and data files for all case studies and other complete program

examples

• The DrawingPanel class used in the optional graphics Supplement 3G

Our web site has the following additional resources for teachers:

• PowerPoint slides suitable for lectures

• Solutions to exercises and programming projects, along with homework specifi-

cation documents for many projects

• Sample exams and solution keys

• Additional lab exercises and programming exercises with solution keys

• Closed lab creation tools to produce lab handouts with the instructor's choice of

problems integrated with the textbook

To access instructor resources, contact us at authors@buildingjavaprograms.com.

The same materials are also available at http://www.pearsonhighered.com/cs-resources.

To ask other questions related to resources, contact your Pearson sales representative.

MyLab Programming

MyLab Programming is an online practice and assessment tool that helps students ful-

ly grasp the logic, semantics, and syntax of programming. Through practice exercises

and immediate, personalized feedback, MyLab Programming improves the program-

ming competence of beginning students who often struggle with basic concepts and

paradigms of popular high-level programming languages. A self-study and homework

tool, the MyLab Programming course consists of hundreds of small practice exercises

organized around the structure of this textbook. For students, the system automatically

detects errors in the logic and syntax of code submissions and offers targeted hints that

enable students to figure out what went wrong, and why. For instructors, a comprehen-

sive grade book tracks correct and incorrect answers and stores the code inputted by

students for review.

For a full demonstration, to see feedback from instructors and students, or

to adopt MyLab Programming for your course, visit the following web site:

www.pearson.com/mylab/programming

VideoNotes

We have recorded a series of instructional videos to accompany the textbook. They

are available at the following web site: http://www.pearsonhighered.com/cs-resources
VideoNote

Preface ix

http://www.pearsonhighered.com/cs-resources
http://www.pearsonhighered.com/cs-resources
http://www.pearson.com/mylab/programming

x Preface

Roughly 3–4 videos are posted for each chapter. An icon in the margin of the page

indicates when a VideoNote is available for a given topic. In each video, we spend

5–15 minutes walking through a particular concept or problem, talking about the

challenges and methods necessary to solve it. These videos make a good supplement

to the instruction given in lecture classes and in the textbook. Your new copy of the

textbook has an access code that will allow you to view the videos.

Acknowledgments

First, we would like to thank the many colleagues, students, and teaching assistants

who have used and commented on early drafts of this text. We could not have written

this book without their input. Special thanks go to Hélène Martin, who pored over

early versions of our first edition chapters to find errors and to identify rough patches

that needed work. We would also like to thank instructor Benson Limketkai for spend-

ing many hours performing a technical proofread of the second edition.

Second, we would like to thank the talented pool of reviewers who guided us in

the process of creating this textbook:

• Greg Anderson, Weber State University

• Delroy A. Brinkerhoff, Weber State University

• Ed Brunjes, Miramar Community College

• Tom Capaul, Eastern Washington University

• Tom Cortina, Carnegie Mellon University

• Charles Dierbach, Towson University

• H.E. Dunsmore, Purdue University

• Michael Eckmann, Skidmore College

• Mary Anne Egan, Siena College

• Leonard J. Garrett, Temple University

• Ahmad Ghafarian, North Georgia College & State University

• Raj Gill, Anne Arundel Community College

• Michael Hostetler, Park University

• David Hovemeyer, York College of Pennsylvania

• Chenglie Hu, Carroll College

• Philip Isenhour, Virginia Polytechnic Institute

• Andree Jacobson, University of New Mexico

• David C. Kamper, Sr., Northeastern Illinois University

• Simon G.M. Koo, University of San Diego

• Evan Korth, New York University

• Joan Krone, Denison University

• John H.E.F. Lasseter, Fairfield University

• Eric Matson, Wright State University

• Kathryn S. McKinley, University of Texas, Austin

• Jerry Mead, Bucknell University

• George Medelinskas, Northern Essex Community College

• John Neitzke, Truman State University

• Dale E. Parson, Kutztown University

• Richard E. Pattis, Carnegie Mellon University

• Frederick Pratter, Eastern Oregon University

• Roger Priebe, University of Texas, Austin

• Dehu Qi, Lamar University

• John Rager, Amherst College

• Amala V.S. Rajan, Middlesex University

• Craig Reinhart, California Lutheran University

• Mike Scott, University of Texas, Austin

• Alexa Sharp, Oberlin College

• Tom Stokke, University of North Dakota

• Leigh Ann Sudol, Fox Lane High School

• Ronald F. Taylor, Wright State University

• Andy Ray Terrel, University of Chicago

• Scott Thede, DePauw University

• Megan Thomas, California State University, Stanislaus

• Dwight Tuinstra, SUNY Potsdam

• Jeannie Turner, Sayre School

• Tammy VanDeGrift, University of Portland

• Thomas John VanDrunen, Wheaton College

• Neal R. Wagner, University of Texas, San Antonio

• Jiangping Wang, Webster University

• Yang Wang, Missouri State University

• Stephen Weiss, University of North Carolina at Chapel Hill

• Laurie Werner, Miami University

• Dianna Xu, Bryn Mawr College

• Carol Zander, University of Washington, Bothell

Preface xi

xii Preface

Finally, we would like to thank the great staff at Pearson who helped produce the

book. Michelle Brown, Jeff Holcomb, Maurene Goo, Patty Mahtani, Nancy Kotary,

and Kathleen Kenny did great work preparing the first edition. Our copy editors and

the staff of Aptara Corp, including Heather Sisan, Brian Baker, Brendan Short,

and Rachel Head, caught many errors and improved the quality of the writing.

Marilyn Lloyd and Chelsea Bell served well as project manager and editorial assis-

tant respectively on prior editions. For their help with the third edition we would like

to thank Kayla Smith-Tarbox, Production Project Manager, and Jenah Blitz-Stoehr,

Computer Science Editorial Assistant. Mohinder Singh and the staff at Aptara, Inc.,

were also very helpful in the final production of the third edition. For their great work

on production of the fourth and fifth editions, we thank Louise Capulli and the staff

of Lakeside Editorial Services, along with Carole Snyder at Pearson. Special thanks

go to our lead editor at Pearson, Matt Goldstein, who has believed in the concept of

our book from day one. We couldn’t have finished this job without all of their hard

work and support.

Stuart Reges

Marty Stepp

xiii

LOCATION OF VIDEO NOTES IN THE TEXT

http://www.pearson.com/cs-resources

Chapter 1 Pages 31, 40

Chapter 2 Pages 65, 76, 92, 100, 115

Chapter 3 Pages 146, 161, 166, 173, 178

Chapter 3G Pages 202, 220

Chapter 4 Pages 248, 256, 283

Chapter 5 Pages 329, 333, 337, 339, 362

Chapter 6 Pages 401, 413, 427

Chapter 7 Pages 464, 470, 488, 510

Chapter 8 Pages 540, 552, 560, 573

Chapter 9 Pages 602, 615, 631

Chapter 10 Pages 679, 686, 694

Chapter 11 Pages 723, 737, 745

Chapter 12 Pages 773, 781, 818

Chapter 13 Pages 842, 845, 852

Chapter 14 Pages 897, 904

Chapter 15 Pages 939, 945, 949

Chapter 16 Pages 982, 989, 1002

Chapter 17 Pages 1048, 1049, 1059

Chapter 18 Pages 1085, 1104

VideoNote

xv

Chapter 1 Introduction to Java Programming 1

Chapter 2 Primitive Data and Definite Loops 63

Chapter 3 Introduction to Parameters and Objects 142

Supplement 3G Graphics (Optional) 201

Chapter 4 Conditional Execution 243

Chapter 5 Program Logic and Indefinite Loops 320

Chapter 6 File Processing 392

Chapter 7 Arrays 447

Chapter 8 Classes 535

Chapter 9 Inheritance and Interfaces 592

Chapter 10 ArrayLists 667

Chapter 11 Java Collections Framework 722

Chapter 12 Recursion 763

Chapter 13 Searching and Sorting 840

Chapter 14 Stacks and Queues 892

Chapter 15 Implementing a Collection Class 931

Chapter 16 Linked Lists 975

Chapter 17 Binary Trees 1028

Chapter 18 Advanced Data Structures 1083

Chapter 19 Functional Programming with Java 8 1119

Appendix A Java Summary 1161

Appendix B The Java API Specification and Javadoc

 Comments 1176

Appendix C Additional Java Syntax 1182

Index 1191

Brief Contents

xvii

Chapter 1 Introduction to Java Programming 1

1.1 Basic Computing Concepts 2

Why Programming? 2

Hardware and Software 3

The Digital Realm 4

The Process of Programming 6

Why Java? 7

The Java Programming Environment 8

1.2 And Now—Java 10

String Literals (Strings) 14

System.out.println 15

Escape Sequences 15

print versus println 17

Identifiers and Keywords 18

A Complex Example: DrawFigures1 20

Comments and Readability 21

1.3 Program Errors 24

Syntax Errors 24

Logic Errors (Bugs) 28

1.4 Procedural Decomposition 28

Static Methods 31

Flow of Control 34

Methods That Call Other Methods 36

An Example Runtime Error 39

1.5 Case Study: DrawFigures 40

Structured Version 41

Final Version without Redundancy 43

Analysis of Flow of Execution 44

Chapter 2 Primitive Data and Definite Loops 63

2.1 Basic Data Concepts 64

Primitive Types 64

Contents

xviii Contents

Expressions 65

JShell 67

Literals 68

Arithmetic Operators 69

Precedence 72

Mixing Types and Casting 74

2.2 Variables 76

Assignment/Declaration Variations 81

String Concatenation 84

Increment/Decrement Operators 87

Variables and Mixing Types 90

2.3 The for Loop 92

Tracing for Loops 94

for Loop Patterns 98

Nested for Loops 100

2.4 Managing Complexity 103

Scope 103

Pseudocode 108

The Table Technique 110

Class Constants 113

2.5 Case Study: Hourglass Figure 115

Problem Decomposition and Pseudocode 115

Initial Structured Version 117

Adding a Class Constant 119

Further Variations 122

Chapter 3 Introduction to Parameters

and Objects 142

3.1 Parameters 143

The Mechanics of Parameters 146

Limitations of Parameters 150

Multiple Parameters 153

Parameters versus Constants 156

Overloading of Methods 156

3.2 Methods That Return Values 157

The Math Class 158

Defining Methods That Return Values 161

3.3 Using Objects 165

String Objects 166

Interactive Programs and Scanner Objects 173

Sample Interactive Program 176

Contents xix

3.4 Case Study: Projectile Trajectory 178

Unstructured Solution 182

Structured Solution 184

Supplement 3G Graphics (Optional) 201

3G.1 Introduction to Graphics 202

DrawingPanel 202

Drawing Lines and Shapes 203

Colors 208

Drawing with Loops 211

Text and Fonts 215

Images 218

3G.2 Procedural Decomposition with Graphics 220

A Larger Example: DrawDiamonds 220

3G.3 Case Study: Pyramids 224

Unstructured Partial Solution 224

Generalizing the Drawing of Pyramids 226

Complete Structured Solution 228

Chapter 4 Conditional Execution 243

4.1 if/else Statements 244

Relational Operators 246

Nested if/else Statements 248

Object Equality 255

Factoring if/else Statements 256

Testing Multiple Conditions 258

4.2 Cumulative Algorithms 259

Cumulative Sum 259

Min/Max Loops 261

Cumulative Sum with if 265

Roundoff Errors 267

4.3 Text Processing 270

The char Type 270

char versus int 271

Cumulative Text Algorithms 272

System.out.printf 274

4.4 Methods with Conditional Execution 279

Preconditions and Postconditions 279

Throwing Exceptions 279

xx Contents

Revisiting Return Values 283

Reasoning about Paths 288

4.5 Case Study: Body Mass Index 290

One-Person Unstructured Solution 291

Two-Person Unstructured Solution 294

Two-Person Structured Solution 296

Procedural Design Heuristics 300

Chapter 5 Program Logic and Indefinite Loops 320

5.1 The while Loop 321

A Loop to Find the Smallest Divisor 322

Random Numbers 325

Simulations 329

do/while Loop 331

5.2 Fencepost Algorithms 333

Fencepost with if 334

Sentinel Loops 337

5.3 The boolean Type 339

Logical Operators 340

Short-Circuited Evaluation 343

boolean Variables and Flags 348

Boolean Zen 350

Negating Boolean Expressions 353

5.4 User Errors 354

Scanner Lookahead 354

Handling User Errors 356

5.5 Assertions and Program Logic 358

Reasoning about Assertions 360

A Detailed Assertions Example 362

5.6 Case Study: NumberGuess 366

Initial Version without Hinting 366

Randomized Version with Hinting 369

Final Robust Version 372

Chapter 6 File Processing 392

6.1 File-Reading Basics 393

Data, Data Everywhere 393

Files and File Objects 393

Reading a File with a Scanner 396

Contents xxi

6.2 Details of Token-Based Processing 401

Structure of Files and Consuming Input 403

Scanner Parameters 407

Paths and Directories 409

A More Complex Input File 412

6.3 Line-Based Processing 413

String Scanners and Line/Token Combinations 415

6.4 Advanced File Processing 420

Output Files with PrintStream 420

Guaranteeing That Files Can Be Read 424

6.5 Case Study: Zip Code Lookup 427

Chapter 7 Arrays 447

7.1 Array Basics 448

Constructing and Traversing an Array 448

Accessing an Array 452

Initializing Arrays 455

A Complete Array Program 456

Random Access 461

Arrays and Methods 464

The For-Each Loop 467

The Arrays Class 468

7.2 Array-Traversal Algorithms 470

Printing an Array 471

Searching and Replacing 473

Testing for Equality 475

Reversing an Array 477

String Traversal Algorithms 481

Functional Approach 482

7.3 Reference Semantics 484

Multiple Objects 486

7.4 Advanced Array Techniques 488

Shifting Values in an Array 488

Arrays of Objects 493

Command-Line Arguments 494

Nested Loop Algorithms 495

7.5 Multidimensional Arrays 497

Rectangular Two-Dimensional Arrays 497

Jagged Arrays 499

7.6 Arrays of Pixels 504

7.7 Case Study: Benford’s Law 509

Tallying Values 510

Completing the Program 514

Chapter 8 Classes 535

8.1 Object-Oriented Programming 536

Classes and Objects 537

Point Objects 539

8.2 Object State and Behavior 540

Object State: Fields 541

Object Behavior: Methods 543

The Implicit Parameter 546

Mutators and Accessors 548

The toString Method 550

8.3 Object Initialization: Constructors 552

The Keyword this 557

Multiple Constructors 559

8.4 Encapsulation 560

Private Fields 561

Class Invariants 567

Changing Internal Implementations 571

8.5 Case Study: Designing a Stock Class 573

Object-Oriented Design Heuristics 574

Stock Fields and Method Headers 576

Stock Method and Constructor Implementation 578

Chapter 9 Inheritance and Interfaces 592

9.1 Inheritance Basics 593

Nonprogramming Hierarchies 594

Extending a Class 596

Overriding Methods 600

9.2 Interacting with the Superclass 602

Calling Overridden Methods 602

Accessing Inherited Fields 603

Calling a Superclass’s Constructor 605

DividendStock Behavior 607

The Object Class 609

The equals Method 610

The instanceof Keyword 613

xxii Contents

9.3 Polymorphism 615

Polymorphism Mechanics 618

Interpreting Inheritance Code 620

Interpreting Complex Calls 622

9.4 Inheritance and Design 625

A Misuse of Inheritance 625

Is-a Versus Has-a Relationships 628

Graphics2D 629

9.5 Interfaces 631

An Interface for Shapes 632

Implementing an Interface 634

Benefits of Interfaces 637

9.6 Case Study: Financial Class Hierarchy 639

Designing the Classes 640

Redundant Implementation 644

Abstract Classes 647

Chapter 10 ArrayLists 667

10.1 ArrayLists 668

Basic ArrayList Operations 669

ArrayList Searching Methods 674

A Complete ArrayList Program 677

Adding to and Removing from an ArrayList 679

Initializing an ArrayList 683

Using the For-Each Loop with ArrayLists 684

Wrapper Classes 686

10.2 The Comparable Interface 689

Natural Ordering and compareTo 691

Implementing the Comparable Interface 694

10.3 Case Study: Ranked Choice Voting 701

Ballot Class 702

Counting Votes 705

Multiple Rounds 709

Chapter 11 Java Collections Framework 722

11.1 Lists 723

Collections 723

LinkedList versus ArrayList 724

Iterators 727

Contents xxiii

Abstract Data Types (ADTs) 731

LinkedList Case Study: Sieve 734

11.2 Sets 737

Set Concepts 738

TreeSet versus HashSet 740

Set Operations 741

Set Case Study: Lottery 743

11.3 Maps 745

Basic Map Operations 746

Map Views (keySet and values) 748

TreeMap versus HashMap 749

Map Case Study: WordCount 750

Collection Overview 753

Chapter 12 Recursion 763

12.1 Thinking Recursively 764

A Nonprogramming Example 764

An Iterative Solution Converted to Recursion 767

Structure of Recursive Solutions 769

12.2 A Better Example of Recursion 771

Mechanics of Recursion 773

12.3 Recursive Functions and Data 781

Integer Exponentiation 781

Greatest Common Divisor 784

Directory Crawler 790

Helper Methods 794

12.4 Recursive Graphics 797

12.5 Recursive Backtracking 801

A Simple Example: Traveling North/East 802

8 Queens Puzzle 807

Solving Sudoku Puzzles 814

12.6 Case Study: Prefix Evaluator 818

Infix, Prefix, and Postfix Notation 818

Evaluating Prefix Expressions 819

Complete Program 822

Chapter 13 Searching and Sorting 840

13.1 Searching and Sorting in the Java Class Libraries 841

Binary Search 842

xxiv Contents

Sorting 845

Shuffling 846

Custom Ordering with Comparators 848

13.2 Program Complexity 852

Empirical Analysis 855

Complexity Classes 858

13.3 Implementing Searching and Sorting Algorithms 861

Sequential Search 861

Binary Search 862

Recursive Binary Search 865

Searching Objects 868

Selection Sort 869

13.4 Case Study: Implementing Merge Sort 873

Splitting and Merging Arrays 873

Recursive Merge Sort 876

Complete Program 879

Chapter 14 Stacks and Queues 892

14.1 Stack/Queue Basics 893

Stack Concepts 893

Queue Concepts 896

14.2 Common Stack/Queue Operations 897

Transferring between Stacks and Queues 899

Sum of a Queue 900

Sum of a Stack 901

14.3 Complex Stack/Queue Operations 904

Removing Values from a Queue 904

Comparing Two Stacks for Similarity 906

14.4 Case Study: Expression Evaluator 908

Splitting into Tokens 909

The Evaluator 914

Chapter 15 Implementing a Collection Class 931

15.1 Simple ArrayIntList 932

Adding and Printing 932

Thinking about Encapsulation 938

Dealing with the Middle of the List 939

Another Constructor and a Constant 944

Preconditions and Postconditions 945

Contents xxv

15.2 A More Complete ArrayIntList 949

Throwing Exceptions 949

Convenience Methods 952

15.3 Advanced Features 955

Resizing When Necessary 955

Adding an Iterator 957

15.4 ArrayList<E> 963

Chapter 16 Linked Lists 975

16.1 Working with Nodes 976

Constructing a List 977

List Basics 979

Manipulating Nodes 982

Traversing a List 985

16.2 A Linked List Class 989

Simple LinkedIntList 989

Appending add 991

The Middle of the List 995

16.3 A Complex List Operation 1002

Inchworm Approach 1007

16.4 An IntList Interface 1008

16.5 LinkedList<E> 1011

Linked List Variations 1012

Linked List Iterators 1015

Other Code Details 1017

Chapter 17 Binary Trees 1028

17.1 Binary Tree Basics 1029

Node and Tree Classes 1032

17.2 Tree Traversals 1033

Constructing and Viewing a Tree 1039

17.3 Common Tree Operations 1048

Sum of a Tree 1048

Counting Levels 1049

Counting Leaves 1051

17.4 Binary Search Trees 1052

The Binary Search Tree Property 1053

Building a Binary Search Tree 1055

xxvi Contents

The Pattern x = change(x) 1059

Searching the Tree 1062

Binary Search Tree Complexity 1066

17.5 SearchTree<E> 1067

Chapter 18 Advanced Data Structures 1083

18.1 Hashing 1084

Array Set Implementations 1084

Hash Functions and Hash Tables 1085

Collisions 1087

Rehashing 1092

Hashing Non-Integer Data 1095

Hash Map Implementation 1098

18.2 Priority Queues and Heaps 1099

Priority Queues 1099

Introduction to Heaps 1101

Removing from a Heap 1103

Adding to a Heap 1104

Array Heap Implementation 1106

Heap Sort 1110

Chapter 19 Functional Programming

with Java 8 1119

19.1 Effect-Free Programming 1120

19.2 First-Class Functions 1123

Lambda Expressions 1126

19.3 Streams 1129

Basic Idea 1129

Using Map 1131

Using Filter 1132

Using Reduce 1134

Optional Results 1135

19.4 Function Closures 1136

19.5 Higher-Order Operations on Collections 1139

Working with Arrays 1140

Working with Lists 1141

Working with Files 1145

Contents xxvii

19.6 Case Study: Perfect Numbers 1146

Computing Sums 1147

Incorporating Square Root 1150

Just Five and Leveraging Concurrency 1153

Appendix A Java Summary 1161

Appendix B The Java API Specification
and Javadoc Comments 1176

Appendix C Additional Java Syntax 1182

Index 1191

xxviii Contents

1

Introduction

This chapter begins with a review of some basic terminology about com-

puters and computer programming. Many of these concepts will come up

in later chapters, so it will be useful to review them before we start delv-

ing into the details of how to program in Java.

We will begin our exploration of Java by looking at simple programs that

produce output. This discussion will allow us to explore many elements

that are common to all Java programs, while working with programs that

are fairly simple in structure.

After we have reviewed the basic elements of Java programs, we will

explore the technique of procedural decomposition by learning how to

break up a Java program into several methods. Using this technique, we

can break up complex tasks into smaller subtasks that are easier to man-

age and we can avoid redundancy in our program solutions.

1.1 Basic Computing Concepts

■■ Why Programming?
■■ Hardware and Software
■■ The Digital Realm
■■ The Process of Programming
■■ Why Java?
■■ The Java Programming

Environment

1.2 And Now—Java

■■ String Literals (Strings)
■■ System.out.println

■■ Escape Sequences
■■ print versus println
■■ Identifiers and Keywords
■■ A Complex Example:

DrawFigures1

■■ Comments and Readability

1.3 Program Errors

■■ Syntax Errors
■■ Logic Errors (Bugs)

1.4 Procedural Decomposition

■■ Static Methods
■■ Flow of Control
■■ Methods That Call Other

Methods
■■ An Example Runtime Error

1.5 Case Study: DrawFigures

■■ Structured Version
■■ Final Version without

Redundancy
■■ Analysis of Flow of Execution

Introduction to

Java Programming

Chapter 1

2 Chapter 1 Introduction to Java Programming

1.1 Basic Computing Concepts

Computers are pervasive in our daily lives, and, thanks to the Internet, they give us

access to nearly limitless information. Some of this information is essential news, like

the headlines on your favorite news web site. Computers let us share photos with our

families and map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of which don’t

much resemble the one on your desk or lap. Computers allow us to sequence the

human genome and search for DNA patterns within it. Computers in recently manu-

factured cars monitor each vehicle’s status and motion, and computers are helping

some cars to drive themselves. Digital music players and mobile devices such as

Apple’s iPhone actually have computers inside their small casings. Even the Roomba

vacuum- cleaning robot houses a computer with complex instructions about how to

dodge furniture while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer? Is a human

being with a paper and pencil a computer? The next several sections attempt to ad-

dress this question while introducing some basic terminology that will help prepare

you to study programming.

Why Programming?

At most universities, the first course in computer science is a programming course.

Many computer scientists are bothered by this because it leaves people with the im-

pression that computer science is programming. While it is true that many trained

computer scientists spend time programming, there is a lot more to the discipline. So

why do we study programming first?

A Stanford computer scientist named Don Knuth answers this question by saying

that the common thread for most computer scientists is that we all in some way work

with algorithms.

Knuth is an expert in algorithms, so he is naturally biased toward thinking of them

as the center of computer science. Still, he claims that what is most important is not the

algorithms themselves, but rather the thought process that computer scientists employ

to develop them. According to Knuth,

It has often been said that a person does not really understand something until

after teaching it to someone else. Actually a person does not really understand

something until after teaching it to a computer, i.e., expressing it as an algorithm.1

Algorithm

A step-by-step description of how to accomplish a task.

1 Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the Study of Language and

Information, 1996.

1.1 Basic Computing Concepts 3

Knuth is describing a thought process that is common to most of computer science,

which he refers to as algorithmic thinking. We study programming not because it is

the most important aspect of computer science, but because it is the best way to ex-

plain the approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a computer is and what

computer science is all about. A major dictionary defines the word “computer” as

“one that computes.” Using that definition, all sorts of devices qualify as computers,

including calculators, GPS navigation systems, and children’s toys like the Furby.

Prior to the invention of electronic computers, it was common to refer to humans as

computers. The nineteenth-century mathematician Charles Peirce, for example, was

originally hired to work for the U.S. government as an “Assistant Computer” because

his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many devices. But

when computer scientists refer to a computer, we are usually thinking of a universal

computation device that can be programmed to execute any algorithm. Computer sci-

ence, then, is the study of computational devices and the study of computation itself,

including algorithms.

Algorithms are expressed as computer programs, and that is what this book is all

about. But before we look at how to program, it will be useful to review some basic

concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of instructions

known as programs.

One key feature that differentiates a computer from a simpler machine like a calcu-

lator is its versatility. The same computer can perform many different tasks (playing

games, computing income taxes, connecting to other computers around the world),

depending on what program it is running at a given moment. A computer can run not

only the programs that exist on it currently, but also new programs that haven’t even

been written yet.

The physical components that make up a computer are collectively called hardware.

One of the most important pieces of hardware is the central processing unit, or CPU.

The CPU is the “brain” of the computer: It is what executes the instructions. Also

important is the computer’s memory (often called random access memory, or RAM,

because the computer can access any part of that memory at any time). The computer

uses its memory to store programs that are being executed, along with their data. RAM

is limited in size and does not retain its contents when the computer is turned off.

Therefore, computers generally also use a hard disk as a larger permanent storage area.

Program

A list of instructions to be carried out by a computer.

4 Chapter 1 Introduction to Java Programming

Computer programs are collectively called software. The primary piece of software

running on a computer is its operating system. An operating system provides an en-

vironment in which many programs may be run at the same time; it also provides a

bridge between those programs, the hardware, and the user (the person using the com-

puter). The programs that run inside the operating system are often called applications.

When the user selects a program for the operating system to run (e.g., by double-

clicking the program’s icon on the desktop), several things happen: The instructions

for that program are loaded into the computer’s memory from the hard disk, the oper-

ating system allocates memory for that program to use, and the instructions to run the

program are fed from memory to the CPU and executed sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose device that can be pro-

grammed. You will often hear people refer to modern computers as digital computers

because of the way they operate.

Because computers are digital, everything that is stored on a computer is stored as a

sequence of integers. This includes every program and every piece of data. An MP3

file, for example, is simply a long sequence of integers that stores audio informa-

tion. Today we’re used to digital music, digital pictures, and digital movies, but in the

1940s, when the first computers were built, the idea of storing complex data in integer

form was fairly unusual.

Not only are computers digital, storing all information as integers, but they are also

binary, which means they store integers as binary numbers.

Digital

Based on numbers that increase in discrete increments, such as the integers

0, 1, 2, 3, etc.

Humans generally work with decimal or base-10 numbers, which match our physi-

ology (10 fingers and 10 toes). However, when we were designing the first computers,

we wanted systems that would be easy to create and very reliable. It turned out to be

simpler to build these systems on top of binary phenomena (e.g., a circuit being open

or closed) rather than having 10 different states that would have to be distinguished

from one another (e.g., 10 different voltage levels).

From a mathematical point of view, you can store things just as easily using binary

numbers as you can using base-10 numbers. But since it is easier to construct a physi-

cal device that uses binary numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers find their con-

ventions unfamiliar. As a result, it is worth spending a little time reviewing how binary

Binary Number

A number composed of just 0s and 1s, also known as a base-2 number.

1.1 Basic Computing Concepts 5

numbers work. To count with binary numbers, as with base-10 numbers, you start with

0 and count up, but you run out of digits much faster. So, counting in binary, you say

0

1

And already you’ve run out of digits. This is like reaching 9 when you count in

base-10. After you run out of digits, you carry over to the next digit. So, the next two

binary numbers are

10

11

And again, you’ve run out of digits. This is like reaching 99 in base-10. Again, you

carry over to the next digit to form the three-digit number 100. In binary, whenever

you see a series of ones, such as 111111, you know you’re just one away from the

digits all flipping to 0s with a 1 added in front, the same way that, in base-10, when

you see a number like 999999, you know that you are one away from all those digits

turning to 0s with a 1 added in front.

Table 1.1 shows how to count up to the base-10 number 8 using binary.

Table 1.1 Decimal vs. Binary

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

We can make several useful observations about binary numbers. Notice in the table

that the binary numbers 1, 10, 100, and 1000 are all perfect powers of 2 (20, 21, 22, 23).

In the same way that in base-10 we talk about a ones digit, tens digit, hundreds digit,

and so on, we can think in binary of a ones digit, twos digit, fours digit, eights digit,

sixteens digit, and so on.

Computer scientists quickly found themselves needing to refer to the sizes of differ-

ent binary quantities, so they invented the term bit to refer to a single binary digit and

the term byte to refer to 8 bits. To talk about large amounts of memory, they invented

the terms “kilobytes” (KB), “megabytes” (MB), “gigabytes” (GB), and so on. Many

people think that these correspond to the metric system, where “kilo” means 1000, but

6 Chapter 1 Introduction to Java Programming

that is only approximately true. We use the fact that 210 is approximately equal to 1000

(it actually equals 1024). Table 1.2 shows some common units of memory storage:

Table 1.2 Units of Memory Storage

Measurement Power of 2 Actual Value Example

kilobyte (KB) 210 1024 500-word paper (3 KB)

megabyte (MB) 220 1,048,576 typical book (1 MB) or song

(5 MB)

gigabyte (GB) 230 1,073,741,824 typical movie (4.7 GB)

terabyte (TB) 240 1,099,511,627,776 20 million books in the

Library of Congress (20 TB)

petabyte (PB) 250 1,125,899,906,842,624 10 billion digital photos

(1.5 PB)

The Process of Programming

The word code describes program fragments (“these four lines of code”) or the act of

programming (“Let’s code this into Java”). Once a program has been written, you can

execute it.

The process of execution is often called running. This term can also be used as a

verb (“When my program runs it does something strange”) or as a noun (“The last run

of my program produced these results”).

A computer program is stored internally as a series of binary numbers known as the

machine language of the computer. In the early days, programmers entered numbers like

these directly into the computer. Obviously, this is a tedious and confusing way to pro-

gram a computer, and we have invented all sorts of mechanisms to simplify this process.

Modern programmers write in what are known as high-level programming lan-

guages, such as Java. Such programs cannot be run directly on a computer: They first

have to be translated into a different form by a special program known as a compiler.

A compiler that translates directly into machine language creates a program that

can be executed directly on the computer, known as an executable. We refer to such

compilers as native compilers because they compile code to the lowest possible level

(the native machine language of the computer).

Program Execution

The act of carrying out the instructions contained in a program.

Compiler

A program that translates a computer program written in one language

into an equivalent program in another language (often, but not always,

 translating from a high-level language into machine language).

1.1 Basic Computing Concepts 7

This approach works well when you know exactly what computer you want to use

to run your program. But what if you want to execute a program on many different

computers? You’d need a compiler that generates different machine language output

for each of them. The designers of Java decided to use a different approach. They

cared a lot about their programs being able to run on many different computers, be-

cause they wanted to create a language that worked well for the Web.

Instead of compiling into machine language, Java programs compile into what

are known as Java bytecodes. One set of bytecodes can execute on many different

machines. These bytecodes represent an intermediate level: They aren’t quite as

high-level as Java or as low-level as machine language. In fact, they are the machine

language of a theoretical computer known as the Java Virtual Machine (JVM).

A JVM isn’t an actual machine, but it’s similar to one. When we compile programs

to this level, there isn’t much work remaining to turn the Java bytecodes into actual

machine instructions.

To actually execute a Java program, you need another program that will execute

the Java bytecodes. Such programs are known generically as Java runtimes, and the

standard environment distributed by Oracle Corporation is known as the Java Runtime

Environment (JRE).

Most people have Java runtimes on their computers, even if they don’t know about

them. For example, Apple’s Mac OS X includes a Java runtime, and many Windows

applications install a Java runtime.

Why Java?

When Sun Microsystems released Java in 1995, it published a document called a

“white paper” describing its new programming language. Perhaps the key sentence

from that paper is the following:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure, archi-

tecture neutral, portable, high-performance, multithreaded, dynamic language.2

This sentence covers many of the reasons why Java is a good introductory pro-

gramming language. For starters, Java is reasonably simple for beginners to learn, and

it embraces object-oriented programming, a style of writing programs that has been

shown to be very successful for creating large and complex software systems.

Java Virtual Machine

A theoretical computer whose machine language is the set of Java bytecodes.

Java Runtime

A program that executes compiled Java bytecodes.

2http://www.oracle.com/technetwork/java/langenv-140151.html

8 Chapter 1 Introduction to Java Programming

Java also includes a large amount of prewritten software that programmers can

utilize to enhance their programs. Such off-the-shelf software components are often

called libraries. For example, if you wish to write a program that connects to a site on

the Internet, Java contains a library to simplify the connection for you. Java contains

libraries to draw graphical user interfaces (GUIs), retrieve data from databases, and

perform complex mathematical computations, among many other things. These librar-

ies collectively are called the Java class libraries.

The richness of the Java class libraries has been an extremely important factor in

the rise of Java as a popular language. The Java class libraries in version 10 include

over 6000 entries.

Another reason to use Java is that it has a vibrant programmer community. Extensive

online documentation and tutorials are available to help programmers learn new skills.

Many of these documents are written by Oracle, including an extensive reference

to the Java class libraries called the API Specification (API stands for Application

Programming Interface).

Java is extremely platform independent; unlike programs written in many other lan-

guages, the same Java program can be executed on many different operating systems,

such as Windows, Linux, and Mac OS X.

Java is used extensively for both research and business applications, which means

that a large number of programming jobs exist in the marketplace today for skilled

Java programmers. A sample Google search for the phrase “Java jobs” returned around

816,000,000 hits at the time of this writing.

The Java Programming Environment

You must become familiar with your computer setup before you start programming.

Each computer provides a different environment for program development, but there

are some common elements that deserve comment. No matter what environment you

use, you will follow the same basic three steps:

1. Type in a program as a Java class.

2. Compile the program file.

3. Run the compiled version of the program.

The basic unit of storage on most computers is a file. Every file has a name. A file

name ends with an extension, which is the part of a file’s name that follows the period.

A file’s extension indicates the type of data contained in the file. For example, files

with the extension .doc are Microsoft Word documents, and files with the extension

.mp3 are MP3 audio files.

Java Class Libraries

The collection of preexisting Java code that provides solutions to common

programming problems.

1.1 Basic Computing Concepts 9

The Java program files that you create must use the extension .java. When you

compile a Java program, the resulting Java bytecodes are stored in a file with the same

name and the extension .class.

Most Java programmers use what are known as Integrated Development

Environments, or IDEs, which provide an all-in-one environment for creating, editing,

compiling, and executing program files. Some of the more popular choices for intro-

ductory computer science classes are Eclipse, IntelliJ, NetBeans, jGRASP, DrJava,

BlueJ, and TextPad. Your instructor will tell you what environment you should use.

Try typing the following simple program in your IDE (the line numbers are not part

of the program but are used as an aid):

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Don’t worry about the details of this program right now. We will explore those in

the next section.

Once you have created your program file, move to step 2 and compile it. The com-

mand to compile will be different in each development environment, but the process

is the same (typical commands are “compile” or “build”). If any errors are reported,

go back to the editor, fix them, and try to compile the program again. (We’ll discuss

errors in more detail later in this chapter.)

Once you have successfully compiled your program, you are ready to move to

step 3, running the program. Again, the command to do this will differ from one en-

vironment to the next, but the process is similar (the typical command is “run”). The

diagram in Figure 1.1 summarizes the steps you would follow in creating a program

called Hello.java.

In some IDEs, the first two steps are combined. In these environments the process

of compiling is more incremental; the compiler will warn you about errors as you type

in code. It is generally not necessary to formally ask such an environment to compile

your program because it is compiling as you type.

When your program is executed, it will typically interact with the user in some way.

The Hello.java program involves an onscreen window known as the console.

The console window is a classic interaction mechanism wherein the computer dis-

plays text on the screen and sometimes waits for the user to type responses. This is

known as console or terminal interaction. The text the computer prints to the console

window is known as the output of the program. Anything typed by the user is known

as the console input.

Console Window

A special text-only window in which Java programs interact with the user.

10 Chapter 1 Introduction to Java Programming

To keep things simple, most of the sample programs in this book involve console

interaction. Keeping the interaction simple will allow you to focus your attention and

effort on other aspects of programming.

1.2 And Now—Java

It’s time to look at a complete Java program. In the Java programming language, noth-

ing can exist outside of a class.

Step 1

Use editor to

create/edit source file

Step 2

Submit source file

to Java compiler

Step 3

Execute Java

class file

output

Hello.java

success

failure

output

Hello.class

Figure 1.1 Creation and execution of a Java program

The notion of a class is much richer than this, as you’ll see when we get to Chapter 8,

but for now all you need to know is that each of your Java programs will be stored in a

class.

It is a tradition in computer science that when you describe a new programming lan-

guage, you should start with a program that produces a single line of output with the

words, “Hello, world!” The “hello world” tradition has been broken by many authors

of Java books because the program turns out not to be as short and simple when it is

written in Java as when it is written in other languages, but we’ll use it here anyway.

Class

A unit of code that is the basic building block of Java programs.

Here is our “hello world” program:

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

This program defines a class called Hello. Oracle has established the convention

that class names always begin with a capital letter, which makes it easy to recognize

them. Java requires that the class name and the file name match, so this program must

be stored in a file called Hello.java. You don’t have to understand all the details of

this program just yet, but you do need to understand the basic structure.

The basic form of a Java class is as follows:

public class <name> {

 <method>

 <method>

 ...

 <method>

}

This type of description is known as a syntax template because it describes the basic

form of a Java construct. Java has rules that determine its legal syntax or grammar.

Each time we introduce a new element of Java, we’ll begin by looking at its syntax

template. By convention, we use the less-than (<) and greater-than (>) characters in a

syntax template to indicate items that need to be filled in (in this case, the name of the

class and the methods). When we write “...” in a list of elements, we’re indicating that

any number of those elements may be included.

The first line of the class is known as the class header. The word public in the

header indicates that this class is available to anyone to use. Notice that the program

code in a class is enclosed in curly brace characters ({ }). These characters are used in

Java to group together related bits of code. In this case, the curly braces are indicating

that everything defined within them is part of this public class.

So what exactly can appear inside the curly braces? What can be contained in a

class? All sorts of things, but for now, we’ll limit ourselves to methods. Methods are

the next-smallest unit of code in Java, after classes. A method represents a single ac-

tion or calculation to be performed.

Simple methods are like verbs: They command the computer to perform some

 action. Inside the curly braces for a class, you can define several different methods.

Method

A program unit that represents a particular action or computation.

1.2 And Now—Java 11

12 Chapter 1 Introduction to Java Programming

At a minimum, a complete program requires a special method that is known as the

main method. It has the following syntax:

public static void main(String[] args) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Just as the first line of a class is known as a class header, the first line of a method

is known as a method header. The header for main is rather complicated. Most people

memorize this as a kind of magical incantation. You want to open the door to Ali

Baba’s cave? You say, “Open Sesame!” You want to create an executable Java pro-

gram? You say, public static void main(String[] args). A group of Java

teachers make fun of this with a website called publicstaticvoidmain.com.

Just memorizing magical incantations is never satisfying, especially for computer

scientists who like to know everything that is going on in their programs. But this is

a place where Java shows its ugly side, and you’ll just have to live with it. New pro-

grammers, like new drivers, must learn to use something complex without fully under-

standing how it works. Fortunately, by the time you finish this book, you’ll understand

every part of the incantation.

Notice that the main method has a set of curly braces of its own. They are again

used for grouping, indicating that everything that appears between them is part of the

main method. The lines in between the curly braces specify the series of actions the

computer should perform when it executes the method. We refer to these as the state-

ments of the method. Just as you put together an essay by stringing together complete

sentences, you put together a method by stringing together statements.

Each statement is terminated by a semicolon. The sample “hello world” program

has just a single statement that is known as a println statement:

System.out.println("Hello, world!");

Notice that this statement ends with a semicolon. The semicolon has a special sta-

tus in Java; it is used to terminate statements in the same way that periods terminate

sentences in English.

In the basic “hello world” program there is just a single command to produce a line

of output, but consider the following variation (called Hello2), which has four lines

of code to be executed in the main method:

Statement

An executable snippet of code that represents a complete command.

1.2 And Now—Java 13

1 public class Hello2 {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 System.out.println();

5 System.out.println("This program produces four");

6 System.out.println("lines of output.");

7 }

8 }

Notice that there are four semicolons in the main method, one at the end of each of

the four println statements. The statements are executed in the order in which they

appear, from first to last, so the Hello2 program produces the following output:

Hello, world!

This program produces four

lines of output.

Let’s summarize the different levels we just looked at:

• A Java program is stored in a class.

• Within the class, there are methods. At a minimum, a complete program requires

a special method called main.

• Inside a method like main, there is a series of statements, each of which repre-

sents a single command for the computer to execute.

It may seem odd to put the opening curly brace at the end of a line rather than on a

line by itself. Some people would use this style of indentation for the program instead:

1 public class Hello3

2 {

3 public static void main(String[] args)

4 {

5 System.out.println("Hello, world!");

6 }

7 }

Different people will make different choices about the placement of curly braces.

The style we use follows Oracle’s official Java coding conventions, but the other style

has its advocates too. Often people will passionately argue that one way is much better

than the other, but it’s really a matter of personal taste because each choice has some

advantages and some disadvantages. Your instructor may require a particular style; if

not, you should choose a style that you are comfortable with and then use it consistently.

Now that you’ve seen an overview of the structure, let’s examine some of the de-

tails of Java programs.

14 Chapter 1 Introduction to Java Programming

String Literals (Strings)

When you are writing Java programs (such as the preceding “hello world” program),

you’ll often want to include some literal text to send to the console window as output.

Programmers have traditionally referred to such text as a string because it is composed

of a sequence of characters that we string together. The Java language specification

uses the term string literals.

In Java you specify a string literal by surrounding the literal text in quotation marks,

as in

"This is a bunch of text surrounded by quotation marks."

You must use double quotation marks, not single quotation marks. The following is

not a valid string literal:

'Bad stuff here.'

The following is a valid string literal:

"This is a string even with 'these' quotes inside."

String literals must not span more than one line of a program. The following is not

a valid string literal:

"This is really

bad stuff

right here."

Did You Know?

Hello, World!

The “hello world” tradition was started by Brian Kernighan and Dennis Ritchie.

Ritchie invented a programming language known as C in the 1970s and, together

with Kernighan, coauthored the first book describing C, published in 1978. The

first complete program in their book was a “hello world” program. Kernighan

and Ritchie, as well as their book The C Programming Language, have been

affectionately referred to as “K & R” ever since.

Many major programming languages have borrowed the basic C syntax as a

way to leverage the popularity of C and to encourage programmers to switch to it.

The languages C++ and Java both borrow a great deal of their core syntax from C.

Kernighan and Ritchie also had a distinctive style for the placement of curly

braces and the indentation of programs that has become known as “K & R style.”

This is the style that Oracle recommends and that we use in this book.

1.2 And Now—Java 15

System.out.println

As you have seen, the main method of a Java program contains a series of statements

for the computer to carry out. They are executed sequentially, starting with the first

statement, then the second, then the third, and so on until the final statement has been

executed. One of the simplest and most common statements is System.out.println,

which is used to produce a line of output. This is another “magical incantation” that

you should commit to memory. As of this writing, Google lists around 8,000,000 web

pages that mention System.out.println. The key thing to remember about this

statement is that it’s used to produce a line of output that is sent to the console window.

The simplest form of the println statement has nothing inside its parentheses and

produces a blank line of output:

System.out.println();

You need to include the parentheses even if you don’t have anything to put inside

them. Notice the semicolon at the end of the line. All statements in Java must be ter-

minated with a semicolon.

More often, however, you use println to output a line of text:

System.out.println("This line uses the println method.");

The above statement commands the computer to produce the following line of output:

This line uses the println method.

Each println statement produces a different line of output. For example, consider

the following three statements:

System.out.println("This is the first line of output.");

System.out.println();

System.out.println("This is the third, below a blank line.");

Executing these statements produces the following three lines of output (the second

line is blank):

This is the first line of output.

This is the third, below a blank line.

Escape Sequences

Any system that involves quoting text will lead you to certain difficult situations. For

example, string literals are contained inside quotation marks, so how can you include a

quotation mark inside a string literal? String literals also aren’t allowed to break across

lines, so how can you include a line break inside a string literal?

16 Chapter 1 Introduction to Java Programming

The solution is to embed what are known as escape sequences in the string literals.

Escape sequences are two-character sequences that are used to represent special char-

acters. They all begin with the backslash character (\). Table 1.3 lists some of the more

common escape sequences.

Table 1.3 Common Escape Sequences

Sequence Represents

\t tab character

\n newline character

\" quotation mark

\\ backslash character

Keep in mind that each of these two-character sequences actually stands for just a

single character. For example, consider the following statement:

System.out.println("What \"characters\" does this \\ print?");

If you executed this statement, you would get the following output:

What "characters" does this \ print?

The string literal in the println has three escape sequences, each of which is two

characters long and produces a single character of output.

While string literals themselves cannot span multiple lines (that is, you cannot use

a carriage return within a string literal to force a line break), you can use the \n escape

sequence to embed newline characters in a string. This leads to the odd situation where

a single println statement can produce more than one line of output.

For example, consider this statement:

System.out.println("This\nproduces 3 lines\nof output.");

If you execute it, you will get the following output:

This

produces 3 lines

of output.

The println itself produces one line of output, but the string literal contains two

newline characters that cause it to be broken up into a total of three lines of output. To

produce the same output without new line characters, you would have to issue three

separate println statements.

This is another programming habit that tends to vary according to taste. Some peo-

ple (including the authors) find it hard to read string literals that contain \n escape se-

quences, but other people prefer to write fewer lines of code. Once again, you should

make up your own mind about when to use the new line escape sequence.

1.2 And Now—Java 17

print versus println

Java has a variation of the println command called print that allows you to pro-

duce output on the current line without going to a new line of output. The println

command really does two different things: It sends output to the current line, and then

it moves to the beginning of a new line. The print command does only the first of

these. Thus, a series of print commands will generate output all on the same line.

Only a println command will cause the current line to be completed and a new line

to be started. For example, consider these six statements:

System.out.print("To be ");

System.out.print("or not to be.");

System.out.print("That is ");

System.out.println("the question.");

System.out.print("This is");

System.out.println(" for the whole family!");

These statements produce two lines of output. Remember that every println state-

ment produces exactly one line of output; because there are two println statements

here, there are two lines of output. After the first statement executes, the current line

looks like this:

To be
^

The arrow below the output line indicates the position where output will be sent

next. We can simplify our discussion if we refer to the arrow as the output cursor.

Notice that the output cursor is at the end of this line and that it appears after a space.

The reason is that the command was a print (doesn’t go to a new line) and the string

literal in the print ended with a space. Java will not insert a space for you unless you

specifically request it. After the next print, the line looks like this:

To be or not to be.
^

There’s no space at the end now because the string literal in the second print com-

mand ends in a period, not a space. After the next print, the line looks like this:

To be or not to be.That is
^

There is no space between the period and the word “That” because there was no

space in the print commands, but there is a space at the end of the string literal in the

third statement. After the next statement executes, the output looks like this:

To be or not to be.That is the question.

^

18 Chapter 1 Introduction to Java Programming

Because this fourth statement is a println command, it finishes the output line and

positions the cursor at the beginning of the second line. The next statement is another

print that produces this:

To be or not to be.That is the question.

This is
^

The final println completes the second line and positions the output cursor at the

beginning of a new line:

To be or not to be.That is the question.

This is for the whole family!

^

These six statements are equivalent to the following two single statements:

System.out.println("To be or not to be.That is the question.");

System.out.println("This is for the whole family!");

Using the print and println commands together to produce lines like these may

seem a bit silly, but you will see that there are more interesting applications of print

in the next chapter.

Remember that it is possible to have an empty println command:

System.out.println();

Because there is nothing inside the parentheses to be written to the output line, this

command positions the output cursor at the beginning of the next line. If there are

print commands before this empty println, it finishes out the line made by those

print commands. If there are no previous print commands, it produces a blank line.

An empty print command is meaningless and illegal.

Identifiers and Keywords

The words used to name parts of a Java program are called identifiers.

Identifiers must start with a letter, which can be followed by any number of letters

or digits. The following are all legal identifiers:

first hiThere numStudents TwoBy4

Identifier

A name given to an entity in a program, such as a class or method.

1.2 And Now—Java 19

The Java language specification defines the set of letters to include the underscore

and dollar-sign characters (_ and $), which means that the following are legal identi-

fiers as well:

two_plus_two _count $2donuts MAX_COUNT

The following are illegal identifiers:

two+two hi there hi-There 2by4

Java has conventions for capitalization that are followed fairly consistently by

programmers. All class names should begin with a capital letter, as with the Hello,

Hello2, and Hello3 classes introduced earlier. The names of methods should begin

with lowercase letters, as in the main method. When you are putting several words to-

gether to form a class or method name, capitalize the first letter of each word after the

first. In the next chapter we’ll discuss constants, which have yet another capitalization

scheme, with all letters in uppercase and words separated by underscores. These dif-

ferent schemes might seem like tedious constraints, but using consistent capitalization

in your code allows the reader to quickly identify the various code elements.

For example, suppose that you were going to put together the words “all my chil-

dren” into an identifier. The result would be:

• AllMyChildren for a class name (each word starts with a capital)

• allMyChildren for a method name (starts with a lowercase letter, subsequent

words capitalized)

• ALL_MY_CHILDREN for a constant name (all uppercase, with words separated by

underscores; described in Chapter 2)

Java is case sensitive, so the identifiers class, Class, CLASS, and cLASs are all

considered different. Keep this in mind as you read error messages from the compiler.

People are good at understanding what you write, even if you misspell words or make

little mistakes like changing the capitalization of a word. However, mistakes like these

cause the Java compiler to become hopelessly confused.

Don’t hesitate to use long identifiers. The more descriptive your names are, the eas-

ier it will be for people (including you) to read your programs. Descriptive identifiers

are worth the time they take to type. Java’s String class, for example, has a method

called compareToIgnoreCase.

Be aware, however, that Java has a set of predefined identifiers called keywords

that are reserved for particular uses. As you read this book, you will learn many of

these keywords and their uses. You can only use keywords for their intended pur-

poses. You must be careful to avoid using these words in the names of identifiers.

For example, if you name a method short or try, this will cause a problem, because

short and try are reserved keywords. Table 1.4 shows the complete list of reserved

keywords.

20 Chapter 1 Introduction to Java Programming

A Complex Example: DrawFigures1

The println statement can be used to draw text figures as output. Consider the fol-

lowing more complicated program example (notice that it uses two empty println

statements to produce blank lines):

 1 public class DrawFigures1 {

 2 public static void main(String[] args) {

 3 System.out.println(" /\\");

 4 System.out.println(" / \\");

 5 System.out.println(" / \\");

 6 System.out.println(" \\ /");

 7 System.out.println(" \\ /");

 8 System.out.println(" \\/");

 9 System.out.println();

10 System.out.println(" \\ /");

11 System.out.println(" \\ /");

12 System.out.println(" \\/");

13 System.out.println(" /\\");

14 System.out.println(" / \\");

15 System.out.println(" / \\");

16 System.out.println();

17 System.out.println(" /\\");

18 System.out.println(" / \\");

19 System.out.println(" / \\");

20 System.out.println("+------+");

21 System.out.println("| |");

22 System.out.println("| |");

23 System.out.println("+------+");

24 System.out.println("|United|");

25 System.out.println("|States|");

26 System.out.println("+------+");

27 System.out.println("| |");

Table 1.4 List of Java Keywords

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

1.2 And Now—Java 21

28 System.out.println("| |");

29 System.out.println("+------+");

30 System.out.println(" /\\");

31 System.out.println(" / \\");

32 System.out.println(" / \\");

33 }

34 }

The following is the output the program generates. Notice that the program includes

double backslash characters (\\), but the output has single backslash characters. This

is an example of an escape sequence, as described previously.

 /\

 / \

 / \

 \ /

 \ /

 \/

 \ /

 \ /

 \/

 /\

 / \

 / \

 /\

 / \

 / \

+------+

| |

| |

+------+

|United|

|States|

+------+

| |

| |

+------+

 /\

 / \

 / \

Comments and Readability

Java is a free-format language. This means you can put in as many or as few spaces and

blank lines as you like, as long as you put at least one space or other punctuation mark

22 Chapter 1 Introduction to Java Programming

between words. However, you should bear in mind that the layout of a program can en-

hance (or detract from) its readability. The following program is legal but hard to read:

1 public class Ugly{public static void main(String[] args)

2 {System.out.println("How short I am!");}}

Here are some simple rules to follow that will make your programs more readable:

• Put class and method headers on lines by themselves.

• Put no more than one statement on each line.

• Indent your program properly. When an opening brace appears, increase the

indentation of the lines that follow it. When a closing brace appears, reduce the

indentation. Indent statements inside curly braces by a consistent number of

spaces (a common choice is four spaces per level of indentation).

• Use blank lines to separate parts of the program (e.g., methods).

Using these rules to rewrite the Ugly program yields the following code:

1 public class Ugly {

2 public static void main(String[] args) {

3 System.out.println("How short I am!");

4 }

5 }

Well-written Java programs can be quite readable, but often you will want to in-

clude some explanations that are not part of the program itself. You can annotate pro-

grams by putting notes called comments in them.

There are two comment forms in Java. In the first form, you open the comment with

a slash followed by an asterisk and you close it with an asterisk followed by a slash:

/* like this */

You must not put spaces between the slashes and the asterisks:

/ * this is bad * /

You can put almost any text you like, including multiple lines, inside the comment:

/* Thaddeus Martin

 Assignment #1

 Instructor: Professor Walingford

 Grader: Bianca Montgomery */

Comment

Text that programmers include in a program to explain their code. The

 compiler ignores comments.

1.2 And Now—Java 23

The only things you aren’t allowed to put inside a comment are the comment end

characters. The following code is not legal:

/* This comment has an asterisk/slash /*/ in it,

 which prematurely closes the comment. This is bad. */

Java also provides a second comment form for shorter, single-line comments. You can

use two slashes in a row to indicate that the rest of the current line (everything to the right

of the two slashes) is a comment. For example, you can put a comment after a statement:

System.out.println("You win!"); // Good job!

Or you can create a comment on its own line:

// give an introduction to the user

System.out.println("Welcome to the game of blackjack.");

System.out.println();

System.out.println("Let me explain the rules.");

You can even create blocks of single-line comments:

// Thaddeus Martin

// Assignment #1

// Instructor: Professor Walingford

// Grader: Bianca Montgomery

Some people prefer to use the first comment form for comments that span multiple

lines but it is safer to use the second form because you don’t have to remember to

close the comment. It also makes the comment stand out more. This is another case

in which, if your instructor does not tell you to use a particular comment style, you

should decide for yourself which style you prefer and use it consistently.

Don’t confuse comments with the text of println statements. The text of your

comments will not be displayed as output when the program executes. The comments

are there only to help readers examine and understand the program.

It is a good idea to include comments at the beginning of each class file to indicate

what the class does. You might also want to include information about who you are,

what course you are taking, your instructor and/or grader’s name, the date, and so on.

You should also comment each method to indicate what it does.

Commenting becomes more useful in larger and more complicated programs, as

well as in programs that will be viewed or modified by more than one programmer.

Clear comments are extremely helpful to explain to another person, or to yourself at a

later time, what your program is doing and why it is doing it.

In addition to the two comment forms already discussed, Java supports a particular

style of comments known as Javadoc comments. Their format is more complex, but

they have the advantage that you can use a program to extract the comments to make

HTML files suitable for reading with a web browser. Javadoc comments are useful in

more advanced programming and are discussed in more detail in Appendix B.

24 Chapter 1 Introduction to Java Programming

1.3 Program Errors

In 1949, Maurice Wilkes, an early pioneer of computing, expressed a sentiment that

still rings true today:

As soon as we started programming, we found out to our surprise that it

wasn’t as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent in finding mistakes in my own

programs.

You also will have to face this reality as you learn to program. You’re going to

make mistakes, just like every other programmer in history, and you’re going to need

strategies for eliminating those mistakes. Fortunately, the computer itself can help you

with some of the work.

There are three kinds of errors that you’ll encounter as you write programs:

• Syntax errors occur when you misuse Java. They are the programming equivalent

of bad grammar and are caught by the Java compiler.

• Logic errors occur when you write code that doesn’t perform the task it is in-

tended to perform.

• Runtime errors are logic errors that are so severe that Java stops your program

from executing.

Syntax Errors

Human beings tend to be fairly forgiving about minor mistakes in speech. For ex-

ample, the character Yoda would lose points for his unusual grammar in any writing

class, but we still understand what he means.

The Java compiler will be far less forgiving. The compiler reports syntax errors as

it attempts to translate your program from Java into bytecodes if your program breaks

any of Java’s grammar rules. For example, if you misplace a single semicolon in your

program, you can send the compiler into a tailspin of confusion. The compiler may re-

port several error messages, depending on what it thinks is wrong with your program.

A program that generates compilation errors cannot be executed. If you submit

your program to the compiler and the compiler reports errors, you must fix the errors

and resubmit the program. You will not be able to proceed until your program is free

of compilation errors.

Some development environments, such as Eclipse, help you along the way by un-

derlining syntax errors as you write your program. This makes it easy to spot exactly

where errors occur.

It’s possible for you to introduce an error before you even start writing your pro-

gram, if you choose the wrong name for its file.

1.3 Program Errors 25

The file name is just the first hurdle. A number of other errors may exist in your

Java program. One of the most common syntax errors is to misspell a word. You may

have punctuation errors, such as missing semicolons. It’s also easy to forget an entire

word, such as a required keyword.

The error messages the compiler gives may or may not be helpful. If you don’t un-

derstand the content of the error message, look for the caret marker (^) below the line,

which points at the position in the line where the compiler became confused. This can

help you pinpoint the place where a required keyword might be missing.

Common Programming Error

File Name Does Not Match Class Name

As mentioned earlier, Java requires that a program’s class name and file name

match. For example, a program that begins with public class Hello must be

stored in a file called Hello.java.

If you use the wrong file name (for example, saving it as WrongFileName.java),

you’ll get an error message like this:

WrongFileName.java:1: error: class Hello is public,

 should be declared in a file named Hello.java

public class Hello {

 ^

1 error

Common Programming Error

Misspelled Words

Java (like most programming languages) is very picky about spelling. You need

to spell each word correctly, including proper capitalization. Suppose, for exam-

ple, that you were to replace the println statement in the “hello world” pro-

gram with the following:

System.out.pruntln("Hello, world!");

When you try to compile this program, it will generate an error message similar to

the following:

Hello.java:3: error: cannot find symbol

symbol : method pruntln(java.lang.String)

Continued on next page

26 Chapter 1 Introduction to Java Programming

If you still can’t figure out the error, try looking at the error’s line number and com-

paring the contents of that line with similar lines in other programs. You can also ask

someone else, such as an instructor or lab assistant, to examine your program.

location: variable out of type PrintStream

 System.out.pruntln("Hello, world!");

 ^

1 error

The first line of this output indicates that the error occurs in the file Hello.java

on line 3 and that the error is that the compiler cannot find a symbol. The second line

indicates that the symbol it can’t find is a method called pruntln. That’s because

there is no such method; the method is called println. The error message can take

slightly different forms depending on what you have misspelled. For example, you

might forget to capitalize the word System:

system.out.println("Hello, world!");

You will get the following error message:

Hello.java:3: error: package system does not exist

 system.out.println("Hello, world!");

 ^

1 error

Again, the first line indicates that the error occurs in line 3 of the file Hello.java.

The error message is slightly different here, though, indicating that it can’t find a

package called system. The second and third lines of this error message include the

original line of code with an arrow (caret) pointing to where the compiler got con-

fused. The compiler errors are not always very clear, but if you pay attention to where

the arrow is pointing, you’ll have a pretty good sense of where the error occurs.

Continued from previous page

Common Programming Error

Forgetting a Semicolon

All Java statements must end with semicolons, but it’s easy to forget to put a

semicolon at the end of a statement, as in the following program:

1 public class MissingSemicolon {

2 public static void main(String[] args) {

3 System.out.println("A rose by any other name")

Continued on next page

1.3 Program Errors 27

4 System.out.println("would smell as sweet");

5 }

6 }

In this case, the compiler produces output similar to the following:

MissingSemicolon.java:3: error: ';' expected

 System.out.println("A rose by any other name")

 ^

1 error

Continued from previous page

Yet another common syntax error is to forget to close a string literal.

A good rule of thumb to follow is that the first error reported by the compiler is the

most important one. The rest might be the result of that first error. Many programmers

Common Programming Error

Forgetting a Required Keyword

Another common syntax error is to forget a required keyword when you are

typing your program, such as static or class. Double-check your programs

against the examples in the textbook to make sure you haven’t omitted an

important keyword.

The compiler will give different error messages depending on which keyword is

missing, but the messages can be hard to understand. For example, you might write

a program called Bug4 and forget the keyword class when writing its class header.

In this case, the compiler will provide the following error message:

Bug4.java:1: error: class, interface, or enum expected

public Bug4 {

 ^

1 error

However, if you forget the keyword void when declaring the main method, the

compiler generates a different error message:

Bug5.java:2: error: invalid method declaration; return type required

 public static main(String[] args) {

 ^

1 error

