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Preface

Physical and natural phenomena depend on a complex array of factors. The sociologist 
or psychologist who studies group behavior, the economist who endeavors to under-
stand the vagaries of a nation’s employment cycles, the physicist who observes the 
trajectory of a particle or planet, or indeed anyone who seeks to understand geometry 
in two, three, or more dimensions recognizes the need to analyze changing quantities 
that depend on more than a single variable. Vector calculus is the essential mathemati-
cal tool for such analysis. Moreover, it is an exciting and beautiful subject in its own 
right, a true adventure in many dimensions.

The only technical prerequisite for this text, which is intended for a sophomore- 
level course in multivariable calculus, is a standard course in the calculus of functions 
of one variable. In particular, the necessary matrix arithmetic and algebra (not linear 
algebra) are developed as needed. Although the mathematical background assumed is 
not exceptional, the reader will still be challenged in places.

Our objectives in writing the book are simple ones: to develop in students a sound 
conceptual grasp of vector calculus and to help them begin the transition from first-
year calculus to more advanced technical mathematics. We believe that the first goal 
can be met, at least in part, through the use of vector and matrix notation, so that many 
results, especially those of di�erential calculus, can be stated with reasonable levels of 
clarity and generality. Properly described, results in the calculus of several variables 
can look quite similar to those of the calculus of one variable. Reasoning by analogy 
will thus be an important pedagogical tool. We also believe that a conceptual under-
standing of mathematics can be obtained through the development of a good geometric 
intuition. Although many results are stated in the case of n variables (where n is arbi-
trary), we recognize that the most important and motivational examples usually arise 
for functions of two and three variables, so these concrete and visual situations are 
emphasized to explicate the general theory. Vector calculus is in many ways an ideal 
subject for students to begin exploration of the interrelations among analysis, geometry, 
and matrix algebra.

Multivariable calculus, for many students, represents the beginning of significant 
mathematical maturation. Consequently, we have written a rather expansive text so that 
they can see that there is a story behind the results, techniques, and examples—that the 
subject coheres and that this coherence is important for problem solving. To indicate 
some of the power of the methods introduced, a number of topics, not always discussed 
very fully in a first multivariable calculus course, are treated here in some detail:

 • an early introduction of cylindrical and spherical coordinates (§1.7);

 • the use of vector techniques to derive Kepler’s laws of planetary motion (§3.1);

 • the elementary di�erential geometry of curves in R3, including discussion of cur-
vature, torsion, and the Frenet–Serret formulas for the moving frame (§3.2);

 • Taylor’s formula for functions of several variables (§4.1);

 • the use of the Hessian matrix to determine the nature (as local extrema) of critical 
points of functions of n variables (§4.2 and §4.3);

 • an extended discussion of the change of variables formula in double and triple 
integrals (§5.5);

 • applications of vector analysis to physics (§7.4);

 • an introduction to di�erential forms and the generalized Stokes’s theorem (Chapter 8).
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Included are a number of proofs of important results. The more technical proofs 
are collected as addenda at the ends of the appropriate sections so as not to disrupt the 
main conceptual flow and to allow for greater flexibility of use by the instructor and 
student. Nonetheless, some proofs (or sketches of proofs) embody such central ideas 
that they are included in the main body of the text.

New in the Fifth Edition

We have retained the overall structure and tone of prior editions. New features in this 
edition include the following:

 • NEW: For the first time, this text is available as a Pearson eText, featuring a num-
ber of interactive GeoGebra applets.

 • clarifications, new examples, and new exercises throughout the text;

 • new derivations of the orthogonal projection formula (§1.3) and the Cauchy–
Schwarz inequality (§1.6);

 • a description of the geometric interpretation of second-order partial derivatives (§2.4);

 • a description of the interpretation of the Lagrange multiplier (§4.3);

 • new terminology in Chapter 5 to describe elementary regions of integration, and 
more examples of setting up double and triple integrals;

 • a new subsection in §5.6 on probability as an application of multiple integrals, and 
new miscellaneous exercises in Chapter 5 on expected value;

 • new examples illustrating interesting uses of Green’s theorem (§6.2);

 • new miscellaneous exercises in Chapters 1 and 4 for readers more familiar with 
linear algebra.

 • Authors’ DEI statement: We conducted an external review of the text’s content to 
determine how it could be improved to address issues related to diversity, equity, 
and inclusion. The results of that review informed the revision.

How to Use This Book

There is more material in this book than can be covered comfortably during a single 
semester. Hence, the instructor will wish to eliminate some topics or subtopics—or to 
abbreviate the rather leisurely presentations of limits and di�erentiability. Since some 
instructors may find themselves without the time to treat surface integrals in detail, we 
have separated all material concerning parametrized surfaces, surface integrals, and 
Stokes’s and Gauss’s theorems (Chapter 7) from that concerning line integrals and 
Green’s theorem (Chapter 6). In particular, in a one-semester course for students hav-
ing little or no experience with vectors or matrices, instructors can probably expect to 
cover most of the material in Chapters 1–6, although no doubt it will be necessary to 
omit some of the optional subsections and to downplay many of the proofs of results. 
A rough outline for such a course, allowing for some instructor discretion, could be the 
following:

Chapter 1 8–9 lectures

Chapter 2 9 lectures

Chapter 3 4–5 lectures

Chapter 4 5–6 lectures

Chapter 5 8 lectures

Chapter 6      4 lectures

  38–41 lectures



If students have a richer background (so that much of the material in Chapter 1 can be 
left largely to them to read on their own), then it should be possible to treat a good 
portion of Chapter 7 as well. For a two-quarter or two-semester course, it should be 
possible to work through the entire book with reasonable care and rigor, although 
coverage of Chapter 8 should depend on students’ exposure to introductory linear 
algebra, as somewhat more sophistication is assumed there.

The exercises vary from relatively routine computations to more challenging and 
provocative problems, generally (but not invariably) increasing in di�culty within 
each section. In a number of instances, groups of problems serve to introduce supple-
mentary topics or new applications. Each chapter concludes with a set of miscella-
neous exercises that both review and extend the ideas introduced in the chapter.

A word about the use of technology. The text was written without reference to any 
particular computer software or graphing calculator. Most of the exercises can be 
solved by hand, although there is no reason not to turn over some of the more tedious 
calculations to a computer. Those exercises that require a computer for computational 
or graphical purposes are marked with the symbol T  and should be amenable to soft-
ware such as Mathematica®, Maple®, or MATLAB.

Ancillary Materials

An Instructor’s Solutions Manual, containing complete solutions to all of the exer-
cises, is available to course instructors from the Pearson Instructor Resource Center 
(www.pearsonhighered.com/irc), as are many Microsoft® PowerPoint® files and Wolfram 
Mathematica® notebooks that can be adapted for classroom use. The reader can find 
errata for the text and accompanying solutions manuals at the following address:
www.oberlin.edu/math/faculty/colley/VCErrata.html
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To the Student: Some Preliminary Notation

Here are the ideas that you need to keep in mind as you read this book and learn 
vector calculus.

Given two sets A and B, we assume that you are familiar with the notation 
A h  B for the union of A and B—those elements that are in either A or B (or 
both):

A h  B = 5x ∙ x ∈ A or x ∈ B6.

Similarly, A x  
B is used to denote the intersection of A and B—those ele-

ments that are in both A and B:

A x  B = 5x ∙ x ∈ A and x ∈ B6.

The notation A ⊆ B, or A ⊂ B, indicates that A is a subset of B (possibly empty 
or equal to B).

One-dimensional space (also called the real line or R) is just a straight 
line. We put real number coordinates on this line by placing negative numbers 
on the left and positive numbers on the right. (See Figure 1.)

Two-dimensional space, denoted R2, is the familiar Cartesian plane. If we 
construct two perpendicular lines (the x- and y-coordinate axes), set the origin 
as the point of intersection of the axes, and establish numerical scales on these 
lines, then we may locate a point in R2 by giving an ordered pair of numbers 
1x, y2, the coordinates of the point. Note that the coordinate axes divide the 
plane into four quadrants. (See Figure 2.)

Three-dimensional space, denoted R3, requires three mutually perpendicu-
lar coordinate axes (called the x-, y- and z-axes) that meet in a single point 
(called the origin) in order to locate an arbitrary point. Analogous to the case of 
R2, if we establish scales on the axes, then we can locate a point in R3 by giving 
an ordered triple of numbers 1x, y, z2 . The coordinate axes divide three- 
dimensional space into eight octants. It takes some practice to get your sense 
of perspective correct when sketching points in R3. (See Figure 3.) Sometimes 
we draw the coordinate axes in R3 in di�erent orientations in order to get a 
better view of things. However, we always maintain the axes in a right-handed 

configuration. This means that if you curl the fingers of your right hand from 
the positive x-axis to the positive y-axis, then your thumb will point along the 
positive z-axis. (See Figure 4.)

Although you need to recall particular techniques and methods from the 
calculus you have already learned, here are some of the more important con-
cepts to keep in mind: Given a function f 1x2, the derivative f ′1x2 is the limit 
(if it exists) of the di�erence quotient of the function:

f ′1x2 = lim
hS0

 
f 1x + h2 - f 1x2

h
.

The significance of the derivative f ′1x02 is that it measures the slope of the line 
tangent to the graph of f  at the point 1x0, f 1x022. (See Figure 5.) The derivative 
may also be considered to give the instantaneous rate of change of f  at x = x0. 
We also denote the derivative f ′1x2 by d f>dx.

x
0 1 2 3-3 -2 -1

FIGURE 1 The coordinate line R.

1

1

(x0, y0)

x

y

x0

y0

FIGURE 2 The coordinate plane R2.



The definite integral 1b

a  f 1x2 dx of f  on the closed interval 3a, b4 is the 
limit (provided it exists) of the so-called Riemann sums of f :

L
b

a
 f 1x2 dx = lim

all ∆xiS0 a
n

i=1

f 1x*
i2∆xi.

Here a = x0 6 x1 6 x2 6g6 xn = b denotes a partition of 3a, b4 into 
subintervals 3xi-1, xi4, the symbol ∆xi = xi - xi-1 (the length of the subinter-
val), and x*i  denotes any point in 3xi-1, xi4. If f 1x2 Ú 0 on 3a, b4, then each 
term f 1x*i 2∆xi in the Riemann sum is the area of a rectangle related to the 
graph of f . The Riemann sum a n

i=1 
f 1x*i 2∆xi thus approximates the total 

area under the graph of f  between x = a and x = b. (See Figure 6.)
The definite integral 1b

a  f1x2 dx, if it exists, is taken to represent the area 
under y = f 1x2 between x = a and x = b. (See Figure 7.)

The derivative and the definite integral are connected by an elegant result 
known as the fundamental theorem of calculus. Let f 1x2 be a continuous 

(2, 4, 5)(-1, -2, 2)

1

4
2

2

-1
-1

-2
5

1 y

x

z

FIGURE 3 Three-dimensional 

space R3. Selected points are 

graphed.

y

y

x

xz

z

FIGURE 4 The x-, y-, and z-axes in R3 are always 

drawn in a right-handed configuration.

(x0, f(x0))

x

y

FIGURE 5 The derivative f′1x02 is 

the slope of the tangent line to 

y = f1x2 at 1x0, f 1x022.
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FIGURE 6 If f1x2 Ú 0 on 3a, b4, then the Riemann sum 

approximates the area under y = f1x2 by giving the sum 

of areas of rectangles.
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function of one variable, and let F1x2 be such that F′1x2 = f 1x2. (The function 
F is called an antiderivative of f .) Then

1. L
b

a
  f1x2dx = F1b2 - F1a2;

2. 
d

dx L
x

a
  f1t2dt = f1x2.

Finally, the end of an example is denoted by the symbol  and the begin-
ning and end of a proof by the symbol .

x

y

a b

y = f(x)

FIGURE 7 The area under the graph of y = f 1x2 is 

1b

a  f1x2 dx.
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1.1

1 Vectors

Vectors in Two and Three Dimensions

For your study of the calculus of several variables, the notion of a vector is 
fundamental. As is the case for many of the concepts we shall explore, there are 
both algebraic and geometric points of view. You should become comfortable 
with both perspectives in order to solve problems e�ectively and to build on 
your basic understanding of the subject.

Vectors in R2 and R3: The Algebraic Notion

1.1 Vectors in Two and Three Dimensions

1.2 More About Vectors

1.3 The Dot Product

1.4 The Cross Product

1.5 Equations for Planes; Distance Problems

1.6 Some n-dimensional Geometry

1.7 New Coordinate Systems

True/False Exercises for Chapter 1

Miscellaneous Exercises for Chapter 1

The idea of describing space in terms of coordinates played a major role in the 

development of mathematics and led to the ability to describe planes, spheres,  

and other geometric objects in terms of equations. In this chapter, we develop  

the tools necessary to formulate such equations, with the concept of a vector 

playing a key role. In the accompanying figure for example, we see that  

formulating an equation that characterizes points on a plane in space (such as  

a plane tangent to a sphere) requires only knowledge of a given point on the  

plane and a vector perpendicular to the plane.
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DEFINITION 1.1 A vector in R2 is simply an ordered pair of real numbers. 
That is, a vector in R2 may be written as1a1, a22 1e.g., 11, 22 or 1p, 1722.
Similarly, a vector in R3 is simply an ordered triple of real numbers. That 
is, a vector in R3 may be written as1a1, a2, a32 1e.g., 1p, e, 1222.



2 Chapter 1 | Vectors

To emphasize that we want to consider the pair or triple of numbers as a 
single unit, we will use boldface letters; hence a = 1a1, a22 or a = 1a1, a2, a32 
will be our standard notation for vectors in R2 or R3. Whether we mean that a is 
a vector in R2 or in R3 will be clear from context (or else won’t be important  
to the discussion). When doing handwritten work, it is di�cult to “boldface” 
anything, so you’ll want to put an arrow over the letter. Thus, a

u

 will mean the 
same thing as a. Whatever notation you decide to use, it’s important that you 
distinguish the vector a (or a

u

) from the single real number a. To contrast them 
with vectors, we will also refer to single real numbers as scalars.

In order to do anything interesting with vectors, it’s necessary to develop 
some arithmetic operations for working with them. Before doing this, however, 
we need to know when two vectors are equal.

DEFINITION 1.2 Two vectors a = 1a1, a22 and b = 1b1, b22 in R2 are 
equal if their corresponding components are equal, that is, if a1 = b1 and 
a2 = b2. The same definition holds for vectors in R3: a = 1a1, a2, a32 and 
b = 1b1, b2, b32 are equal if their corresponding components are equal, 
that is, if a1 = b1, a2 = b2, and a3 = b3.

EXAMPLE 1  The vectors a = 11, 22 and b = 133, 632 are equal in R2, but 

c = 11, 2, 32 and d = 12, 3, 12 are not equal in R3. 

Next, we discuss the operations of vector addition and scalar multiplication. 
We’ll do this by considering vectors in R3 only; exactly the same remarks will 
hold for vectors in R2 if we simply ignore the last component.

DEFINITION 1.3 (Vector addition) Let a = 1a1, a2, a32 and b = 1b1, b2, b32   
be two vectors in R3. Then the vector sum a + b is the vector in R3 obtained 
via componentwise addition: a + b = 1a1 + b1, a2 + b2, a3 + b32.

EXAMPLE 2  We have 10, 1, 32 + 17, -2, 102 = 17, -1, 132 and (in R2):11, 12 + 1p, 122 = 11 + p, 1 + 122. 
Properties of vector addition. We have

1. a + b = b + a for all a, b in R3 (commutativity);

2. a + 1b + c2 = 1a + b2 + c for all a, b, c in R3 (associativity);

3. a special vector, denoted 0 (and called the zero vector), with the 
property that a + 0 = a for all a in R3.

These three properties require proofs, which, like most facts involving the 
algebra of vectors, can be obtained by explicitly writing out the vector components. 
For example, for property 1, we have that if

a = 1a1, a2, a32 and b = 1b1, b2, b32,
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then

 a + b = 1a1 + b1, a2 + b2, a3 + b32
 = 1b1 + a1, b2 + a2, b3 + a32
 = b + a,

since real number addition is commutative. For property 3, the “special vector” 
is just the vector whose components are all zero: 0 = 10, 0, 02. It’s then easy to 
check that property 3 holds by writing out components. Similarly for property 2, 
so we leave the details as exercises.

FIGURE 1.1 A vector a ∈ R2 

corresponds to a point in R2.
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FIGURE 1.2 A vector a ∈ R3 

corresponds to a point in R3.
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Properties of scalar multiplication. For all vectors a and b in R3 (or R2) 
and scalars k and l in R, we have

1. 1k + l2a = ka + la (distributivity);

2. k1a + b2 = ka + kb (distributivity);

3. k1la2 = 1kl2a = l1ka2.
It is worth remarking that none of these definitions or properties really 

depends on dimension, that is, on the number of components. Therefore we could 
have introduced the algebraic concept of a vector in Rn as an ordered n-tuple 1a1, a2, c, an2 of real numbers and defined addition and scalar multiplication 
in a way analogous to what we did for R2 and R3. Think about what such a gen-
eralization means. We will discuss some of the technicalities involved in §1.6.

Vectors in R2 and R3: The Geometric Notion

Although the algebra of vectors is certainly important and you should become 
adept at working algebraically, the formal definitions and properties tend to 
present a rather sterile picture of vectors. A better motivation for the definitions 
just given comes from geometry. We explore this geometry now. First of all, the 
fact that a vector a in R2 is a pair of real numbers 1a1, a22 should make you 
think of the coordinates of a point in R2. (See Figure 1.1.) Similarly, if a ∈ R3, 
then a may be written as 1a1, a2, a32, and this triple of numbers may be thought 
of as the coordinates of a point in R3. (See Figure 1.2.)

All of this is fine, but the results of performing vector addition or scalar 
multiplication don’t have very interesting or meaningful geometric interpreta-
tions in terms of points. As we shall see, it is better to visualize a vector in R2 
or R3 as an arrow that begins at the origin and ends at the point. (See Figure 1.3.) 

DEFINITION 1.4 (Scalar multiplication) Let a = 1a1, a2, a32 be a vector in 
R3 and let k ∈ R be a scalar (real number). Then the scalar product  
ka is the vector in R3 given by multiplying each component of a by k: 
ka = 1ka1, ka2, ka32.

EXAMPLE 3  If a = 12, 0, 122 and k = 7, then ka = 114, 0, 7122. 
The results that follow are not di�cult to check—just write out the vector 

components.
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Such a depiction is often referred to as the position vector of the point 1a1, a22 
or 1a1, a2, a32.

If you’ve studied vectors in physics, you have heard them described as 
objects having “magnitude and direction.” Figure 1.3 demonstrates this con-
cept, provided that we take “magnitude” to mean “length of the arrow” and 
“direction” to be the orientation or sense of the arrow. (Note: There is an excep-
tion to this approach, namely, the zero vector. The zero vector just sits at the 
origin, like a point, and has no magnitude and, therefore, an indeterminate 
direction. This exception will not pose much di�culty.) However, in physics, 
one doesn’t demand that all vectors be represented by arrows having their tails 
bound to the origin. One is free to “parallel translate” vectors throughout R2 
and R3. That is, one may represent the vector a = 1a1, a2, a32 by an arrow with 
its tail at the origin 1and its head at 1a1, a2, a322 or with its tail at any other 
point, so long as the length and sense of the arrow are not disturbed. (See 
Figure 1.4.) For example, if we wish to represent a by an arrow with its tail at 
the point 1x1, x2, x32 , then the head of the arrow would be at the point 1x1 + a1, x2 + a2, x3 + a32. (See Figure 1.5.)

FIGURE 1.3 A vector a in R2 or R3 is represented by an arrow from the 

origin to a.
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FIGURE 1.4 Each arrow is a 

parallel translate of the position 

vector of the point 1a1, a2, a32 and 

represents the same vector.
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FIGURE 1.5 The vector 

a = 1a1, a2, a32 represented by  

an arrow with tail at the point 1x1, x2, x32.
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With this geometric description of vectors, vector addition can be visual-
ized in two ways. The first is often referred to as the “head-to-tail” method for 
adding vectors. Draw the two vectors a and b to be added so that the tail of one 
of the vectors, say b, is at the head of the other. Then the vector sum a + b may 
be represented by an arrow whose tail is at the tail of a and whose head is at the 
head of b. (See Figure 1.6.) Note that it is not immediately obvious that 
a + b = b + a from this construction!

The second way to visualize vector addition is according to the so-called 
parallelogram law: If a and b are nonparallel vectors drawn with their tails 
emanating from the same point, then a + b may be represented by the arrow 
(with its tail at the common initial point of a and b) that runs along a diagonal 
of the parallelogram determined by a and b (Figure 1.7). The parallelogram 
law is completely consistent with the head-to-tail method. To see why, just par-
allel translate b to the opposite side of the parallelogram. Then the diagonal just 
described is the result of adding a and (the translate of) b, using the head-to-tail 
method. (See Figure 1.8.)

We still should check that these geometric constructions agree with our alge-
braic definition. For simplicity, we’ll work in R2. Let a = 1a1, a22 and b = 1b1, b22 
as usual. Then the arrow obtained from the parallelogram law addition of a and b is 
the one whose tail is at the origin O and whose head is at the point P in Figure 1.9. 
If we parallel translate b so that its tail is at the head of a, then it is immediate that 
the coordinates of P must be 1a1 + b1, a2 + b22, as desired.

Scalar multiplication is easier to visualize: The vector ka may be represented 
by an arrow whose length is � k �  times the length of a and whose direction is the 
same as that of a when k 7 0 and the opposite when k 6 0. (See Figure 1.10.)

FIGURE 1.6 The vector a + b 

may be represented by an 

arrow whose tail is at the tail 

of a and whose head is at the 

head of b.
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FIGURE 1.7 The vector 

a + b may be represented 

by the arrow that runs along 

the diagonal of the parallelo-

gram determined by a and b.
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FIGURE 1.8 The equivalence of the 

parallelogram law and the head-to-

tail methods of vector addition.
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FIGURE 1.9 The point P has coordinates 1a1 + b1, a2 + b22.
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It is now a simple matter to obtain a geometric depiction of the di�erence 
between two vectors. (See Figure 1.11.) The di�erence a - b is nothing more 
than a + 1-b2 (where -b means the scalar -1 times the vector b). The vector 
a - b may be represented by an arrow pointing from the head of b toward the 
head of a; such an arrow is also a diagonal of the parallelogram determined by 
a and b. (As we have seen, the other diagonal can be used to represent a + b.) 
Note in Figure 1.11 that adding b to c = a - b using the “head-to-tail” method 
results in vector a, precisely as one would expect of b + 1a - b2.

Here is a construction that will be useful to us from time to time.

FIGURE 1.11 The 

geometry of vector 

subtraction. The vector c 

is such that b + c = a. 

Hence, c = a - b.

a

b c=a−b

FIGURE 1.12 The displacement 

vector P1P2

¡

, represented by the 

arrow from P1 to P2, is the 

di�erence between the position 

vectors of these two points.
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DEFINITION 1.5 Given two points P11x1, y1, z12 and P21x2, y2, z22 in R3, the 
displacement vector from P1 to P2 is

P1P2

¡

= 1x2 - x1, y2 - y1, z2 - z12.
This construction is not hard to understand if we consider Figure 1.12. 

Given the points P1 and P2, draw the corresponding position vectors OP1

¡

 and 

OP2

¡

. Then we see that P1P2

¡

 is precisely OP2

¡

- OP1

¡

. An analogous definition 
may be made for R2.

In your study of the calculus of one variable, you no doubt used the notions 
of derivatives and integrals to look at such physical concepts as velocity, accel-
eration, force, etc. The main drawback of the work you did was that the tech-
niques involved allowed you to study only rectilinear, or straight-line, activity. 
Intuitively, we all understand that motion in the plane or in space is more com-
plicated than straight-line motion. Because vectors possess direction as well as 
magnitude, they are ideally suited for two- and three-dimensional dynamical 
problems.

For example, suppose a particle in space is at the point 1a1, a2, a32 (with 
respect to some appropriate coordinate system). Then it has position vector 
a = 1a1, a2, a32. If the particle travels with constant velocity v = 1y1, y2, y32 
for t seconds, then the particle’s displacement from its original position is tv, 
and its new coordinate position is a + tv. (See Figure 1.13.)

EXAMPLE 4  If a spaceship is at position 1100, 3, 7002 and is traveling with 
velocity 17, -10, 252 (meaning that the ship travels 7 mi/sec in the positive 
x-direction, 10 mi/sec in the negative y-direction, and 25 mi/sec in the positive 
z-direction), then after 20 seconds, the ship will be at position1100, 3, 7002 + 2017, -10, 252 = 1240, -197, 12002,
and the displacement from the initial position is 1140, -200, 5002. 
EXAMPLE 5  The S.S. Calculus is cruising due south at a rate of 15 knots 

(nautical miles per hour) with respect to still water. However, there is also a 
current of 512 knots southeast. What is the total velocity of the ship? If the 
ship is initially at the origin and a lobster pot is at position 120, -792, will the 
ship collide with the lobster pot?

Since velocities are vectors, the total velocity of the ship is v1 + v2, 
where v1 is the velocity of the ship with respect to still water and v2 is the 

FIGURE 1.13 After t seconds, the 

point starting at a, with velocity v, 

moves to a + tv.

(a1, a2, a3)
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southeast-pointing velocity of the current. Figure 1.14 makes it fairly straight-
forward to compute these velocities. We have that v1 = 10, -152. Since v2 
points southeastward, its direction must be along the line y = -x. Therefore, 
v2 can be written as v2 = 1y, -y2, where y is a positive real number. By the 
Pythagorean theorem, if the length of v2 is 512, then we must have 
y2

+ 1-y22 = 151222 or 2y2
= 50, so that y = 5. Thus, v2 = 15, -52, 

and, hence, the net velocity is10, -152 + 15, -52 = 15, -202.
After 4 hours, therefore, the ship will be at position10, 02 + 415, -202 = 120, -802
and thus will miss the lobster pot. 

EXAMPLE 6  The theory behind the venerable martial art of judo is an excel-
lent example of vector addition. If two people, one relatively strong and the 
other relatively weak, have a shoving match, it is clear who will prevail. For 
example, someone pushing one way with 200 lb of force will certainly succeed 
in overpowering another pushing the opposite way with 100 lb of force. Indeed, 
as Figure 1.15 shows, the net force will be 100 lb in the direction in which the 
stronger person is pushing.

FIGURE 1.14 The length of v1 is 

15, and the length of v2 is 512.

x

y

Net velocity

v1 ship
(with respect
to still water)

v2 current

FIGURE 1.15 A relatively strong person pushing with a 

force of 200 lb can quickly subdue a relatively weak one 

pushing with only 100 lb of force.

100 lb 100 lb200 lb
=

FIGURE 1.16 Vector addition in 

judo.

> 200 lb

100 lb
200 lb

Dr. Jigoro Kano, the founder of judo, realized (though he never expressed his 
idea in these terms) that this sort of vector addition favors the strong over the weak. 
However, if weaker participants apply their 100 lb of force in a direction only 
slightly di�erent from that of a stronger one, they will e�ect a vector sum of length 
large enough to surprise the opponent. (See Figure 1.16.) This is the basis for 
essentially all of the throws of judo and why judo is described as the art of “using a 
person’s strength against oneself.” In fact, the word “judo” means “the way of gen-
tleness” or “the way of giving in.” One “gives in” to the strength of another by 
attempting only to redirect his or her force rather than to oppose it. 

1.1 Exercises

1. Sketch the following vectors in R2:

(a) 12, 12
(b) 13, 32
(c) 1-1, 22

2. Sketch the following vectors in R3:

(a) 11, 2, 32
(b) 1-2, 0, 22
(c) 12, -3, 12

3. Perform the indicated algebraic operations. Express 
your answers in the form of a single vector 
a = 1a1, a22 in R2.

(a) 13, 12 + 1-1, 72
(b) -218, 122
(c) 18, 92 + 31-1, 22
(d) 11, 12 + 512, 62 - 3110, 22
(e) 18, 102 + 3118, -22 - 214, 522
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4. Perform the indicated algebraic operations. Express 
your answers in the form of a single vector 
a = 1a1, a2, a32 in R3.

(a) 12, 1, 22 + 1-3, 9, 72
(b) 1

218, 4, 12 + 215, -7, 142
(c) -2112, 0, 12 - 6112, -4, 122

5. Graph the vectors a = 11, 22, b = 1-2, 52, and 
a + b = 11, 22 + 1-2, 52, using both the parallel-
ogram law and the head-to-tail method.

6. Graph the vectors a = 13, 22 and b = 1-1, 12. Also 

calculate and graph a - b, 12a, and a + 2b.

7. Let A be the point with coordinates 11, 0, 22, let B be 
the point with coordinates 1-3, 3, 12, and let C be 
the point with coordinates 12, 1, 52.
(a) Describe the vectors AB

¡

 and BA
¡

.

(b) Describe the vectors AC
¡

, BC
¡

, and AC
¡

+ CB
¡

.

(c) Explain, with pictures, why AC
¡

+ CB
¡

= AB
¡

.

8. Graph 11, 2, 12 and 10, -2, 32, and calculate and 
graph 11, 2, 12 + 10, -2, 32 , -111, 2, 12, and 
411, 2, 12.

9. If 1-12, 9, z2 + 1x, 7, -32 = 12, y, 52, what are x, 
y, and z?

10. What is the length (magnitude) of the vector 13, 12? 
(Hint: A diagram will help.)

11. Sketch the vectors a = 11, 22 and b = 15, 102. 
Explain why a and b point in the same direction.

12. Sketch the vectors a = 12, -7, 82 and b = 1-1,
7
2,-42. Explain why a and b point in opposite directions.

13. How would you add the vectors 11, 2, 3, 42  and 15, -1, 2, 02 in R4? What should 217, 6, -3, 12 be? 
In general, suppose that

a = 1a1, a2, c , an2 and b = 1b1, b2, c , bn2
are two vectors in Rn and k ∈ R is a scalar. Then 
how would you define a + b and ka?

14. Find the displacement vectors from P1 to P2, where P1 

and P2 are the points given. Sketch P1, P2, and P1P2

¡

.

(a) P111, 0, 22, P212, 1, 72
(b) P111, 6, -12, P210, 4, 22
(c) P110, 4, 22, P211, 6, -12
(d) P113, 12, P212, -12

15. Let P112, 5, -1, 62 and P213, 1, -2, 72 be two points 
in R4. How would you define and calculate the dis-
placement vector from P1 to P2? (See Exercise 13.)

16. If A is the point in R3 with coordinates 12, 5, -62 
and the displacement vector from A to a second point 
B is 112, -3, 72, what are the coordinates of B?

17. Suppose that you and your friend are in New York 
talking on cellular phones. You inform each other of 
your own displacement vectors from the Empire 
State Building to your current position. Explain how 
you can use this information to determine the dis-
placement vector from you to your friend.

18. Give the details of the proofs of properties 2 and 3 of 
vector addition given in this section.

19. Prove the properties of scalar multiplication given in 
this section.

20. (a)  If a is a vector in R2 or R3, what is 0a? Prove 
your answer.

(b) If a is a vector in R2 or R3, what is 1a? Prove 
your answer.

21. (a)  Let a = 12, 02 and b = 11, 12. For 0 … s … 1 
and 0 … t … 1, consider the vector x = sa + tb.  
Explain why the vector x lies in the parallelo-
gram determined by a and b. (Hint: It may help 
to draw a picture.)

(b) Now suppose  tha t  a = 12, 2, 12  and 
b = 10, 3, 22. Describe the set of vectors 5x = sa + tb �0 … s … 1, 0 … t … 16 .

22. Let a = 1a1, a2, a32 and b = 1b1, b2, b32 be two 
nonzero vectors such that b ≠ ka. Use vectors to 
describe the set of points inside the parallelogram 
with vertex P01x0, y0, z02 and whose adjacent sides 
are parallel to a and b and have the same lengths as a 
and b. (See Figure 1.17.) (Hint: If P1x, y, z2 is a point 
in the parallelogram, describe OP

S
, the position vec-

tor of P.)

23. A flea falls onto marked graph paper at the point 13, 22 . She begins moving from that point with 
velocity vector v = 1-1, -22 (i.e., she moves 1 
graph paper unit per minute in the negative x- 
direction and 2 graph paper units per minute in the 
negative y-direction).

(a) What is the speed of the flea?

FIGURE 1.17 Figure for Exercise 22.

y

x

z

O

P

a

b

P0



 1.2 | More About Vectors 9

(b) Where is the flea after 3 minutes?

(c) How long does it take the flea to get to the point 1-4, -122?
(d) Does the flea reach the point 1-13, -272? Why 

or why not?

24. A plane takes o� from an airport with velocity vector 150, 100, 42. Assume that the units are miles per hour, 
that the positive x-axis points east, and that the positive 
y-axis points north.

(a) How fast is the plane climbing vertically at 
take-o�?

(b) Suppose the airport is located at the origin and a 
skyscraper is located 5 miles east and 10 miles 
north of the airport. The skyscraper is 1,250 feet 
tall. When will the plane be directly over the 
building?

(c) When the plane is over the building, how much 
vertical clearance is there?

25. As mentioned in the text, physical forces (e.g., grav-
ity) are quantities possessing both magnitude and 
direction and therefore can be represented by vectors. 
If an object has more than one force acting on it, then 
the resultant (or net) force can be represented by the 
sum of the individual force vectors. Suppose that two 

forces, F1 = 12, 7, -12 and F2 = 13, -2, 52, act on 
an object.

(a) What is the resultant force of F1 and F2?

(b) What force F3 is needed to counteract these 
forces (i.e., so that no net force results and the 
object remains at rest)?

26. A 50 lb sandbag is suspended by two ropes. Suppose 
that a three-dimensional coordinate system is intro-
duced so that the sandbag is at the origin and the 
ropes are anchored at the points 10, -2, 12  and 10, 2, 12.
(a) Assuming that the force due to gravity points 

parallel to the vector 10, 0, -12, give a vector F 
that describes this gravitational force.

(b) Now, use vectors to describe the forces along 
each of the two ropes. Use symmetry consider-
ations and draw a figure of the situation.

27. A 10 lb weight is suspended in equilibrium by two 
ropes. Assume that the weight is at the point 11, 2, 32 
in a three-dimensional coordinate system, where the 
positive z-axis points straight up, perpendicular to 
the ground, and that the ropes are anchored at the 
points 13, 0, 42 and 10, 3, 52. Give vectors F1 and F2 
that describe the forces along the ropes.

More About Vectors

The Standard Basis Vectors

In R2, the vectors i = 11, 02 and j = 10, 12 play a special notational role. Any 
vector a = 1a1, a22 may be written in terms of i and j via vector addition and 
scalar multiplication:1a1, a22 = 1a1, 02 + 10, a22 = a111, 02 + a2 10, 12 = a1 i + a2 j.

(It may be easier to follow this argument by reading it in reverse.) Insofar as nota-
tion goes, the preceding work simply establishes that one can write either 1a1, a22 
or a1 i + a2 j to denote the vector a. It’s your choice which notation to use (as long 
as you’re consistent), but the ij-notation is generally useful for emphasizing the 
“vector” nature of a, while the coordinate notation is more useful for emphasizing 
the “point” nature of a (in the sense of a’s role as a possible position vector of a 
point). Geometrically, the significance of the standard basis vectors i and j is that 
an arbitrary vector a ∈ R2 can be decomposed pictorially into appropriate vector 

components along the x- and y-axes, as shown in Figure 1.18.
Exactly the same situation occurs in R3, except that we need three vectors, 

i = 11, 0, 02, j = 10, 1, 02, and k = 10, 0, 12, to form the standard basis. (See 
Figure 1.19.) The same argument as the one just given can be used to show that 
any vector a = 1a1, a2, a32 may also be written as a1 i + a2 j + a3 k. We shall 
use both coordinate and standard basis notation throughout this text.

EXAMPLE 1  We may write the vector 11, -22 as i - 2j and the vector 17, p, -32 as 7i + pj - 3k. 

1.2
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Parametric Equations of Lines

In R2, we know that equations of the form y = mx + b or Ax + By = C 
describe straight lines. (See Figure 1.20.) Consequently, one might expect the 
same sort of equation to define a line in R3 as well. Consideration of a simple 
example or two (such as in Figure 1.21) should convince you that a single 
such linear equation describes a plane, not a line; in particular, one can always 
find three noncollinear points 1x, y, z2  in R3 satisfying the equation 
Ax + By + Cz = D, so such an equation certainly does not describe a line. A 
pair of simultaneous equations in x, y, and z is required to define a line.

We postpone discussing the derivation of equations for planes until §1.5 
and concentrate here on using vectors to give sets of parametric equations for 
lines in R2 or R3 (or even Rn).

First, we remark that a curve in the plane may be described analytically by 
points 1x, y2, where x and y are given as functions of a third variable (the 
parameter) t. These functions give rise to parametric equations for the curve:e x = f1t2

y = g1t2 .
As t varies, the points 1x, y2 = 1 f1t2, g1t22 described by these equations trace 
out the curve in question.

EXAMPLE 2  The set of equationse x = 2 cos t

y = 2 sin t
 0 … t 6 2p

FIGURE 1.18 Any vector in R2 can be written in terms of i and j.

i

j

x

y

a=a1i+a2 j

x

y

a1i

a2 j

FIGURE 1.19 Any vector in R3 can be written in terms of i, j, and k.

i
j

k

y

x

z

a2 j

a1i

a3k

y

x

z

a

FIGURE 1.20 In R2, the equation 

y = 3 describes a line.

y=3

x

y

FIGURE 1.21 In R3, the equation 

y = 3 describes a plane.

y

x

z

y=3
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describes a circle of radius 2, since we may check that

x2
+ y2

= 12 cos t22 + 12 sin t22 = 4.

(See Figure 1.22.) In this case, the points 12 cos t, 2 sin t2 trace out the circle 
visually in a counterclockwise direction as t increases from 0 to 2p. 

Parametric equations may be used as readily to describe curves in R3; a 
curve in R3 is the set of points 1x, y, z2 whose coordinates x, y, and z are each 
given by a function of t:

• x = f1 t2
y = g1t2
z = h1t2 .

The advantages of using parametric equations are twofold. First, they o�er a 
uniform way of describing curves in any number of dimensions. (How would 
you define parametric equations for a curve in R4? In R128?) Second, they allow 
you to get a dynamic sense of a curve if you consider the parameter variable t 
to represent time and imagine that a particle is traveling along the curve with 
time according to the given parametric equations. You can represent this geo-
metrically by assigning a “direction” to the curve to signify increasing t. Notice 
the arrow in Figure 1.22.

Now, we see how to provide equations for lines. First, convince yourself 
that a line in R2 or R3 is uniquely determined by two pieces of geometric infor-
mation: (1) a vector whose direction is parallel to that of the line and (2) any 
particular point lying on the line—see Figure 1.23. In Figure 1.24, we seek the 
vector

r = OP
¡

between the origin O and an arbitrary point P on the line l 1i.e., the position 
vector of P 1x, y, z22 . OP

¡

 is the vector sum of the position vector b of the 
given point P0 (i.e., OP0

¡

) and a vector parallel to a. Any vector parallel to a 
must be a scalar multiple of a. Letting this scalar be the parameter variable t, 
we have

r = OP
¡

= OP0

¡

+ ta,

and we have established the following proposition:

FIGURE 1.22 The graph of the 

parametric equations x = 2 cos t, 

y = 2 sin t, 0 … t 6 2p.

t = 0
x

y

t=p

t=3p/2

t=p/2

FIGURE 1.23 The line l is the 

unique line passing through P0  

and parallel to the vector a.

y

l

x

z

a

a

P0

FIGURE 1.24 The graph of a line 

in R3.

y

x

z

O

P

b=OP0

r=OP
a

ta

P0

Note that it is the endpoint of the vector r1t2 that gives a point on the line being 
described.

Expanding formula (1),

 r 1t2 = OP
¡

= b1i + b2j + b3k + t1a1i + a2j + a3k2
 = 1a1t + b12i + 1a2t + b22j + 1a3t + b32k.

PROPOSITION 2.1 The vector parametric equation for the line through the 
point P01b1, b2, b32, whose position vector is OP0

¡

= b = b1i + b2j + b3k, 
and parallel to a = a1i + a2j + a3k is

 r1t2 = b + ta. (1)
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Next, write OP
¡

 as xi + yj + zk so that P has coordinates 1x, y, z2 . Then, 
extracting components, we see that the coordinates of P are 1a1t + b1,
a2t + b2, a3t + b32 and our parametric equations are

 • x = a1t + b1

y = a2t + b2

z = a3t + b3

 , (2)

where t is any real number. Note that these equations are linear in t, in that t 
only appears with exponent at most one. Parametric equations of this form will 
always describe a line, but that is not to say that other types of parametric equa-
tions could not also describe a line. (See Exercises 32 and 33.)

These parametric equations work just as well in R2 (if we ignore the 
z-component) or in Rn where n is arbitrary. In Rn, formula (1) remains valid, 
where we take a = 1a1, a2, . . . , an2 and b = 1b1, b2, . . . , bn2. The resulting 
parametric equations are

µ x1 = a1t + b1

x2 = a2t + b2

     f

xn = ant + bn

 .

EXAMPLE 3  To find the parametric equations of the line through 11, -2, 32 
and parallel to the vector pi - 3j + k, we have a = pi - 3j + k and 
b = i - 2j + 3k so that formula (1) yields

 r1t2 = i - 2j + 3k + t1pi - 3j + k2
 = 11 + pt2i + 1-2 - 3t2j + 13 + t2k.

The parametric equations may be read as

 • x = pt + 1

y = -3t - 2

z = t + 3

 .

 

EXAMPLE 4  From Euclidean geometry, two distinct points determine a unique 

line in R2 or R3. Let’s find the parametric equations of the line through the points 
P011, -2, 32 and P110, 5, -12. The situation is suggested by Figure 1.25. To  
use formula (1), we need to find a vector a parallel to the desired line. The  
vector with tail at P0 and head at P1 is such a vector. That is, we may use for a 
the vector

P0P1

¡

= 10 - 1, 5 - 1-22, -1 - 32 = - i + 7j - 4k.

For b, the position vector of a particular point on the line, we have the choice of 
taking either b = i - 2j + 3k or b = 5j - k. Hence, the equations in (2) 
yield parametric equations

 • x = 1 - t

y = -2 + 7t

z = 3 - 4t

  or  • x = - t

y = 5 + 7t

z = -1 - 4t

 .

 

FIGURE 1.25 Finding equations 

for a line through two points in 

Example 4.

y

x

z

P0

P1
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In general, given two arbitrary points

P01a1, a2, a32 and P11b1, b2, b32,
the line joining them has vector parametric equation

 r 1t2 = OP0

¡

+ tP0P1

¡

. (3)

Equation (3) gives parametric equations

 • x = a1 + 1b1 - a12t
y = a2 + 1b2 - a22t
z = a3 + 1b3 - a32t. (4)

Alternatively, in place of equation (3), we could use the vector equation

 r1t2 = OP1

¡

+ tP0P1

¡

, (5)

or perhaps

 r1t2 = OP1

¡

+ tP1P0

¡

, (6)

each of which gives rise to somewhat di�erent sets of parametric equations. 
Again, we refer you to Figure 1.25 for an understanding of the vector geometry 
involved.

Example 4 brings up an important point, namely, that parametric equations 
for a line (or, more generally, for any curve) are never unique. In fact, the two 
sets of equations calculated in Example 4 are by no means the only ones; we 

could have taken a = P1P0

¡

= i - 7j + 4k or any nonzero scalar multiple of 

P0P1

¡

 for a.
If parametric equations are not determined uniquely, then how can you 

check your work? In general, this is not so easy to do, but in the case of lines, 
there are two approaches to take. One is to produce two points that lie on the line 
specified by the first set of parametric equations and see that these points lie on 
the line given by the second set of parametric equations. The other approach is 
to use the parametric equations to find what is called the symmetric form of a 
line in R3. From the equations in (2), assuming that each ai is nonzero, one can 
eliminate the parameter variable t in each equation to obtain:

e t =

x - b1

a1

t =

y - b2

a2

t =

z - b3

a3

 .

The symmetric form is

 
x - b1

a1
=

y - b2

a2
=

z - b3

a3
, (7)

where points 1x, y, z2  on the line are those that satisfy these equations 
simultaneously.
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In Example 4, the two sets of parametric equations give rise to correspond-
ing symmetric forms

x - 1

-1
=

y + 2

7
=

z - 3

-4
 and 

x

-1
=

y - 5

7
=

z + 1

-4
.

It’s not di�cult to see that adding 1 to each “side” of the second symmetric 
form yields the first one. In general, symmetric forms for lines can di�er only 
by a constant term or constant scalar multiples (or both).

The symmetric form is really a set of two simultaneous equations in R3. For 
example, the information in (7) can also be written as

µ  

x - b1

a1
=

y - b2

a2

x - b1

a1
=

z - b3

a3

 .

This illustrates that we require two “scalar” equations in x, y, and z to describe a 
line in R3, although a single vector parametric equation, formula (1), is su�cient.

The next two examples illustrate how to use parametric equations for lines 
to identify the intersection of a line and a plane or of two lines.

EXAMPLE 5  We find where the line with parametric equations

• x = t + 5

y = -2t - 4

z = 3t + 7

intersects the plane 3x + 2y - 7z = 2. (We will see precisely why this is a 
plane in §1.5.)

To locate the point of intersection, we must find what value of the parameter t 
gives a point on the line that also lies in the plane. This is readily accomplished by 
substituting the parametric values for x, y, and z from the line into the equation 
for the plane

 31t + 52 + 21-2t - 42 - 713t + 72 = 2. (8)

Solving equation (8) for t, we find that t = -2. Setting t equal to -2 in the 
parametric equations for the line yields the point 13, 0, 12, which, indeed, lies 
in the plane as well. 

EXAMPLE 6  We determine whether and where the two lines

• x = t + 1

y = 5t + 6

z = -2t

 and • x = 3t - 3

y = t

z = t + 1

intersect.
The lines intersect provided that there is a specific value t1 for the parame-

ter of the first line and a value t2 for the parameter of the second line that gener-
ate the same point. In other words, we must be able to find t1 and t2 so that, by 
equating the respective parametric expressions for x, y, and z, we have

 • t1 + 1 = 3t2 - 3

5t1 + 6 = t2

-2t1 = t2 + 1

 . (9)
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Let us emphasize here that the values of t1 and t2 are not required to be the 
same. If we think of t as representing a time parameter, the time at which a 
point on the first line reaches the intersection might be di�erent from the time 
at which a point on the second line reaches it.

The last two equations of (9) yield

t2 = 5t1 + 6 = -2t1 - 1 1 t1 = -1.

Using t1 = -1 in the second equation of (9), we find that t2 = 1. Note that the 
values t1 = -1 and t2 = 1 also satisfy the first equation of (9); therefore, we 
have solved the system. Setting t = -1 in the set of parametric equations for 
the first line gives the desired intersection point, namely, 10, 1, 22. 
Parametric Equations in General

Vector geometry makes it relatively easy to find parametric equations for a 
variety of curves. We provide two examples.

EXAMPLE 7  If a wheel rolls along a flat surface without slipping, a point on 
the rim of the wheel traces a curve called a cycloid, as shown in Figure 1.26.

FIGURE 1.26 The graph of a cycloid.

x

y

Suppose that the wheel has radius a and that coordinates in R2 are chosen so that 
the point of interest on the wheel is initially at the origin. After the wheel has rolled 
through a central angle of t radians, the situation is as shown in Figure 1.27.  

We seek the vector OP
¡

, the position vector of P, in terms of the parameter t.  

Evidently, OP
¡

= OA
¡

+ AP
¡

, where the point A is the center of the wheel. The 

vector OA
¡

 is not di�cult to determine. Its j-component must be a, since the center 
of the wheel does not vary vertically. Its i-component must equal the distance the 
wheel has rolled; if t is measured in radians, then this distance is at, the length of 
the arc of the circle having central angle t. Hence, OA

¡

= ati + aj.
The value of vector methods becomes apparent when we determine AP

¡

. 

Parallel translate the picture so that AP
¡

 has its tail at the origin, as in Figure 1.28. 
From the parametric equations of a circle of radius a,

AP
¡

= a cos a3p

2
- tb i + a sin a3p

2
- tb j = -a sin t i - a cos t j,

from the addition formulas for sine and cosine. We conclude that

 OP
¡

= OA
¡

+ AP
¡

= 1ati + aj2 + 1-a sin ti - a cos tj2
 = a1t - sin t2i + a11 - cos t2j,

FIGURE 1.27 The result of the 

wheel in Figure 1.26 rolling 

through a central angle of t.

O

A

P

t

x

y

FIGURE 1.28  AP
¡

 with its tail at 

the origin.

A

P

t

3p/2−t
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so the parametric equations are

 e x = a1t -  sin t2
y = a11 -  cos t2 . 

EXAMPLE 8  If you unwind adhesive tape from a nonrotating circular tape 
dispenser so that the unwound tape is held taut and tangent to the dispenser 
roll, then the end of the tape traces a curve called the involute of the circle. 
Let’s find the parametric equations for this curve, assuming that the dispensing 
roll has constant radius a and is centered at the origin. (As more and more tape 
is unwound, the radius of the roll will, of course, decrease. We’ll assume that 
little enough tape is unwound so that the radius of the roll remains constant.)

Considering Figure 1.29, we see that the position vector OP
¡

 of the desired point 

P is the vector sum OB
¡

+ BP
¡

. To determine OB
¡

 and BP
¡

, we use the angle u 

between the positive x-axis and OB
¡

 as our parameter. Since B is a point on the circle,

OB
¡

= a cos u i + a sin u j.

FIGURE 1.29 Unwinding tape, as 

in Example 8. The point P 

describes a curve known as the 

involute of the circle.

O

B

P
x

y

(a, 0)

Unwound
tape

Involute

u

FIGURE 1.30 The vector BP
¡

 must 

make an angle of u - p>2 with 

the positive x-axis.

B

a P

x

y

au u−p/2

u

To find the vector BP
¡

, parallel translate it so that its tail is at the origin. Figure 1.30 

shows that BP
¡

’s length must be au, the amount of unwound tape, and its direc-
tion must be such that it makes an angle of u - p>2 with the positive x-axis. 

From our experience with circular geometry and, perhaps, polar coordinates, we 

see that BP
¡

 is described by

BP
¡

= au cos au -
p

2
b i + au sin au -

p

2
b j = au sin u i - au cos u j.

Hence,

OP
¡

= OB
¡

+ BP
¡

= a1cos u + u sin u2i + a1sin u - u cos u2j.
So e x = a 1cos u + u sin u2

y = a 1sin u - u cos u2
are the parametric equations of the involute, whose graph is pictured in 
Figure 1.31. FIGURE 1.31 The involute.

Generating
circle

x

y
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1.2 Exercises

In Exercises 1–5, write the given vector by using the stan-

dard basis vectors for R2 and R3.

1. 12, 42 2. 19, -62 3. 13, p, -72
4. 1-1, 2, 52 5. 12, 4, 02

In Exercises 6–10, write the given vector without using the 

standard basis notation.

6. i + j - 3k 7. 9 i - 2 j + 12k

8. -312i - 7k2
9. pi - j (Consider this to be a vector in R2.)

10. pi - j (Consider this to be a vector in R3.)

11. Let a1 = 11, 12 and a2 = 11, -12.
(a) Write the vector b = 13, 12 as c1a1 + c2a2, 

where c1 and c2 are appropriate scalars.

(b) Repeat part (a) for the vector b = 13, -52.
(c) Show that any vector b = 1b1, b22 in R2 may be 

written in the form c1a1 + c2a2 for appropriate 
choices of the scalars c1, c2. (This shows that a1 
and a2 form a basis for R2 that can be used 
instead of i and j.)

12. Let a1 = 11, 0, -12, a2 = 10, 1, 02, and a3 =11, 1, -12.
(a) Find scalars c1, c2, c3, so as to write the vector 

b = 15, 6, -52 as c1a1 + c2a2 + c3a3.

(b) Try to repeat part (a) for the vector b =12, 3, 42 . What happens?

(c) Can the vectors a1, a2, a3 be used as a basis for 
R3, instead of i, j, k? Why or why not?

In Exercises 13–20, give a set of parametric equations for 

the lines so described.

13. The line in R3 through the point 12, -1, 52 that is 
parallel to the vector i + 3j - 6k.

14. The line in R3 through the point 112, -2, 02 that is 
parallel to the vector 5i - 12j + k.

15. The line in R2 through the point 12, -12 that is parallel 
to the vector i - 7j.

16. The line in R3 through the points 12, 1, 22  and 13, -1, 52.
17. The line in R3 through the points 11, 4, 52  and 12, 4, -12.
18. The line in R2 through the points 18, 52 and 11, 72.
19. The line in R2 through the point (1, 3) and perpendic-

ular to the line y = 2x.

20. The line in R2 through the point 1-1, 42 and perpen-
dicular to the line with parametric equations 
x = -3t + 2, y = t - 4.

21. Write a set of parametric equations for the line in 
R4 through the point 11, 2, 0, 42 and parallel to the 
vector 1-2, 5, 3, 72.

22. Write a set of parametric equations for the line in 
R5 through the points 19, p, -1, 5, 22 and 1-1, 1,

12, 7, 12.
23. (a)  Write a set of parametric equations for the line in 

R3 through the point 1-1, 7, 32 and parallel to 
the vector 2i - j + 5k.

(b) Write a set of parametric equations for the line 
through the points 15, -3, 42 and 10, 1, 92.

(c) Write di�erent (but equally correct) sets of equa-
tions for parts (a) and (b).

(d) Find the symmetric forms of your answers in 
(a)–(c).

24. Give a symmetric form for the line having parametric 
equations x = 5 - 2t, y = 3t + 1, z = 6t - 4.

25. Give a symmetric form for the line having parametric 
equations x = t + 7, y = 3t - 9, z = 6 - 8t.

26. A certain line in R3 has symmetric form

x - 2

5
=

y - 3

-2
=

z + 1

4
.

Write a set of parametric equations for this line.

27. Give a set of parametric equations for the line with 
symmetric form

x + 5

3
=

y - 1

7
=

z + 10

-2
.

28. Are the two lines with symmetric forms

x - 1

5
=

y + 2

-3
=

z + 1

4

and

x - 4

10
=

y - 1

-5
=

z + 5

8

the same? Why or why not?

29. Show that the two sets of equations

x - 2

3
=

y - 1

7
=

z

5
 and 

x + 1

-6
=

y + 6

-14
=

z + 5

-10

actually represent the same line in R3.



18 Chapter 1 | Vectors

FIGURE 1.32 A curtate cycloid.

2p 4p

y

x

30. Determine whether the two lines l1 and l2 defined by 
the sets of parametric equations l1: x = 2t - 5, 
y = 3t + 2, z = 1 - 6t , and l2: x = 1 - 2t , 
y = 11 - 3t, z = 6t - 17 are the same. (Hint: 
First find two points on l1 and then see if those points 
lie on l2.)

31. Do the parametric equations l1: x = 3t + 2, 
y = t - 7, z = 5t + 1, and l2: x = 6t - 1, 
y = 2t - 8, z = 10t - 3 describe the same line? 
Why or why not?

32. Do the parametric equations x = 3t3
+ 7, y = 2 - t3, 

z = 5t3
+ 1 determine a line? Why or why not?

33. Do the parametric equations x = 5t2
- 1, y = 2t2

+3, 
z = 1 - t2 determine a line? Explain.

34. A bird is flying along the straight-line path x = 2t + 7,  
y = t - 2, z = 1 - 3t, where t is measured in minutes.

(a) Where is the bird initially (at t = 0)? Where is 
the bird 3 minutes later?

(b) Give a vector that is parallel to the bird’s path.

(c) When does the bird reach the point 134
3 , 16, -11

2 2?
(d) Does the bird reach 117, 4, -142?

35. Find where the line x = 3t - 5, y = 2 - t, z = 6t 
intersects the plane x + 3y - z = 19.

36. Where does the line x = 1 - 4t, y = t - 3>2, 
z = 2t + 1 intersect the plane 5x - 2y + z = 1?

37. Find the points of intersection of the line x = 2t - 3,  
y = 3t + 2, z = 5 - t with each of the coordinate 
planes x = 0, y = 0, and z = 0.

38. Show that the line x = 5 - t , y = 2t - 7, 
z = t - 3 is contained in the plane having equation 
2x - y + 4z = 5.

39. Does the line x = 5 - t, y = 2t - 3, z = 7t + 1 
intersect the plane x - 3y + z = 1? Why?

40. Find where the line having symmetric form

x - 3

6
=

y + 2

3
=

z

5

intersects the plane with equation 2x - 5y + 3z + 8 = 0.

41. Show that the line with symmetric form

x - 3

-2
= y - 5 =

z + 2

3

lies entirely in the plane 3x + 3y + z = 22.

42. Does the line with symmetric form

x + 4

3
=

y - 2

-1
=

z - 1

-9

intersect the plane 2x - 3y + z = 7?

43. Let a, b, c be nonzero constants. Show that the line 
with parametric equations x = at + a, y = b, 
z = ct + c lies on the surface with equation 
x2>a2

+ y2>b2
- z2>c2

= 1.

44. Find the point of intersection of the two lines l1: x =

2t + 3, y = 3t + 3, z = 2t + 1 and l2: x = 15 - 7t, 
y = t - 2, z = 3t - 7.

45. Do the lines l1: x = 2t + 1, y = -3t, z = t - 1 
and l2: x = 3t + 1, y = t + 5, z = 7 - t inter-
sect? Explain your answer.

46. (a)  Find the distance from the point 1-2, 1, 52 to 
any point on the line x = 3t - 5, y = 1 - t, 
z = 4t + 7. (Your answer should be in terms of 
the parameter t.)

(b) Now find the distance between the point 1-2, 1, 52 and the line x = 3t - 5, y = 1 - t, 
z = 4t + 7. (The distance between a point and a 
line is the distance between the given point and 
the closest point on the line.)

47. (a)  Describe the curve given parametrically by

e x = 2 cos 3t

y = 2 sin 3t
 0 … t 6

2p

3
.

What happens if we allow t to vary between 0 
and 2p?

(b) Describe the curve given parametrically by

e x = 5 cos 3t

y = 5 sin 3t
 0 … t 6

2p

3
.

(c) Describe the curve given parametrically by

e x = 5 sin 3t

y = 5 cos 3t
 0 … t 6

2p

3
.

(d) Describe the curve given parametrically bye x = 5 cos 3t

y = 3 sin 3t
 0 … t 6

2p

3
.

48. Suppose that a bicycle wheel of radius a rolls along a 
flat surface without slipping. If a reflector is attached 
to a spoke of the wheel at a distance b from the cen-
ter, the resulting curve traced by the reflector is 
called a curtate cycloid. One such cycloid appears 
in Figure 1.32, where a = 3 and b = 2.
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FIGURE 1.33 The point P traces a 

curtate cycloid.

O

a
b A

A Pt

x

y

Using vector methods or otherwise, find a set  
of parametric equations for the curtate cycloid. Fig-
ure 1.33 should help. (Take a low point of the cycloid 
to lie on the y-axis.) There is no theoretical reason 
that the cycloid just described cannot have a 6 b, 
although in such case the bicycle-wheel–reflector 
application is no longer relevant. (When a 6 b, the 
parametrized curve that results is called a prolate 

cycloid.) Your parametric equations should be such 
that the constants a and b can be chosen independently 
of one another. An example of a prolate cycloid, with 
a = 2 and b = 4, is shown in Figure 1.34. Try to 

think of a physical situation in which such a curve 
would arise.

49. Mac is unwinding tape from a circular dispenser of 
radius a by holding the tape taut and perpendicular 
to the dispenser. Find a set of parametric equations 
for the path traced by the end of the tape (the point 
P in Figure 1.35) as Mac unwinds the tape. Use  

the angle u between OP
¡

 and the positive x-axis  
for parameter. Assume that little enough tape is 
unwound so that the radius of the dispenser remains 
constant.

FIGURE 1.35 Figure for Exercise 49.

a

O

P

x

y

u

FIGURE 1.34 A prolate cycloid.

x

y

2p 4p

The Dot Product

When we introduced the arithmetic notions of vector addition and scalar multi-
plication, you may well have wondered why the product of two vectors was not 
defined. You might think that “vector multiplication” should be defined in a 
manner analogous to the way we defined vector addition (i.e., by compo-
nentwise multiplication). However, such a definition is not very useful. Instead, 
we shall define and use two di�erent concepts of a product of two vectors: 
(1) the Euclidean inner product, or “dot” product, which may be defined for 
two vectors in Rn (where n is arbitrary) and (2) the “cross” or vector product, 
which is defined only for vectors in R3.

1.3
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EXAMPLE 1  In R3, we have

 11, -2, 52 # 12, 1, 32 = 112122 + 1-22112 + 152132 = 15.

 13i + 2j - k2 # 1i - 2k2 = 132112 + 122102 + 1-121-22 = 5. 

Properties of dot products. If a, b, and c are any vectors in R3 (or R2) 
and k ∈ R is any scalar, then

1. a # a Ú 0, and a # a = 0 if and only if a = 0;

2. a # b = b # a;

3. a # 1b + c2 = a # b + a # c;

4. 1ka2 # b = k1a # b2 = a # 1kb2.

DEFINITION 3.1 Let a = 1a1, a2, a32 and b = 1b1, b2, b32 be two vectors 
in R3. The dot (or inner or scalar) product of a and b, denoted a # b, is

a # b = a1b1 + a2b2 + a3b3.

In R2, the analogous definition is

a # b = a1b1 + a2b2,

where a = 1a1, a22 and b = 1b1, b22.

The Dot Product of Two Vectors

Thus far, we have introduced the dot product of two vectors as a purely 
algebraic construction. It is the geometric interpretation of the definition that is 
really interesting. To establish this interpretation, we begin with the following:

 PROOF OF PROPERTY 1 If a = 1a1, a2, a32, then we have

a # a = a1a1 + a2a2 + a3a3 = a2
1 + a2

2 + a2
3.

This last expression is evidently nonnegative, since it is a sum of squares of real 
numbers. Moreover, such an expression is zero exactly when each of the terms 
is zero, that is, if and only if a1 = a2 = a3 = 0. 

DEFINITION 3.2 If a = 1a1, a2, a32, then the length of a (also called the 

norm or magnitude), denoted 7 a 7 , is 2a2
1 + a2

2 + a2
3.

We leave the proofs of properties 2, 3, and 4 as exercises.

In accordance with its name, the dot—or scalar—product takes two vectors 
and produces a single real number (not a vector).

The following facts are consequences of Definition 3.1:
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The motivation for this definition is evident if we draw a as the position 
vector of the point 1a1, a2, a32. Then the length of the arrow from the origin to 1a1, a2, a32 is

21a1 - 022 + 1a2 - 022 + 1a3 - 022,
as given by the distance formula, which is nothing more than an extension of 
the Pythagorean theorem in the plane. As we just saw, a # a = a2

1 + a2
2 + a2

3, 
and we have 7 a 7 = 1a # a

or, equivalently,

THEOREM 3.3 If a and b are any two vectors in either R2 or R3, then

a # b = 7 a 7  7b 7  cos u.

(See Figure 1.36.)

 PROOF If either a or b is the zero vector, say a, then a = 10, 0, 02 and so

a # b = 1021b12 + 1021b22 + 1021b32 = 0.

Also, 7 a 7 = 0 in this case, so the formula in Theorem 3.3 holds. In this case, 
the angle u is indeterminate.

Now suppose that neither a nor b is the zero vector. Let c = b - a. Then 
we may apply the law of cosines to the triangle whose sides are a, b, and c 
(Figure 1.37) to obtain7 c 7 2 = 7 a 7 2 + 7b 7 2 - 2 7 a 7  7b 7   cos u.

Thus,

 2 7 a 7  7b 7  cos u = 7 a 7 2 + 7b 7 2 - 7 c 7 2 = a # a + b # b - c # c, (2)

from equation (1). Now, use the properties of the dot product. Since c = b - a,

 c # c = 1b - a2 # 1b - a2
 = 1b - a2 # b - 1b - a2 # a
 = b # b - a # b - b # a + a # a, (3)

by properties 3 and 4 of the dot product. If we use equation (3) to substitute for 
c # c in equation (2), then

 2 7 a 7  7b 7  cos u = a # a + b # b - 1b # b - a # b - b # a + a # a2
 = a # b + b # a

 = 2a # b,

by property 2 of the dot product. By canceling the factor of 2 on both sides, the 
desired result is obtained. 

FIGURE 1.36 The dot 

product of a and b is 7 a 7  7b 7 cos u.

a

b

u

FIGURE 1.37 The vector 

triangle used in the proof 

of Theorem 3.3.

a

b c=b−a

u

 a # a = 7 a 7 2. (1)

Now we’re ready to state the main result concerning the geometry of the dot 
product. If a and b are two nonzero vectors in R3 (or R2) drawn with their tails at 
the same point, let u, where 0 … u … p, be the angle between a and b. If either 
a or b is the zero vector, then u is indeterminate (i.e., can be any angle).
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FIGURE 1.38 An object 

sliding down a ramp. 

The force due to 

gravity is downward, 

but the direction of 

travel of the object is 

inclined 30° to the 

horizontal.

2 kg

305

F

Angles Between Vectors

Theorem 3.3 may be used to find the angle between two nonzero vectors a and 
b—just solve for u in the formula in Theorem 3.3 to obtain

 u =  cos-1 a # b

7 a 7  7 b 7
. (4)

The use of the inverse cosine is unambiguous, since we take 0 … u … p when 
defining angles between vectors.

EXAMPLE 2  If a = i + j and b = j - k, then formula (4) gives

u =  cos-1 
1i + j2 # 1j - k2

7 i + j 7  7 j - k 7
=  cos-1 

1

112 # 122
=  cos-1 

1

2
=

p

3
. 

If a and b are nonzero, then Theorem 3.3 implies

 cos u = 0 if and only if a # b = 0.

We have  cos u = 0 just in case u = p>2. (Remember our restriction on u.) 
Hence, it makes sense for us to call a and b perpendicular (or orthogonal) when 
a # b = 0. If either a or b is the zero vector, then we cannot use formula (4), and 
the angle u is undefined. Nonetheless, since a # b = 0 if a or b is 0, we adopt 
the standard convention and say that the zero vector is perpendicular to every 

 vector.
Since cos u 7 0 when 0 … u 6

p

2  and cos u 6 0 when p2 6 u … p, we 
also see that a # b 7 0 precisely when the angle between a and b is acute and 
a # b 6 0 when the angle is obtuse. Thus, even when a # b ≠ 0, we are also 
able to derive geometric information about the relation between a and b.

EXAMPLE 3  The vector i + j is orthogonal to the vector i - j + k, since

1i + j2 # 1i - j + k2 = 112112 + 1121-12 + 102112 = 0. 

Vector Projections

Suppose that a 2 kg object is sliding down a ramp having a 30° incline with the 
horizontal as in Figure 1.38. If we neglect friction, the only force acting on the 
object is gravity. What is the component of the gravitational force in the direc-
tion of motion of the object?

To answer questions of this nature, we need to find the projection of one 
vector on another. The general idea is as follows: Given two nonzero vectors a 
and b, imagine dropping a perpendicular line from the head of b to the line 
through a. Then the projection of b onto a, denoted projab, is the vector repre-
sented by the arrow in Figure 1.39.

Given this intuitive understanding of the projection, we find a precise 
 formula for it. Recall that a vector is determined by magnitude (length) and 
direction. It follows by definition that the direction of projab is either the same 
as that of a, or opposite to a if the angle u between a and b is more than p>2. 
Either way, the vector given by proja b must be some scalar multiple of a:

proja b = ka
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for some k. By the defining property of projections, this specific scalar multiple is 
characterized by the property that b - ka (which forms the missing edge in each 
right triangle drawn in Figure 1.39) should be perpendicular to a, meaning that

a # 1b - ka2 = 0.

Using properties of the dot product, we can rewrite this equation as

a # b - k1a # a2 = 0,

which, after rearranging, gives

k =

a # b

a # a
.

Thus, the specific scalar multiple of a that gives the desired projection is the 
one given by this scalar, so that

PROPOSITION 3.4 Let k be any scalar and a any vector. Then

1. 7 ka 7 = � k �  7 a 7 .
2. A unit vector (i.e., a vector of length 1) in the direction of a nonzero  vector 

a is given by a> 7 a 7 .

FIGURE 1.39 Projection of the vector b onto the vector a. Geometrically, the 

projection projab gives the point on the line through a that is closest to (the 

endpoint of) b.

projab projab

b

a a

b

u
u

 projab = aa # b

a # a
ba. (5)

Formula (5) is concise and not di�cult to remember.
Let us give an alternative approach to deriving this formula—relying on 

the trigonometry of right triangles—so that we can introduce a few more con-
cepts as well. Looking back at Figure 1.39, we see that

� cos u � =  
7 projab 77 b 7 .

(The absolute value sign around  cos u is needed in case p>2 … u … p.) 
Hence, with a bit of algebra, we have7 projab 7 = 7b 7  � cos u � =  

7 a 7  7 b 7 � cosu �7 a 7 =

�a # b �7 a 7
by Theorem 3.3. Thus, we know the magnitude and direction of projab. To 
obtain a compact formula for projab, note the following:
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  PROOF Part 1 is left as an exercise. (Write out ka and 7 ka 7  in terms of com-

ponents.) For part 2, we must check that the length of a> 7 a 7  is 1:

g a

7 a 7 g = g
1

7 a 7  a g =
1

7 a 7 7 a 7 = 1,

by part 1 (since 1> 7 a 7  is a positive scalar).  

Now projab is a vector of length �a # b � > 7 a 7  in the “{a-direction.” That is,

projab = {  a �a # b �

7 a 7  b *   
a

7 a 7     = {  
7 a 7  7 b 7 � cos u �

7 a 7  
a

7 a 7 .
length of 

projab

unit vector  

in direction of a

Note that the angle u keeps track of the appropriate sign of projab; that is, when 
0 … u 6 p>2,  cos u is positive and projab points in the direction of a, and 
when p>2 6 u … p,  cos u is negative and projab points in the direction oppo-
site to that of a. Thus, we can eliminate both the {  sign and the absolute value, 
and we find that

projab =

7 a 7  7 b 7   cos u

7 a 7  
a

7 a 7 =
a # b

7 a 7 2 a

by Theorem 3.3, which is precisely formula (5) by equation (1).

EXAMPLE 4  Let us compute the projection of the vector b = 11, 02 onto the 
vector a = 11, 22. By formula (5), we have:

proja b = aa # b

a # a
ba = a11, 02 # 11, 22

11, 22 # 11, 22b11, 22 = 1

5
11, 22 = a1

5
, 

2

5
b .

As expected, b - projab = 14
5, -2

52  is perpendicular to a. The point 11
5, 252  is 

thus the point on the line y = 2x through a that is closest to (1, 0). 

EXAMPLE 5  To answer the question posed at the beginning of this subsec-
tion, we need to calculate projaF, where F is the gravitational force vector and 
a points along the ramp as shown in Figure 1.40. We have a coordinate situa-
tion as shown in Figure 1.41. From trigonometric considerations, we must have 
a = a1i + a2j such that a1 = - 7 a 7  cos 30° and a2 = - 7 a 7 sin 30°. Since we 

FIGURE 1.40 The 2 kg 

object sliding down a 

ramp in Example 5.

2 kg

305

F

a

FIGURE 1.41 The vectors a and F in Example 5, 

realized in a coordinate system.

x

y

305

305

F=−mgj=−19.6ja
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are really only interested in the direction of a, there is no loss in assuming that 
a is a unit vector. Thus,

a = -cos 30°i - sin 30°j = -
13

2
 i -

1

2
 j.

Taking g = 9.8 m/sec2, we have F = -2gj = -19.6j. Therefore, formula (5) 
implies

 projaF = aa # F

a # a
b  a =

1 - 13
2  i -  12 j2 # 1-19.6j2

1
 a-13

2
 i -

1

2
 jb

 = 9.8 a-13

2
 i -

1

2
 jb

 ≈ -8.49 i - 4.9 j,

and the component of F in this direction is

 7 projaF 7 = 7 -8.49 i - 4.9 j 7 = 9.8 N. 

Unit vectors—that is, vectors of length 1—are important in that they 
 capture the idea of direction (since they all have the same length). Part 2 of 
Proposition 3.4 shows that every nonzero vector a can have its length adjusted 
to give a unit vector u = a> 7 a 7  that points in the same direction as a. This 
operation is referred to as normalization of the vector a.

EXAMPLE 6  A fluid is flowing across a plane surface with uniform velocity 
vector v. If n is a unit vector perpendicular to the plane surface, let’s find (in 
terms of v and n) the volume of the fluid that passes through a unit area of the 
plane in unit time. (See Figure 1.42.)

FIGURE 1.42 Fluid flowing across 

a plane surface.

n v

FIGURE 1.43 After one unit of time, the fluid passing 

across a square will have filled the box.

Height

Base has area 1

n

v

First, imagine one unit of time has elapsed. Then over a unit area of the 
plane (say over a unit square), the fluid will have filled a “box” as in Fig-
ure 1.43. The box may be represented by a parallelepiped (a three-dimensional 
analogue of a parallelogram). The volume we seek is the volume of this paral-
lelepiped and is

Volume = 1area of base21height2.
The area of the base is 1 unit by construction. The height is given by 7 projnv 7 . 
From formula (5),

projnv = an # v

n # n
b n = 1n # v2n,
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since n # n = 7n 7 2 = 1. Hence,7 projnv 7 = 7 (n # v2n 7 = �n # v �  7n 7 = �n # v � ,

by part 1 of Proposition 3.4. 

Vector Proofs

We conclude this section with two illustrations of how wonderfully well vectors 
are suited to providing elegant proofs of geometric results.

EXAMPLE 7  In an arbitrary triangle, show that the line segment joining the 
midpoints of two sides is parallel to and has half the length of the third side. 
(See Figure 1.44.) In other words, if M1 is the midpoint of side AB and M2 is the 
midpoint of side AC, we wish to show that M1M2 is parallel to BC and has half 
its length.

FIGURE 1.44 In triangle ABC, 

M1M2 is parallel to BC and has 

half its length.

A

B C

M1 M2

FIGURE 1.45 The vector version 

of triangle ABC in Example 7.

A

B C

M1 M2

For a vector proof, we use the diagram in Figure 1.45, a slightly modified 
version of Figure 1.44. The midpoint conditions translate to the following 
statements about vectors:

AM1

¡

=
1
2 AB
¡

,  AM2

¡

=
1
2 AC
¡

.

Now,

M1M2
¡

= AM
2

¡

- AM
1

¡

=
1
2 AC
¡

-
1
2 AB
¡

=
1
21AC

¡

- AB
¡2 = 1

2 BC
¡

.

But M1M2
¡

=
1
2 BC
¡

 is precisely what we wish to prove: To say M1M2
¡

 is a scalar 

times BC
¡

 means that the two vectors are parallel. Moreover, from part 1 of 
Proposition 3.4, 7M1M2 7¡

= 7 12 BC
¡ 7 = 1

2
7 BC
¡ 7 ,

so that the length condition also holds. 

EXAMPLE 8  Show that every angle inscribed in a semicircle is a right angle, 
as suggested by Figure 1.46.
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To prove this remark, we’ll make use of Figure 1.47, where a and b are 
“radius vectors” with tails at the center of the circle. We need only show that 
a - b (a vector along one ray of the angle in question) is perpendicular to 
-a - b (a vector along the other ray). In other words, we wish to show that1a - b2 # 1-a - b2 = 0.

We have 1a - b2 # 1-a - b2 = 1-121a - b2 # 1a + b2,
by property 4 of dot products,

 = 1-1211a - b2 # a + 1a - b2 # b2
 = 1-121a # a - b # a + a # b - b # b2
 = 1-121 7 a 7 2 - 7b 7 22,

by properties 2 and 4,

 = 0,

since both a and b are radius vectors (and therefore have the same length, 
namely, the radius of the circle). 

FIGURE 1.46 Every angle 

inscribed in a semicircle is  

a right angle.

FIGURE 1.47 a and b are “radius 

vectors.”

a−b

b

−a−b

−a a

Vector proofs as in Examples 7 and 8 are elegant and sometimes allow you 
to write shorter and more direct proofs than those from your high school geom-
etry days.

1.3 Exercises

Compute a # b, 7 a 7 , 7b 7  for the vectors listed in Exercises 1–6.

1. a = 11, 52, b = 1-2, 32
2. a = 14, -12, b = 11

2, 22
3. a = 1-1, 0, 72, b = 12, 4, -62
4. a = 12, 1, 02, b = 11, -2, 32
5. a = 4i-3j + k, b = i + j + k

6. a = i + 2j - k, b = -3j + 2k

In Exercises 7–11, find the angle between each of the pairs of 

vectors.

7. a = 23 i + j, b = -23 i + j

8. a = 1-1, 22, b = 13, 12
9. a = i + j, b = i + j + k

10. a = i + j -  k, b = - i + 2j + 2k

11. a = 11, -2, 32, b = 13, -6, -52
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In Exercises 12–16, calculate projab.

12. a = i + j,  b = 2i + 3j - k

13. a = 1i + j2>12,  b = 2i + 3j - k

14. a = 5k, b = i - j + 2k

15. a = -3k, b = i - j + 2k

16. a = i + j + 2k,  b = 2i - 4j + k

17. Find the point on the line y = -4x that is closest to 
the point 11, 52.

18. Find the point on the line y = 5x - 2 that is closest 
to the point 1-2, 32.

19. Find the point on the line with parametric equations 
x = 3t, y = -2t, z = t that is closest to the point 10, 1, -22.

20. Find the point on the line with parametric equations 
x = 2t + 5, y = t - 3, z = 2t that is closest to the 
point 11, 1, 12.

21. Give a unit vector that points in the same direction as 
the vector 2i - j + k.

22. Give a unit vector that points in the direction oppo-
site to the vector - i + 2k.

23. Give a vector of length 3 that points in the same 
direction as the vector i + j - k.

24. Find three nonparallel vectors that are perpendicular 
to i - j + k.

25. Is it ever the case that projab = projba? If so, under 
what conditions?

26. Prove properties 2, 3, and 4 of dot products.

27. Prove part 1 of Proposition 3.4.

28. Suppose that a force F = i - 2j is acting on an 
object moving parallel to the vector a = 4i + j. 
Decompose F into a sum of vectors F1 and F2, where 
F1 points along the direction of motion and F2 is per-
pendicular to the direction of motion. (Hint: A dia-
gram may help.)

29. In physics, when a constant force acts on an object as 
the object is displaced, the work done by the force is 
the product of the length of the displacement and the 
component of the force in the direction of the dis-
placement. Figure 1.48 depicts an object acted upon 
by a constant force F, which displaces it from the 
point P to the point Q. Let u denote the angle between 
F and the direction of displacement.

(a) Show that the work done by F is determinded by 
the formula F # PQ

¡

.

(b) Find the work done by the (constant) force 
F = i + 5j + 2k in moving a particle from the 
point 11, -1, 12 to the point 12, 0, -12.

30. A refrigerator is dragged 12 ft across a smooth floor 
using a rope and 60 lb of force directed along the 
rope. How much work is done if the rope makes a 
20° angle with the horizontal?

31. How much work is done in pushing a handtruck 
loaded with 500 lb of bananas 40 ft up a ramp 
inclined 30° from horizontal?

Let a be a nonzero vector in R3. The direction cosines of a 

are the three numbers  cos a,  cos b,  cos g determined by 

the angles a, b, g between a and, respectively, the positive 

x-, y-, and z-axes. In Exercises 32 and 33, find the direction 

cosines of the given vectors.

32. a = i + 2j - k

33. a = 3i + 4k

34. If a = a1i + a2j + a3k, give expressions for the 
direction cosines of a in terms of the components of a.

35. Let A, B, and C denote the vertices of a triangle. Let 
0 6 r 6 1. If P1 is the point on AB located r times 
the distance from A to B and P2 is the point on AC 
located r times the distance from A to C, use vectors 
to show that P1P2 is parallel to BC and has r times the 
length of BC. (This result generalizes that of 
 Example 7 of this section.)

36. Let A, B, C, and D be four points in R3 such that 
no three of them lie on a line. Then ABCD is a 
quadrilateral, though not necessarily one that lies 
in a plane. Denote the midpoints of the four sides 
of ABCD by M1, M2, M3, and M4. Use vectors  
to show that, amazingly, M1M2M3M4 is always a 
parallelogram.

37. Use vectors to show that the diagonals of a parallelo-
gram have the same length if and only if the parallel-
ogram is a rectangle. (Hint: Let a and b be vectors 

FIGURE 1.48 A constant force F 

displaces the object from P to Q. 

(See Exercise 25.)

P

F

Q

Component of F in direction
of displacement

u
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38. Using vectors, prove that the diagonals of a parallelo-
gram are perpendicular if and only if the parallelogram 
is a rhombus. (Note: A rhombus is a parallelogram 
whose four sides all have the same length.)

39. This problem concerns three circles of equal radius r 
that intersect in a single point O. (See Figure 1.50.)

(a) Let W1, W2, and W3 denote the centers of the 
three circles and let wi = OW

¡

i for i = 1, 2, 3. 
Similarly, let A, B, and C denote the remaining 

intersection points of the circles and set a = OA
¡

, 
b = OB

¡

, and c = OC
¡

. By numbering the cen-
ters of the circles appropriately, write a, b, and c 
in terms of w1, w2, and w3.

(b) Show that A, B, and C lie on a circle of the same 
radius r as the three given circles. (Hint: The 
center of the circle is at the point P, where 
OP
¡

= w1 + w2 + w3.)

(c) Show that O is the orthocenter of triangle ABC. 
(The orthocenter of a triangle is the common 

FIGURE 1.50 Two examples 

of three circles of equal radius 

intersecting in a single  

point O. (See Exercise 39.)

O

O

FIGURE 1.49 Diagram for 

Exercise 37.

a

b

40. (a) Show that the vectors 7b 7 a + 7 a 7b and 7b 7  a - 7 a 7b are orthogonal.

(b) Show that 7b 7 a + 7 a 7b bisects the angle 
between a and b.

The Cross Product

The cross product of two vectors in R3 is an “honest” product in the sense that 
it takes two vectors and produces a third one. However, the cross product pos-
sesses some curious properties (not the least of which is that it cannot be 
defined for vectors in R2 without first embedding them in R3 in some way) 
making it less “natural” than may at first seem to be the case.

When we defined the concepts of vector addition, scalar multiplication, 
and the dot product, we did so algebraically (i.e., by a formula in the vector 
components) and then saw what these definitions meant geometrically. In con-
trast, we will define the cross product first geometrically, and then deduce an 
algebraic formula for it. This technique is more convenient, since the coordi-
nate formulation is fairly complicated (although we will find a way to organize 
it so as to make it easier to remember).

1.4

along two sides of the parallelogram. Express vectors 
running along the diagonals in terms of a and b. See 
Figure 1.49.)

intersection point of the altitudes perpendicular 
to the edges.)
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The Cross Product of Two Vectors in R3

DEFINITION 4.1 Let a and b be two vectors in R3 (not R2). The cross 

product (or vector product) of a and b, denoted a * b, is the vector 
whose length and direction are given as follows:

• The length of a * b is the area of the parallelogram spanned by a and 
b or is zero if either a is parallel to b or if a or b is 0. Alternatively, the 
following formula holds:

7 a * b 7 = 7 a 7  7b 7  sin u,

where u is the angle between a and b. (See Figure 1.51.) Note here 
that sin u Ú 0 since 0 … u … p by how we have defined the angle 
between vectors.

• The direction of a * b is such that a * b is perpendicular to both a 
and b (when both a and b are nonzero) and is taken so that the ordered 
triple 1a, b, a * b2 is a right-handed set of vectors, as shown in Fig-
ure 1.52. (If either a or b is 0, or if a is parallel to b, then a * b = 0 
from the aforementioned length condition.)

By saying that 1a, b, a * b2 is right-handed, we mean that if you let the 
fingers of your right hand curl from a toward b, then your thumb will point 
in the direction of a * b.

FIGURE 1.51 The area of this 

parallelogram is 7 a 7  7b 7 sin u.

b

a

u

FIGURE 1.53 i * j = k.

i

j

k

FIGURE 1.52 The right-hand 

rule for finding a * b.

a

b

a : b

FIGURE 1.54 A mnemonic for 

finding the cross product of the 

unit basis vectors.
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The second property in Definition 4.1 is often the one with most practical 
significance: If we are looking for a vector perpendicular to two given vec-
tors, we should compute their cross product, using the coordinate formula we 
will soon derive.

EXAMPLE 1  Let’s compute the cross product of the standard basis vectors 

for R3. First consider i * j as shown in Figure 1.53. The vectors i and j deter-
mine a square of unit area. Thus, 7 i * j 7 = 1. Any vector perpendicular to 
both i and j must be perpendicular to the plane in which i and j lie. Hence, i * j 
must point in the direction of {k. The “right-hand rule” implies that i * j 
must point in the positive k direction. Since 7k 7 = 1, we conclude that 
i * j = k. The same argument establishes that j * k = i and k * i = j. 
To remember these basic equations, you can draw i, j, and k in a circle, as in 
Figure 1.54. Then the relations

 i * j = k,  j * k = i,   k * i = j (1)

may be read from the circle by beginning at any vector and then proceeding 
clockwise. 

Properties of the Cross Product; Coordinate Formula 

Example 1 demonstrates that the calculation of cross products from the geo-
metric definition is not entirely routine. What we really need is a coordinate 
formula, analogous to that for the dot product or for vector projections, which 
is not di�cult to obtain.
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From our Definition 4.1, it is possible to establish the following:

Properties of the Cross Product. Let a, b, and c be any three vectors in 
R3 and let k ∈ R be any scalar. Then

1. a * b = -b * a (anticommutativity);

2. a * 1b + c2 = a * b + a * c (distributivity);

3. 1a + b2 * c = a * c + b * c (distributivity);

4. k1a * b2 = 1ka2 * b = a * 1kb2.
We provide proofs of these properties at the end of the section, although you 

might give some thought now as to why they hold. It’s worth remarking that 
these properties are entirely reasonable, ones that we would certainly want a 
product to have. However, you should be clear about the fact that the cross prod-
uct fails to satisfy other properties that you might also consider to be eminently 
reasonable. In particular, since property 1 holds, we see that a * b ≠ b * a in 
general (i.e., the cross product is not commutative). Consequently, be very care-

ful about the order in which you write cross products. Another property that the 
cross product does not possess is associativity. That is,

a * 1b * c2 ≠ 1a * b2 * c,

in general. For example, let a = b = i and c = j. Then

i * 1i * j2 = i * k = -k * i = - j,

from properties 1 and 4, but 1i * i2 * j = 0 * j = 0 ≠ - j. (The equation 
i * i = 0 holds because i is, of course, parallel to i.) Make sure that you do not 
try to use an associative law when working problems.

We now have the tools for producing a coordinate formula for the cross 
product. Let a = a1i + a2j + a3k and b = b1i + b2j + b3k. Then

 a * b = 1a1i + a2j + a3k2 * 1b1i + b2j + b3k2
 = 1a1i + a2j + a3k2 * b1i + 1a1i + a2j + a3k2 * b2j

  + 1a1i + a2j + a3k2 * b3k,

by property 2,

 = a1b1i * i + a2b1j * i + a3b1k * i + a1b2i * j + a2b2j * j

  + a3b2k * j + a1b3i * k + a2b3j * k + a3b3k * k,

by properties 3 and 4. These nine terms may look rather formidable at first, but 
we can simplify by means of the formulas in (1), anticommutativity, and the 
fact that c * c = 0 for any vector c ∈ R3. (Why?) Thus,

 a * b = -a2b1k + a3b1j + a1b2k - a3b2i - a1b3j + a2b3i

 = 1a2b3 - a3b22 i + 1a3b1 - a1b32 j + 1a1b2 - a2b12k. (2)

EXAMPLE 2  Formula (2) gives

 1i + 3j - 2k2 * 12i + 2k2 = 13 # 2 - 1-22 # 02 i + 1-2 # 2 - 1 # 22j
  + 11 # 0 - 3 # 22k

 = 6i - 6j - 6k.  
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Formula (2) is more complicated than the corresponding formulas for all 
the other arithmetic operations of vectors that we’ve seen. Moreover, it is a 
rather di�cult formula to remember. Fortunately, there is a more elegant way to 
understand formula (2). We explore this reformulation next.

Matrices and Determinants: A First Introduction 

A matrix is a rectangular array of numbers. Examples of matrices are

c1 2 3

4 5 6
d , £ 1 3

2 7

0 0

§ , and ≥ 1 0 0 0

0 1 0 0

 0 0 1 0

0 0 0 1

¥ .

If a matrix has m rows and n columns, we call it “m * n” (read “m by n”). 
Thus, the three matrices just mentioned are, respectively, 2 * 3, 3 * 2, and 
4 * 4. To some extent, matrices behave algebraically like vectors. We discuss 
some elementary matrix algebra in §1.6. For now, we are mainly interested in 
the notion of a determinant, which is a real number associated to an n * n 
(square) matrix. (There is no such thing as the determinant of a nonsquare 
matrix.) In fact, for the purposes of understanding the cross product, we need 
only study 2 * 2 and 3 * 3 determinants.

DEFINITION 4.2 Let A be a 2 * 2 or 3 * 3 matrix. Then the determinant 
of A, denoted det A or �A � , is the real number computed from the individual 
entries of A as follows:

• 2 * 2 case

If A = ca b

c d
d , then �A � = ` a b

c d
` = ad - bc.

• 3 * 3 case

If A = £ a b c

d e f

g h i

§ , then

 �A � = † a b c

d e f

g h i

† = aei + bfg + cdh - ceg - afh - bdi

 = a ` e f

h i
` - b ` d f

g i
` + c ` d e

g h
`

in terms of 2 * 2 determinants.

Perhaps the easiest way to remember and compute 2 * 2 and 3 * 3 deter-
minants (but not higher-order determinants) is by means of a “diagonal 
approach.” We write (or imagine) diagonal lines running through the matrix 
entries. The determinant is the sum of the products of the entries that lie on the 
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a b

c d
A 5 ,

2 

1

Then

�A � = aei + bfg + cdh - gec - hfa - idb.

IMPORTANT WARNING This mnemonic device does not generalize beyond 
3 * 3 determinants.

We now state the connection between determinants and cross products.

a b c

fd e

g h i

a b

d e

g h

.A 5 

2 

1

2 

1

2 

1

Key Fact. If a = a1i + a2j + a3k and b = b1i + b2j + b3k, then

a * b = ` a2 a3

b2 b3

` i - ` a1 a3

b1 b3

` j + ` a1 a2

b1 b2

` k = † i j k

a1 a2 a3

b1 b2 b3

† . (3)

• 2 * 2 case

and

�A � = ad - bc.

• 3 * 3 case (we need to repeat the first two columns for the method to 
work)

A = £ a b c

d e f

g h i

§ .
Write

The determinants arise from nothing more than rewriting formula (2). Note 
that the 3 * 3 determinant in formula (3) needs to be interpreted by using the 
2 * 2 determinants that appear in formula (3). (The 3 * 3 determinant is 
sometimes referred to as a “symbolic determinant.”)

EXAMPLE 3  

 13i + 2j - k2 * 1i - j + k2 = † i j k

3 2 -1

1 -1 1

†
 = ` 2 -1

-1 1
`  i - ` 3 -1

1 1
`  j + ` 3 2

1 -1
`  k

 = i - 4j - 5k.

same diagonal, where negative signs are inserted in front of the products arising 
from diagonals going from lower left to upper right:
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The trick is to recognize that any triangle can be thought of as half of a 
parallelogram (see Figure 1.56) and that the area of a parallelogram is obtained 
from a cross product. In other words, AB

¡

* AC
¡

 is a vector whose length mea-
sures the area of the parallelogram determined by AB

¡

 and AC
¡

, and so

Area of ∆ABC =
1
2
7 AB
¡

* AC
¡ 7 .

To use the cross product, we must consider AB
¡

 and AC
¡

 to be vectors in R3. 
This is straightforward: We simply take the k-components to be zero. Thus,

AB
¡

= - i - 2j = - i - 2j - 0k,

and

AC
¡

= -3i + j = -3i + j + 0k.

Therefore,

AB
¡

* AC
¡

=  † i j k

-1 -2 0

-3 1 0

† = -7k.

Hence,

Area of ∆ABC =
1
2
7 -7k 7 = 7

2. 

FIGURE 1.55 Triangle ABC in 

Example 4.

C

A

x

B

y

FIGURE 1.56 Any triangle may be 

considered to be half of a 

 parallelogram.

C

A

y
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B

i j k

3 2 21

1 21 1

i j

3 2

1 21

1 1 1

2 2 2

We may also calculate the 3 * 3 determinant as

= 2i - j - 3k - 2k - i - 3j = i - 4j - 5k .

 

Areas and Volumes 

Cross products are used readily to calculate areas and volumes of certain 
objects. We illustrate the ideas involved with the next two examples.

EXAMPLE 4  Let’s use vectors to calculate the area of the triangle whose ver-
tices are A13, 12, B12, -12, and C10, 22 as shown in Figure 1.55.
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There is nothing sacred about using A as the common vertex. We could just 
as easily have used B or C, as shown in Figure 1.57. Then

Area of ∆ABC =
1
2
7 BA
¡

* BC
¡

7 = 1
2
71i + 2j2 * 1-2i + 3j2 7 = 1

2
7 7k 7 = 7

2.

EXAMPLE 5  Find a formula for the volume of the parallelepiped determined 
by the vectors a, b, and c. (See Figure 1.58.)

FIGURE 1.57 The area of ∆ABC 

is 7>2.

y

x

B

C

A

FIGURE 1.58 The parallelepiped determined by a, b, 

and c.

b

c

a

c cos u

a * b

u

As explained in §1.3, the volume of a parallelepiped is equal to the product 
of the area of the base and the height. In Figure 1.58, the base is the parallelo-
gram determined by a and b. Hence, its area is 7 a * b 7 . The vector a * b  
is perpendicular to this parallelogram; the height of the parallelepiped is 
7 c 7  � cos u � , where u is the angle between a * b and c. (The absolute value  
is needed in case u 7 p>2.) Therefore,

 Volume of parallelepiped = 1area of base21height2

 = 7 a * b 7  7 c 7  � cos u �

 = �1a * b2 # c � .

(The appearance of the  cos u term should alert you to the fact that dot products 
are lurking somewhere.)

For example, the parallelepiped determined by the vectors

a = i + 5j, b = -4i + 2j, and c = i + j + 6k

has volume equal to

 �11i + 5j2 * 1-4i + 2j22 # 1i + j + 6k2 � = �22k # 1i + j + 6k2 �

 = �22162 �

 = 132.  

The real number 1a * b2 # c appearing in Example 5 is known as the  triple 

scalar product of the vectors a, b, and c. Since �1a * b2 # c �  represents the 
volume of the parallelepiped determined by a, b, and c, it follows immediately 
that

�1a * b2 # c � = �1b * c2 # a � = �1c * a2 # b � .
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In fact, if you are careful with the right-hand rule, you can convince yourself 
that the absolute value signs are not needed; that is,

 1a * b2 # c = 1b * c2 # a = 1c * a2 # b. (4)

This is a nice example of how the geometric significance of a quantity can 
 provide an extremely brief proof of an algebraic property the quantity must 
satisfy. (Try proving it by writing out the expressions in terms of components 
to appreciate the value of geometric insight.)

We leave it to you to check the following beautiful (and convenient) 
 formula for calculating triple scalar products:

1a * b2 # c = † a1 a2 a3

b1 b2 b3

c1 c2 c3

† ,
where a = a1i + a2j + a3k, b = b1i + b2j + b3k, and c = c1i + c2j + c3k.

Torque 

Suppose you use a wrench to turn a bolt. What happens is the following: You 
apply some force to the end of the wrench handle farthest from the bolt and that 
causes the bolt to move in a direction perpendicular to the plane determined by 
the handle and the direction of your force (assuming such a plane exists). To 
measure exactly how much the bolt moves, we need the notion of torque (or 
twisting force).

In particular, letting F denote the force you apply to the wrench, we have

Amount of torque = 1length of wrench21component of F#wrench2.
Let r be the vector from the center of the bolt head to the end of the wrench 
handle. Then

Amount of torque = 7 r 7  7F 7 sin u,

where u is the angle between r and F. (See Figure 1.59.) That is, the amount of 
torque is 7 r * F 7 , and it is easy to check that the direction of r * F is the 
same as the direction in which the bolt moves (assuming a right-handed thread 
on the bolt). Hence, it is quite natural to define the torque vector T to be r * F. 
The torque vector T is a concise way to capture the physics of this situation.

Note that if F is parallel to r, then T = 0. This corresponds correctly to the 
fact that if you try to push or pull the wrench, the bolt does not turn.

Rotation of a Rigid Body 

Spin an object (a rigid body) about an axis as shown in Figure 1.60. What is the 
relation between the (linear) velocity of a point of the object and the rotational 
velocity? Vectors provide a good answer.

First we need to define a vector v, the angular velocity vector of the rotation. 
This vector points along the axis of rotation, and its direction is determined by the 
right-hand rule. The magnitude of v is the angular speed (measured in radians 
per unit time) at which the object spins. Assume that the angular speed is constant 
in this discussion. Next, fix a point O (the origin) on the axis of rotation, and let 
r1t2 = OP

¡

 be the position vector of a point P of the body, measured as a func-
tion of time, as in Figure 1.61. The velocity v of P is defined by

v = lim
∆tS0 

∆r

∆t
,

FIGURE 1.59 Turning a bolt with a 

wrench. The torque on the bolt is 

the vector r * F.

F

F sin u

r

u

FIGURE 1.60 A 

potato spinning 

about an axis.

V

FIGURE 1.61 The 

angular velocity 

vector v.
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where ∆r = r1t + ∆t2 - r1t2 (i.e., the vector change in position between 
times t and t + ∆t). Our goal is to relate v and v.

As the body rotates, the point P (at the tip of the vector r) moves in a circle 
whose plane is perpendicular to v. (See Figure 1.62, which depicts the motion 
of such a point of the body.) The radius of this circle is 7 r1t2 7 sin u, where u is 
the angle between v and r. Both 7 r1t2 7  and u must be constant for this rotation. 
(The direction of r1t2 may change with t, however.) If ∆t ≈ 0, then 7 ∆r 7  is 
approximately the length of the circular arc swept by P between t and t + ∆t. 
That is,

 7 ∆r 7 ≈ 1radius of circle21angle swept through by P2
 = 1 7 r 7  sin u21∆f2

from the preceding remarks. Thus,

g ∆r

∆t
g ≈ 7 r 7  sin u

∆w

∆t
.

Now, let ∆t S 0. Then ∆r>∆t S v and ∆w>∆t S 7v 7  by definition of the 
angular velocity vector v, and we have

 7 v 7 = 7v 7  7 r 7  sin u = 7v * r 7 . (5)

It’s not di�cult to see intuitively that v must be perpendicular to both v and r. 
A moment’s thought about the right-hand rule should enable you to establish 
the vector equation

 v = v * r. (6)

If we apply formula (5) to a bicycle wheel, it tells us that the speed of a 
point on the edge of the wheel is equal to the product of the radius of the wheel 
and the angular speed (u is p>2 in this case). Hence, if the rate of rotation is 
kept constant, a point on the rim of a large wheel goes faster than a point on the 
rim of a small one. In the case of a carousel wheel, this result tells you to sit on 
an outside horse if you want a more exciting ride. (See Figure 1.63.)

Summary of Products Involving Vectors 

Following is a collection of some basic information concerning scalar multipli-
cation of vectors, the dot product, and the cross product:

FIGURE 1.62 A spinning rigid 

body.

r(t+¢t)r(t)

r  sin u 
¢w

¢r

u

FIGURE 1.63 A carousel wheel.

r
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Scalar Multiplication: ka

Result is a vector in the direction of a.

Magnitude is 7 ka 7 = � k �  7 a 7 .
Zero if k = 0 or a = 0.

Commutative: ka = ak.

Associative: k1la2 = 1kl2a.

Distributive: k1a + b2 = ka + kb; 1k + l2a = ka + la.


