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Preface

This book is intended for use in a first course in vibrations or structural dynamics 
for undergraduates in mechanical, civil, and aerospace engineering or engineer-
ing mechanics. The text contains the topics normally found in such courses in ac-
credited engineering departments as set out initially by Den Hartog and refined 
by Thompson. In addition, topics on design, measurement, and computation are 
addressed.

Pedagogy

Originally, a major difference between the pedagogy of this text and competing 
texts is the use of high level computing codes. Since then, the other authors of 
vibrations texts have started to embrace use of these codes. While the book is 
written so that the codes do not have to be used, I strongly encourage their use. 
MATLAB®, is very easy to use, at the level of a programmable calculator, and 
hence does not require any prerequisite courses or training. In fact, the MATLAB®  
codes can be copied directly and will run as listed. The use of these codes greatly 
enhances the student’s understanding of the fundamentals of vibration. Just as a 
picture is worth a thousand words, a numerical simulation or plot can enable a 
completely dynamic understanding of vibration phenomena. Computer calcula-
tions and simulations are presented at the end of each of the first four chapters. 
After that, many of the problems assume that codes are second nature in solving 
vibration problems.

Another unique feature of this text is the use of “windows,” which are 
distributed throughout the book and provide reminders of essential informa-
tion pertinent to the text material at hand. The windows are placed in the text at 
points where such prior information is required. The windows are also used to 
summarize essential information. The book attempts to make strong connections 
to previous course work in a typical engineering curriculum. In particular, refer-
ence is made to calculus, differential equations, statics, dynamics, and strength of 
materials course work.
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WHAT’S NEW IN THIS EDITION

Most of the changes made in this edition are the result of comments sent to me by 
students, faculty and practicing engineers who have used the 4th edition. These 
changes consist of improved clarity in explanations, the addition of some new 
examples that clarify concepts, and enhanced and revised problem statements. In 
addition, some text material deemed outdated and not useful has been removed.  
The MATLAB codes have also been updated. However, software companies 
update their codes much faster than the publishers can update their texts, so  
users should consult the web for updates in syntax, commands, etc. One consistent 
request from students has been not to reference data appearing previously in other 
examples or problems. This has been addressed by providing all of the relevant 
data in the problem statements. A number of students and instructors have written 
with suggestions for improvement. Their suggestions prompted us to make the fol-
lowing changes in order to improve readability from the student’s perspective:

• Improved clarity in explanations added in 27 different passages in the text. In 
addition, a new subsection and one new section (5.8) have been added. One 
section has been completely redone (5.3).

• Thirty new examples that clarify concepts and enhanced problem statements 
have been added, and ten examples have been modified to improve clarity.

• Text material deemed outdated and not useful has been removed. In particu-
lar the Toolbox and codes in Mathematica and Mathcad have been removed.

• All MATLAB codes have been updated to 2020 standards and several codes 
added to example problems.

• Thirty-eight new problems have been added and 20 problems have been 
modified for clarity and numerical changes.

• Twenty-nine new figures have been added and several previous figures have 
been modified.

• Six new equations have been added two have been deleted.

Chapter 1: Changes include new examples, equations, and problems. New 
textual explanations have been added and/or modified to improve clarity based on 
student suggestions. Some photographs have been included. Modifications have 
been made to problems to make the problem statement clear by not referring to 
data from previous problems or examples. All of the codes have been updated to 
current syntax, and older, obsolete commands have been replaced.

Chapter 2: New examples and figures have been added, while previous ex-
amples and figures have been modified for clarity. New textual explanations have 
also been added and/or modified. Some photographs have been included. New 
problems have been added and older problems modified to make the problem 
statement clear by not referring to data from previous problems or examples. All of 
the codes have been updated to current syntax, and older, obsolete commands have 
been replaced.
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Chapter 3: New examples and equations have been added, as well as new 
problems. In particular, the explanation of impulse has been expanded. In addition, 
previous problems have been rewritten for clarity and precision. All examples and 
problems that referred to prior information in the text have been modified to pres-
ent a more self-contained statement. All of the codes have been updated to current 
syntax, and older, obsolete commands have been replaced.

Chapter 4: Along with the addition of an entirely new example, many of the 
examples have been changed and modified for clarity and to include improved in-
formation. Three new figures have been added. Problems have been modified with 
the goal of making all problems and examples more self-contained. All of the codes 
have been updated to current syntax, and older, obsolete commands have been 
replaced. Several new plots intermixed in the codes have been redone to reflect 
MATLAB’s latest format. Several explanations have been modified according to 
useres suggestions.

Chapter 5: Section 5.3 has been changed, a figure added, and an example 
added for clarity correcting a long standing miss representation existing in all cur-
rent and past vibration texts. The problems are largely the same but many have 
been changed or modified with different details and to make the problems more 
self-contained. A new section (5.8) has been added on approximation and scaling.

Chapter 6: One new figure has been added, one change in textual clarity and 
one new example has been included. A number of small additions have been made 
to the text for clarity.

Chapters 7 and 8: These chapters were not changed much, except to make mi-
nor corrections and additions as suggested by users to tighten up clarity.

Units

This book uses SI units. The 1st edition used a mixture of US Customary and SI, 
but at the insistence of the editor all units were changed to SI. A new appendix is 
added to comment on US Customary vs SI units to recognize the importance of be-
ing able to switch between units as the globalization of engineering increases. Our 
engineers need to work in SI to be competitive in this increasingly international 
work place and non US engineers need to learn to communicate and translate be-
tween systems of units.

Instructor Support

This text comes with a bit of support. In particular, MS PowerPoint presentations 
are available for each chapter. The solutions manual is available in both MS Word 
and PDF format (sorry, instructors only). Sample tests are available. The MS Word 
solutions manual can be cut and pasted into presentation slides, tests, or other class 
enhancements. These resources can be found at www.pearsonhighered.com /irc and 

www.pearsonhighered.com/irc
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will be updated often. Please also email me at daninman@umich.edu with correc-
tions, typos, questions, and suggestions. The book is reprinted often, and at each 
reprint I have the option to fix typos, so please report any you find to me, as others 
as well as I will appreciate it.

Student Support

The best place to get help in studying this material is from your instructor, as there 
is nothing more educational than a verbal exchange. However, the book was writ-
ten as much as possible from a student’s perspective. Many students critiqued the 
original manuscript, and many of the changes in text have been the result of sug-
gestions from students trying to learn from the material, so please feel free to email 
me (daninman@umich.edu) should you have questions about explanations. Also I 
would appreciate knowing about any corrections or typos and, in particular, if you 
find an explanation hard to follow. My goal in writing this was to provide a useful 
resource for students learning vibration for the first time.

ACKNOWLEDGEMENTS

Each chapter starts with two photos of different systems that vibrate to remind the 
reader that the material in this text has broad application across numerous sectors 
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P. Timothy Wade (wind mill, Presidential helicopter), Roy Trifilio (bridge), and 
Catherine Little (damper). 
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this possible and I thank them all. First, I appreciate the editors at Pearson for sug-
gesting a fifth edition and this new format. I also thank the anonymous reviewers 
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numerous faculty and students who have been kind enough to write with sugges-
tions. I would like to thank Professor Nejat Olgac of the University of Connecticut 
for his many helpful suggestions and for inviting me to give a virtual lecture to his 
class and pointed out the miss conception regarding the presentation of undamped 
vibration absorbers published in all prior can current vibration texts leading to the 
correction illustrated in Example 5.3.3.

Special thanks to Dr. Charles Roche of Western New England University. 
Chuck served as a reviewer of the fourth edition and a collaborator for this edition. 
His background as a former jet engine engineer and current faculty at a four-year 
institution helped me keep a good balance between research one-university stu-
dents and those attending four-year institutions. In addition, his years of working 
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as a practicing engineer helped tremendously in building relevant examples and 
problems.
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readable, and hence more usable.

I have also had the good fortune of being sponsored by numerous companies 
and federal agencies over the last 40 years to study, design, test, and analyze a large 
variety of vibrating structures and machines. Without these projects, I would not 
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1

1 Introduction to Vibration 
and the Free Response

The pendulum often displayed in museums is one 

of the key sources of mankind’s understanding 

of vibration, how to measure it, how to model its 

behavior with a mathematical equation to be able to 

design with, and to be able to predict future behavior. 

In fact, the pendulum is used here to introduce 

the topic of vibration and the free response in this 

chapter. Here “free response” is used to mean that 

no driving force is applied to the structure and only 

a restoring force is present. In case of the pendulum, 

the restoring force is that due to gravity. Vibration 

is the subdiscipline of dynamics that deals with 

repetitive motion. Most of the examples in this text are 

mechanical or structural elements. However, vibration 

is prevalent in biological systems and is in fact at 

the source of communication (the ear vibrates to 

hear and the tongue and vocal cords vibrate to 

speak). In the case of music, vibrations, say of a 

stringed instrument are desired. On the other hand, 

in most mechanical systems and structures, vibration 

is unwanted and even destructive. For example, 

vibration in an aircraft frame causes fatigue and 

can eventually lead to failure. Everyday experiences 

are full of vibration and usually ways of mitigating 

vibration. Automobiles, airplanes, trains, and even 

some bicycles have devices to reduce the vibration 

induced by motion and transmitted to the driver.

The basic concepts of understanding 

vibration, analyzing vibration, and predicting the 

behavior of vibrating systems form the topics of this 

text. The concepts and formulations presented in 

the following chapters are intended to provide the 

skills needed for designing vibrating systems with 

desired properties that enhance vibration when it 

is wanted and reduce vibration when it is not.  This 

chapter introduces both the important concept 

of natural frequency and how to model vibration 

mathematically.

The Internet is a great source for examples of 

vibration, and the reader is encouraged to search 

for movies of vibrating systems and other examples 

that can be found there.

(Photo courtesy of Marco Cannizzaro/

Shutterstock.)
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 1.1 INTRODUCTION TO FREE VIBRATION

Vibration is the study of the repetitive motion of objects relative to a stationary 
frame of reference or nominal position (usually equilibrium). Vibration is evident 
everywhere and in many cases greatly affects the nature of engineering designs. The 
vibrational properties of engineering devices are often limiting factors in their per-
formance. When harmful, vibration should be avoided, but it can also be extremely 
useful. In either case, knowledge about vibration—how to analyze, measure, and 
control it—is beneficial and forms the topic of this book.

Typical examples of vibration familiar to most include the motion of a guitar 
string, the ride quality of an automobile or motorcycle, the motion of an airplane’s 
wings, and the swaying of a large building due to wind or an earthquake. In the chap-
ters that follow, vibration is modeled mathematically based on fundamental princi-
ples, such as Newton’s laws, and analyzed using results from calculus and differential 
equations. Techniques used to measure the vibration of a system are then developed. 
In addition, information and methods are given that are useful for designing par-
ticular systems to have specific vibrational responses.

The physical explanation of the phenomena of vibration concerns the inter-
play between potential energy and kinetic energy. A vibrating system must have a 
component that stores potential energy and releases it as kinetic energy in the form 
of motion (vibration) of a mass. The motion of the mass then gives up kinetic energy 
to the potential-energy storing device.

Engineering is built on a foundation of previous knowledge and the subject 
of vibration is no exception. In particular, the topic of vibration builds on previous 
courses in dynamics, system dynamics, strength of materials, differential equations, 
and some matrix analysis. In most accredited engineering programs, these courses are 
prerequisites for a course in vibration. Thus, the material that follows draws informa-
tion and methods from these courses. Vibration analysis is based on a coalescence of 
mathematics and physical observation. 

The science of vibration likely started with Galileo’s book (1590) about the oscil-
lation of pendulums and strings. In 1602, Galileo measured the period of a pendulum 
against his pulse, setting the stage for today’s vibration analysis. You may have seen 
a pendulum in a science museum, in a grandfather clock, or you might make a sim-
ple one with a string and a marble. As the pendulum swings back and forth, observe 
that its motion as a function of time can be described very nicely by the sine function 
from trigonometry. Even more interesting, if you make a free-body diagram of the 
pendulum and apply Newtonian mechanics to get the equation of motion (summing 
moments in this case), the resulting equation of motion has the sine function as its 
solution. Further, the equation of motion predicts the time it takes for the pendulum 
to repeat its motion. In this example, dynamics, observation, and mathematics all come 
into agreement to produce a predictive model of the motion of a pendulum, which is 
easily verified by experiment (physical observation).

 This pendulum example tells the essence of this text and the study of vibra-
tions. We propose a series of steps to build on the modeling skills developed in your 
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first courses in statics, dynamics, and strength of materials combined with system 
dynamics to find equations of motion of successively more complicated systems. 
Then we will use the techniques of differential equations and numerical integration 
to solve these equations of motion to predict how various mechanical systems and 
structures vibrate. The following example illustrates the importance of recalling the 
methods learned in the first course in dynamics.

m

l

O

g

mg

l

O

Fy

Fx

m

u

(c)(b)(a)

Figure 1.1 (a) Photograph of a pendulum in a museum. (Photo courtesy of Marco Cannizzaro/Shutterstock.)  

(b) A schematic of a pendulum. (c) The free-body diagram of (b).

Example 1.1.1

Derive the equation of motion of the pendulum in Figure 1.1.

Solution Consider the schematic of a pendulum in Figure 1.1. In this case, the mass of 
the rod will be ignored as well as any friction in the hinge. Typically, one starts with a 
photograph or sketch of the part or structure of interest and is immediately faced with 
having to make assumptions. This is the “art” or experience side of vibration analysis 
and modeling. The general philosophy is to start with the simplest model possible 
(hence, here we ignore friction and the mass of the rod and assume the motion remains 
in a plane) and try to answer the relevant engineering questions. If the simple model 
doesn’t agree with the experiment, then make it more complex by relaxing the assump-
tions until the model successfully predicts physical observation. With the assumptions 
in mind, the next step is to create a free-body diagram of the system, as indicated in 
Figure 1.1(c), in order to identify all of the relevant forces. With all the modeled forces 
identified, Newton’s second law and Euler’s second law are used to derive the equa-
tions of motion. The resulting equation of motion and its solution can then be used to 
predict future motions and to design with.

In this example Euler’s second law takes the form of summing moments about 
point O. This yields

αΣ =M JO
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where MO  denotes moments about the point =O J ml, 2  is the mass moment of in-
ertia of the mass m about the point O, l is the length of the massless rod, and α  is the 
angular acceleration vector. Since the problem is really in one dimension, the vector 
sum of moments equation becomes the single scalar equation

sin or   sin 02J t mgl t ml t mgl t��( ) ( ) ( ) ( )α = − θ θ + θ =

Here the moment arm for the force mg is the horizontal distance l sin θ, and the two 
overdots indicate two differentiations with respect to the time, t. This is a second-order 
ordinary differential equation, which governs the time response of the pendulum. This 
is exactly the procedure used in the first course in dynamics to obtain equations of 
motion.

The equation of motion is nonlinear because of the appearance of the ( )θsin  
and hence difficult to solve. The nonlinear term can be made linear by approximating 
the sine for small values of θ(t) as θ ≈ θsin  .  Then the equation of motion becomes

��( ) ( )θ + θ =t
g

l
t 0  

This is a linear, second-order ordinary differential equation with constant coefficients 
and is commonly solved in the first course of differential equations (usually the third 
course in the calculus sequence). As we will see later in this chapter, this linear equa-
tion of motion and its solution predict the period of oscillation for a simple pendulum 
quite accurately. The last section of this chapter revisits the nonlinear version of the 
pendulum equation.

.

Since Newton’s second law for a constant mass system is stated in terms of 
force, which is equated to the mass multiplied by acceleration, an equation of motion 
with two time derivatives will always result. Such equations require two constants 
of integration to solve. Euler’s second law for constant mass systems also yields 
two time derivatives. Hence the initial position for θ(0) and velocity of �θ(0) must 
be specified in order to solve for θ(t) in Example 1.1.1. The term θmgl  sin  is called 
the restoring force. In Example 1.1.1, the restoring force is gravity, which provides a 
 potential-energy storing mechanism. However, in most structures and machine parts 
the restoring force is elastic. This establishes the need for background in strength of 
materials when studying vibrations of structures and machines.

As mentioned in the example, when modeling a structure or machine it is best 
to start with the simplest possible model. In this chapter, we model only systems that 
can be described by a single degree of freedom, that is, systems for which Newtonian 
mechanics result in a single scalar equation with one displacement coordinate. The 
degree of freedom of a system is the minimum number of displacement coordinates 
needed to represent the position of the system’s mass at any instant of time. For in-
stance, if the mass of the pendulum in Example 1.1.1 were a rigid body, free to rotate 
about the end of the pendulum as the pendulum swings, the angle of rotation of the 
mass would define an additional degree of freedom. The problem would then require 
two coordinates to determine the position of the mass in space, hence two degrees 
of freedom. On the other hand, if the rod in Figure 1.1 is flexible, its distributed mass 
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must be considered, effectively resulting in an infinite number of degrees of freedom. 
Systems with more than one degree of freedom are discussed in Chapter 4, and sys-
tems with distributed mass and flexibility are discussed in Chapter 6.

The next important classification of vibration problems after degree of free-
dom is the nature of the input or stimulus to the system. In this chapter, only the 
free response of the system is considered. Free response refers to analyzing the vi-
bration of a system resulting from a nonzero initial displacement and/or velocity of 
the system with no external force or moment applied. In Chapter 2, the response 
of a single-degree-of-freedom system to a harmonic input (i.e., a sinusoidal applied 
force) is discussed. Chapter 3 examines the response of a system to a general forcing 
function (impulse or shock loads, step functions, random inputs, etc.), building on 
information learned in a course in system dynamics. In the remaining chapters, the 
models of vibration and methods of analysis become more complex.

The following sections analyze equations similar to the linear version of the 
pendulum equation given in Example 1.1.1. In addition, energy dissipation is intro-
duced, and details of elastic restoring forces are presented. Introductions to design, 
measurement, and simulation are also presented. The chapter ends with the intro-
duction to MATLAB® as a means to visualize the response of a vibrating system and 
for making the calculations required to solve vibration problems more efficiently. In 
addition, numerical integration is introduced in order to solve nonlinear vibration 
problems that typically do not have analytical solutions.

1.1.1 The Spring–Mass Model

From introductory physics and dynamics, the fundamental kinematical quantities 
used to describe the motion of a particle are displacement, velocity, and acceleration 
vectors. In addition, the laws of physics state that the motion of a mass with changing 
velocity is determined by the net force acting on the mass. An easy device to use in 
thinking about vibration is a spring (such as the one used to pull a storm door shut, or 
an automobile suspension spring) with one end attached to a fixed object and a mass 
attached to the other end. A schematic of this arrangement is given in Figure 1.2.

Ignoring the mass of the spring itself, the forces acting on the mass consist of 
the force of gravity pulling down (mg) and the elastic-restoring force of the spring 
pulling back up fk( ). Note that in this case the force vectors are collinear, reduc-
ing the static equilibrium equation to one dimension easily treated as a scalar. The 

fk

mg

m

m

0

(a) (b)
Figure 1.2 A schematic of (a) a single-degree-of-freedom spring–mass 

oscillator and (b) its free-body diagram.
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nature of the spring force can be deduced by performing a simple static experi-
ment. With no mass attached, the spring stretches to the position labeled =x 00  in 
Figure 1.3. As successively more mass is attached to the spring, the force of gravity 
causes the spring to stretch further. If the value of the mass is recorded, along with 
the value of the displacement of the end of the spring each time more mass is added, 
the plot of the force (mass, denoted by m, times the acceleration due to gravity, 
denoted by g) versus this displacement, denoted by x, yields a curve similar to that 
illustrated in Figure 1.4. Note that in the region of values for x between 0 and about 
20 mm (millimeters), the curve is a straight line. This indicates that for deflections 
less than 20 mm and forces less than 1000 N (newtons), the force that is applied 
by the spring to the mass is proportional to the stretch of the spring. The constant 
of proportionality is the slope of the straight line between 0 and 20 mm. For the 
particular spring of Figure 1.4, the constant is 50 N mm, or ×5 10 N m4 . Thus, the 
equation that describes the force applied by the spring, denoted by fk, to the mass is 
the linear relationship

 =f kxk  (1.1)

The value of the slope, denoted by k, is called the stiffness of the spring and is a prop-
erty that characterizes the spring for all situations for which the displacement is less 
than 20 mm. From strength-of-materials considerations, a linear spring of stiffness k 
stores potential energy of the amount kx1

2
2.

The spring in its linear region behaves the same in both compression and in 
tension, meaning that if the experiment in Figure 1.3 were performed upside down, 

x0

g

x1 x2 x3

Figure 1.3 A schematic of a 

massless spring with no mass 

attached showing its static 

equilibrium position, followed 

by increments of increasing 

added mass illustrating the 

corresponding deflections.

x

f k

20 mm0

103 N

Figure 1.4 The static deflection curve for the 

spring of Figure 1.3.
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that is if the spring were supported at the ground and masses were successively 
added to the top of the spring, the same curve in Figure 1.4 would result. The spring 
in Figure 1.3 is in tension whereas in the upside down experiment the spring is in 
compression. In addition, once the spring has one mass attached, it is considered 
to be preloaded. Preloaded springs operating in a nonlinear region of the curve in 
Figure 1.4 can behave differently in compression and in tension. Here, however, we 
mostly focus on linear springs operated in a linear fashion.

Note that the relationship between fk  and x of equation (1.1) is linear (i.e., 
the curve is linear and fk  depends linearly on x). If the displacement of the spring 
is larger than 20 mm, the relationship between fk  and x becomes nonlinear, as 
indicated in Figure 1.4. Nonlinear systems are much more difficult to analyze and 
form the topic of Section  1.10. In this and all other chapters, it is assumed that 
displacements (and forces) are limited to be in the linear range unless specified 
otherwise.

Next, consider a free-body diagram of the mass in Figure 1.5, with the mass-
less spring elongated from its rest (equilibrium or unstretched) position. As in the 
earlier figures, the mass of the object is taken to be m and the stiffness of the spring 
is taken to be k. Assuming that the mass moves on a frictionless surface along the 
x direction, the only force acting on the mass in the x direction is the spring force. 
From Newton’s law, the sum of the forces in the x direction must equal the product 
of mass and acceleration.

Summing the forces on the free-body diagram in Figure 1.5 along the x direc-
tion yields

 = − + =�� ��mx t kx t mx t kx t( ) ( )  or  ( ) ( ) 0  (1.2)

where ��x t( ) denotes the second time derivative of the displacement (i.e., the accel-
eration). Note that the direction of the spring force is opposite that of the deflection 
(+ is marked to the right in the figure). As in Example 1.1.1, the displacement vector 
and acceleration vector are reduced to scalars, since the net force in the y direc-
tion is zero ( =N mg ) and the force in the x direction is collinear with the inertial 
force. Both the displacement and acceleration are functions of the elapsed time t, as 

y

x

−kx
mg

N

m

x0

k

0

+− Friction-free
surface

Rest
position

(a) (b)

Figure 1.5 (a) A model of a single 

spring–mass system given an initial 

displacement of x0  from its rest, or 

equilibrium, position and zero initial 

velocity. (b) The system’s free-body 

diagram.
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denoted in equation (1.2). Window 1.1 illustrates three types of mechanical systems, 
which for small oscillations can be described by equation (1.2): a spring–mass sys-
tem, a rotating shaft, and a swinging pendulum (Example 1.1.1). Other examples are 
given in Section 1.4 and throughout the book.

One of the major goals of vibration analysis is to be able to predict the re-
sponse, or motion, of a vibrating system. Thus it is desirable to calculate the solution 
to equation (1.2). Fortunately, the differential equation of (1.2) is well known and is 
covered extensively in introductory calculus and physics texts, as well as in texts on 
differential equations. In fact, there are a variety of ways to calculate this solution. 
These are all discussed in some detail in the next section. For now, it is sufficient 
to present a solution based on physical observation. From experience watching a 
spring, such as the one in Figure 1.5 (or a pendulum), it is guessed that the motion is 
periodic, of the form

 ( ) ( )= ω + φx t A tn sin  (1.3)

This choice is made because the sine function repeats itself and hence nicely describes 
oscillation. Equation (1.3) is the sine function in its most general form, where the con-
stant A is the amplitude, or maximum value, of the displacement; ωn , the angular natu-

ral frequency, determines the interval in time during which the function repeats itself; 
and φ, called the phase, determines the initial value of the sine function. As will be dis-
cussed in the following sections, the phase and amplitude are determined by the initial 

Window 1.1
Examples of Single-Degree-of-Freedom Systems (for small displacements) 

(a) (b) (c)

Spring–mass
mx + kx = 0

m

k

x(t)

J

k

θ(t)

Shaft and disk
Jθ + kθ = 0

Torsional
stiffness

g m

θ

Simple pendulum
θ + (g/l)θ = 0

Gravity l = length



Sec. 1.1    Introduction to Free Vibration 9

state of the system (see Figure 1.7). It is standard to measure the time t in seconds (s). 
The phase is measured in radians (rad), and the frequency is measured in radians per 
second (rad/s). As derived in the following equation, the frequency ωn  is determined 
by the physical properties of mass and stiffness (m and k), and the constants A and φ 
are determined by the initial position and velocity as well as the frequency.

To see if equation (1.3) is in fact a solution of the equation of motion, it is sub-
stituted into equation (1.2). Successive differentiation of the displacement, x(t) in 
the form of equation (1.3), yields the velocity, ( )�x t  given by

 �( ) ( )= ω ω + φx t A tn ncos  (1.4)

and the acceleration, ( )��x t , given by

 ��( ) ( )= −ω ω + φx t A tn nsin2  (1.5)

Substitution of equations (1.5) and (1.3) into (1.2) yields

( ) ( )− ω ω + φ = − ω + φm A t kA tn n nsin sin2

Dividing by A and m yields the fact that this last equation is satisfied if

 ω = ω =
k

m

k

m
n n,  or 2  (1.6)

Hence, equation (1.3) is a solution of the equation of motion. The constant ωn   
characterizes the spring–mass system, as well as the frequency at which the mo-
tion repeats itself, and hence is called the system’s natural frequency. A plot of 
the solution x(t) versus time t is given in Figure 1.6. It remains to interpret the 
constants A and φ.

The units associated with the notation ωn are rad/s and in older texts natu-
ral frequency in these units is often referred to as the circular natural frequency 
or circular frequency to emphasize that the units are consistent with trigonometric 

2 4 6 8 10

 A 1.5

x(t) (mm)

Time (s)

1

0.5

0

−0.5

−1

−A −1.5

12

T = 2πωn

 Figure 1.6 The response of a 

simple spring–mass system to an 

initial displacement of =x 0.50  

mm and an initial velocity of 

υ = 2 20  mm/s. The natural 

frequency is 2 rad/s and the 

amplitude is 1.5 mm. The period is 

2 2 2 sT n= π ω = π = π .
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functions and to distinguish this from frequency stated in units of hertz (Hz) or cy-
cles per second, denoted by fn, and commonly used in discussing frequency. The two 
are related by = ω πfn n 2  as discussed in Section 1.2. In practice, the phrase natural 

frequency is used to refer to either ωfn n or  , and the units are stated explicitly to 
avoid confusion. For example, a common statement is: the natural frequency is 10 
Hz, or the natural frequency is 20π rad/s.

Recall from differential equations that because the equation of motion is of 
second order, solving equation (1.2) involves integrating twice. Thus there are two 
constants of integration to evaluate. These are the constants A and φ. The physical 
significance, or interpretation, of these constants is that they are determined by the 
initial state of motion of the spring–mass system. Again, recall Newton’s laws, if no 
force is imparted to the mass, it will stay at rest. If, however, the mass is displaced to 
a position of x0  at time =t 0, the force kx0  in the spring will result in motion. Also, 
if the mass is given an initial velocity of υ0  at time =t 0, motion will result because 
of the induced change in momentum. These are called initial conditions and when 
substituted into the solution (1.3) yield

 = = ω + φ = φx x A An(0)  sin( 0 )  sin 0  (1.7)

and

 �υ ( )= = ω ω + φ = ω φx A An n n(0) cos 0 cos0  (1.8)

v0

v0

x0

x0

f
908

A =    x0
2  +

v0

n

2

n

n

(a)

v

v

v

Figure 1.7 A graphical representation of the trigonometric relationships between the phase, natural frequency, 

and initial conditions. Note that the initial conditions determine the proper quadrant for the phase: (a) for a 

positive initial position and velocity, (b) for a negative initial position and a positive initial velocity.

x0

x0

f

908

A =      x0
2  +

v0

n

2

v0

n

(b)

v

v
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Solving these two simultaneous equations for the two unknowns A and φ yields

 
υ

υ
=
ω +

ω
φ =

ω−A
x xn

n

n and  tan
2

0
2

0
2

1 0

0

 (1.9)

as illustrated in Figure 1.7. Here the phase φ must lie in the proper quadrant, so care 
must be taken in evaluating the arctangent. Thus, the solution of the equation of mo-
tion for the spring–mass system is given by

 
υ

υ
=
ω +

ω
ω +

ω









−x t
x

t
xn

n
n

n( ) sin tan
2

0
2

0
2

1 0

0

 (1.10)

and is plotted in Figure 1.6. This solution is called the free response of the system, 
because no force external to the system is applied after =t 0. The motion of the 
spring–mass system is called simple harmonic motion or oscillatory motion and is 
discussed in detail in the following section. The spring–mass system is also referred 
to as a simple harmonic oscillator, as well as an undamped single-  degree-of-freedom 

system.

Example 1.1.2

The phase angle φ describes the relative shift in the sinusoidal vibration of the spring–
mass system resulting from the initial displacement, x0. Verify that equation (1.10) sat-
isfies the initial condition ( ) =x x0 0.

Solution Substitution of =t 0 in equation (1.10) yields

x A
x xn

n

n0 sin sin tan
2

0
2

0
2

1 0

0

υ

υ
( ) = φ =

ω +

ω
ω









−

Figure 1.7 illustrates the phase angle φ defined by equation (1.9). This right triangle is 
used to define the sine and tangent of the angle φ. From the geometry of a right triangle, 
and the definitions of the sine and tangent functions, the value of x(0) is computed to be

(0)  
2

0
2

0
2

0

2
0
2

0
2

0x
x x

x
x

n

n

n

n

υ

υ
=
ω +

ω
ω

ω +
=

which verifies that the solution given by equation (1.10) is consistent with the initial 
displacement condition.

.

Example 1.1.3

A vehicle wheel, tire, and suspension assembly can be modeled crudely as a 
 single-degree-of-freedom spring–mass system. The (unsprung) mass of the assembly 
is measured to be about 30 kilograms (kg). Its frequency of oscillation is observed to 
be 10 Hz. What is the approximate stiffness of the suspension assembly? Figure 1.8 is a 
close up of a vehicle suspension system showing the spring mechanism.



12 Introduction to Vibration and the Free Response    Chap. 1

Solution The relationship between frequency, mass, and stiffness is ω = k mn , so 
that

(30 kg) 10
cycle

s

2 rad

 cycle 
1.184 10 N m2

2

5k m n ⋅ π= ω =









= ×

This provides one simple way to estimate the stiffness of a complicated device. This 
stiffness could also be estimated by using a static deflection experiment similar to that 
suggested by Figures 1.3 and 1.4.

.

Example 1.1.4

Compute the amplitude and phase of the response of a system with a mass of 2 kg and 
a stiffness of 200 N/m, to the following initial conditions:

a) x 2 mm and 1mm s0 0υ= =

b) υ= − =x 2 mm and 1mm s0 0

c) υ= = −x 2 mm and 1mm s0 0

Compare the results of these calculations.

Solution First, compute the natural frequency, as this does not depend on the initial 
conditions and will be the same in each case. From equation (1.6):

ω = = =
k

m
n

200  N m

2 kg
10  rad s

Figure 1.8 Close up of a 

vehicle suspension system 

showing the spring mechanism. 

(Photo courtesy of ScofieldZa/

Shutterstock.)
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Next, compute the amplitude, as it depends on the squares of the initial conditions and 
will be the same in each case. From equation (1.9):

A
xn

n

10 2 1

10
2.0025 mm

2
0
2

0
2 2 2 2⋅υ

=
ω +

ω
=

+
=

Thus the difference between the three responses in this example is determined only 
by the phase. Using equation (1.9) and referring to Figure 1.7 to determine the proper 
quadrant, the following yields the phase information for each case:

a) �

υ
( )( )( )

φ =
ω







 =










=− −xntan tan

10 rad s 2mm

1mm s
1.521rad or  87.1471 0

0

1

 which is in the first quadrant.

b) �
xntan tan

(10 rad s)( 2mm)

1mm s
1.521rad or  87.1471 0

0

1

υ
( )φ =

ω







 =

−








= − −− −

 which is in the fourth quadrant.

c) �

υ
π ( )( )φ =

ω







 = −










= − +− −xntan tan

(10 rad s)(2mm)

1mm s
1.521 rad  or  92.851 0

0

1

which is in the second quadrant (position positive, velocity negative places the 
angle in the second quadrant in Figure 1.7 requiring that the raw calculation be 
shifted 180°).

Note that if equation (1.9) is used without regard to Figure  1.7, parts b and c 
would result in the same answer (which makes no sense physically as the responses 
each have different starting points). Thus in computing the phase it is important to 
consider which quadrant the angle should lie in. Fortunately, some calculators and 
some codes use an arc tangent function, which corrects for the quadrant (for instance, 
MATLAB uses the atan2(w0*́ x0, v0) command).

The tan( )φ  can be positive or negative. If the tangent is positive, the phase an-
gle is in the first or third quadrant. If the sign of the initial displacement is positive, 
the phase angle is in the first quadrant. If the sign is negative or the initial displace-
ment is negative, the phase angle is in the third quadrant. If on the other hand the 
tangent is negative, the phase angle is in the second or fourth quadrant. As in the 
previous case, by examining the sign of the initial displacement, the proper quadrant 
can be determined. That is, if the sign is positive, the phase angle is in the second 
quadrant, and if the sign is negative, the phase angle is in the fourth quadrant. The 
remaining possibility is that the tangent is equal to zero. In this case, the phase angle 
is either zero or 180°. The initial velocity determines which quadrant is correct. 
If the initial displacement is zero and if the initial velocity is zero, then the phase 
angle is zero. If on the other hand the initial velocity is negative, the phase angle  
is 180°.

.
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Example 1.1.5

Plot the response of the spring–mass system of Example 1.1.4a for two periods.

Solution The following MATLAB code is used to plot the response. First calculate 
the period

k

m
Tn

n

200  N m

2 kg
10  rad s  

2 2

10
0.62 sω

π

ω

π
= = = ⇒ = = =  

Thus the plot should go from 0 to 1.25 s. From Example 1.1.4 it can be seen that the 
amplitude is =A 2.0025 mm and the phase is φ = 1.521 rad. Type the following in the 
command window:

>> t = 0:1.25 100:1.25;

>> x = 2.0025*sin(10*t +1.521);

>> plot(t,x)

>> xlabel(‘time in seconds’)

>> ylabel(‘deflection in mm’)

The first line starts the time at zero, uses time steps of 1.25/100, and ends at 1.25 s. 
The second line is the function of time and the third line is the plot command followed 
by two labels. This all results in the following plot:

22.5

21

21.5

22

20.5

0

0.5

1

1.5

2

2.5

1.210.80.60.40.20 1.4

Time in Seconds

D
e
fl

e
c
ti

o
n

 i
n

 m
m

The main point of this section is summarized in Window 1.2. This illustrates 
harmonic motion and how the initial conditions determine the response of such a 
system.

.
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Window 1.2
Summary of the Description of Simple Harmonic Motion

sin(ωnt + ϕ)

v0 = initial velocityϕ = tan−1
v0

ωnx0

Maximum velocity

Period

Time, t

x0
Initial

displace-
ment

ϕ
ωn

2π
ωnSlope here

is v0

Displacement, x(t)

+

−

AmplitudeT =

x(t) =ωn

ω
n

2 
x0

2 + v0
21

A= ω
n

2 
x0

2 
1v0

2

ωn

1

1.2 HARMONIC MOTION

The fundamental kinematic properties of a particle moving in one dimension are 
displacement, velocity, and acceleration. For the harmonic motion of a simple 
spring–mass system, these are given by equations (1.3), (1.4), and (1.5), respectively. 
These equations reveal the different relative amplitudes of each quantity. For sys-
tems with natural frequency larger than 1 rad/s, the relative amplitude of the veloc-
ity response is larger than that of the displacement response by a multiple of ωn, and 
the acceleration response is larger by a multiple of ωn.2  For systems with frequency 
less than 1, the velocity and acceleration have smaller relative amplitudes than the 
displacement. Also note that the velocity is 90° (or π/2 radians) out of phase with 
the position [i.e., π( ) ( )ω + + φ = ω + φt tn nsin 2 cos ], while the acceleration is 180° 
out of phase with the position and 90° out of phase with the velocity. This is summa-
rized and illustrated in Window 1.3.

The angular natural frequency, ωn, used in equations (1.3) and (1.10), is mea-
sured in radians per second and describes the repetitiveness of the oscillation. As in-
dicated in Window 1.2, the time the cycle takes to repeat itself is the period, T, which 
is related to the natural frequency by

 T
n n

2  rad

rad s

2
 s=

π
ω

=
π
ω

 (1.11)
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Here the non italic s denotes seconds. This results from the elementary definition of 
the period of a sine function. The frequency in hertz (Hz), denoted by fn, is related 
to the frequency in radians per second, denoted by ωn:

 fn
n n n n

2

rad s

2 rad cycle

cycles

2  s 2
 (Hz)

π π π π
=
ω
=

ω
=
ω

=
ω

 (1.12)

Equation (1.2) is exactly the same form of differential equation as the linear 
pendulum equation of Example 1.1.1 and of the shaft and disk of Window 1.1(b). As 

Window 1.3
The Relationship between Displacement, Velocity, and Acceleration for Simple 

Harmonic Motion

−A

0

A

t

Displacement
x(t) = A sin (ωnt + ϕ)

−ωA

0

ωA

t

−ω2
A

0

ω2
A

t

Acceleration
x(t) = −ω2

nA sin (ωnt + ϕ)

Velocity
x(t) = ωnA cos (ωnt + ϕ)

..

.
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such, the pendulum will have exactly the same form of solution as equation (1.3), 
with frequency

ω =
g

l
n   rad s

The solution of the pendulum equation thus predicts that the period of oscillation 
of the pendulum is

=
π
ω
= πT

l

gn

2
2  s

This analytical value of the period can be checked by measuring the period of os-
cillation of a pendulum with a simple stopwatch. The period of the disk and shaft 
system of Window 1.1 will have a frequency and period of

ω = = π
k

J
T

J

k
n   rad s and 2  s

respectively. The concept of frequency of vibration of a mechanical system is 
the single most important physical concept (and number) in vibration analysis. 
Measurement of either the period or the frequency allows validation of the analyti-
cal model. (If you made a 1-meter pendulum, the period would be about 2 s. This is 
something you could try at home.)

As long as the only disturbance to these systems is a set of nonzero initial 
conditions, the system will respond by oscillating with frequency ωn  and period T. 
For the case of the pendulum, the longer the pendulum, the smaller the frequency 
and the longer the period. That’s why in museum demonstrations of a pendulum, the 
length is usually very large so that T is large and one can easily see the period (also 
a pendulum is usually used to illustrate the earth’s precession; Google the phrase 
Foucault Pendulum).

Example 1.2.1

Consider a small spring about 30 mm (or 1.18 in) long, welded to a stationary table 
(ground) so that it is fixed at the point of contact, with a 12-mm (or 0.47-in) bolt welded 
to the other end, which is free to move. The mass of this system is about × −49.2 10 kg3  
(equivalent to about 1.73 ounces). The spring stiffness can be measured using the method 
suggested in Figure 1.4 and yields a spring constant of =k 857.8 N m . Calculate the 
natural frequency and period. Also determine the maximum amplitude of the response 
if the spring is initially deflected 10 mm. Assume that the spring is oriented along the 
direction of gravity as in Window 1.1. (Ignore the effect of gravity; see below.)

Solution From equation (1.6) the natural frequency is

ω = =
×

=
−

k

m
n

857.8  N m

49.2 10 kg
132  rad s

3

In hertz, this becomes

=
ω
π
=fn

n

2
21 Hz



18 Introduction to Vibration and the Free Response    Chap. 1

The period is

=
π
ω
= =T

fn n

2 1
0.0476 s

To determine the maximum value of the displacement response, note from Figure 1.6 
that this corresponds to the value of the constant A. Assuming that no initial velocity is 
given to the spring (υ = 00 ), equation (1.9) yields

υ
= =

ω +

ω
= =x t A

x
x

n

n

( ) 10 mmmax

2
0
2

0
2

0

Note that the maximum value of the velocity response is ω ω =A xn n or  1320 mm s0  
and the acceleration response has maximum value

A xn n 174.24 10 mm s2 2
0

3 2ω = ω = ×

Since υ = 00 , the phase is ( )φ = ω = π− xntan 0 21
0 , or 90°. Hence, in this case, the 

response is ( ) ( )= + π =x t t t( ) 10 sin 132 2 10 cos 132  mm.
.

Does gravity matter in spring problems? The answer is no, if the system oscil-
lates in the linear region. Consider the spring of Figure 1.3 and let a mass of value 
m extend the spring. Let ∆  denote the distance deflected in this static experiment 
(∆  is called the static deflection); then the force acting upon the mass is ∆k .  From 
static equilibrium the forces acting on the mass must be zero so that (taking positive 
down in the figure)

− ∆ =mg k 0

Next, sum the forces along the vertical for the mass at some point x and apply 
Newton’s law to get

= − + ∆ + = − + −∆��mx t k x mg kx mg k( ) ( )

Note the sign on the spring term is negative because the spring force opposes 
the motion, which is taken here as positive down. The last two terms add to zero 
( )− ∆ =mg k 0  because of the static equilibrium condition, and the equation of mo-
tion becomes

( ) ( )+ =��mx t kx t 0 

Thus gravity does not affect the dynamic response. Note x(t) is measured from the 
elongated (or compressed if upside down) position of the spring–mass system, that 
is, from its rest position. This is discussed again using energy methods in Figure 1.14.

Example 1.2.2

(a) A pendulum in Brussels swings with a period of 3 seconds. Compute the length of 
the pendulum. (b) At another location, assume the length of the pendulum is known 
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to be 2 meters and suppose the period is measured to be 2.839 seconds. What is the ac-
celeration due to gravity at that location?

Solution The relationship between period and natural frequency is given in equation 
(1.11). (a) Substitution of the value of natural frequency for a pendulum and solving 
for the length of the pendulum yields

 
π π

π π

( )( )
=
ω
⇒ ω = = ⇒ = = =T

g

l T
l

gT

n
n

2
 

4
 

4

9.811  m s 3 s

4
2.237 m2

2

2

2

2

2 2 2

2

Here the value of =g 9.811  m s2  is used, as that is the value it has in Brussels (at 51° 
latitude and an altitude of 102 m). (b) Next, manipulate the pendulum period equation 
to solve for g. This yields

π π π
= ⇒ = = =

g

l T
g

T
l

4 4 4

(2.839) s
(2)m 9.796 m s

2

2

2

2

2

2 2
2

This is the value of the acceleration due to gravity in Denver, Colorado, United States 
(at an altitude 1638 m and latitude 40°).

These sorts of calculations are usually done in high school science classes but are 
repeated here to underscore the usefulness of the concept of natural frequency and period 
in terms of providing information about the vibration system’s physical properties. In ad-
dition, this example serves to remind the reader of a familiar vibration phenomenon.

.

The solution given by equation (1.10) was developed assuming that the re-
sponse should be harmonic based on physical observation. The form of the response 
can also be derived by a more analytical approach following the theory of elemen-
tary differential equations (see, e.g., Boyce et al., 2017). This approach is reviewed 
here and will be generalized in later sections and chapters to solve for the response 
of more complicated systems.

Assume that the solution x(t) is of the form

 ( ) = λx t ae t  (1.13)

where a and λ are nonzero constants to be determined. Upon successive differentia-
tion, equation (1.13) becomes ( ) = λ λ�x t ae t  and = λ λ��x t ae t( ) 2 . Substitution of the 
assumed exponential form into equation (1.2) yields

 λ + =λ λm ae kaet t 02  (1.14)

Since the term λae t  is never zero, expression (1.14) can be divided by λae t  to yield

 λ + =m k 02  (1.15)

Solving this algebraically results in

 
k

m

k

m
j jn λ = ± − = ± = ±ω  (1.16)
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where = −j 1  is the imaginary number and ω = k mn  is the natural frequency 
as before. Note that there are two values for λ λ = +ω jn,  and λ = −ω jn , because 
the equation for λ is of second order. This implies that there must be two solutions 
of equation (1.2) as well. Substitution of equation (1.16) into equation (1.13) yields 
that the two solutions for x(t) are

 = =+ ω − ωx t a e x t a ej t j tn n( ) and ( )1 2  (1.17)

Since equation (1.2) is linear, the sum of two solutions is also a solution; hence, the 
response x(t) is of the form

 = ++ ω − ωx t a e a ej t j tn n( ) 1 2  (1.18)

Window 1.4
Three Equivalent Representations of Harmonic Motion

The solution of + =��mx kx 0 subject to nonzero initial conditions can be writ-
ten in three equivalent ways. First, the solution can be written as

= + ω = = −ω − ωx t a e a e
k

m
jj t j t

n
n n( ) , , 11 2

where a a and 1 2  are complex-valued constants. Second, the solution can be 
written as

φ= ω +x t A tn( )  sin( )

where A and φ  are real-valued constants. Last, the solution can be written as

= ω + ωx t A t A tn n( )  sin   cos 1 2

where A A and 1 2  are real-valued constants. Each set of two constants is de-
termined by the initial conditions, υx  and 0 0. The various constants are related 
by the following:

A A A
A

A

A a a j A a a

a
A A j

a
A A j

tan

( )  

2 2

1
2

2
2 1 2

1

1 1 2 2 1 2

1
2 1

2
2 1

= + φ =









= − = +

=
−

=
+

−

all of which follow from trigonometric identities and Euler’s formulas. Note that 
a a and 1 2  are a complex conjugate pair, so that A A and 1 2 are both real num-
bers provided that the initial conditions are real valued, as is normally the case.
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where a a and 1 2  are complex-valued constants of integration. The Euler relations 
for trigonometric functions state that ( )θ = −θ −θj e ej j2 sin  and ( )θ = +θ −θe ej j2 cos ,  
where = −j 1. [See Appendix A, equations (A.18), (A.19), and (A.20), as well as 
Window 1.5.] Using the Euler relations, equation (1.18) can be written as

 = ω + φx t A tn( )  sin( ) (1.19)

where A and φ are real-valued constants of integration. Note that equation (1.19) 
is in agreement with the physically intuitive solution given by equation (1.3). The 
relationships among the various constants in equations (1.18) and (1.19) are given in 
Window 1.4. Window 1.5 illustrates the use of Euler relations for deriving harmonic 
functions from exponentials for the underdamped case.

Often when computing frequencies from equation (1.16) such as λ = −4,2  
there is a temptation to write that the frequency is ω = ±n 2. This is incorrect be-
cause the ± sign is used up when the Euler relation is used to obtain the function 
ω tnsin  from the exponential form. The concept of frequency is not defined until it 

appears in the argument of the sine function and, as such, is always positive.
Precise terminology is useful in discussing an engineering problem, and the 

subject of vibration is no exception. Since the position, velocity, and acceleration 
change continually with time, several other quantities are used to discuss vibration. 
The peak value, defined as the maximum displacement, or magnitude A of equa-
tion (1.9), is often used to indicate the region in space in which the object vibrates. 
Another quantity useful in describing vibration is the average value, denoted by x  
and defined by

 ∫=
→∞

x
T

x t dt
T

T
lim

1
( )

0
 (1.20)

Note that the average value of = ωx t A tn( ) sin  over one period of oscillation is zero.
Since the square of displacement is associated with a system’s potential energy, 

the average of the displacement squared is sometimes a useful vibration property to 
discuss. The mean-square value (or variance) of the displacement x(t), denoted by 
x2  is defined by

 ∫=
→∞

x
T

x t dt
T

T
lim

1
( )2 2

0
 (1.21)

The square root of this value, called the root mean-square (rms) value, is commonly 
used in specifying vibration. Because the peak value of the velocity and accelera-
tion are multiples of the natural frequency times the displacement amplitude [i.e., 
equations (1.3)–(1.5)], these three peak values often differ in value by an order of 
magnitude or more. Hence, logarithmic scales are often used. A common unit of 
measurement for vibration amplitudes and rms values is the decibel (dB). The deci-
bel was originally defined in terms of the base 10 logarithm of the power ratio of 
two electrical signals, or as the ratio of the square of the amplitudes of two signals. 
Following this idea, the decibel is defined as
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 ≡







 =

x

x

x

x
dB 10  log 20  log  10

1

0

2

10
1

0

 (1.22)

Here the signal x0  is a reference signal. The decibel is used to quantify how far the 
measured signal x1  is above the reference signal x0 . Note that if the measured signal 
is equal to the reference signal, then this corresponds to 0 dB. The decibel is used 
extensively in acoustics to compare sound levels. Using a dB scale expands or com-
presses vibration response information for convenience in graphical representation.

Example 1.2.3

Consider a 2-meter long pendulum placed on the moon and given an initial angular 
displacement of 0.2 rad and zero initial velocity. Calculate the maximum angular veloc-
ity and the maximum angular acceleration of the swinging pendulum (note that gravity 
on the earth’s moon is =g gm 6, where g is the acceleration due to gravity on earth).

Solution From Example 1.1.1 the equation of motion of a pendulum is

��θ + θ =t
g

l
tm( ) ( ) 0

This equation is of the same form as equation (1.2) and hence has a solution of the 
form

θ = ω + φ ω =t A t
g

l
n n

m( )  sin( ),

From equation (1.9) the amplitude is given by

υ
=
ω +

ω
= =A

x
x

n

n

0.2 rad
2

0
2

0
2

2 0

From Window 1.3 the maximum velocity is just ω An  or

υ = ω = = =A
g

l
n

m  (0.2) (0.2)
9.8 6

2
0.18  rad smax

The maximum acceleration is

= ω = = =a A
g

l
An

m 9.8 6

2
(0.2) 0.163rad smax

2 2

.

Frequencies of concern in mechanical vibration range from fractions of a 
hertz to several thousand hertz. Amplitudes range from micrometers up to meters 
(for systems such as tall buildings). According to Mansfield (2005), human beings 
are more sensitive to acceleration than displacement and easily perceive vibration 
around 5 Hz at about 0.01m s2 (about 0.01 mm). Horizontal vibration is easy to 
experience near 2 Hz. Work attempting to characterize comfort levels for human 
vibrations is still ongoing.
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Example 1.2.4

Consider a spring–mass system subject to an arbitrary initial velocity, υ0  initially at rest 
00x( )= . Determine the mean square value of the displacement.

Solution From Window 1.2, the form of the solution for the initial conditions given is

x t t
n

n( ) sin( )0υ

ω
ω=

Substitution of this form of the solution into equation (1.21) for the mean square value 
yields

x
T

t dt
T n

n

T
lim

1
sin ( )2 0

2

2

0∫
υ

ω
ω=








→∞

Recalling equation (1.11) for the period T the mean square value becomes

x
T

t dt
n T

n

T
lim

1
sin ( )2 0

2

2

0∫
υ

ω
ω=








 →∞

From a table of integrals and letting = ωx tn  yields

∫ = −






 ⇒ − =x dx

x x T T TT
T

sin ( )
2

sin 2

4 2

sin 2

4 2
2

0 0

Thus,

x
T

T

n T n

lim
1

2

1

2
2 0

2
0

2
υ

ω

υ

ω
=







 =








→∞

.

1.3 VISCOUS DAMPING

The response of the spring–mass model (Section 1.1) predicts that the system will 
oscillate indefinitely. However, everyday observation indicates that freely oscillat-
ing systems eventually die out and reduce to zero motion. This observation suggests 
that the model sketched in Figure 1.5 and the corresponding mathematical model 
given by equation (1.2) need to be modified to account for this decaying motion. The 
choice of a representative model for the observed decay in an oscillating system is 
based partially on physical observation and partially on mathematical convenience. 
The theory of differential equations suggests that adding a term to equation (1.2) 
of the form �cx t( ) where c is a constant, will result in a solution x(t) that dies out. 
Physical observation agrees fairly well with this model and is used successfully to 
model the damping, or decay, in a variety of mechanical systems. This type of damp-
ing, called viscous damping, is described in detail in this section.
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While the spring forms a physical model for storing potential energy and hence 
causing vibration, the dashpot, or damper, forms the physical model for dissipating en-
ergy and thus damping the response of a mechanical system. An example dashpot con-
sists of a piston fit into a cylinder filled with oil as indicated in Figure 1.9. This piston 
is perforated with holes so that motion of the piston in the oil is possible. The laminar 
flow of the oil through the perforations as the piston moves causes a damping force on 
this piston. The force is proportional to the velocity of the piston in a direction opposite 
that of the piston motion. This damping force, denoted by fc, has the form

 = �f cx tc ( ) (1.23)

where c is a constant of proportionality related to the oil viscosity. The constant 
c, called the damping coefficient, has units of force per velocity, or N.s/m, as it is 
customarily written. However, following the strict rules of SI units, the units on 
damping can be reduced to kg/s, which states the units on damping in terms of the 
 fundamental (also called basic) SI units (mass, time, and length).

In the case of the oil-filled dashpot, the constant c can be determined by fluid 
principles. However, in most cases, fc is provided by equivalent effects occurring in 
the material forming the device. A good example is a block of rubber (which also 
provides stiffness fk ) such as an automobile motor mount, or the effects of air flow-
ing around an oscillating mass. In all cases in which the damping force fc is propor-
tional to velocity, the schematic of a dashpot is used to indicate the presence of this 
force. The schematic is illustrated in Figure 1.10. Unfortunately, the damping coef-
ficient of a system cannot be measured as simply as the mass or stiffness of a system 
can be. This is pointed out in Section 1.6.

Using a simple force balance on the mass of Figure 1.10 in the x direction, the 
equation of motion for x(t) becomes

 = − −��mx f fc k  (1.24)

or

 + + =�� �mx t cx t kx t( ) ( ) ( ) 0 (1.25)

Mounting
point

Seal Case

Ori�ce

Piston

Mounting
point

Oil

x(t)

(a) (b)

Figure 1.9 (a) A comercial damper. (Photo courtesy of Winai Tepsuttinun/Shutterstock.)  

(b) A schematic of a dashpot that produces a damping force �=f t cx tc( ) ( ) where x(t) is the 

motion of the case relative to the piston.
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subject to the initial conditions ( ) =x x0 0  and υ=�x(0) 0. The forces fc and fk  are 
negative in equation (1.24) because they oppose the motion (positive to the right). 
Equation (1.25) and Figure 1.10, referred to as a damped single-degree-of-freedom 

system, form the topic of Chapters 1 through 3.
To solve the damped system of equation (1.25), the same method used for 

solving equation (1.2) is used. In fact, this provides an additional reason to choose  
fc to be of the form �cx . Let x(t) have the form given in equation (1.13), = λx t ae t( ) .  
Substitution of this form into equation (1.25) yields

 ( )λ + λ + =λm c k ae t  02  (1.26)

Again, ≠λae t 0, so that this reduces to a quadratic equation in λ of the form

 λ + λ + =m c k 02  (1.27)

called the characteristic equation. This is solved using the quadratic formula to yield 
the two solutions

 λ = − ± −
c

m m
c km

2

1

2
41, 2

2  (1.28)

Examination of this expression indicates that the roots λ will be real or complex, de-
pending on the value of the discriminant, −c km42 . As long as m, c, and k are posi-
tive real numbers, λ λ and 1 2  will be distinct negative real numbers if − >c km4 02 .  
On the other hand, if this discriminant is negative, the roots will be a complex 
conjugate pair with a negative real part. If the discriminant is zero, the two roots 
λ λ and 1 2  are equal negative real numbers. Note that equation (1.15) represents the 
characteristic equation for the special undamped case (i.e., c = 0).

x(t)

k

c

m

y

x

fk

fc

mg

N

Friction-free
surface

(a) (b)

Figure 1.10 (a) The schematic of a single-degree-of-freedom system with 

viscous damping indicated by a dashpot and (b) the corresponding free-

body diagram.
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In examining these three cases, it is both convenient and useful to define the 
critical damping coefficient, ccr , by

 = ω =c m kmcr n2 2  (1.29)

where ωn  is the undamped natural frequency in rad/s. Furthermore, the nondimen-
sional number ζ, called the damping ratio, defined by

      
2

   
2

ζ = =
ω
=

c

c

c

m

c

kmcr n

 (1.30)

can be used to characterize the three types of solutions to the characteristic equa-
tion. Rewriting the roots given by equation (1.28) yields

 λ = −ζω ± ω ζ −n n 11, 2
2  (1.31)

where it is now clear that the damping ratio ζ determines whether the roots are 
complex or real. This in turn determines the nature of the response of the damped 
single-degree-of-freedom system. For positive mass, damping, and stiffness coeffi-
cients, there are three cases, which are delineated next.

1.3.1 Underdamped Motion

The most common case is when the damping ratio ζ is less than 1 < ζ <(0 1) and 
the discriminant of equation (1.31) is negative, resulting in a complex conjugate pair 
of roots. Factoring out (−1) from the discriminant in order to clearly distinguish that 
the second term is imaginary yields

 ζ − = − ζ − = − ζ j1 (1 )( 1) 1  2 2 2  (1.32)

where = −j 1. Thus the two roots become

 λ = −ζω − ω − ζ jn n 1  1
2  (1.33)

and

 λ = −ζω + ω − ζ jn n 1  2
2  (1.34)

Following the same argument as that made for the undamped response of equation 
(1.18), the solution of (1.25) is then of the form

 ( )= +−ζω −ζ ω − −ζ ωx t e a e a et j t j tn n n( ) 1
1

2
12 2

 (1.35)

where a a and 1 2  are arbitrary complex-valued constants of integration to be deter-
mined by the initial conditions. Using the Euler relations (see Window 1.5), this can 
be written as
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 = ω + φ−ζωx t Ae tt
d

n( )  sin( )  (1.36)

where A and φ are constants of integration and ωd, called the damped natural fre-

quency, is given by

 ζω = ω −d n 1 2  (1.37)

in units of rad/s.

Window 1.5
Euler Relations and the Underdamped Solution

An underdamped solution of + + =�� �mx cx kx 0 to nonzero initial conditions 
is of the form

= +λ λx t a e a et t( ) 1 2
1 2

where λ λ and 1 2  are complex numbers of the form

λ ζ λ ζ= − ω + ω = − ω − ωj jn d n dand1 2

where k m c mn n d n, 2 , 1 ,2ζ ζ( )ω = = ω ω = ω −  and = −j 1. The two 
constants a a and 1 2  are complex numbers and hence represent four unknown 
constants rather than the two constants of integration required to solve a sec-
ond-order differential equation. This demands that the two complex numbers 
a a and 1 2  be conjugate pairs so that x(t) depends only on two undetermined 
constants. Substitution of the foregoing values of λi  into the solution x(t) yields

( )= +ζ− ω ω −ωx t e a e a et jt jtn d d( ) 1 2

Using the Euler relations = φ + φ = φ− φφ −φe j e j x tj jcos sin  and  cos sin , ( )  
becomes

[ ]( ) ( )= + ω + − ωζ− ωx t e a a t j a a tt
d d

n( )  cos   sin 1 2 1 2

Choosing the real numbers = +A a a2 1 2  and ( )= −A a a j1 1 2 , this becomes

( )= ω + ωζ− ωx t e A t A tt
d d

n( )  sin   cos 1 2

which is real valued. Defining the constant = +A A A1
2

2
2  and the angle 

A Atan 1
2 1( )φ = −  so that = φ = φA A A Acos  and  sin1 2 , the form of x(t) be-

comes [recall that ( )+ = +a b a b a bsin cos cos sin sin ]

= ω + φζ− ωx t Ae tt
d

n( )  sin ( )

where A and φ are the constants of integration to be determined from the ini-
tial conditions. Complex numbers are reviewed in Appendix A.
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The constants A and φ are evaluated using the initial conditions in exactly the 
same fashion as they were for the undamped system as indicated in equations (1.7) 
and (1.8). Set =t 0  in equation (1.36) to get = φx Asin0 . Differentiating (1.36) 
yields

� ζ ( )= − ω ω + φ + ω ω + φζ ζ− ω − ωx t Ae t Ae tn
t

d d
t

d
n n( ) sin cos( )

Let =t 0  and = φA x sin0  in this last expression to get

� υ ζ= = − ω + ω φx x xn d(0) cot0 0 0  

Solving this last expression for φ yields

υ ζ
φ =

ω
+ ω
x

x

d

n

tan  0

0 0

With this value of φ, the sine becomes

sin 

( )

0

0 0
2

0
2

x

x x

d

n dυ ζ ( )
φ =

ω

+ ω + ω

Thus the value of A and φ are determined to be

 
υ ζ

υ ζ

( ) ( )
=

+ ω + ω
ω

φ =
ω

+ ω
−A

x x x

x

n d

d

d

n

, tan  0 0
2

0
2

2
1 0

0 0
 (1.38)

where υx and0 0  are the initial displacement and velocity. A plot of x(t) versus t for 
this underdamped case is given in Figure 1.11. Note that the motion is oscillatory 
with exponentially decaying amplitude. The damping ratio ζ determines the rate of 
decay. The response illustrated in Figure 1.11 is exhibited in many mechanical sys-
tems and constitutes the most common case. As a check to see that equation (1.38) 
is reasonable, note that if ζ = 0 in the expressions for A and φ, the undamped rela-
tions of equation (1.9) result.

Time (s)

Displacement (mm)

1.0

0.0

−1.0

Figure 1.11 The response of an 

underdamped system: ζ< <0 1.
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1.3.2 Overdamped Motion

In this case, the damping ratio is greater than 1 (ζ>1). The discriminant of equation 
(1.31) is positive, resulting in a pair of distinct real roots. These are

 λ ζ ζ= − ω − ω −n n 11
2  (1.39)

and

 λ ζ ζ= − ω + ω −n n 12
2  (1.40)

The solution of equation (1.25) then becomes

 ( )= +ζ ζ ζ− ω −ω − +ω −x t e a e a et t tn n n( ) 1
1

2
12 2

 (1.41)

which represents a nonoscillatory response. Again, the constants of integration 
a a and 1 2  are determined by the initial conditions indicated in equations (1.7) and 
(1.8). In this nonoscillatory case, the constants of integration are real valued and are 
given by

 
1

2 1
1

0
2

0

2
a

xn

n

υ ζ ζ

ζ

( )
=
− + − + − ω

ω −
 (1.42)

and

  
1

2 1
2

0
2

0

2
a

xn

n

υ ζ ζ

ζ

( )
=

+ + − ω

ω −
 (1.43)

Typical responses are plotted in Figure 1.12, where it is clear that motion does not 
involve oscillation. An overdamped system does not oscillate but rather returns to 
its rest position exponentially.

Displacement (mm)

1

1.  x0 = 0.3,      v0 = 0

3.  x0 = −0.3,   v0 = 0
2.  x0 = 0,         v0 = 1

2

3

Time (s)−0.4

−0.2

0.0

0.2

0.4

0 1 2 3 4 5 6

Figure 1.12 The response 

of an overdamped system, 

ζ>1, for two different values 

of initial displacement 

(in mm) both with the 

initial velocity set to 

zero and one case with 

υ= =x 0  and  1mm s0 0 .
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1.3.3 Critically Damped Motion

In this last case, the damping ratio is exactly one (ζ = 1) and the discriminant of 
equation (1.31) is equal to zero. This corresponds to the value of ζ that separates 
oscillatory motion from nonoscillatory motion. Since the roots are repeated, they 
have the value

 λ λ= = −ωn1 2  (1.44)

The solution takes the form

 ( ) ( )= + −ωx t a a t e tn
1 2  (1.45)

where, again, the constants a a and 1 2  are determined by the initial conditions. 
Substituting the initial displacement into equation (1.45) and the initial velocity into 
the derivative of equation (1.45) yields

 υ= = + ωa x a xn,1 0 2 0 0  (1.46)

Critically damped motion is plotted in Figure 1.13 for two different values of initial 
conditions. It should be noted that critically damped systems can be thought of in 
several ways. They represent systems with the smallest value of damping rate that 
yields nonoscillatory motion. Critical damping can also be thought of as the case 
that separates nonoscillation from oscillation, or the value of damping that provides 
the fastest return to zero without oscillation.

0

0.5 1 1.5 2 2.5 3 3.5

1.  x0 = 0.4 mm, v0 = + 1mm/s

3.  x0 = 0.4 mm, v0 = −1mm/s
2.  x0 = 0.4 mm, v0 =  0 mm/s

Time (s)

−0.1
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1

2
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0.6

Figure 1.13 The response of 

a critically damped system for 

three different initial velocities. 

The physical properties are 

100 kg, 225 N m,
and  1.
m k
ζ
= =
=

Example 1.3.1

Recall the small spring of Example 1.2.1 (i.e., ω =n 132 rad s ). The damping rate of 
the spring is measured to be 0.11 kg/s. Calculate the damping ratio and determine if 
the free motion of the spring–bolt system is overdamped, underdamped, or critically 
damped.

Solution From Example 1.2.1, 49.2 10 kg and  857.8 N m3m k= × =− . Using the 
definition of the critical damping coefficient of equation (1.29) and these values for m 
and k yields
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( )( )= = ×

=

−c km N m kgcr 2 2 857.8 49.2 10

12.993kg s

3

If c is measured to be 0.11 kg/s, the critical damping ratio becomes

ζ
( )
( )

= = =
c

ccr

0.11 kg s

12.993 kg s
0.0085

or 0.85% damping. Since ζ is less than 1, the system is underdamped. The motion re-
sulting from giving the spring–bolt system a small displacement will be oscillatory.

.

The single-degree-of-freedom damped system of equation (1.25) is often writ-
ten in a standard form. This is obtained by dividing equation (1.25) by the mass, m. 
This yields

 + + =�� �x
c

m
x

k

m
x 0 (1.47)

The coefficient of x(t) is ωn,2  the undamped natural frequency squared. A little ma-
nipulation illustrates that the coefficient of the velocity �x is ζωn2 . Thus equation 
(1.47) can be written as

 ζ+ ω + ω =�� �x t x t x tn n( ) 2 ( ) ( ) 02  (1.48)

In this standard form, the values of the natural frequency and the damping ratio are 
clear. In differential equations, equation (1.48) is said to be in monic form, meaning 
that the leading coefficient (coefficient of the highest derivative) is one.

Example 1.3.2

The human leg has a measured natural frequency of around 20 Hz when in its rigid 
(knee-locked) position in the longitudinal direction (i.e., along the length of the bone) 
with a damping ratio of ζ = 0.224. Calculate the response of the tip of the leg bone to 
an initial velocity of υ = 0.6 m s0  and zero initial displacement (this would correspond 
to the vibration induced while landing on your feet, with your knees locked from a 
height of 18 mm) and plot the response. Last, calculate the maximum acceleration ex-
perienced by the leg assuming no damping.

Solution The damping ratio is ζ = <0.224 1, so the system is clearly underdamped. 

The natural frequency is n
20

1
 
cycles

s
 
2  rad

cycles
125.66ω =

π
=  rad/s. The damped natu-

ral frequency is ( )ω = − =d 125.66 1 0.224 122.467 rad s
2

. Using equation (1.38) with  

x0.6 m s and 00 0υ = =  yields
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[ ] [ ]( )( )( ) ( )( )
=

+ +
= =A

0.6 0.224 125.66 0 0 122.467

122.467
0.005 m 5 mm

2 2

υ ζ
φ =

ω
+ ω









 =

− d

n

tan
(0)( )

(0)
01

0

The response as given by equation (1.36) is

x t e tt5  sin  122.467 mm28.148( ) ( )= −

This is plotted in Figure 1.14. To find the maximum acceleration rate that the leg expe-
riences for zero damping, use the undamped case of equation (1.9):

υ
υ= +

ω








 ω = = =A x x

n
n,   125.66,   0.6,   00

2 0
2

0 0

υ
=
ω

=
ω

A
n n

 m
0.6

 m0

max
0.6

0.6 125.66 m s 75.396 m s2 2 2 2�� ( )( ) ( )= −ω = −ω
ω








 = =x An n

n

In terms of =g 9.81m s2 , this becomes

g gmaximum acceleration
75.396  m s

9.81  m s
  7.69  ’s

2

2
= =

.

Example 1.3.3

Compute the form of the response of an underdamped system using the Cartesian form 
of the solution given in Window 1.5.

Solution From basic trigonometry ( )+ = +x y x y x ysin sin cos cos sin . Applying 
this to equation (1.36) with = ω = φx t yd  and   yields

( )( )( ) = ω + φ = ω + ωζ ζ− ω − ωx t Ae t e A t A tt
d

t
d d

n nsin   sin   cos1 2

where A A A Acos  and  sin1 2= φ = φ, as indicated in Window 1.5. Evaluating the ini-
tial conditions yields

( )( ) = = +x x e A A0  sin  0  cos  00
0

1 2

Solving yields =A x2 0. Next, differentiate x(t) to get

�x e A t A t e A t A tn
t

d d d
t

d d
n nsin cos cos sin1 2 1 2ζ ( ) ( )= − ω ω + ω + ω ω − ωζ ζ− ω − ω

Applying the initial velocity condition yields

�υ ζ ( ) ( )= = − ω + + ω −x A x A xn d(0) sin 0 cos0 cos0 sin 00 1 0 1 0
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Solving this last expression yields

υ ζ
=

+ ω
ω

A
xn

d
1

0 0

Thus the free response in Cartesian form becomes

υ ζ
( ) =

+ ω
ω

ω + ω










ζ− ωx t e
x

t x tt n

d
d d

n sin cos0 0
0

.
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Figure 1.14 A plot of displacement versus time for the leg bone of Example 1.3.2.

Example 1.3.4

Consider a spring–mass damper system, like the one in Figure 1.10, with the following 
values: 10  , 3  N s,  and 1000  N m.= = =m kg c k  (a) Is the system overdamped, un-
derdamped, or critically damped? (b) Compute the solution if the system is given initial 
conditions υ= =x  0.01 m and  0.0 0

Solution (a) Using equation 1.30 the damping ratio is

2

3

2 10 1000
0.015 1

c

km
ζ = =

⋅
= <

Thus the system is underdamped.

(b) Using equation (1.38) the amplitude and phase can be calculated from the 
initial conditions:

A
x xn d

d

                         
1

9.999
0.015 10 0.01 0.01 9.999 0.01 m

0 0
2

0
2

2

2 2

υ ζω ω

ω

( ) ( )

( ) ( )

=
+ +

=

⋅ ⋅ + ⋅ =
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υ ζ

ζ

ζ
φ =

ω
+ ω

=
−

=− −x

x

d

n

tan tan
1

1.556 rad1 0

0 0

1
2

So the solution is Ae t e tt
d

tn sin 0.01 sin 9.999 1.5560.15ω φ( ) ( )+ = +ζω− −  m.

Note that for any system with υ = 00 , the phase is strictly a function of the 
damping ratio. For system with a zero initial displacement, =x 0,0  the phase is zero. 

.

In all three viscously damped cases the displacement, x(t) eventually dies out. 
Physically this means at some time the motion stops, and x(t) is zero. Mathematically 
the solution approaches zero exponentially, which means the displacement only 
reaches zero in the limit. Controls engineers define this more precisely by defining the 
settling time, the time it takes to die out, as time required for the displacement to reach 
and stay within 2% of zero.

Example 1.3.5

The time it takes for a damped system to die out, or the settling time, is often taken to be

TS
nn

4

ζω
=  

(a) Calculate the settling time for the system of example 1.3.3. (b) Compare the answer 
in part (a) to the settling time if the system is critically damped.

Solution (a) The natural frequency is

k

m
n

1000

10
10  rad sω = = =

Using the value for the damping ratio and frequency from Example 1.3.3, the settling 
time is

TS
n

4 4

0.015 10
26.67 s

ζω ( )( )
= = =

(b) If the system is crucially damped, ζ =  1  and the settling time becomes

TS
n

4 4

10
0.4 s

ζω
= = =

This is a fraction of the time illustrating the significance of large damping in a 
vibrating system.

.

1.4 MODELING AND ENERGY METHODS

Modeling is the art or process of writing down an equation, or system of equations, 
to describe the motion of a physical device. For example, equation (1.2) was ob-
tained by modeling the spring–mass system of Figure 1.5. By summing the forces 



Sec. 1.4    Modeling and Energy Methods 35

acting on the mass along the x direction and employing the experimental evidence 
of the mathematical model of the force in a spring given by Figure 1.4, equation (1.2) 
can be obtained. The success of this model is determined by how well the solution 
of equation (1.2) predicts the observed and measured behavior of the actual system. 
This comparison between the vibration response of a device and the response pre-
dicted by the analytical model is discussed in Section 1.6. The majority of this book 
is devoted to the analysis of vibration models. However, two methods of model-
ing—force balance and energy methods—are presented in this section. Newton’s 
three laws form the basis of dynamics. Fifty years after Newton, Euler published 
his laws of motion. Newton’s second law states: the sum of forces acting on a body 
is equal to the body’s mass times its acceleration, and Euler’s second law states: 
the rate of change of angular momentum is equal to the sum of external moments 
acting on the mass. Euler’s second law can be manipulated to reveal that the sum 
of moments acting on a mass is equal to its rotational inertia times its angular ac-
celeration. These two laws require the use of free-body diagrams and the proper 
identification of forces and moments acting on a body, forming most of the activity 
in the study of dynamics.

An alternative approach, studied in dynamics, is to examine the energy in the 
system, giving rise to what is referred to as energy methods for determining the 
equations of motion. The energy methods do not require free-body diagrams but 
rather require an understanding of the energy in a system, providing a useful alter-
native when forces are not easy to determine. More comprehensive treatments of 
modeling can be found in Doebelin (1980), Shames (1980, 1989), and Cannon (1967), 
for example. The best reference for modeling is the text you used to study dynamics. 
There are also many excellent descriptions on the Internet which can be found using 
Google or other search engines.

The force summation method is used in the previous sections and should be 
familiar to the reader from introductory dynamics. For systems with constant mass 
(such as those considered here) moving in only one direction, the rate of change of 
momentum becomes the scalar relation

( ) =� ��
d

dt
mx mx

which is often called the inertia force. The physical device of interest is examined by 
noting the forces acting on the device. The forces are then summed (as vectors) to 
produce a dynamic equation following Newton’s second law. For motion along the x 
direction only, this becomes the scalar equation

 ��f mx
i

xi∑ =  (1.49)

where fxi  denotes the ith force acting on the mass m along the x direction and the 
summation is over the number of such forces. In the first three chapters, only single- 
degree-of-freedom systems moving in one direction are considered; thus, Newton’s law 
takes on a scalar nature. In more practical problems with many degrees of freedom, 
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energy considerations can be combined with the concepts of virtual work to produce 
Lagrange’s equations, as discussed in Section 4.7. Lagrange’s equations also provide an 
energy-based alternative to summing forces to derive equations of motion.

For rigid bodies in plane motion (i.e., rigid bodies for which all the forces act-
ing on them are coplanar in a plane perpendicular to a principal axis) and free to 
rotate, Euler’s second law states that the sum of the applied torques is equal to the 
rate of change of angular momentum of the mass. This is expressed as

 ��M J
i

i0∑ = θ  (1.50)

where M i0  are the torques acting on the object about the point 0, J is the moment 
of inertia (also denoted by I0 ) about the rotation axis, and θ is the angle of rotation. 
The sum of moments method was used in Example 1.1.1 to find the equation of mo-
tion of a pendulum and is discussed in more detail in Example 1.5.1.

If the forces or torques acting on an object or mechanical part are difficult to 
determine, an energy approach may be more efficient. In this method, the differen-
tial equation of motion is established by using the principle of energy conservation. 
This principle is equivalent to Newton’s law for conservative systems and states that 
the sum of the potential energy and kinetic energy of a particle remains constant at 
each instant of time throughout the particle’s motion:

 + =T U constant  (1.51)

where T and U denote the total kinetic and potential energy, respectively. 
Conservation of energy also implies that the change in kinetic energy must equal 
the change in potential energy:

 − = −U U T T1 2 2 1 (1.52)

where U U and 1 2  represent the particle’s potential energy at the times t t and 1 2 , 
respectively, and T T and 1 2 represent the particle’s kinetic energy at times t t and 1 2 ,  
respectively. For undamped periodic motion, energy conservation also implies that

 =T Umax max  (1.53)

Since energy is a scalar quantity, using the conservation of energy principle yields 
a possibility of obtaining the equation of motion of a system without using force or 
moment summations.

Equations (1.51), (1.52), and (1.53) are three statements of the conservation of 
energy. Each of these can be used to determine the equation of motion of a spring–
mass system. As an illustration, consider the energy of the spring–mass system of 
Figure 1.15 hanging in a gravitational field of strength g. The effect of adding the 
mass m to the massless spring of stiffness k is to stretch the spring from its rest 
position at 0 to the static equilibrium position Δ. The total potential energy of the 
spring–mass system is the sum of the potential energy of the spring (or strain energy; 
see, e.g., Shames, 1989) and the gravitational potential energy. The potential energy 
of the spring is given by
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 U k xspring
21

2
( )= ∆ +  (1.54)

The gravitational potential energy is

 = −U mgx grav  (1.55)

where the negative sign indicates that =x 0 is the reference for zero potential  
energy. The kinetic energy of the system is

 �T mx21

2
=  (1.56)

Substituting these energy expressions into equation (1.51) yields

 �mx mgx k x  constant 2 21

2

1

2
( )− + ∆ + =  (1.57)

Differentiating this expression with respect to time yields

 ( )( )+ + ∆− =� �� �x mx kx x k mg 0 (1.58)

Since the static force balance on the mass from Figure 1.14(b) yields the fact that 
∆ =k mg, equation (1.58) becomes

 + =� ��x mx kx( ) 0 (1.59)

The velocity �x cannot be zero for all time; otherwise, ( ) =x t  constant  and no vibra-
tion would be possible. Hence equation (1.59) yields the standard equation of motion

 + =��mx kx 0 (1.60)

This procedure is called the energy method of obtaining the equation of motion.
The gravitational force effectively adds a tensile preload to the spring. The 

entire analysis also holds if Figure 1.15a is turned upside down, putting a compres-
sive preload on the spring. In either case, the mass oscillates around the equilibrium 
position defined by the static deflection. The difference between compression and 
tension of the spring only matters if the spring is forced into a nonlinear deflection, 

g

mg

(b)(a)

k kΔ

x(t)

m
m Δ

0

Figure 1.15 (a) A spring–mass system 

hanging in a gravitational field. Here Δ is 

the static equilibrium position and x is the 

displacement from equilibrium. (b) The 

free-body diagram for static equilibrium.
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then the equilibrium changes and the spring will behave differently in compression 
than in tension.

The energy method can also be used to obtain the frequency of vibration di-
rectly for conservative systems that are oscillatory. The maximum value of sine (and 
cosine) is one. Hence, from equations (1.3) and (1.4), the maximum displacement is 
A and the maximum velocity is ω An  (recall Window 1.3). Substitution of these maxi-
mum values into the expression for U T and max max  and using the energy equation 
(1.53) yields

 m A kAn
2 21

2

1

2
( )ω =  (1.61)

Solving equation (1.61) for ωn  yields the standard natural frequency relation 

ω = k mn .

Example 1.4.1

Figure 1.16 is a simple single-degree-of-freedom model of a wheel mounted on a spring. 
The friction in the system is such that the wheel rolls without slipping. Calculate the 
natural frequency of oscillation using the energy method. Assume that no energy is lost 
during the contact.

Solution From introductory dynamics, the rotational kinetic energy of the wheel is 

rot
1

2
2�T J= θ , where J is the mass moment of inertia of the wheel and ( )θ = θ t  is the an-

gle of rotation of the wheel. This assumes that the wheel moves relative to the surface 
without slipping (so that no energy is lost at contact). The translational kinetic energy 
of the wheel is �=T mxT

1
2

2.
The rotation θ  and the translation x are related by = θx r .  Thus � �= θx r  and 

�=T Jx rrot
1
2

2 2 . At maximum energy =x A  and � = ωx An  so that

� � ( )= + = + ωT mx
J

r
x m J r An

1

2

1

2

1

2
max max

2
2 max

2 2 2 2

and

= =U kx kA
1

2
 

1

2
 max max

2 2

Using conservation of energy in the form of equation (1.53) yields =T Umax max, or

+






ω =m

J

r
kn

1

2
 

1

2
 

2
2  

x(t)

r k

m, J

�Figure 1.16 The rotational displacement of the wheel of radius 

r is given by θ(t) and the linear displacement is denoted by x(t). 

The wheel has a mass m and a moment of inertia J. The spring 

has a stiffness k.
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Solving this last expression for ωn  yields

ω =
+

k

m J r
n 2

the desired frequency of oscillation of the suspension system.
The denominator in the frequency expression derived in this example is called 

the effective mass because the term ( +m J r2) has the same effect on the natural fre-
quency as does a mass of value ( +m J r2).

.

Example 1.4.2

Use the energy method to determine the equation of motion of the simple pendulum 
(the rod l is assumed massless) shown in Example 1.1.1 and repeated in Figure 1.17.

Solution Several assumptions must first be made to ensure simple behavior (a more 
complicated version is considered in Example 1.4.6). Using the same assumptions 
given in Example 1.1.1 (massless rod, no friction in the hinge), the mass moment of 
inertia about point 0 is

=J ml2

The angular displacement θ(t) is measured from the static equilibrium or rest position 
of the pendulum. The kinetic energy of the system is

� �= θ = θT J ml
1

2

1

2
2 2 2

The potential energy of the system is determined by the distance h in the figure so that

( )= − θU mgl   1 cos 

since ( )= − θh l 1 cos  is the geometric change in elevation of the pendulum mass. 
Substitution of these expressions for the kinetic and potential energy into equation 
(1.51) and differentiating yields

m

O

h

g u

l

l

l cos u

Figure 1.17 The geometry of the pendulum for 

Example 1.4.2.
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�
d

dt
ml mgl 1 cos 0

1

2
2 2 ( )θ + − θ




=

or

sin 02 � �� �ml mgl( )θ θ + θ θ =

Factoring out �θ  yields

sin 02� ��( )θ θ+ θ =ml mgl

Since �( )θ t  cannot be zero for all time, this becomes

��θ + θ =ml mgl sin 02

or

��θ + θ =
g

l
sin 0

This is a nonlinear equation in θ and is discussed in Section 1.10 and is derived from 
summing moments on a free-body diagram in Example 1.1.1. However, since sin θ can 
be approximated by θ for small angles, the linear equation of motion for the pendulum 
becomes

��θ + θ =
g

l
0

This corresponds to an oscillation with natural frequency ω = g ln  for initial condi-
tions such that θ  remains small, as defined by the approximation θ ≈ θsin  , as discussed 
in Example 1.1.1.

In Example 1.4.2, it is important to not invoke the small-angle approxima-
tion before the final equation of motion is derived. For instance, if the small-angle 
approximation is used in the potential energy term, then ( )= − θ =U mgl 1 cos 0,  
since the small-angle approximation for cos θ is 1. This would yield an incorrect 
equation of motion.

.

Example 1.4.3

Determine the equation of motion of the shaft and disk illustrated in Window 1.1 using 
the energy method.

Solution The shaft and disk of Window 1.1 are modeled as a rod stiffness in twisting, 
resulting in torsional motion. The shaft, or rod, exhibits a torque in twisting propor-
tional to the angle of twist θ(t). The potential energy associated with the torsional 
spring stiffness is   ,1

2
2U k= θ  where the stiffness coefficient k is determined much 

like the method used to determine the spring stiffness in translation, as discussed in 
Section  1.1. The angle θ(t) is measured from the static equilibrium, or rest, position. 
The kinetic energy associated with the disk of mass moment of inertia J is �= θT J1

2
2.  

This assumes that the inertia of the rod is much smaller than that of the disk and can 
be neglected.
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Substitution of these expressions for the kinetic and potential energy into equa-
tion (1.51) and differentiating yields

� � �� �
d

dt
J k J k 0

1

2

1

2
2 2( ) ( )θ + θ = θ + θ θ =

so that the equation of motion becomes (because �θ ≠ 0 )

��θ + θ =J k 0

This is the equation of motion for torsional vibration of a disk on a shaft. The natural 
frequency of vibration is ω = k Jn .

.

Example 1.4.4

Model the mass of the spring in the system shown in Figure 1.18 and determine the ef-
fect of including the mass of the spring on the value of the natural frequency.

m

x(t)

y+dyms, k l

y

Figure 1.18 A spring–mass 

system with a spring of mass 

ms  that is too large to neglect.

Solution One approach to considering the mass of the spring in analyzing the system 
vibration response is to calculate the kinetic energy of the spring. Consider the kinetic 
energy of the element dy of the spring. If ms is the total mass of the spring, then dy

m

l
s ,  

is the mass of the element dy. The velocity of this element, denoted by vdy, may be ap-
proximated by assuming that the velocity at any point varies linearly over the length 
of the spring:

�=v
y

l
x tdy ( )

The total kinetic energy of the spring is the kinetic energy of the element dy integrated 
over the length of the spring:

�T
m

l

y

l
x dys

l
 

1

2
   spring

2

0∫=











�=




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

m
xs1

2
 

3
  2
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From the form of this expression, the effective mass of the spring is 
3

ms , or one-third 

of that of the spring. Following the energy method, the maximum kinetic energy of the 
system is thus

= +






 ωT m

m
As

n
1

2
 

3
 max

2 2

Equating this to the maximum potential energy, kA1
2

2  yields the fact that the natural 
frequency of the system is

ω =
+

k

m m
n

s 3

Thus, including the effects of the mass of the spring in the system decreases the natural 
frequency. Note that if the mass of the spring is much smaller than the system mass m, 
the effect of the spring’s mass on the natural frequency is negligible.

.

Example 1.4.5

Fluid systems, as well as solid systems, exhibit vibration. Calculate the natural fre-
quency of oscillation of the fluid in the U-shaped manometer illustrated in Figure 1.19 
using the energy method.

Solution The fluid has weight density γ (i.e., the specific weight). The restoring force 
is provided by gravity. The potential energy of the fluid [(weight)(displacement of c.g.)] 
is 0.5(γAx)x in each column, so that the total change in potential energy is

= − = γ − − γ






 = γU U U Ax Ax Ax

1

2
 

1

2
 2 1

2 2 2

x(t)

x(t)

l

 � � weight density (volume)
A � cross-sectional area
  l � length of fluid

(a) (b)

Figure 1.19 (a) The schematic of a U-shaped manometer consisting of a fluid moving in a tube.  

(b) Close-up of an industrial manometer used to monitor gas pressure. (Photo courtesy of 

Nicemyphoto/Shutterstock.)


