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Preface

This is a textbook for an undergraduate course in geometry. The text is targeted at math-
ematics students who have completed the calculus sequence, and perhaps a first course in
linear algebra, but who have not necessarily encountered such upper-level mathematics
courses as real analysis or abstract algebra. A course based on this book will enrich the
education of all mathematics majors and will ease their transition into more advanced
mathematics courses. The book includes emphases that make it especially appropriate as
the textbook for a geometry course taken by future high school mathematics teachers.

What is distinctive about this book

What distinguishes this textbook from other undergraduate geometry textbooks is the
foundational approach. The book attempts to present a traditional axiomatic treatment
of geometry while at the same time communicating the intuitive beauty and fascination
of the subject. The book gives a complete, rigorous development of plane geometry, and
does so in a way that leads students to appreciate the power of proofs and the feeling of
satisfaction that comes with the ability to write good proofs. Because of the emphasis on
proof-writing, the course can serve as a bridge course in the mathematics major and can be
the course in which students learn to write proofs. Another distinguishing characteristic
of the book is the fact that the needs of future high school teachers are always considered.
Even though attention is paid to the requirements of future teachers, a geometry course
based on this book can be an important component of the education of any mathematics
student because it is one of the few places in which a student will see a complete, axiomatic
development of a branch of mathematics.

What is new in the third edition
* Thereis now an eText edition of the book. The eText includes interactive figures that
allow users to explore various constructions and to make discoveries for themselves.
* Some material was rewritten to bring it more in line with current standards.

* All typographical errors that have been brought to the author’s attention were
corrected.

* The presentation of the material in several sections was rethought in light of com-
ments from users of the second edition.

* More exercises have been added throughout.

The various themes and emphases of the book as well as the supplementary material
included in the eText are described in more detail in the following paragraphs.

The foundations of geometry

A principal goal of the text is to study the foundations of geometry. That means returning
to the beginnings of geometry, exposing exactly what is assumed there, and building
the entire subject on those foundations. Such careful attention to the foundations has
a long tradition in geometry, going back more than two thousand years to Euclid and the
ancient Greeks. Over the years since Euclid wrote his famous Elements, there have been
profound changes in the way in which the foundations have been understood. Most of

ix
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those changes have been by-products of efforts to understand the true place of Euclid’s
parallel postulate in the foundations, so the parallel postulate is one of the primary
emphases of this book.

Proofs

A secondary goal of the text is to teach the art of writing proofs. There is general
recognition of the need for a course in which mathematics students learn how to write
good proofs. Such a course should serve as a bridge between the lower-level mathematics
courses, which are largely technique oriented, and the upper-level courses, which tend to
be much more conceptual. This book uses geometry as the vehicle for helping students
to write and appreciate proofs. The ability to write proofs is a skill that can be acquired
only by actually practicing it, so most of the material on writing proofs is integrated into
the text and the attention to proof permeates the entire text. This means that the book
can also be used in classes where the students already have experience writing proofs;
despite the emphasis on writing proofs, the book is still primarily a geometry text.

Having the geometry course serve as the introduction to proof represents a return
to tradition in that the course in Euclidean geometry has for thousands of years been seen
as the standard introduction to logic, rigor, and proof in mathematics. Using the geometry
course this way makes historical sense because the axiomatic method was first introduced
in geometry and geometry remains the branch of mathematics in which that method has
had its greatest success. While proof and logical deduction are still emphasized in the
standards for high school mathematics, most high school students no longer take a full-
year course devoted exclusively to geometry with a sustained emphasis on proof. This
makes it more important than ever that we teach a good college-level geometry course to
all mathematics students. By doing so we can return geometry to its place as the subject in
which students first learn to appreciate the importance of clearly spelling out assumptions
and deducing results from those assumptions via careful logical reasoning.

The emphasis on proof makes this text a do-it-yourself course in that the reader will
be asked to supply proofs for many of the key theorems. Students who diligently work
the exercises come away from a course based on this book with a sense that they have an
unusually deep understanding of the material. In this way the student will not only learn
the mechanics of good proof writing style but should also come to more fully appreciate
the important role proof plays in an understanding of mathematics.

Historical and philosophical perspective

A final goal of the text is to present a historical perspective on geometry. Geometry is
a dynamic subject that has changed over time. It is a part of human culture that was
created and developed by people who were very much products of their time and place.
The foundations of geometry have been challenged and reformulated over the years, and
beliefs about the relationship between geometry and the real world have been challenged
as well.

The material in the book is presented in a way that is sensitive to such historical
and philosophical issues. This does not mean that the material is presented in a strictly
historical order or that there are lengthy historical discussions but rather that geometry
is presented in such a way that the reader can understand and appreciate the historical
development of the subject and so that it would be natural to investigate the history of
the subject while learning it. Many chapters include suggested readings on the history of
geometry that can be used to enrich the text.
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Throughout the book there are references to philosophical issues that arise in
geometry. For example, one question that naturally occurs to anyone studying non-
Euclidean geometry is this: What is the connection between the abstract entities that
are studied in a course on the foundations of geometry and properties of physical space?
The book does not present dogmatic answers to such questions, but instead simply raises
them in an effort to promote student thinking. The hope is that this will serve to counter
the common perception that mathematics is a subject in which every question has a single
correct answer and in which there is no room for creative ideas or opinions.

Technology

In recent years powerful computer software has been developed that can be used to
explore geometry. The study of geometry from this book can be greatly enhanced by
such dynamic software and the reader is encouraged to find appropriate ways in which
to incorporate this technology into the geometry course. While software can enrich the
experience of learning geometry from this book, its use is not required. The book can be
read and studied quite profitably without it.

The author recommends the use of the dynamic mathematics software program
GeoGebra. GeoGebra is free software that is intended to be used for teaching and
learning mathematics. It may be downloaded from the website www.geogebra.org. The
software has many great features that make it ideal for use in the geometry classroom,
but the main advantage it has over commercial geometry software is the fact that it is
free and runs under any of the standard computer operating systems. This means that
students can load the program on their own laptops and will always have access to it.

In the first part of the text (Chapters 2 through 4), the objective is to carefully
expose all the assumptions that form the foundations of geometry and to understand for
ourselves how the basic results of geometry are built on those foundations. For most users,
the software is a black box in the sense that we either don’t know what assumptions are
built into it or we have only the authors’ description of what went into the software. As
a result, software is of limited use in that part of the course and it will not be mentioned
explicitly in the first four chapters of the book. But ideally readers should be using it
to draw diagrams and to experiment with what happens when they vary the data in the
theorems. During that phase of the course the main function of the software is to illustrate
one possible interpretation of the relationships being studied.

Itis in the second half of the course that the software comes into its own. Computer
software isideal for experimenting, exploring, and discovering new relationships. In order
to illustrate that, several of the later chapters include sections in which the software is
used to explore ideas that go beyond those that are presented in detail and to discover
new relationships. In particular, there are such exploratory sections in the chapters on
Euclidean geometry and circles. The entire chapter on constructions is written as an
exploration with only a limited number of proofs or hints provided in the text. The
exploratory sections of the text have been expanded into a short book entitled Exploring
Advanced Euclidean Geometry with GeoGebra [Ven13].

The eText

While the printed text assumes readers are working directly in GeoGebra to construct
their own sketches, the eText provides a number of GeoGebra-based interactive figures
that are ready to be used for exploration. In each interactive figure, users are instructed
to click on boxes that reveal in stages how the figure is constructed. Users are then guided
through a dynamic exploration of the geometric object under study. In most cases users
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are asked questions that are intended to prompt exploration of various aspects of the
figure. After users have had a chance to explore the answer to a question for themselves,
they can click on a box to reveal the textbook answer.

Many of the interactive figures illustrate results of more advanced Euclidean ge-
ometry that are both surprising and beautiful. The interactive figures facilitate an under-
standing of what the theorems say and allow users to see some of the amazing relation-
ships for themselves. The author hopes this will help users to appreciate the elegance and
beauty of Euclidean geometry and to better understand why the subject has captivated
the interest of so many people over the past two thousand years. Other interactive fig-
ures allow the user to explore hyperbolic geometry by working with various objects in
the Poincaré disk model.

National standards

A geometry course based on this textbook will be consistent with the most recent rec-
ommendations from relevant professional associations. In particular, the text follows the
recommendations in the 2015 Curriculum Guide of the Committee on the Undergrad-
uate Program in Mathematics [CUP15]. In addition, since a significant portion of the
audience for an undergraduate geometry course consists of future high school geometry
teachers, the book implements current national standards regarding the mathematical
education of teachers. Those standards are contained in the updated report The Math-
ematical Education of Teachers 11 [CBM12] and the Common Core State Standards for
Mathematics [CCS10].

The Mathematical Association of America maintains a standing Committee on
the Undergraduate Program in Mathematics (CUPM). Roughly once each decade the
committee publishes a comprehensive curriculum guide that sets standards for the under-
graduate mathematics major. The most recent guide was published in 2015. The abridged
printed version [CUP15] contains guidelines for the mathematics major and certain key
courses. The expanded online version, which includes reports on individual courses, is
found at https://www.maa.org/node/790342. A subcommittee of the CUPM, chaired by
the author of this book, wrote the report on the undergraduate geometry course. The
committee described several possible syllabi for such a course and this textbook follows
the recommended syllabus for a course in axiomatic geometry. While the geometry sub-
committee was open to a number of possible syllabi and emphases in the geometry course,
it recommended that every undergraduate geometry course include a study of transfor-
mations. For that reason the chapter on transformations in this book is written in a way
that allows any course taught from the book to include a study of transformations.

The report on The Mathematical Education of Teachers (MET) was originally
written in 2001 and was updated in 2012. The principal recommendation of MET is that
“Prospective teachers need mathematics courses that develop a deep understanding of
the mathematics they will teach” [CBM12, page 17]. This text is designed to do precisely
that in the area of geometry. The book makes a conscious effort to ensure that there
are clear connections between the geometry in the course and the geometry that future
high school instructors will teach. An example of the way in which connections with high
school geometry have influenced the design of the text is the choice of the axioms that
are used as the starting point. One of the main goals of the text is to help preservice
teachers understand the logical foundations of the geometry course they will teach,
and that goal can best be accomplished in the context of axioms that are like the ones
they will encounter later in the classroom. Thus the axioms on which the development
of the geometry in the text is based are as close as possible to those that are used in
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contemporary high school textbooks. In addition, as there is no standard set of axioms that
is common to all such high school geometry courses, various axiom systems are considered
in an appendix and the merits and advantages of each are discussed. This close attention
to the statements of the axioms is just one example of the many connections with high
school geometry that are brought in as the course progresses.

One of the recurring themes in MET is the recommendation that prospective
teachers must acquire an understanding of high school mathematics that goes well beyond
that of a typical high school graduate. One way in which such understanding of geometry
is often measured is in terms of the van Hiele model of geometric thought. This model
is described in Appendix D. The goal of most high school courses is to develop student
thinking to Level 3. A goal of this text is to bring students to Level 4 (or to Level 5,
depending on whether the first level is numbered 0 or 1). It is recognized, however, that
not all students entering the course are already at Level 3 and so the early part of the text
is designed to ensure that students are brought to that level first.

The Common Core State Standards for Mathematics (CCSSM) specify what should
be included in the high school geometry curriculum. This book attempts to give future
teachers a grounding in the themes and perspectives described there. In particular, there
is an emphasis on Euclidean geometry and the parallel postulate. The transformational
approach to congruence and similarity, the approach that is promoted by CCSSM, is
studied in Chapter 10 and is related there to other, more traditional, ways of interpreting
congruence and similarity. In fact, all of the specific topics listed in CCSSM are covered
in the text. Finally, CCSSM mentions that “. . . in college some students will develop
Euclidean and other geometries carefully from a small set of axioms” [CCS10, page
74]. As detailed earlier, a course based on this textbook is exactly the kind of course
envisioned in that remark.

Organization of the book

The book begins with a brief look at Euclid’s Elements, and Euclid’s method of organi-
zation is used as motivation for the concept of an axiomatic system. A system of axioms
for geometry is then carefully laid out. The axioms used here are based on the real num-
bers, in the spirit of Birkhoff, and their statements have been kept as close to those in
contemporary high school textbooks as is possible.

After the axioms have been stated and certain foundational issues faced, neutral
geometry, in which no parallel postulate is assumed, is extensively explored. Next both
Euclidean and hyperbolic geometries are investigated from an axiomatic point of view.
In order to get as quickly as possible to some of the interesting results of non-Euclidean
geometry, the first part of the book focuses exclusively on results regarding lines, par-
allelism, and triangles. Only after those topics have been treated separately in neutral,
Euclidean, and hyperbolic geometries are results on area, circles, and construction intro-
duced. While the treatment of these subjects does not exactly follow Euclid, it roughly
parallels Euclid in the sense that Euclid collected most of his propositions about area in
Book IT and most of his propositions about circles in Books III and I'V. The three chapters
covering area, circles, and construction complete the coverage of the major theorems of
Books I through VI of the Elements.

The more modern notion of a transformation is introduced next and some of the
standard results regarding transformations of the plane are explored. A complete proof
of the classification of the rigid motions of both the Euclidean and hyperbolic planes is
included. There is a discussion of how the foundations of geometry can be reorganized to
reflect the transformational point of view (as is common practice in contemporary high
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school geometry textbooks). Specifically, it is possible to replace the Side-Angle-Side
Postulate with a postulate that asserts the existence of certain reflections.

The standard models for hyperbolic geometry are carefully constructed and the
results of the chapter on transformations are used to verify their properties. The chapter
on models can be relatively short because all the hard technical work involved in the
constructions is done in the preceding chapter. The final chapter includes a study of some
of the polygonal models that have recently been developed to help students understand
what it means to say that hyperbolic space is negatively curved. The book ends with a
discussion of the practical significance of non-Euclidean geometry and a brief look at the
geometry of the real world.

Designing a course

A full-year course should cover essentially all the material in the text. There can be some
variation based on instructor and student interest, but most or all of every chapter should
be included.

An instructor teaching a one-semester or one-quarter course will be forced to pick
and choose. It is important that this be done carefully so that the course reaches some of
the interesting and useful material that is to be found in the second half of the book.

* Chapter 1 sets the stage for what is to come, so it should be covered in some way.
But it can be discussed briefly in class and then assigned as reading.

* Chapter 2 should definitely be covered because it establishes the basic framework
for the treatment of geometry that follows.

* The basic coverage of geometry begins with Chapter 3. Chapters 3 and 4 form the
heart of a one-semester course. Those chapters should be included in any course
taught from the book.

¢ At least some of Chapters 5 and 10 should also be included in any course.

» Starting with Chapter 7, the chapters are largely independent of each other and an
instructor can select material from them based on the interests and needs of the
class.

Several sample course outlines are included below. Many other variations are pos-

sible. It should be noted that the suggested outlines are ambitious and many instructors
will choose to cover less.

A course emphasizing Euclidean geometry.

Chapter  Topic Number of weeks
1&2 Preliminaries <2

3 Axioms 2

4 Neutral geometry 3

5 Euclidean geometry 2

7 Area 1-2

8 Circles 1-2

10 Transformations 2
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A course emphasizing non-Euclidean geometry.

Chapter  Topic Number of weeks
1&2 Preliminaries <2
3 Axioms 2

4 Neutral geometry 3

5 Euclidean geometry 1

6 Hyperbolic geometry 2

7 Area 1-2
10 Transformations 1
11 Models 1-2
12 Geometry of space 1

A course for future high school teachers.

Chapter  Topic Number of weeks
1&2 Preliminaries <2
3 Axioms 2

4 Neutral geometry 3

5 Euclidean geometry 1

6 Hyperbolic geometry 1

7 Area 1

8 Circles 1
10 Transformations 1
11 Models 1
12 Geometry of space 1

The suggested course for future high school teachers includes just a brief introduction to
each of the topics in later chapters. The idea is that the course should provide enough
background so that students can study those topics in more depth later if they need to.
It is hoped that this book can serve as a valuable reference for those who go on to teach
geometry courses. The book could be a resource that provides information about rigorous
treatments of such topics as parallel lines, area, circles, constructions, transformations,
and so on, that are part of the high school curriculum.

Instructor’s Solutions Manual

There is an Instructor’s Solutions Manual that contains solutions to all the exercises as well
as additional information on teaching from the book. Instructors can obtain the manual
from the Pearson Higher Education website.
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CHAPTER 1

Prologue: Euclid’s Elements

1.1 GEOMETRY BEFORE EUCLID

1.2 THE LOGICAL STRUCTURE OF EUCLID'S ELEMENTS

1.3 THE HISTORICAL SIGNIFICANCE OF EUCLID'S ELEMENTS
1.4 A LOOK AT BOOK | OF THE ELEMENTS

1.5 A CRITIQUE OF EUCLID'S ELEMENTS

1.6 A NEW VIEW OF THE FOUNDATIONS

1.7 SOME FINAL OBSERVATIONS ABOUT THE ELEMENTS

Our study of geometry begins with an examination of the historical origins of the ax-
iomatic method in geometry. While the material in this chapter is not a mathematical
prerequisite for what comes later, an appreciation of the historical roots of axiomatic
thinking is essential to an understanding of why the foundations of geometry are system-
atized as they are.

1.1 GEOMETRY BEFORE EUCLID

Geometry is an ancient subject. Its roots go back thousands of years and geometric
ideas of one kind or another are found in nearly every human culture. The beauty of
geometric patterns is universally appreciated and often investigated in an informal way.
The systematic study of geometry as we know it emerged more than 4000 years ago in
Mesopotamia, Egypt, India, and China.

Because the Nile River annually flooded vast areas of land and obliterated property
lines, surveying and measuring were important to the ancient Egyptians. This practical
interest may have motivated their study of geometry. Egyptian geometry was mostly
an empirical science, consisting of many rule-of-thumb procedures that were arrived at
through experimentation, observation, and trial and error. Formulas were approximate
ones that appeared to work, or at least gave answers that were close enough for practical
purposes. But the ancient Egyptians were also aware of more general principles, such as
special cases of the Pythagorean Theorem and formulas for volumes.

The ancient Mesopotamians, or Babylonians, had an even more advanced under-
standing of geometry. They knew the Pythagorean Theorem long before Pythagoras. They
discovered some of the area-based proofs of the theorem that will be discussed in Chap-
ter 7, and knew a general method that generates all triples of integers that are lengths
of sides of right triangles. In India, ancient texts apply the Pythagorean Theorem to geo-
metric problems associated with the design of structures. The Pythagorean Theorem was
also discovered in China at roughly the same time.

About 2500 years ago there was a profound change in the way geometry was
practiced: Greek mathematicians introduced abstraction, logical deduction, and proof
into geometry. They insisted that geometric results be based on logical reasoning from
first principles. In theory this made the results of geometry exact, certain, and undeniable,

1
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rather than just likely or approximate. It also took geometry out of the realm of everyday
experience and made it a subject that studies abstract entities. Since the purpose of this
course is to study the logical foundations of geometry, it is natural that we should start
with the geometry of the ancient Greeks.

The process of introducing logic into geometry apparently began with Thales of
Miletus around 600 Bc and culminated in the work of Euclid of Alexandria in approx-
imately 300 Bc. Euclid is the most famous of the Greek geometers and his name is still
universally associated with the geometry that is studied in schools today. Most of the
ideas that are included in what we call “Euclidean Geometry” probably did not originate
with Euclid himself; rather, Euclid’s contribution was to organize and present the results
of Greek geometry in a logical and coherent way. He published his results in a series of
thirteen books known as his Elements. We begin our study of geometry by examining
those Elements because they set the agenda for geometry for the next two millennia and
more.

1.2 THE LOGICAL STRUCTURE OF EUCLID'S ELEMENTS

Euclid’s Elements are organized according to strict logical rules. Euclid begins each book
with a list of definitions of the technical terms he will use in that book. In Book I he
next states five “postulates” and five “common notions.” These are assumptions that are
meant to be accepted without proof. Both the postulates and common notions are basic
statements whose truth should be evident to any reasonable person. They are the starting
point for what follows. Euclid recognized that it is not possible to prove everything,
that he had to start somewhere, and he attempted to be clear about exactly what his
assumptions were.

Most of Euclid’s postulates are simple statements of intuitively obvious and un-
deniable facts about space. For example, Postulate I asserts that it is possible to draw a
straight line through any two given points. Postulate II says that a straight line segment
can be extended to a longer segment. Postulate III states that it is possible to construct
a circle with any given center and radius. Traditionally these first three postulates have
been associated with the tools that are used to implement them on a piece of paper. The
first two postulates allow two different uses of a straightedge: A straightedge can be used
to draw a line segment connecting any two points or to extend a given line segment to a
longer one. The third postulate affirms that a compass can be used to construct a circle
with a given center and radius. Thus the first three postulates simply permit the familiar
straightedge and compass constructions of high school geometry.

FIGURE 1.1 Euclid’s tools: a compass and a straightedge
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The fourth postulate asserts that all right angles are congruent (“equal” in Euclid’s
terminology). The fifth postulate makes a more subtle and complicated assertion about
two lines that are cut by a transversal. These last two postulates are the two technical
facts about geometry that Euclid needs in his proofs.

The common notions are also intuitively obvious facts that Euclid plans to use
in his development of geometry. The difference between the common notions and the
postulates is that the common notions are not peculiar to geometry but are common to
all branches of mathematics. They are everyday, common-sense assumptions. Most spell
out properties of equality, at least as Euclid used the term equal.

The largest part of each book of the Elements consists of propositions and proofs.
These too are organized in a strict, logical progression. The first proposition is proved
using only the postulates, Proposition 2 is proved using only the postulates and Propo-
sition 1, and so on. Thus the entire edifice is built on just the postulates and common
notions; once these are granted, everything else follows logically and inevitably from
them. What is astonishing is the number and variety of propositions that can be deduced
from so few assumptions.

1.3 THE HISTORICAL SIGNIFICANCE OF EUCLID’S ELEMENTS

It is nearly impossible to overstate the importance of Euclid’s Elements in the develop-
ment of mathematics and human culture generally. From the time they were written, the
Elements have been held up as the standard for the way in which careful thought ought to
be organized. They became the model for the development of all scientific and philosoph-
ical theories. What was especially admired about Euclid’s work was the way in which he
clearly laid out his assumptions and then used pure logic to deduce an incredibly varied
and extensive set of conclusions from them.

Up until the twentieth century, Euclid’s Elements were the textbook from which all
students learned both geometry and logic. Even today the geometry in school textbooks
is presented in a way that is remarkably close to that of Euclid. Furthermore, much of
what mathematicians did during the next two thousand years centered around tying up
loose ends left by Euclid. Countless mathematicians spent their careers trying to solve
problems that were raised by Greek geometers of antiquity and trying to improve on
Euclid’s treatment of the foundations.

Most of the efforts atimprovement focused on Euclid’s Fifth Postulate. Even though
the statement does not explicitly mention parallel lines, this postulate is usually referred
to as “Euclid’s Parallel Postulate.” It asserts that two lines that are cut by a transversal
must intersect on one side of the transversal if the interior angles on that side of the
transversal sum to less than two right angles. In particular, it proclaims that the condition
on the angles formed by a transversal implies that the two given lines are not parallel.
Thus it is really a statement about nonparallel lines. As we shall see later, the postulate
can be reformulated in ways that make it more obviously and directly a statement about
parallel lines.

A quick reading of the postulates (see the next section) reveals that Postulate V
is noticeably different from the others. For one thing, its statement is much longer than
those of the other postulates. A more significant difference is the fact that it involves
a fairly complicated arrangement of lines and also a certain amount of ambiguity in
that the lines must be “produced indefinitely.” It is not as intuitively obvious or self-
evident as the other postulates; it has the look and feel of a proposition rather than a
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FIGURE 1.2 Euclid’s Postulate V: If the sum of & and 8 is less
than two right angles, then ¢ and m must eventually intersect

postulate. For these reasons generations of mathematicians tried to improve on Euclid
by attempting to prove that Postulate V is a logical consequence of the other postulates
or, failing that, they tried at least to replace Postulate V with a simpler, more intuitively
obvious postulate from which Postulate V could then be deduced as a consequence. No
one ever succeeded in proving the fifth postulate using just the first four postulates, but it
was not until the nineteenth century that mathematicians fully understood why that was
the case.

It should be recognized that these efforts at improvement were not motivated by a
perception that there was anything wrong with Euclid’s work. Quite the opposite: Thou-
sands of mathematicians spent enormous amounts of time trying to improve on Euclid
precisely because they thought so highly of Euclid’s accomplishments. They wanted to
take what was universally regarded as the crown of theoretical thought and make it even
more wonderful than it already was!

Another important point is that efforts to rework Euclid’s treatment of geometry
led indirectly to progress in mathematics that went far beyond mere improvements in
the Elements themselves. Attempts to prove Euclid’s Fifth Postulate eventually resulted
in the realization that, in some kind of stroke of genius, Euclid somehow had the great
insight to pinpoint one of the deepest properties that a geometry may have. Not only
that, but it was discovered that there are alternative geometries in which Euclid’s Fifth
Postulate fails to hold. These discoveries were made in the early nineteenth century and
had far-reaching implications for all of mathematics. They opened up whole new fields
of mathematical study; they also produced a revolution in the conventional view of how
mathematics relates to the real world and forced a new understanding of the nature of
mathematical truth.

The story of how Euclid’s Parallel Postulate inspired all these developments is one
of the most interesting in the history of mathematics. That story will unfold in the course
of our study of geometry in this book. There is no other branch of mathematics or science
that depends so profoundly and directly on one seminal text and it is only in the light of
that story that the current organization of the foundations of geometry can be properly
understood.

1.4 A LOOK AT BOOK | OF THE ELEMENTS

In order to give more substance to our discussion, we now take a direct look at parts
of Book I of the Elements. All Euclid’s postulates are stated below as well as selected
definitions and propositions. The excerpts included here are chosen toillustrate the points
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that will be made in the following section. The translation into English is by Sir Thomas
Little Heath (1861-1940). Heath used square brackets to set off anything that he thought
had probably been added later and was not part of Euclid’s original. A complete list of
the definitions and propositions from Book I may be found in Appendix A.

Some of Euclid’s definitions

Definition 1. A point is that which has no part.
Definition 2. A line is breadthless length.
Definition 4. A straight line is a line which lies evenly with the points on itself.

Definition 10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight line standing on
the other is called a perpendicular to that on which it stands.

Definition 11. An obtuse angle is an angle greater than a right angle.

Definition 12. An acute angle is an angle less than a right angle.

Euclid’s Postulates

Postulate I. To draw a straight line from any point to any point.

Postulate II. To produce a finite straight line continuously in a straight line.
Postulate III. To describe a circle with any center and distance.

Postulate IV. That all right angles are equal to one another.

Postulate V. That, if a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two right angles.

Euclid’s Common Notions

Common Notion I. Things which equal the same thing are also equal to one another.
Common Notion II. If equals be added to equals, the wholes are equal.

Common Notion III. If equals be subtracted from equals, the remainders are equal.
Common Notion IV. Things which coincide with one another are equal to one another.

Common Notion V. The whole is greater than the part.

Three of Euclid’s Propositions and their proofs
Proposition 1. On a given finite straight line to construct an equilateral triangle.
Let AB be the given finite straight line. Thus it is required to construct an equilateral

triangle on the straight line AB. With center A and distance AB let the circle BC D be
described [Post. I11]; again, with center B and distance B A let the circle AC E be described
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C
/A\ E

FIGURE 1.3 Euclid’s diagram for Proposition 1

[Post. I1I]; and from the point C, in which the circles cut one another, to the points A, B
let the straight lines C A, C B be joined [Post. I].

Now, since the point A is the center of the circle CDB, AC is equal to AB [Def. 15].
Again, since the point B is the center of the circle CAE, BC is equal to BA [Def. 15]. But
CA was also proved equal to AB; therefore each of the straight lines CA, CB is equal
to AB. And things which are equal to the same thing also equal one another [C.N. IJ;
therefore C A is also equal to C B. Therefore the three straight lines CA, AB, BC are equal
to one another. Therefore the triangle ABC is equilateral; and it has been constructed
on the given finite straight line AB.

Being what it was required to do.

Proposition 4. If two triangles have the two sides equal to two sides respectively, and
have the angles contained by the equal straight lines equal, they will also have the base
equal to the base, the triangle will be equal to the triangle, and the remaining angles
will be equal to the remaining angles respectively, namely those which the equal sides
subtend.

Let ABC, DEF be two triangles having the two sides AB, AC equal to the two sides
DE, DF respectively, namely AB to DE and AC to DF, and the angle BAC equal to the
angle EDF. I say that the base BC is also equal to the base EF, the triangle ABC will
be equal to the triangle DEF, and the remaining angles will be equal to the remaining
angles respectively, namely those which the equal sides subtend, that is, the angle ABC
to the angle DEF, and the angle ACB to the angle DFE.

B C E F

FIGURE 1.4 Euclid’s diagram for Proposition 4
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For, if the triangle A BC be applied to the triangle D E F, and if the point A be placed
on the point D and the straight line AB on DE, then the point B will also coincide with E,
because AB is equal to DE. Again, AB coinciding with D E, the straight line AC will also
coincide with DF, because the angle BAC is equal to the angle E D F; hence the point C
will also coincide with the point F, because AC is again equal to DF.

But B also coincided with E; hence the base BC will coincide with the base EF.
[For if, when B coincides with E and C with F, the base BC does not coincide with the
base E F, two straight lines will enclose a space: which is impossible. Therefore the base
BC will coincide with E F] and will be equal to it [C.N. IV]. Thus the whole triangle ABC
will coincide with the whole triangle DEF, and will be equal to it. And the remaining
angles also coincide with the remaining angles and will be equal to them, the angle ABC
to the angle DEF, and the angle AC B to the angle DFE.

Therefore etc. Being what it was required to prove.

Proposition 16. In any triangle, if one of the sides be produced, the exterior angle is
greater than either of the interior and opposite angles.

Let ABC be a triangle, and let one side of it BC be produced to D; I say that the exterior
angle ACD is greater than either of the interior and opposite angles CBA, BAC.

Let AC be bisected at E [Prop. 10] and let BE be joined and produced in a straight
line to F;let EF be made equal to BE [Prop. 3], let FC be joined [Post. I], and let AC
be drawn through to G [Post. II]. Then since AE is equal to EC, and BE to EF, the two
sides AE, E B are equal to the two sides CE, E F respectively; and the angle AE B is equal
to the angle FEC, for they are vertical angles [Prop. 15]. Therefore the base AB is equal
to the base FC, and the triangle ABE is equal to the triangle C FE, and the remaining
angles are equal to the remaining angles respectively, namely those which the equal sides
subtend [Prop. 4]; therefore the angle BAE is equal to the angle ECF. But the angle
ECD is greater than the angle ECF [C.N. V]; therefore the angle ACD is greater than
the angle BAE.

Similarly, also if BC is bisected, the angle BCG, that is, the angle ACD [Prop. 15],
can be proved greater than the angle ABC as well.

Therefore etc. Q.E.D.

= ¢

a
o/
Q

Se

FIGURE 1.5 Euclid’s diagram for Proposition 16
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1.5 A CRITIQUE OF EUCLID’S ELEMENTS

As indicated earlier, the Elements have been the subject of a great deal of interest over
the thousands of years since Euclid wrote them and the study of Euclid’s method of
organizing his material has inspired mathematicians to even greater levels of logical rigor.
Originally attention was focused on Euclid’s postulates, especially his fifth postulate, but
efforts to clarify the role of the postulates eventually led to the realization that there
are difficulties with other parts of Euclid’s Elements as well. When the definitions and
propositions are examined in the light of modern standards of rigor it becomes apparent
that Euclid did not achieve all the goals he set for himself—or at least that he did not
accomplish everything he was traditionally credited with having done.

Euclid purports to define all the technical terms he will use.! However, an examina-
tion of his definitions shows that he did not really accomplish this. The first few definitions
are somewhat vague, but suggestive of intuitive concepts. An example is the very first def-
inition, in which point is defined as “that which has no part.” This does indeed suggest
something to most people, but it is not really a rigorous definition in that it does not
stipulate what sorts of objects are being considered. It is somehow understood from the
context that it is only geometric objects which cannot be subdivided that are to be called
points. Even then it is not completely clear what a point is: Apparently a point is pure
location and has no size whatsoever. But there is nothing in the physical world of our
experience that has those properties exactly. Thus we must take point to be some kind
of idealized abstract entity and admit that its exact nature is not adequately explained
by the definition. Similar comments could be made about Euclid’s definitions of /ine and
straight line.

By contrast, later definitions are more complete in that they define one technical
word in terms of others that have been defined previously. Examples are Definitions 11
and 12 in which obtuse angle and acute angle are defined in terms of the previously defined
right angle. From the point of view of modern rigor there is still a gap in these definitions
because Euclid does not specify what it means for one angle to be greater than another.
The difference is that these definitions are complete in themselves and would be rigorous
and usable if Euclid were to first spell out what it means for one angle to be greater than
another and also define what a right angle is.

Such observations have led to the realization that there are actually two kinds
of technical terms. It is not really possible to define all terms; just as some statements
must be accepted without proof and the other propositions proved as consequences, so
some terms must be left undefined. Other technical terms can then be defined using the
undefined terms and previously defined terms. This distinction will be made precise in
the next chapter.

A careful reading of Euclid’s proofs reveals some gaps there as well. The proof of
Proposition 1 is a good example. In one sense, the proposition and its proof are simple
and easy to understand. In modern terminology the proposition asserts the following:
Given two points A and B, it is possible to construct a third point C such that AABC is an
equilateral triangle. Euclid begins with the segment from A to B. He then uses Postulate 111
to draw two circles of radius A B, one centered at A and the other centered at B. He takes
C to be one of the two points at which the circles intersect and uses Postulate I to fill
in the sides of a triangle. Euclid completes the proof by using the common notions to

1. Some scholars suggest that the definitions included in the versions of the Elements that have
come down to us were not in Euclid’s original writings, but were added later. Even if that is the
case, the observations made here about the definitions are still valid.
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explain why the triangle he has constructed must be equilateral. The written proof is
supplemented by a diagram that makes the construction clear and convincing.

Closer examination shows, however, that Euclid assumed more than just what he
stated in the postulates. In particular there is nothing explicitly stated in the postulates
that would guarantee the existence of a point C at which the two circles intersect. The
existence of C is taken for granted because the diagram clearly shows the circles inter-
secting in two points. Euclid is assuming that his diagrams accurately portray geometric
relationships. That is a reasonable assumption for him to make in this context, but it is
one that has not been stated in the postulates. We will see in Chapter 3 that there are
unusual situations in which no point of intersection exists. In summary, Euclid is using
“facts” about his points and lines that are undoubted and intuitively obvious to most
readers, but which have not been explicitly stated in the postulates.

Euclid’s Proposition 4 is the familiar Side-Angle-Side Congruence Condition from
high school geometry. This proposition is not just a construction like Proposition 1 but
asserts a logical implication: If two sides and the included angle of one triangle are
congruent to the corresponding parts of a second triangle, then the remaining parts of
the two triangles must also be congruent. Euclid’s method of proof is interesting. He
takes one triangle and “applies” it to the other triangle. By this we understand that he
means to pick up the first triangle, move it, and carefully place one vertex at a time on
the corresponding vertices of the second triangle. This is often called Euclid’s method of
superposition. It is quite clear from an intuitive point of view that this operation should be
possible, but again the objection can be raised that Euclid is using unstated assumptions
about triangles. Over the years geometers have come to realize that the ability to move
geometric objects around without distorting their shapes cannot be taken for granted.
The need to include an explicit assumption about motions of triangles will be discussed
further in Chapters 3 and 10.

Another interesting aspect of the proof is the fact that part of it is enclosed in square
brackets. (See the words starting with, “For if . . . ” in the third paragraph of the proof.)
These words are in brackets because itis believed that they are not part of Euclid’s original
proof, but were inserted later.” They were added to justify Euclid’s obvious assumption
that there is only one straight line segment joining two points. Postulate I states that there
exists a straight line joining two points, but here Euclid needs the stronger statement that
there is exactly one such line. The fact that these words were added in antiquity is an
indication that already then some readers of the Elements recognized that Euclid was
using unstated assumptions.

Euclid’s Proposition 16 is the result we now know as the Exterior Angle Theorem.
This theorem and its proof will be discussed in Chapter 4. For now we merely point out
that Euclid’s proof depends on a relationship that appears to be obvious from the diagram
provided, but which Euclid does not actually prove. Euclid wants to show that the interior
angle /BAC is smaller than the exterior angle ZAC D. He first constructs the points E
and F, and then uses the Vertical Angles Theorem (Proposition 15) and Side-Angle-Side
to conclude that /BAC is congruent to /ACF. Euclid assumes that F is in the interior
of /ACD and uses Common Notion 5 to conclude that /BAC is smaller than /ACD.
However, he provides no justification for the assertion that F is in the interior of angle
/AC D. In Chapter 3 we carefully state postulates that will allow us to fill in this gap when
we prove the Exterior Angle Theorem in Chapter 4.

2. See [Hea56, page 249].
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1.6 A NEW VIEW OF THE FOUNDATIONS

The exhaustive study of Euclid’s proofs described in the previous section forced math-
ematicians to realize that they had to be even more careful about the foundations of
geometry than Euclid had been. In time this led to an entirely new understanding of the
nature of postulates and their relationship to the world in which we live.

Euclid thought of his postulates as statements of self-evident truths about the real
world. He stated some key geometric facts as postulates, but felt free to bring in other
spatial relationships when they were needed and were obvious from the diagrams. In an
effort to improve on Euclid, generations of geometers attempted to prove Euclid’s Fifth
Postulate using only Euclid’s other postulates. Again and again they thought they had
succeeded, only to find that there were hidden assumptions in their proofs. This forced
them to acknowledge that they could only be sure of the status of their proofs if they
stated all their assumptions and not just some of them. The goal became to develop a
system of postulates that includes all the hypotheses needed to prove the propositions of
geometry; reliance on any information that is not explicitly stated in the postulates could
not be allowed.

As a result of that historical process, postulates were divorced from the real world,
making them simply abstract logical assumptions. That is the point of view taken in this
book and it is the way in which the foundations of mathematics are currently formulated.
Euclid’s basic logical structure was retained, but was strengthened and made more
rigorous. The next chapter will set forth the modern perspective on the foundations.

1.7 SOME FINAL OBSERVATIONS ABOUT THE ELEMENTS

Before beginning our study of the modern formulation of the foundations of geometry,
we make some additional observations about Euclid’s Elements.

One aspect of Euclid’s proofs that should be noted is the fact that each statement in
the proof is justified by appeal to one of the postulates, common notions, definitions, or
previous propositions. These references are placed immediately after the corresponding
statements. They were probably not written explicitly in Euclid’s original and therefore
Heath encloses them in square brackets. This aspect of Euclid’s proofs serves as an
important model for the proofs we will write later in this course.

The words “Therefore etc.” found near the end of the proofs are also not in Euclid’s
original. In the Greek view, the proof should culminate in a full statement of what had
been proved. Thus Euclid’s proof would have ended with a complete restatement of the
conclusion of the proposition. Heath omits this reiteration of the conclusion and simply
replaces it with “etc.” Notice that the proof of Proposition 1 ends with the phrase “Being
what it was required to do,” while the proof of Proposition 4 ends with “Being what
it was required to prove.” The difference is that Proposition 1 is a construction while
Proposition 4 is a logical implication. Later Heath uses the Latin abbreviations Q.E.F.
and Q.E.D. for these phrases.

There are many features of Euclid’s work that strike the modern reader as strange.
One is the spare purity of Euclid’s geometry. The points and lines are pure geometric
forms that float in the plane with no fixed location. All of us have been trained since
childhood to identify points on a line with numbers and points in the plane with pairs of
numbers. That concept would have been foreign to Euclid; he did not mix the notions of
number and point the way we do. The identification of number and point did not occur
until the time of Descartes in the seventeenth century and it was not until the twentieth
century that the real numbers were incorporated into the statements of the postulates of
geometry. It is important to recognize this if we are to understand Euclid.
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Euclid (really Heath) also uses language in a way that is different from contempo-
rary usage. For example, what Euclid calls a line we would call a curve. We reserve the
term line for what Euclid calls a “straight line.” More precisely, what Euclid calls a straight
line we would call a line segment (finitely long, with two endpoints). This distinction is
more than just a matter of definitions; it indicates a philosophical difference. In Euclid,
straight lines are potentially infinite in that they can always be extended to be as long as is
needed for whatever construction is being considered, but he never considers the entire
infinite line all at once. Since the time of Georg Cantor in the nineteenth century, math-
ematicians have been comfortable with sets that are actually infinite, so we usually think
of the line as already being infinitely long and do not worry about the need to extend it.

Euclid chose to state his postulates in terms of straightedge and compass construc-
tions. His propositions then often deal with the question of what can be constructed using
those two instruments. For example, Proposition 1 really asserts the following: Given a
line segment, it is possible to construct, using only straightedge and compass, an equilateral
triangle having the given segment as base. In some ways Euclid identifies constructibility
with existence. One of the major problems that the ancient Greeks never solved is the
question of whether or not a general angle can be trisected. From a modern point of
view the answer is obvious: any angle has a measure (in degrees, for example) which is
a real number; simply dividing that real number by 3 gives us an angle that is one-third
the original. But the question the Greeks were asking was whether the smaller angle
can always be constructed from the original using only straightedge and compass. Such
constructibility questions will be discussed in Chapter 9.

In this connection it is worthwhile to observe that the tools Euclid chose to use
reflect the same pure simplicity that is evident throughout his work. His straightedge
has no marks on it whatsoever. He did not allow a mark to be made on it that could be
preserved when the straightedge is moved to some other location. In modern treatments
of geometry we freely allow the use of a ruler, but we should be sure to note that a ruler
is much more than a straightedge: It not only allows straight lines to be drawn, but it
also measures distances at the same time. Euclid’s compass, in the same way, is what we
would now call a “collapsing” compass. It can be used to draw a circle with a given center
and radius (where “radius” means a line segment with the center as one endpoint), but it
cannot be moved to some other location and used to draw a different circle of the same
radius. When the compass is picked up to be moved, it collapses and does not remember
the radius of the previous circle. In contemporary treatments of geometry the compass
has been supplemented by a protractor, which is a device for measuring angles. Euclid
did not rely on numerical measurements of angles and he did not identify angles with the
numbers that measure them the way we do.

EXERCISES

1.7.1 A quadrilateral is a four-sided figure in the plane. Consider a quadrilateral whose
successive sides have lengths a, b, ¢, and d. Ancient Egyptian geometers used
the formula

A=%w+@w+m

to calculate the area of a quadrilateral. Check that this formula gives the correct
answer for rectangles but not for parallelograms.

1.7.2 An ancient Egyptian document, known as the Rhind papyrus, suggests that the
area of a circle can be determined by finding the area of a square whose side has
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1.7.3

1.7.4

1.7.5

1.7.6

Prologue: Euclid’s Elements

length g the diameter of the circle. What value of 7 is implied by this formula?
How close is it to the correct value?

The familiar Pythagorean Theorem states that if AABC is a right triangle with
right angle at vertex C and a, b, and c are the lengths of the sides opposite vertices
A, B, and C, respectively, then a? + b? = 2. Ancient proofs of the theorem
were based on diagrams like those in Figure 1.6. Explain how the two diagrams
together can be used to provide a proof for the theorem.

a

q

b b

B

a a c
C b A a a b

FIGURE 1.6 Proof of the Pythagorean Theorem

A Pythagorean tripleis atriple (a, b, ¢) of positive integers such that a + b? = 2.
A Pythagorean triple (a, b, c) is primitive if a, b, and ¢ have no common factor.
The tablet Plimpton 322 indicates that the ancient Babylonians discovered the
following method for generating all primitive Pythagorean triples. Start with
relatively prime (i.e., no common factors) positive integers u and v, u > v, and
then define a = u? — v2, b = 2uv, and ¢ = u? + v2.

(a) Verify that (a, b, ¢) is a Pythagorean triple.

(b) Verify that a, b, and ¢ are all even if u and v are both odd.

(c) Verify that (a, b, ¢) is a primitive Pythagorean triple in case one of u and v is
even and the other is odd.

Every Pythagorean triple (a, b, ¢) with b even is generated by this Babylonian

process. The proof of that fact is significantly more difficult than the exercises

above but can be found in most modern number theory books.

The ancient Egyptians had a well-known interest in pyramids. According to the
Moscow papyrus, they developed the following formula for the volume of a
truncated pyramid with square base:

V= g(a2 + ab + b?).

In this formula, the base of the pyramid is an a x a square, the topisa b x b
square, and the height of the truncated pyramid (measured perpendicular to
the base) is 4. One fact you learned in high school geometry is that the volume
of a pyramid is one-third the area of the base times the height. Use that fact
along with some high school geometry and algebra to verify that the Egyptian
formula is exactly correct.

Explain how to complete the following constructions using only compass and
straightedge. (You probably learned to do this in high school.)

(a) Given a line segment A B, construct the perpendicular bisector of AB.
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(b) Given a line ¢ and a point P not on £, construct a line through P that is
perpendicular to £.

(c) Given an angle /BAC, construct the angle bisector.

1.7.7 Can you prove the following assertions using only Euclid’s postulates and com-
mon notions? Explain your answer.

(a) Every line has at least two points lying on it.
(b) For every line there is at least one point that does not lie on the line.

(c) For every pair of points A # B, there is only one line that passes through A
and B.

1.7.8 Find the first of Euclid’s proofs in which he makes use of his fifth postulate.

1.7.9 A rhombus is a quadrilateral in which all four sides have equal lengths. The
diagonals are the line segments joining opposite corners. Use the first five propo-
sitions of Book I of the Elements to show that the diagonals of a rhombus divide
the rhombus into four congruent triangles.

1.7.10 A rectangle is a quadrilateral in which all four angles have equal measures.
(Hence they are all right angles.) Use the propositions in Book I of the Elements
to show that the diagonals of a rectangle are congruent and bisect each other.

1.7.11 The following well-known argument illustrates the danger in relying too heavily
on diagrams.3 Find the flaw in the “Proof.” (The proof uses familiar high school
notation that will be explained later in this textbook. For example, A B denotes
the segment from A to B and AB denotes the line through points A and B.)

False Proposition. If AABC is any triangle, then side AB is congruent to side AC.

Spurious Proof. Let ¢ be the line that bisects the angle /BAC and let G be the point at
which ¢ intersects BC. Either ¢ is perpendicular to BC or it is not. We give a different
argument for each case.

Assume, first, that ¢ is perpendicular to BC (Figure 1.7). Then AAGB = AAGC by
Angle-Side-Angle and therefore AB = AC.

FIGURE 1.7 One possibility: the angle bisector is perpendicu-
lar to the base

Now suppose ¢ is not perpendicular to BC. Let m be the perpendicular bisector of
BC and let M be the midpoint of BC. Then m is perpendicular to BC and ¢ is not, so m is

3. This fallacy is apparently due to W. W. Rouse Ball (1850-1925) and first appeared in the original
1892 edition of [BC87].
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not equal to ¢ and m is not parallel to £. Thus £ and m must intersect at a point D. Drop
perpendiculars from D to the lines AB and AC and call the feet of those perpendiculars
E and F, respectively.

There are three possible locations for D: either D is inside AABC, D ison AABC,
or D is outside AABC. The three possibilities are illustrated in Figure 1.8.

A

\>

A (

A -
EF
D

m

o

B M c
FIGURE 1.8 Three possible locations for D

The point D cannot lie on AABC. To see this, note that if D were on AABC, then it
would be the case that D = M = G because G is the only point at which ¢ intersects BC
and M is the only point at which m intersects BC.Now AADE = AADF by Angle-Angle-
Side, so AE = AF and DE = DF. Also BD = CD since D = M is the midpoint of BC. It
follows from the Hypotenuse-Leg Theorem* that ABDE = ACDF and therefore BE =
CF.Hence AB = AC by addition. But this means that AADB = AADC by Side-Angle-
Side and therefore /ADB = /ADC. Since /ADB and /ADC are supplementary angles,
they must both be right angles. But that is impossible because ¢ is not perpendicular to
BC.

Now consider the case in which D is inside AABC. We have AADE = AADF just
as before, so again AE = AF and DE = DF. Also ABMD = ACMD by Side-Angle-
Side and hence BD = C D. Applying the Hypotenuse-Leg Theorem again gives ABDE =
ACDF and therefore BE = CF as before. It follows that AB = AC by addition.

Finally consider the case in which D is outside AABC. Once again we have AADE =
AADF by Angle-Angle-Side, so again AE = AF and DE = DF . Justas before, ABM D =
ACM D by Side-Angle-Side and hence BD = C D. Applying the Hypotenuse-Leg Theo-
rem gives ABDE = ACDF and therefore BE = CF. It then follows that AB = AC, this
time by subtraction. u

4. The Hypotenuse-Leg Theorem states that if the hypotenuse and leg of one right triangle are
congruent to the corresponding parts of a second right triangle, then the triangles are congruent.
It is a correct theorem,; this is not the error in the proof.
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CHAPTER 2

Axiomatic Systems and
Incidence Geometry

2.1  THE STRUCTURE OF AN AXIOMATIC SYSTEM

2.2 AN EXAMPLE: INCIDENCE GEOMETRY

2.3 THE PARALLEL POSTULATES IN INCIDENCE GEOMETRY
2.4 AXIOMATIC SYSTEMS AND THE REAL WORLD

2.5 THEOREMS, PROOFS, AND LOGIC

2.6 SOME THEOREMS FROM INCIDENCE GEOMETRY

Over the years that have passed since he wrote his Elements, Euclid’s program for
organizing geometry has been refined into what is called an axiomatic system. The basic
structure of a modern axiomatic system was inspired by Euclid’s method of organization,
but there are significant ways in which an axiomatic system differs from Euclid’s scheme.

This chapter examines the various parts of an axiomatic system and explains their
relationships. Those relationships are illustrated by a fundamental example known as
incidence geometry. By doing a preliminary study of axioms and relations among them in
the simple, uncomplicated setting of incidence geometry we are better able to understand
how an axiomatic system works and what it means to say that one axiom is independent
of some others. This lays the groundwork for the presentation of plane geometry as an
axiomatic system in Chapter 3 and also prepares the way for later chapters where it is
proved that Euclid’s Fifth Postulate is independent of his other postulates.

An important feature of the axiomatic method is proof. The chapter contains a
review of some basic principles used in the construction of proofs and also sets out
the distinctive style of written proof that will be used in this book. Incidence geometry
provides a convenient setting in which to practice some of the proof-writing skills that
will be required later.

2.1 THE STRUCTURE OF AN AXIOMATIC SYSTEM

An axiomatic system consists of undefined terms, definitions, axioms, theorems, and
proofs. We will examine each of these parts separately.

Undefined and defined terms

The first part of an axiomatic system is a list of undefined terms. These are the technical
words that will be used in the subject. Euclid attempted to define all his terms, but we now
recognize that it is not possible to achieve the goal of defining every term. A standard
dictionary appears to contain a definition of every word in a language, but there will
inevitably be some circularity in the definitions because every definition uses words that

17
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must themselves be defined. Rather than attempting to define every term we will use, we
simply take certain key words to be undefined and work from there.

In geometry, we usually take such words as point and line to be undefined. In other
parts of mathematics, the words set and element of are often undefined. When the real
numbers are treated axiomatically, the term real number itself is sometimes undefined.

Even though some words are left undefined, there is still a place for definitions
and defined terms in an axiomatic system. The aim is to start with a minimal number of
undefined terms and then to define other technical words using the original undefined
terms and previously defined terms. One role of definitions is just to allow statements to
be made concisely. For example, we will define three points to be collinear if there is one
line such that all three points lie on that line. It is much more clear and concise to say
that three points are noncollinear than it is to say that there does not exist a single line
such that all three points lie on that line. Another function of definitions is to identify
and highlight key structures and concepts.

Axioms

The second part of an axiomatic system is a list of axioms. The words axiom and postulate
are used interchangeably and mean exactly the same thing in this book.! An axiom
is a statement that is accepted without proof. Axioms are where the subject begins.
Everything else should be logically deduced from them.

The axioms limit the way in which the undefined terms can be interpreted. Thus, for
example, we do not define exactly what a point or a line is, but in the axioms for geometry
we spell out those properties of points and lines that will be used in our development of
geometry. In that limited sense the axioms serve to define the undefined terms.

All relevant assumptions are to be stated in the axioms and the only properties of
the undefined terms that may be used in the subsequent development of the subject are
those that are explicitly spelled out in the axioms. Hence we will allow ourselves to use
those and only those properties of points and lines that have been stated in our axioms—
any other properties or facts about points and lines that we know from our intuition or
previous experience are not to be used until and unless they have been proven to follow
from the axioms.

One of the goals of this course is to present plane geometry as an axiomatic system.
This will require a much more extensive list of axioms than Euclid used. The reason for
this is that we must include all the assumptions that will be needed in the proofs and not
allow ourselves to rely on diagrams or any intuitive but unstated properties of points and
lines the way Euclid did.

Theorems and proofs

The final part, usually by far the largest part, of an axiomatic system consists of the theo-
rems and their proofs. Again there are two different words that are used synonymously:
the words theorem and proposition will mean the same thing in this course.” In this third
part of an axiomatic system we work out the logical consequences of the axioms.

1. Generally postulate will be used when a particular assumption is being stated or referred to by
name, while the word axiom will be used in a more generic sense to refer to unproven assumptions.
2. There are also two other words that are used for theorem. A lemma is a theorem that is stated as
a step toward some more important result. Usually a lemma is not an end in itself but is used as a
way to organize a complicated proof by breaking it down into steps of manageable size. A corollary
is a theorem that can be quickly and easily deduced from a previously stated theorem.
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Just as in Euclid’s Elements, there is a strict logical organization that applies. The
first theorem is proved using only the axioms. The second theorem is proved using the
first theorem together with the axioms, and so on.

Later in the chapter we will have much more to say about theorems and proofs as
well as the rules of logic that are to be used in proofs.

Interpretations and models

In an axiomatic system the undefined terms do not in themselves have any definite
meaning, except what is explicitly stated in the axioms. The terms may be interpreted in
any way that is consistent with the axioms. An interpretation of an axiomatic system is a
particular way of giving meaning to the undefined terms in that system. An interpretation
is called a model for the axiomatic system if the axioms are correct (true) statements in
that interpretation. Since the theorems in the system were all logically deduced from the
axioms and nothing else, we know that all the theorems will automatically be correct and
true statements in any model.

We say that a statement in our axiomatic system is independent of the axioms if it
is not possible to either prove or disprove the statement as a logical consequence of the
axioms. A good way to show that a statement is independent of the axioms is to exhibit
one model for the system in which the statement is true and another model in which it
is false. As we shall see, that is exactly the way in which it was eventually shown that
Euclid’s Fifth Postulate is independent of Euclid’s other postulates.

The axioms in an axiomatic system are said to be consistent if no logical contradic-
tion can be derived from them. This is obviously a property we would want our axioms to
have. Again it is a property that can be verified using models. If there exists a model for
an axiomatic system, then the system must be consistent. The existence of a model for
Euclidean geometry and thus the consistency of Euclid’s postulates was taken for granted
until the nineteenth century. Our study of geometry will repeat the historical pattern: We
will first study various geometries as axiomatic systems and only address the questions
of consistency and existence of models later, in Chapter 11.

2.2 AN EXAMPLE: INCIDENCE GEOMETRY

In order to clarify what an axiomatic system is, we study the important example of
incidence geometry. For now we simply look at the axioms and various models for this
system; a more extensive discussion of theorems and proofs in incidence geometry is
delayed until later in the chapter.

Let us take the three words point, line, and lie on (as in “point P lies on line £7)
to be our undefined terms. The word incident is also used in place of lie on, so the two
statements “P lies on £” and “P is incident with £” mean the same thing. For that reason
the axioms for this relationship are called incidence axioms. One advantage of the word
incident is that it can be used symmetrically: We can say that P is incident with ¢ or that
¢ is incident with P; both statements mean exactly the same thing.

There are three incidence axioms. When we say (in the axiom statements) that P
and Q are distinct points, we simply mean that they are not the same point.

Incidence Axiom 1. For every pair of distinct points P and Q there exists exactly one
line £ such that both P and Q lie on £.

Incidence Axiom 2. For every line £ there exist at least two distinct points P and Q such
that both P and Q lie on £.
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Incidence Axiom 3. There exist three points that do not all lie on any one line.

The axiomatic system with the three undefined terms and the three axioms listed
above is called incidence geometry. We usually also call a model for the axiomatic system
an incidence geometry and an interpretation of the undefined terms is called a geom-
etry. Before giving examples of incidence geometries, it is convenient to introduce a
defined term.

Definition 2.2.1. Three points A, B, and C are collinear if there exists one line ¢ such that
all three of the points A, B, and C lie on £. The points are noncollinear if there is no such
line £.

Using this definition we can give a more succinct statement of Incidence Axiom 3:
There exist three noncollinear points.

EXAMPLE 2.2.2 Three-point geometry

Interpret point to mean one of the three symbols A, B, C; interpret line to mean a set of
two points; and interpret lie on to mean “is an element of.” In this interpretation there are
three lines, namely {A, B}, {A, C}, and { B, C}. Since any pair of distinct points determines
exactly one line and no one line contains all three points, this is a model for incidence
geometry. O

C

FIGURE 2.1 Three-point geometry

Be sure to notice that this “geometry” contains just three points. It is an example
of a finite geometry, which is a geometry that contains only a finite number of points.
It is customary to picture such geometries by drawing a diagram in which the points are
represented by dots and the lines by segments joining them. So the diagram for the three-
point plane looks like a triangle (see Figure 2.1). Don’t be misled by the diagram: the
“points” on the sides of the triangle are not points in the three-point plane. The diagram
is strictly schematic, meant to illustrate relationships, and is not to be taken as a literal
picture of the geometry.

EXAMPLE 2.2.3 The three-point line

Interpret point to mean one of the three symbols A, B, C, but this time interpret line
to mean the set of all points. This geometry contains only one line, namely {A, B, C}.
In this interpretation Incidence Axioms 1 and 2 are satisfied, but Incidence Axiom 3
is not satisfied. Hence the three-point line is not a model for incidence geometry
(Figure 2.2). O

EXAMPLE 2.2.4 Four-point geometry

Interpret point to mean one of the four symbols A, B, C, D; interpret line to mean a set
of two points and interpret /ie on to mean “is an element of.” In this interpretation there
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FIGURE 2.2 Two interpretations of the terms of incidence geometry

are six lines, namely {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, and {C, D}. Since any pair of
distinct points determines exactly one line and no one line contains three distinct points,
this is a model for incidence geometry (Figure 2.2). O

EXAMPLE 2.2.5 Five-point geometry

Interpret point to mean one of the five symbols A, B, C, D, E; interpret line to mean a
set of two points and interpret lie on to mean “is an element of.” In this interpretation
there are ten lines. Again any pair of distinct points determines exactly one line and no
one line contains three distinct points, so this is also a model for incidence geometry. O

We could continue to produce n-point geometries for increasingly large values of n,
but we will stop with these three because they illustrate all the possibilities regarding
parallelism that will be studied in the next section.

EXAMPLE 2.2.6 The interurban

In this interpretation there are three points, namely the cities of Grand Rapids, Holland,
and Muskegon (three cities in western Michigan). A /ine consists of a railroad line from
one city to another. There is one railroad line joining each pair of distinct cities, for a total
of three lines. Again, this is a model for incidence geometry. O

EXAMPLE 2.2.7 Fano'’s geometry

Interpret point to mean one of the seven symbols A, B, C, D, E, F, G; interpret line to
mean one of the seven three-point sets listed below and interpret lie on to mean “is an
element of.” The seven lines are

{A, B,C},{C, D, E},{E, F, A}, {A, G, D}, {C, G, F}, {E, G, B}, {B, D, F}.

All three incidence axioms hold in this interpretation, so Fano’s geometry? is another
model for incidence geometry. O

The illustration of Fano’s geometry (Figure 2.3) shows one of the lines as curved
while the others are straight. It should be recognized that this is an artifact of the
schematic diagram we use to picture the geometry and is not a difference in the lines
themselves. A line is simply a set of three points; the curves in the diagram are meant to
show visually which points lie together on a line and are not meant to indicate anything
about straightness. In fact, the word “straight” is not defined in incidence geometry and
straightness is not a part of this geometry.

3. Named for Gino Fano, 1871-1952.
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A

C

FIGURE 2.3 Fano’s geometry

The examples of interpretations given so far illustrate the fact that the undefined
terms in a given axiomatic system can be interpreted in widely different ways. No one of
the models is preferred over any of the others. Notice that three-point geometry and the
interurban are essentially the same; the names for the points and lines are different, but
all the important relationships are the same. We could easily construct a correspondence
from the set of points and lines of one model to the set of points and lines of the other
model. The correspondence would preserve all the relationships that are important in the
geometry (such as incidence). Models that are related in this way are called isomorphic
models and a function between them that preserves all the geometric relationships is an
isomorphism.

All the interpretations described so far have been finite geometries. Of course the
geometries with which we are most familiar are not finite. We next describe three infinite
geometries.

EXAMPLE 2.2.8 The Cartesian plane

In this geometry a point is defined to be any ordered pair (x, y) of real numbers. A
line is the collection of points whose coordinates satisfy a linear equation of the form
ax + by + ¢ =0, where a, b, and c are real numbers and a and b are not both 0. More
specifically, three real numbers a, b, and ¢, with @ and b not both 0, determine the line ¢
consisting of all pairs (x, y) such that ax + by + ¢ =0; i.e.,

£={(x,y)|ax +by+c=0}

A point (x, y) is said to lie on the line £ if the coordinates of the point satisfy the equa-
tion for £. This is a model for incidence geometry; it is just the coordinate (or Cartesian)
plane from high school Euclidean geometry. A complete verification that this interpre-
tation satisfies the three incidence axioms requires some algebraic calculation (Exer-
cise 2.4.8). We will use the symbol R? to denote the set of points in the Cartesian plane
(Figure 2.4). O

EXAMPLE 2.2.9 The sphere

Interpret point to mean a point on the surface of a round 2-sphere in three-dimensional
space. Specifically, a point is an ordered triple (x, y, z) of real numbers such that x? +
y? 4 z? = 1. A line is interpreted to mean a great circle on the sphere and lie on is again
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(x, y)

FIGURE 2.4 The Cartesian plane

interpreted to mean “is an element of.” We will use the symbol S? to denote the set of
points on the sphere.

A great circle is a circle on the sphere whose radius is equal to that of the sphere.
Alternatively, a great circle is the intersection of a plane through the origin in 3-space with
the sphere. Two points on the sphere are antipodal (or opposite) if they are the two points
at which a line through the origin intersects the sphere. Two given antipodal points on the
sphere lie on an infinite number of different great circles; hence this geometry does not
satisfy Incidence Axiom 1. If A and B are two points on the sphere that are not antipodal,
then A and B determine a unique plane through the origin in 3-space and thus lie on a
unique great circle. Hence “most” pairs of points determine a unique line in this geometry

(Figure 2.5).

FIGURE 2.5 The sphere

Since this interpretation does not satisfy Incidence Axiom 1, it is not a model
for incidence geometry. Note that Incidence Axioms 2 and 3 are correct statements
in this interpretation. Another important observation about the sphere is that there
are no parallel lines: any two distinct great circles on the sphere intersect in a pair of
points. O

EXAMPLE 2.2.10 The Klein disk

Interpret point to mean a point in the Cartesian plane that lies inside the unit circle. In
other words, a point is an ordered pair (x, y) of real numbers such that x> + y? < 1. A line
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FIGURE 2.6 The Klein disk

is the part of a Euclidean line that lies inside the circle and /ie on has its usual Euclidean
meaning. This is a model for incidence geometry (Figure 2.6).

The Klein disk is an infinite model for incidence geometry, just like the familiar
Cartesian plane is. (In this context infinite means that the number of points is unlimited,
not that distances are unbounded.) The two models are obviously different in superficial
ways. But they are also quite different with respect to some of the deeper relationships
that are important in geometry. We illustrate this in the next section by studying parallel
lines in each of the various geometries we have described. O

2.3 THE PARALLEL POSTULATES IN INCIDENCE GEOMETRY

Next we investigate parallelism in incidence geometry. The purpose of the investigation
is to clarify what it means to say that the Euclidean Parallel Postulate is independent of
the other axioms of geometry.

We begin with a definition of the word parallel, which becomes our second defined
term in incidence geometry. In high school geometry parallel lines can be characterized
in many different ways, so you may recall several definitions of parallel. In the context
of everything that is assumed in high school geometry those definitions are logically
equivalent and can be used interchangeably. But we have made no assumptions, other
than those stated in the incidence axioms, so we must choose one of the definitions and
make it the official definition of parallel. We choose the simplest characterization: the
lines do not intersect. That definition fits best because it can be formulated using only the
undefined terms of incidence geometry. It is also Euclid’s definition of what it means for
two lines in a plane to be parallel (Definition 23, Appendix A). Obviously this would not
be the right definition to use for lines in 3-dimensional space, but the geometry studied in
this book is restricted to the geometry of the two-dimensional plane. Note that, according
to this definition of parallel, a line is not parallel to itself.

Definition 2.3.1. Two lines £ and m are said to be parallel if there is no point P such that
P lies on both ¢ and m. The notation for parallelism is £ || m.

There are three different parallel postulates that will be useful in this course. The
first is called the Euclidean Parallel Postulate, even though it is not actually one of
Euclid’s postulates. We will see later that (in the right context) it is logically equivalent
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to Euclid’s Fifth Postulate. This formulation of the Euclidean Parallel Postulate is often
called Playfair’s Postulate (see page 105).

Euclidean Parallel Postulate. For every line £ and for every point P that does notlie on ¢,
there is exactly one line m such that P lies on m and m || £.

There are other possibilities besides the Euclidean one. We state two of them.

Elliptic Parallel Postulate. For every line ¢ and for every point P that does not lie on ¢,
there is no line m such that P lieson m and m || £.

Hyperbolic Parallel Postulate. For every line ¢ and for every point P that does not lie on
£, there are at least two lines m and n such that P lies on both m and n and both m and n
are parallel to .

These are not new axioms for incidence geometry. Rather they are additional
statements that may or may not be satisfied by a particular model for incidence geometry.
We illustrate with several examples.

EXAMPLE 2.3.2 Parallelism in three-, four-, and five-point geometries

In three-point geometry any two lines intersect. Therefore there are no parallel lines and
this model satisfies the Elliptic Parallel Postulate.

Each line in four-point geometry is disjoint from exactly one other line. Thus, for
example, the line {A, B} is parallel to the line {C, D} and no others. There is exactly
one parallel line that is incident with each point that does not lie on {A, B}. Since the
analogous statement is true for every line, four-point geometry satisfies the Euclidean
Parallel Postulate.

Consider the line {A, B} in five-point geometry and the point C that does not lie
on {A, B}. Observe that C lies on two different lines, namely {C, D} and {C, E}, that are
both parallel to {A, B}. Since this happens for every line and for every point that does
not lie on that line, five-point geometry satisfies the Hyperbolic Parallel Postulate. O

EXAMPLE 2.3.3 Parallelism in the Cartesian plane, sphere, and Klein disk

The Euclidean Parallel Postulate is true in the Cartesian plane R?. The fact that the
Cartesian plane satisfies the Euclidean Parallel Postulate is probably familiar to you from
your high school geometry course. A proof of that statement would be an exercise in
analytic geometry.

The sphere S satisfies the Elliptic Parallel Postulate. The reason for this is simply
that there are no parallel lines on the sphere (any two great circles intersect).

The Klein disk satisfies the Hyperbolic Parallel Postulate. The fact that the Klein
disk satisfies the Hyperbolic Parallel Postulate is illustrated in Figure 2.6. In that diagram,
point P lies on both lines m and n and both m and n are parallel to £. O

Conclusion

We can conclude from the preceding examples that each of the parallel postulates is
independent of the axioms of incidence geometry. For example, the fact that there are
some models for incidence geometry that satisfy the Euclidean Parallel Postulate and
there are other models that do not shows that neither the Euclidean Parallel Postulate
nor its negation can be proved as a theorem in incidence geometry. The examples make
it clear that it would be fruitless to try to prove any of the three parallel postulates using
only the axioms of incidence geometry.
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This is exactly how it was eventually shown that Euclid’s Fifth Postulate is inde-
pendent of his other postulates. Understanding that proof is one of the major goals of
this course. Later in the book we will construct two models for geometry, both of which
satisfy all of Euclid’s assumptions other than his fifth postulate. One of the models satis-
fies Euclid’s Fifth Postulate while the other does not. (It satisfies the Hyperbolic Parallel
Postulate.) This shows that it is impossible to prove Euclid’s Fifth Postulate using only
Euclid’s other postulates and assumptions. It will take us most of the course to fully de-
velop those models. One of the reasons it is such a difficult task is that we have to dig out
all of Euclid’s assumptions—not just the assumptions stated in his postulates, but all the
unstated ones as well.

2.4 AXIOMATIC SYSTEMS AND THE REAL WORLD

An axiomatic system, as defined in this chapter, is obviously just a refinement of Euclid’s
system for organizing geometry. It should be recognized, however, that these refinements
have profound implications for our understanding of the place of mathematics in the
world.

The ancient Greeks revolutionized geometry by making it into an abstract disci-
pline. Before that time, mathematics and geometry had been closely tied to the physical
world. Geometry was the study of one aspect of the real world, just like physics or as-
tronomy. In fact, the word geometry literally means “to measure the earth.”

Later Greek geometry, on the other hand, is about relationships between ideal,
abstract objects. In this view, geometry is not just about the physical world in which we
live our everyday lives, but it also gives us information about an ideal world of pure forms.
In the view of Greek philosophers such as Plato, this ideal world was, if anything, more
real than the physical world of our existence. The relationships in the ideal world are
eternal and pure. The Greeks presumably thought of a postulate as a statement about
relationships that really pertain in that ideal world. The postulates are true statements
that can be accepted without proof because they are self-evident truths about the way
things really are in the ideal world. So the Greeks distanced geometry from the physical
world by making it abstract, but at the same time they kept it firmly rooted in the
real world where it could give them true and reliable information about actual spatial
relationships.

We have no direct knowledge of how Euclid himself understood the significance of
his geometry. All we know about his thinking is what we find written in the Elements and
those books are remarkably terse by modern standards. But Euclid lived approximately
100 years after Plato, so it seems reasonable to assume that he was influenced by Plato’s
ideas. In any event, it is quite clear from reading the Elements that Euclid thought of
geometry as being about real things and that is precisely why he felt free to use intuitively
obvious facts about points and lines in his proofs even though he had not stated these
facts as axioms.

The view of geometry as an axiomatic system (as described in this chapter) moves us
well beyond the Platonic view. In our effort to spell out completely what our assumptions
are, we have been led to make geometry much more relative and detached from reality.
We do not apply the terms true or false to the axioms in any absolute sense. An axiom
is simply a statement that may be true or may be false in any particular situation, it just
depends on how we choose to interpret the undefined terms. Thus our efforts to introduce
abstraction and rigor into geometry have led us to drain the meaning out of such everyday
terms as point and line. Since the words can now mean just about anything we want them
to, we must wonder whether they any longer have any real content.
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The naive view is that geometry is the study of space and spatial relationships. We
usually think of geometry as a science that gives us true and reliable information about
the world in which we live. The view of geometry as an axiomatic system detached from
the real world is a bit disturbing to most of us.

Some mathematicians have promoted the view that mathematics is just a logical
game in which we choose an arbitrary set of axioms and then see what we can deduce
using the rules of logic. Most professional mathematicians, however, have a profound
sense that the mathematics they study is about real things. The fact that mathematics has
such incredibly powerful and practical applications is evidence that it is much more than
a game.

It is surprisingly difficult to resolve the kinds of philosophical issues that are raised
by these observations. The mathematical community’s thinking on these matters has
evolved over time and there have been several amazing revolutions in the conventional
understanding of what the correct views should be. Those views will be explored in this
book as the historical development of geometry unfolds. We do not attempt to give
definitive answers; instead we simply raise the questions and encourage the reader to
think about them. In particular, the following questions should be recognized and should
be kept in mind as the development of geometry is worked out in this book.

1. Are the theorems of geometry true statements about the world in which we live?
2. What physical interpretation should we attach to the terms point and line?

3. What are the axioms that describe the geometry of the space in which we live?

4

. Isit worthwhile to study arbitrary axiom systems or should we restrict our attention
to just those axiom systems that appear to describe the real world?

At this point you might be asking yourself why it would be thought desirable to
make mathematics so abstract and therefore to get into the kind of difficult issues that
have been raised here. That is one question we can answer. The answer is that abstraction
is precisely what gives mathematics its power. By identifying certain key features in
a given situation, listing exactly what it is about those features that is to be studied,
and then studying them in an abstract setting detached from the original context, we
are able to see that the same kinds of relationships hold in many apparently different
contexts. We are able to study the important relationships in the abstract without a lot
of other irrelevant information cluttering up the picture and obscuring the underlying
structure. Once things have been clarified in this way, the kind of logical reasoning that
characterizes mathematics becomes an incredibly powerful and effective tool. The history
of mathematics is full of examples of surprising practical applications of mathematical
ideas that were originally discovered and developed by people who were completely
unaware of the eventual applications.

EXERCISES

2.4.1 TItissaid that Hilbert once illustrated his contention that the undefined terms in
a geometry should not have any inherent meaning by claiming that it should be
possible to replace point by beer mug and line by table in the statements of the
axioms. Consider three friends sitting around one table. Each person has one
beer mug. At the moment all the beer mugs are resting on the table. Suppose
we interpret point to mean beer mug, line to mean the table, and lie on to mean
resting on. Is this a model for incidence geometry? Explain. Is this interpretation
isomorphic to any of the examples in the text?
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2.4.2 One-point geometry contains just one point and no line. Which incidence axioms
does one-point geometry satisfy? Explain. Which parallel postulates does one-
point geometry satisfy? Explain.

2.4.3 Two-point geometry consists of two points and one line. Both points lie on that
line. Which incidence axioms does two-point geometry satisfy? Explain. Which
parallel postulates does two-point geometry satisfy? Explain.

2.4.4 Consider a small mathematics department consisting of Professors Alexa, Bai-
ley, Curtis, and Duarte with three committees: curriculum committee, personnel
committee, and social committee. Interpret point to mean a member of the de-
partment, interpret /ine to be a departmental committee, and interpret lie on to
mean that the faculty member is a member of the specified committee.

(a) Suppose the committee memberships are as follows: Alexa, Bailey, and Cur-
tis are on the curriculum committee; Alexa and Duarte are on the personnel
committee; and Bailey and Curtis are on the social committee. Is this a model
for incidence geometry? Explain.

(b) Suppose the committee memberships are as follows: Alexa, Bailey, and Cur-
tis are on the curriculum committee; Alexa and Duarte are on the personnel
committee; and Bailey and Duarte are on the social committee. Is this a
model for incidence geometry? Explain.

(c) Suppose the committees are the same as in part (b) but a fourth committee,
the promotion committee, is added. Curtis and Duarte are the members
of the promotion committee. Is this a model for incidence geometry? Ex-
plain.

(d) Suppose the committee memberships are as follows: Alexa and Bailey are on
the curriculum committee, Alexa and Curtis are on the personnel committee,
Duarte and Curtis are on the social committee, and Bailey and Duarte are on
the promotions committee. Is this a model for incidence geometry? Explain.

2.4.5 A three-point geometry is an incidence geometry that satisfies the following
additional axiom: There exist exactly three points.

(a) Find a model for three-point geometry.
(b) How many lines does any model for three-point geometry contain? Explain.

(c) Explain why any two models for three-point geometry must be isomorphic.
(An axiomatic system with this property is said to be categorical.)

2.4.6 Interpret point to mean one of the four vertices of a square, /ine to mean one
of the sides of the square, and lie on to mean that the vertex is an endpoint
of the side. Which incidence axioms hold in this interpretation? Which parallel
postulates hold in this interpretation?

2.4.7 Draw a schematic diagram of five-point geometry (see Example 2.2.5).
2.4.8 Verify that the Cartesian plane satisfies all three incidence axioms.
2.4.9 Which parallel postulate does Fano’s geometry satisfy? Explain.

2.4.10 Which parallel postulate does the three-point line satisfy? Explain.

2.4.11 Must every incidence geometry satisfy at least one of the parallel postulates?
Either explain why the answer is “yes” or give an example to show that the
answer is “no.”

2.4.12 Could an incidence geometry satisfy more than one of the parallel postulates?
Explain.
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2.4.13 Consider a finite model for incidence geometry that satisfies the following addi-
tional axiom: Every line has exactly three points lying on it. What is the minimum
number of points in such a geometry? Explain your reasoning.

2.4.14 Find a finite model for incidence geometry in which there is one line that has
exactly three points lying on it and there are other lines that have exactly two
points lying on them.

2.4.15 Findinterpretations for the words point, line, and lie on that satisfy the following
conditions.

(a) Incidence Axioms 1 and 2 hold, but Incidence Axiom 3 does not.
(b) Incidence Axioms 2 and 3 hold, but Incidence Axiom 1 does not.
(c) Incidence Axioms 1 and 3 hold, but Incidence Axiom 2 does not.

2.4.16 For any interpretation of incidence geometry there is a dual interpretation. For
each point in the original interpretation there is a line in the dual and for each
line in the original there is a point in the dual. A point and line in the dual are
considered to be incident if the corresponding line and point are incident in the
original interpretation.

(a) What is the dual of the three-point plane? Is it a model for incidence
geometry?

(b) Whatis the dual of the three-point line? Is it a model for incidence geometry?

(c) What is the dual of four-point geometry? Is it a model for incidence
geometry?

(d) What is the dual of Fano’s geometry?

2.5 THEOREMS, PROOFS, AND LOGIC

We now take a more careful look at the third part of an axiomatic system: the theorems
and proofs. Both theorems and proofs require extra care. Most of us have enough
experience with mathematics to know that the ability to write good proofs is a skill that
must be learned, but we often overlook the fact that a necessary prerequisite to good
proof-writing is good statements of theorems.

A major goal of this course is to teach the art of writing proofs and it is not expected
that the reader is already proficient at it. The main way in which one learns to write proofs
is by actually writing them, so the remainder of the book will provide lots of opportunities
for practice. This section simply lays out a few basic principles and then those principles
will be put to work in the rest of the course. The brief introduction provided in this section
will not make you an instant expert at writing proofs, but it will equip you with the basic
tools you need to get started. You should refer back to this section as necessary in the
remainder of the course.

Mathematical language

An essential step on the way to the proof of a theorem is a careful statement of the
theorem in clear, precise, and unambiguous language. To illustrate this point, consider
the following proposition in incidence geometry.

Proposition 2.5.1. Lines that are not parallel intersect in one point.

Compare that statement with the following.
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Restatement. If ¢ and m are two distinct lines that are not parallel, then there exists
exactly one point P such that P lies on both ¢ and m.

Both are correct statements of the same theorem. But the second statement is much
better, at least as far as we are concerned, because it clearly states where the proof should
begin (with two lines £ and m such that £ # m and £ }f m) and where it should end (with
a point P that lies on both ¢ and m). This provides the framework within which we can
build a proof. Contrast that with the first statement. In the first statement it is much less
clear how to begin a proof. In fact it is not possible to construct a proof until we have
at least mentally translated the first statement into language that is closer to that in the
second statement. When we start to do that we realize that the first statement is not
precise enough. For example, it does not clearly say whether it is an assertion about two
(or more?) particular lines or whether it is making an assertion that applies to all lines.

Writing good proofs requires clear thinking and clear thinking begins with careful
statements. As a result we begin by examining the language used in the statements of
theorems and only turn our attention to proof-writing after that.

Statements

In mathematics, the word statement refers to any assertion that can be classified as either
true or false (but not both). Here is an example: Dan is tiny. The statements of geometry
often involve assertions that objects (such as points or lines) satisfy certain conditions
(such as parallelism). Such statements must be preceded by definitions of the terms used.
For example, it is not possible to determine if the assertion Dan is tiny is true or false
unless we have a precise definition of what finy means in this context. It is obvious that
the word finy might mean one thing in one situation (for example, in microbiology) and
something completely different in another context (such as astronomy). So we would
need a definition of the form, “A person x is said to be tiny if . . . .” Once you have that
definition, you can check to see whether or not a particular person named Dan satisfies
the conditions in the definition.

Simple statements can be combined into compound statements using the words
and and or. The use of and is easy to understand; it means that both the statements are
true. The use of or in mathematics differs somewhat from the way the word is used in
ordinary language. In mathematics or is always used in a nonexclusive way; it means that
one or the other of the statements is true and allows the possibility that both are true.
Consider the statement Joan is old or Joan is rich. As used in ordinary everyday English,
this statement allows the possibility that Joan is both old and rich. Contrast that with
the following statement: Either you are for me or you are against me. We understand
from the tone of the statement that it means you are one or the other but not both.
Thus the word or is ambiguous in ordinary English and its exact meaning depends on the
context. Mathematical language eliminates such ambiguities and the word or always has
the nonexclusive meaning when it is used in a mathematical statement.

We will often want to negate statements. Specifically, given one statement we will
want to write down a second statement that asserts the opposite of the first. There is a
sense in which it is easy to negate a statement: simply say, “It is not the case that . . . .”
But this is not helpful. It is much more useful to observe that negation interchanges and
and or. In other words, we have the following laws (for any statements S and 7).

not (S and 7)) = (not S) or (not T)
not (S or T') = (not S) and (not T)
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For example, if it is not true that x > 0 and x < 1, then either x < 0 or x > 1. The two rules
stated above are known as De Morgan’s Laws.

Propositional functions

An assertion such as “x > 0” does not, by itself, qualify as a statement in the technical
sense defined above because it is neither true nor false until a value has been assigned
to x. The assertion is really a function whose domain consists of numbers x and whose
range consists of statements. For example, if we take x = 1, the resultis the statement 1 > 0
(which is true). On the other hand, taking x = —1 yields the statement —1 > 0 (which is
false). Such a function is called a propositional function.* The function just described can
be defined by the simple formula

P(x)=(x>0).

Propositional functions can have more than one independent variable, as in Q(x, y) =
(x > y).In this example, Q(1, 1) is a false statement while Q(1, 0) is a true statement. This
is precisely the kind of assertion we will encounter in the geometry course. For example,
the assertion ¢ || m should be interpreted as a propositional function whose domain is the
set of ordered pairs of lines.

Quantifiers

One of the distinctions that must be made clear is whether you are asserting that every
object of a certain type satisfies a condition or whether you are simply asserting that there
is one that does. This is specified through the use of quantifiers. There are two quantifiers:
the existential quantifier (written 3) and the universal quantifier (written V).

A propositional function can be combined with a quantifier to yield a statement
that has a truth value. For example, while x > 0 is neither true nor false, the statement
Jx (x > 0) (read “there exists an x such that x is greater than zero”) is true. On the other
hand, Vx (x > 0) (read “for every x, x is greater than zero”) is false.

Strictly speaking, we should specify the domain of discourse when using a quantifier.
But itis common practice to omit mention of the domain when it can be inferred from the
context. When the domain is not clear from the context, it should be explicitly specified;
for example, 3x € R (x > 0).

Negation interchanges the two quantifiers. For example, consider this statement:
Every angle is acute. Stated more precisely, it says, for every angle «, « is acute. The
negation is this: There exists an angle « such that « is not acute. Here is another example:
There exists a point that does not lie on £. The negation is this statement: Every point lies
on {. Better yet is this statement: For every point P, P lies on £. The rules for negating
quantified statements are new versions of De Morgan’s Laws:

not (Vx P(x)) = 3x(not P(x))
not (Ix P(x)) = Vx(not P(x))
Conditional statements

A conditional statement is a compound statement of the form “If . . . ,then . . .” in which
the first set of dots represents a statement called the hypothesis (or antecedent) and the

4. In some contexts the word “proposition” is used for what we are calling a “statement.” That is
the origin of the terminology propositional function. In this book the word “proposition” is almost
always used as a synonym for “theorem.”
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second set of dots represents a statement called the conclusion (or consequent). The
conditional statement “if H, then C” can also be formulated in words as “H implies
C” or in symbols as H = C.

In a conditional statement, the hypothesis is always assumed to be universally
quantified unless otherwise specified. In other words, if H and C are propositional
functions, the statement H (x) = C(x) means that for every x such that H (x) is true, C(x)
is true as well. A simple example from high school algebra is the conditional statement, If
x <1, then x <2.This statement is true because any value of x for which the propositional
function x < 1is true also makes the propositional function x < 2 true.

EXAMPLE 2.5.2 The Euclidean Parallel Postulate as a conditional statement

The Euclidean Parallel Postulate can be reformulated as a conditional statement: If ¢ is
a line and P is a point that does not lie on £, then there exists exactly one line m such that
P lies on m and m is parallel to ¢. O

The statement H = C really just rules out the possibility that H is true while C is
false. Consider this statement: If x is a real number and x* < 0, then x = 3.1t is considered
to be true because the conclusion is true of every x for which the hypothesis is true.
(There is no x for which the hypothesis is true.) In a case like this we usually say that the
statement is vacuously true since the conditional statement is true only because there is
no way the hypotheses can be true.

The negation of a conditional statement

Negating a conditional statement requires clear thinking. The statement P = Q means
that Q is true whenever P is. The negation of P = Q is the assertion that it is possible for
P to be true while Q is false. Be sure to note that the negation of a conditional statement
is not another conditional statement. Consider the following example: If x is irrational,
then x? is irrational. This statement is false® because there are some irrational numbers
whose square is rational [e.g., +/2 is irrational while (v/2)? is rational]. It is true that there
are some irrational numbers whose squares are irrational, but it takes only one example
to show that the conditional statement is false. For this reason we normally demonstrate
that a conditional statement is false by producing a counterexample.

EXAMPLE 2.5.3 The negation of the Euclidean Parallel Postulate

The following statement is the negation of the Euclidean Parallel Postulate: There exists
a line £ and there exists a point P that does not lie on £ such that there is not exactly one
line m for which P lies on m and m || €. The statement “there is not exactly one line m for
which P lies on m and m || £” means that either there is no line with these properties or
there are at least two lines with those properties. O

Converse and contrapositive

For every conditional statement there are two related statements called the converse and
the contrapositive. The converse of P = Q is Q = P and the contrapositive is not Q =
not P.The converse to a conditional statement is an entirely different statement; the fact
that P = Q is true tells us nothing about whether or not the converse is true. On the
other hand, the contrapositive is logically equivalent to the original statement. Here is a
simple example: If x = 2, then x? = 4. This is a correct statement. Its converse, however,

5. The real theorem is this: If x is rational, then x2 is rational.
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is not correct. (x> =4 # x =2.) The contrapositive is this: If x* # 4, then x # 2. The
contrapositive is a correct statement and is just a negative way of restating the original
conditional statement.

Consider another simple example: If x = 0, then x? = 0. This time both the state-
ment and its converse are true. Such statements are called biconditional statements and
the phrase “if and only if” (abbreviated iff) is used to indicate that the implication goes
both ways. In other words, P iff Q (or P < Q) means P = Q and Q = P. Thus we could
say that x = 0 iff x> = 0. An if-and-only-if statement is really two theorems in one and
the proof should reflect this; there should normally be separate proofs of each of the two
implications.

Truth tables

There is a sense in which the fact that a conditional statement and its contrapositive are
equivalentis obvious, but it can be confusing to explain the equivalence because negations
are piled on negations. A simple device that can be used to explain the equivalence is a
truth table. This is a good way to think of it because the truth table also sheds light on the
meaning of the conditional statement itself.

Consider the statement H = C. The hypothesis and the conclusion can each be
either true or false. Thus there are four possibilities for H and C and the statement H = C
is true in three of the four cases. The various possibilities are shown in the following truth
table.

H C H=C
True True True
True False False
False  True True
False  False True

It is the second half of the table that often confuses beginners; these are the cases
in which the theorem is vacuously true. Since the conditional statement is true in three
of the four cases, a proof is simply an argument that rules out the fourth possibility. If we
now expand the table to include the negations of H and C as well as the contrapositive
of the theorem we see that the contrapositive is true exactly when the theorem is. (The
third and sixth columns are identical.)

H C H=C not H notC notC = notH
True True True False False True
True  False False False True False
False  True True True False True
False  False True True True True

Sometimes it is more convenient to prove the contrapositive of a theorem than it is
to prove the theorem itself. This is perfectly legitimate because the original statement is
logically equivalent to the contrapositive.

Uniqueness

The word unique is often used in connection with the existential quantifier. For example,
here is a statement that is important in geometry: For every line ¢ and for every point
P there is a unique line m such that P lies on m and m is perpendicular to £. The word
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unique in this statement indicates that there is exactly one line m satisfying the stated
conditions. A proof of this assertion should have two parts. First, there should be a proof
that there is a line m satisfying the conditions and, second, a proof that there cannot be
two different lines m and n satisfying the conditions. The usual strategy for the second
half of the proof is to start with the assumption that m and n are lines that satisfy the
property and then to prove that m and n must, in fact, be equal to each other. The symbol
lis used to indicate uniqueness; so the notation “3!...” should be read “there exists a
unique . ...”

Theorems

A theorem is a conditional statement that has been proved true. A conditional statement
may be either true or false, but it is not called a theorem unless it is true and has been (or
can be) proved. This means that there are no false theorems, just statements that have the
form of theorems but turn out not to be theorems. Here is a good rule to follow: Every
theorem should be stated in if-then form.°

A theorem does not assert that the conclusion is true without the hypothesis, only
that the conclusion is true if the hypothesis is.

Proofs

A proof consists of a sequence of steps that lead us logically from the hypothesis to the
conclusion. Each step should be justified by a reason. There are six kinds of reasons that
can be given:

* by hypothesis

* by axiom

* by previous theorem

* by definition

* by an earlier step in this proof
* by one of the rules of logic

In this course we plan to assume much of what you already know about the algebra of
real numbers. Thus the first several kinds of reasons listed above will often be stated as
“by properties of real numbers” or “by algebra.”

At the beginning of the course we will follow Euclid’s practice of writing the reasons
in parentheses after the statements. We will eventually drop that style as we develop more
proficiency at writing and reading proofs. But for now, it is important to spell out all your
justifications.

Writing proofs

In high school you may have learned to write your proofs in two columns, with the
statements in one column and the reasons in another. We will not do that in this course,
not even at the outset, because we are aiming to write proofs that can be read by fellow

6. As is the case with most rules, this one allows some exceptions. Here is a well-known theorem
from calculus: 7 is irrational. In this case the hypotheses are hidden in the definition of 7. While
such a statement does qualify as a theorem, it is not a model we should adopt for this course.
The practice of stating the hypotheses explicitly will serve us well as we learn to write proofs. The
example does illustrate the fact that theorem statements are context dependent and there are often
unstated hypotheses that are assumed in a given setting.
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humans; in order to facilitate this, the proofs should be written in ordinary paragraph
form. For the same reason we will not follow the high school custom of numbering the
statements in a proof.

It is helpful to distinguish between the proof itself and the written argument that is
used to communicate the proof to other people. The proof is a sequence of logical steps
thatlead from the hypothesis to the conclusion. The written argument lays out those steps
for the reader, and the writer has an obligation to write them in a way that the reader
can understand without undue effort. So the written proof is both a listing of the logical
steps and an explanation of the reasoning that went into them.

Obviously you need to know who your audience is. You should assume that the
reader is someone, like a fellow student, who has approximately the same background
you have. It is important to remember that written proofs have a subjective aspect to
them. They are written for a particular audience and how many details you include will
depend on who is to read the proof. As you and the rest of the class learn more geometry
together, you will share a larger and larger set of common experiences. You can draw
on those experiences and assume that your readers will know many of the justifications
for steps in the proofs. Later in the course you will be able to leave many of the reasons
unstated; this will allow you to concentrate on the essential new ideas in a proof and
not obscure them with a lot of detailed information that is already well known to your
readers. But don’t be too quick to jump ahead to that level. Our aim in this course is to lay
out all our assumptions in the axioms and then to base our proofs on those assumptions
and no others. Only by being explicit about our reasons for each step can we discipline
ourselves to use only those assumptions and not bring in any hidden assumptions that
are based on previous experience or on diagrams.

You are encouraged to include in your written proofs more than just a list of the
logical steps in the proof. In order to make the proofs more readable, you should also
include information for the reader about the structure of the logical argument you are
using, what you are assuming, and where the proof is going. Such statements are not
strictly necessary from a logical point of view, but they make an enormous difference in
the readability of a proof. For now our goal is not so much to prove the theorems as it
is to learn to write good proofs, so we will write more than is strictly necessary and not
worry about the risk of being pedantic.

The beginning of a proof is marked by the word Proof. It is also a good idea to
include an indication that you have reached the end of a proof. Traditionally the end of a
proof was indicated with the abbreviation QED, which stands for the Latin phrase quod
erat demonstrandum (which was to be demonstrated). In this book we mark the end of
our proofs with the symbol m.

Like each individual proof, the overall structure of the collection of theorems and
proofs in an axiomatic system should be logical and sequential. Within any given proof,
it is legitimate to appeal only to the axioms, a theorem that has been previously stated
and proved, a definition that has been stated earlier, or to an earlier step in the same
proof. The rules of logic that are listed as one possible type of justification for a step in a
proof are the rules that are explained in this section. They include such rules as the rules
for negating compound statements that were described above and the rules for indirect
proofs that will be described below.

There is one last point related to the justification of the steps in a proof that is specific
to this course in the foundations of geometry. We intend to build geometry on the real
number system. Hence we will base many steps in our proofs on known facts about the
real numbers. For example, if we have proved that x + z = y + z, we will want to conclude
that x = y. Technically, this falls under the heading “by previous theorem,” but we will
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usually say something like “by algebra” when we bring in some fact about the algebra
of real numbers. Appendix E lists many of the important properties of the real numbers
that are assumed in this course. A few of them have names (such as Trichotomy and
the Archimedean Property) and those names should be mentioned when the properties
are used.

Indirect proof

Indirect proof is one proof form that should be singled out for special consideration
because you will find that it is one you will often want to use. The straightforward strategy
for proving P = Q, called direct proof, is to start by assuming that P is true and then to
use a series of logical deductions to conclude Q. But the statement P = Q means that
Q is true if P is, so the real purpose of the proof is to rule out the possibility that P is
true while Q is false. The indirect strategy is to begin by assuming that P is true and that
Q is false, and then to show that this leads to a logical contradiction. If it does, then we
know that it is impossible for both P and the negation of Q to hold simultaneously and
therefore Q must be true whenever P is. This indirect form of proof is called proof by
contradiction. It goes by the official name reductio ad absurdum, which we will abbreviate
as RAA.

The reason this proof form often works so well is that you have more information
with which to work. In a direct argument you assume only the hypothesis P and work
from there. In an indirect argument you begin by assuming both the original hypothesis
P and also the additional hypothesis not Q. You can make use of both assumptions in
your proof. In order to help clarify what is going on in an indirect proof, we will give a
special name to the additional hypothesis not Q; we will call it the RAA hypothesis to
distinguish it from the standard hypothesis P.

Indirect proofs are often confused with direct proofs of the contrapositive. They
are not the same, however, since in a direct proof of the contrapositive we assume only
the negation of the conclusion while in an indirect proof we assume and use both the
hypothesis and the negation of the conclusion. Suppose we want to prove the theorem P
implies Q. A direct proof of the contrapositive would start with not Q and conclude not
P. One way to formulate the argument would be to start by assuming P (the hypothesis)
and not Q (the RAA hypothesis), then to use the same proof as before to conclude not
P and finally to end by saying that we must reject the RAA hypothesis because we now
have both P and not P, an obvious contradiction. While this is logically correct, it is
considered to be bad form and sloppy thinking; this way of organizing a proof should,
therefore, usually be avoided.’

An even worse misuse of proof by contradiction is the following. Suppose again
that we want to prove the theorem P implies Q. We assume the hypothesis P. Then we
also suppose not Q (RAA hypothesis). After that we proceed to prove that P implies Q.
At that point in the proof we have both Q and not Q. That is a contradiction, so we reject
the RAA hypothesis and conclude Q. In this case the structure of an indirect argument
has been erected around a direct proof, thus obscuring the real proof. Again this is sloppy
thinking. It is an abuse of indirect proof and should a/ways be avoided.

Use RAA proofs when they are helpful, but don’t misuse them. A proof is often
discovered as an indirect proof because we can suppose the conclusion is false and explore

7. We will occasionally find good reason to formulate our proofs this way even though it is generally
not good practice.
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the consequences. Once you have found a proof, you should reexamine it to see if the
logic can be simplified and the essence of the proof presented more directly.

EXERCISES

2.5.1 Identify the hypothesis and conclusion of each of the following statements.
(a) If it rains, then I get wet.
(b) If the sun shines, then we go hiking and biking.
(c) If x > 0, then there exists a y such that y> =0.
(d) If 2x + 1 =5, then either x =2 or x = 3.
2.5.2 State the converse and contrapositive of each of the statements in Exercise 2.5.1.
2.5.3 Write the negation of each of the statements in Exercise 2.5.1.
2.5.4 Write each of the following statements in “if . . . , then . .. ” form.
(a) Itis necessary to score at least 90% on the test in order to receive an A.
(b) A sufficient condition for passing the test is a score of 50% or higher.
(c) You fail only if you score less than 50%.
(d) You succeed whenever you try hard.
2.5.5 State the converse and contrapositive of each of the statements in Exercise 2.5.4.
2.5.6 Write the negation of each of the statements in Exercise 2.5.4.
2.5.7 Restate each of the following assertions in “if . . . , then . . . ” form.
(a) Perpendicular lines must intersect.
(b) Any two great circles on S? intersect.
(c) Congruent triangles are similar.
(d) Every triangle has angle sum less than or equal to 180°.
2.5.8 Identify the hypothesis and conclusion of each of the following statements.
(a) I can take topology if I pass geometry.
(b) I get wet whenever it rains.
(¢) A number is divisible by 4 only if it is even.
2.5.9 Restate using quantifiers.
(a) Every triangle has an angle sum of 180°.
(b) Some triangles have an angle sum of less than 180°.
(c) Not every triangle has angle sum 180°.
(d) Any two great circles on S? intersect.

(e) If P is a point and ¢ is a line, then there is a line m such that P lies on m and
m is perpendicular to .

2.5.10 Negate each of the following statements.

(a) There exists a model for incidence geometry in which the Euclidean Parallel
Postulate holds.

(b) In every model for incidence geometry there are exactly seven points.
(c) Every triangle has an angle sum of 180°.

(d) Every triangle has an angle sum of less than 180°.

(e) It is hot and humid outside.
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(f) My favorite color is red or green.

(g) If the sun shines, then we go hiking.

(h) All geometry students know how to write proofs.
2.5.11 Restate the Elliptic Parallel Postulate as a conditional statement.
2.5.12 Restate the Hyperbolic Parallel Postulate as a conditional statement.
2.5.13 Write the negation of the Elliptic Parallel Postulate.
2.5.14 Write the negation of the Hyperbolic Parallel Postulate.
2.5.15 Construct truth tables that illustrate De Morgan’s Laws (page 31).

2.5.16 Construct a truth table which shows that the conditional statement H = C is
logically equivalent to (not H) or C. Then use one of De Morgan’s Laws to
conclude that not (H = C) is logically equivalent to H and (not C).

2.5.17 Construct a truth table which shows directly that the negation of H = C is
logically equivalent to H and (not C).

2.5.18 State the Pythagorean Theorem in “if . . . , then ... ” form.

2.6 SOME THEOREMS FROM INCIDENCE GEOMETRY

We illustrate the lessons of the last section with several theorems and a proof from
incidence geometry. The theorems in this section are theorems in incidence geometry, so
their proofs are to be based on the three incidence axioms that were stated in Section 2.2.
One of the hardest lessons to be learned in writing the proofs is that we may use only
what is actually stated in the axioms, nothing more. Here, again, are the three axioms.

Incidence Axiom 1. For every pair of distinct points P and Q there exists exactly one
line ¢ such that both P and Q lic on ¢.

Incidence Axiom 2. For every line £ there exist at least two distinct points P and Q such
that both P and Q lie on £.

Incidence Axiom 3. There exist three points that do not all lie on any one line.

The first theorem was already used as an example earlier in the chapter. As ex-
plained in the last section, this theorem must be restated before it is ready for a proof.
We will adopt the custom of formally restating theorems in if . . . then ... form when
necessary.

Definition 2.6.1. Two lines are said to infersect if there exists a point that lies on both
lines.

Theorem 2.6.2. Lines that are not parallel intersect in one point.

Restatement. If ¢ and m are distinct nonparallel lines, then there exists a unique point P
such that P lies on both ¢ and m.

Proof. Let ¢ and m be two lines such that £ # m and ¢ }f m (hypothesis). We must prove
two things: first, that there is a point that lies on both ¢ and m and, second, that there is
only one such point.

There is a point P such that P lies on both ¢ and m (negation of the definition of
parallel). Suppose there exists a second point Q, different from P, such that Q also lies



