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by Roger Howe, Ph.D., Yale University

We owe a debt of gratitude to Sybilla Beckmann for this book.

Mathematics educators commonly hear that teachers need a “deep understanding” of the mathe-
matics they teach. In this text, this pronouncement is not mere piety, it is the guiding spirit.

With the 1989 publication of its Curriculum and Evaluation Standards for School Mathematics, the 
National Council of Teachers of Mathematics (NCTM) initiated a new era of ferment and debate 
about mathematics education. The NCTM Standards achieved widespread acceptance in the mathe-
matics education community. Many states created or rewrote their standards for mathematics educa-
tion to conform to the NCTM Standards, and the National Science Foundation funded large-scale 
curriculum development projects to create mathematics programs consistent with the Standards’ vision.

But this rush of activity largely ignored a major lesson from the 1960s’ “New Math” era of math-
ematics education reform: in order to enable curricular reform, it is vital to raise the level of teach-
ers’ capabilities in the classroom. In 1999, the publication of  Knowing and Teaching Elementary 

Mathematics by Liping Ma finally focused attention on teachers’ understanding of mathematics 
principles they were teaching. Ma adapted interview questions (originally developed by Deborah 
Ball) to compare the basic mathematics understanding of American teachers and Chinese teachers. 
The differences were dramatic. Where American teachers’ understanding was foggy, the Chinese 
teachers’ comprehension was crystal clear. This vivid evidence showed that the difference in Asian 
and American students’ achievement, revealed in many international comparisons, correlated to a 
difference in the mathematical knowledge of the teaching corps.

The Mathematical Education of Teachers, published by the Conference Board on the Mathematical 
Sciences (CBMS), was one response to Ma’s work. Its first recommendation gave official voice to 
the dictum: “Prospective teachers need mathematics courses that develop a deep understanding of 
the mathematics they will teach.” This report provided welcome focus on the problem, but the 
daunting task of creating courses to fulfill this recommendation remained.

Sybilla Beckmann has risen admirably to that challenge. Keeping mathematical principles firmly in 
mind while listening attentively to her students and addressing the needs of the classroom, she has 
written a text that links mathematical principles to their day-to-day uses. For example, in Chapter 4, 
Multiplication, the first section is devoted to the meaning of  multiplication. First, it is defined 
through grouping: A * B means “the number of objects in A groups of B objects each.” Beckmann 
then analyzes other common situations where multiplication arises to show that the definition 
applies to each. The section problems, then, do not simply provide practice in multiplication; they 
require students to show how the definition applies.

Subsequent sections continue to connect applications of multiplication (e.g., finding areas, finding 
volumes) to the definition. This both extends students’ understanding of the definition and unites 
varied applications under a common roof. Reciprocally, the applications are used to develop the 
key properties of multiplication, strengthening the link between principle and practice. In the next 
chapter, the definition of multiplication is revisited and adapted to include fraction multiplication 
as well as whole numbers. Rather than emphasizing the procedure for multiplying fractions, this 
text focuses on how the procedure follows from the definitions.

Here and throughout the book, students are taught not merely specific mathematics, but the coher-
ence of mathematics and the need for careful definitions as a basis for reasoning. By inculcating the 
point of view that mathematics makes sense and is based on precise language and careful reason-
ing, this book conveys far more than knowledge of specific mathematical topics: it can transmit 
some of the spirit of doing mathematics and create teachers who can share that spirit with their 
students. I hope the book will be used widely, with that goal in mind.

FOREWORD
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PREFACE

I wrote Mathematics for Elementary and Middle School Teachers to help future elementary and 
middle school teachers develop a deep understanding of the mathematics they will teach. Peo-
ple commonly think that elementary and middle school mathematics is simple and that it 
shouldn’t require college-level study to teach it. But to teach mathematics well, teachers must 
know more than just how to carry out basic mathematical procedures; they must be able to 
explain why mathematics works the way it does. Knowing why requires a much deeper under-
standing than knowing how. By learning to explain why mathematics works the way it does, 
teachers will learn to make sense of mathematics. I hope they will carry this “sense of making 
sense” into their own future classrooms.

Because I believe in deep understanding, this book focuses on explaining why. Prospective 
elementary and middle school teachers will learn to explain why the standard procedures and 
formulas of elementary and middle school mathematics are valid, why nonstandard methods 
can also be valid, and why other seemingly plausible ways of reasoning are not correct. The 
book emphasizes key concepts and principles, and it guides prospective teachers in giving 
explanations that draw on these key concepts and principles. In this way, teachers will come to 
organize their knowledge around the key concepts and principles of mathematics so they will 
be able to help their students do likewise.

State and National Standards The Common Core State Standards for Mathematics (CCSS) have 
made inroads into state-level standards in varying degrees. In some cases, CCSS is the backbone of 
the state standards; in other cases, CCSS took a backseat to state-generated standards. Across the 
board, however, “teaching for understanding” is a strong theme, making this text a good choice no 
matter where you happen to teach. This book acknowledges the importance of CCSS, as seen in 
the references to the standards, but the team at Pearson and I have made a renewed effort to con-
nect to specific state standards, as shown on the new state-standards website at bit.ly/2xmJViL.

To develop this deeper understanding, teachers must study the mathematics they will teach 
in an especially active way, by engaging in mathematical practices. The eight CCSS Standards 
for Mathematical Practice outline and summarize some of the processes that are important in 
mathematics. These Standards for Mathematical Practice ask students to reason, construct, 
and critique arguments and to make sense of  mathematics. They ask students to look for 
structure and to apply mathematics. They ask students to monitor and evaluate their progress 
and to persevere. These standards apply not only to K–12 students, but to all of us who study 
and practice mathematics, including all of us who teach mathematics.

Throughout this book, the Classroom Activities, Problems, and the text itself  have been 
designed to foster ongoing active engagement in mathematical practices while studying math-
ematics content. At the beginning of each chapter, I briefly describe ways to engage in a few of 
the practices that are especially suited to the material in that chapter.

I believe Mathematics for Elementary and Middle School Teachers is an excellent fit for the 
recommendations of  the Conference Board of the Mathematical Sciences regarding the math-
ematical preparation of teachers. I also believe that the book helps prepare teachers to teach 
in accordance with the principles and standards of  the National Council of  Teachers of 
Mathematics (NCTM).

Scope of Coverage This book is centered on the mathematical content of  prekindergarten 
through Grade 8. (You may have noted that we added “Middle School” to the title of the text 
to emphasize the scope of coverage beyond “Elementary.”) The text addresses the K–8 CCSS 
Standards for Mathematical Content from a teacher’s perspective, with a focus on how ideas 
develop and connect and on powerful ways of  representing and reasoning about the ideas. 
Each section is labeled with the grade levels at which the content is typically introduced. The 
development of the material goes beyond what is expected of elementary and middle school 

http://bit.ly/2xmJViL
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students. For example, in third grade, students learn that shapes can have the same perimeter 

but different area. Section 12.8 explores that idea beyond the third grade level, by considering 

all possible shapes that have a fixed perimeter, including circles, and by asking what the full 

range of possible areas is for all those shapes.

The chapters are designed to help prospective teachers study how mathematical ideas 

develop across grade levels. For example, in third grade, students learn about areas of rectangles 

(Section 12.1), and they find areas of shapes by using the additivity principle (Section 12.2). In 

sixth grade, students use the additivity principle to explain area formulas, such as those for 

triangles and parallelograms (Sections 12.3, 12.4); in seventh grade they can apply the principle 

to see where the area formula for circles comes from (Section 12.6); and in eighth grade they 

can use the principle to explain the Pythagorean theorem (Section 12.9). Thus teachers can see 

how a simple but powerful idea introduced in third grade leads to important mathematics 

across grade levels.

New to the Sixth Edition

We changed the title of the text from Mathematics for Elementary Teachers to Mathematics for 

Elementary and Middle School Teachers to emphasize what has always been true of this text—it 

covers the content that teachers will teach in kindergarten through Grade 8.

Changes to Structure and Format

Classroom Activities The activities are now available to students in a consumable workbook 

format (ISBN: 978-0-13-693756-2) and downloadable within MyLab Math and via the QR 

codes in the text. The fact that the Activities have, in this edition, been moved out of the Stu-

dent Edition should not be taken as a sign of decreased importance—on the contrary, we have 

tried to make them even more accessible and useful.

• For this edition I added quite a few more activities; please see the “Changes to Math 

Content” section below for details on some of these additions.

• Classroom Activities now contain a “Materials” list at the beginning that calls attention to 

any necessary resources outside of the worksheet itself. Many of these resources are 

available as downloadable pages (bit.ly/2SWWFUX), ready for printing or photocopying.

Answers to Problems I was never really pleased with the “short answers” that appeared in blue 

type in the Annotated Instructor Edition, as they had to be extremely succinct to fit in the space 

available. They gave the impression that overly brief explanations or (worse yet) answers without 

explanations were acceptable—both of which go against the philosophy of the text. So we now 

provide QR codes to take you directly to the Instructor Solutions Manual, which provides the 

full solutions. Note that as an added measure of security, instructors need to log into their instructor’s 

MyLab Math account to access the solutions after (or prior to) scanning the QR code.

Access to MyLab Resources Common feedback that we’ve received from reviewers is that the 

resources and supplements need to be easier to locate and access within MyLab Math. For this 

edition we’ve added QR codes and short URLs to make it easy for you and your students to 

find resources in MyLab.

• We included QR code + short URL for resources that would be useful on a smartphone or 

a computer.

• We used short URL only for resources that are better left to a computer.

• Some QR codes and short URLs are in the Instructor Edition only—these appear in the 

blue “annotation” color.

• The QR codes and short URLs in black type are in the Student Edition itself.
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Chapter Review Problems To provide more unique assistance to students, we decided to replace 
the Chapter Summary, which in previous editions simply repeated information from each sec-
tion, with a set of Review Problems that pull together ideas from the chapter as a whole and 
better prepare students for chapter tests.

From the Field This feature has been expanded upon in this edition with additional entries that 
link material in the text to research on the mathematical thinking and learning of elementary 
and middle school students.

Correlations to State Standards We have created a web page (bit.ly/2xmJViL) that contains cor-
relations of the content of this book to major K–8 state standards. (If your state does not appear 
online initially, please accept my apologies, as we plan to add to the correlations over time.)

Indexes and Bibliographies In this edition we combined the separate indexes and bibliogra-
phies for the book itself  and the Classroom Activities into one index and one bibliography. 
(The page references for all Classroom Activity pages are differentiated with the prefix “CA.”)

Downloads For this edition we combined three different sets of  downloads (aka blackline 
masters) for the text and its accompanying activities into one comprehensive set and housed 
them all in one place: bit.ly/2SWWFUX. Specific downloads are referenced by number when 
they are needed.

Changes to Math Content

This edition has been enhanced in significant ways. Throughout, I revised and simplified word-
ing to clarify mathematical ideas and make them more accessible. I also revised the introductions 
to many sections to provide a better rationale for the material and to engage the ideas that future 
teachers may already have about the material. I wrote new problems and revised some others to 
use gender-neutral pronouns. I added a number of From the Field Research entries, many of 
which connect the material to research with students in elementary and middle school.

The section on problem solving (formerly Section 2.1) was moved to become an independent 
section, prior to Chapter 1. Additional references to recommendations have been included.

Chapter 1 A new Class Activity and new problems have been added on representing and 
counting with numbers in bases other than base ten. There are more detailed discussions on 
what the digits in a number stand for and on how decimals expand the base-ten system. A 
short section on the approximately equal sign was added.

Chapter 2 The introduction to fractions has been clarified and enhanced. New problems and 
a new Class Activity on problem-solving with common partitioning have been added based on 
research. The outdated term “improper fraction” is no longer emphasized.

Chapter 3 There is an enhanced discussion about the distinction between modeling a situation 
with a “situation equation” and using a possibly different “solution equation” to solve a problem. 
Additional problems explore viewing subtraction as taking away versus as the difference in a 
comparison. There is an additional discussion about using the interpretation of subtraction as 
a difference in a comparison to interpret subtraction with negative numbers.

Chapter 4 An enhanced discussion and a new Class Activity introduce the definition of 
multiplication. The wording of the definition of multiplication has been simplified, and more 
guidance on how to use the definition is provided. An additional Class Activity explains and 
uses the associative property with groups of groups of things.

Chapter 5 The introduction, discussion in the text, and examples in the Class Activities were 
revised to use the simplified wording for the definition of  multiplication from Chapter 4. The 
simplified wording allows for a closer and more natural connection between multiplication 
equations and phrases that describe a real-world situation. There is an enhanced discussion 

http://bit.ly/2SWWFUX
http://bit.ly/2xmJViL
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about using estimation with decimal multiplication. There is a new discussion, Class Activity, 
and problems on decimal multiplication word problems. Additional problems relate decimal 
multiplication to area. The introduction to multiplication with negative numbers was revised 
to explain why word problems are not emphasized in that section. There is an additional 
Class Activity on multiplication with powers.

Chapter 6 Explanations and examples were revised to use the simplified wording for the defi-
nition of multiplication given in Chapters 4 and 5. There are additional problems on interpret-
ing whole-number-with-remainder answers and mixed-number answers to whole number 
division problems. An additional Class Activity develops reasoning about base-ten bundles as 
a foundation for the standard whole number division algorithm. The Class Activities now offer 
a more gradual development for understanding why dividing by a fraction is equivalent to mul-
tiplying by the reciprocal.

Chapter 7 Revisions and additional problems in Class Activities clarify how ideas of ratio and 
proportion fit coherently with and extend ideas of multiplication and division. Explanations 
and examples were revised to use the simplified wording for the definition of multiplication 
given in Chapters 4 and 5. Based on research, additional guidance in the text and Class Activity 
problems address common errors in formulating equations. New interactive figures have been 
developed to illustrate how quantities can vary together in a fixed multiplicative relationship.

Chapter 8 Additional opportunities for problem-solving with factors have been included. A 
QR code and short URL (bit.ly/3dldGQb) have been added that link to an online section about 
how various number systems are related.

Chapter 9 The discussion on the logic of solving equations, and how the imagery of a pan-
balance is helpful, has been elaborated and clarified, including additional Class Activity prob-
lems. Discussions about the role of covariation have been added, and students have additional 
opportunities to create and interpret graphs of covarying quantities. Based on research, addi-
tional guidance addresses common errors in formulating equations. A QR code and short 
URL (bit.ly/3dldGQb) have been added that link to an online section about series.

Chapter 10 An additional activity introduces the need for angles. Revisions help to clarify the 
link between the rotation and static view of angles. Additional problems offer opportunities to 
make and reason about simple protractors by folding paper, to clarify how protractors measure 
angles. Additional problems explore how locations in a plane are related to intersections of 
circles. A QR code and short URL (bit.ly/3dldGQb) have been added that link to an online 
section about visualization.

Chapter 11 Additional problems and revisions have been made concerning making and inter-
preting rulers and common errors that occur from misinterpreting how rulers measure length.

Chapter 12 Additional emphasis was placed on counting units as the simplest and most direct 
way to determine area. Additional problems and revisions allow the connection between the 
area formula for rectangles and the “equal groups” definition of multiplication to be explored 
more thoroughly.

Chapter 13 Additional emphasis was placed on counting units as the simplest and most direct 
way to determine volume.

Chapter 14 The descriptions of the different types of symmetry have been simplified to make 
them easier to understand. Material on creating symmetrical designs has been re-inserted. A 
new interactive figure was developed to illustrate how to view geometric similarity as involving 
quantities that vary but are in a fixed relationship.

Chapter 15 The discussion on the distinction between statistical questions and other (mathe-
matical) questions has been elaborated and problems exploring the distinction have been 

http://bit.ly/3dldGQb
http://bit.ly/3dldGQb
http://bit.ly/3dldGQb
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added. A discussion on bias and the role of randomness in avoiding bias has been added. A 
new problem gives students the opportunity to classify questions about graphs. A Class Activ-
ity has been extended to explore the connection between the “fair share” view of the mean with 
the “balance point” view. Some Class Activities have been revised so they can be used either 
with electronic simulations or with hands-on materials.

Chapter 16 Based on research, a new Class Activity was added to help students make a con-
nection between long-run relative frequency and probability. A new problem has been added to 
explore probabilities related to infectious disease. Revisions to the section on using fraction 
arithmetic to calculate probabilities clarify how the calculations are justified based on the 
meaning of multiplication, addition, and subtraction.

I am enthusiastic about these changes and am sure students and professors will be as well.

Changes to MyLab Math

• Exercise review and fine-tuning—Burak Ölmez (University of Southern California) 
reviewed all of the MyLab exercises for appropriateness and suggested additions/deletions 
to better align the content of MyLab to support the text.

• Redesign for ease of navigation—We streamlined the organization of the content in MyLab 
Math and made it more visually appealing. Hopefully this will help you and your students 
make better use of what’s there!

• Integrated Mathematics and Pedagogy (IMAP) video exercises—In reviewing the MyLab 
usage statistics, we discovered that that the IMAP video exercises are very popular! So we 
added more of them. Now all IMAP videos have at least one assignable exercise so you 
have a way to check that your students actually watched the video.

• Interactive Figures—We added more interactive figures (in editable GeoGebra format) to 
serve as both teaching and learning tools. You can assign the interactive figures as part of 
homework via MyLab Math.

• Video labeling—We moved what used to be labeled “Common Core Videos” into the new 
category “Conceptual Understanding Videos.” For each Conceptual Understanding 
Video and Demonstrations Video, we note the relevant Common Core State Standard(s).

• Mindset and Study Skills—We’ve added material on Growth Mindset and common Study 
Skills (e.g., time management) because research indicates that success in mathematics has 
a strong affective component and because some students need help with study skills in 
order to succeed in the course.

Content Features

Organization of Chapters The book is organized around the operations instead of around the 
different types of  numbers. In my view, focusing on the operations has two key advantages. 
The first is a more advanced, unified perspective, which emphasizes that a given operation 
(addition, subtraction, multiplication, or division) retains its meaning across all the different 
types of numbers. Prospective teachers who have already studied numbers and operations in 
the traditional way for years will find that method enables them to take a broader view and to 
consider a different perspective. A second advantage is that fractions, decimals, and percents—
traditional weak spots—can be studied repeatedly throughout a course, rather than only at the 
end. The repeated coverage of fractions, decimals, and percents allows students to gradually 
become used to reasoning with these numbers, so they aren’t overwhelmed when they get to 
multiplication and division of fractions and decimals.
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A special section on solving problems and explaining solutions appears prior to Chapter 1. 
(I moved it from its previous location in Chapter 2 based on reviewer feedback.) The section 
helps students think about how explanations in math can be different from explanations in 
other fields of knowledge. This section can be covered at any time but might be especially help-
ful prior to Chapter 2.

Below, based on a suggestion from users of the text, is a chart that shows the dependencies 
of the sections. Note that the chart shows only immediate dependencies, not ones further down 
(i.e., dependents of dependents).

Section Depends On Section Depends On Section Depends On

1.1 independent 7.1 5.1 12.1 4.3

1.2 1.1 7.2 7.1, 6.2 12.2 12.1

1.3 1.2 7.3 7.2 12.3 12.2

1.4 1.3 7.4 7.3 12.4 somewhat on 12.3

2.1 1.1, somewhat on 1.2 7.5 7.3 12.5 12.3

2.2 2.1 7.6 6.2, 5.1, 4.4 12.6 12.2

2.3 2.2 8.1 somewhat on 4.1 12.7 12.1

2.4 2.2 8.2 8.1 12.8 12.6

3.1 independent 8.3 8.1 12.9 12.3, 10.1

3.2 3.1, 1.1 8.4 8.1 13.1 somewhat on 10.4

3.3 1.2 8.5 8.1 13.2 13.1, 10.3, somewhat 
on 11.2

3.4 2.2, somewhat on 1.2 8.6 standard division 
algorithm, in 6.3

13.3 4.3, somewhat on 11.2

3.5 3.2, 1.2 8.7 (online) 8.6, 1.2 13.4 13.3

4.1 independent 9.1 order of operations,  
in 4.4

14.1 10.1

4.2 4.1, 1.1, 1.2 9.2 9.1 14.2 14.1

4.3 4.1 9.3 9.2 14.3 14.1, 10.3

4.4 4.1 9.4 9.3 14.4 10.3, somewhat on 
14.3, 10.4

4.5 4.4, 4.3 9.5 9.2, 4.1 14.5 somewhat on 7.2

4.6 4.4, 4.3, 4.2 9.6 9.5 14.6 14.5, 14.1

5.1 4.1, 2.2 9.7 9.6 14.7 14.5, somewhat on 
11.2, 4.3

5.2 4.2 9.8 (online) 9.5 15.1 somewhat on 7.2

5.3 4.3, 4.4 10.0 (online) independent 15.2 15.1

5.4 5.2, 4.2 10.1 independent 15.3 15.2, somewhat on 6.2

6.1 4.1, somewhat on 5.3 10.2 10.1 15.4 15.3

6.2 6.1, 2.1 10.3 independent 16.1 somewhat on 2.1

6.3 6.2, 4.4, 1.1 10.4 10.3, 10.1 16.2 4.1

6.4 6.2 11.1 independent 16.3 16.2, 16.1

6.5 6.2, somewhat on 6.4 11.2 11.1 16.4 16.1, 5.1

6.6 6.1, 4.2 11.3 11.1, 1.4

11.4 11.2, 6.2, 4.3
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Notes on Topic Coverage A new Class Activity (Class Activity 1-E Counting in Other Bases) 
and new problems (Practice Exercise 8 and Problems 13, 14, and 15 in Section 1.1) guide stu-
dents to represent and count numbers in bases other than base ten. Arithmetic in bases other 
than ten is implied in several activities and problems. For example, Class Activities 3-M 
Regrouping in Base 12, and 3-N Regrouping in Base 60, and as well as Practice exercise 6, and 
Problems 7–11 in Section 3.3 also involve the idea of other bases. These activities and problems 
allow students to grapple with the significance of  the base in place value without getting 
bogged down in the mechanics of arithmetic in other bases.

Visual representations, including number lines, double number lines, strip diagrams (also 
known as tape diagrams), and base-ten drawings are used repeatedly throughout the book and 
help prospective teachers learn to explain and make sense of  mathematical ideas, solution 
methods, and standard notation. Chapter 9 introduces U.S. teachers to the impressive strip-
diagram method for solving algebra word problems, which is used in Grades 3–6 in Singapore, 
where children get the top math scores in the world. The text shows how reasoning about strip 
diagrams leads to standard algebraic techniques.

Class Activities Class Activities were written as part of the text and are central and integral to 
full comprehension. The activities are now available to students in a consumable workbook 
format (ISBN: 978-0-13-693756-2) and downloadable within MyLab Math and via the QR 
codes in the text. The fact that the Activities have, in this edition, been moved out of the Stu-
dent Edition should not be taken as a sign of decreased importance—on the contrary, we have 
tried to make them even more accessible and useful.

All good teachers of  mathematics know mathematics is not a spectator sport. We must 
actively think through mathematical ideas to make sense of them for ourselves. When students 
work on problems in the class activities—first on their own, then in a pair or a small group, 
and then within a whole-class discussion—they have a chance to think through the mathemat-
ical ideas several times. By discussing mathematical ideas and explaining their solution meth-
ods to each other, students can deepen and extend their thinking. As every mathematics teacher 
knows, students really learn mathematics when they have to explain it to someone else.

A number of activities and problems offer opportunities to critique reasoning. For exam-
ple, in Class Activities 2-S, 3-O, 7-A, 7-O, 12-R, 14-T, 15-E, and 16-B students investigate com-
mon errors in comparing fractions, adding fractions, distinguishing proportional relationships 
from those that are not, determining perimeter, working with similar shapes, displaying data, 
and probability. Since most misconceptions have a certain plausibility about them, it is impor-
tant to understand what makes them mathematically incorrect. By examining what makes mis-
conceptions incorrect, teachers deepen their understanding of  key concepts and principles, 
and they develop their sense of valid mathematical reasoning. I also hope that, by studying and 
analyzing these misconceptions, teachers will be able to explain to their students why an erro-
neous method is wrong, instead of just saying, “You can’t do it that way.”

Standard and Nonstandard Methods Other Class Activities and problems examine calculation 
methods that are nonstandard but nevertheless correct. For example, in Class Activities 2-R, 
2-U, 3-L, 3-P, 4-N, 6-G, and 6-O, teachers explore ways to compare fractions, calculate with 
percents, subtract whole numbers, add and subtract mixed numbers, multiply mentally, divide 
whole numbers, and divide fractions in nonstandard but logically valid ways. When explaining 
why nonstandard methods are correct, teachers have further opportunities to draw on key 
concepts and principles and to see how these concepts and principles underlie calculation 
methods. By examining nonstandard methods, teachers also learn there can be more than one 
correct way to solve a problem. They see how valid logical reasoning, not convention or 
authority, determines whether a method is correct. I hope that, having studied and analyzed a 
variety of  valid solution methods, teachers will be prepared to value their students’ creative 
mathematical activity. Surely a student who has found an unusual but correct solution method 
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would be discouraged if  told the method is incorrect. Such a judgment also conveys to the 
student entirely the wrong message about what mathematics is.

Studying nonstandard methods of  calculation provides valuable opportunities, but the 
common methods deserve to be studied and appreciated. These methods are remarkably 
clever and make highly efficient use of  underlying principles. Because of  these methods, 
we know that a wide range of  problems can always be solved straightforwardly. The com-
mon methods are major human achievements and part of  the world’s heritage; like all 
mathematics, they are especially wonderful because they cross boundaries of  culture and 
language.

Textbook Features

Practice Exercises Practice Exercises in each section of the text give students the opportunity 
to try out problems. Solutions appear in the text immediately after the Practice Exercises, pro-
viding students with many examples of the kinds of good explanations they should learn to 
write. By attempting the Practice Exercises themselves and checking their solutions against the 
solutions provided, students will be better prepared to provide good explanations in their 
homework.

Problems Following the Practice Exercises, the Problems are opportunities for students  
to explain the mathematics they have learned, without being given an answer at the end of  
the text. Problems are typically assigned as homework. Solutions appear in the Instructor’s 
Solutions Manual.

From the Field boxes have been expanded to include additional research related to the mathe-
matical content of the section.

Section Summary and Study Items are provided at the end of  each section to help students 
organize their thinking and focus on key ideas as they study.

Chapter Review Problems Each chapter concludes with Review Problems that pull together the 
ideas from across the chapter. Hints are provided for the Review Problems.

Special Labeling

The core icon denotes central material. These problems and activities are highly recommended 
for mastery of the material.

Problems with an asterisk are more challenging, involve an extended investigation, or are 
designed to extend students’ thinking beyond the central areas of study.

The Common Core icon indicates that the section addresses the Common Core State Stand-
ards for Mathematics at the given grade level. The treatment of the topic goes beyond what 
students at that grade level are expected to do because teachers need to know how mathemati-
cal ideas develop and progress. CCSS have also been noted on almost every activity.

*
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Skills Review MyLab Math Course for 
Mathematics for Elementary and Middle  
School Teachers

MyLab Math is available to accompany Pearson’s market leading text offerings. To comple-
ment the inquiry-based approach of  this text, a special Skills Review MyLab Math course 
contains practice exercises, a complete eText, and many other resources. The Skills Review 
course differs from traditional MyLab courses in that the algorithmic homework exercises con-
tained in it are not designed to match those in the textbook, but rather to complement them. 
Specifically, the online exercises are designed to help students develop fluency with procedures 
for which they lack confidence, complementing the primary means of assessment in the text-
book, activities, and Instructor’s Testing Manual. The online exercises have been revised for 
this edition to better align with the content of the textbook.

What follows are descriptions of the many other resources designed to support faculty and 
students within MyLab Math.

Activities

• Activities Manual (ISBN: 978-0-13-693756-2 and downloadable in MyLab Math)— 
Contains classroom activities, written by the author in conjunction with the text, that are 
integral to full comprehension.

• Additional Activities (downloadable by chapter in MyLab Math) consist of activities not 
included in the manual.

• Downloads (homepage: bit.ly/2SWWFUX) include all blackline masters necessary to 
support the activities. The downloads are referenced by number within the activities.

Videos

Video Type / Intended 
Audience Contents Easy Access Assignable?

Demonstration Videos

for future teachers
Author or other expert 
demonstrating math 
processes/procedures 
for future teachers

QR codes in the 
Student Edition

Videos assignable 
in MyLab Math, 
and many have 
corresponding 
assessment questions.

Conceptual Under-

standing Videos

for future teachers

Author or other expert 
builds conceptual 
understanding of key 
concepts for future 
teachers.

QR codes in the 
Student Edition

Videos assignable 
in MyLab Math, 
and many have 
corresponding 
assessment questions.

IMAP Videos 
(Integrated 
Mathematics and 
Pedagogy)
for future teachers

Videos show elementary 
and middle school 
students working 
through problems, 
providing great insight 
into student thinking.

QR codes in the 
Student Edition

IMAP Video 
homepage:  
bit.ly/3eUNjlR

• At least one 
assignable MyLab 
exercise for every 
IMAP video.

• Many IMAP videos 
supported by 
worksheets.

• IMAP 
Implementation 
Guide in MyLab 
provides specifics for 
integrating IMAP 
into your course.

http://bit.ly/3eUNjlR
http://bit.ly/2SWWFUX
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Video Type / Intended 
Audience Contents Easy Access Assignable?

Active Teacher/Active 

Learner Videos

for faculty members

• Classroom Videos 
show the author 
or other faculty 
member in class 
working with future 
teachers to learn 
a specific concept 
using inquiry-based 
methods.

• Teaching Tip Videos 
by the author share 
best practices for 
faculty teaching this 
course, focusing on 
use of inquiry-based 
methods.

Short URLs 
in Instructor’s 
Edition

Homepage for 
these videos:  
bit.ly/3d2At37

Not applicable

Interactive Figures and eManipulatives (homepage: bit.ly/3aQ9571) Interactive Figures allow 
students to explore and manipulate the mathematical concepts in a tangible way, leading to a 
more durable understanding. Interactive Figures are programmed in GeoGebra and are fully 
editable. eManipulatives correspond to the physical manipulatives designed for K–8 students. 
Corresponding exercises in MyLab Math make these tools truly assignable. Additional Inter-
active Figures (in editable GeoGebra format) have been added for this revision.

Core Instructor Resources

Annotated Instructor’s Edition (ISBN: 978-0-13-693776-0)—Contains QR codes and short 
URLs that provide direct access to resources within MyLab Math to support instruction. Note 

that as an added measure of security, instructors need to log into their instructor’s MyLab Math 

account to access the following resources after scanning a QR code.

• Instructor’s Resource Manual—Written by the author, this manual includes solutions and 
guidance for each Class Activity, general advice on teaching the course, advice for strug-
gling students, and sample syllabi, as well as support and ideas for each chapter.

• Instructor’s Solutions Manual—Written by Michael Matthews of University of Nebraska 
at Omaha, the solutions manual contains worked-out solutions to all Problems in the text.

• Instructor’s Testing Manual—Written by the author, this manual includes guidance on 
assessment, including sample test problems.

Supplemental Instructional Resources

• From the Field: Research (homepage: bit.ly/3aX00ti)—Summaries of research on children’s 
mathematical thinking and learning by I. Burak Ölmez, Eric Siy, and the author expand 
on the content in the From the Field boxes in the text.

• From the Field: Children’s Lit (homepage: bit.ly/2Smc5BQ)—Summaries of children’s 
literature related to mathematics by Kirsten Keels and the author expand on the content 
in the From the Field boxes in the text.

• When Will I Ever Teach This? (homepage: bit.ly/35ji3sd) activities manual uses pages from 
real elementary school textbooks to demonstrate where topics occur in the curriculum and 
how they are presented to students.

• Image Resource Library (homepage: bit.ly/2WbQE7r) that contains all art from the text 
and is available for instructors to use in their own presentations and handouts.

http://bit.ly/3d2At37
http://bit.ly/2WbQE7r
http://bit.ly/35ji3sd
http://bit.ly/2Smc5BQ
http://bit.ly/3aX00ti
http://bit.ly/3aQ9571
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  Solving Problems and Explaining Solutions

Typical Grade Levels All grades

Fractions are fertile ground for problem solving and reasoning. Before we study fractions, 

let’s think about how to solve problems and explain solutions. We will examine some simple 

but sensible guidelines for solving problems and think about what qualifies as a good explana-

tion in mathematics. A main theme of this book is explaining why: Why are the familiar proce-

dures and formulas of elementary mathematics valid? Why is a student’s response incorrect? 

Why is a different way of carrying out a calculation often perfectly correct? We will be seeking 

mathematical answers to these questions.

What Is the Role of Problem Solving?
Mathematics exists to solve problems. With mathematics, we can solve a vast variety of prob-

lems in technology, science, business and finance, medicine, daily life, and mathematics itself. 

The potential uses of mathematics are limited only by human ingenuity. Solving problems is 

not only the most important end of mathematics, it is also a means for learning mathematics. 

Mathematicians have long known that good problems can deepen our thinking about mathe-

matics, guide us to new ways of using mathematical techniques, help us recognize connections 

between topics in mathematics, and force us to confront mathematical misconceptions we 

may hold. By working on good problems, we learn mathematics better.

Several organizations and groups concerned with teaching and learning mathematics in pre-

kindergarten through high school recommend that all students engage in problem solving, both 

in mathematics and in other contexts. Some standards on problem solving appear in the next box.

• The Principles and Standards for School Mathematics of  the National Council of 

Teachers of Mathematics (NCTM) [NCTM00] includes this Process Standard:

• Problem Solving Instructional programs from prekindergarten through grade 12 should 

enable all students to

• build new mathematical knowledge through problem solving;

• solve problems that arise in mathematics and in other contexts;

• apply and adapt a variety of appropriate strategies to solve problems;

• monitor and re�ect on the process of mathematical problem solving.

(From Principles and Standards for School Mathematics. Copyright © by National 

Council of Teachers of Mathematics. Used by permission of National Council of 

Teachers of Mathematics.)

• The Common Core State Standards for Mathematics (CCSS) [CCSS10] includes this 

Standard for Mathematical Practice:

• SMP1 Make sense of problems and persevere in solving them. Mathematically pro�-

cient students start by explaining to themselves the meaning of a problem and 

looking for entry points to its solution. . . . [They] plan a solution pathway rather 

than simply jumping into a solution attempt. . . . They monitor and evaluate their 

progress and change course if  necessary. . . . Mathematically pro�cient students 

check their answers to problems using a di�erent method, and they continually ask 

themselves, “Does this make sense?” (From Common Core Standards for Mathemat-

ical Practice. Published by Common Core Standards Initiative.)

STANDARDS ON PROBLEM SOLVING

1



2 Solving Problems and Explaining Solutions

How Do We Become Good Problem Solvers?
In 1945, the mathematician George Polya presented a four-step guideline for solving problems 

in his book How to Solve It [Pol88]. These four steps are simple and sensible, and they have 

become a framework for thinking about problem solving.

Polya’s Steps 

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan.

4. Look back.

(From How to Solve it: A New Aspect of Mathematical Method by George Polya. Published 

by Princeton University Press, © 1945.)

Teachers and researchers have used Polya’s steps to develop more detailed lists of prompts or 

questions to help students monitor their thinking during problem solving.

Polya’s first step, understand the problem, is the most important. It may seem obvious that 

if you don’t understand a problem, you won’t be able to solve it, but it is easy to rush into a 

problem and try to do “something like we did in class” before you think about what the prob-

lem is asking. So slow down and read problems carefully. In some cases, drawing a diagram or 

a simple math picture can help you understand the problem.

In the midst of solving a problem (Polya’s steps 2 and 3), it’s important to monitor and 

reflect on the process of problem solving. Think about what information you know, what 

information you are looking for, and how to relate those pieces of information. If you get 

stuck, think about whether you have seen similar problems. Consider whether you could adapt 

or modify the reasoning you used for another problem to the problem at hand. Be willing to 

try another approach to solving the problem.

It’s important to persevere when attempting to solve a problem. Students sometimes think 

they can solve a problem only if they’ve seen one just like it before, but this is not true. Your 

common sense and natural thinking abilities are powerful tools that will serve you well if you 

use them. By persevering, you will develop these thinking abilities.

Polya’s fourth step, look back, gives you an opportunity to catch mistakes. Check to see if 

your answer is plausible. For example, if the problem was to find the height of a telephone 

pole, then answers such as 2.3 feet or 513 yards are unlikely—look for a mistake somewhere. 

Looking back also gives you an opportunity to make connections: Have you seen this type of 

answer before? What did you learn from this problem? Could you use these ideas in some 

other way? Is there another way to solve the problem? When you look back, you have an 

opportunity to learn from your own work.

Solving Problems for Yourself Students sometimes wonder why they need to solve prob-

lems themselves: Why can’t the teacher just show us how to solve the problem? Of course, 

teachers do show solutions to many problems. However, sometimes teachers should step back 

and guide their students, helping them to use fundamental concepts and principles to figure out 

how to solve a problem. Why? Because the process of grappling with a problem can help stu-

dents understand the underlying concepts and principles. Teachers who are too quick to tell 

students how to solve problems may actually rob them of valuable learning experiences. The 

process of making sense of things for yourself  is the essence of education—use it in mathemat-

ics and do not underestimate its power.

Recommendations for Teaching Problem Solving Research has uncovered aspects of 

problem solving that have implications for teaching and learning. The next box briefly sum-

marizes recommendations from the Institute of Education Sciences (see [Wool2]).

Topic: Teaching 

through problem-

solving

Videos: 

 • Elise

 • Tonya’s Class

 • Whole Class

bit.ly/3eUNjlR

http://bit.ly/3eUNjlR
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Recommendation 1. Prepare problems and use them in whole-class instruction.

Recommendation 2. Assist students in monitoring and re�ecting on the problem-solving 

process.

Recommendation 3. Teach students how to use visual representations.

Recommendation 4. Expose students to multiple problem-solving strategies.

Recommendation 5. Help students recognize and articulate mathematical concepts and 

notation.

(From Improving Mathematical Problem Solving in Grades 4 Through 8, published by the 

Institute of Education Sciences, U.S. Department of Education. See [Wool2].)

IMPROVING MATHEMATICAL PROBLEM SOLVING  
IN GRADES 4 THROUGH 8

One important recommendation is for students to monitor and reflect on their think-

ing as they solve problems. To help themselves monitor and reflect, students can ask ques-

tions such as, “What is this problem asking about?” and “What are some ways I might 

approach this problem?” and “Is my approach working? Is there another way I might 

approach this problem?” Teachers can engage in dialogues that build on students’ ideas  

so that students can clarify and refine how they are thinking and verbalize ways to 

approach a problem.

To improve at anything, including problem solving, it is important to know that ability is 

not fixed, but can be improved by working at it. According to pioneering work of Dr. Carol 

Dweck (see her book, Mindset [Dwe0G]), success can be dramatically influenced by how we 

think about our talents and abilities.

Another recommendation to improve problem solving is to learn how to use visual repre-

sentations, including strip diagrams and other math drawings.

How Can We Use Strip Diagrams and Other Math 
Drawings?
Visual representations can often help us make sense of a problem, formulate a solution strat-

egy, and explain a line of reasoning. Simple drawings that show relationships between quanti-

ties and are quick and easy to make can be especially helpful. We call such drawings math 

drawings. Math drawings should be as simple as possible and include only those details that 

are relevant to solving the problem.

One type of math drawing is the strip diagram, also called a tape diagram. Strip dia-

grams use lengths of rectangular strips to represent quantities, as shown on the left in the  

figure on the next page. Because strip diagrams use lengths, they connect readily with number 

lines. Strip diagrams can help students formulate equations, including algebraic equations. 

Strip diagrams are used throughout this book.

What Does It Mean to Model with Mathematics?
Closely related to mathematical problem solving is the practice of modeling with mathematics, 

in which students apply mathematics to solve problems that arise in context, including in eve-

ryday life. The box on the next page shows a standard on mathematical modeling for students 

in all grades from Kindergarten through high school.
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gold�sh

18

other

�sh

Math drawing (a strip diagram): Not a math drawing:

3 3 18 5 54 gold�sh

3 parts, 

18 gold�sh in each part

Problem:  In an aquarium,     of  the �sh are gold�sh. There are 18 other �sh. 

How many gold�sh are there? 

3
4

Video: Using a math 
drawing to solve a 
word problem

bit.ly/2W2ngR9

The Common Core State Standards for Mathematics (CCSS) [CCSS10] includes this 

Standard for Mathematical Practice:

SMP4 Model with mathematics.

Mathematically pro�cient students can apply the mathematics they know to solve 

problems arising in everyday life, society, and the workplace. In early grades, this might 

be as simple as writing an addition equation to describe a situation. In middle grades, a 

student might apply proportional reasoning to plan a school event or analyze a problem 

in the community.

Mathematically pro�cient students who can apply what they know are comfortable 

making assumptions and approximations to simplify a complicated situation, realizing 

that these may need revision later. They are able to identify important quantities in a 

practical situation and map their relationships using such tools as diagrams, two-way 

tables, graphs, �owcharts and formulas. They can analyze those relationships mathemati-

cally to draw conclusions. They routinely interpret their mathematical results in the 

context of the situation and re�ect on whether the results make sense, possibly improving 

the model if  it has not served its purpose.

A STANDARD ON MATHEMATICAL MODELING

 FROM THE FIELD Research

Wickstrom, M. H., & Aytes, T. (2018). Elementary modeling: Connecting counting 
with sharing. Teaching Children Mathematics, 24(5), 300–307.

Mathematical modeling is the fourth of eight Standards for Mathematical Practice 
in the Common Core State Standards for Mathematics. This article discusses 
mathematical modeling at the elementary school level. A class of second graders 
were engaged in mathematical modeling when the students were presented with a 
container of goldfish crackers and asked what they wondered about the container. 
The students were especially interested in how many goldfish each would receive. 
After students discussed constraints and assumptions, such as, “We should all get 
the same,” groups of students found various strategies for sharing the goldfish 
fairly. The article concludes by highlighting several important features of math-
ematical modeling at the elementary school level. 

http://bit.ly/2W2ngR9
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What Is the Role of Explanations in Mathematics?
In mathematics, we want more than just answers to problems. We want to know why a method 

works. Why does it give the correct answer to the problem? As a teacher, you will need to 

explain why the mathematics you are teaching works the way it does. However, there is an 

even more compelling reason for providing explanations. When you try to explain something 

to someone else, you clarify your own thinking, and you learn more yourself. When you try to 

explain a solution, you may find that you don’t understand it as well as you thought. The exer-

cise of explaining is valuable because it provides an opportunity to learn more, to uncover an 

error, or to clear up a misconception. Even if you understood the solution well, you will under-

stand it better after explaining it.

At its core, mathematics is about ideas. So explanations and lines of reasoning are just as 

important in mathematics as skills, procedures, and formulas. Evidence is strong that the 

practice of asking and answering deep explanatory questions is important for learning, 

according to the Practice Guide, Organizing Instruction and Study to Improve Student Learn-

ing, published by the Institute of Education Sciences (see [Pas07]), which states:

Recommendation 7: Help students build explanations by asking and answering deep 

questions.

Communicating about mathematics gives both children and adults an opportunity to make 

sense of mathematics. According to the NCTM [NCTM00, p. 56] 

From children’s earliest experiences with mathematics, it is important to help them under-

stand that assertions should always have reasons. Questions such as “Why do you think it 

is true?” and “Does anyone think the answer is di�erent, and why do you think so?” help 

students see that statements need to be supported or refuted by evidence. 

(From Principles and Standards for School Mathematics. Copyright © by National 

 Council of Teachers of Mathematics. Used by permission of National Council of Teachers 

of Mathematics.)

When we communicate about mathematics in order to explain and convince, we must use rea-

soning. Logical reasoning is the essence of mathematics. In mathematics, everything but the 

fundamental starting assumptions has a reason, and the whole structure of mathematics is 

built up by reasoning.

The next box shows standards on reasoning, proof, and communication for students at all 

grades from prekindergarten or kindergarten through high school.

The Principles and Standards for School Mathematics of the National Council of Teachers 

of Mathematics (NCTM) [NCTM00] includes these Process Standards:

• Communication Instructional programs from prekindergarten through grade 12 should 

enable all students to

• organize and consolidate their mathematical thinking through communication;

• communicate their mathematical thinking coherently and clearly to peers, teachers, 

and others;

• analyze and evaluate the mathematical thinking and strategies of others;

• use the language of mathematics to express mathematical ideas precisely.

STANDARDS ON REASONING, PROOF, AND 
COMMUNICATION
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• Reasoning and Proof Instructional programs from prekindergarten through grade 12 

should enable all students to

• recognize reasoning and proof as fundamental aspects of mathematics;

• make and investigate mathematical conjectures;

• develop and evaluate mathematical arguments and proofs;

• select and use various types of reasoning and methods of proof.

(From Principles and Standards for School Mathematics. Copyright © by National 

Council of Teachers of Mathematics. Used by permission of National Council of 

Teachers of Mathematics.)

• The Common Core State Standards for Mathematics (CCSS) [CCSS10] includes this 

Standard for Mathematical Practice:

• SMP3 Construct viable arguments and critique the reasoning of others. Mathemati-

cally pro�cient students understand and use stated assumptions, de�nitions, and 

previously established results in constructing arguments . . . . They justify their 

conclusions, communicate them to others, and respond to the arguments of others . . . . 

Mathe matically pro�cient students are also able to compare the e�ectiveness of two 

plausible arguments, distinguish correct logic or reasoning from that which is �awed, 

and—if there is a �aw in the argument—explain what it is . . . . (From Common  

Core Standards for Mathematical Practice. Published by Common Core Standards 

Initiative.)

How Are Explanations in Mathematics Different from Other 
Explanations?
In mathematics, we seek particular kinds of explanations: those using logical reasoning and 

based on initial assumptions that are either explicitly stated or assumed to be understood by 

the reader or listener. Explanations can vary according to different areas of knowledge. There 

are many different kinds of explanations—even of the same phenomenon. For example, con-

sider this question: Why are there seasons?

The simplest answer is “because that’s just the way it is.” Every year, we observe the pass-

ing of the seasons, and we expect to see the cycle of spring, summer, fall, and winter continue 

indefinitely. The cycle of seasons is an observed fact that has been documented since humans 

began to keep records. We could stop here, but when we ask why there are seasons, we are 

searching for a deeper explanation.

A poetic explanation for the seasons might refer to the cycles of birth, death, and rebirth 

around us. In our experiences, nothing remains unchanged forever, and many things are parts 

of a cycle. The cycle of the seasons is one of the many cycles that we observe.

Most cultures have stories that explain why we have seasons. The ancient Greeks, for 

example, explained the seasons with the story of Persephone and her mother, Demeter, who 

tends the earth. When Pluto, god of the underworld, stole Persephone, forcing her to become 

his bride, Demeter was heartbroken. Pluto and Demeter arranged a compromise, and Perse-

phone could stay with her mother for half a year and return to Pluto in the underworld for the 

remaining half of every year. When Persephone is in the underworld, Demeter is sad and does 

not tend the earth. Leaves fall from the trees, flowers die, and it is fall and winter. When Perse-

phone returns, Demeter is happy again and tends the earth. Leaves grow on the trees, flowers 

bloom, and it is spring and summer. This is a beautiful story, but we can still ask for another 

kind of explanation.
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Spring

Summer

Winter

Fall

Modern scientists explain the reason for the seasons by the tilt of the earth’s axis relative 

to the plane in which the earth travels around the sun. When the northern hemisphere is tilted 

toward the sun, it is summer there; when it is tilted away from the sun, it is winter. Perhaps this 

settles the matter, but a seeker could still ask for more. Why are the earth and sun positioned 

the way they are? Why does the earth revolve around the sun and not fly off into space? These 

questions can lead again to poetry or to the spiritual or to further physical theories. Maybe 

they lead to an endless cycle of questions.

How Do We Write Good Mathematical Explanations?
While an oral explanation helps you develop your solution to a problem, written explanations 

push you to polish, refine, and clarify your ideas. This is as true in mathematical writing as in 

any other kind of writing, and it is true at all levels. You should write explanations of your 

solutions to problems, and your students should write explanations of their solutions, too. 

Some elementary school teachers have successfully integrated mathematics and writing in their 

classrooms and use writing to help their students develop their understanding of mathematics.

Like any kind of writing, it takes work and practice to write good mathematical explana-

tions. When you solve a problem, do not attempt to write the final draft of your solution right 

from the start. Use scratch paper to work on the problem and collect your ideas. Then, write 

your solution as part of the looking back stage of problem solving. Think of your explanations 
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Good mathematical explanations are thorough. They should not have gaps that require 

leaps of faith. On the other hand, a good explanation should not belabor points that are well 

known to the audience or not central to the explanation. For example, if your solution con-

tains the calculation 356 , 7, a college-level explanation need not describe how the calcula-

tion is carried out, except when it is necessary for the solution. Unless your instructor tells you 

otherwise, assume that you are writing your explanations for your classmates.

The box above lists characteristics of good mathematical explanations. When you write 

an explanation, check whether it has these characteristics. The more you work at writing 

explanations, and the more you ponder and analyze what makes good explanations, the better 

you will write explanations and the better you will understand the mathematics involved.  

Note that the solutions to the practice exercises in each section provide you with many exam-

ples of the kinds of explanations you should learn to write.

as an essay. As with any essay that aims to convince, what counts is not only factual correct-

ness but also persuasiveness, explanatory power, and clarity of expression. In mathematics, we 

persuade by giving a thorough, logical argument, in which chains of logical deductions are 

strung together connecting the starting assumptions to the desired conclusion.

CHARACTERISTICS OF GOOD EXPLANATIONS  
IN MATHEMATICS

1. The explanation is factually correct, or nearly so, with only minor, inconsequential 

�aws.

2. The explanation addresses the specific question or problem that was posed. It is 

focused, detailed, and precise. Key points are emphasized. There are no irrelevant or 

distracting points.

3. The explanation is clear, convincing, and logical. A clear and convincing explanation 

is characterized by the following:

a. The explanation could be used to teach another (college) student, possibly even 

one who is not in the class.

b. The explanation could be used to convince a skeptic.

c. The explanation does not require the reader to make a leap of faith.

d. If  applicable, supporting math drawings, diagrams, and equations are used appro-

priately and as needed.

e. The explanation is coherent.

f. Clear, complete sentences are used.
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Numbers and the  
Base-Ten System

W
hat are numbers and where do they come from? The concept of numbers has 

evolved over the course of history, and the way children learn about numbers 

parallels this development. When did humans first become aware of numbers? The 

answer is uncertain, but it is at least many tens of thousands of years ago. Some scholars 

believe that numbers date back to the beginning of human existence, citing as a basis for 

their views the primitive understanding of numbers observed in some animals. (See 

[Deh11] for a fascinating account of this and also of the human mind’s capacity to 

comprehend numbers.)

In this chapter, we discuss elementary ideas about numbers, which reveal surprising 

intricacies that we are scarcely aware of as adults. We will study the base-ten system—a 

remarkably powerful and efficient system for writing numbers and a major achievement 

in human history. Not only does the base-ten system allow us to express arbitrarily large 

numbers and arbitrarily small numbers—as well as everything between—but it also 

enables us to quickly compare numbers and assess the ballpark size of a number. The 

base-ten system is familiar to adults, but its slick compactness hides its inner workings. 

We will examine with care those inner workings of the base-ten system that children must 

grasp to make sense of numbers.

In this chapter, we focus on the following topics and practices within the Common 

Core State Standards for Mathematics (CCSS). For other standards, including some 

state standards, see bit.ly/2xmJViL.

1 

http://bit.ly/2xmJViL
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Standards for Mathematical Content in the CCSS

In the domain of Counting and Cardinality (Kindergarten) young children learn to say and write 

small counting numbers and to count collections of things. In the domain of Numbers and Opera-

tions in Base Ten (Kindergarten through Grade 5), students learn to use the powerful base-ten 

system. This system starts with the idea of making groups of ten and gradually extends this idea 

to the greater and to the smaller place values of decimals.

Standards for Mathematical Practice in the CCSS

Opportunities to engage in all eight of the Standards for Mathematical Practice described in the 

CCSS occur throughout the study of counting and the base-ten system. The following standards 

are especially appropriate for emphasis while studying counting and the base-ten system:

 • SMP2 Reason abstractly and quantitatively. Students engage in this practice when they 

make sense of number words and symbols by viewing numbers as representing quantities 

and when they use numbers to describe quantities.

 • SMP5 Use appropriate tools strategically. The base-ten system represents numbers in 

a very compact, abstract way. By reasoning with appropriate tools, such as drawings of 

tens and ones or number lines that show decimals, students learn to make sense of the 

powerful base-ten system.

 • SMP7 Look for and make use of structure. The base-ten system has a uniform struc-

ture, which creates symmetry and patterns. Students engage in this practice when they 

seek to understand how increasingly greater base-ten units can always be created and 

how the structure of the base-ten system allows us to compare numbers and find numbers 

between numbers.

From Common Core Standards for Mathematical Practice. Published by Common Core 

Standards Initiative.

 1.1 The Counting Numbers

Typical Grade Levels: Pre–K, Grades K–4

What are numbers, and why do we have them? We use numbers to tell us “how many” or “how 

much,” in order to communicate specific, detailed information about collections of things and 

about quantities of stuff. Although there are many different kinds of numbers (e.g., fractions, 

decimals, and negative numbers), the most basic numbers, and the starting point for young 

children, are the counting numbers—the numbers 1, 2, 3, 4, 5, 6, . . . . (The dots indicate that 

the list continues without end.)

How Is It Different to View the Counting Numbers as a List 
and for Describing Set Size?
Counting numbers can be thought about in two distinctly different ways. Connecting these 

two views is a major mathematical idea that very young children must grasp before they can 

do school arithmetic.

1-A The Counting Numbers as a List, p. CA-1

CLASS ACTIVITY bit.ly/3eVPwxk

One way to think about the counting numbers is as a list. The list of counting numbers starts 

with 1 and continues, with every number having a unique successor. Except for the number 1, 

Activities

http://bit.ly/3eVPwxk
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every number in the list has a unique predecessor. So the list of counting numbers is an 

ordered list. Every counting number appears exactly once in this ordered list. The ordering 

of the list of counting numbers is important because of the second way of thinking about the 

counting numbers.

The second way to think about the counting numbers is as “telling how many.” In other 

words, a counting number describes how many things are in a set1. The number of things in a 

set is called the cardinality of a set. Think for a moment about how surprisingly abstract the 

notion of cardinality is. We use the number 3 to quantify a limitless variety of collections—3 cats, 

3 toy dinosaurs, 3 jumps, 3 claps, and so on. The number 3 is the abstract, common aspect that 

all examples of sets of 3 things share.

For sets of up to about 3, 4, or 5 objects, we can usually recognize the number of objects 

in the set immediately, without counting the objects one by one. Even very young children, 

who can’t yet count, can distinguish between 1 and 2 crackers and between 2 and 3 crackers. 

The process of immediate recognition of the exact number of objects in a set is called subitizing 

and is discussed further in [NRC09]. But in general, we must count the objects in a set to deter-

mine how many there are. The process of counting the objects in a set connects the “list view” 

of the counting numbers with the “cardinality view.” As adults, this connection is so familiar 

that we are usually not even aware of it. But for young children, this connection is not obvi-

ous, and grasping it is an important milestone (see [NRC09]).

How Do Children Connect Counting to Cardinality?

Other Resources

1A set is a collection of distinct “things.” These things can include concepts and ideas, such as the concept of an in�-

nitely long straight line, and imaginary things, such as he�alumps.

1-B  Connecting Counting Numbers as a List with Cardinality, p. CA-2

CLASS ACTIVITY bit.ly/3eVPwxk

When we count a set of objects one by one, we make a one-to-one correspondence between 

an initial portion of the list of counting numbers and the set. For example, when a child counts 

a set of 5 blocks, the child makes a one-to-one correspondence between the list 1, 2, 3, 4, 5 and 

the set of blocks. This means that each block is paired with exactly one number and each num-

ber is paired with exactly one block, as indicated in Figure 1.1. Such a one-to-one correspond-

ence connects the “list” view of the counting numbers with cardinality. However, another 

critical piece to understanding this connection relies on something adults typically take for 

granted but is not obvious to young children: The last number we say when we count a set of 

objects tells us the total number of objects in the set, as indicated in Figure 1.2. It is for this rea-

son that the order of the counting numbers is so important, unlike the order of the letters of 

the alphabet, for example.
K.CC.4

“1” “2” “3” “4” “5”

Figure 1.1  Counting 5 blocks makes a one-to-one  

correspondence between the list 1, 2, 3, 4, 5 and the blocks.

http://bit.ly/3eVPwxk
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The connection between the “list” and “cardinality” views of the counting numbers is 

especially important in understanding that numbers later in the list correspond with larger 

quantities and that numbers earlier in the list correspond with smaller quantities. In particular, 

starting at any counting number, the next number in the list describes the size of a set that has 

one more object in it, and the previous number in the list describes the size of a set that has one 

less object in it.

What Are the Origins of the Base-Ten System for 
Representing Counting Numbers?
Let’s think about the list of counting numbers and the symbols we use to represent these num-

bers. The symbols for the first nine counting numbers (1, 2, 3, 4, 5, 6, 7, 8, 9) have been passed 

along to us by tradition and could have been different. Instead of the symbol 4, we could be 

using a completely different symbol. In fact, one way to represent 4 is simply with 4 tally 

marks. So why don’t we just use tally marks to represent counting numbers?

Suppose a shepherd living thousands of years ago used tally marks to keep track of his 

sheep. If his tally marks were not organized, he likely had a hard time comparing the number 

of sheep he had on different days, as shown in Figure 1.3. But if he grouped his tally marks, 

comparing the number of sheep was easier.

“That’s �ve blocks

all together!”
First Then

“1” “2” “3” “4” “5”

Figure 1.2  When we count objects, the last number we say tells us the total 

number of objects.

Yesterday’s sheep tally

Grouped tallies make comparisons easier.

Today’s sheep tally
Is the number of

sheep the same?

The number of

sheep is di�erent.

Figure 1.3  A shepherd’s tally of sheep.

As people began to live in cities and engage in trade, they needed to work with larger num-

bers. But tally marks are cumbersome to write in large quantities. Instead of writing tally 

marks, it’s more efficient to write a single symbol that represents a group of tally marks, such 

as the Roman numeral V, which represents 5. Recording 50 sheep might have been written as:

VVVVVVVVVV

However, it’s hard to read all those Vs, so the Romans devised new symbols: X for 10,  

L for 50, C for 100, D for 500, and M for 1000. These symbols are fine for representing 

numbers up to a few thousand, but what about representing 10,000? Once again,

MMMMMMMMMM

is difficult to read. What about 100,000 or 1,000,000? To represent these, one might want to 

create yet more new symbols.

Because the list of counting numbers is infinitely long, creating more new symbols is a 

problem. How can each counting number in this infinitely long list be represented uniquely? 
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Starting with our Hindu–Arabic symbols—1, 2, 3, 4, 5, 6, 7, 8, 9—how can one continue the 

list without resorting to creating an endless string of new symbols? The solution to this prob-

lem was not obvious and was a significant achievement in the history of human thought. The 

base-ten system, or decimal system, is the ingenious system we use today to write (and say) 

counting numbers without resorting to creating more and more new symbols. The base-ten 

system requires using only ten distinct symbols—the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The key 

innovation of the base-ten system is that rather than using new symbols to represent larger 

and larger numbers, it uses place value.

What Is Place Value in the Base-Ten System?
Place value means that the quantity that a digit in a number represents depends—in a very 

specific way—on the position of the digit in the number.

Do Class Activity 1-C before you read on.

1-C  How Many Are There? p. CA-4

CLASS ACTIVITY bit.ly/3eVPwxk

How did you and your classmates organize the toothpicks in the Class Activity 1-C? If you 

made bundles of 10 toothpicks and then made 10 bundles of 10 to make a bundle of 100, then 

you began to reinvent place value and the base-ten system. Place value for the base-ten system 

works by creating larger and larger units by repeatedly bundling them in groups of ten.

Ten plays a special role in the base-ten system, but its importance is not obvious to children. 

Teachers must repeatedly draw children’s attention to the role that ten plays. For example, a 

young child might be able to count that there are 14 beads in a collection, such as the collection 

shown in Figure 1.4, but the child may not realize that 14 actually stands for 1 ten and 4 ones. 

With the perspective presented in Figure 1.4, the numbers 10, 11, 12, 13, 14 are just the counting 

numbers that follow 9. Young children begin to learn about place value and the base-ten system 

when they (1) learn to organize collections of between 10 and 19 small objects into one group of ten 

and some ones, as in Figure 1.5, and (2) understand that the digit 1 in 14 does not stand for “one” 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.4  The important role that ten plays is not obvious just from counting.

10         11         12            13          14            15          16         17         18           19

0           1            2              3           4              5            6            7           8            9

Figure 1.5  Organizing collections of objects to show base-ten structure.

bit.ly/3eUNjlR

Topic: Place value

Video: Zenaida

http://bit.ly/3eVPwxk
http://bit.ly/3eUNjlR
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but instead stands for 1 group of ten. Some teachers like to help young students learn the 

meaning of the digit 1 in the numbers 10 to 19 with the aid of cards, such as the ones shown in 

Figure 1.6. These cards show how a number such as 17 is made up of 1 ten and 7 ones.

10 7
10 7

front

of card

back

of card

Cards Apart Cards Together

10 7

17
put

together

put

together

Figure 1.6  

Developing shorthand

drawings for a group

of ten

27 46

Figure 1.7  

Children extend their understanding of the base-ten system in two ways: (1) viewing a 

group of ten as a unit in its own right and (2) understanding that a two-digit number such as 

37 stands for 3 tens and 7 ones and can be represented with bundled objects and simple math 

drawings like those in Figure 1.7.

Just as 10 ones are grouped to make a new unit of ten, 10 tens are grouped to make a new 

unit of one hundred, and 10 hundreds are grouped to make a new unit of one thousand, as 

indicated in Figure 1.8. Continuing in this way, 10 thousands are grouped to make a new unit 

of ten thousand, and so on. Thus, arbitrarily large base-ten units can be made by grouping 10 

of the previously made units. These increasingly large units are represented in successive places 

to the left in a number. The value of each place in a number is ten times the value of the place to 

its immediate right, as indicated in Figure 1.9, which shows the standard names (used in the 

United States) of the place values up to the billions place.

In general, a string of digits, such as 1234, stands for the total amount that all its places 

taken together represent. Within the string, each digit stands for that many of that place’s 

value. In the number 1234, the 1 stands for 1 thousand, the 2 stands for 2 hundreds, the 3 

stands for 3 tens, and the 4 stands for 4 ones, giving

1 thousand and 2 hundreds and 3 tens and 4 ones,

which is the total number of toothpicks pictured in Figure 1.10.

A string of digits that represents a number, such as 1234, is called the base-ten representation 

or base-ten expansion of the number. To clarify the meaning of the base-ten representation of 

a number, we sometimes write it in one of the following forms, called expanded form:

1000 + 200 + 30 + 4

1 thousand + 2 hundreds + 3 tens + 4 ones

1 # 1000 + 2 # 100 + 3 # 10 + 4

1.NBT.2a

2.NBT.1a

4.NBT.1
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The expanded form shows how the number 1234 is composed of its place value parts,  

1 thousand, 2 hundreds, 3 tens, and 4 ones.

Notice that the way the toothpicks in Figure 1.10 are organized corresponds with the 

base-ten representation for the total number of toothpicks being depicted. Notice also how 

compactly this rather large number of toothpicks is represented by the short string 1234. Now 

imagine showing ten times as many toothpicks as are in the bundle of 1000. This would be a 

lot of toothpicks, yet writing this number as 10,000 only takes 5 digits!

1000 toothpicks in 
10 bundles of 100, each
of which is 10 bundles
of 10

100 toothpicks
in 10 bundles 
of 10

10 toothpicks
in a bundle

ones place

tens place

hundreds place

thousands place

Value of the thousands place

Value of the
hundreds place Value of the

tens place

Value of the
ones place

Figure 1.8  Base-ten units and values of places in the base-ten system.

ones
tens

hundreds

thousands

ten-thousands

hundred-thousands

m
illions

ten-m
illions

hundred-m
illions

billions

310 310 310 310 310 310 310 310 310

Figure 1.9  Each place’s value is ten times the value of the place to its right.

Video: Understand-
ing place value as 
repeated bundling  
in groups of ten

bit.ly/3cWP7sv

http://bit.ly/3cWP7sv
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Although the base-ten system is highly efficient and practical, children have difficulty 

learning what written numbers represent because they must keep the place values in mind. 

Because these values are not shown explicitly, even interpreting written numbers requires a 

certain level of abstract thinking. 

For example, in the number 247, what do the digits 2, 4, and 7 mean? The 7 means 7 ones, 

but the 4 means 4 tens and the 2 means 2 hundreds. If we unbundle the 4 tens, as in Figure 1.11, 

we see that the 4 tens also stand for 40 ones. If we unbundle the 2 hundreds, as in Figure 1.12, we 

see that the 2 hundreds also stand for 20 tens and for 200 ones.

In summary, by using place value, the base-ten system allows us to write any counting 

number, no matter how large, using only the ten digits 0 through 9. The key idea of place value 

is to create larger and larger units by making the value of each new place ten times the value of 

the place to its right. By using place value, every counting number can be expressed in a unique 

way as a string of digits.

1 thousand 2 hundreds 3 tens 4 ones

Key: 5 1

Figure 1.10  Showing how 1234 is composed of its place value parts.

4 tens 

40 ones 

unbundle

Figure 1.11  

In the number 247, what does the 4 stand for?
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What Is Difficult about Number Words?
Before young children learn to write the symbols for the counting numbers, they learn to say 

the number words. Unfortunately, some of the words used to say the counting numbers in 

English do not correspond well with the base-ten representations of these numbers. This may 

make the early learning of numbers more difficult for children who speak English than for 

children who speak some other languages.

The English words we use for the first ten counting numbers are arbitrary and could have 

been different. For example, instead of the word four we could be using a completely different 

word. Numbers greater than 10 are more difficult for English speakers than for speakers of 

some other languages. The difficulty arises because the way we say the counting numbers from 

11 to 19 in English does not correspond to their base-ten representations. Notice that “eleven” 

does not sound like “one ten and one,” which is what 11 stands for, nor does “twelve” sound 

very much like “one ten and two,” which is what 12 stands for. To add to the confusion, “thir-

teen, fourteen,  .  .  .  , nineteen” sound like the reverses of “one ten and three, one ten and 

four, . . . , one ten and nine,” which is what 13, 14, . . . , 19 represent. From 20 onward, most 

of the English words for counting numbers correspond fairly well to their base-ten representa-

tions. For example, “twenty” sounds roughly like “two tens,” “sixty-three” sounds very much 

1-D What Do the Digits in a Counting Number Mean? p. CA-5

1-E Counting in Other Bases, p. CA-6

CLASS ACTIVITIES  bit.ly/3eVPwxk

2 hundreds

200 ones 

20 tens

unbundle

unbundle

Figure 1.12  

In the number 247, what does the 2 stand for?

http://bit.ly/3eVPwxk
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like “six tens and three,” and “two-hundred eighty-four” sounds very much like “2 hundreds 

and eight tens and four,” which is what 284 represents. Note, however, that it’s easy for chil-

dren to confuse decade numbers with teen numbers because their pronunciation is so similar. 

For example, “sixty” and “sixteen” sound similar.

Why Do We Need Zero?
The notion of zero may seem natural to us today, but our early ancestors struggled to discover 

and make sense of zero. Although humans have always been acquainted with the notion of 

“having none,” as in having no sheep or having no food to eat, the concept of 0 as a number 

was introduced far later than the counting numbers—not until sometime just before 800 a.d. 

(See [Bel92].) Even today, the notion of zero is difficult for many children to grasp. This diffi-

culty is not surprising: Although the counting numbers can be represented nicely by sets of 

objects, you have to show no objects in order to represent the number 0 in a similar fashion. 

But how does one show no objects? We might use a math drawing like the one below.

Representing whole numbers

So why do we need 0? To make place value work! To write three hundred, for example, we 

must show that the 3 is in the hundreds place and then show that there are no tens and no 

ones. We do this by writing 300.

Whole numbers are counting numbers together with zero:

0, 1, 2, 3, 4, 5, c

What Are Other Ways to Represent Counting Numbers  
and Whole Numbers?
So far, we have seen how to represent counting numbers with bundles of toothpicks so as to high-

light the base-ten structure of numbers. Instead of bundles, some teachers use base-ten blocks, such 

as the ones shown below. If the small cube represents one, then a stack of 10 small cubes make a 

“long,” which represents a ten. Ten longs placed side-by-side make a “flat,” which represents a 

hundred. A stack of ten flats make a “large cube,” which represents a thousand. All together, the 

blocks below show the number 1234 as 1 thousand and 2 hundreds and 3 tens and 4 ones.

1 thousand 2 hundreds 3 tens 4 ones

Key: 5 1

Representing 1234 with base-ten blocks
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One disadvantage of base-ten blocks is that for some students, it may be difficult to see 

each unit as made from 10 of the previous unit. For example, some students might focus only 

on the outer surface of the large cube and not view it as made from 10 flats.

Another way to represent counting numbers and whole numbers is on a number line.

What Ideas Lead to Number Lines?
We can use counting numbers to count events as well as the number of physical things in a 

collection. For example, children might count how many times they have hopped or jumped 

or how many steps they have taken. Many children’s games involve moving a game piece 

along a path. If the path is labeled with successive counting numbers, like the one below, we 

can call the path a number path. Number paths are informal precursors to the concepts of 

distance and length and to the mathematical concept of a number line.

1
2

3
4 5 6 7

8

9
10 11

12
13

A number line is a line on which we have chosen one location as 0 and another location, 

typically to the right of 0, as 1. Number lines stretch infinitely far in both directions, although, 

in practice we can only show a small portion of a number line (and that portion may or may 

not include 0 and 1). The segment (or interval) from 0 to 1 stands for one; its length, namely 

the distance from 0 to 1, is called a unit; and the choice of a unit is called the scale of the num-

ber line. Once choices for the locations of 0 and 1 have been made, each counting number is 

represented by the point on the number line located that many units to the right of 0.

For example, the number 13 is 13 units to the right of 0, and the distance between 0 and 13 

is 13 units. We can think about plotting the number 13 as placing 13 one-unit-long segments 

end to end, starting from 0, and going to the right, as in Figure 1.13. The number 13 is located 

at the right end of the 13th segment. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number paths count “steps.”

Number lines count the number of one-unit-long segments from 0 (as indicated by the ovals).

1
2

3
4 5 6 7

8
9

10 11 12
13

Figure 1.13  

Notice that because we plot counting numbers on a number line by repeating the same 

one-unit-long segment, the distance between a counting number and its successor is always the 

same, namely 1 unit. For example, the distance between 5 and 6 is 1 unit, and the distance 

between 1000 and 1001 is also 1 unit. To understand number lines, we must think about num-

bers in terms of measurement and distance.

Number lines are an important way to represent numbers because they allow the concept 

of a number to be expanded to decimals, fractions, and negative numbers, and they unify dif-

ferent kinds of numbers and present them as a coherent whole.

Although number paths and number lines are similar, there is a critical distinction between 

them. This distinction makes using number paths with the youngest children better than using 

number lines. Number paths clearly show distinct “steps” along the path that children can 2.MD.6
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count, just as they might count their own steps, hops, or jumps. In contrast, to interpret a 

number line correctly, we must rely on the ideas of length and distance from 0, as indicated in 

Figure 1.13. Instead of focusing on length, young children tend to count “tick marks” along a 

number line. The habit of counting tick marks instead of attending to length can lead to omit-

ting 0 and to misinterpretations about locations of fractions on number lines. We will examine 

some of these errors when we study fractions in Chapter 2.

SECTION SUMMARY AND STUDY ITEMS

Section 1.1 The Counting Numbers
The counting numbers are the numbers 1, 2, 3, 4, . . . . There are two distinct ways to think 

about the counting numbers: (1) the counting numbers form an ordered list, and (2) counting 

numbers tell how many objects are in a set (i.e., the cardinality of a set). When we count the 

number of objects in a set, we connect the two views of counting numbers by making a one-to-

one correspondence between an initial portion of the list of counting numbers and the objects 

in the set. The last number word that we say when counting a number of objects tells us how 

many objects there are.

In the base-ten system, every counting number can be written using only the ten symbols 

(or digits) 0, 1, 2, . . . , 9. The base-ten system uses place value, which means that the value a 

digit in a number represents depends on the location of the digit in the number. Each place has 

the value of a base-ten unit, and base-ten units are created by repeated bundling by ten. Each 

  FROM THE FIELD Research

Burris, J. T. (2013). Virtual place value. Teaching Children Mathematics, 20(4), 
228–236.

This study investigated how four third-grade classes engaged with base-ten blocks 
to build and identify quantities and to write corresponding numbers during a unit 
on place value. Two classes used virtual base-ten blocks; the other two used 
concrete base-ten blocks. Both the virtual and the concrete base-ten blocks could 
be grouped, ungrouped, and regrouped into units, tens, hundreds, and thousands. 
The students’ reasoning was analyzed in terms of a conceptual framework of 
counting stages. At the most basic stage, students are able to count by ones but 
are unable to view a number such as 32 as 3 tens and 2 ones. At the most 
advanced stage, students are able to count by tens and ones and can move fluidly 
between ways of thinking about a number. For example, they can view the 3 in 32 
both as thirty and as 3 tens. The study found that in both groups, most students 
were at the most advanced stage. A difference between the two groups was in 
how efficiently students could create equivalent representations of a number, a skill 
that is directly useful for reasoning about multi-digit algorithms. Students using the 
virtual base-ten blocks could compose and decompose numbers more readily 
because they reused quantities on screen to create equivalent representations. In 
contrast, students using concrete base-ten blocks had to trade blocks to construct 
equivalent representations.

Clements, D. H., Fuson, K. C., & Sarama, J. (2017). What is developmentally 
appropriate teaching? Teaching Children Mathematics, 24(3), 179–188.

This article debunks criticisms of the Common Core State Standards for Mathematics. 
It explains why the standards are developmentally appropriate and important for 
children in the early grades.

bit.ly/3eUNjlR

Topic: Place Value

Video: Maryann

http://bit.ly/3eUNjlR
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base-ten unit is the value of a place. The value of a place is ten times the value of the place to 

its immediate right.

Unfortunately, the way we say the English names of the counting numbers 11 through 19 

does not correspond to the way we write these numbers.

The counting numbers can be displayed on number paths, which are informal precursors 

to number lines. The whole numbers, 0, 1, 2, 3, . . . , can be displayed on number lines.

Key Skills and Understandings

1. Describe the two views of the counting numbers—as a list and as used for cardinality. 

Discuss the connections between the list and cardinality views of the counting numbers.

2. Explain what it means for the base-ten system to use place value. Discuss what prob-

lem the development of the base-ten system solved.

3. Describe base-ten units and explain how adjacent place values are related in the base-

ten system.

4. Describe and make math drawings to represent a given counting number in terms of bun-

dled objects in a way that fits with the base-ten representation for that number of objects.

5. Interpret digits in the base-ten representation of a number in multiple ways (as appro-

priate). For example, interpret the 2 in 247 as 2 hundreds, as 20 tens, and as 200 ones.

6. Describe how to represent whole numbers on a number line and discuss the difference 

between a number path (as described in the text) and a number line.

Assessment

Problems

 1. If  a young child can correctly say the number word 

list “one, two, three, four, five,” will the child neces-

sarily be able to determine how many bears are in a 

collection of 5 toy bears that are lined up in a row? 

Discuss why or why not.

 2. If  a young child can correctly say the number word 

list “one, two, three, four, five” and point one by 

one to each bear in a collection of 5 toy bears while 

saying the number words, does the child necessar-

ily understand that there are 5 bears in the collec-

tion? Discuss why or why not.

 3. What problem in the history of mathematics did the 

development of the base-ten system solve?

 4. Make a math drawing showing how to organize 19 

objects in a way that fits with the structure of the 

base-ten system.

 5. Describe how to organize 100 toothpicks in a way 

that fits with the structure of the base-ten system. 

Explain how your organization reflects the struc-

ture of the base-ten system and how it fits with the 

way we write the number 100.

 6. In the number 2,789, what does the 8 mean? Explain 

how to interpret the 8 in two different mathemati-

cally valid ways.

 7. In the number 2,789, what does the 7 mean? Explain 

how to interpret the 7 in three different mathemati-

cally valid ways.

 8. We have seen how to express numbers in base ten 

by using place value and the idea of repeatedly bun-

dling in groups of ten. We can use the same ideas 

to express numbers in other bases. In base ten, the 

units we use for the place values are ones, tens, hun-

dreds, thousands, and so on, where each unit is 10 

times the previous unit. In base two, the units we use 

for the place values are ones, twos, fours, and so on, 

where each unit is 2 times the previous unit. In gen-

eral, in base N, each unit is N times the previous unit.

a. After four, what are the next two base-two units?

b. Make math drawings showing how to represent 

the counting numbers from one to ten in base 

two using bundled toothpicks.

c. Write the counting numbers from one to ten in 

base two, using a subscript 2 to indicate base two. 

For example, here are the first three: 12, 102, 112.

d. Suppose you had twenty-five toothpicks. Make 

a math drawing showing how to bundle them 

into base-two bundles. Use your drawing to 

write twenty-five in base two.

PRACTICE EXERCISES FOR SECTION 1.1
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 b. & c. See Figure 1.14.

 d. Your math drawing should show 1 bundle of 

sixteen, 1 bundle of  eight, 0 bundles of  four, 

0 bundles of  two, and 1 individual toothpick. 

Therefore the base-two representation of twenty-

five is 110012.

 1. No, the child might not be able to determine that 

there are 5 bears in the collection because the child 

might not be able to make a one-to-one correspond-

ence between the number words 1, 2, 3, 4, 5 and the 

bears. For example, the child might point twice to 

one of the bears and count two numbers for that 

bear, or the child might skip over a bear while count-

ing. See also the next practice exercise and its answer.

 2. No, the child might not understand that the last 

number word that is said while counting the bears 

tells how many bears there are in the collection.

 3. The base-ten system solved the problem of having 

to invent more and more new symbols to stand for 

larger and larger numbers. By using the base-ten 

system and place value, every counting number can 

be written using only the ten digits 0, 1, . . . , 9.

 4. See Figure 1.5.

 5. First, bundle all the toothpicks into bundles of 10. 

Then gather those 10 bundles of  10 into a single 

bundle. This repeated bundling in groups of  10 

is the basis of  the base-ten system. The 1 in 100 

stands for this 1 large bundle of 10 bundles of 10.

 6. The 8 means 8 tens, which we could show as 8 bun-

dles of  ten toothpicks. If  we unbundled those 8 

bundles, we would have 80 individual toothpicks. 

So we can also interpret the 8 as 80 ones.

 7. The 7 means 7 hundreds, which we could show as 

7 bundles of  a hundred toothpicks. If  we unbun-

dled those 7 bundles of a hundred into bundles of 

ten, we would have 70 bundles of  ten toothpicks. 

Therefore we can also interpret the 7 as 70 tens. If  

we unbundled those 70 bundles of ten toothpicks, 

we would have 700 individual toothpicks. There-

fore we can also interpret the 7 as 700 ones.

 8.  a.  Eight and sixteen because four times 2 is eight 

and eight times 2 is sixteen.

Answers to Practice Exercises for Section 1.1

1
2

10
2

11
2

100
2

101
2

110
2

111
2

1000
2

1001
2

1010
2

Toothpicks bundled to

show base-two structure: 

Writing

in base-two: 

1 one

1 two,  0 ones

1 two,  1 one

1 four,  0 twos,  0 ones

1 four,  0 twos,  1 one

1 four,  1 two,  0 ones

1 four,     1 two,  1 one

1 eight,   0 fours,  0 twos,  0 ones

1 eight,   0 fours,  0 twos,  1 one

1 eight,   0 fours,  1 two,  0 ones

Figure 1.14  The first ten counting numbers in base two.

PROBLEMS FOR SECTION 1.1

 1. In your own words, discuss the connection between 

the counting numbers as a list and the counting 

numbers as they are used to describe how many 

objects are in sets. Include a discussion of  what 

you will need to attend to if  you are teaching young 

children who are learning to count.

 2. If  you give a child in kindergarten or first grade a 

bunch of beads or other small objects and ask the 

child to show you what the 3 in 35 stands for, the 

child might show you 3 of  the beads. You might 

respond that the 3 really stands for “thirty” and 

not 3. Of course it’s true that the 3 stands for thirty, 
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but is there also another way you could respond, so 

as to draw attention to base-ten units? How could 

you organize the beads to make your point?

 3.  For each of the following collections of small 

objects, make a simple math drawing and write a 

brief  description for how to organize the objects in 

a way that corresponds to how we use the base-ten 

system to write the number for that many objects.

a. 47 beads

b. 328 toothpicks

c. 1000 toothpicks

 4. Suppose you have 62 toothpicks and a bunch of 

rubber bands.

a. Make a simple math drawing and describe how 

to bundle the toothpicks to represent 62 in 

terms of base-ten units.

b. Using your answer in part a, explain how to in-

terpret the 6 in 62 in two different mathemati-

cally valid ways.

 5.  Suppose you have 358 toothpicks and some 

rubber bands.

a. Make a simple math drawing and describe how 

to (repeatedly) bundle the toothpicks to repre-

sent 358 in terms of base-ten units.

b. Using your answer in part a, explain how to in-

terpret the 5 in 358 in two different mathemati-

cally valid ways.

c. Using your answer in part a, explain how to in-

terpret the 3 in 358 in three different mathemati-

cally valid ways.

 6. In your own words, describe how you can use col-

lections of objects (such as toothpicks or Popsicle 

sticks) to show the values of some base-ten units. 

Discuss also how the values of  adjacent places in 

base-ten representations of numbers are related.

 7. In your own words, discuss the beginning ideas of 

place value and the base-ten system that young 

children who can count beyond ten must begin to 

learn. Include a discussion of some of the hurdles 

faced by English speakers.

 8. Children sometimes mistakenly read the number 

1001 as “one hundred one.” Why do you think a 

child would make such a mistake? Make a math 

drawing showing how to represent 1001 with bun-

dled objects.

 9. Explain why the bagged and loose toothpicks pic-

tured in Figure 1.15 are not organized in a way 

that fits with the structure of the base-ten system. 

Describe how to group these bagged and loose 

toothpicks so that the same total number of tooth-

picks is organized in a way that is compatible with 

the base-ten system.

 10. Describe key features of the base-ten system. Com-

pared to more primitive ways of writing numbers, 

what is one advantage and one disadvantage of the 

base-ten system?

  *11. 

Figure 1.15  

a. On the number line below, can you tell where to 

plot 5? Explain.

        10

b. On the number line below, can you tell where to 

plot 100? Explain.

       50

c. On the number line below, can you tell where to 

plot N + 1? Explain.

       0 N

  *12. Draw number lines like the ones in Figure 1.16.

a. Plot 900 on the first number line and explain 

your reasoning.

b. Plot 250 on the second number line and explain 

your reasoning.

c. Plot 6200 on the third number line and explain 

your reasoning.

0 400

0 300

0 8000

Figure 1.16  

 13. See Practice Exercise 8 for information about 

counting in base two.

a. After sixteen, what are the next two base-two units?
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b. Make math drawings showing how to represent 

the counting numbers from eleven to twenty in 

base two. (Simplified drawings that show less 

detail than in Practice Exercise 8 are fine.)

c. Write the counting numbers from eleven to 

twenty in base two.

d. Suppose you had thirty-five toothpicks. Make 

a (simplified) math drawing showing how to 

bundle them into base-two bundles. Use that to 

write thirty-five in base two.

e. Suppose you had forty-five toothpicks. Make 

a (simplified) math drawing showing how to 

bundle them into base-two bundles. Use that to 

write forty-five in base two.

 14. See Practice Exercise 8 and Class Activity 1-E for 

information about counting in bases other than 

base ten.

a. After ones and threes, what are the next two 

base-three units?

b. Make math drawings showing how to represent 

the counting numbers from one to thirty in base 

three. (Simplified drawings that show less detail 

than in Practice Exercise 8 are fine.)

c. Write the counting numbers from one to thirty 

in base three.

d. Suppose you had forty-five toothpicks. Make a 

(simplified) math drawing showing how to bun-

dle them into base-three bundles. Use that to 

write forty-five in base three.

 15. See Practice Exercise 8 and Class Activity 1-E for infor-

mation about counting in bases other than base ten.

a. After ones and eights, what are the next two 

base-eight units?

b. Make math drawings showing how to represent 

the counting numbers from one to twenty in 

base eight. (Simplified drawings that show less 

detail than in Practice Exercise 8 are fine.)

c. Write the counting numbers from one to twenty 

in base eight.

d. Suppose you had one hundred toothpicks. 

Make a (simplified) math drawing showing how 

to bundle them into base-eight bundles. Use 

that to write one hundred in base eight.

  *16. The students in Ms. Caven’s class have a large poster 

showing a million dots. Now, the students would 

really like to see a billion of something. Think of 

at least two different ways that you might attempt 

to show a billion of something and discuss whether 

your methods would be feasible. Be specific and 

back up your explanations with calculations.

 1.2 Decimals and Negative Numbers

Typical Grade Levels: Grades 4, 5, 6

The counting numbers are the most basic kinds of numbers, followed by the whole numbers. 

However, many situations, both practical and theoretical, require other numbers, such as frac-

tions, decimals, and negative numbers. Although fractions, decimals, and negative numbers 

may appear to be different, they become unified when they are represented on a number line.

What Are the Origins of Decimals and Negative Numbers?
Why do we have decimals (and fractions) and negative numbers? How did these numbers 

arise?

In ancient times, a farmer filling bags with grain might have had only enough grain to fill 

the last bag halfway. When trading goods, the farmer needed a way to express partial quantities. 

In modern times, we buy gasoline by the gallon (or liter), but we don’t always buy a whole 

number of gallons. So we need a precise way to describe numbers that are between whole  

numbers. Both fractions and decimals arise by creating new units that are less than one, but 

decimals are created by extending the base-ten system.

The introduction of negative numbers came relatively late in human development. 

Although the ancient Babylonians may have had the concept of negative numbers around 

2000 b.c., negative numbers were not always accepted by mathematicians, even as late as the 

Activities
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sixteenth century a.d. ([Bel92]). The difficulty lies in interpreting the meaning of negative 

numbers. How can negative numbers be represented? This problem may seem perplexing at 

first, but in fact there are understandable interpretations of negative numbers such as tem-

perature below zero or elevations below sea level or ground level.

How Do Decimals Extend the Base-Ten System?
The essential structure of the base-ten system is that the value of each place is ten times the 

value of the place to its right. So, moving to the left across the places in the base-ten system, 

the value, of the places are successively multiplied by 10. Likewise, moving to the right, the 

values of the places are successively divided by 10, as indicated in Figure 1.17.

Other Resources
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Figure 1.17  Moving to the right, 

the values of places in the base-ten 

system are divided by 10.

Using the base-ten system, decimals are created by establishing base-ten units that are 

smaller than one and placed to the right of the ones place. We indicate the location of the 

ones place by placing a decimal point (.) to its right. Starting at the ones place, we partition 

(divide) the unit one into 10 equal pieces to create a new base-ten unit, a tenth. Tenths are 

recorded in the place to the right of the ones place. Then we partition (divide) a tenth into 10 equal 

pieces to create a new base-ten unit, a hundredth. Hundredths are recorded in the place  

to the right of the tenths place. Then we partition (divide) a hundredth into 10 equal pieces to 

create a new base-ten units, a thousandth. Thousandths are recorded in the place to the right 

of the hundredths place. Figure 1.18 depicts the process of dividing place values by 10 to cre-

ate smaller and smaller place values to the right of the ones place. This process continues 

without end.

When we use the base-ten system to represent a number as a string of digits, possibly 

including a decimal point, and possibly having infinitely many nonzero digits to the right of 

the decimal point, we can say the number is in decimal notation and call it a decimal or a 

decimal number. We may also refer to the string of digits representing the number as a decimal 

representation or decimal expansion of the number.

Just as 2345 stands for the combined amount of 2 thousands, 3 hundreds, 4 tens, and  

5 ones, the decimal 2.345 stands for the combined amount of 2 ones, 3 tenths, 4 hundredths, 

and 5 thousandths and the decimal 23.45 stands for the combined amount of 2 tens, 3 ones,  

4 tenths, and 5 hundredths.

Using the base-ten structure, we can represent (some) decimals with bundled objects in the 

same way that we represent whole numbers with bundled objects. The only difference is that a 

single object must be allowed to represent a base-ten unit that has value less than one. Although 

this may seem surprising at first, it is a common idea. After all, a penny represents $0.01, 

which is a hundredth of a dollar. Figure 1.19 shows a way to represent decimals with bundled 

beads. Instead of letting 1 bead stand for one, we can let 1 bead stand for a tenth, a hundredth, 

a thousandth (or any other base-ten unit), and our choice will determine which decimal the col-

lection of bundled beads stands for.
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The bundled beads represent:

264

if

= one 

26.4

if

= a tenth 

2.64

if

= a hundredth 

0.264

if

= a thousandth 

2 hundreds

6 tens

4 ones

2 tens

6 ones

4 tenths

2 ones

6 tenths

4 hundredths

2 tenths

6 hundredths

4 thousandths

Figure 1.19  

0.1

0.1
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1

$1
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410 410

hundredths
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ones
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410 410 410

Figure 1.18  
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How Do Decimals as Lengths Develop into Decimals on 
Number Lines?
A good way to represent positive decimals is as lengths; this way of representing decimals 

leads naturally to placing decimals on number lines. The meter, which is the main unit of 

length used in the metric system, is a natural unit to use when representing decimals as lengths 

because the metric system was designed to be compatible with the base-ten system. Figure 1.20 

shows 1 meter partitioned into 10 decimeters. When each decimeter is partitioned into 10 cen-

timeters, we also see 1 meter as 100 centimeters. When each centimeter is partitioned into  

10 millimeters, we also see 1 meter as 1000 millimeters.

1-F Representing Decimals with Bundled Objects, p. CA-8

CLASS ACTIVITY bit.ly/3eVPwxk

1 meter

Each section has 100 equal pieces.

1 meter 5 10 decimeters

1 meter 5 100 centimeters

1 meter 5 1000 millimeters

Figure 1.20  

If we let 1 meter represent the base-ten unit one, then 1 decimeter represents a tenth,  

1 centimeter represents a hundredth, and 1 millimeter represents a thousandth (see Figure 1.21). 

We can join these base-ten units end to end to represent decimals as lengths, such as in Fig-

ure 1.22, which shows the decimals 1.2, 1.23, and 1.234.

Although 1 meter is a natural unit of length to use for representing decimals, we can 

choose any length to stand for the base-ten unit one. When that length is partitioned into  

10 equal lengths, each of those lengths stands for a tenth. By continuing to partition lengths 

into 10 equal lengths, we create hundredths, thousandths and so on, as before.

1

1 meter

0.1

= a thousandth

= a tenth

= one

= a hundredth

then

If

1 decimeter

1 centimeter

1 millimeter

Figure 1.21  Representing base-ten units as lengths.

bit.ly/3eUNjlR

Topic: Representing 
decimals

Video: Megan and 
Donna

http://bit.ly/3eUNjlR
http://bit.ly/3eVPwxk
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In the next Class Activity, you will use strips of paper to represent decimals as lengths. 

Since strips of paper are not very durable, another option is to use a more durable material 

such as lengths of plastic tubing (see [Ste02]).

1 0.1 0.1

1.2 meters

1 0.1 0.1

1.23 meters

1 0.1 0.1

1.234 meters

1 one 2 tenths

3 hundredths

3 hundredths

4 thousandths

1 one 2 tenths

1 one 2 tenths

Figure 1.22  Representing decimals as lengths.

1-G Representing Decimals as Lengths, p. CA-11

CLASS ACTIVITY bit.ly/3eVPwxk

To connect lengths with number lines, we use the same idea for decimals as we did for 

whole numbers in Section 1.1: Once we have chosen a location for 0 and 1 on a number line, 

the segment between 0 and 1 is 1 unit long and stands for the base-ten unit one. To plot a 

(positive) decimal, such as 1.234 on the number line, we imagine a strip that is 1.234 units long, 

so it is 1 one and 2 tenths and 3 hundredths and 4 thousandths long, as in Figure 1.23. We 

imagine placing this strip so its left endpoint is at 0. Then its right endpoint is where we plot 

the decimal 1.234. In other words, we plot 1.234, a decimal, 1.234 units to the right of 0 in the 

same way that we plot 13, a whole number, 13 units to the right of 0. In general, a positive 

number N is located to the right of 0 at a distance of N units away from 0.

0 1 1.234

1 2

3

4

1 0.1 0.1

1 one 2 tenths

3 hundredths

4 thousandths

Figure 1.23  Using length and distance from 0 to plot 1.234.

How Do Decimals Fill in a Number Line?
One way to think about decimals is as “filling in” the locations on the number line between the 

whole numbers. You can think of plotting decimals as points on the number line in successive 

stages according to the structure of the base-ten system. At the first stage, the whole numbers are 

placed on a number line so that consecutive whole numbers are one unit apart. (See Figure 1.24).

http://bit.ly/3eVPwxk
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At the second stage, the decimals that have entries in the tenths place, but no smaller 

place, are spaced equally between the whole numbers, breaking each interval between consec-

utive whole numbers into 10 smaller intervals each one-tenth unit long. See the Stage 2 num-

ber line in Figure 1.24. Notice that, although the interval between consecutive whole numbers 

is broken into 10 intervals, there are only 9 tick marks for decimal numbers in the interval, one 

for each of the 9 nonzero entries, 1 through 9, that go in the tenths places.

We can think of the stages as continuing indefinitely. At each stage in the process of filling 

in the number line, we plot new decimals. The tick marks for these new decimals should be 

shorter than the tick marks of the decimal numbers plotted at the previous stage. We use shorter 

tick marks to distinguish among the stages and to show the structure of the base-ten system.

The digits in a decimal are like an address. When we read a decimal from left to right, we 

get more and more detailed information about where the decimal is located on a number line. 

The left-most digit specifies a “big neighborhood” in which the number is located. The next 

digit to the right narrows the location of the decimal to a smaller neighborhood of the number 

line. Subsequent digits to the right specify ever smaller neighborhoods in which the decimal is 

located, as indicated in Figure 1.25. When we read a decimal from left to right, it’s almost like 

specifying a geographic location by giving the country, state, county, zip code, street, and 

street number, except that decimals can have infinitely more detailed locations.

Stage 2: Each unit (one)

is partitioned into

10 tenths.

Stage 1: Whole numbers

are represented

on a number line.

1 unit

Stage 3: Each tenth

is partitioned into

10 hundredths.

Stage 4: Each

hundredth

is partitioned into

10 thousandths.

Stage 5: Each

thousandth is

partitioned into 10

ten-thousandths.

1 tenth

43210 5 6 7 8

43210 5 6 7 8

1 unit 1 unit

2.42.32.22.12 2.5 2.6 2.7 2.8

1 tenth

2.9 3

1 hundredth 1 hundredth

2.742.732.722.712.7 2.75 2.76 2.77 2.78 2.79 2.8

1 thousandth 1 thousandth

2.7042.7032.7022.7012.70 2.705 2.706 2.707 2.708 2.709 2.71

Figure 1.24  Decimals “fill in” number lines.

4 4.84.7

4.72

Where is 4.729?

4.729 is

between

4 and 5

4.729 is

between

4.7 and 4.8

4.729 is

between

4.72 and 4.73

4.73

5

Figure 1.25  Digits to the right in a decimal describe the decimal’s location on  

a number line with ever greater specificity.
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By “zooming in” on narrower and narrower portions of the number line, as in Figure 1.26, 

we can see in greater detail where a decimal is located.

When plotting decimals on number lines (or when comparing, adding, or subtracting dec-

imals), it is often useful to append zeros to the rightmost nonzero digit to express explicitly 

that the values in these smaller places are zero. For example, 1.78, 1.780, 1.7800, 1.78000, and 

so on, all stand for the same number. These representations show explicitly that the number 

1.78 has 0 thousandths, 0 ten-thousandths, and 0 hundred-thousandths. Similarly, we may 

append zeros to the left of the leftmost nonzero digit in a number to express explicitly that the 

values in these larger places are zero. For example, instead of writing .58, we may write 0.58, 

which perhaps makes the decimal point more clearly visible.

1

1.0

0 1 2

0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.791.69

1.8 1.9

1.738

1.738

1.738

5

1.7

1.70

5

1.8

1.80

5

2

2.0

5

Figure 1.26  Zooming in on the location of 1.738.

What Is Difficult about Decimal Words?
The names for the values of the places to the right of the ones place are symmetrically related 

to the names of the values of the places to the left of the ones place, as shown in Figure 1.27.

Several common errors are associated with the place value names for decimals. One error 

is not distinguishing clearly between the values of places to the left and right of the decimal 

point. For example, students sometimes confuse tens with tenths or hundreds with hundredths 

or thousands with thousandths. The pronunciation is similar, so it’s easy to see how this con-

fusion can occur! Teachers must take special care to clearly pronounce the place value names 

and to make sure students understand the difference. Another error occurs because students 

expect the symmetry in the place value names to be around the decimal point, not around the 

1-H  Zooming In on Number Lines, p. CA-12

CLASS ACTIVITY bit.ly/3eVPwxk

1-I Numbers Plotted on Number Lines, p. CA-14

http://bit.ly/3eVPwxk
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ones place. Some students expect there to be a “oneths place” immediately to the right of the 

decimal point, and they may mistakenly call the hundredths place the tenths place because of 

this misunderstanding.

A cultural convention is to (1) say decimals according to the value of the rightmost 

nonzero decimal place and (2) say “and” for the decimal point. For example, we usually say 

3.84 as “three and eighty-four hundredths” because the rightmost digit is in the hundredths 

place. Similarly, we say 1.592 as “one and five-hundred ninety-two thousandths” because the 

rightmost digit is in the thousandths place. From a mathematical perspective, however, it is 

perfectly acceptable to say 3.84 as “3 and 8 tenths and 4 hundredths” or “three point eight 

four.” In fact, we can’t use the usual cultural conventions when saying decimals that have 

infinitely many digits to the right of the decimal point. For example, the number pi, which is 

3.1415 . . . must be read as “three point one four one five . . .” because there is no rightmost 

nonzero digit in this number! Furthermore, the conventional way of saying decimals is logical, 

but the reason for this will not be immediately obvious to students who are just learning about 

decimals and place value. We will explain why when we discuss adding and subtracting frac-

tions in Chapter 3.

What Are Negative Numbers and Where  
Are They on Number Lines?
For any number N, its negative is also a number and is denoted -N. The symbol (-) is called 

a minus sign. For example, the negative of 4 is -4, which can be read negative four or minus 

four. The set of numbers consisting of 0, the counting numbers, and the negatives of the count-

ing numbers, is called the integers.

c, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, c

We can think of a negative number, -N, as the “opposite” of N. Negative numbers are 

commonly used to denote amounts owed, temperatures below zero, and even for locations 

below ground or below sea level. For example, we could use -100 to represent owing 100 dollars. 

The temperature -4° Celsius stands for 4 degrees below 0° Celsius. An altitude of -50 feet 

means 50 feet below sea level. In some places, negative numbers are even used to indicate floor 

levels. The photo on the next page shows a floor directory in a French department store.  

Floor 0 is ground level and Floor -1 is one flight below ground level (the basement).

On a number line, we display the negative numbers in the same way as we display 0 and 

the numbers greater than 0. To the right of 0 on the number line are the positive numbers. To 

the left of 0 on the number line are the negative numbers. The number 0 is considered neither 

positive nor negative.
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Figure 1.27  Symmetry in the place value names is 

around the ones place.


