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Useful Data

Me Mass of the earth 5.98 * 1024 kg

Re Radius of the earth 6.37 * 106 m

g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K

R Gas constant 8.31 J/mol K

NA Avogadro’s number 6.02 * 1023 particles/mol

T0 Absolute zero -273°C

s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa

vsound Speed of sound in air at 20°C 343 m/s

mp Mass of the proton (and the neutron) 1.67 * 10-27 kg

me Mass of the electron 9.11 * 10-31 kg

K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A

e Fundamental unit of charge 1.60 * 10-19 C

c Speed of light in vacuum 3.00 * 108 m/s

h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 e V s

U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 e V s

aB Bohr radius 5.29 * 10-11 m

Common Prefixes

Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors

Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180°/p = 57.3°
1 rev = 360° = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations

Binomial approximation: (1 + x)n
≈ 1 + nx if x V 1

Small-angle approximation: sin u ≈ tan u ≈ u and cos u ≈ 1 if uV 1 radian

Greek Letters Used in Physics

Alpha a Mu m

Beta b Pi p

Gamma Γ g Rho r

Delta ∆ d Sigma g s

Epsilon P Tau t

Eta h Phi Φ f

Theta ϴ u Psi c

Lambda l Omega Ω v
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Preface to the Instructor

This fifth edition of Physics for Scientists and Engineers: A 

Strategic Approach continues to build on the research-driven 

instructional techniques introduced in the first edition and the 

extensive feedback from thousands of users. From the begin-

ning, the objectives have been:

■■ To produce a textbook that is more focused and coherent, 

less encyclopedic.
■■ To integrate proven results from physics education research 

into the classroom in a way that allows instructors to use a 

range of teaching styles.
■■ To provide a balance of quantitative reasoning and con-

ceptual understanding, with special attention to concepts 

known to cause student difficulties.
■■ To develop students’ problem-solving skills in a systematic 

manner.

A more complete explanation of 

these goals and the rationale behind 

them can be found in the Ready-To-

Go Teaching Modules and in my 

 paperback book, Five Easy  Lessons: 

Strategies for Successful Physics 

Teaching. Please request a copy 

from your local Pearson sales rep-

resentative if it is of interest to you  

(ISBN 978-0-805-38702-5).

What’s New to This Edition
The fifth edition of Physics for Scientists and Engineers con-

tinues to utilize the best results from educational research and 

to tailor them for this course and its students. At the same time, 

the extensive feedback we’ve received from both instructors 

and students has led to many changes and improvements to 

the text, the figures, and the end-of-chapter problems. Changes 

include:

■■ The Chapter 6 section on drag has been expanded to in-

clude drag in a viscous fluid (Stokes’ law). The Reynolds 

number is introduced as an indicator of whether drag is pri-

marily viscous or primarily inertial.
■■ Chapter 14 on fluids now includes the flow of viscous flu-

ids (Poiseuille’s equation) and a discussion of turbulence.
■■ An optional Advanced Topic section on coupled oscilla-

tions and normal modes has been added to Chapter 15.
■■ Chapter 20 now includes an extensive quantitative section 

on entropy and its application.
■■ A vector review has been added to Chapter 22, the first 

electricity chapter, and the worked examples make extra 

effort to remind students how to work with vectors. 

Returning to vectors after not having used them exten-

sively since mechanics is a stumbling block for many 

students.
■■ The number of applications illustrated with sidebar figures 

has been increased and now includes accelerometers, heli-

copter rotors, quartz oscillators, laser printers, and wireless 

chargers.
■■ There are more than 400 new or significantly revised end-

of-chapter problems. Scores of other problems have been 

edited to improve clarity. Difficulty ratings have been reca-

librated based on Mastering® Physics.
■■ Several substantial new Challenge Problems have been 

added to cover interesting and contemporary topics such as 

gravitational waves, normal modes of the carbon dioxide 

molecule, and Bose-Einstein condensates.
■■ New Ready-To-Go Teaching Modules are an easy-to-use 

online instructor’s guide. These modules provide back-

ground information about topics and techniques that are 

known student stumbling blocks along with suggestions 

and assignments for use before, during, and after class.

Textbook Organization
Physics for Scientists and Engineers is divided into eight parts: 

Part I: Newton’s Laws, Part II: Conservation Laws, Part III: 

 Applications of Newtonian Mechanics, Part IV: Oscillations 

and Waves, Part V: Thermodynamics, Part VI: Electricity and 

Magnetism, Part VII: Optics, and Part VIII: Relativity and 

Quantum Mechanics. Note that covering the parts in this or-

der is by no means essential. Each topic is self-contained, and 

Parts III–VII can be rearranged to suit an instructor’s needs. 

Part VII: Optics does need to follow Part IV: Oscillations and 

Waves; optics can be taught either before or after electricity 

and magnetism.

The complete 42-chapter version of Physics for Scien-

tists and Engineers is intended for a three-semester course. A 

two-semester course typically covers 30–32 chapters with the 

judicious omission of a few sections.

There’s a growing sentiment that quantum physics is be-

coming the province of engineers, not just physicists, and 

that even a two-semester course should include a reasonable 

introduction to quantum ideas. The Ready-To-Go Teaching 

Modules outline a couple of routes through the book that 

allow many of the quantum physics chapters to be included 

in a two-semester course. I’ve written the book with the hope 

that an increasing number of instructors will choose one of 

these routes.
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The Student Workbook
A key component of Physics for Scientists and Engineers: A 

Strategic Approach is the accompanying Student Workbook. 

The workbook bridges the gap between textbook and home-

work problems by providing students the opportunity to learn 

and practice skills prior to using those skills in quantitative end-

of-chapter problems, much as a musician practices technique 

separately from performance pieces. The workbook  exercises, 

which are keyed to each section of the textbook, focus on  

developing specific skills, ranging from identifying forces and 

drawing free-body diagrams to interpreting wave functions.

The workbook exercises, which are 

generally qualitative and/or graphical, 

draw heavily upon the physics educa-

tion research literature. The exercises 

deal with issues known to cause student 

difficulties and employ techniques that 

have proven to be effective at overcom-

ing those difficulties. The workbook 

exercises can be used in class as part 

of an active-learning teaching strategy, 

in recitation sections, or as assigned 

homework.

Force and Motion . C H A P T E R 5

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of

mass 2m, then draw a line through the points. Use

squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to

accelerate at 5 m/s2. The same force applied to object B

causes an acceleration of 3 m/s2. Applied to object C, it

causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the

acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the

acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.

b. Below the figure, draw and label the object’s acceleration vector.

x

y 

0 1 2

Force (rubber bands)

A
cc

el
er

at
io

n

3 4

The figure shows an acceleration-versus-force graph for

an object of mass m. Data have been plotted as individual

points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-

versus-force graphs for objects of mass

■■ Complete rental edition (ISBN 9780136956297/ 

0136956297): Chapters 1–42.
■■ Modified Mastering with eText (ISBN 9780137319497/ 

0137319495): Chapters 1–42.
■■ Volume 1 rental edition (ISBN 9780137346387/ 

0137346387) covers mechanics, waves, and thermodynam-

ics: Chapters 1–21.
■■ Volume 2 rental edition (ISBN 9780137346479/ 

0137346476) covers electricity and magnetism, optics, 

and relativity: Chapters 22–36.
■■ Volume 3 rental edition (ISBN 9780137346486/ 

0137346484) covers relativity and quantum physics: 

Chapters 36–42.

More purchase options are available for students at www. 

pearson.com.

Instructor Resources
A variety of resources are available to help instructors teach 

more effectively and efficiently. These can be downloaded 

from the Instructor Resources area of Mastering® Physics.

■■ Ready-To-Go Teaching Modules are an online instruc-

tor’s guide. Each chapter contains background information 

on what is known from physics education research about 

student misconceptions and difficulties, suggested teaching 

strategies, suggested lecture demonstrations, and suggested 

pre- and post-class assignments.

■■ Mastering® Physics is Pearson’s online homework system 

through which the instructor can assign pre-class reading 

quizzes, tutorials that help students solve a problem with 

hints and wrong-answer feedback, direct-measurement vid-

eos, and end-of-chapter questions and problems. Instructors 

can set up their own assignments or utilize pre-built assign-

ments that have been designed with a balance of problem 

types and difficulties.
■■ PowerPoint Lecture Slides can be modified by the in-

structor but provide an excellent starting point for class 

presentations. The lecture slides include QuickCheck 

questions.
■■ QuickCheck “Clicker Questions” are conceptual ques-

tions, based on known student misconceptions, for in-

class use with some form of personal response system. 

They are designed to be used as part of an active-learning 

teaching strategy. The Ready-To-Go teaching modules 

provide information on the effective use of QuickCheck 

questions.
■■ The Instructor’s Solution Manual is available in both 

Word and PDF formats. We do require that solutions for 

student use be posted only on a secure course website.
■■ All of the textbook figures, key equations, Problem-Solving 

Strategies, Tactics Boxes, and more can be downloaded.
■■ The TestGen Test Bank contains over 2000 conceptual and 

multiple-choice questions. Test files are provided in both 

TestGen® and Word formats.
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Preface to the Student
From Me to You
The most incomprehensible thing about the universe is that it is 
comprehensible.

—Albert Einstein

The day I went into physics class it was death.

—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, 

admittedly, because you can’t respond, but that’s OK. I’ve 

 talked with many of your fellow students over the years, so I 

have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? 

Uncertainty? Excitement? All the above? Let’s face it, physics 

has a bit of an image problem on campus. You’ve probably 

heard that it’s difficult, maybe impossible unless you’re an 

Einstein. Things that you’ve heard, your experiences in other 

science courses, and many other factors all color your expecta-

tions about what this course is going to be like.

It’s true that there are many new ideas to be learned in phys-

ics and that the course, like college courses in general, is going 

to be much faster paced than science courses you had in high 

school. I think it’s fair to say that it will be an intense course. 

But we can avoid many potential problems and difficulties if 

we can establish, here at the beginning, what this course is 

about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking 

about the physical aspects of nature. Physics is not better than 

art or biology or poetry or religion, which are also ways to 

think about nature; it’s simply different. One of the things this 

course will emphasize is that physics is a human endeavor. The 

ideas presented in this book were not found in a cave or con-

veyed to us by aliens; they were discovered and developed by 

real people engaged in a struggle with real issues.

You might be surprised to hear that physics is not about 

“facts.” Oh, not that facts are unimportant, but physics is far 

more focused on discovering relationships and patterns than 

on learning facts for their own sake.

For example, the colors of the 

rainbow appear both when white 

light passes through a prism 

and—as in this photo—when 

white light reflects from a thin 

film of oil on water. What does 

this pattern tell us about the na-

ture of light?

Our emphasis on relation-

ships and patterns means that 

there’s not a lot of memorization 

when you study physics. Some—there are still definitions 

and equations to learn—but less than in many other courses. 

Our emphasis, instead, will be on thinking and reasoning. 

This is important to factor into your expectations for the 

course.

Perhaps most important of all, physics is not math! Physics 

is much broader. We’re going to look for patterns and relation-

ships in nature, develop the logic that relates different ideas, 

and search for the reasons why things happen as they do. In 

doing so, we’re going to stress qualitative reasoning, pictorial 

and graphical reasoning, and reasoning by analogy. And yes, 

we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this 

physics–math distinction up front. Many of you, I know, want 

to find a formula and plug numbers into it—that is, to do a math 

problem. Maybe that worked in high school science courses, 

but it is not what this course expects of you. We’ll certainly do 

many calculations, but the specific numbers are usually the last 

and least important step in the analysis.

As you study, you’ll sometimes be baffled, puzzled, and 

confused. That’s perfectly normal and to be expected. Making 

mistakes is OK too if you’re willing to learn from the expe-

rience. No one is born knowing how to do physics any more 

than he or she is born knowing how to play the piano or shoot 

basketballs. The ability to do physics comes from practice, rep-

etition, and struggling with the ideas until you “own” them and 

can apply them yourself in new situations. There’s no way to 

make learning effortless, at least for anything worth learning, so 

expect to have some difficult moments ahead. But also expect 

to have some moments of excitement at the joy of discovery. 

There will be instants at which the pieces suddenly click into 

place and you know that you understand a powerful idea. There 

will be times when you’ll surprise yourself by successfully  

working a difficult problem that you didn’t think you could 

solve. My hope, as an author, is that the excitement and sense 

of adventure will far outweigh the difficulties and frustrations.

Getting the Most Out of Your Course

Many of you, I suspect, would like to know the “best” way to 

study for this course. There is no best way. People are different 

and what works for one student is less effective for another. But  

I do want to stress that reading the text is vitally important. 

The basic knowledge for this course is written down on these 

 pages, and your instructor’s number-one expectation is that 

you will read carefully to find and learn that knowledge.

Despite there being no best way to study, I will suggest one 

way that is successful for many students.

1. Read each chapter before it is discussed in class. I can-

not stress too strongly how important this step is. Class at-

tendance is much more effective if you are prepared. When 

you first read a chapter, focus on learning new vocabulary, 

definitions, and notation. There’s a list of terms and nota-

tions at the end of each chapter. Learn them! You won’t un-

derstand what’s being discussed or how the ideas are being 

used if you don’t know what the terms and symbols mean.
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2. Participate actively in class. Take notes, ask and  

answer questions, and participate in discussion groups. 

There is ample scientific evidence that active partici-

pation is much more effective for learning science than 

passive listening.

3. After class, go back for a careful re-reading of the 

chapter. In your second reading, pay closer attention 

to the details and the worked examples. Look for the 

logic behind each example (I’ve highlighted this to 

make it clear), not just at what formula is being used. 

And use the textbook tools that are designed to help 

your learning, such as the problem-solving strategies, 

the chapter summaries, and the exercises in the Student 

Workbook.

4. Finally, apply what you have learned to the home-

work problems at the end of each chapter. I strongly 

encourage you to form a study group with two or three 

classmates. There’s good evidence that students who 

study regularly with a group do better than the rugged 

individualists who try to go it alone.

Did someone mention a work-

book? The companion Student 

Workbook is a vital part of the 

course. Its questions and exercises  

ask you to reason qualitatively, 

to use graphical information, and 

to give explanations. It is through 

these exercises that you will 

learn what the concepts mean 

and will practice the reasoning 

skills appropriate to the chapter. 

You will then have acquired the 

baseline knowledge and confidence you need before turning to 

the end-of-chapter homework problems. In sports or in music, 

you would never think of performing before you practice, so 

why would you want to do so in physics? The workbook is 

where you practice and work on basic skills.

Many of you, I know, will be tempted to go straight to the 

homework problems and then thumb through the text looking 

for a formula that seems like it will work. That approach will 

not succeed in this course, and it’s guaranteed to make you 

frustrated and discouraged. Very few homework problems are 

of the “plug and chug” variety where you simply put numbers 

into a formula. To work the homework problems successfully, 

you need a better study strategy—either the one outlined above 

or your own—that helps you learn the concepts and the rela-

tionships between the ideas.

Getting the Most Out of Your Textbook

Your textbook provides many features designed to help you learn 

the concepts of physics and solve problems more effectively.

■■ TACTICS BOXES give step-by-step procedures for particu-

lar skills, such as interpreting graphs or drawing special 

diagrams. Tactics Box steps are explicitly illustrated in 

subsequent worked examples, and these are often the start-

ing point of a full Problem-Solving Strategy.
■■ PROBLEM-SOLVING STRATEGIES are provided for each broad 

class of problems—problems characteristic of a chapter or 

group of chapters. The strategies follow a consistent four-

step approach to help you develop confidence and proficient 

problem-solving skills: MODEL, VISUALIZE, SOLVE, REVIEW.
■■ Worked EXAMPLES illustrate good problem-solving 

practices through the consistent use of the four-step 

problem-solving approach The worked examples are 

often very detailed and carefully lead you through the 

reasoning behind the solution as well as the numerical 

calculations.
■■ STOP TO THINK questions embedded in the chapter allow you 

to quickly assess whether you’ve understood the main idea 

of a section. A correct answer will give you confidence to 

move on to the next section. An incorrect answer will alert 

you to re-read the previous section.
■■ Blue annotations on figures 

help you better understand 

what the figure is show-

ing. They will help you to 

interpret graphs; translate 

between graphs, math, and 

pictures; grasp difficult 

concepts through a visual 

analogy; and develop many 

other important skills.
■■ Schematic Chapter Summaries help you organize what you 

have learned into a hierarchy, from general principles (top) 

to applications (bottom). Side-by-side pictorial, graphical, 

textual, and mathematical representations are used to help 

you translate between these key representations.
■■ Each part of the book ends with a KNOWLEDGE STRUCTURE 

designed to help you see the forest rather than just the trees.

Now that you know more about what is expected of you, 

what can you expect of me? That’s a little trickier because the 

book is already written! Nonetheless, the book was prepared 

on the basis of what I think my students throughout the years 

have expected—and wanted—from their physics textbook. 

Further, I’ve listened to the extensive feedback I have received 

from thousands of students like you, and their instructors, who 

used the first four editions of this book.

You should know that these course materials—the text 

and the workbook—are based on extensive research about 

how students learn physics and the challenges they face. 

The effectiveness of many of the exercises has been demon-

strated through extensive class testing. I’ve written the book 

in an informal style that I hope you will find appealing and 

that will encourage you to do the reading. And, finally,  

I have endeavored to make clear not only that physics, as 

a technical body of knowledge, is relevant to your profes-

sion but also that physics is an exciting adventure of the 

human mind.

I hope you’ll enjoy the time we’re going to spend together.

S T U D E N T  W O R K B O O K

I

The current in a wire is
the same at all points.

I = constant
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Motion can be slow and steady, or fast and sudden. 
This rocket, with its rapid acceleration, is responding to 
forces exerted on it by thrust, gravity, and the air.

OVERVIEW

Why Things Move
Each of the seven parts of this book opens with an overview to give you a look 

ahead, a glimpse at where your journey will take you in the next few chapters. 

It’s easy to lose sight of the big picture while you’re busy negotiating the terrain 

of each chapter. In addition, each part closes with a Knowledge Structure to help 

you consolidate your knowledge. You might want to look ahead now to the Part I 

Knowledge Structure on page 208. 

In Part I, the big picture, in a word, is motion.

■■ How do we describe motion? It is easy to say that an object moves, but it’s 

not obvious how we should measure or characterize the motion if we want to 

analyze it mathematically. The mathematical description of motion is called 

kinematics, and it is the subject matter of Chapters 1 through 4.

■■ How do we explain motion? Why do objects have the particular motion they 

do? Why, when you toss a ball upward, does it go up and then come back 

down rather than keep going up? What “laws of nature” allow us to predict 

an object’s motion? The explanation of motion in terms of its causes is called 

dynamics, and it is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accel-

eration (the “effect”). A variety of pictorial and graphical tools will be developed 

in Chapters 1 through 5 to help you develop an intuition for the connection be-

tween force and acceleration. You’ll then put this knowledge to use in Chapters 5 

through 8 as you analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely com-

plicated. We would never be able to develop a science if we had to keep track 

of every little detail of every situation. A model is a simplified description of 

reality—much as a model airplane is a simplified version of a real airplane—used 

to reduce the complexity of a problem to the point where it can be analyzed and 

understood. We will introduce several important models of motion, paying close 

attention, especially in these earlier chapters, to where simplifying assumptions 

are being made, and why.

The laws of motion were discovered by Isaac Newton roughly 350 years ago, 

so the study of motion is hardly cutting-edge science. Nonetheless, it is still ex-

tremely important. Mechanics—the science of motion—is the basis for much of 

engineering and applied science, and many of the ideas introduced here will be 

needed later to understand things like the motion of waves and the motion of 

electrons through circuits. Newton’s mechanics is the foundation of much of con-

temporary science, thus we will start at the beginning.

Newton’s Laws

PA R T

I
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Concepts of Motion

What is a chapter preview?

Each chapter starts with an overview. Think of it as a roadmap 

to help you get oriented and make the most of your studying.

❮❮ LOOKING BACK A Looking Back reference tells you what material from 

previous chapters is especially important for understanding the new 

topics. A quick review will help your learning. You will find additional 

Looking Back references within the chapter, right at the point they’re 

needed.

What is motion?

Before solving motion problems, we must 

learn to describe motion. We will use

■■ Motion diagrams
■■ Graphs
■■ Pictures

Motion concepts introduced in this 

chapter include position, velocity, and 

acceleration.

Why do we need vectors?

Many of the quantities used to describe 

 motion, such as velocity, have both a size 

and a direction. We use vectors to represent 

these quantities. This chapter introduces 

graphical techniques to add and subtract 

vectors. Chapter 3 will explore vectors in 

more detail.

Why are units and significant  
figures important?

Scientists and engineers must commu-

nicate their ideas to others. To do so, we 

have to agree about the units in which 

quantities are measured. In physics we 

use metric units, called SI units. We also  

need rules for telling others how accurately  

a quantity is known. You will learn the rules  

for using significant figures correctly.

Why is motion important?

The universe is in motion, from the smallest scale of 

 electrons and atoms to the largest scale of entire  

galaxies. We’ll start with the motion of everyday objects,  

such as cars and balls and people. Later we’ll study  

the motions of waves, of atoms in gases, and of electrons  

in circuits. Motion is the one theme that will be with us  

from the first chapter to the last.

IN THIS CHAPTER, you will learn the fundamental concepts of motion.

1

Motion takes many 
forms. The cyclists seen 
here are an example of 
translational motion.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s
2

Find

x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10
-3
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1.1 Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 

book. Although we all have intuition about motion, based on our experiences, some 

of the important aspects of motion turn out to be rather subtle. So rather than jumping 

immediately into a lot of mathematics and calculations, this first chapter focuses on 

visualizing motion and becoming familiar with the concepts needed to describe a 

moving object. Our goal is to lay the foundations for understanding motion.

Linear motion Circular motion Projectile motion Rotational motion

FIGURE 1.1 Four basic types of motion.

To begin, let’s define motion as the change of an object’s position with time. 

FIGURE 1.1 shows four basic types of motion that we will study in this book. The first 

three—linear, circular, and projectile motion—in which the object moves through 

space are called translational motion. The path along which the object moves, 

whether straight or curved, is called the object’s trajectory. Rotational motion 

is somewhat different because there’s movement but the object as a whole doesn’t 

change position. We’ll defer rotational motion until later and, for now, focus on 

translational motion.

Making a Motion Diagram

An easy way to study motion is to make a video of a moving object. A video camera, 

as you probably know, takes images at a fixed rate, typically 30 every second. Each 

separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 

video of a car going past. Not surprisingly, the car is in a somewhat different position 

in each frame.

Suppose we edit the video by layering the frames on top of each other, creating 

the composite image shown in FIGURE 1.3. This edited image, showing an object’s 

position at several equally spaced instants of time, is called a motion diagram. As 

the examples below show, we can define concepts such as constant speed, speeding 

up, and slowing down in terms of how an object appears in a motion diagram.

   NOTE    It’s important to keep the camera in a fixed position as the object moves by. 

Don’t “pan” it to track the moving object.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.

FIGURE 1.2 Four frames from a video.

The same amount of time elapses
between each image and the next.

FIGURE 1.3 A motion diagram of the car 
shows all the frames simultaneously.
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   NOTE    Each chapter will have several Stop to Think questions. These questions are 

designed to see if you’ve understood the basic ideas that have been presented. The 

answers are given at the end of the book, but you should make a serious effort to 

think about these questions before turning to the answers.

1.2 Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 

the real-world details in order to discern patterns that occur over and over. For example, 

a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in a 

crystal are all very different—yet perhaps not so different. Each is an example of a 

system moving back and forth around an equilibrium position. If we focus on under-

standing a very simple oscillating system, such as a mass on a spring, we’ll automati-

cally understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called 

modeling. A model is a highly simplified picture of reality, but one that still captures 

the essence of what we want to study. Thus “mass on a spring” is a simple but realistic 

model of almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 

thinking about them. One could go so far as to say that developing and testing models 

is at the heart of the scientific process. Albert Einstein once said, “Physics should 

be as simple as possible—but not simpler.” We want to find the simplest model that 

allows us to understand the phenomenon we’re studying, but we can’t make the model 

so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 

most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 

phenomenon? How do we describe it in the simplest possible terms? For example, 

the mass-on-a-spring model of an oscillating system is a descriptive model.
■■ Explanatory models: Why do things happen as they do? Explanatory models, based 

on the laws of physics, have predictive power, allowing us to test—against experi-

mental data—whether a model provides an adequate explanation of our observations.

The Particle Model

For many types of motion, such as that of balls, cars, and rockets, the motion of the 

object as a whole is not influenced by the details of the object’s size and shape. All we 

really need to keep track of is the motion of a single point on the object, so we can treat 

the object as if all its mass were concentrated into this single point. An object that can 

be represented as a mass at a single point in space is called a particle. A particle has  

no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a  

motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 

shows how much simpler motion diagrams appear when the object is represented as 

a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 

which the frames were taken.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were taken.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

FIGURE 1.4 Motion diagrams in which the 
object is modeled as a particle.

We can model an airplane’s takeoff as a 
particle (a descriptive model) undergoing 
constant acceleration (a descriptive 
model) in response to constant forces 
(an explanatory model).

STOP TO THINK 1.1 Which car is going faster, A or B? Assume there are equal intervals of time between 

the frames of both videos.

Car A Car B
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Treating an object as a particle is, of course, a simplification of reality—but that’s 

what modeling is all about. The particle model of motion is a simplification in which 

we treat a moving object as if all of its mass were concentrated at a single point. The 

particle model is an excellent approximation of reality for the translational motion of 

cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 

Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 

moving in a different direction. We’ll need to develop new models when we get to new 

types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2 Three motion diagrams 

are shown. Which is a dust particle settling to the 

floor at constant speed, which is a ball dropped 

from the roof of a building, and which is a 

descending rocket slowing to make a soft landing  

on Mars?

(a) (c) 0

1

2

3

4

5

0

1

2

3

4

5

(b) 0

1

2

3

4

5

1.3 Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 

and when the object was at that position (i.e., the time). Position measurements can  

be made by laying a coordinate-system grid over a motion diagram. You can then 

measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 

world does not come with a coordinate system attached. A coordinate system is an 

artificial grid that you place over a problem in order to analyze the motion. You place 

the origin of your coordinate system wherever you wish, and different observers of a 

moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought 

of time this way. You can pick an arbitrary point in the motion and label it ;t = 0 

seconds.” This is simply the instant you decide to start your clock or stopwatch, so 

it is the origin of your time coordinate. Different observers might choose to start 

their clocks at different moments. A video frame labeled ;t = 4 seconds” was taken 

4  seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 

may have been moving before then. Those earlier instants would be measured as neg-

ative times, just as objects on the x-axis to the left of the origin have negative values of 

position. Negative numbers are not to be avoided; they simply locate an event in space 

or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is  

a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 

can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 

we’ve used subscripts to indicate the time and the object’s position in a specific frame 

of the motion diagram.

   NOTE    The frame at t = 0 s is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 

origin to the point representing the sled. The position vector is given the symbol r 
u

. 

Figure 1.5b shows the position vector r 
u

3 = 121 m, 45°2. The position vector r 
u

 does not 

tell us anything different than the coordinates 1x, y2. It simply provides the informa-

tion in an alternative form.

(a)

The sled’s position in frame 3
can be specified with coordinates.

Alternatively, the position
can be specified by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°

y (m)

x (m) 0

10

20

100 20 30

FIGURE 1.5 Motion diagram of a sled with 
frames made every 1 s.
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Scalars and Vectors

Some physical quantities, such as time, mass, and temperature, can be described com-

pletely by a single number with a unit. For example, the mass of an object is 6 kg 

and its temperature is 30°C. A single number (with a unit) that describes a physical 

quantity is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 

by a single number. To describe the motion of a car, for example, you must specify not 

only how fast it is moving, but also the direction in which it is moving. A quantity hav-

ing both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) is 

called a vector. The size or length of a vector is called its magnitude. Vectors will be 

studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quan-

tity. Thus r 
u

 and A
u

 are symbols for vectors, whereas r and A, without the arrows, are 

symbols for scalars. In handwritten work you must draw arrows over all symbols that 

represent vectors. This may seem strange until you get used to it, but it is very important 

because we will often use both r and r 
u

, or both A and A
u

, in the same problem, and they 

mean different things! Note that the arrow over the symbol always points to the right, 

regardless of which direction the actual vector points. Thus we write r 
u

 or A
u

, never r 
z

 or A
z

.

Displacement

We said that motion is the change in an object’s position with time, but how do we 

show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 

motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 

position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 

the two dots of the motion diagram. This vector is the sled’s displacement, which  

is given the symbol ∆r 
u

. The Greek letter delta 1∆2 is used in math and science to 

indicate the change in a quantity. In this case, as we’ll show, the displacement ∆r 
u

 is 

the change in an object’s position.

   NOTE    ∆r 
u

 is a single symbol. It shows “from here to there.” You cannot cancel out 

or remove the ∆.

Notice how the sled’s position vector r 
u

4 is a combination of its early position r 
u

3 with  

the displacement vector ∆r 
u

. In fact, r 
u

4 is the vector sum of the vectors r 
u

3 and  

∆r 
u

. This is written

    r 
u

4 = r 
u

3 + ∆r 
u

 (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from “reg-

ular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for now 

you can add two vectors A
u

 and B
u

 with the three-step procedure of ❮❮■TACTICS BOX 1.1.

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

FIGURE 1.6 The sled undergoes a 
displacement ∆r 

u

 from position r 
u

3 
to position r 

u

4.

TACTICS BOX 1.1

Vector addition

1

2

3

To add B to A: Draw A.

Place the tail of

B at the tip of A.

Draw an arrow from

the tail of A to the

tip of B. This is

vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u

u

u

u

u

u

u

u

u
u

uu

B
u
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If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 

how r 
u

3 and ∆r 
u

 are added to give r 
u

4.

   NOTE    A vector is not tied to a particular location on the page. You can move a 

vector around as long as you don’t change its length or the direction it points. Vector 

B
u

 is not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r 
u

4 = r 
u

3 + ∆r 
u

. This is easily rearranged to give a more 

precise definition of displacement: The displacement �r
u

 of an object as it moves 

from one position r
u

a to a different position r
u

b is

 ∆r
u

= r
u

b - r
u

a (1.2)

That is, displacement is the change (i.e., the difference) in position. Graphically, �r
u

 

is a vector arrow drawn from position r
u

a to position r
u

b.

Motion Diagrams with Displacement Vectors

The first step in analyzing a motion diagram is to determine all of the displacement 

vectors, which are simply the arrows connecting each dot to the next. Label each 

arrow with a vector symbol ∆r 
u

n, starting with n = 0. FIGURE 1.7 shows the motion dia-

grams of Figure 1.4 redrawn to include the displacement vectors.

   NOTE    When an object either starts from rest or ends at rest, the initial or final dots 

are as close together as you can draw the displacement vector arrow connecting 

them. In addition, just to be clear, you should write “Start” or “Stop” beside the 

initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

FIGURE 1.7 Motion diagrams with the 
displacement vectors.

Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst  

into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 

diagram for Alice. Show and label all displacement vectors.

MODEL The details of Alice and the sled—their size, shape, color, and so on—are not 

relevant to understanding their overall motion. So we can model Alice and the sled as 

one particle.

VISUALIZE FIGURE 1.8 shows a motion diagram. The problem statement suggests that 

the sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement 

vectors are of equal length as Alice slides along the icy road. She begins slowing when 

she hits the snowbank, so the displacement vectors then get shorter until the sled stops. 

We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 

rather than suddenly.

EXAMPLE 1.1 ■ Headfirst into the snow

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3

u u u u

∆r4

u

∆r5

u

∆r6

u

FIGURE 1.8 The motion diagram of Alice and the sled.
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Time Interval

It’s also useful to consider a change in time. For example, the clock readings of two 

frames of a video might be t1 and t2. The specific values are arbitrary because they 

are timed relative to an arbitrary instant that you chose to call t = 0. But the time 
interval ∆t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to 

move from one position to the next.

The time interval �t = tb − ta measures the elapsed time as an object moves 

from position r
u

a at time ta to position r
u

b at time tb. The value of �t is independent 

of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 

and clocks to our motion diagrams in order to measure when each frame was exposed 

and where the object was located at that time. Different observers of the motion may 

choose different coordinate systems and different clocks. However, all observers find 

the same values for the displacements ∆r 
u

 and the time intervals ∆t because these are 

independent of the specific coordinate system used to measure them.

1.4 Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 

a speeding snail. To extend our study of motion so that we can compare the bullet to 

the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

   average speed =

distance traveled

time interval spent traveling
=

d

∆t
 (1.3)

If you drive 15 miles (mi) in 30 minutes 112 h2, your average speed is

   average speed =

15 mi
1
2 h

= 30 mph (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 

sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 

plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier 

is moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply know-

ing that the ship’s speed is 20 mph is not enough information!

It’s the displacement ∆r 
u

, a vector quantity, that tells us not only the distance trav-

eled by a moving object, but also the direction of motion. Consequently, a more useful 

ratio than d /∆t is the ratio ∆r 
u

/∆t. In addition to measuring how fast an object moves, 

this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 

has the symbol v 

u

avg. The average velocity of an object during the time interval �  t, 

in which the object undergoes a displacement �r
u

, is the vector

   v 

u

avg =
∆r 
u

∆t
 (1.5)

An object’s average velocity vector points in the same direction as the displace-

ment vector �r
u

. This is the direction of motion.

   NOTE    In everyday language we do not make a distinction between speed and 

velocity, but in physics the distinction is very important. In particular, speed is 

simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 

go along we will be giving other words more precise meanings in physics than they 

have in everyday language.

A stopwatch is used to measure a time 
interval.

The victory goes to the runner with the 
highest average speed.
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As an example, FIGURE 1.9a shows two ships that move 5 miles in 15 minutes. Using 

Equation 1.5 with ∆t = 0.25 h, we find

 v 

u

avg  A = (20 mph, north) 

 v 

u

avg  B = (20 mph, east) 
(1.6)

Both ships have a speed of 20 mph, but their velocities differ. Notice how the velocity 

vectors in FIGURE 1.9b point in the direction of motion.

   NOTE    Our goal in this chapter is to visualize motion with motion diagrams. Strictly 

speaking, the vector we have defined in Equation 1.5, and the vector we will show on 

motion diagrams, is the average velocity v 

u

avg. But to allow the motion diagram to be 

a useful tool, we will drop the subscript and refer to the average velocity as simply v 

u

. 

Our definitions and symbols, which somewhat blur the distinction between average 

and instantaneous quantities, are adequate for visualization purposes, but they’re not 

the final word. We will refine these definitions in Chapter 2, where our goal will be  

to develop the mathematics of motion.

Motion Diagrams with Velocity Vectors

The velocity vector points in the same direction as the displacement ∆r 
u

, and the 

length of v 

u

 is directly proportional to the length of ∆r 
u

. Consequently, the vectors 

connecting each dot of a motion diagram to the next, which we previously labeled as 

displacements, could equally well be identified as velocity vectors.

This idea is illustrated in FIGURE 1.10, which shows four frames from the motion 

diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 

as velocity vectors v 

u

. The length of a velocity vector represents the average speed 

with which the object moves between the two points. Longer velocity vectors indi-

cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 

direction. We say the hare is moving with constant velocity. The tortoise is also mov-

ing with its own constant velocity.

vavg A = (20 mph, north)
u

(a)

vavg B = (20 mph, east)

(b)

A

B

∆rA = (5 mi, north)

∆rB = (5 mi, east)

The velocity vectors point
in the direction of motion.

u

u

u

FIGURE 1.9 The displacement vectors and 
velocities of ships A and B.

v1
u

v2
u

v0
u

v1
u

v2
u

v0
u

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average velocity vectors.

Hare

Tortoise

FIGURE 1.10 Motion diagram of the 
tortoise racing the hare.

EXAMPLE 1.2 ■ Accelerating up a hill

The light turns green and a car accelerates, starting from rest, up a 20° hill. Draw a motion 

diagram showing the car’s velocity.

MODEL Use the particle model to represent the car as a dot.

VISUALIZE The car’s motion takes place along a straight line, but the line is neither hor-

izontal nor vertical. A motion diagram should show the object moving with the correct 

orientation—in this case, at an angle of 20°. FIGURE 1.11 shows several frames of the 

motion diagram, where we see the car speeding up. The car starts from rest, so the first 

arrow is drawn as short as possible and the first dot is labeled “Start.” The displacement 

vectors have been drawn from each dot to the next, but then they are identified and labeled 

as average velocity vectors v 

u

.

v
u

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

FIGURE 1.11 Motion diagram of a car accelerating up a hill.
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1.5 Linear Acceleration
Position, time, and velocity are important concepts, and at first glance they might 

appear to be sufficient to describe motion. But that is not the case. Sometimes an 

object’s velocity is constant, as it was in Figure 1.10. More often, an object’s velocity 

changes as it moves, as in Figures 1.11 and 1.12. We need one more motion concept to 

describe a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

1. The magnitude can change, indicating a change in speed; or

2. The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accel-

erating up a hill in Figure 1.11 was an example in which the magnitude of the  

velocity vector changed but not the direction. We’ll return to the second case in 

Chapter 4.

When we wanted to measure changes in position, the ratio ∆r 
u

/∆t was useful. This 

ratio is the rate of change of position. By analogy, consider an object whose velocity 

changes from v 

u

a to v 

u

b during the time interval ∆t. Just as ∆r 
u

= r 
u

b - r 
u

a is the change 

of position, the quantity ∆v 

u

= v 

u

b - v 

u

a is the change of velocity. The ratio ∆v 

u
 /∆t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 

quickly and a small magnitude for objects that speed up slowly.

Marcos kicks a soccer ball. It rolls along the ground until stopped 

by Jose. Draw a motion diagram of the ball.

MODEL This example is typical of how many problems in science 

and engineering are worded. The problem does not give a clear 

statement of where the motion begins or ends. Are we interested in 

the motion of the ball just during the time it is rolling between Mar-

cos and Jose? What about the motion as Marcos kicks it (ball rap-

idly speeding up) or as Jose stops it (ball rapidly slowing down)? 

The point is that you will often be called on to make a reasonable 

interpretation of a problem statement. In this problem, the details 

of kicking and stopping the ball are complex. The motion of the 

ball across the ground is easier to describe, and it’s a motion you 

might expect to learn about in a physics class. So our interpretation 

is that the motion diagram should start as the ball leaves Marcos’s 

foot (ball already moving) and should end the instant it touches 

Jose’s foot (ball still moving). In between, the ball will slow down 

a little. We will model the ball as a particle.

VISUALIZE With this interpretation in mind, FIGURE 1.12 shows 

the motion diagram of the ball. Notice how, in contrast to the car 

of Figure 1.11, the ball is already moving as the motion diagram 

video begins. As before, the average velocity vectors are found 

by connecting the dots. You can see that the average velocity vec-

tors get shorter as the ball slows. Each v  

u

 is different, so this is not 

constant-velocity motion.

EXAMPLE 1.3 ■ A rolling soccer ball

v
u

Marcos Jose

The velocity vectors are gradually getting shorter.

FIGURE 1.12 Motion diagram of a soccer ball rolling from 
Marcos to Jose.

STOP TO THINK 1.3 A particle moves from position 1 to position 2 during the time 

interval ∆t. Which vector shows the particle’s average velocity?

(e)(d)(c)(b)(a)

1

2

y

x
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The ratio ∆v
u

 /∆t is called the average acceleration, and its symbol is a
u

avg. The 

average acceleration of an object during the time interval �t, in which the object’s 

velocity changes by �v 

u

, is the vector

   a
u

avg =
∆v 

u

∆t
 (1.7)

The average acceleration vector points in the same direction as the vector �v 

u

.

Acceleration is a fairly abstract concept. Yet it is essential to develop a good in-

tuition about acceleration because it will be a key concept for understanding why 

objects move as they do. Motion diagrams will be an important tool for developing 

that intuition.

   NOTE    As we did with velocity, we will drop the subscript and refer to the average 

acceleration as simply a
u

. This is adequate for visualization purposes, but not the 

final word. We will refine the definition of acceleration in Chapter 2.

Finding the Acceleration Vectors on a Motion Diagram

Perhaps the most important use of a motion diagram is to determine the acceleration 

vector a
u

 at each point in the motion. From its definition in Equation 1.7, we see that  

a
u

 points in the same direction as ∆v 

u

, the change of velocity, so we need to find the 

direction of ∆v 

u

. To do so, we rewrite the definition ∆v 

u

= v 

u

b - v 

u

a as v 

u

b = v 

u

a + ∆v 

u

. 

This is now a vector addition problem: What vector must be added to v 

u

a to turn it into 

v 

u

b? Tactics Box 1.2 shows how to do this.

The Audi TT accelerates from 0 to 60 mph 
in 6 s.

TACTICS BOX 1.2

Finding the acceleration vector

a
u

3

1

Return to the original motion 

diagram. Draw a vector at the 

middle dot in the direction of

∆v; label it a. This is the average

acceleration at the midpoint

between va and vb. 

Draw velocity vectors va and vb with

their tails together.

2 Draw the vector from the tip of va
to the tip of vb. This is ∆v because

vb = va + ∆v.

vb

va

vb

va

u

u

u

va
u

u

u

vb
u

va
u

vb
u

uu

u u

To find the acceleration as the

velocity changes from va to vb,

we must determine the change

of velocity ∆v = vb - va.

u u

u u u

u

uu

uuu

u u

∆v

Exercises 21–24 

Many Tactics Boxes will refer you to exercises in the 

Student Workbook where you can practice the new skill.
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Notice that the acceleration vector goes beside the middle dot, not beside the veloc-

ity vectors. This is because each acceleration vector is determined by the difference 

between the two velocity vectors on either side of a dot. The length of a
u

 does not have 

to be the exact length of ∆v 

u

; it is the direction of a
u

 that is most important.

The procedure of ❮❮■TACTICS BOX 1.2 can be repeated to find a
u

 at each point in the 

motion diagram. Note that we cannot determine a
u

 at the first and last points because 

we have only one velocity vector and can’t find ∆v 

u

.

The Complete Motion Diagram

You’ve now seen two Tactics Boxes. Tactics Boxes to help you accomplish specific 

tasks will appear in nearly every chapter in this book. We’ll also, where appropriate, 

provide Problem-Solving Strategies.

PROBLEM-SOLVING STRATEGY 1.1

Motion diagrams

MODEL Determine whether it is appropriate to model the moving object as a parti-

cle. Make simplifying assumptions when interpreting the problem statement.

VISUALIZE A complete motion diagram consists of:

■■ The position of the object in each frame of the video, shown as a dot. Use five 

or six dots to make the motion clear but without overcrowding the picture. The 

motion should change gradually from one dot to the next, not drastically. More 

complex motions will need more dots.

■■ The average velocity vectors, found by connecting each dot in the motion dia-

gram to the next with a vector arrow. There is one velocity vector linking each 

two position dots. Label the row of velocity vectors v 

u

.

■■ The average acceleration vectors, found using Tactics Box 1.2. There is one 

acceleration vector linking each two velocity vectors. Each acceleration vector 

is drawn at the dot between the two velocity vectors it links. Use 0
u

 to indicate a 

point at which the acceleration is zero. Label the row of acceleration vectors a
u

.

STOP TO THINK 1.4 A particle undergoes acceleration a
u

 while 

moving from point 1 to point 2. Which of the choices shows the 

most likely velocity vector v  

u

2 as the particle leaves point 2?

2

(a)

2

(c)

2

(d)

v22

(b)

u

v2
u

v2
u

v2
u

a
u

v1
u

2 1

Examples of Motion Diagrams

Let’s look at some examples of the full strategy for drawing motion diagrams.
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A spaceship carrying the first astronauts to Mars descends safely 

to the surface. Draw a motion diagram for the last few seconds of 

the descent.

MODEL The spaceship is small in comparison with the distance 

traveled, and the spaceship does not change size or shape, so it’s 

reasonable to model the spaceship as a particle. We’ll assume that 

its motion in the last few seconds is straight down. The problem 

ends as the spacecraft touches the surface.

VISUALIZE FIGURE 1.13 shows a complete motion diagram as the 

spaceship descends and slows, using its rockets, until it comes  

to rest on the surface. Notice how the dots get closer together as  

it slows. The inset uses the steps of Tactics Box 1.2 (numbered 

circles) to show how the acceleration vector a
u

 is determined at one 

point. All the other acceleration vectors will be similar because  

for each pair of velocity vectors the earlier one is longer than the 

later one.

EXAMPLE 1.4 ■ The first astronauts land on Mars

v and a point in opposite 
directions. The object is 
slowing down.

v
u

u

a
u

u

a
u

∆v

va
u

va
u

vb
u

vb
u

Stops

1

2

3

u

FIGURE 1.13 Motion diagram of a spaceship landing on Mars.

A skier glides along smooth, horizontal snow at constant speed, then speeds up going 

down a hill. Draw the skier’s motion diagram.

MODEL Model the skier as a particle. It’s reasonable to assume that the downhill slope is a 

straight line. Although the motion as a whole is not linear, we can treat the skier’s motion 

as two separate linear motions.

VISUALIZE FIGURE 1.14 shows a complete motion diagram of the skier. The dots are 

equally spaced for the horizontal motion, indicating constant speed; then the dots get 

farther apart as the skier speeds up going down the hill. The insets show how the average 

acceleration vector a
u

 is determined for the horizontal motion and along the slope. All the 

other acceleration vectors along the slope will be similar to the one shown because each 

velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0
u

 

for the acceleration beside the dots where the velocity is constant. The acceleration at the 

point where the direction changes will be considered in Chapter 4.

EXAMPLE 1.5 ■ Skiing through the woods

∆v = 0

0
u

0
u

u

v
u

a
u

a
u

a
u

va
u

vc
u

vb
u

vb
u

vd
u

vd
u

v and a point in the same direction. 
The object is speeding up.

va
u

vc
u

u ∆v
u

u u

FIGURE 1.14 Motion diagram of a skier.
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Notice something interesting in Figures 1.13 and 1.14. Where the object is speed-

ing up, the acceleration and velocity vectors point in the same direction. Where 

the object is slowing down, the acceleration and velocity vectors point in opposite 

directions. These results are always true for motion in a straight line. For motion 

along a line:

■■ An object is speeding up if and only if v 
u

 and a
u

 point in the same direction.
■■ An object is slowing down if and only if v 

u

 and a
u

 point in opposite directions.
■■ An object’s velocity is constant if and only if a

u

= 0
u

.

   NOTE    In everyday language, we use the word accelerate to mean “speed up” and the 

word decelerate to mean “slow down.” But speeding up and slowing down are both 

changes in the velocity and consequently, by our definition, both are accelerations. 

In physics, acceleration refers to changing the velocity, no matter what the change 

is, and not just to speeding up.

Draw the motion diagram of a ball tossed straight up in the air.

MODEL This problem calls for some interpretation. Should we in-

clude the toss itself, or only the motion after the ball is released? 

What about catching it? It appears that this problem is really con-

cerned with the ball’s motion through the air. Consequently, we 

begin the motion diagram at the instant that the tosser releases the 

ball and end the diagram at the instant the ball touches his hand. We 

will consider neither the toss nor the catch. And, of course, we will 

model the ball as a particle.

VISUALIZE We have a slight difficulty here because the ball retraces 

its route as it falls. A literal motion diagram would show the upward 

motion and downward motion on top of each other, leading to con-

fusion. We can avoid this difficulty by horizontally separating the 

upward motion and downward motion diagrams. This will not af-

fect our conclusions because it does not change any of the vectors. 

FIGURE 1.15 shows the motion diagram drawn this way. Notice that 

the very top dot is shown twice—as the end point of the upward 

motion and the beginning point of the downward motion.

The ball slows down as it rises. You’ve learned that the accel-

eration vectors point opposite the velocity vectors for an object 

that is slowing down along a line, and they are shown accordingly. 

Similarly, a
u

 and v
u

 point in the same direction as the falling ball 

speeds up. Notice something interesting: The acceleration vectors 

point downward both while the ball is rising and while it is fall-

ing. Both “speeding up” and “slowing down” occur with the same 

acceleration vector. This is an important conclusion, one worth 

pausing to think about.

Now look at the top point on the ball’s trajectory. The velocity 

vectors point upward but are getting shorter as the ball approaches 

the top. As the ball starts to fall, the velocity vectors point down-

ward and are getting longer. There must be a moment—just an 

instant as v
u

 switches from pointing up to pointing down—when 

the velocity is zero. Indeed, the ball’s velocity is zero for an in-

stant at the precise top of the motion!

But what about the acceleration at the top? The inset shows 

how the average acceleration is determined from the last upward 

velocity before the top point and the first downward velocity. We 

find that the acceleration at the top is pointing downward, just as it 

does elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 

point. But the velocity at the top point is changing—from up to 

down. If the velocity is changing, there must be an acceleration. 

A downward-pointing acceleration vector is needed to turn the ve-

locity vector from up to down. Another way to think about this is 

to note that zero acceleration would mean no change of velocity. 

When the ball reached zero velocity at the top, it would hang there 

and not fall if the acceleration were also zero!

EXAMPLE 1.6 ■ Tossing a ball

v
u

v
u

a
u

a
u

a
u

a
u

a
u

a
u

∆v
u

∆v
u

∆v
u

va

ve

vc
u

vb
u

vf
u

vb
u

vf
u

vc
u

ve
u

va
u

vd
u

Finding a while

going down

Finding a while

going up

u

u

For clarity, we displace the upward and downward 
motions. They really occur along the same line.

The topmost point is 
shown twice for clarity.

The acceleration at
the top is not zero.

Finding a at the top
u

vd
u

u

u

FIGURE 1.15 Motion diagram of a ball tossed straight up in the air.
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1.6 Motion in One Dimension
An object’s motion can be described in terms of three fundamental quantities: its posi-

tion r 
u

, velocity v 

u

, and acceleration a
u

. These are vectors, but for motion in one dimen-

sion, the vectors are restricted to point only “forward” or “backward.” Consequently, 

we can describe one-dimensional motion with the simpler quantities x, vx  , and ax 

(or y, vy  , and ay). However, we need to give each of these quantities an explicit sign, 

positive or negative, to indicate whether the position, velocity, or acceleration vector 

points forward or backward.

Determining the Signs of Position, Velocity,  
and Acceleration

Position, velocity, and acceleration are measured with respect to a coordinate system, 

a grid or axis that you impose on a problem to analyze the motion. We will find it 

convenient to use an x-axis to describe both horizontal motion and motion along an 

inclined plane. A y-axis will be used for vertical motion. A coordinate axis has two 

essential features:

1. An origin to define zero; and

2. An x or y label (with units) at the positive end of the axis.

   NOTE    In this textbook, we will follow the convention that the positive end of an 

x-axis is to the right and the positive end of a y-axis is up. The signs of position, 

velocity, and acceleration are based on this convention.

TACTICS BOX 1.3

Determining the sign of the position, velocity, and acceleration

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x x 7 0

y 7 0 y 6 0

Position to right of origin.

Position above origin. Position below origin.

vy 7 0 vy 6 0

Direction of motion is up. Direction of motion is down.

ay 7 0 ay 6 0

Acceleration vector points up. Acceleration vector points down.

Position to left of origin.

Direction of motion is to the right.

Direction of motion is to the left.

Acceleration vector points to the right.

Acceleration vector points to the left.

x 6 0

vx 7 0

vx 6 0

ax 7 0

ax 6 0

0

y

0

y

0

x
0

The sign of position (x or y) tells us where an object is.

The sign of velocity (vx or vy) tells us which direction 

the object is moving.

The sign of acceleration (ax or ay) tells us which way 

the acceleration vector points, not whether the object 

is speeding up or slowing down.

Exercises 30–31 
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Acceleration is where things get a bit tricky. A natural tendency is to think that a 

positive value of ax or ay describes an object that is speeding up while a negative value 

describes an object that is slowing down (decelerating). However, this interpretation 

does not work.

Acceleration is defined as a
u

avg = ∆v
u

 /∆t. The direction of a
u

 can be determined by 

using a motion diagram to find the direction of ∆v 

u

. The one-dimensional acceleration 

ax (or ay) is then positive if the vector a
u

 points to the right (or up), negative if a
u

 points 

to the left (or down).

FIGURE 1.16 shows that this method for determining the sign of a does not con-

form to the simple idea of speeding up and slowing down. The object in Figure 1.16a 

has a positive acceleration 1ax 7 02 not because it is speeding up but because the 

vector a
u

 points in the positive direction. Compare this with the motion diagram of 

Figure 1.16b. Here the object is slowing down, but it still has a positive acceleration 

1ax 7 02 because a
u

 points to the right.

In the previous section, we found that an object is speeding up if v 

u

 and a
u

 point 

in the same direction, slowing down if they point in opposite directions. For 

one-dimensional motion this rule becomes:

■■ An object is speeding up if and only if vx and ax have the same sign.
■■ An object is slowing down if and only if vx and ax have opposite signs.
■■ An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.16.

Position-versus-Time Graphs

FIGURE 1.17 is a motion diagram, made at 1 frame per minute, of a student walking to 

school. You can see that she leaves home at a time we choose to call t = 0 min and 

makes steady progress for a while. Beginning at t = 3 min there is a period where the 

distance traveled during each time interval becomes less—perhaps she slowed down 

to speak with a friend. Then she picks up the pace, and the distances within each 

interval are longer.

a
u

v
u

a
u

v
u

x

x 7 0 vx 6 0 ax 7 00

x

x 7 0 vx 7 0 ax 7 00

(a) Speeding up to the right

(b) Slowing down to the left

FIGURE 1.16 One of these objects is 
speeding up, the other slowing down, but 
they both have a positive acceleration ax.

u

v

x (m)
0 100

1 frame per minute

200 300 400 500

t = 0 min

FIGURE 1.17 The motion diagram of a student walking to school and a coordinate axis for 
making measurements.

TABLE 1.1 Measured positions of a 
student walking to school

Time  
t (min)

Position  
x (m)

Time  
t (min)

Position  
x (m)

0   0 5 220

1  60 6 240

2 120 7 340

3 180 8 440

4 200 9 540

Figure 1.17 includes a coordinate axis, and you can see that every dot in a motion 

diagram occurs at a specific position. TABLE 1.1 shows the student’s positions at dif-

ferent times as measured along this axis. For example, she is at position x = 120 m  

at t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 

make a graph of the measurements in Table 1.1. FIGURE 1.18a is a graph of x versus t for 

the student. The motion diagram tells us only where the student is at a few discrete 

points of time, so this graph of the data shows only points, no lines.

   NOTE    A graph of “a versus b” means that a is graphed on the vertical axis and b 

on the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 

“graph a as a function of b.”
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However, common sense tells us the following. First, the student was some-

where specific at all times. That is, there was never a time when she failed to have 

a well-defined position, nor could she occupy two positions at one time. Second, the 

student moved continuously through all intervening points of space. She could not go 

from x = 100 m to x = 200 m without passing through every point in between. It is 

thus quite reasonable to believe that her motion can be shown as a continuous line pass-

ing through the measured points, as shown in FIGURE 1.18b. A continuous line or curve 

showing an object’s position as a function of time is called a position-versus-time 
graph or, sometimes, just a position graph.

   NOTE    A graph is not a “picture” of the motion. The student is walking along a 

straight line, but the graph itself is not a straight line. Further, we’ve graphed her 

position on the vertical axis even though her motion is horizontal. Graphs are 

abstract representations of motion. We will place significant emphasis on the 

process of interpreting graphs, and many of the exercises and problems will give you 

a chance to practice these skills.

t (min)

t (min)

x (m)

x (m)

0 2 4 6 8 10

600

400

200

0

0 2 4 6 8 10

600

400

200

0

(a)

(b)

Dots show the student’s position
at discrete instants of time.

A continuous line shows her
position at all instants of time.

FIGURE 1.18 Position graphs of the 
student’s motion.

The graph in FIGURE 1.19a represents the motion of a car along a 

straight road. Describe the motion of the car.

MODEL We’ll model the car as a particle with a precise position at 

each instant.

VISUALIZE As FIGURE 1.19b shows, the graph represents a car that 

travels to the left for 30 minutes, stops for 10 minutes, then travels 

back to the right for 40 minutes.

EXAMPLE 1.7 ■ Interpreting a position graph

t (min)

x (km)

20 40 60 80

(a)

20

10

0

-10

-20

t (min)

x (km)

20 40 60 80

(b)

20

10

0

-10

-20

1. At t = 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t = 80 min.

4. The car starts moving back
 to the right at t = 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

FIGURE 1.19 Position-versus-time graph of a car.

1.7 Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 

2 + 2?< Physics is about the world around us, and to describe that world we must use 

language. Now, language is wonderful—we couldn’t communicate without it—but 

language can sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into 

symbols that can be manipulated, calculated, and graphed. The translation from 

words to symbols is the heart of problem solving in physics. This is the point 

where ambiguous words and phrases must be clarified, where the imprecise must 

be made precise, and where you arrive at an understanding of exactly what the 

question is asking.
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Using Symbols

Symbols are a language that allows us to talk with precision about the relationships 

in a problem. As with any language, we all need to agree to use words or symbols in 

the same way if we want to communicate with each other. Many of the ways we use 

symbols in science and engineering are somewhat arbitrary, often reflecting historical 

roots. Nonetheless, practicing scientists and engineers have come to agree on how to 

use the language of symbols. Learning this language is part of learning physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 

problem. Scientists usually label the starting point of the problem with the subscript 

“0,” not the subscript “1” that you might expect. When using subscripts, make sure 

that all symbols referring to the same point in the problem have the same numerical 

subscript. To have the same point in a problem characterized by position x1 but veloc-

ity v2x is guaranteed to lead to confusion!

Drawing Pictures

You may have been told that the first step in solving a physics problem is to “draw a 

picture,” but perhaps you didn’t know why, or what to draw. The purpose of drawing a 

picture is to aid you in the words-to-symbols translation. Complex problems have far 

more information than you can keep in your head at one time. Think of a picture as a 

“memory extension,” helping you organize and keep track of vital information.

Although any picture is better than none, there really is a method for draw-

ing pictures that will help you be a better problem solver. It is called the pictorial 
representation of the problem. We’ll add other pictorial representations as we go 

along, but the following procedure is appropriate for motion problems.

TACTICS BOX 1.4

Drawing a pictorial representation

1  Draw a motion diagram. The motion diagram develops your intuition for the 

motion.

2  Establish a coordinate system. Select your axes and origin to match the mo-

tion. For one-dimensional motion, you want either the x-axis or the y-axis  

parallel to the motion. The coordinate system determines whether the signs of 

v and a are positive or negative.

3  Sketch the situation. Not just any sketch. Show the object at the beginning of the 

motion, at the end, and at any point where the character of the motion changes. 

Show the object, not just a dot, but very simple drawings are adequate.

4  Define symbols. Use the sketch to define symbols representing quantities such as 

position, velocity, acceleration, and time. Every variable used later in the mathe-

matical solution should be defined on the sketch. Some will have known values, 

others are initially unknown, but all should be given symbolic names.

5  List known information. Make a table of the quantities whose values you can 

determine from the problem statement or that can be found quickly with sim-

ple geometry or unit conversions. Some quantities are implied by the problem, 

rather than explicitly given. Others are determined by your choice of coordi-

nate system.

6  Identify the desired unknowns. What quantity or quantities will allow you 

to answer the question? These should have been defined as symbols in step 4. 

Don’t list every unknown, only the one or two needed to answer the question.

It’s not an overstatement to say that a well-done pictorial representation of the 

problem will take you halfway to the solution. The following example illustrates how 

to construct a pictorial representation for a problem that is typical of problems you 

will see in the next few chapters.
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Draw a pictorial representation for the following problem: A rocket 

sled accelerates horizontally at 50 m/s2 for 5.0 s, then coasts for 

3.0 s. What is the total distance traveled?

VISUALIZE FIGURE 1.20 is the pictorial representation. The motion 

diagram shows an acceleration phase followed by a coasting phase. 

Because the motion is horizontal, the appropriate coordinate sys-

tem is an x-axis. We’ve chosen to place the origin at the starting 

point. The motion has a beginning, an end, and a point where the 

motion changes from accelerating to coasting, and these are the 

three sled positions sketched in the figure. The quantities x, vx 

, and 

t are needed at each of three points, so these have been defined on 

the sketch and distinguished by subscripts. Accelerations are asso-

ciated with intervals between the points, so only two accelerations 

are defined. Values for three quantities are given in the problem 

statement, although we need to use the motion diagram, where we 

find that a
u

 points to the right, to know that a0x = +50 m/s2 rather 

than -50 m/s2. The values x0 = 0 m and t0 = 0 s are choices we 

made when setting up the coordinate system. The value v0x = 0 m/s 

is part of our interpretation of the problem. Finally, we identify x2 

as the quantity that will answer the question. We now understand 

quite a bit about the problem and would be ready to start a quanti-

tative analysis.

EXAMPLE 1.8 ■ Drawing a pictorial representation

5

4

2

1

a
u

v
u

0
u

0
u

y

x

a0x

x0, v0x , t0 x1, v1x , t1 x2, v2x , t2

a1x

Sketch the situation.

Establish a
coordinate system.

Define symbols.

List known information.

Identify desired unknown. Find

t0 = 0 s

x2

a0x = 50 m/s 2

a1x = 0 m/s 2

t1 = 5.0 s

t2 = t1 + 3.0 s = 8.0 s

Known

x0 = 0 m  v0x = 0 m/s

Draw a
motion diagram.

3

6

FIGURE 1.20 A pictorial representation.

A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving prob-
lems in physics.

We didn’t solve the problem; that is not the purpose of the pictorial representation. The 

pictorial representation is a systematic way to go about interpreting a problem and getting 

ready for a mathematical solution. Although this is a simple problem, and you probably 

know how to solve it if you’ve taken physics before, you will soon be faced with much 

more challenging problems. Learning good problem-solving skills at the beginning, while 

the problems are easy, will make them second nature later when you really need them.

Representations

A picture is one way to represent your knowledge of a situation. You could also rep-

resent your knowledge using words, graphs, or equations. Each representation of 
knowledge gives us a different perspective on the problem. The more tools you have 

for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

1. The verbal representation. A problem statement, in words, is a verbal represen-

tation of knowledge. So is an explanation that you write.

2. The pictorial representation. The pictorial representation, which we’ve just pre-

sented, is the most literal depiction of the situation.

3. The graphical representation. We will make extensive use of graphs.

4. The mathematical representation. Equations that can be used to find the numeri-

cal values of specific quantities are the mathematical representation.

   NOTE    The mathematical representation is only one of many. Much of physics is 

more about thinking and reasoning than it is about solving equations.
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A Problem-Solving Strategy

One of the goals of this textbook is to help you learn a strategy for solving physics prob-

lems. The purpose of a strategy is to guide you in the right direction with minimal wasted 

effort. The four-part problem-solving strategy—Model, Visualize, Solve, Review—is 

based on using different representations of knowledge. You will see this problem-solving 

strategy used consistently in the worked examples throughout this textbook, and you 

should endeavor to apply it to your own problem solving.

GENERAL PROBLEM-SOLVING STRATEGY

MODEL It’s impossible to treat every detail of a situation. Simplify the situation 

with a model that captures the essential features. For example, the object in a me-

chanics problem is often represented as a particle.

VISUALIZE This is where expert problem solvers put most of their effort.

■■ Draw a pictorial representation. This helps you visualize important aspects of 

the physics and assess the information you are given. It starts the process of 

translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.

■■ Go back and forth between these representations; they need not be done in any 

particular order.

SOLVE Only after modeling and visualizing are complete is it time to develop a 

mathematical representation with specific equations that must be solved. All sym-

bols used here should have been defined in the pictorial representation.

REVIEW Is your result believable? Does it have proper units? Does it make sense?

Use the first two steps of the problem-solving strategy to analyze 

the following problem: A small rocket, such as those used for me-

teorological measurements of the atmosphere, is launched verti-

cally with an acceleration of 30 m/s2. It runs out of fuel after 30 s. 

What is its maximum altitude?

MODEL We need to do some interpretation. Common sense tells us 

that the rocket does not stop the instant it runs out of fuel. Instead, 

it continues upward, while slowing, until it reaches its maximum 

altitude. This second half of the motion, after running out of fuel, is 

like the ball that was tossed upward in the first half of Example 1.6. 

Because the problem does not ask about the rocket’s descent, we 

conclude that the problem ends at the point of maximum altitude. 

We’ll model the rocket as a particle.

VISUALIZE FIGURE 1.21 shows the pictorial representation in 

pencil-sketch style. The rocket is speeding up during the first half of 

the motion, so a
u

0 points upward, in the positive y-direction. Thus the 

initial acceleration is a0y = 30 m/s2. During the second half, as the 

rocket slows, a
u

1 points downward. Thus a1y is a negative number.

EXAMPLE 1.9 ■ Launching a weather rocket

FIGURE 1.21 Pictorial representation for the rocket.

Throughout this textbook we will emphasize the first two steps. They are the phys-

ics of the problem, as opposed to the mathematics of solving the resulting equations. 

This is not to say that those mathematical operations are always easy—in many cases 

they are not. But our primary goal is to understand the physics.

Textbook illustrations are obviously more sophisticated than what you would draw 

on your own paper. To show you a figure very much like what you should draw, the 

final example of this section is in a “pencil sketch” style. We will include one or more 

pencil-sketch examples in nearly every chapter to illustrate exactly what a good prob-

lem solver would draw.
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Our task in this chapter is not to solve problems—all that in due time—but to 

focus on what is happening in a problem. In other words, to make the translation from 

words to symbols in preparation for subsequent mathematical analysis. Modeling and 

the pictorial representation will be our most important tools.

1.8 Units and Significant Figures
Science is based upon experimental measurements, and measurements require units. 

The system of units used in science is called le Système Internationale d’Unités. 

These are commonly referred to as SI units. In casual speaking we often refer to 

metric units.

All of the quantities needed to understand motion can be expressed in terms of the 

three basic SI units shown in TABLE 1.2. Other quantities can be expressed as a combi-

nation of these basic units. Velocity, expressed in meters per second or m/s, is a ratio 

of the length unit to the time unit.

Time

The standard of time prior to 1960 was based on the mean solar day. As time-keeping 

accuracy and astronomical observations improved, it became apparent that the earth’s 

rotation is not perfectly steady. Meanwhile, physicists had been developing a device 

called an atomic clock. This instrument is able to measure, with incredibly high pre-

cision, the frequency of radio waves absorbed by atoms as they move between two 

closely spaced energy levels. This frequency can be reproduced with great accuracy at 

many laboratories around the world. Consequently, the SI unit of time—the second—

was redefined in 1967 as follows:

One second is the time required for 9,192,631,770 oscillations of the radio wave 

absorbed by the cesium-133 atom. The abbreviation for second is the letter s.

Several radio stations around the world broadcast a signal whose frequency 

is linked directly to the atomic clocks. This signal is the time standard, and any 

time-measuring equipment you use was calibrated from this time standard.

Length

The SI unit of length—the meter—was originally defined as one ten-millionth of the 

distance from the north pole to the equator along a line passing through Paris. There 

are obvious practical difficulties with implementing this definition, and it was later 

abandoned in favor of the distance between two scratches on a platinum-iridium bar 

stored in a special vault in Paris. The present definition, agreed to in 1983, is as follows:

One meter is the distance traveled by light in vacuum during 1/299,792,458 of a 

second. The abbreviation for meter is the letter m.

This is equivalent to defining the speed of light to be exactly 299,792,458 m/s. 

Laser technology is used in various national laboratories to implement this definition 

and to calibrate secondary standards that are easier to use. These standards ultimately 

An atomic clock at the National Institute 
of Standards and Technology is the pri-
mary standard of time.

This information is included with the known information. Al-

though the velocity v2y wasn’t given in the problem statement, it 

must—just like for the ball in Example 1.6—be zero at the very 

top of the trajectory. Last, we have identified y2 as the desired un-

known. This, of course, is not the only unknown in the problem, 

but it is the one we are specifically asked to find.

REVIEW If you’ve had a previous physics class, you may be tempted 

to assign a1y the value -9.8 m/s2, the free-fall acceleration. However,  

that would be true only if there is no air resistance on the rocket. We 

will need to consider the forces acting on the rocket during the sec-

ond half of its motion before we can determine a value for a1y. For 

now, all that we can safely conclude is that a1y is negative.

TABLE 1.2 The basic SI units

Quantity Unit Abbreviation

time second s

length meter m

mass kilogram kg
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make their way to your ruler or to a meter stick. It is worth keeping in mind that any 

measuring device you use is only as accurate as the care with which it was calibrated.

Mass

For 130 years, the kilogram was defined as the mass of a polished platinum-iridium 

cylinder stored in a vault in Paris. By the 1990s, this was the only SI unit still defined 

by a manufactured object rather than by natural phenomena. That changed in 2019 

with a new definition of the kilogram, although one that is rather hard to understand:

One kilogram is defined by fixing the value of the Planck constant—a quantity 

that appears in quantum physics—to be 6.626 070 15 * 10-34 kg m2/s . The abbre-

viation for kilogram is kg.

This obscure definition is implemented using a device called a Kibble balance in 

which an electromagnet is used to balance the weight of a test mass, and the required 

electric current is measured using quantum standards that depend on the Planck con-

stant. Despite the prefix kilo, it is the kilogram, not the gram, that is the SI unit.

Using Prefixes

We will have many occasions to use lengths, times, and masses that are either much 

less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We will 

do so by using prefixes to denote various powers of 10. TABLE 1.3 lists the common 

prefixes that will be used frequently throughout this book. Memorize it! Few things in 

science are learned by rote memory, but this list is one of them. A more extensive list 

of prefixes is shown inside the front cover of the book.

Although prefixes make it easier to talk about quantities, the SI units are seconds, 

meters, and kilograms. Quantities given with prefixed units must be converted to SI 

units before any calculations are done. Unit conversions are best done at the very be-

ginning of a problem, as part of the pictorial representation.

Unit Conversions

Although SI units are our standard, we cannot entirely forget that the United States 

still uses English units. Thus it remains important to be able to convert back and forth 

between SI units and English units. TABLE 1.4 shows several frequently used conver-

sions, and these are worth memorizing if you do not already know them. While the 

English system was originally based on the length of the king’s foot, it is interesting 

to note that today the conversion 1 in = 2.54 cm is the definition of the inch. In other 

words, the English system for lengths is now based on the meter!

There are various techniques for doing unit conversions. One effective method is to 

write the conversion factor as a ratio equal to one. For example, using information in 

Tables 1.3 and 1.4, we have

10-6 m

1 mm
= 1  and  

2.54 cm

1 in
= 1

Because multiplying any expression by 1 does not change its value, these ratios are 

easily used for conversions. To convert 3.5 mm to meters we compute

3.5 mm *
10-6 m

1 mm
= 3.5 * 10-6 m

Similarly, the conversion of 2 feet to meters is

2.00 ft *
12 in

1 ft
*

2.54 cm

1 in
*

10-2 m

1 cm
= 0.610 m

Notice how units in the numerator and in the denominator cancel until only the de-

sired units remain at the end. You can continue this process of multiplying by 1 as 

many times as necessary to complete all the conversions.

TABLE 1.3 Common prefixes

Prefix Power of 10 Abbreviation

giga- 109 G

mega- 106 M

kilo- 103 k

centi- 10-2 c

milli- 10-3 m

micro- 10-6 m

nano- 10-9 n

In 1999, the $125-million Mars Climate 
Orbiter burned up in the Martian 
atmosphere instead of entering a safe 
orbit. The problem was faulty units! 
The engineering team supplied data in 
English units, but the navigation team as-
sumed that the data were in metric units.

TABLE 1.4 Useful unit conversions

1 in = 2.54 cm

1 mi = 1.609 km

1 mph = 0.447 m/s

1 m = 39.37 in

1 km = 0.621 mi

1 m/s = 2.24 mph
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Assessment

As we get further into problem solving, you will need to decide whether or not the 

answer to a problem “makes sense.” To determine this, at least until you have more 

experience with SI units, you may need to convert from SI units back to the English 

units in which you think. But this conversion does not need to be very accurate. For 

example, if you are working a problem about automobile speeds and reach an answer 

of 35 m/s, all you really want to know is whether or not this is a realistic speed for a 

car. That requires a “quick and dirty” conversion, not a conversion of great accuracy.

TABLE 1.5 shows several approximate conversion factors that can be used to as-

sess the answer to a problem. Using 1 m/s ≈ 2 mph, you find that 35 m/s is roughly 

70 mph, a reasonable speed for a car. But an answer of 350 m/s, which you might get 

after making a calculation error, would be an unreasonable 700 mph. Practice with 

these will allow you to develop intuition for metric units.

   NOTE    These approximate conversion factors are accurate to only one significant 

figure. This is sufficient to assess the answer to a problem, but do not use the 

conversion factors from Table 1.5 for converting English units to SI units at the start 

of a problem. Use Table 1.4.

Significant Figures

It is necessary to say a few words about a perennial source of difficulty: significant 

figures. Mathematics is a subject where numbers and relationships can be as precise 

as desired, but physics deals with a real world of ambiguity. It is important in science 

and engineering to state clearly what you know about a situation—no less and, espe-

cially, no more. Numbers provide one way to specify your knowledge.

If you report that a length has a value of 6.2 m, the implication is that the actual 

value falls between 6.15 m and 6.25 m and thus rounds to 6.2 m. If that is the case, 

then reporting a value of simply 6 m is saying less than you know; you are with-

holding information. On the other hand, to report the number as 6.213 m is wrong. 

Any person reviewing your work—perhaps a client who hired you—would interpret 

the number 6.213 m as meaning that the actual length falls between 6.2125 m and 

6.2135 m, thus rounding to 6.213 m. In this case, you are claiming to have knowledge 

and information that you do not really possess.

The way to state your knowledge precisely is through the proper use of significant 
figures. You can think of a significant figure as being a digit that is reliably known. A 

number such as 6.2 m has two significant figures because the next decimal place—the 

one-hundredths—is not reliably known. As FIGURE 1.22 shows, the best way to deter-

mine how many significant figures a number has is to write it in scientific notation.

TABLE 1.5 Approximate conversion 
factors. Use these for assessment,  
not in problem solving.

1 cm ≈
1
2 in

10 cm ≈ 4 in

1 m ≈ 1 yard

1 m ≈ 3 feet

1 km ≈ 0.6 mile

1 m/s ≈ 2 mph

c

A trailing zero after the
decimal place is reliably
known. It is significant.

Leading zeros locate the decimal point.
They are not significant.

The number of significant
figures is the number of
digits when written in
scientific notation.

The number of significant figures
≠ the number of decimal places.

Changing units shifts the decimal
point but does not change the
number of significant figures.

0.00620 = 6.20 * 10-3

FIGURE 1.22 Determining significant figures.

What about numbers like 320 m and 20 kg? Whole numbers with trailing zeros 

are ambiguous unless written in scientific notation. Even so, writing 2.0 * 101 kg is 

tedious, and few practicing scientists or engineers would do so. In this textbook, we’ll 
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   NOTE    Be careful! Many calculators have a default setting that shows two decimal 

places, such as 5.23. This is dangerous. If you need to calculate 5.23/58.5, your 

calculator will show 0.09 and it is all too easy to write that down as an answer. By 

doing so, you have reduced a calculation of two numbers having three significant 

figures to an answer with only one significant figure. The proper result of this div-

ision is 0.0894 or 8.94 * 10-2. You will avoid this error if you keep your calculator 

set to display numbers in scientific notation with two decimal places.

TACTICS BOX 1.5

Using significant figures

1  When multiplying or dividing several numbers, or taking roots, the number 

of significant figures in the answer should match the number of significant 

figures of the least precisely known number used in the calculation.

2  When adding or subtracting several numbers, the number of decimal places in 

the answer should match the smallest number of decimal places of any number 

used in the calculation.

3  Exact numbers are perfectly known and do not affect the number of signifi-

cant figures an answer should have. Examples of exact numbers are the 2 and 

the p in the formula C = 2pr for the circumference of a circle.

4  It is acceptable to keep one or two extra digits during intermediate steps of a 

calculation, to minimize rounding error, as long as the final answer is reported 

with the proper number of significant figures.

5  For examples and problems in this textbook, the appropriate number of sig-

nificant figures for the answer is determined by the data provided. Whole 

numbers with trailing zeros, such as 20 kg, are interpreted as having at least 

two significant figures.

Exercises 38–39 

An object consists of two pieces. The mass of one piece has been measured to be 6.47 kg.  

The volume of the second piece, which is made of aluminum, has been measured to be 

4.44 * 10-4 m3. A handbook lists the density of aluminum as 2.7 * 103 kg/m3. What is 

the total mass of the object?

SOLVE First, calculate the mass of the second piece:

  m = 14.44 * 10-4 m3212.7 * 103 kg/m32

  = 1.199 kg = 1.2 kg

EXAMPLE 1.10 ■ Using significant figures

adopt the rule that whole numbers always have at least two significant figures, even 

if one of those is a trailing zero. By this rule, 320 m, 20 kg, and 8000 s each have two 

significant figures, but 8050 s would have three.

Calculations with numbers follow the “weakest link” rule. The saying, which you prob-

ably know, is that “a chain is only as strong as its weakest link.” If nine out of ten links 

in a chain can support a 1000 pound weight, that strength is meaningless if the tenth link 

can support only 200 pounds. Nine out of the ten numbers used in a calculation might be 

known with a precision of 0.01%; but if the tenth number is poorly known, with a precision 

of only 10%, then the result of the calculation cannot possibly be more precise than 10%.
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Proper use of significant figures is part of the “culture” of science and engineer-

ing. We will frequently emphasize these “cultural issues” because you must learn to 

speak the same language as the natives if you wish to communicate effectively. Most 

students know the rules of significant figures, having learned them in high school, 

but many fail to apply them. It is important to understand the reasons for significant 

figures and to get in the habit of using them properly.

Orders of Magnitude and Estimating

Precise calculations are appropriate when we have precise data, but there are many 

times when a very rough estimate is sufficient. Suppose you see a rock fall off a cliff 

and would like to know how fast it was going when it hit the ground. By doing a 

mental comparison with the speeds of familiar objects, such as cars and bicycles, you 

might judge that the rock was traveling at “about” 20 mph.

This is a one-significant-figure estimate. With some luck, you can distinguish 

20 mph from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph 

from 21 mph. A one-significant-figure estimate or calculation, such as this, is called 

an order-of-magnitude estimate. An order-of-magnitude estimate is indicated by 

the symbol ∼ , which indicates even less precision than the “approximately equal” 

symbol ≈ . You would say that the speed of the rock is v ∼  20 mph.

A useful skill is to make reliable estimates on the basis of known informa-

tion, simple reasoning, and common sense. This is a skill that is acquired by prac-

tice. Many chapters in this book will have homework problems that ask you to 

make order-of-magnitude estimates. The following example is a typical estimation 

problem.

TABLES 1.6 and 1.7 have information that will be useful for doing estimates.

TABLE 1.6 Some approximate lengths

Length (m)

Altitude of jet planes 10,000

Distance across campus 1000

Length of a football field 100

Length of a classroom 10

Length of your arm 1

Width of a textbook 0.1

Length of a fingernail 0.01

TABLE 1.7 Some approximate masses

Mass (kg)

Small car 1000

Large human 100

Medium-size dog 10

Science textbook 1

Apple 0.1

Pencil 0.01

Raisin 0.001

The number of significant figures of a product must match that of the least precisely known 

number, which is the two-significant-figure density of aluminum. Now add the two masses:

6.47 kg

+  1.2  kg

7.7  kg

The sum is 7.67 kg, but the hundredths place is not reliable because the second mass has 

no reliable information about this digit. Thus we must round to the one decimal place of 

the 1.2 kg. The best we can say, with reliability, is that the total mass is 7.7 kg.
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Estimate the speed with which an Olympic sprinter crosses the finish line of the 100 m 

dash.

SOLVE We do need one piece of information, but it is a widely known piece of sports 

trivia. That is, world-class sprinters run the 100 m dash in about 10 s. Their average 

speed is vavg ≈ 1100 m2/110 s2 ≈ 10 m/s. But that’s only average. They go slower than 

average at the beginning, and they cross the finish line at a speed faster than average. How 

much faster? Twice as fast, 20 m/s, would be ≈40 mph. Sprinters don’t seem like they’re 

running as fast as a 40 mph car, so this probably is too fast. Let’s estimate that their final 

speed is 50% faster than the average. Thus they cross the finish line at v ∼  15 m/s.

EXAMPLE 1.11 ■ Estimating a sprinter’s speed

STOP TO THINK 1.5 Rank in order, from the most to the least, the number of 

significant figures in the following numbers. For example, if b has more than c,  

c has the same number as a, and a has more than d, you could give your answer as 

b 7 c = a 7 d.

a. 82 b. 0.0052 c. 0.430 d. 4.321 * 10-10
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Problem Solving

MODEL Make simplifying assumptions.

VISUALIZE Use:

• Pictorial representation

• Graphical representation

SOLVE Use a mathematical representation to find numerical 
answers.

REVIEW Does the answer have the proper units and correct sig-
nificant figures? Does it make sense?

Motion Diagrams

• Help visualize motion.

• Provide a tool for finding acceleration vectors.

v0
u

v1
u

∆v
u

a
u

a
u

v1
u

v0
u

Dots show positions at
equal time intervals.

Velocity vectors go dot to dot.

The acceleration
vector points in the
direction of ∆v.

u

▶ These are the average velocity and acceleration vectors.

General Strategy

Summary
 

The goal of Chapter 1 has been to learn the fundamental 
concepts of motion.

For motion along a line:

• Speeding up: v
u

 and a
u

 point in the same direction, vx and ax have 
the same sign.

• Slowing down: v
u

 and a
u

 point in opposite directions, vx and ax  
have opposite signs.

• Constant speed: a
u

= 0
u

, ax = 0.

Acceleration ax is positive if a
u

 ptoints right, negative if a
u

 points 
left. The sign of ax does not imply speeding up or slowing down.

Pictorial Representation

1  Draw a motion diagram.

2  Establish coordinates.

3  Sketch the situation.

4  Define symbols.

5  List knowns.

6  Identify desired unknown.

Significant figures are reliably known digits. The number of 
significant figures for:

• Multiplication, division, powers is set by the value with the fewest 
significant figures.

• Addition, subtraction is set by the value with the smallest number 
of decimal places.

The appropriate number of significant figures in a calculation is 
determined by the data provided.

The particle model represents a moving object as if all its mass 
were concentrated at a single point.

Position locates an object with respect to a chosen coordinate sys-
tem. Change in position is called displacement.

Velocity is the rate of change of the position vector r 
u

.

Acceleration is the rate of change of the velocity vector v
u

.

An object has an acceleration if it

• Changes speed and/or

• Changes direction.

Important Concepts

Applications

a
u

v
u

x0 = v0x = t0 = 0

ax

x0, v0x, t0 x1, v1x, t1

x

0

Known

ax = 2.0 m/s 2  t1 = 2.0 s

Find

x1

motion

translational motion

trajectory

motion diagram

model

particle

particle model

position vector, r 
u

scalar

vector

displacement, ∆r 
u

time interval, ∆t

average speed

average velocity, v
u

average acceleration, a
u

position-versus-time graph

pictorial representation

representation of knowledge

SI units

significant figures

order-of-magnitude estimate

Terms and Notation
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CONCEPTUAL QUESTIONS

1. How many significant figures does each of the following num-

bers have?

a. 0.073 b. 0.73 c. 7.30 d. 73

2. How many significant figures does each of the following num-

bers have?

a. 0.0029 b. 2.90 c. 290 d. 2.90 * 104

3. Is the particle in FIGURE Q1.3 speeding up? Slowing down? Or 

can you tell? Explain.

FIGURE Q1.3

v
u

FIGURE Q1.4

4. Does the object represented in FIGURE Q1.4 have 

a positive or negative value of ax? Explain.

5. Does the object represented in FIGURE Q1.5 have 

a positive or negative value of ay? Explain.

v
u

FIGURE Q1.5

6. Determine the signs (positive, negative, or zero) of the position, 

velocity, and acceleration for the particle in FIGURE Q1.6.

0

x

FIGURE Q1.6

0

y

FIGURE Q1.7

0

y

FIGURE Q1.8

7. Determine the signs (positive, negative, or zero) of the position, 

velocity, and acceleration for the particle in FIGURE Q1.7.

8. Determine the signs (positive, negative, or zero) of the position, 

velocity, and acceleration for the particle in FIGURE Q1.8.

EXERCISES AND PROBLEMS

Exercises

Section 1.1 Motion Diagrams

1. | A jet plane lands on the deck of an aircraft carrier and 

quickly comes to a halt. Draw a basic motion diagram, using 

the images from the video, from the time the jet touches down 

until it stops.

2. | You are watching a jet ski race. A racer speeds up from rest to 

70 mph in 10 s, then continues at a constant speed. Draw a basic 

motion diagram of the jet ski, using images from the video, from 

its start until 10 s after reaching top speed.

3. | A rocket is launched straight up. Draw a basic motion dia-

gram, using the images from the video, from the moment of lift-

off until the rocket is at an altitude of 500 m.

Section 1.2 Models and Modeling

4. | a. Write a paragraph describing the particle model. What is it, 

and why is it important?

b. Give two examples of situations, different from those  described 

in the text, for which the particle model is appropriate.

c. Give an example of a situation, different from those de-

scribed in the text, for which it would be inappropriate.

Section 1.3 Position, Time, and Displacement

Section 1.4 Velocity

5. | A baseball player starts running to the left to catch the ball as 

soon as the hit is made. Use the particle model to draw a motion 

diagram showing the position and average velocity vectors of the 

player during the first few seconds of the run.

6. | You drop a soccer ball from your third-story balcony. Use the 

particle model to draw a motion diagram showing the ball’s po-

sition and average velocity vectors from the time you release the 

ball until the instant it touches the ground.

7. | A car skids to a halt to avoid hitting an object in the road. Use 

the particle model to draw a motion diagram showing the car’s 

position and its average velocity from the time the skid begins 

until the car stops.

Section 1.5 Linear Acceleration

8.   |  a.   FIGURE EX1.8 shows the first three points of a motion 

diagram. Is the object’s average speed between points 1 

and 2 greater than, less than, or equal to its average speed 

between points 0 and 1? Explain how you can tell.

b. Use Tactics Box 1.2 to find the average acceleration vector 

at point 1. Draw the completed motion diagram, showing the 

velocity vectors and acceleration vector.

1

2

0

FIGURE EX1.8 FIGURE EX1.9

2 3 410

9. | FIGURE EX1.9 shows five points of a motion diagram. Use 

Tactics Box 1.2 to find the average acceleration vectors at points 

1, 2, and 3. Draw the completed motion diagram showing veloc-

ity vectors and acceleration vectors.


