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About This Book

Introduction to Engineering Analysis is designed to teach first-year engineering  students 

how to perform engineering analyses using a systematic problem-solving method. 

Written for students embarking on any engineering major, the book introduces 

the fundamental principles of a variety of engineering subjects and then applies 

the  problem-solving method to those subjects. Following introductory chapters on 

 analysis, design, and dimensions and units, the book outlines and illustrates the 

 problem-solving method in detail. The problem-solving method is then used through-

out the rest of the book. Chapters include topics traditionally introduced in the first 

or second year of an engineering curriculum: engineering mechanics, electrical cir-

cuits, thermodynamics, and fluid mechanics. The last three chapters cover fundamen-

tal principles of renewable energy followed by chapters on graphing and statistics. 

 Approximately 40 percent of the end-of-chapter problems in the fifth edition are 

 revised or new. Studied conscientiously, this book will help students get a good start in 

their engineering coursework.



1.1 INTRODUCTION
What is analysis? A dictionary definition of analysis might read something like this:

the separation of a whole into its component parts, or an examination of a 
complex system, its elements, and their relationships.

Based on this general definition, analysis may refer to everything from the study 
of a person’s mental state (psychoanalysis) to the determination of the amount of 
certain elements in an unknown metal alloy (elemental analysis). Engineering analysis, 
however, has a specific meaning. A concise working definition is:

analytical solution of an engineering problem, using mathematics and prin-
ciples of science.

Engineering analysis relies heavily on basic mathematics such as algebra, geom-
etry, trigonometry, calculus, and statistics. Higher level mathematics such as linear al-
gebra, differential equations, and complex variables may also be used. Principles and 
laws from the physical sciences, particularly physics and chemistry, are key ingredients 
of engineering analysis.

Engineering analysis involves more than searching for an equation that fits a prob-
lem, plugging numbers into the equation, and “turning the crank” to generate an 

After reading this chapter, you 
will have learned
• What engineering  

analysis is
• That analysis is a major 

component of the  
engineering curriculum

• How analysis is used in  
engineering design

• How analysis helps  
engineers prevent and  
diagnose failures

Objectives

The Role of 
Analysis in 
Engineering1

C H A P T E R
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answer. It is not a simple “plug and chug” procedure. Engineering analysis requires 
logical and systematic thinking about the engineering problem. The engineer must 
first be able to state the problem clearly, logically, and concisely. The engineer must 
understand the physical behavior of the system being analyzed and know which 
scientific principles to apply. He or she must recognize which mathematical tools to 
use and how to implement them by hand or on a computer. The engineer must be 
able to generate a solution that is consistent with the stated problem and any simpli-
fying assumptions. The engineer must then ascertain that the solution is reasonable 
and contains no errors.

Engineering analysis may be regarded as a type of modeling or simulation. For 
example, suppose that a civil engineer wants to know the tensile stress in a cable of 
a suspension bridge that is being designed. The bridge exists only on paper, so a 
direct stress measurement cannot be made. A scale model of the bridge could be 
constructed, and a stress measurement taken on the model, but models are expen-
sive and very time-consuming to develop. A better approach is to create an analyti-
cal model of the bridge or a portion of the bridge containing the cable. From this 
model, the tensile stress can be calculated.

Engineering courses that focus on analysis, such as statics, dynamics, mechanics 
of materials, thermodynamics, and electrical circuits, are considered core courses 
in the engineering curriculum. Because you will be taking many of these courses, 
it is vital that you gain a fundamental understanding of what analysis is and, more 
importantly, how to do analysis properly. As the bridge example illustrates, analysis 
is an integral part of engineering design. Analysis is also a key part of the study of 
engineering failures.

Engineers who perform engineering analyses on a regular basis are referred 
to as engineering analysts or analytic engineers. These functional titles are used to 
differentiate analysis from the other engineering functions such as research and 
development (R&D), design, testing, production, sales, and marketing. In some 
engineering companies, clear distinctions are made between the various engineer-
ing functions and the people who work in them. Depending on the organizational 
structure and the type of products involved, large companies may dedicate a sep-
arate department or group of engineers to be analysts. Engineers whose work is 
dedicated to analysis are considered specialists. In this capacity, the engineering 
analyst usually works in a support role for design engineering. It is not uncommon, 
however, for design and analysis functions to be combined in a single department 
because design and analysis are so closely related. In small firms that employ only a 
few engineers, the engineers often bear the responsibility of many technical func-
tions, including analysis.

PROFESSIONAL SUCCESS—CHOOSING  
AN ENGINEERING MAJOR

Perhaps the biggest question facing the new engineering student (besides 
“How much money will I make after I graduate?”) is “In which field of engi-
neering should I major?” Engineering is a broad area, so the beginning stu-
dent has numerous options. The new engineering student should be aware 
of a few facts. First, all engineering majors have the potential for preparing 
the student for a satisfying and rewarding engineering career. As a profes-
sion, engineering has historically enjoyed a fairly stable and well-paid market. 
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There have been fluctuations in the engineering market in recent decades, 
but the demand for engineers in all the major disciplines is high, and the 
future looks bright for engineers. Second, all engineering majors are aca-
demically challenging, but some engineering majors may be more challeng-
ing than others. Study the differences between the various engineering pro-
grams. Compare the course requirements of each program by examining the 
course listings in your college or university catalog. Ask department chairs or 
advisors to discuss the similarities and differences between their engineer-
ing programs and the programs in other departments. (Just keep in mind 
that professors may be eager to tell you that their engineering discipline is 
the best.) Talk with people who are practicing engineers in the various disci-
plines and ask them about their educational experiences. Learn all you can 
from as many sources as you can about the various engineering disciplines. 
Third, and this is the most important point, try to answer the following ques-
tion: “What kind of engineering will be the most gratifying for me?” It makes 
little sense to devote four or more years of intense study of X engineering 
just because it happens to be the highest paid discipline, because your uncle 
Vinny is an X engineer, because X engineering is the easiest program at your 
school, or because someone tells you that they are an X engineer, so you 
should be one too.

Engineering disciplines may be broadly categorized as either mainstream 
or narrowly focused. Mainstream disciplines are the broad-based, traditional 
disciplines that have been in existence for decades (or even centuries) and 
in which degrees are offered by most of the larger colleges and universities. 
Many colleges and universities do not offer engineering degrees in some of 
the narrowly focused disciplines. Chemical, civil, computer, electrical, and 
mechanical engineering are considered the core mainstream disciplines. 
These mainstream disciplines are broad in subject content and represent the 
majority of practicing engineers. Narrowly focused disciplines concentrate on 
a particular engineering subject by combining specific components from the 
mainstream disciplines. For example, biomedical engineering may combine 
portions of electrical and mechanical engineering plus components from bi-
ology. Construction engineering may combine elements from civil engineer-
ing and business or construction trades. Other narrowly focused disciplines 
include materials, aeronautical and aerospace, environmental, nuclear, ce-
ramic, geological, manufacturing, automotive, metallurgical, corrosion, 
ocean, and cost and safety engineering.

Should you major in a mainstream area or a narrowly focused area? The 
safest thing to do, especially if you are uncertain about which discipline to 
study, is to major in one of the mainstream disciplines. By majoring in a main-
stream area, you will graduate with a general engineering education that will 
make you marketable in a broad engineering industry. On the other hand, 
majoring in a narrowly focused discipline may lead you into an extremely sat-
isfying career, particularly if your area of expertise, narrow as it may be, is in 
high demand. Perhaps your decision will be largely governed by geographical 
issues. The narrowly focused majors may not be offered at the school you wish 
to attend. These are important issues to consider when selecting an engineer-
ing major.
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1.2 ANALYSIS AND ENGINEERING DESIGN
Design is the heart of engineering. In ancient times, people recognized a need 
for protection against the natural elements, for collecting and utilizing water, for 
finding and growing food, for transportation, and for defending themselves against 
other people with unfriendly intentions. Today, even though our world is much 
more advanced and complex than that of our ancestors, our basic needs are essen-
tially the same. Throughout history, engineers have designed various devices and 
systems that met the changing needs of society. The following is a concise definition 
of engineering design:

a process of devising a component, system, or operation that meets a spe-
cific need.

The key word in this definition is process. The design process is like a road map 
that guides the designer from need recognition to problem solution. Design engi-
neers make decisions based on a thorough understanding of engineering funda-
mentals, design constraints, cost, reliability, manufacturability, and human factors. 
A knowledge of design principles can be learned in school from professors and 
books, but in order to become a good design engineer, you must practice design. 
Design engineers are like artists and architects who harness their creative powers 
and skills to produce sculptures and buildings. The end products made by design 
engineers may be more functional than artistic, but their creation still requires 
knowledge, imagination, and creativity.

Engineering design is a process by which engineers meet the needs of society. 
This process may be described in a variety of ways, but it typically consists of the 
systematic sequence of steps shown in Figure 1.1.

Design has always been a key element of engineering programs in colleges 
and universities. Traditionally, engineering students take a “senior design” or a 
“capstone design project” course in their senior year. Recognizing that design is 
indeed the heart of engineering and that students need an earlier introduction 
to the subject, many schools integrate design experiences earlier in the curricu-
lum, perhaps as early as the introductory course. By introducing design at the 
level that introductory mathematics and science courses are taught, engineering 
programs provide students a meaningful context within which mathematics and 
science are applied.

What is the relationship between engineering analysis and engineering de-
sign? As we defined it earlier, engineering analysis is the analytical solution of an 
engineering problem, using mathematics and principles of science. The false notion 
that engineering is merely mathematics and applied science is widely held by 
many beginning engineering students. This may lead a student to believe that 
engineering design is the equivalent of a “story problem” found in high school 
algebra books. However, unlike math problems, design problems are “open 
ended.” This means, among other things, that such problems do not have a sin-
gle “correct” solution. Design problems have many possible solutions, depend-
ing on the decisions made by the design engineer. The main goal of engineering 
design is to obtain the best or optimum solution within the specifications and 
constraints of the problem.

So, how does analysis fit in? One of the steps in the design process is to obtain a 
preliminary concept of the design. (Note that the word design here refers to the actual 
component, system, or operation that is being created.) At this point, the engineer be-
gins to investigate design alternatives. Alternatives are different approaches, or options, 
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Define objectives

Choose a design
strategy

Gather information

Make a first attempt
at the design

Build a prototype

Revise

Document

Test

Does the prototype
meet specifications?

Test the finished
product

Does finished product
meet specifications?

Market

Yes

No

Yes

No

Figure 1.1

The engineering design 
process.

that the design engineer considers to be viable at the conceptual stage of the design. 
For example, some of these concepts may be used to design a better mousetrap:

• use a mechanical or an electronic sensor;
• insert cheese or peanut butter as bait;
• construct a wood, plastic, or metal cage;
• install an audible or a visible alarm;
• kill or catch and release the mouse.

Analysis is a decision-making tool for evaluating a set of design alternatives. By 
performing analysis, the design engineer zeroes in on the alternatives that yield 
the optimum solution, while eliminating alternatives that either violate design con-
straints or yield inferior solutions. In the mousetrap design, a dynamics analysis 
may show that a mechanical sensor is too slow, resulting in delaying the closing of 
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a trap door and therefore freeing the mouse. Thus, an electronic sensor is chosen 
because it yields a superior solution.

The application that follows illustrates how analysis is used to design a machine 
component.

P

D

L

Figure 1.2

A machine  
component.

DESIGNING A MACHINE COMPONENT
One of the major roles for mechanical engineers is the design of machines. Machines 
can be very complex systems consisting of numerous moving components. In order 
for a machine to work properly, each component must be designed so that it per-
forms a specific function in unison with the other components. The components 
must be designed to withstand specified forces, vibrations, temperatures, corrosion, 
and other mechanical and environmental factors. An important aspect of machine 
design is determining the dimensions of the mechanical components.

Consider a machine component consisting of a 20-cm-long circular rod, as 
shown in Figure 1.2. As the machine operates, the rod is subjected to a 100-kN 
tensile force. (The unit “kN” stands for “kilo newton,” which denotes 1000 new-
ton. A newton is a unit of force). One of the design constraints is that the axial 
deformation (change in length) of the rod cannot exceed 0.5 mm if the rod is to 
interface properly with a mating component. Taking the rod length and the ap-
plied tensile force as given, what is the minimum diameter required for the rod?

A
PP

LI
C

A
TI

O
N

To solve this problem, we use an equation from mechanics of materials,

δ =
PL

AE

where

δ =   axial deformation (m)

=P    axial tensile force (N)

=L   original length of rod (m)

= =A D /  π 4  cross-sectional area of rod (m )2 2

=E modulus of elasticity (N/m ).2

The use of this equation assumes that the material behaves elastically (i.e., it 
does not undergo permanent deformation when subjected to a force). Upon sub-
stituting the formula for the rod’s cross-sectional area into the equation and solving 
for the rod diameter D, we obtain

πδ
=

4
.D

PL

E
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As the application example illustrates, analysis is used to ascertain what design 
features are required to make the component or system functional. Analysis is used 
to size the cable of a suspension bridge, to select a cooling fan for a computer, to 
size the heating elements for curing a plastic part in a manufacturing plant, and to 
design the solar panels that convert solar energy to electrical energy for a spacecraft. 
Analysis is a crucial part of virtually every design task because it guides the design en-
gineer through a sequence of decisions that ultimately lead to the optimum design. 
It is important to point out that in design work, it is not enough to produce a drawing 
or CAD (computer-aided design) model of the component or system. A drawing by 
itself, while revealing the visual and dimensional characteristics of the design, may 
say little, or nothing, about the functionality of the design. Analysis must be included 
in the design process if the engineer is to know whether the design will actually 
work when it is placed into service. Also, once a working prototype of the design is 
constructed, testing is performed to validate analysis and to aid in the refinement of 
the design.

1.3 ANALYSIS AND ENGINEERING FAILURE
With the possible exception of farmers, engineers are probably the most taken-for-
granted people in the world. Virtually all the man-made products and devices that 
people use in their personal and professional lives were designed by engineers. Think 
for a moment. What is the first thing you did when you arose from bed this morning? 
Did you hit the snooze button on your alarm clock? Your alarm clock was designed 

We know the tensile force P, the original rod length L, and the maximum axial 
deformation δ . But to find the diameter D, we must also know the modulus of 
elasticity E. The modulus of elasticity is a material property, a constant defined by 
the ratio of stress to strain. Suppose we choose 7075-T6 aluminum for the rod. This 
material has a modulus of elasticity of =E 72 GPa. (Note: a unit of stress, which 
is force divided by area, is the pascal (Pa). =1 Pa 1 N/m2  and =1 GPa 10  Pa9 .) 
Substituting values into the equation gives the following diameter:

π
=

×

×

= =

D
4(100 10  N)(0.20 m)

(0.0005 m)(72 10  N/m )

0.0266 m 26.6 mm.

3

9 2

As part of the design process, we wish to consider other materials for the rod. Let’s 
find the diameter for a rod made of structural steel =E( 200 GPa). For structural 
steel, the rod diameter is

π
=

×

×

= =

D
4(100 10  N)(0.20 m)

(0.0005 m)(200 10  N/m )

0.0160 m 16.0 mm.

3

9 2

Our analysis shows that the minimum diameter for the rod depends on the material 
we choose. Either 7075-T6 aluminum or structural steel will work as far as the axial 
deformation is concerned, but other design issues such as weight, strength, wear, 
corrosion, and cost should be considered. The important point to be learned here 
is that analysis is a fundamental step in machine design.
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by engineers. What did you do next, go into the bathroom, perhaps? The bathroom 
fixtures — the sink, bathtub, shower, and toilet — were designed by engineers. Did 
you use an electrical appliance to fix breakfast? Your toaster, waffle maker, microwave 
oven, refrigerator, and other kitchen appliances were designed by engineers. Even if 
you ate cold cereal for breakfast, you still took advantage of engineering because en-
gineers designed the processes by which the cereal and milk were produced, and they 
even designed the machinery for making the cereal box and milk container! What 
did you do after breakfast? If you brushed your teeth, you can thank engineers for 
designing the toothpaste tube and toothbrush and even formulating the toothpaste. 
Before leaving for school, you got dressed; engineers designed the machines that 
manufactured your clothes. Did you drive a car to school or ride a bicycle? In either 
case, engineers designed both transportation devices. What did you do when you ar-
rived at school? You sat down in your favorite chair in a classroom, removed a pen or 
pencil and a note pad from your backpack, and began another day of learning. The 
chair you sat in, the writing instrument you used to take notes, the notepad you wrote 
on, and the bulging backpack you use to carry books, binders, paper, pens, and pen-
cils, plus numerous other devices were designed by engineers.

We take engineers for granted, but we expect a lot from them. We expect every-
thing they design, including alarm clocks, plumbing, toasters, automobiles, chairs, and 
pencils, to work and to work all the time. Unfortunately, they don’t. We experience 
a relatively minor inconvenience when the heating coil in our toaster burns out, but 
when a bridge collapses, a commercial airliner crashes, or a space shuttle explodes, and 
people are injured or die, the story makes headline news, and engineers are suddenly 
thrust into the spotlight of public scrutiny. Are engineers to blame for every failure that 
occurs? Some failures occur because people misuse the products. For example, if you 
persist in using a screwdriver to pry lids off cans, to dig weeds from the garden, and to 
chisel masonry, it may soon stop functioning as a screwdriver. Although engineers try 
to design products that are “people proof,” the types of failures that engineers take 
primary responsibility for are those caused by various types of errors during the design 
phase. After all, engineering is a human enterprise, and humans make mistakes.

Whether we like it or not, failure is part of engineering. It is part of the design pro-
cess. When engineers design a new product, it seldom works exactly as expected the first 
time. Mechanical components may not fit properly, electrical components may be con-
nected incorrectly, software glitches may occur, or materials may be incompatible. The 
list of potential causes of failure is long, and the cause of a specific failure in a design is 
probably unexpected because otherwise the design engineer would have accounted for 
it. Failure will always be part of engineering, because engineers cannot anticipate every 
mechanism by which failures can occur. Engineers should make a concerted effort to 
design systems that do not fail. If failures do arise, ideally they are revealed during the 
design phase and can be corrected before the product goes into service. One of the 
hallmarks of a good design engineer is one who turns failure into success.

The role of analysis in engineering failure is twofold. First, as discussed  
earlier, analysis is a crucial part of engineering design. It is one of the main decision- 
making tools the design engineer uses to explore alternatives. Analysis helps estab-
lish the functionality of the design. Analysis may therefore be regarded as a failure 
prevention tool. People expect kitchen appliances, automobiles, airplanes, televi-
sions, and other systems to work as they are supposed to work, so engineers make 
every reasonable attempt to design products that are reliable. As part of the design 
phase, engineers use analysis to ascertain what the physical characteristics of the 
system must be in order to prevent system failure within a specified period of time. 
Do engineers ever design products to fail on purpose? Surprisingly, the answer is 
yes. Some devices rely on failure for their proper operation. For example, a fuse 
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“fails” when the electrical current flowing through it exceeds a specified amperage. 
When this amperage is exceeded, a metallic element in the fuse melts, breaking the 
circuit, thereby protecting personnel or a piece of electrical equipment. Shear pins 
in transmission systems protect shafts, gears, and other components when the shear 
force exceeds a certain value. Some utility poles and highway signs are designed to 
safely break away when struck by an automobile.

The second role of failure analysis in engineering pertains to situations where 
design flaws escaped detection during the design phase, only to reveal themselves 
after the product was placed into service. In this role, analysis is utilized to address the 
questions “Why did the failure occur?” and “How can it be avoided in the future?” 
This type of detective work in engineering is sometimes referred to as forensic engineer-
ing. In failure investigations, analysis is used as a diagnostic tool of reevaluation and 
reconstruction. Following the explosion of the Space Shuttle Challenger in 1986, engi-
neers at Thiokol used analysis (and testing) to reevaluate the joint design of the solid 
rocket boosters. Their analyses and tests showed that, under the unusually cold con-
ditions on the day of launch, the rubber O-rings responsible for maintaining a seal 
between the segments of one of the solid rocket boosters lost resiliency and therefore 
the ability to contain the high-pressure gases inside the booster. Hot gases leaking 
past the O-rings developed into an impinging jet directed against the external (liquid 
hydrogen) tank and a lower strut attaching the booster to the external tank. Within 
seconds, the entire aft dome of the tank fell away, releasing massive amounts of liquid 
hydrogen. Challenger was immediately enveloped in the explosive burn, destroying 
the vehicle and killing all seven astronauts. In the aftermath of the Challenger disaster, 
engineers used analysis extensively to redesign the solid rocket booster joint.

FAILURE OF THE TACOMA NARROWS BRIDGE
The collapse of the Tacoma Narrows Bridge was one of the most sensational failures in 
the history of engineering. This suspension bridge was the first of its kind spanning the 
Puget Sound, connecting Washington State with the Olympic Peninsula. Compared 
with existing suspension bridges, the Tacoma Narrows Bridge had an unconventional 
design. It had a narrow two-lane deck, and the stiffened-girder road structure was 
not very deep. This unusual design gave the bridge a slender, graceful appearance. 
Although the bridge was visually appealing, it had a problem: it oscillated in the wind. 
During the four months following its opening to traffic on July 1, 1940, the bridge 
earned the nickname “Galloping Gertie” from motorists who felt as though they were 
riding a giant roller coaster as they crossed the 2800-ft center span. (See Figure 1.3.) 
The design engineers failed to recognize that their bridge might behave more like the 
wing of an airplane subjected to severe turbulence than an earth-bound structure sub-
jected to a steady load. The engineers’ failure to consider the aerodynamic aspects of 
the design led to the destruction of the bridge on November 7, 1940, during a 42-mile-
per-hour wind storm. (See Figure 1.4.) Fortunately, no people were injured or killed. 
A newspaper editor, who lost control of his car between the towers due to the violent 
undulations, managed to stumble and crawl his way to safety, only to look back to see 
the road rip away from the suspension cables and plunge, along with his car and pre-
sumably his dog, which he could not save, into the Narrows below.

Even as the bridge was being torn apart by the windstorm, engineers were testing 
a scale model of the bridge at the University of Washington in an attempt to under-
stand the problem. Within a few days following the bridge’s demise, Theodore von 
Karman, a world renowned fluid dynamicist, who worked at the California Institute of 
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Figure 1.3

The Tacoma Narrows Bridge twisting in the wind. (AP Images)

Figure 1.4

The center span of the Tacoma Narrows Bridge plunges into Puget Sound. (AP Images)
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Technology, submitted a letter to Engineering News-Record outlining an aerodynamic 
analysis of the bridge. In the analysis, he used a differential equation for an idealized 
bridge deck twisting like an airplane wing as the lift forces of the wind tend to twist the 
deck one way, while the steel in the bridge tends to twist it in another way. His analysis 
showed that the Tacoma Narrows Bridge should indeed have exhibited an aerody-
namic instability more pronounced than any existing suspension bridge. Remarkably, 
von Karman’s “back of the envelope” calculations predicted dangerous levels of vibra-
tion for a wind speed less than 10 miles per hour over the wind speed measured on 
the morning of November 7, 1940. The dramatic failure of Galloping Gertie forever es-
tablished the importance of aerodynamic analysis in the design of suspension bridges.

The bridge was eventually redesigned with a deeper and stiffer open-truss struc-
ture that allowed the wind to pass through. The new and safer Tacoma Narrows 
Bridge was opened on October 14, 1950.

PROFESSIONAL SUCCESS—LEARN  
FROM FAILURE

The Tacoma Narrows Bridge and countless other engineering failures teach 
engineers a valuable lesson:

Learn from your own failures and the failures of other engineers.

Unfortunately, the designers of the Tacoma Narrows Bridge did not learn 
from the failures of others. Had they studied the history of suspension bridges 
dating back to the early nineteenth century, they would have discovered that 
10 suspension bridges suffered severe damage or destruction by winds.

NASA and Thiokol learned that the pressure-seal design in the solid rocket-
booster joint of the Space Shuttle Challenger was overly sensitive to a variety of 
factors such as temperature, physical dimensions, reusability, and joint loading. 
Not only did they learn some hard-core technical lessons, they also learned some 
lessons in engineering judgment. They learned that the decision-making pro-
cess culminating in the launch of Challenger was flawed. To correct both types of 
errors, during the two-year period following the Challenger catastrophe, the joint 
was redesigned, additional safety-related measures were implemented, and the 
decision-making process leading to shuttle launches was improved.

In another catastrophic failure, NASA determined that fragments of in-
sulation that broke away from the external fuel tank during the launch of 
the Space Shuttle Columbia impacted the left wing of the vehicle, severely 
damaging the wing’s leading edge. The damage caused a breach in the wing’s 
surface which, upon reentry of Columbia, precipitated a gradual burn-through 
of the wing, resulting in a loss of vehicle control. Columbia broke apart over 
the southwestern part of the United States, killing all seven astronauts aboard.

If we are to learn from engineering failures, the history of engineering 
becomes as relevant to our education as design, analysis, science, mathemat-
ics, and the liberal arts. Lessons learned not only from our own experiences, 
but also from those who have gone before us, contribute enormously to the 
improvement of our technology and the advancement of engineering as a 
profession. Errors in judgment made by Roman and Egyptian engineers are 
still relevent in modern times, notwithstanding a greatly improved chest of 
scientific and mathematical tools. Engineers have and will continue to make 
mistakes. We should learn from these mistakes.
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Analysis and engineering design

 1.1 The following basic devices are commonly found in a typical home or office. 
Discuss how analysis might be used to design these items.

a. tape dispenser
b. scissors
c. fork
d. mechanical pencil
e. door hinge
f. refrigerator
g. toilet
h. incandescent light bulb
i. microwave oven
j. waste basket
k. three-ring binder
l. light switch
m. doorknob

n. stapler
o. can opener
p. flashlight
q. kitchen sink
r. electrical outlet
s. soft drink can
t. toaster
u. screwdriver
v. chair
w. table
x. mailbox
y. drawer slide
z. padlock

PROBLEMS
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Figure P1.2

 1.2 A 1-m-long cantilevered beam of rectangular cross section carries a uniform 
load of =w 15 kN/m. The design specification calls for a 5-mm maximum 
deflection of the end of the beam. The beam is to be constructed of fir 
=( 13 GPa).E  By analysis, determine at least five combinations of beam 

height h and beam width b that meet the specification. Use the equation

=

8
max

4

y
wL

EI

where

= deflection of end of beam (m)maxy

= uniform loading (N/m)w

= beam length (m)L

= modulus of elasticity of beam (Pa)E

= =I bh /12 moment of inertia of beam cross section (m ).3 4

Note: = =1 Pa 1 N/m ,  1 kN 10  N2 3 , and =1 GPa 10  Pa.9

What design conclusions can you draw about the influence of beam height 
and width on the maximum deflection? Is the deflection more sensitive to 
h or b? If the beam were constructed of a different material, how would the 
deflection change? See Figure P1.2 for an illustration of the beam.

Analysis and engineering failure

 1.3 Identify a device from your own experience that has failed. Discuss how it 
failed and how analysis might be used to redesign it.

 1.4 Research the following notable engineering failures. Discuss how analysis 
was used or could have been used to investigate the failure.

a. Dee bridge, England, 1847
b. Boiler explosions, North America, 1870–1910
c. Titanic, North Atlantic, 1912
d. Hindenburg airship, New Jersey, 1937
e. Apollo I capsule fire, Cape Canaveral, Florida, 1967
f. Apollo 13, 1970
g. Ford Pinto gas tanks, 1970s
h. Teton dam, Idaho, 1976
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i. Hartford Civic Center, Connecticut, 1978
j. Skylab, 1979
k. Three Mile Island nuclear power plant, Pennsylvania, 1979
l. American Airlines DC-10, Chicago, 1979
m. Hyatt Hotel, Kansas City, 1981
n. Union Carbide plant, India, 1984
o. Space shuttle Challenger, 1986
p. Chernobyl nuclear power plant, Soviet Union, 1986
q. Highway I-880, Loma Prieta, California earthquake, 1989
r. Green Bank radio telescope, West Virginia, 1989
s. Hubble space telescope, 1990
t. ValuJet Airlines DC-9, Miami, 1996
u. Mars Climate Orbiter, 1999
v. Space shuttle Columbia, 2003
w. Levees, New Orleands, Louisiana, 2005
x. BP oil spill, Gulf of Mexico, 2010
y. Nuclear power plant, Okuma, Fukushima, Japan, 2011
z. Florida International University pedestrian bridge collapse, Sweetwater, 

Florida, 2018



2.1 INTRODUCTION
Suppose for a moment that someone asks you to hurry to the grocery store to buy 
a few items for tonight’s dinner. You get in your car, turn the ignition on, and drive 
down the road. Immediately you notice something strange. There are no numbers or 
divisions on your speedometer! As you accelerate and decelerate, the speedometer in-
dicator changes position, but you do not know your speed because there are no mark-
ings to read. Bewildered, you notice that the speed limit and other road signs between 
your house and the store also lack numerical information. Realizing that you were 
instructed to arrive home with the groceries by 6 pm, you glance at your digital watch 
only to discover that the display is blank. Upon arriving at the store, you check your 
list: 1 pound of lean ground beef, 4 ounces of fresh mushrooms, and a 12-ounce can 
of tomato paste. You go to the meat counter first but the label on each package does 
not indicate the weight of the product. You grab what appears to be a 1-pound pack-
age and proceed to the produce section. Scooping up a bunch of mushrooms, you 
place them on the scale to weigh them, but the scale looks like your speedometer—it 
has no markings either! Once again, you estimate. One item is left: the tomato paste. 
The canned goods aisle contains many cans, but the labels on the cans have no nu-
merical information—no weight, no volume, nothing to let you know the amount of 
tomato paste in the can. You make your purchase, drive home, and deliver the items 
mystified and shaken by the whole experience.

After reading this chapter, you 
will have learned
• How to check equations for 

dimensional consistency
• The physical standards on 

which units are based
• Rules for proper usage of 

SI units

• Rules for proper usage of 
English units

• The difference between 
mass and weight

• How to do unit conversions 
between the SI and English 
unit systems

Objectives

Dimensions 
and Units2

C H A P T E R
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The preceding Twilight Zone-like story is, of course, fictitious, but it dramati-
cally illustrates how strange our world would be without measures of physical 
quantities. Speed is a physical quantity that is measured by the speedometers in 
our automobiles and the radar gun of a traffic officer. Time is a physical quan-
tity that is measured by the watch on our wrist and the clock on the wall. Weight 
is a physical quantity that is measured by the scale in the grocery store or at 
the health spa. The need for measurement was recognized by the ancients, who 
based standards of length on the breadth of the hand or palm, the length of the 
foot, or the distance from the elbow to the tip of the middle finger (referred to 
as a cubit). Such measurement standards were both changeable and perishable 
because they were based on human dimensions. In modern times, definite and 
unchanging standards of measurement have been adopted to help us quantify 
the physical world. These measurement standards are used by engineers and sci-
entists to analyze physical phenomena by applying the laws of nature such as 
conservation of energy, the laws of thermodynamics, and the law of universal 
gravitation. As engineers design new products and processes by utilizing these 
laws, they use dimensions and units to describe the physical quantities involved. 
For instance, the design of a bridge primarily involves the dimensions of length 
and force. The units used to express the magnitudes of these quantities are usu-
ally either the meter and newton or the foot and pound. The thermal design of 
a boiler primarily involves the dimensions of pressure, temperature, and heat 
transfer, which are expressed in units of pascal, degrees Celsius, and watt, respec-
tively. Dimensions and units are as important to engineers as the physical laws 
they describe. It is vitally important that engineering students learn how to work 
with dimensions and units. Without dimensions and units, analyses of engineer-
ing systems have little meaning.

2.2 DIMENSIONS
To most people, the term dimension denotes a measurement of length. Certainly, 
length is one type of dimension, but the term dimension has a broader meaning. A 
dimension is a physical variable that is used to describe or specify the nature of a measurable 
quantity. For example, the mass of a gear in a machine is a dimension of the gear. 
Obviously, the diameter is also a dimension of the gear. The compressive force in 
a concrete column holding up a bridge is a structural dimension of the column. 
The pressure and temperature of a liquid in a hydraulic cylinder are thermody-
namic dimensions of the liquid. The velocity of a space probe orbiting a distant 
planet is also a dimension. Many other examples could be given. Any variable that 
engineers use to specify a physical quantity is, in the general sense, a dimension of 
the physical quantity. Hence, there are as many dimensions as there are physical 
quantities. Engineers always use dimensions in their analytical and experimental 
work. In order to specify a dimension fully, two characteristics must be given. First, 
the numerical value of the dimension is required. Second, the appropriate unit must 
be assigned. A dimension missing either of these two elements is incomplete and 
therefore cannot be fully used by the engineer. If the diameter of a gear is given 
as 3.85, we would ask the question, “3.85 what? Inches? Meters?” Similarly, if the 
compressive force in a concrete column is given as 150,000, we would ask, “150,000 
what? Newtons? Pounds?”

Dimensions are categorized as either base or derived. A base dimension, some-
times referred to as a fundamental dimension, is a dimension that has been in-
ternationally accepted as the most basic dimension of a physical quantity. There 
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are seven base dimensions that have been formally defined for use in science and 
engineering:

1. length L
2. mass M
3. time t
4. temperature T
5. electric current I
6. amount of substance n
7. luminous intensity i.

A derived dimension is obtained by any combination of the base dimensions. For 
example, volume is length cubed, density is mass divided by length cubed, and ve-
locity is length divided by time. Obviously, there are numerous derived dimensions. 
Table 2.1 lists some of the most commonly used derived dimensions in engineering, 
expressed in terms of base dimensions.

The single letters in Table 2.1 are symbols that designate each base dimension. 
These symbols are useful for checking the dimensional consistency of equations. 
Every mathematical relation used in science and engineering must be dimensionally 
consistent, or dimensionally homogeneous. This means that the dimension on the left 
side of the equal sign must be the same as the dimension on the right side of the 

Table 2.1 Derived Dimensions Expressed in Terms of Base Dimensions

Quantity Variable Name Base Dimensions

Area A L2

Volume V L3

Velocity v Lt 1−

Acceleration a Lt 2−

Density ρ ML 3−

Force F MLt 2−

Pressure P ML t1 2− −

Stress σ ML t1 2− −

Energy E ML t2 2−

Work W ML t2 2−

Power P ML t2 3−

Mass flow rate �m Mt 1−

Specific heat c L t T2 2 1− −

Dynamic viscosity µ ML t1 1− −

Molar mass M Mn 1−

Voltage V ML t T2 3 1− −

Resistance R ML t T2 3 2− −
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equal sign. The equality in any equation denotes not only a numerical equivalency 
but also a dimensional equivalency. To use a simple analogy, you cannot say that five 
apples equals four apples, nor can you say that five apples equals five oranges. You 
can only say that five apples equals five apples.

The following examples illustrate the concept of dimensional consistency.

EXAMPLE 2.1
Dynamics is a branch of engineering mechanics that deals with the motion of par-

ticles and rigid bodies. The straight-line motion of a particle, under the influence 

of gravity, may be analyzed by using the equation

1

2
 0 0

2y y t gtυ= + −

where

= height of particle at time y t

= =initial height of particle (at  0)0y t

υ = =initial velocity of particle (at  0)0 t

= timet

= gravitational acceleration.g

Verify that this equation is dimensionally consistent.

Solution

We check the dimensional consistency of the equation by determining the dimen-

sions on both sides of the equal sign. The heights, 0y  and y, are one-dimensional 

coordinates of the particle, so these quantities have a dimension of length L. The 

initial velocity υ0  is a derived dimension consisting of a length L divided by a time t.  

Gravitational acceleration g is also a derived dimension consisting of a length L, 

divided by time squared t .2  Of course, time t is a base dimension. Writing the 

equation in its dimensional form, we have

L L Lt t Lt t .1 2 2= + −− −

Note that the factor, 1
2

, in front of the 2gt  term is a pure number, and therefore 

has no dimension. In the second term on the right side of the equal sign, the di-

mension t cancels, leaving length L. Similarly, in the third term on the right side of 

the equal sign, the dimension 2t  cancels, leaving length L. This equation is dimen-

sionally consistent because all terms have the dimension of length L.

EXAMPLE 2.2
Aerodynamics is the study of forces acting on bodies moving through air. An aero-

dynamics analysis could be used to determine the lift force on an airplane wing 

or the drag force on an automobile. A commonly used equation in aerodynamics 

relates the total drag force acting on a body to the velocity of the air approaching 

it. This equation is

F C A UD D ρ=

1

2
  2
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where

FD = drag force

= drag coefficientCD

= frontal area of bodyA

ρ = air density

= upstream air velocity.U

Determine the dimensions of the drag coefficient, .CD

Solution

The dimension of the drag coefficient CD  may be found by writing the equation 

in dimensional form and simplifying the equation by combining like dimensions. 

Using the information in Table 2.1, we write the dimensional equation as

=
− − −MLt L ML L t2 2 3 2 2CD

 MLt .2CD=
−

Compare the combination of base dimensions on the left and right sides of the 

equal sign. They are identical. This can only mean that the drag coefficient CD  has 

no dimension. If it did, the equation would not be dimensionally consistent. Thus, 

we say that CD  is dimensionless. In other words, the drag coefficient CD  has a numeri-

cal value, but no dimensional value. This is not as strange as it may sound. In engi-

neering, there are many instances, particularly, in the disciplines of fluid mechanics 

and heat transfer, where a physical quantity is dimensionless. Dimensionless quan-

tities enable engineers to form special ratios that reveal certain physical insights 

into properties and processes. In this instance, the drag coefficient is physically in-

terpreted as a “shear stress” at the surface of the body, which means that there is 

an aerodynamic force acting on the body parallel to its surface that tends to retard 

the body’s motion through the air. If you take a course in fluid mechanics, you will 

learn more about this important concept.

EXAMPLE 2.3
For the following dimensional equation, find the dimensions of the quantity k:

k=−MLt  Lt.2

Solution

To find the dimensions of k, we multiply both sides of the equation by − −L t1 1 to 

eliminate the dimensions on the right side of the equation, leaving k by itself. Thus, 

we obtain

k=− − −MLt L t2 1 1

which, after applying a law of exponents, reduces to

Mt .3 k=−
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A closer examination of the given dimensional equation reveals that it is Newton’s 

second law of motion:

F ma= .

Here F is force, m is mass, and a is acceleration. Referring to Table 2.1, force has 

dimensions of −MLt ,2  which is a mass M multiplied by acceleration −Lt .2

PRACTICE!

1. For the following dimensional equation, find the base dimensions of 
the parameter k:

k=ML  LtM .2 2

Answer : − −LM t .1 1

2. For the following dimensional equation, find the base dimensions of 
the parameter g :

g=− −T tL L .1 2

Answer : −L tT .3 1

3. For the following dimensional equation, find the base dimensions of 
the parameter h:

=
−It N.1h

Answer : −NI t.1

4. For the following dimensional equation, find the base dimensions of 
the parameter f :

a f=
−MM  cos(  L).3

Answer : −L .1

5. For the following dimensional equation, find the base dimensions of 
the parameter p:

=
−T T log(T t  ).2 p

Answer : −T t .2 1

2.3 UNITS
A unit is a standard measure of the magnitude of a dimension. For example, the  
dimension length L may be expressed in units of meter (m), feet (ft), mile (mi), 
millimeter (mm), and many others. The dimension temperature T is expressed 
in units of degrees Celsius (°C), degrees Fahrenheit (°F), degrees Rankine (°R), 
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or kelvin (K). (By convention, the degree symbol (°) is not used for the Kelvin 
temperature scale.) In the United States, there are two unit systems commonly in 
use. The first unit system, and the one that is internationally accepted as the stan-
dard, is the SI (System International d’Unites) unit system, commonly referred to 
as the metric system. The second unit system is the English (or British) unit system, 
sometimes referred to as the United States Customary System (USCS). With the excep-
tion of the United States, most of the industrialized nations of the world use the 
SI system exclusively. The SI system is preferred over the English system, because 
it is an internationally accepted standard and is based on simple powers of 10. To 
a limited extent, a transition to the SI system has been federally mandated in the 
United States. Unfortunately, this transition to total SI usage has been a slow one, 
but many American companies are using the SI system to remain internationally 
competitive. Until the United States makes a complete adaptation to the SI system, 
U.S. engineering students need to be conversant in both unit systems and know 
how to make unit conversions.

The seven base dimensions are expressed in terms of SI units that are based 
on physical standards. These standards are defined such that, the corresponding 
SI units, except the mass unit, can be reproduced in a laboratory anywhere in the 
world. The reproducibility of these standards is important, because everyone with a 
suitably equipped laboratory has access to the same standards. Hence, all physical 
quantities, regardless of where in the world they are measured, are based on identi-
cal standards. This universality of physical standards eliminates the ancient prob-
lem of basing dimensions on the changing physical attributes of kings, rulers, and 
magistrates who reigned for a finite time. Modern standards are based on constants 
of nature and physical attributes of matter and energy.

The seven base dimensions and their associated SI units are summarized in 
Table 2.2. Note the symbol for each unit. These symbols are the accepted conven-
tions for science and engineering. The discussion that follows outlines the physical 
standards by which the base units are defined.

Length 
The unit of length in the SI system is the meter (m). As illustrated in Figure 2.1, the 
meter is defined as the distance traveled by light in a vacuum, during a time inter-
val of 1/299,792,458 s. The definition is based on a physical standard, the speed of 
light in a vacuum. The speed of light in a vacuum is 299,792,458 m/s. Thus, light 
travels one meter during a time interval of the reciprocal of this number. Of course, 
the unit of time, the second (s), is itself a base unit.

Table 2.2 Base Dimensions and Their SI Units

Quantity Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Temperature kelvin K

Electric current ampere A

Amount of substance mole mol

Luminous intensity candela cd
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Mass 
Prior to 2019, mass was the only base dimension that was defined by an artifact, a cylin-
der of platinum-iridium alloy maintained by the International Bureau of Weights and 
Measures in Paris, France. Because an artifact is not as easily reproduced as the other 
laboratory-based standards, the kilogram (kg) has been redefined in terms of the Planck 
constant, one of the fundamental constants in quantum physics. The Planck constant, 
denoted by the symbol h, has been set by the international scientific community as ex-
actly ×

−6.62607015   10 34  J · s. The Planck constant can be used to define mass because 
the unit joule (J), when broken into its base units, contains the mass unit kilogram.

Time 
The unit of time in the SI system is the second (s). The second is defined as the 
duration of 9,192,631,770 cycles of radiation of the cesium atom. An atomic clock 
incorporating this standard is maintained by NIST. (See Figure 2.2.)

Temperature 
The unit of temperature in the SI system is the kelvin (K). The kelvin is defined 
as the fraction 1/273.16 of the temperature of the triple point of water. The triple 
point of water is the combination of pressure and temperature at which water exists 
as a solid, liquid, and gas at the same time. (See Figure 2.3.) This temperature is 
273.16 K, 0.01°C, or 32.002°F. Absolute zero is the temperature at which all molecu-
lar activity ceases and has a value of 0 K.

Electric Current 
The unit of electric current in the SI system is the ampere (A). As shown in 
Figure 2.4, the ampere is defined as the steady current, which, if maintained in 

0 10 20 30 40 50 60 70 80 90 100

1 meter

t 5                       s
1

299,792,458

Figure 2.1

The physical standard for 
the meter is based on the 
speed of light in a vacuum.

Figure 2.2

The NIST-F2 cesium foun-
tain atomic clock keeps 
time to an accuracy of 
one second in 300 million 
years. (Source: National 
Institute of Standards and 
Technology, Boulder, CO.)
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two straight parallel wires of infinite length and negligible circular cross section 
and placed one meter apart in a vacuum, produces a force of × −2 10 7  newton 
per meter of wire length. Using Ohm’s law, I V R= / ,  one ampere may also be 
denoted as the current that flows when one volt is applied across a 1-ohm resistor.

Amount of Substance 
The unit used to denote the amount of substance is the mole (mol). One mole con-
tains the same number of elements as there are atoms in 0.012 kg of carbon-12. This 
number is called Avogadro’s number and has a value of approximately ×6.022 10 .23  
(See Figure 2.5.)

Luminous Intensity 
The unit for luminous intensity is the candela (cd). As illustrated in Figure 2.6, one 
candela is the luminous intensity of a source emitting light radiation at a frequency 
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A phase diagram for water 
shows the triple point on 
which the kelvin tempera-
ture standard is based.
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The standard for the 
ampere is based on the 
electrical force produced 
between two parallel wires, 
each carrying 1 A, located 
1 m apart.
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Figure 2.5

A mole of gas molecules 
in a piston-cylinder device 
contains ×6.022 1023  
molecules.
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of ×540 10  Hz,12  that provides a power of 1/683 watt (W) per steradian. A stera-
dian is a solid angle, which, having its vertex in the center of a sphere, subtends 
(cuts off) an area of the sphere equal to that of a square with sides of length equal 
to the radius of the sphere.

The unit for luminous intensity, the candela, utilizes the steradian, a dimen-
sion that may be unfamiliar to most students. The radian and steradian are called 
supplementary dimensions. These quantities, summarized in Table 2.3, refer to plane 
and solid angles, respectively. The radian is frequently used in engineering, and 
it is defined as the plane angle between two radii of a circle that subtends on the 
circumference of an arc equal in length to the radius. From trigonometry, you may 
recall that there are π2  radians in a circle (i.e., π2  radians equals 360°). Thus, one 
radian equals approximately 57.3°. The steradian, defined earlier, is used primarily 
for expressing radiation quantities such as light intensity and other electromagnetic 
parameters. These units appear dimensionless in measurements.

2.4 SI UNITS
Throughout the civilized world there are thousands of engineering companies that 
design and manufacture products for the benefit of society. The international buy-
ing and selling of these products is an integral part of a global network of industrial-
ized countries, and the economic health of these countries, including the United 
States, depends to a large extent on international trade. Industries such as the au-
tomotive and electronics industries are heavily involved in international trade, so 
these industries have readily embraced the SI unit system in order to be economi-
cally competitive. The general adoption of the SI unit system by U.S. companies 
has been slow, but global economic imperatives are driving them to fall into step 
with the other industrialized nations of the world. SI units are now commonplace 
on food and beverage containers, gasoline pumps, and automobile speedometers. 

Table 2.3 Supplementary Dimensions

Quantity Unit Symbol

Plane angle radian rad

Solid angle steradian sr

1 steradian

Sphere

540 3 1012 Hz
Light source

W
1

638

Figure 2.6

The candela standard for 
luminous intensity.
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The SI unit system is the internationally accepted standard. In the United States, 
however, the English unit system is still widely used. Perhaps it is only a matter of 
time before all U.S. companies use SI units exclusively. Until that time, the burden 
is upon you, the engineering student, to learn both unit systems. You will gladly 
discover, however, that most engineering textbooks emphasize SI units, but provide 
a list of unit conversions between the SI and English systems.

Table 2.2 summarizes the seven base dimensions and their SI units, and Table 
2.3 summarizes the supplementary dimensions and their units. Derived dimensions 
consist of a combination of base and supplementary dimensions. Sometimes, the 
units of a derived dimension are given a specific name. For example, the derived 
dimension force consists of the SI base units ⋅ ⋅

−kg m s .2  This combination of SI base 
units is called a newton and is abbreviated N. Note that the unit name, in honor of 
Isaac Newton, is not capitalized when spelled out as a unit name. The same rule ap-
plies to other units named after people such as hertz (Hz), kelvin (K), and pascal 
(Pa). Another example is the joule, the SI unit for energy, work, and heat. The joule 
unit is abbreviated J and consists of the SI base units ⋅ ⋅

−kg m s .2 2  A summary of the 
most commonly used SI derived dimensions and the corresponding SI unit names 
is given in Table 2.4.

Most derived dimensions do not have specific SI unit names, but their units 
may contain specific SI unit names. For example, the dimension mass flow rate is 
the mass of a fluid that flows past a point in a given time. The SI units for mass flow 
rate are ⋅

−kg s ,1  which we state as “kilograms per second.” Note that units that 
are located in the denominator, that is, those that have a negative sign on their 
exponent, may also be written using a divisor line. Thus, the units for mass flow 
rate may be written as kg/s. Caution must be exercised, however, when utilizing 
this type of notation for some units. For example, the SI units for thermal conduc-
tivity, a quantity used in heat transfer, are ⋅ ⋅

− −W m K .1 1  How do we write these 

Table 2.4 Derived Dimensions and SI Units with Specific Names

Quantity SI Unit Unit Name Base Units

Frequency Hz hertz s 1−

Force N newton kg m s 2
⋅ ⋅

−

Pressure Pa pascal kg m s1 2
⋅ ⋅
− −

Stress Pa pascal kg m s1 2
⋅ ⋅
− −

Energy J joule kg m s2 2
⋅ ⋅

−

Work J joule kg m s2 2
⋅ ⋅

−

Heat J joule kg m s2 2
⋅ ⋅

−

Power W watt kg m s2 3
⋅ ⋅

−

Electric charge C coulomb A s⋅

Electric potential 
(voltage) V volt kg m s A2 3 1

⋅ ⋅ ⋅
− −

Electric resistance Ω ohm kg m s A2 3 2
⋅ ⋅ ⋅

− −

Magnetic flux Wb weber kg m s A1 2 1
⋅ ⋅ ⋅

− − −

Luminous flux lm lumen cd sr⋅
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units with a divisor line? Do we write these units as W/m/K? How about ⋅W/m K ?  
Either choice can cause some confusion. Does a “watt per meter per kelvin” mean 
that the kelvin unit is inverted twice and therefore goes above the divisor line? 
One glance at the units written as ⋅ ⋅

− −W m K1 1  tells us that the temperature unit 
belongs “downstairs” because K has a negative exponent. If the kelvin unit were 
placed above the divisor line, and the thermal conductivity were used in an equa-
tion, a dimensional inconsistency would result. The second choice requires agree-
ing that multiplication takes precedence over division. Because the meter and 
kelvin units are located to the right of the divisor line and they are separated by a 
dot, both units are interpreted as being in the denominator. But to avoid all am-
biguity, parentheses are used to group units above or below the divisor line. Units 
for thermal conductivity would then be written as ⋅W/(m K).  In any case, a dot or 
a dash should always be placed between adjacent units to separate them regardless 
of whether the units are above or below the divisor line. Some derived dimensions 
and their SI units are given in Table 2.5.

When a physical quantity has a numerical value that is very large or very small, it 
is cumbersome to write the number in standard decimal form. The general practice 
in engineering is to express numerical values between 0.1 and 1000 in standard dec-
imal form. If a value cannot be expressed within this range, a prefix should be used. 
Because the SI unit system is based on powers of 10, it is more convenient to ex-
press such numbers by using prefixes. A prefix is a letter in front of a number that 
denotes multiples of powers of 10. For example, if the internal force in an I-beam 
is three million seven hundred and fifty thousand newtons, it would be awkward 
to write this number as 3,750,000 N. It is preferred to write the force as 3.75MN, 
which is stated as “3.75 mega newtons.” The prefix “M” denotes a multiple of a mil-
lion. Hence, 3.75 MN equals ×3.75 10  N.6  Electrical current is a good example of 
a quantity represented by a small number. Suppose the current flowing in a wire is 
0.0082 A. This quantity would be expressed as 8.2 mA, which is stated as “8.2 mil-
liamperes.” The prefix “m” denotes a multiple of one-thousandth, or × −1 10 .3

A term we often hear in connection with computers is the storage capacity of 
hard disks. When personal computers first appeared in the early 1980s, most hard 
disks could hold around 10 or 20 MB (megabytes) of information. Nowadays, the 
typical storage capacity of a personal computer’s hard disk is on the order of TB 
(terabytes). The standard prefixes for SI units are given in Table 2.6.

As indicated in Table 2.6, the most widely used SI prefixes for science and en-
gineering quantities come in multiples of one thousand. For example, stress and 
pressure, which are generally large quantities for most structures and pressure ves-
sels, are normally expressed in units of kPa, MPa, or GPa. Frequencies of electro-
magnetic waves such as radio, television, and telecommunications are also large 
numbers. Hence, they are generally expressed in units of kHz, MHz, or GHz. 
Electrical currents, on the other hand, are often small quantities, so they are usu-
ally expressed in units of µA or mA. Because frequencies of most electromagnetic 
waves are large quantities, the wavelengths of these waves are small. For example, 
the wavelength range of the visible light region of the electromagnetic spectrum is 
approximately µ0.4  m to µ0.75  m. It should be noted that the SI mass unit kilogram 
(kg) is the only base unit that has a prefix.

Here are some rules on how to use SI units properly that every beginning engi-
neering student should know:

1. A unit symbol is never written as a plural with an “s.” If a unit is pluralized, the 
“s” may be confused with the unit second (s).
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2. A period is never used after a unit symbol, unless the symbol is at the end of a 
sentence.

3. Do not use invented unit symbols. For example, the unit symbol for “second” 
is (s), not (sec), and the unit symbol for “ampere” is (A), not (amp).

4. A unit symbol is always written by using lowercase letters, with two exceptions. 
The first exception applies to units named after people, such as the newton (N),  
joule (J), and watt (W). The second exception applies to units with the prefixes 
M, G, and T. (See Table 2.6.)

5. A quantity consisting of several units must be separated by dots or dashes to avoid 
confusion with prefixes. For example, if a dot is not used to express the units of 
“meter-second” ⋅(m s), the units could be interpreted as “millisecond” (ms).

Table 2.5 Derived Dimensions and SI Units

Quantity SI Units

Acceleration m s 2
⋅
−

Angular acceleration rad s 2
⋅
−

Angular velocity rad s 1
⋅
−

Area m2

Concentration mol m 3
⋅
−

Density kg m 3
⋅
−

Electric field strength V m 1
⋅
−

Energy N m⋅

Entropy J k 1
⋅
−

Heat J

Heat transfer W

Magnetic field strength A m 1
⋅
−

Mass flow rate kg s 1
⋅
−

Moment of force N m⋅

Radiant intensity W sr 1
⋅
−

Specific energy J kg 1
⋅
−

Surface tension N m 1
⋅
−

Thermal conductivity W m K1 1
⋅ ⋅
− −

Velocity m s 1
⋅
−

Viscosity, dynamic Pa s⋅

Viscosity, kinematic m s2 1
⋅
−

Volume m3

Volume flow rate m s3 1
⋅
−

Wavelength m

Weight N
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6. An exponential power for a unit with a prefix refers to both the prefix and the 
unit; for example, = = ⋅ms (ms) ms ms.2 2

7. Do not use compound prefixes. For example, a “kilo MegaPascal” (kMPa) 
should be written as GPa, because the product of “kilo” ( )103  and “mega” ( )106  
equals “giga” ( )10 .9

8. Put a space between the numerical value and the unit symbol.
9. Do not put a space between a prefix and a unit symbol.

10. Do not use prefixes in the denominator of composite units. For example, the 
units N/mm should be written as kN/m.

  Table 2.7 provides some additional examples of these rules.

Table 2.7 Correct and Incorrect Ways of Using SI Units

Correct Incorrect Rules

47.7 kg 47.7 kgs 1

1056 J 1056 Js 1

140 kPa 140 kPa. 2

1.25 A 1.25 Amps 1, 3

3.2 s 3.2 sec 3

60.0 kg 60.0 Kg 4

75 W 75 w. 2, 4

8.25 kg/m·s 8.25 kg/ms 5

550 GN 550 MkN 7

8 ms 8 kμs 7

430 Pa·s 430Pa·s 8

1.5 MΩ 1.5 M Ω 9

9 MN/m 9 N/μm 10

Table 2.6 Standard Prefixes for SI Units

Multiple Exponential Form Prefix Prefix Symbol

1,000,000,000,000,000 1015 peta P

1,000,000,000,000 1012 tera T

1,000,000,000 109 giga G

1,000,000 106 mega M

1000 103 kilo k

0.01 10 2− centi c

0.001 10 3− milli m

0.000 001 10 6− micro µ

0.000 000 001 10 9− nano n

0.000 000 000 001 10 12− pico p

0.000 000 000 000 001 10 15− femto f
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DERIVING FORMULAS FROM UNIT CONSIDERATIONS
To the beginning engineering student, it can seem as if there is an infinite number 
of formulas to learn. Formulas contain physical quantities that have numerical val-
ues plus units. Because formulas are written as equalities, formulas must be numeri-
cally and dimensionally equivalent across the equal sign. Can this feature be used 
to help us derive formulas that we do not know or have forgotten? Suppose that we 
want to know the mass of gasoline in an automobile’s gas tank. The tank has a vol-
ume of 70 L, and a handbook of fluid properties states that the density of gasoline 
is 736 kg/m .3  (Note: =

−1 L 10  m3 3). Thus, we write

ρ = = =736 kg/m , 70 L 0.070 m .3 3V

If the tank is completely filled with gasoline, what is the mass of the gasoline? 
Suppose that we have forgotten that density is defined as mass per volume, 

m Vρ = / .  Because our answer will be a mass, the unit of our answer must be kilo-
gram (kg). Looking at the units of the input quantities, we see that if we multiply 
density ρ  by volume V, the volume unit (m )3  divides out, leaving mass (kg). Hence, 
the formula for mass in terms of ρ  and V  is

ρ=m V

so the mass of gasoline is

= =(736 kg/m )(0.070 m ) 51.5 kg.3 3m
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PROFESSIONAL SUCCESS–USING SI UNITS IN EVERYDAY LIFE

The SI unit system is used commercially to a limited extent in the United 
States, so the average person does not know the highway speed limit in 
kilometers per hour, his or her weight in newtons, atmospheric pressure in 
kilopascals, or the outdoor air temperature in kelvin or degrees Celsius. It 
is ironic that the leading industrialized nation on earth has yet to embrace 
this international standard. Admittedly, American beverage containers rou-
tinely show the volume of the liquid product in liters (L) or milliliters (mL), 
gasoline pumps often show liters of gasoline delivered, speedometers may 
indicate speed in kilometers per hour (km/h), and automobile tires indicate 
the proper inflation pressure in kilopascals (kPa) on the sidewall. On each of 
these products, and many others like them, a corresponding English unit is 
written along side the SI unit. The beverage container shows pints or quarts, 
the gasoline pump shows gallons, speedometers show miles per hour, and 
tires show pounds per square inch. Dual labeling of SI and English units on 
U.S. products are supposed to help people learn the SI system, “weaning” 
them from the antiquated English system in anticipation of the time when 
a full conversion to SI units occurs. This transition is analogous to the pro-
cess of incrementally quitting smoking. Rather than quitting “cold turkey,” we 
employ nicotine patches, gums, and other substitutes until our habit is bro-
ken. So, you may ask, “Why don’t we make the total conversion now? Is it as 
painful as quitting smoking suddenly?” It probably is. As you might guess, the 
problem is largely an economic one. A complete conversion to SI units may 
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not occur until we are willing to pay the price in actual dollars. People could 
learn the SI unit system fairly quickly if the conversion were done suddenly, 
but an enormous financial commitment would have to be made.

As long as dual product labeling of units is employed in the United States, 
most people will tend to ignore the SI unit and look only at the English unit, 
the unit with which they are most familiar. In U.S. engineering schools, SI 
units are emphasized. Therefore, the engineering student is not the average 
person on the street who does not know, or know how to calculate, his or her 
weight in newtons. So, what can engineering students in the United States do 
to accelerate the conversion process? A good place to start is with yourself. 
Start using SI units in your everyday life. When you make a purchase at the 
grocery store, look only at the SI unit on the label. Learn by inspection how 
many milliliters of liquid product are packaged in your favorite sized contain-
er. Abandon the use of inches, feet, yards, and miles as much as possible. How 
many kilometers lie between your home and school? What is 65 miles per hour 
in kilometers per hour? What is the mass of your automobile in kilograms? 
Determine your height in meters, your mass in kilograms, and your weight 
in newtons. How long is your arm in centimeters? What is your waist size in 
centimeters? What is the current outdoor air temperature in degrees Celsius? 
Most fast-food restaurants offer a “quarter pounder” on their menu. It turns 
out that =1 N 0.2248 lb, almost a quarter pound. On the next visit to your 
favorite fast-food place, order a “newton burger” and fries. (See Figure 2.7.)

I’ll have a newton burger,

large fries and a diet cola.

?

Figure 2.7

An engineering student orders lunch (art by Kathryn Colton).



2.5 English Units 31

PRACTICE!

1. A structural engineer states that an I-beam in a truss has a design stress 
of “five million, six hundred thousand pascals.” Write this stress, using 
the appropriate SI unit prefix.
Answer: 5.6 MPa.

2. The power cord on an electric string trimmer carries a current of 5.2 A. 
How many milliamperes is this? How many microamperes?
Answer: × ×5.2 10  mA, 5.2 10   A.3 6 µ

3. Write the pressure 7.2 GPa in scientific notation.
Answer: ×7.2 10  Pa.9

4. Write the voltage 0.000875 V, using the appropriate SI unit prefix.
Answer: 0.875 mV or 875 μV.

5. In the following list, various quantities are written using SI units incor-
rectly. Write the quantities, using the correct form of SI units.
a. 4.5 mw
b. 8.75 M pa
c. 200 Joules/sec
d. 20 W/m  K2

e. 3 Amps.

Answer:
a. 4.5 mW
b. 8.75 MPa
c. 200 J/s
d. ⋅20 W/m K2

e. 3 A.

2.5 ENGLISH UNITS
The English unit system is known by various names. Sometimes it is referred to 
as the United States Customary System (USCS), the British System or the Foot-
Pound-Second (FPS) system. The English unit system is still used extensively in 
the United States even though the rest of the industrialized world, including Great 
Britain, has adopted the SI unit system. English units have a long and colorful his-
tory. In ancient times, measures of length were based on human dimensions. The 
foot started out as the actual length of a man’s foot. Because not all men were the 
same size, the foot varied in length by as much as three or four inches. Once the 
ancients started using feet and arms for measuring distance, it was only a matter of 
time before they began using hands and fingers. The unit of length that we refer 
to today as the inch was originally the width of a man’s thumb. The inch was also 
once defined as the distance between the tip to the first joint of the forefinger. 
Twelve times that distance made one foot. Three times the length of a foot was the 
distance from the tip of a man’s nose to the end of his outstretched arm. This dis-
tance closely approximates what we refer to today as the yard. Two yards equaled a 
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fathom, which was defined as the distance across a man’s outstretched arms. Half 
a yard was the 18-inch cubit, which was called a span. Half a span was referred to 
as a hand.

The pound, which uses the symbol lb, is named after the ancient Roman unit 
of weight called the libra. The British Empire retained this symbol into modern 
times. Today, there are actually two kinds of pound units, one for mass and one for 
weight and force. The first unit is called pound-mass (lb ),m  and the second is called 
pound-force (lb ).f  Because mass and weight are not the same quantity, the units lbf  
and lbm  are different.

As discussed previously, the seven base dimensions are length, mass, time, tem-
perature, electric current, amount of substance, and luminous intensity. These base 
dimensions, along with their corresponding English units, are given in Table 2.8. 
As with SI units, English units are not capitalized. The slug, which has no abbrevi-
ated symbol, is the mass unit in the English system, but the pound-mass (lb )m  is 
frequently used. Electric current is based on SI units of meter and newton, and lu-
minous intensity is based on SI units of watt. Hence, these two base dimensions do 
not have English units per se, and these quantities are rarely used in combination 
with other English units.

Recall that derived dimensions consist of a combination of base and supple-
mentary dimensions. Table 2.9 summarizes some common derived dimensions ex-
pressed in English units. Note that Table 2.9 is the English counterpart of the SI 
version given by Table 2.5. The most notable English unit with a special name is 
the British thermal unit (Btu), a unit of energy. One Btu is defined as the energy 
required to change the temperature of 1 lbm  of water at a temperature of 68°F by 
1°F. One Btu is approximately the energy released by the complete burning of a 
single kitchen match. The magnitudes of the kilojoule and Btu are almost equal 

=(1 Btu 1.055 KJ). Unlike the kelvin (K), the temperature unit in the SI system, the 
rankine (°R) employs a degree symbol as do the Celsius (°C) and Fahrenheit (°F) 
units. The same rules for writing SI units apply for English units with one major 
exception: prefixes are generally not used with English units. Thus, units such as kft 
(kilo foot), Mslug (megaslug), and GBtu (gigaBtu) should not be used. Prefixes 
are reserved for SI units. Two exceptions are the units ksi, which refers to a stress of 
1000 psi (pounds per square inch), and kip, which is a special name for a force of 
1000 lbf  (pound-force).

Table 2.8 Base Dimensions and Their English Units

(1) The unit poind-mass (lbm) is also used. 1 slug = 32.174 lbm.
(2) There are no English units for electrical current and luminous inten-
sity. The SI units are given here for completeness only.

Quantity Unit Symbol

Length foot ft

Mass slug(1) slug

Time second s

Temperature rankine °R

Electric current ampere(2) A

Amount of substance mole mol

Luminous intensity candela(2) cd
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There are some non-SI units that are routinely used in the United States and 
elsewhere. Table 2.10 summarizes some of these units and provides an equivalent 
value in the SI system. The inch is a common length unit, being found on virtually 
every student’s ruler and carpenter’s tape measure in the United States. There are 
exactly 2.54 centimeters per inch. Inches are still used as the primary length unit 
in many engineering companies. The yard is commonly used for measuring cloth, 
carpets, and loads of concrete (cubic yards), as well as ball advancement on the 
American football field. The ton is used in numerous industries, including ship-
ping, construction, and transportation. Time subdivisions on clocks are measured 

Table 2.9 Derived Dimensions and English Units

Quantity English Units

Acceleration ft s 2
⋅
−

Angular acceleration rad s 2
⋅
−

Angular velocity rad s 1
⋅
−

Area ft2

Concentration mol ft 3
⋅
−

Density slug ft 3
⋅
−

Electric field strength V ft 1
⋅
−

Energy Btu

Entropy Btu slug °R1 1
⋅ ⋅

− −

Force lbf

Heat Btu

Heat transfer Btu s 1
⋅
−

Magnetic field strength A ft 1
⋅
−

Mass flow rate slug s 1
⋅
−

Moment of force lb ftf ⋅

Radiant intensity Btu s sr1 1
⋅ ⋅
− −

Specific energy Btu slug 1
⋅

−

Surface tension lb ftf
1

⋅
−

Thermal conductivity Btu s ft R1 1⋅ ⋅ ⋅ °− −

Velocity ft s 1
⋅
−

Viscosity, dynamic slug ft s1 1
⋅ ⋅
− −

Viscosity, kinematic ft s2 1
⋅
−

Volume ft3

Volume flow rate ft s3 1
⋅
−

Wavelength ft
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in hours, minutes, and seconds. Radians and degrees are the most commonly 
used units for plane angles, whereas minutes and seconds are primarily used in 
navigational applications when referring to latitude and longitude on the earth’s 
surface. The liter has made a lot of headway into the American culture, being 
found on beverage and food containers and many gasoline pumps. Virtually every 
American has seen the liter unit on a product, and many know that there are 
about four liters in a gallon (actually, =1 gal 3.7854 L), but fewer people know 
that =1000 L 1 m .3

2.6 MASS AND WEIGHT
The concepts of mass and weight are fundamental to the proper use of dimensions 
and units in engineering analysis. Mass is one of the seven base dimensions used 
in science and engineering. Mass is a base dimension because it cannot be broken 
down into more fundamental dimensions. Mass is defined as a quantity of matter. 
This simple definition of mass may be expanded by exploring its basic properties. 
All matter possesses mass. The magnitude of a given mass is a measure of its resis-
tance to a change in velocity. This property of matter is called inertia. A large mass 
offers more resistance to a change in velocity than a small mass, so a large mass 
has a greater inertia than a small mass. Mass may be considered in another way. 
Because all matter has mass, all matter exerts a gravitational attraction on other 
matter. Shortly after formulating his three laws of motion, Sir Isaac Newton postu-
lated a law governing the gravitational attraction between two masses. Newton’s law 
of universal gravitation is stated mathematically as

 F G
m m

r
=   1 2

2
 (2.1)

Table 2.10 Non-SI Units Commonly Used in the United States

(1) Exact conversion.

Quantity Unit Name Symbol SI Equivalent

Length inch in 0.0254 m(1)

yard yd 0.9144 m (36 in)

Mass metric ton t 1000 kg

short ton t 907.18kg 2000 lbm( )

Time minute min 60 s

hour h 3600 s

day d 86,400 s

Plane angle degree ° /180 radπ

minute ’ /10,800 radπ

second ” /648,000 radπ

Volume liter L 10  m3 3−

Land area hectare ha 10  m4 2

Energy electron-volt eV 1.602177 10  J19
×

−
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where

F = gravitational force between masses (N)
= = × ⋅

−universal gravitational constant 6.673 10 m /kg s11 3 2G
= mass of body 1 (kg)1m
= mass of body 2 (kg)2m
= distance between the centers of the two masses (m).r

According to Equation (2.1), between any two masses there exists an attractive 
gravitational force whose magnitude varies inversely as the square of the distance 
between the masses. Because Newton’s law of universal gravitation applies to any 
two masses, let’s apply Equation (2.1) to a body resting on the surface of the earth. 
Accordingly, we let = ,1m me  the mass of the earth, and = ,2m m  the mass of the 
body. The distance, r, between the body and the earth may be taken as the mean 
radius of the earth, .re  The quantities me  and re  have the approximate values

= × = ×5.979 10  kg 6.378 10  m.24 6m re e

Thus, we have

F G
m m

r

e

e

=  
2

=

× ⋅ ×

×

−(6.673 10  m /kg s )(5.979 10  kg)

(6.378 10  m)

11 3 2 24

6 2
m

= (9.808 m/s )  .2 m

We can see that upon substituting values, the term / 2Gm re e  yields approximately 
9.81 m/s ,2  the standard acceleration of gravity on the earth’s surface. Redefining 
this term as g, and letting F W= , we express the law of universal gravitation in a 
special form as

 =W mg  (2.2)

where

= weight of body (N)W

= mass of body (kg)m

= =standard gravitational acceleration 9.81 m/s .2g

This derivation clearly shows the difference between mass and weight. We may 
therefore state the definition of weight as a gravitational force exerted on a body by the 
earth. Because mass is defined as a quantity of matter, the mass of a body is indepen-
dent of its location in the universe. A body has the same mass whether it is located 
on the earth, the moon, Mars, or in outer space. The weight of the body, however, 
depends on its location. The mass of an 80 kg astronaut is the same whether or not 
he is on earth or in orbit above the earth. The astronaut weighs approximately 785 
N on the earth, but while in orbit he is “weightless.” His weight is zero while he or-
bits the earth, because he is continually “falling” toward earth. A similar weightless 
or “zero-g” condition is experienced by a skydiver as he begins falling.

The greatest source of confusion about mass and weight to the beginning en-
gineering student is not the physical concept, but the units used to express each 
quantity. To see how units of mass and weight relate to each other, we employ a 
well-known scientific principle, Newton’s second law of motion. Newton’s second law 
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of motion states that a body of mass, m, acted upon by an unbalanced force, F, experiences 
an acceleration, a, that has the same direction of the force and a magnitude that is directly 
proportional to the force. Stated mathematically, this law is

 F ma=
 (2.3)

where

F N( )= force 

( )= mass  Kgm

acceleration (m/s ).2a =

Note that this relation resembles Equation (2.2). Weight is a particular type of force, 
and acceleration due to gravity is a particular type of acceleration, so Equation (2.2) 
is a special case of Newton’s second law, given by Equation (2.3). In the SI unit sys-
tem, the newton (N) is defined as the force that will accelerate a 1-kg mass at a rate of 
1 m/s .2  Hence, we may write Newton’s second law dimensionally as

1 N 1 Kg m/s .2
= ⋅

In the English unit system, the pound-force (lb )f  is defined as the force that will ac-
celerate a 1-slug mass at a rate of 1 ft/s .2  Hence, we may write Newton’s second law 
dimensionally as

1 lb 1 slug ft/s .f
2

= ⋅

See Figure 2.8 for an illustration of Newton’s second law. Confusion arises from the 
careless interchange of the English mass unit, pound-mass (lb ),m  with the English 
force unit, pound-force (lb ).f  These units are not the same thing! In accordance 
with our definitions of mass and weight, pound-mass refers to a quantity of matter, 
whereas pound-force refers to a force or weight. In order to write Newton’s second 
law in terms of pound-mass instead of slug, we rewrite Equation (2.3) as

 F
ma

gc

=  (2.4)

where gc  is a constant that is required to make Newton’s second law dimensionally 
consistent when mass, m, is expressed in lb ,m  rather than slug. As stated previously, 

m 5 1 kg

a 5 1 m/s2

F 5 1 N

m 5 1 slug

a 5 1 ft/s2

F 5 1 lbf

Figure 2.8

Definitions of the force units 
newton (N) and pound-
force ( )lb .f
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the English unit for force is lb ,f  the English unit for acceleration is ft/s ,2  and, as 
indicated in Table 2.8, =1 slug 32.174 lb .m  Thus, the constant gc  is

g
ma

F
c =

=

(32.174 lb )(ft/s )

lb
m

2

f

32.174
lb ft

lb s
.m

f
2

=

⋅

⋅

This value is usually rounded to

32.2
lb ft

lb s
.m

f
2

gc =
⋅

⋅

Note that gc  has the same numerical value as g, the standard acceleration of grav-
ity on the earth’s surface. Newton’s second law as expressed by Equation (2.4) is 
dimensionally consistent when the English unit of mass, lb ,m  is used.

To verify that Equation (2.4) works, we recall that the pound-force is defined 
as the force that will accelerate a 1-slug mass at a rate of 1 ft/s .2  Recognizing that 

=1 slug 32.2 lb ,m  we have

=f
ma

gc

(32.2 lb )(1 ft/s )

32.2
lb ft

lb s

1 lb .m
2

m

f
2

f=

⋅

⋅

=

Note that in this expression, all the units, except lb ,f  cancel. Hence, the pound-
force (lb )f  is defined as the force that will accelerate a 32.2-lbm  mass at a rate of 
1 ft/s .2  Therefore, we may write Newton’s second law dimensionally as

1 lb 32.2 lb ft/s .f m
2

= ⋅

To have dimensional consistency when English units are involved, Equation 
(2.4) must be used when mass, m, is expressed in lb .m  When mass is expressed in 
slug, however, the use of gc  in Newton’s second law is not required for dimensional 
consistency because 1 lbf  is already defined as the force that will accelerate a 1-slug 
mass at a rate of 1 ft/s .2  Furthermore, because 1 N is already defined as the force 
that will accelerate a 1-kg mass at a rate of 1 m/s ,2  the use of gc  is not required for 
dimensional consistency in the SI unit system. Thus, Equation (2.3) suffices for all 
calculations, except for those in which mass is expressed in lb ;m  in that case, Equation (2.4) 
must be used. However, Equation (2.4) may be universally used when recognizing 
that the numerical value and units for gc  can be defined such that any consistent 
unit system will work. For example, substituting F m= =1 N,  1 kg,  and = 1 m/s2a  
into Equation (2.4) and solving for ,gc  we obtain

1 kg m

N s
.

2
gc =

⋅

⋅
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Since the numerical value of gc  is 1, we can successfully use Equation (2.3) as 
long as we recognize that 1 N is the force that will accelerate a 1-kg mass at a rate 
of 1 m/s .2

Sometimes, the units pound-mass (lb )m  and pound-force (lb )f  are casually in-
terchanged because a body with a mass of 1 lbm  has a weight of 1 lbf  (i.e., the mass 
and weight are numerically equivalent). Let’s see how this works: By definition, a body 
with a mass of 32.2 lbm (1 slug) when accelerated at a rate of 1 ft/s2  has a weight 
of 1 lb .f  Therefore, using Newton’s second law in the form, = ,W mg  we can also 
state that a body with a mass of 1 lb ,m  when accelerated at a rate of 32.2 ft/s2  (the 
standard value of g), has a weight of 1 lb .f  Our rationale for making such a state-
ment is that we maintained the same numerical value on the right side of Newton’s 
second law by assigning the mass, m, a value of 1 lbm  and the gravitational accel-
eration, g, the standard value of 32.2 ft/s .2  The numerical values of the mass and 
weight are equal even though a pound-mass and a pound-force are conceptually 
different quantities. It must be emphasized, however, that mass in pound-mass and 
weight in pound-force are numerically equivalent only when the standard value, 
= 32.2 ft/s ,2g  is used. See Figure 2.9 for an illustration. The next example illus-

trates the use of .gc

m 5 1 kg

g 5 9.81 m/s2

W 5 9.81 N

m 5 1 lbm

g 5 32.2 ft/s2

W 5 1 lbf

Figure 2.9

Definitions of weight for the 
standard value of gravita-
tional acceleration.

EXAMPLE 2.4
Find the weight of some objects with the following masses:

a. 50 slug
b. 50 lbm

c. 75 kg.

Solution

To find weight, we use Newton’s second law, where the acceleration a is the stan-
dard acceleration of gravity, = =9.81 m/s 32.2 ft/s .2 2g

a. The mass unit slug is the standard unit for mass in the English unit system. 
The weight is

=W mg

(50 slug)(32.2 ft/s ) 1,610 lb .2
f= =
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b. When mass is expressed in terms of lb ,m  we must use Equation (2.4):

 
(50 lb )(32.2 ft / s ))

32.2
lb ft

lb s

50 lb .m
2

m

f
2

fW
mg

gc

= =

⋅

⋅

=

Note that the mass and weight are numerically equivalent. This is true only in 
cases where the standard value of g is used, which means that an object with a mass 
of x lbm  will always have a weight of x lbf  on the earth’s surface.

c. The mass unit kg is the standard unit for mass in the SI unit system. The 
weight is

=W mg

= =(75 kg)(9.81 m/s ) 736 N.2

Alternatively, we can find weight by using Equation (2.4):

(75 kg)(9.81 m/s )

1
kg m

N s

736 N.
2

2

W
mg

gc

= =

⋅

⋅

=

Now that we understand the difference between mass and weight and know how to 
use mass and weight units in the SI and English systems, let’s revisit the astronaut we 
discussed earlier. (See Figure 2.10.) The mass of the astronaut is 80 kg, which equals 
about 5.48 slug. His mass does not change, regardless of where he ventures. Prior to 
departing on a trip to the moon, he weighs in at 785 N (176 lb ).f  What is the mass of 
the astronaut in pound-mass? Three days later, his vehicle lands on the moon, and 
he begins constructing a permanent base for future planetary missions. The value 
of the gravitational acceleration on the moon is only 1.62 m/s (5.31 ft/s ).2 2  The as-
tronaut’s mass is still 80 kg, but his weight is only 130 N (29.1 lb )f  due to the smaller 
value of g. Is the mass and weight of the astronaut in pound-mass and pound-force 
numerically equivalent? No, because the standard value of g is not used.

SI

m 5 80 kg

W 5 mg 5 785 N

English

m 5 5.48 slug

W 5 mg 5 176 lbf

SI

m 5 80 kg

W 5 mg 5 130 N

English

m 5 5.48 slug

W 5 mg 5 29.1 lbf

Earth

g 5 9.81 m/s
2 g 5 32.2 ft/s

2 g 5 1.62 m/s
2 g 5 5.31 ft/s

2

Moon

Figure 2.10

An astronaut’s mass and 
weight on the earth and 
moon.
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EXAMPLE 2.5
Special hoists are used in automotive repair shops to lift engines. As illustrated in 
Figure 2.11, a 200 kg engine is suspended in a fixed position by a chain attached 
to the cross member of an engine hoist. Neglecting the weight of the chain itself, 
what is the tension in portion AD of the chain?

Solution

This example is a simple problem in engineering statics. Statics is the branch of 

engineering mechanics that deals with forces acting on bodies at rest. The engine 

is held by the chain in a fixed position, so clearly the engine is at rest; that is, it is 

not in motion. This problem can be solved by recognizing that the entire weight 

of the engine is supported by portion AD of the chain. (The tension in portions 

AB and AC could also be calculated, but a thorough equilibrium analysis would be 

required.) Hence, the tension, which is a force that tends to elongate the chain, is 

equivalent to the weight of the engine. Using Equation (2.2), we have

F mg=

= =(200 kg)(9.81 m/s ) 1962 N.2

Therefore, the tension in portion AD of the chain is 1962 N, the weight of the 

engine.

D

A

B C

Figure 2.11

Engine hoist for  
Example 2.5.

PRACTICE!

1. It has been said that you do not fully understand a basic technical con-
cept, unless you can explain it in terms simple enough that a second 
grader can understand it. Write an explanation of the difference be-
tween mass and weight for a second grader.

2. Which is larger, a slug or a pound-mass?
Answer: slug.
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2.7 UNIT CONVERSIONS
Although the SI unit system is the international standard, English units are in wide-
spread use in the United States. Americans as a whole are much more familiar with 
English units than SI units. Students of science and engineering in U.S. schools 
primarily use SI units in their course work because most textbooks and the profes-
sors who teach out of them stress SI units. Unfortunately, when students of these 
disciplines go about their day-to-day activities outside of the academic environment, 
they tend to slip back into the English unit mode along with everyone else. It seems 
as if students have a “unit switch” in their brains. When they are in the classroom 
or laboratory, the switch is turned to the “SI position.” When they are at home, in 
the grocery store, or driving their car, the switch is turned to the “English position.” 
Ideally, there should be no unit switch at all, but as long as science and engineering 
programs at colleges and universities stress SI units and American culture stresses 
English units, our cerebral unit switch toggles. In this section, a systematic method 
for converting units between the SI and English systems is given.

A unit conversion enables us to convert from one unit system to the other by 
using conversion factors. A conversion factor is an equivalency ratio that has a unit 
value of 1. Stated another way, a conversion factor simply relates the same physical 
quantity in two different unit systems. For example, 0.0254 m and 1 in are equiva-
lent length quantities because =0.0254 m 1 in. The ratio of these two quantities 
has a unit value of 1 because they are physically the same quantity. Obviously, the 
numerical value of the ratio is not 1, but depends on the numerical value of each 
individual quantity. Thus, when we multiply a given quantity by one or more con-
version factors, we alter only the numerical value of the result and not its dimen-
sion. Table 2.11 summarizes some common conversion factors used in engineering 
analysis. A more extensive listing of unit conversions is given in Appendix B.

A systematic procedure for converting a quantity from one unit system to the 
other is as follows:

2.7.1 Unit Conversion Procedure
1. Write the given quantity in terms of its numerical value and units. Use a 

horizontal line to divide units in the numerator (upstairs) from those in the 
denominator (downstairs).

2. Determine the units to which you want to make the conversion.
3. Multiply the given quantity by one or more conversion factors that, upon can-

cellation of units, leads to the desired units. Use a horizontal line to divide the 
units in the numerator and denominator of each conversion factor.

4. Draw a line through all canceled units.
5. Perform the numerical computations on a calculator, retaining maximum deci-

mal place accuracy until the end of the computations.

3. Consider a professional linebacker who weighs 310 lb .f  What is his 
mass in slugs?
Answer: 9.63 slug.

4. A rock ρ =( 2300 kg/m )3  is suspended by a single rope. Assuming the 
rock to be spherical, with a radius of 20 cm, what is the tension in the 
rope?
Answer: 756 N.
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6. Write the numerical value of the converted quantity by using the desired 
number of significant figures (three significant figures is standard practice 
for engineering) with the desired units.

Examples 2.6, 2.7, and 2.8 illustrate the unit conversion procedure.

Table 2.11 Some Common SI-to-English Unit Conversions

(1) Exact conversion.

Quantity Unit Conversion

Acceleration 1 m/s 3.2808 ft/s2 2
=

Area 1m 10.7636 ft 1550 in2 2 2
= =

Density 1kg/m 0.06243 lb /ft3
m

3
=

Energy, work, heat 1055.06 J 1 Btu 252 cal= =

Force 1N 0.22481 lbf=

Length 1m 3.2808 ft 39.370 in= =

0.0254m 1 in(1)
=

Mass 1kg 2.20462 lb 0.06852 slugm= =

Power 1W 3.4121 Btu/h=

745.7 W 1 hp=

Pressure 1kPa 20.8855 lb /ft 0.14504 lb /inf
2

f
2

= =

Specific heat ⋅ = ⋅1kj/kg °C 0.2388 Btu/lb °Fm

Temperature = + = = +



T(K) T(°C) 273.16 T(°R)/1.8 T(°F) 459.67 /1.8

Velocity 1m/s 2.2369 mi/h=

EXAMPLE 2.6
An engineering student is late for an early morning class, so she runs across campus 
at a speed of 9 mi/h. Determine her speed in units of m/s.

Solution

The given quantity, expressed in English units, is 9 mi/h, but we want our answer 

to be in SI units of m/s. Thus, we need a conversion factor between mi and m and 

a conversion factor between h and s. To better illustrate the unit conversion pro-

cedure, we will use two length conversion factors rather than one. Following the 

procedure outlined, we have

9
mi

h

5280  ft

1  mi

1 m

3.2808  ft

1  h

3600 s
4.02

m

s
.

given quantity conversion factors answer

× × × =

↑ ↑ ↑

i
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The key aspect of the unit conversion process is that the conversion factors must 

be written such that the appropriate units in the conversion factors cancel those 

in the given quantity. If we had inverted the conversion factor between ft and mi, 

writing it instead as 1 mi/5280 ft, the mi unit would not cancel and our unit con-

version exercise would not work, because we would end up with units of mi2  in the 

numerator. Similarly, the conversion factor between m and ft was written such that 

the ft unit canceled the ft unit in the first conversion factor. Also, the conversion 

factor between h and s was written such that the h unit canceled with the h unit in 

the given quantity. Writing conversion factors with the units in the proper locations, 

“upstairs” or “downstairs,” requires some practice, but after doing several conver-

sion problems, the correct placement of units will become second nature to you. 

Note that our answer is expressed in three significant figures.

EXAMPLE 2.7
Lead has one of the highest densities of all the pure metals. The density of lead is 
11,340 kg/m .3  What is the density of lead in units of lb /in ?m

3

Solution

A direct conversion factor from kg/m3 to lb /inm
3  may be available, but to illustrate 

an important aspect of converting units with exponents, we will use a series of conver-

sion factors for each length and mass unit. Thus, we write our unit conversion as

×









×









× =11,340

kg

m

1  m

3.2808  ft

1  ft

12 in

2.20462 lb

1  kg
0.410 lb /in .

3

3 3
m

m
3

We used two length conversion factors, one factor between m and ft and the other  

between ft and in. But the given quantity is a density that has a volume unit. When per-

forming unit conversions involving exponents, both the numerical value and the unit 

must be raised to the exponent. A common error that students make is to raise the 

unit to the exponent, which properly cancels units, but to forget to raise the numerical 

value also. Failure to raise the numerical value to the exponent will lead to the wrong 

numerical answer even though the units in the answer will be correct. Using the direct 

conversion factor obtained from Appendix B, we obtain the same result:

×

×

=

−

11,340  kg /m
3.6127 10  lb /in

1  kg/ m
0.410 lb /in .

3
5

m
3

3 m
3

EXAMPLE 2.8
Specific heat is defined as the energy required to raise the temperature of a unit 
mass of a substance by one degree. Pure aluminum has a specific heat of approxi-
mately ⋅900 J/Kg °C.  Convert this value to units of ⋅Btu/lb °F.m
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Solution

By following the unit conversion procedure, we write the given quantity and then 

multiply it by the appropriate conversion factors, which can be found in Appendix B:

⋅

× × × = ⋅

900  J

kg ° C

1 Btu

1055.06  J

1  kg

2.20462 lb

1° C

1.8°F
0.215 Btu/lb °F.

m
m

The temperature unit °C in the original quantity has a unique interpretation. 

Because specific heat is the energy required to raise a unit mass of a substance by 

one degree, the temperature unit in this quantity denotes a temperature change, 

not an absolute temperature value. A temperature change of 1°C is equivalent to a 

temperature change of 1.8°F. Other thermal properties, such as thermal conductiv-

ity, involve the same temperature change interpretation.

This example can also be done by applying a single conversion factor 

⋅ = ⋅1 kJ/Kg °C 0.2388 Btu/lb °F,m  which yields the same result.

PROFESSIONAL SUCCESS—UNIT CONVERSIONS  
AND CALCULATORS

Scientific pocket calculators have evolved from simple electronic versions of 
adding machines to complex portable computers. Today’s high-end scientific 
calculators have numerous capabilities, including programming, graphing, 
numerical methods, and symbolic mathematics. Most scientific calculators 
also have an extensive compilation of conversion factors. Why, then, should 
students learn to do unit conversions by hand when calculators will do the 
work? This question lies at the root of a more fundamental question: why 
should students learn to do any computational task by hand when calculators 
or computers will do the work? Is it because “in the old days” engineers did 
not have the luxury of highly sophisticated computational tools, so professors, 
who perhaps lived in the “old days,” forced their students to do things the old 
fashioned way? Not really.

Students will always need to learn engineering by thinking and reasoning 
their way through a problem, regardless of whether that problem is a unit con-
version or a stress calculation in a machine component. Computers, and the 
software that runs on them, do not replace the thinking process. The calcula-
tor, like the computer, should never become a “black box” to the student. A 
black box is a mysterious device whose inner workings are largely unknown, 
but that, nonetheless, provides output for every input supplied. By the time you 
graduate with an engineering degree, or certainly by the time you have a few 
years of professional engineering practice, you will come to realize that a cal-
culator program or computer software package exists for solving many types of 
engineering problems. This does not mean that you need to learn every one of 
these programs and software packages. It means that you should become pro-
ficient in the use of those computational tools that pertain to your particular 
engineering field after learning the underlying basis for each. By all means, use 
a calculator or a unit conversion application to perform unit conversions, but 
first know how to do them by hand, so you gain confidence in your own com-
putational skills and have a way to verify the results of computer-based tools.
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KEY TERMS

base dimension
conversion factors
derived dimension
dimension
dimensionally consistent

English unit system
mass
Newton’s second law
physical standards
SI unit system

unit
unit conversion
weight

PRACTICE!

1. A microswitch is an electrical switch that requires only a small force to 
operate it. If a microswitch is activated by a 0.25-oz force, what is the 
force in units of N that will activate it?
Answer: 0.0695 N.

2. At room temperature, water has a density of about 62.4 lb /ft .m
3  

Convert this value to units of slug/in3  and kg/m .3

Answer: ×
−1.12 10  slug/in ,  999.5 kg/m .3 3 3

3. At launch, the Saturn V rocket that carried astronauts to the moon 
developed five million pounds of thrust. What is the thrust in units 
of MN?
Answer: 22.2 MN.

4. Standard incandescent light bulbs produce more heat than light. 
Assuming that a typical house has twenty 60-W bulbs that are continu-
ously on, how much heat in units of Btu/h is supplied to the house 
from light bulbs if 90 percent of the energy produced by the bulbs is in 
the form of heat?
Answer: 3685 Btu/h.

5. Certain properties of animal (including human) tissue can be approxi-
mated by using those of water. Using the density of water at room tem-
perature, ρ = 62.4 lb /ft ,m

3  calculate the weight of a human male by 
approximating him as a cylinder with a length and diameter of 6 ft and 
10 in, respectively.
Answer: 204 lb .f

6. The standard frequency for electrical power in the United States is 
60 Hz. For an electrical device that operates on this power, how many 
times does the current alternate during a year?
Answer: ×1.89 10 .9



46 Chapter 2 Dimensions and Units

Cardarelli, F., Encyclopedia of Scientific Units, Weights and Measures: Their SI Equivalences 
and Origins, 3rd ed., New York, NY: Springer-Verlag, 2004.

Rumble, J., CRC Handbook of Chemistry and Physics 100th Edition, Boca Raton, FL: 
CRC Press, 2019.

Wandmacher, C. and A. Johnson, Metric Units in SI: Going SI, Reston, VA: ASCE 
Press, 2006.

REFERENCES

Dimensions

 2.1 For the following dimensional equations, find the base dimensions of the 
parameter k:

a. − −MLt = ML t1 2k
b. k=− − −MLt L  Lt2 1 3

c. =
−L t M T3 2 3k

d. k=−ML t  LT2 3

e. k = −nLL T M L3 2 2

f. k = − −MI nTM L2 3 1

g. −IL t = M t2 2 4 2k
h. k =

− − −T M L T t L3 6 3 5 3 6

i. k=− − − − −T L I t T L1/2 1 2 1/2 4 5/2 3

j. k=
− − − −MLt MLt  sin( L M )2 2 2 1

k. T k=
−T n n ln( nT )2 2 1

 2.2 Is the following dimensional equation dimensionally consistent? Explain.

=ML ML cos(Lt).

 2.3 Is the following dimensional equation dimensionally consistent? Explain.

( )= −t LT tLT log tt .2 1

 2.4 Is the following dimensional equation dimensionally consistent? Explain.

=
−TnT TnT exp(MM ).1

Units

 2.5 In the following list, various quantities are written using SI units incorrectly: 
Write the quantities, using the correct form of SI units.

a. 10.6 secs
b. 4.75 amps
c. 120 M hz
d. 2.5 Kw
e. µ0.00846 kg/ s
f. 90 W/m  K2

PROBLEMS


