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P R E F A C EP R E F A C E

This is a textbook for the standard introductory differential equations course taken by 

science and engineering students. Its updated content reflects the wide availability of 

technical computing environments like Maple, Mathematica, and MATLAB that now are used 

extensively by practicing engineers and scientists. The traditional manual and symbolic methods 

are augmented with coverage also of qualitative and computer-based methods that employ 

numerical computation and graphical visualization to develop greater conceptual understanding. 

A bonus of this more comprehensive approach is accessibility to a wider range of more realistic 

applications of differential equations.

Principal Features of This Revision

This 6th edition is a comprehensive and wide-ranging revision.

In addition to fine-tuning the exposition (both text and graphics) in numerous sections 

throughout the book, new applications have been inserted (including biological), and we have 

exploited throughout the new interactive computer technology that is now available to students 

on devices ranging from desktop and laptop computers to smart phones and graphing calculators. 

It also utilizes computer algebra systems such as Mathematica, Maple, and MATLAB as well as 

online platforms such as Wolfram|Alpha and GeoGebra.

There have been additions to content throughout the text, including an expanded Application 

Module for Section 6.4 to discuss COVID-19. However, the class tested table of contents of the 

book remains unchanged. Therefore, instructors’ notes and syllabi will not require revision to 

continue teaching with this new edition.

A conspicuous feature of this edition is the insertion of about 16 new Interactive Figures, 

which illustrate how interactive computer applications with slider bars or touchpad controls can 

be used to change initial values or parameters in a differential equation, allowing the user to 

immediately see in real time the resulting changes in the structure of its solutions.

Some illustrations of the various types of revision and updating exhibited in this edition:

New Interactive Technology and Graphics New figures inserted throughout 

illustrate the facility offered by modern computing technology platforms for the user to 

interactively vary initial conditions and other parameters in real time. Thus, using a mouse 

or touchpad, the initial point for an initial value problem can be dragged to a new location, 

and the corresponding solution curve is automatically redrawn and dragged along with its 

initial point. For instance, see Figure 1.3.5 (page 20) and Figure 3.2.4 (page 154). Using 

slider bars in an interactive graphic, the coefficients or other parameters in a linear system 

can be varied, and the corresponding changes in its direction field and phase plane portrait 

are automatically shown; for instance see Figure 5.3.21 in the Application for Section 5.3 

(page 324). The number of terms used in the partial sum of the Fourier series of a square-

wave function can be varied, and the resulting graphical change demonstrating Gibbs’s 

phenomenon is shown immediately; see Figure 9.1.3 (page 587).

New Exposition In a number of sections, new text and graphics have been inserted to 

enhance student understanding of the subject matter. For instance, see the revised approach to 

Problems 1 through 4 in Section 1.3 (page 25), the enhanced discussion in the Summary that 

concludes Chapter 1 (page 73), the historical note pointing to the accomplishments of Katherine 

Johnson following Application 4.1 (page 242), the many improvements in the presentation of 

the Lorenz attractor and supporting graphics (page 446), and the improved presentation of the 
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Application Modules throughout the text. Examples and accompanying graphics have been 

updated throughout to illustrate current technology; this includes the incorporation of Python as 

a standard programming platform. 

New Content Continuing our recent trend, this edition features a new application of 

differential equations to the life sciences. In addition to the FitzHugh-Nagumo equations of 

neuroscience, the Application Module following Section 6.4 now also includes an introduction 

to the use of differential equations in epidemiology, specifically the SIR model widely used in 

forecasting models today. We explain the early history of the use of differential equations to 

model the spread of disease and then present the SIR model itself, together with its underlying 

rationale. As a case study, we analyze in detail a related model that takes account of possible 

reinfection.  The phase analysis of this variant of the SIR model can be done in the plane, 

rather than three dimensions, allowing the use of tools developed for nonlinear autonomous 

systems earlier in the chapter. The modeling of the spread of disease is of course a subject of 

great contemporary interest in itself. However, this new treatment also reinforces the utility 

of differential equations throughout the sciences, not just in traditional fields like physics and 

engineering. Characterized by the same careful and thorough exposition found throughout 

the text as a whole, this new unit will provide the student with yet another lens through which 

to view the subject of differential equations.

New Look This text may look notably different than previous editions because of the 

introduction of color! The addition of multiple colors to the text has allowed us to enhance 

graphs and figures so that students can more easily discern different solutions in the figures. 

Marginal notes have been added to give additional help in understanding the mathematics 

done in the text. Application topics can now be identified in the exercise set with new run-in 

problem titles. Finally, new headers in the Application Modules now make it clear where 

the author’s exposition ends and the student’s investigation begins; look for the Your Turn 

headers.

Computing Features
The following features highlight the computing technology that distinguishes much of our 

exposition.

 • Over 750 computer-generated figures show students vivid pictures of direction fields, 

solution curves, and phase plane portraits that bring symbolic solutions of di�erential 

equations to life.

 • About 44 application modules follow key sections throughout the text. Most of these 

applications outline “technology neutral” investigations illustrating the use of technical 

computing systems and seek to actively engage students in the application of new 

technology.

 • A fresh numerical emphasis that is a�orded by the early introduction of numerical 

solution techniques in Chapter 2 (on mathematical models and numerical methods). 

Here and in Chapter 4, where numerical techniques for systems are treated, a concrete 

and tangible flavor is achieved by the inclusion of numerical algorithms presented in 

parallel fashion for systems ranging from graphing calculators to MATLAB.

Mathematical modeling is a goal and constant motivation for the study of differential equations. 

To sample the range of applications in this text, take a look at the following questions:

 • What explains the commonly observed time lag between indoor and outdoor daily 

temperature oscillations? (Section 1.5)

 • What makes the di�erence between doomsday and extinction in alligator populations? 

(Section 2.1)

Modeling Features



Preface ix

We have reshaped the usual approach and sequence of topics to accommodate new technology 

and new perspectives. For instance:

 • After a precis of first-order equations in Chapter 1 (though with the coverage of certain 

traditional symbolic methods streamlined a bit), Chapter 2 o�ers an early introduction 

to mathematical modeling, stability and qualitative properties of di�erential equations, 

and numerical methods—a combination of topics that frequently are dispersed later in 

an introductory course. Chapter 3 includes the standard methods of solution of linear 

di�erential equations of higher order, particularly those with constant coe�cients, and 

provides an especially wide range of applications involving simple mechanical systems 

and electrical circuits; the chapter ends with an elementary treatment of endpoint 

problems and eigenvalues.

 • Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated by current 

trends in science and engineering education and practice, Chapter 4 o�ers an early, 

intuitive introduction to first-order systems, models, and numerical approximation 

techniques. Chapter 5 begins with a self-contained treatment of the linear algebra that is 

needed, and then presents the eigenvalue approach to linear systems. It includes a wide 

range of applications (ranging from railway cars to earthquakes) of all the various cases 

of the eigenvalue method. Section 5.5 includes a fairly extensive treatment of matrix 

exponentials, which are exploited in Section 5.6 on nonhomogeneous linear systems.

 • Chapter 6 on nonlinear systems and phenomena ranges from phase plane analysis to 

ecological and mechanical systems to a concluding section on chaos and bifurcation 

in dynamical systems. Section 6.5 presents an elementary introduction to such 

contemporary topics as period-doubling in biological and mechanical systems, the 

pitchfork diagram, and the Lorenz strange attractor (all illustrated with vivid computer 

graphics).

 • Laplace transform methods (Chapter 7) and power series methods (Chapter 8) follow 

the material on linear and nonlinear systems, but can be covered at any earlier point 

(after Chapter 3) the instructor desires.

 • Chapters 9 and 10 treat the applications of Fourier series, separation of variables, and 

Sturm-Liouville theory to partial di�erential equations and boundary value problems. 

Organization and Content

 • How do a unicycle and a twoaxle car react di�erently to road bumps? (Sections 3.7 and 

5.4)

 • How can you predict the time of next perihelion passage of a newly observed comet? 

(Section 4.3)

 • Why might an earthquake demolish one building and leave standing the one next door? 

(Section 5.4)

 • What determines whether two species will live harmoniously together, or whether 

competition will result in the extinction of one of them and the survival of the other? 

(Section 6.3)

 • How can di�erential equations be used to predict the spread of a disease, or to develop a 

strategy for “flattening the curve” of its infected population? (Application Module 6.4)

 • Why and when does non-linearity lead to chaos in biological and mechanical systems? 

(Section 6.5)

 • If a mass on a spring is periodically struck with a hammer, how does the behavior of the 

mass depend on the frequency of the hammer blows? (Section 7.6)

 • Why are flagpoles hollow instead of solid? (Section 8.6)

 • What explains the di�erence in the sounds of a guitar, a xylophone, and drum? (Sections 

9.6, 10.2, and 10.4)
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The answer section has been expanded considerably to increase its value as a learn-ing aid. It 

now includes the answers to most odd-numbered problems plus a good many even-numbered 

ones. The Instructor’s Solutions Manual (0-13-754027-2), available at www.pearson.com 

and within MyLab Math, provides worked-out solutions for most of the problems in the book, 

and the Student Solutions Manual (0-13-754031-0) contains solutions for most of the odd-

numbered problems. 

The effectiveness of the 44 application modules located throughout the text is greatly 

enhanced by the material at the new Expanded Applications website. Nearly all of the 

application modules in the text are marked with  and a unique short URL—a web address that 

leads directly to an Expanded Applications page containing a wealth of resources supporting 

that module. Typical Expanded Applications materials include an enhanced and expanded PDF 

version of the text with further discussion or additional applications, together with computer files 

in a variety of platforms, including Mathematica, Maple, MATLAB, and in some cases Python 

and/or TI calculator. These files provide all code appearing in the text as well as equivalent 

versions in other platforms, allowing students to immediately use the material in the Application 

Module on the computing platform of their choice. In addition to the URLs dispersed throughout 

the text, the Expanded Applications can be accessed via this homepage: bit.ly/3E5bU2W. 

Student and Instructor Resources

After the introduction of Fourier series, the three classical equations—the wave and heat 

equations and Laplace’s equation—are discussed in the last three sections of Chapter 9. 

The eigenvalue methods of Chapter 10 are developed su�ciently to include some rather 

significant and realistic applications.

This book includes enough material appropriately arranged for different courses varying in 

length from one quarter to two semesters. Many courses choose to omit chapters 8, 9, and 10 (the 

chapters on Boundary Values Problems), but all the content is included in this one version of the 

text now.

MyLab Math Resources for Success

MyLab Math is available to accompany Pearson’s market-leading text options, including 

Edwards’ Differential Equations and Boundary Value Problems: Computing and Modeling, 

6th Edition (access code required).

MyLab™ is the teaching and learning platform that empowers you to reach every student. 

MyLab Math combines trusted author content—including full eText and assessment with 

immediate feedback—with digital tools and a flexible platform to personalize the learning 

experience and improve results for each student.

MyLab Math supports all learners, regardless of their ability and background, to provide an 

equal opportunity for success. Accessible resources support learners for a more equitable experience 

no matter their abilities. And options to personalize learning and address individual gaps helps to 

provide each learner with the specific resources they need to achieve success.

Student Resources

Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience available 

within MyLab Math. It lest student highlight, take notes and create flashcards all in one place, 

even when offline. Seamlessly integrated videos bring concepts to life.

More! Exercises with immediate feedback— Over 1000 assignable exercises are based 

on the textbook exercises, and regenerate algorithmically to give students unlimited opportunity 

for practice and mastery. MyLab Math provides helpful feedback when students enter incorrect 

answers and includes optional learning aids including Help Me Solve This, View an Example, 

videos, and an eText.

www.pearson.com
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 • Solution Manual – The Student’s Solution Manual provides detailed worked-out 

solutions to most of the odd-numbered exercises in Edwards’ Di�erential Equations and 

Boundary Value Problems: Computing and Modeling. Available in MyLab Math.

Instructor Resources

Your course is unique. So whether you’d like to build your own assignments, teach multiple 

sections, or set prerequisites, MyLab gives you the flexibility to easily create your course to fit 

your needs.

Address gaps in prerequisite skills with the assignable Additional Review for Differential 

Equations chapter, which contains support for students with just-in-time remediation of key 

calculus and precalculus objective and exercises, to ensure they are adequately prepared with the 

prerequisite skills needed to successfully complete their course work.

Personalized Homework - With Personalized Homework, students take a quiz or test and 

receive a subsequent homework assignment that is personalized based on their performance. 

This way, students can focus on just the topics they have not yet mastered.

Learning Catalytics helps instructors generate class discussion, customize lectures, and 

promote peer-to-peer learning with real-time analytics. As a student response tool, Learning 

Catalytics uses students’ smartphones, tablets, or laptops to engage them in more interactive 

tasks and thinking.

 • Help students develop critical thinking skills.

 • Monitor responses to find out where students are struggling

 • Rely on real-time data to adjust teaching strategy.

 • Automatically group students for discussion, teamwork, and peer-to-peer learning.

 • New! Set-up & Solve Exercises require students to first describe how they will set 

up and approach the problem. This reinforces conceptual understanding of the process 

applied in approaching the problem, promotes long-term retention of the skill, and 

mirrors what students will be expected to do on a test.

Instructional videos provide meaningful support to students as a learning aid within exercises, 

alongside key examples in the eText or for self-study within the Video & Resource Library. 

Instructors can assign videos within MyLab homework; use videos in class or provide as a 

supplementary resource on specific topics.
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Accessibility and achievement go hand in hand. MyLab Math is compatible with the JAWS screen 

reader, and enables multiple-choice and free-response problem types to be read and interacted with 

via keyboard controls and math notation input. MyLab Math also works with screen enlargers, 

including ZoomText, MAGic, and SuperNova. And, all MyLab Math videos have closed-

captioning. More information is available at http://mymathlab.com/accessibility.

Other instructor resources include:

 • Instructor Solution Manual – The Instructor’s Solutions Manual, available at www.

pearson.com and within MyLab Math, provides worked-out solutions for most of 

the problems in the book.

 • Presentation slides created by author David Calvis available in LaTeX (Beamer) and 

PDF formats. The slides are ideal for both classroom lecture and student review and 

combined with Calvis’ superlative videos o�er a level of support not found in any other 

Di�erential Equations course.

 • 44 Application Modules – Follow key sections throughout the text, and actively 

engage students, most providing computing projects that illustrate the content of the 

corresponding text sections.

 • Typical materials include an expanded PDF version of the text with further 

discussion or additional applications, with files in a variety of platforms including 

Mathematica, Maple, and MATLAB.

 • These projects provide brief segments of appropriate computer syntax at the point 

of student need; over time, the student develops the ability to use technology to 

address a wide range of problems in di�erential equations.

 • Students can access the module resources through MyLab Math or directly at 

bit.ly/3E5bU2W.

Learn more at pearson.com/mylab/math

A comprehensive gradebook with enhanced reporting functionality allows for efficient 

course management.

 • Item Analysis tracks class-wide understanding of particular exercises to refine class 

lectures or adjust the course/department syllabus. Just-in-time teaching has never been 

easier!

Performance Analytics enable instructors to see and analyze student performance across 

multiple courses. Based on their current course progress, individuals’ performance is identified 

above, at, or below expectations through a variety of graphs and visualizations.

Now included with Performance Analytics, Early Alerts use predictive analytics to identify 

struggling students — even if their assignment scores are not a cause for concern. In both 

Performance Analytics and Early Alerts, instructors can email students individually or by group 

to provide feedback. 

http://mymathlab.com/accessibility
www.pearson.com
www.pearson.com


Preface xiii

Acknowledgments
In preparing this revision, we profited greatly from the advice and assistance of the following 

very capable and perceptive reviewers. Those who assisted with this sixth edition have an 

asterisk before their names.

 Anthony Aidoo, Eastern Connecticut State University
 Brent Solie, Knox College

 Elizabeth Bradley, University of Louisville

*Min Chen, Purdue University

 Gregory Davis, University of Wisconsin-Green Bay

 Zoran Grujic, University of Virginia

 Richard Jardine, Keene State College

 Yang Kuang, Arizona State University

 Dening Li, West Virginia University

*John Lind, California State University, Chico

 Francisco Sayas-Gonzalez, University of Delaware

*Curtis White, Lee College

 Luther White, University of Oklahoma

 Hong-Ming Yin, Washington State University

 Morteza Shafii-Mousavi, Indiana University-South Bend

It is a pleasure to (once again) credit Dennis Kletzing and his extraordinary TEXpertise for the 

attractive presentation of the text and the art in this book. We are grateful to our editor, Brian 

Fisher, for his support and inspiration of this revision; to Erin Carreiro and Kristina Evans 

for coordination of the technology tools and content for the text; to Devanshi Tyagi for her 

supervision of the production of this book; to Straive for their attractive cover design.

Henry Edwards h.edwards@mindspring.com

David Calvis dcalvis@bw.edu



xiv

P E A R S O N ’ S  C O M M I T M E N T 
T O  D I V E R S I T Y,  E Q U I T Y, 
A N D  I N C L U S I O N

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We 

embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, 

socioeconomic status, ability, age, sexual orientation, and religious or political beliefs. 

Education is a powerful force for equity and change in our world. It has the potential to 

deliver opportunities that improve lives and enable economic mobility. As we work with 

authors to create content for every product and service, we acknowledge our responsibility to 

demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their 

potential through learning. As the world’s leading learning company, we have a duty to help 

drive change and live up to our purpose to help more people create a better life for themselves 

and to create a better world.

Our ambition is to purposefully contribute to a world where:

 • Everyone has an equitable and lifelong opportunity to succeed through learning.

 • Our educational products and services are inclusive and represent the rich diversity of 

learners.

 • Our educational content accurately refl ects the histories and experiences of the learners 

we serve.

 • Our educational content prompts deeper discussions with students and motivates them 

to expand their own learning (and worldview).

We are also committed to providing products that are fully accessible to all learners. As per 

Pearson’s guidelines for accessible educational Web media, we test and retest the capabilities 

of our products against the highest standards for every release, following the WCAG guidelines 

in developing new products for copyright year 2022 and beyond. You can learn more about 

Pearson’s commitment to accessibility at https://www.pearson.com/us/accessibility.html.

While we work hard to present unbiased, fully accessible content, we want to hear from you 

about any concerns or needs with this Pearson product so that we can investigate and address 

them. 

 • Please contact us with concerns about any potential bias at https://www.pearson.com/

report-bias.html.

 • For accessibility-related issues, such as using assistive technology with Pearson 

products, alternative text requests, or accessibility documentation,  email the Pearson 

Disability Support team at disability.support@pearson.com.

https://www.pearson.com/us/accessibility.html
https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html


11 First-Order
Differential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra

is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing

quantities.

Because the derivative dx=dt D f 0.t/ of the function f is the rate at which

the quantity x D f .t/ is changing with respect to the independent variable t , it

is natural that equations involving derivatives are frequently used to describe the

changing universe. An equation relating an unknown function and one or more of

its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
D x2 C t2

involves both the unknown function x.t/ and its first derivative x0.t/ D dx=dt . The

differential equation
d 2y

dx2
C 3

dy

dx
C 7y D 0

involves the unknown function y of the independent variable x and the first two

derivatives y0 and y00 of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical

situation.

2. To find—either exactly or approximately—the appropriate solution of that

equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation

such as x3 C 7x2 � 11x C 41 D 0. By contrast, in solving a differential equation, we

1



2 Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y D y.x/ for which an identity such

as y0.x/ D 2xy.x/—that is, the differential equation

dy

dx
D 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all

solutions of the differential equation, if possible.

Example 2 If C is a constant and

y.x/ D Cex2

; (1)

then
dy

dx
D C

�

2xex2
�

D .2x/
�

Cex2
�

D 2xy:

Thus every function y.x/ of the form in Eq. (1) satisfies—and thus is a solution

of—the differential equation
dy

dx
D 2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of

this differential equation, one for each choice of the arbitrary constant C . By the

method of separation of variables (Section 1.4) it can be shown that every solution

of the differential equation in (2) is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and

principles into differential equations. In each of these examples the independent

variable is time t , but we will see numerous examples in which some quantity other

than time is the independent variable.

Example 3 Rate of cooling Newton’s law of cooling may be stated in this way: The time

rate of change (the rate of change with respect to time t) of the temperature T .t/

of a body is proportional to the difference between T and the temperature A of the

surrounding medium (Fig. 1.1.1). That is,

dT

dt
D �k.T � A/; (3)

where k is a positive constant. Observe that if T > A, then dT=dt < 0, so the

temperature is a decreasing function of t and the body is cooling. But if T < A, then

dT=dt > 0, so that T is increasing.

Thus the physical law is translated into a differential equation. If we are given

the values of k and A, we should be able to find an explicit formula for T .t/, and

then—with the aid of this formula—we can predict the future temperature of the

body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Draining tank Torricelli’s law implies that the time rate of change of the volume

V of water in a draining tank (Fig. 1.1.2) is proportional to the square root of the

depth y of water in the tank:
dV

dt
D �k

p
y; (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional

yVolume V

FIGURE 1.1.2. Torricelli’s law of
draining, Eq. (4), describes the
draining of a water tank.

area A, then V D Ay, so dV=dt D A � .dy=dt/. In this case Eq. (4) takes the form

dy

dt
D �h

p
y; (5)

where h D k=A is a constant.
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Example 5 Population growth The time rate of change of a population P.t/ with con-

stant birth and death rates is, in many simple cases, proportional to the size of the

population. That is,

dP

dt
D kP; (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P.t/ D Cekt (7)

is a solution of the differential equation

dP

dt
D kP

in (6). We verify this assertion as follows:

P 0.t/ D C kekt D k
�

Cekt
�

D kP.t/

for all real numbers t . Because substitution of each function of the form given in (7)

into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation

dP=dt D kP has infinitely many different solutions of the form P.t/ D Cekt , one for

each choice of the “arbitrary” constant C . This is typical of differential equations.

It is also fortunate, because it may allow us to use additional information to select

from among all these solutions a particular one that fits the situation under study.

Example 6 Population growth Suppose that P.t/ D Cekt is the population of a colony of

bacteria at time t , that the population at time t D 0 (hours, h) was 1000, and that

the population doubled after 1 h. This additional information about P.t/ yields the

following equations:
1000 D P.0/ D Ce0 D C;

2000 D P.1/ D Cek :

It follows that C D 1000 and that ek D 2, so k D ln 2 � 0:693147. With this value

of k the differential equation in (6) is

dP

dt
D .ln 2/P � .0:693147/P:

Substitution of k D ln 2 and C D 1000 in Eq. (7) yields the particular solution

P.t/ D 1000e.ln 2/t D 1000.eln 2/t D 1000 � 2t (because eln 2 D 2)

that satisfies the given conditions. We can use this particular solution to predict

future populations of the bacteria colony. For instance, the predicted number of

bacteria in the population after one and a half hours (when t D 1:5) is

P.1:5/ D 1000 � 23=2 � 2828:

The condition P.0/ D 1000 in Example 6 is called an initial condition because

we frequently write differential equations for which t D 0 is the “starting time.”

Figure 1.1.3 shows several different graphs of the form P.t/ D Cekt with k D ln 2.

The graphs of all the infinitely many solutions of dP=dt D kP in fact fill the entire

two-dimensional plane, and no two intersect. Moreover, the selection of any one

point P0 on the P -axis amounts to a determination of P.0/. Because exactly one

solution passes through each such point, we see in this case that an initial condition

P.0/ D P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

–2

–1

–4

–2

–6

–8

2

4

6

8
C = 12 C = 6 C = 3

C = –6

C =
1

2

C = –
1

2

C = 1

C = –1

C = –3C = –12

FIGURE 1.1.3. Graphs of

P.t/ D Cekt with k D ln 2.
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Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial

process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the

construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the

population at some future time. A mathematical model consists of a list of vari-

ables (P and t) that describe the given situation, together with one or more equations

relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to

hold. The mathematical analysis consists of solving these equations (here, for P as

a function of t). Finally, we apply these mathematical results to attempt to answer

the original real-world question.

As an example of this process, think of first formulating the mathematical

model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-

teria population of Example 6. Then our mathematical analysis there consisted of

solving for the solution function P.t/ D 1000e.ln 2/t D 1000 � 2t as our mathemat-

ical result. For an interpretation in terms of our real-world situation—the actual

bacteria population—we substituted t D 1:5 to obtain the predicted population of

P.1:5/ � 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is

growing under ideal conditions of unlimited space and food supply, our prediction

may be quite accurate, in which case we conclude that the mathematical model is

adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential

equation accurately fits the actual population we’re studying. For instance, for no

choice of the constants C and k does the solution P.t/ D Cekt in Eq. (7) accurately

describe the actual growth of the human population of the world over the past few

centuries. We must conclude that the differential equation dP=dt D kP is inadequate

for modeling the world population—which in recent decades has “leveled off” as

compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.

With sufficient insight, we might formulate a new mathematical model including

a perhaps more complicated differential equation, one that takes into account such

factors as a limited food supply and the effect of increased population on birth and

death rates. With the formulation of this new mathematical model, we may attempt

to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If we

can solve the new differential equation, we get new solution functions to compare

with the real-world population. Indeed, a successful population analysis may require
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refining the mathematical model still further as it is repeatedly measured against

real-world experience.

But in Example 6 we simply ignored any complicating factors that might affect

our bacteria population. This made the mathematical analysis quite simple, perhaps

unrealistically so. A satisfactory mathematical model is subject to two contradictory

requirements: It must be sufficiently detailed to represent the real-world situation

with relative accuracy, yet it must be sufficiently simple to make the mathematical

analysis practical. If the model is so detailed that it fully represents the physical

situation, then the mathematical analysis may be too difficult to carry out. If the

model is too simple, the results may be so inaccurate as to be useless. Thus there is

an inevitable tradeoff between what is physically realistic and what is mathemati-

cally possible. The construction of a model that adequately bridges this gap between

realism and feasibility is therefore the most crucial and delicate step in the pro-

cess. Ways must be found to simplify the model mathematically without sacrificing

essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of

this introductory section is devoted to simple examples and to standard terminology

used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y.x/ D 1=.C � x/, then

dy

dx
D 1

.C � x/2
D y2

if x 6D C . Thus

y.x/ D 1

C � x
(8)

defines a solution of the differential equation

dy

dx
D y2 (9)

on any interval of real numbers not containing the point x D C . Actually, Eq. (8)

defines a one-parameter family of solutions of dy=dx D y2, one for each value of

the arbitrary constant or “parameter” C . With C D 1 we get the particular solution

y.x/ D 1

1 � x

that satisfies the initial condition y.0/ D 1. As indicated in Fig. 1.1.5, this solution

is continuous on the interval .�1; 1/ but has a vertical asymptote at x D 1.

Example 8 Verify that the function y.x/ D 2x1=2 � x1=2 ln x satisfies the differential equation

4x2y00 C y D 0 (10)

for all x > 0.

Solution First we compute the derivatives

y0.x/ D � 1
2
x�1=2 ln x and y00.x/ D 1

4
x�3=2 ln x � 1

2
x�3=2:

Then substitution into Eq. (10) yields

4x2y00 C y D 4x2
�

1
4
x�3=2 ln x � 1

2
x�3=2

�

C 2x1=2 � x1=2 ln x D 0

if x is positive, so the differential equation is satisfied for all x > 0.
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The fact that we can write a differential equation is not enough to guarantee

that it has a solution. For example, it is clear that the differential equation

.y0/2 C y2 D �1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be

negative. For a variation on this theme, note that the equation

.y0/2 C y2 D 0 (12)

obviously has only the (real-valued) solution y.x/ � 0. In our previous examples

any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that

appears in it. The differential equation of Example 8 is of second order, those in

Examples 2 through 7 are first-order equations, and

y.4/ C x2y.3/ C x5y D sin x

is a fourth-order equation. The most general form of an nth-order differential

equation with independent variable x and unknown function or dependent variable

y D y.x/ is

F
�

x; y; y0; y00; : : : ; y.n/
�

D 0; (13)

where F is a specific real-valued function of n C 2 variables.

Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function u D u.x/ is a solution of the differential

equation in (13) on the interval I provided that the derivatives u0, u00, : : : , u.n/ exist

on I and

F
�

x; u; u0; u00; : : : ; u.n/
�

D 0

for all x in I . For the sake of brevity, we may say that u D u.x/ satisfies the

differential equation in (13) on I .

Remark Recall from elementary calculus that a differentiable function on an open inter-

val is necessarily continuous there. This is why only a continuous function can qualify as a

(differentiable) solution of a differential equation on an interval.

0 5

0

5

(0, 1)

x

y

–5
–5

y = 1/(1 – x)

x = 1

FIGURE 1.1.5. The solution of
y0 D y2 defined by y.x/ D 1=.1 � x/.

Example 7

Continued

Figure 1.1.5 shows the two “connected” branches of the graph y D 1=.1 � x/. The

left-hand branch is the graph of a (continuous) solution of the differential equation

y0 D y2 that is defined on the interval .�1; 1/. The right-hand branch is the graph

of a different solution of the differential equation that is defined (and continuous) on

the different interval .1; 1/. So the single formula y.x/ D 1=.1 � x/ actually defines

two different solutions (with different domains of definition) of the same differential

equation y0 D y2.

Example 9 If A and B are constants and

y.x/ D A cos 3x C B sin 3x; (14)

then two successive differentiations yield

y0.x/ D �3A sin 3x C 3B cos 3x;

y00.x/ D �9A cos 3x � 9B sin 3x D �9y.x/

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter

family of solutions of the second-order differential equation

y00 C 9y D 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such

solutions.
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Although the differential equations in (11) and (12) are exceptions to the

0 3

0

5

x

y

–5
–3

y1

y2

y3

FIGURE 1.1.6. The three solutions
y1.x/ D 3 cos 3x, y2.x/ D 2 sin 3x,
and y3.x/ D �3 cos 3x C 2 sin 3x of
the differential equation y00 C 9y D 0.

general rule, we will see that an nth-order differential equation ordinarily has an

n-parameter family of solutions—one involving n different arbitrary constants or

parameters.

In both Eqs. (11) and (12), the appearance of y0 as an implicitly defined

function causes complications. For this reason, we will ordinarily assume that any

differential equation under study can be solved explicitly for the highest derivative

that appears; that is, that the equation can be written in the so-called normal form

y.n/ D G
�

x; y; y0; y00; : : : ; y.n�1/
�

; (16)

where G is a real-valued function of n C 1 variables. In addition, we will always

seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differen-

tial equations, meaning that the unknown function (dependent variable) depends on

only a single independent variable. If the dependent variable is a function of two or

more independent variables, then partial derivatives are likely to be involved; if they

are, the equation is called a partial differential equation. For example, the temper-

ature u D u.x; t/ of a long thin uniform rod at the point x at time t satisfies (under

appropriate simple conditions) the partial differential equation

@u

@t
D k

@2u

@x2
;

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1 through

8 we will be concerned only with ordinary differential equations and will refer to

them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
D f .x; y/: (17)

We also will sample the wide range of applications of such equations. A typi-

cal mathematical model of an applied situation will be an initial value problem,

consisting of a differential equation of the form in (17) together with an initial

condition y.x0/ D y0. Note that we call y.x0/ D y0 an initial condition whether or

not x0 D 0. To solve the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (18)

means to find a differentiable function y D y.x/ that satisfies both conditions in

Eq. (18) on some interval containing x0.

Example 10 Given the solution y.x/ D 1=.C � x/ of the differential equation dy=dx D y2

discussed in Example 7, solve the initial value problem

dy

dx
D y2; y.1/ D 2:

Solution We need only to find a value of C so that the solution y.x/ D 1=.C � x/ satisfies the

initial condition y.1/ D 2. Substitution of the values x D 1 and y D 2 in the given

solution yields

2 D y.1/ D 1

C � 1
;
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so 2C � 2 D 1, and hence C D 3
2

. With this value of C we obtain the desired solution

(1, 2)

(2, –2)

0 5

0

5

x

y

–5
–5

y = 2/(3 – 2x)

x = 3/2

FIGURE 1.1.7. The solutions of
y0 D y2 defined by
y.x/ D 2=.3 � 2x/.

y.x/ D 1
3
2

� x
D 2

3 � 2x
:

Figure 1.1.7 shows the two branches of the graph y D 2=.3 � 2x/. The left-hand

branch is the graph on
�

�1; 3
2

�

of the solution of the given initial value problem

y0 D y2, y.1/ D 2. The right-hand branch passes through the point .2; �2/ and is

therefore the graph on
�

3
2
; 1

�

of the solution of the different initial value problem

y0 D y2, y.2/ D �2.

The central question of greatest immediate interest to us is this: If we are

given a differential equation known to have a solution satisfying a given initial con-

dition, how do we actually find or compute that solution? And, once found, what

can we do with it? We will see that a relatively few simple techniques—separation

of variables (Section 1.4), solution of linear equations (Section 1.5), elementary

substitution methods (Section 1.6)—are enough to enable us to solve a variety of

first-order equations having impressive applications.

1.1 Problems

In Problems 1 through 12, verify by substitution that each

given function is a solution of the given differential equation.

Throughout these problems, primes denote derivatives with

respect to x.

1. y0 D 3x2; y D x3 C 7

2. y0 C 2y D 0; y D 3e�2x

3. y00 C 4y D 0; y1 D cos 2x, y2 D sin 2x

4. y00 D 9y; y1 D e3x , y2 D e�3x

5. y0 D y C 2e�x ; y D ex � e�x

6. y00 C 4y0 C 4y D 0; y1 D e�2x , y2 D xe�2x

7. y00 � 2y0 C 2y D 0; y1 D ex cos x, y2 D ex sin x

8. y00 Cy D 3 cos 2x, y1 D cos x �cos 2x, y2 D sin x �cos 2x

9. y0 C 2xy2 D 0; y D 1

1 C x2

10. x2y00 C xy0 � y D ln x; y1 D x � ln x, y2 D 1

x
� ln x

11. x2y00 C 5xy0 C 4y D 0; y1 D 1

x2
, y2 D ln x

x2

12. x2y00 � xy0 C 2y D 0; y1 D x cos.ln x/, y2 D x sin.ln x/

In Problems 13 through 16, substitute y D erx into the given

differential equation to determine all values of the constant r

for which y D erx is a solution of the equation.

13. 3y0 D 2y 14. 4y00 D y

15. y00 C y0 � 2y D 0 16. 3y00 C 3y0 � 4y D 0

In Problems 17 through 26, first verify that y.x/ satisfies

the given differential equation. Then determine a value of

the constant C so that y.x/ satisfies the given initial condition.

Use a computer or graphing calculator (if desired) to sketch

several typical solutions of the given differential equation, and

highlight the one that satisfies the given initial condition.

17. y0 C y D 0; y.x/ D Ce�x , y.0/ D 2

18. y0 D 2y; y.x/ D Ce2x , y.0/ D 3

19. y0 D y C 1; y.x/ D Cex � 1, y.0/ D 5

20. y0 D x � y; y.x/ D Ce�x C x � 1, y.0/ D 10

21. y0 C 3x2y D 0; y.x/ D Ce�x3
, y.0/ D 7

22. eyy0 D 1; y.x/ D ln.x C C /, y.0/ D 0

23. x
dy

dx
C 3y D 2x5; y.x/ D 1

4 x5 C Cx�3, y.2/ D 1

24. xy0 � 3y D x3; y.x/ D x3.C C ln x/, y.1/ D 17

25. y0 D 3x2.y2 C 1/; y.x/ D tan.x3 C C /, y.0/ D 1

26. y0 C y tan x D cos x; y.x/ D .x C C / cos x, y.�/ D 0

In Problems 27 through 31, a function y D g.x/ is described

by some geometric property of its graph. Write a differential

equation of the form dy=dx D f .x; y/ having the function g as

its solution (or as one of its solutions).

27. The slope of the graph of g at the point .x; y/ is the sum

of x and y.

28. The line tangent to the graph of g at the point .x; y/

intersects the x-axis at the point .x=2; 0/.

29. Every straight line normal to the graph of g passes through

the point .0; 1/. Can you guess what the graph of such a

function g might look like?

30. The graph of g is normal to every curve of the form

y D x2 C k (k is a constant) where they meet.

31. The line tangent to the graph of g at .x; y/ passes through

the point .�y; x/.

Differential Equations as Models

In Problems 32 through 36, write—in the manner of Eqs. (3)

through (6) of this section—a differential equation that is a

mathematical model of the situation described.

32. The time rate of change of a population P is proportional

to the square root of P .

33. The time rate of change of the velocity v of a coasting

motorboat is proportional to the square of v.
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34. The acceleration dv=dt of a Lamborghini is proportional

to the difference between 250 km/h and the velocity of the

car.

35. In a city having a fixed population of P persons, the time

rate of change of the number N of those persons who have

heard a certain rumor is proportional to the number of

those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate

of change of the number N of those persons infected with

a certain contagious disease is proportional to the product

of the number who have the disease and the number who

do not.

In Problems 37 through 42, determine by inspection at least

one solution of the given differential equation. That is, use your

knowledge of derivatives to make an intelligent guess. Then

test your hypothesis.

37. y00 D 0 38. y0 D y

39. xy0 C y D 3x2 40. .y0/2 C y2 D 1

41. y0 C y D ex 42. y00 C y D 0

Problems 43 through 46 concern the differential equation

dx

dt
D kx2;

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)

solution of the differential equation is given by x.t/ D
1=.C � kt/, where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value

problem x0 D kx2, x.0/ D 0.

44. (a) Assume that k is positive, and then sketch graphs of

solutions of x0 D kx2 with several typical positive

values of x.0/.

(b) How would these solutions differ if the constant k

were negative?

45. Suppose a population P of rodents satisfies the differen-

tial equation dP=dt D kP 2. Initially, there are P.0/ D 2

rodents, and their number is increasing at the rate of

dP=dt D 1 rodent per month when there are P D 10

rodents. Based on the result of Problem 43, how long will

it take for this population to grow to a hundred rodents?

To a thousand? What’s happening here?

46. Suppose the velocity v of a motorboat coasting in water

satisfies the differential equation dv=dt D kv2. The initial

speed of the motorboat is v.0/ D 10 meters per second

(m/s), and v is decreasing at the rate of 1 m/s2 when

v D 5 m/s. Based on the result of Problem 43, long does

it take for the velocity of the boat to decrease to 1 m/s? To
1

10 m/s? When does the boat come to a stop?

47. In Example 7 we saw that y.x/ D 1=.C � x/ defines a one-

parameter family of solutions of the differential equation

dy=dx D y2. (a) Determine a value of C so that y.10/ D
10. (b) Is there a value of C such that y.0/ D 0? Can you

nevertheless find by inspection a solution of dy=dx D y2

such that y.0/ D 0? (c) Figure 1.1.8 shows typical graphs

of solutions of the form y.x/ D 1=.C � x/. Does it appear

that these solution curves fill the entire xy-plane? Can you

conclude that, given any point .a; b/ in the plane, the dif-

ferential equation dy=dx D y2 has exactly one solution

y.x/ satisfying the condition y.a/ D b?

48. (a) Show that y.x/ D Cx4 defines a one-parameter fam-

ily of differentiable solutions of the differential equation

xy0 D 4y (Fig. 1.1.9). (b) Show that

y.x/ D
(

�x4 if x < 0,

x4 if x = 0

defines a differentiable solution of xy0 D 4y for all x, but is

not of the form y.x/ D Cx4. (c) Given any two real num-

bers a and b, explain why—in contrast to the situation in

part (c) of Problem 47—there exist infinitely many differ-

entiable solutions of xy0 D 4y that all satisfy the condition

y.a/ D b.

0 2 31
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C = 2C = –3 C = –2 C = –1 C = 0 C = 1
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FIGURE 1.1.8. Graphs of solutions of the
equation dy=dx D y2.
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FIGURE 1.1.9. The graph y D Cx4 for
various values of C .
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1.2 Integrals as General and Particular Solutions

The first-order equation dy=dx D f .x; y/ takes an especially simple form if the

right-hand-side function f does not actually involve the dependent variable y, so

dy

dx
D f .x/: (1)

In this special case we need only integrate both sides of Eq. (1) to obtain

y.x/ D
Z

f .x/ dx C C: (2)

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant

C , and for every choice of C it is a solution of the differential equation in (1). If

G.x/ is a particular antiderivative of f —that is, if G0.x/ � f .x/—then

y.x/ D G.x/ C C: (3)

The graphs of any two such solutions y1.x/ D G.x/ C C1 and y2.x/ D

0 2 431
x

y

–2 –1–4 –3

4

3

2

1

0

–1

–2

–3

–4

C = –1

C = –2

C = 3

C = 2

C = 1

C = 0

C = –3

FIGURE 1.2.1. Graphs of

y D 1
4

x2 C C for various values of C .

G.x/ C C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1

and 1.2.2. There we see that the constant C is geometrically the vertical distance

between the two curves y.x/ D G.x/ and y.x/ D G.x/ C C .

x
0 4 62

0y

–2

–4 –2

–4

–6
–6

2

4

6

C = –4

C = –2

C = 0

C = 2

C = 4

FIGURE 1.2.2. Graphs of
y D sin x C C for various values of C .

To satisfy an initial condition y.x0/ D y0, we need only substitute x D x0 and

y D y0 into Eq. (3) to obtain y0 D G.x0/ C C , so that C D y0 � G.x0/. With this

choice of C , we obtain the particular solution of Eq. (1) satisfying the initial value

problem
dy

dx
D f .x/; y.x0/ D y0:

We will see that this is the typical pattern for solutions of first-order differential

equations. Ordinarily, we will first find a general solution involving an arbitrary

constant C . We can then attempt to obtain, by appropriate choice of C , a particular

solution satisfying a given initial condition y.x0/ D y0.

Remark As the term is used in the previous paragraph, a general solution of a first-order

differential equation is simply a one-parameter family of solutions. A natural question is

whether a given general solution contains every particular solution of the differential equa-

tion. When this is known to be true, we call it the general solution of the differential equation.

For example, because any two antiderivatives of the same function f .x/ can differ only by a

constant, it follows that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to

define the general solution of (1).

Example 1 General and particular solution Solve the initial value problem

dy

dx
D 2x C 3; y.1/ D 2:

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields

the general solution

y.x/ D
Z

.2x C 3/ dx D x2 C 3x C C:

Figure 1.2.3 shows the graph y D x2 C 3x C C for various values of C . The partic-

ular solution we seek corresponds to the curve that passes through the point .1; 2/,

thereby satisfying the initial condition

y.1/ D .1/2 C 3 � .1/ C C D 2:

It follows that C D �2, so the desired particular solution is

y.x/ D x2 C 3x � 2:
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Second-order equations. The observation that the special first-order equation

–2 0 2 4
x

y

–2

–10
–4

–4

–6

–6

–8

4

2

0

C = –6

C = –4

C = –2

C = 0

C = 2

FIGURE 1.2.3. Solution curves for
the differential equation in Example 1.

dy=dx D f .x/ is readily solvable (provided that an antiderivative of f can be found)

extends to second-order differential equations of the special form

d 2y

dx2
D g.x/; (4)

in which the function g on the right-hand side involves neither the dependent

variable y nor its derivative dy=dx. We simply integrate once to obtain

dy

dx
D
Z

y00.x/ dx D
Z

g.x/ dx D G.x/ C C1;

where G is an antiderivative of g and C1 is an arbitrary constant. Then another

integration yields

y.x/ D
Z

y0.x/ dx D
Z

ŒG.x/ C C1� dx D
Z

G.x/ dx C C1x C C2;

where C2 is a second arbitrary constant. In effect, the second-order differential

equation in (4) is one that can be solved by solving successively the first-order

equations
dv

dx
D g.x/ and

dy

dx
D v.x/:

Velocity and Acceleration

Direct integration is sufficient to allow us to solve a number of important problems

concerning the motion of a particle (or mass point) in terms of the forces acting

on it. The motion of a particle along a straight line (the x-axis) is described by its

position function

x D f .t/ (5)

giving its x-coordinate at time t . The velocity of the particle is defined to be

v.t/ D f 0.t/I that is, v D dx

dt
: (6)

Its acceleration a.t/ is a.t/ D v0.t/ D x00.t/; in Leibniz notation,

a D dv

dt
D d 2x

dt2
: (7)

Equation (6) is sometimes applied either in the indefinite integral form x.t/ D
R

v.t/ dt or in the definite integral form

x.t/ D x.t0/ C
Z t

t0

v.s/ ds;

which you should recognize as a statement of the fundamental theorem of calculus

(precisely because dx=dt D v).

Newton’s second law of motion says that if a force F.t/ acts on the particle

and is directed along its line of motion, then

ma.t/ D F.t/I that is, F D ma; (8)

where m is the mass of the particle. If the force F is known, then the equa-

tion x00.t/ D F.t/=m can be integrated twice to find the position function x.t/ in

terms of two constants of integration. These two arbitrary constants are frequently
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determined by the initial position x0 D x.0/ and the initial velocity v0 D v.0/ of

the particle.

Constant acceleration. For instance, suppose that the force F , and therefore the

acceleration a D F=m, are constant. Then we begin with the equation

dv

dt
D a (a is a constant) (9)

and integrate both sides to obtain

v.t/ D
Z

a dt D at C C1:

We know that v D v0 when t D 0, and substitution of this information into the

preceding equation yields the fact that C1 D v0. So

v.t/ D dx

dt
D at C v0: (10)

A second integration gives

x.t/ D
Z

v.t/ dt D
Z

.at C v0/ dt D 1
2
at2 C v0t C C2;

and the substitution t D 0, x D x0 gives C2 D x0. Therefore,

x.t/ D 1
2
at2 C v0t C x0: (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of

the particle at any time t in terms of its constant acceleration a, its initial velocity

v0, and its initial position x0.

Example 2 Lunar lander A lunar lander is falling freely toward the surface of the moon

at a speed of 450 meters per second (m=s). Its retrorockets, when fired, provide a

constant deceleration of 2.5 meters per second per second (m=s2) (the gravitational

acceleration produced by the moon is assumed to be included in the given decelera-

tion). At what height above the lunar surface should the retrorockets be activated to

ensure a “soft touchdown” (v D 0 at impact)?

Solution We denote by x.t/ the height of the lunar lander above the surface, as indicated

in Fig. 1.2.4. We let t D 0 denote the time at which the retrorockets should be

fired. Then v0 D �450 (m=s, negative because the height x.t/ is decreasing), and

Lunar surface

a

FIGURE 1.2.4. The lunar lander of
Example 2.

a D C2:5, because an upward thrust increases the velocity v (although it decreases

the speed jvj). Then Eqs. (10) and (11) become

v.t/ D 2:5t � 450 (12)

and

x.t/ D 1:25t2 � 450t C x0; (13)

where x0 is the height of the lander above the lunar surface at the time t D 0 when

the retrorockets should be activated.

From Eq. (12) we see that v D 0 (soft touchdown) occurs when t D 450=2:5 D
180 s (that is, 3 minutes); then substitution of t D 180, x D 0 into Eq. (13) yields

x0 D 0 � .1:25/.180/2 C 450.180/ D 40;500

meters—that is, x0 D 40.5 km � 25 1
6

miles. Thus the retrorockets should be acti-

vated when the lunar lander is 40.5 kilometers above the surface of the moon, and it

will touch down softly on the lunar surface after 3 minutes of decelerating descent.



1.2 Integrals as General and Particular Solutions 13

Physical Units

Numerical work requires units for the measurement of physical quantities such as

distance and time. We sometimes use ad hoc units—such as distance in miles or

kilometers and time in hours—in special situations (such as in a problem involv-

ing an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second

(mks) unit systems are used more generally in scientific and engineering problems.

In fact, fps units are commonly used only in the United States (and a few other

countries), while mks units constitute the standard international system of scientific

units.

fps units mks units

Force

Mass

Distance

Time

g

pound (lb)

slug

foot (ft)

second (s)

32 ft/s2

newton (N)

kilogram (kg)

meter (m)

second (s)

9.8 m/s2

The last line of this table gives values for the gravitational acceleration g at

the surface of the earth. Although these approximate values will suffice for most

examples and problems, more precise values are 9:7805 m=s2 and 32:088 ft=s2 (at

sea level at the equator).

Both systems are compatible with Newton’s second law F D ma. Thus, 1 N

is (by definition) the force required to impart an acceleration of 1 m=s2 to a mass of

1 kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of

1 ft=s2 under a force of 1 lb. (We will use mks units in all problems requiring mass

units and thus will rarely need slugs to measure mass.)

Inches and centimeters (as well as miles and kilometers) also are commonly

used in describing distances. For conversions between fps and mks units it helps to

remember that

1 in. D 2.54 cm (exactly) and 1 lb � 4.448 N:

For instance,

1 ft D 12 in � 2:54
cm

in
D 30.48 cm;

and it follows that

1 mi D 5280 �ft � 30:48
cm

�ft
D 160934.4 cm � 1.609 km:

Thus a posted U.S. speed limit of 50 mi=h means that—in international terms—the

legal speed limit is about 50 � 1:609 � 80:45 km=h.

Vertical Motion with Gravitational Acceleration

The weight W of a body is the force exerted on the body by gravity. Substitution of

a D g and F D W in Newton’s second law F D ma gives

W D mg (14)
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for the weight W of the mass m at the surface of the earth (where g � 32 ft=s2 � 9:8

m=s2). For instance, a mass of m D 20 kg has a weight of W D (20 kg)(9.8 m=s2) D
196 N. Similarly, a mass m weighing 100 pounds has mks weight

W D (100 lb)(4.448 N=lb) D 444.8 N;

so its mass is

m D W

g
D 444.8 N

9.8 m=s2
� 45.4 kg:

To discuss vertical motion it is natural to choose the y-axis as the coordinate

system for position, frequently with y D 0 corresponding to “ground level.” If we

choose the upward direction as the positive direction, then the effect of gravity on

a vertically moving body is to decrease its height and also to decrease its velocity

v D dy=dt . Consequently, if we ignore air resistance, then the acceleration a D dv=dt

of the body is given by
dv

dt
D �g: (15)

This acceleration equation provides a starting point in many problems involving

vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity

and height formulas

v.t/ D �gt C v0 (16)

and

y.t/ D � 1
2
gt2 C v0t C y0: (17)

Here, y0 denotes the initial (t D 0) height of the body and v0 its initial velocity.

Example 3 Projectile motion (a) Suppose that a ball is thrown straight upward from the

ground (y0 D 0) with initial velocity v0 D 96 (ft=s, so we use g D 32 ft=s2 in fps

units). Then it reaches its maximum height when its velocity (Eq. (16)) is zero,

v.t/ D �32t C 96 D 0;

and thus when t D 3 s. Hence the maximum height that the ball attains is

y.3/ D � 1
2

� 32 � 32 C 96 � 3 C 0 D 144 (ft)

(with the aid of Eq. (17)).

(b) If an arrow is shot straight upward from the ground with initial velocity v0 D 49

(m=s, so we use g D 9:8 m=s2 in mks units), then it returns to the ground when

y.t/ D � 1
2

� .9:8/t2 C 49t D .4:9/t.�t C 10/ D 0;

and thus after 10 s in the air.

A Swimmer’s Problem

Figure 1.2.5 shows a northward-flowing river of width w D 2a. The lines x D ˙a

represent the banks of the river and the y-axis its center. Suppose that the velocity

vR at which the water flows increases as one approaches the center of the river, and

indeed is given in terms of distance x from the center by

vR D v0

�

1 � x2

a2

�

: (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,

where vR D v0, and that vR D 0 at each riverbank.

x-axis

y-axis

(a, 0)(–a, 0)

  R

  S

  S

  R

FIGURE 1.2.5. A swimmer’s
problem (Example 4).
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Suppose that a swimmer starts at the point .�a; 0/ on the west bank and swims

due east (relative to the water) with constant speed vS . As indicated in Fig. 1.2.5, his

velocity vector (relative to the riverbed) has horizontal component vS and vertical

component vR. Hence the swimmer’s direction angle ˛ is given by

tan ˛ D vR

vS

:

Because tan ˛ D dy=dx, substitution using (18) gives the differential equation

dy

dx
D v0

vS

�

1 � x2

a2

�

(19)

for the swimmer’s trajectory y D y.x/ as he crosses the river.

Example 4 River crossing Suppose that the river is 1 mile wide and that its midstream veloc-

ity is v0 D 9 mi=h. If the swimmer’s velocity is vS D 3 mi=h, then Eq. (19) takes

the form
dy

dx
D 3.1 � 4x2/:

Integration yields

y.x/ D
Z

.3 � 12x2/ dx D 3x � 4x3 C C

for the swimmer’s trajectory. The initial condition y
�

� 1
2

�

D 0 yields C D 1, so

y.x/ D 3x � 4x3 C 1:

Then
y
�

1
2

�

D 3
�

1
2

�

� 4
�

1
2

�3 C 1 D 2;

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems

In Problems 1 through 10, find a function y D f .x/ satisfy-

ing the given differential equation and the prescribed initial

condition.

1.
dy

dx
D 2x C 1; y.0/ D 3

2.
dy

dx
D .x � 2/2; y.2/ D 1

3.
dy

dx
D

p
x; y.4/ D 0

4.
dy

dx
D 1

x2
; y.1/ D 5

5.
dy

dx
D 1p

x C 2
; y.2/ D �1

6.
dy

dx
D x

p
x2 C 9; y.�4/ D 0

7.
dy

dx
D 10

x2 C 1
; y.0/ D 0 8.

dy

dx
D cos 2x; y.0/ D 1

9.
dy

dx
D 1p

1 � x2
; y.0/ D 0 10.

dy

dx
D xe�x ; y.0/ D 1

In Problems 11 through 18, find the position function x.t/

of a moving particle with the given acceleration a.t/, initial

position x0 D x.0/, and initial velocity v0 D v.0/.

11. a.t/ D 50, v0 D 10, x0 D 20

12. a.t/ D �20, v0 D �15, x0 D 5

13. a.t/ D 3t , v0 D 5, x0 D 0

14. a.t/ D 2t C 1, v0 D �7, x0 D 4

15. a.t/ D 4.t C 3/2, v0 D �1, x0 D 1

16. a.t/ D 1p
t C 4

, v0 D �1, x0 D 1

17. a.t/ D 1

.t C 1/3
, v0 D 0, x0 D 0

18. a.t/ D 50 sin 5t , v0 D �10, x0 D 8

Velocity Given Graphically

In Problems 19 through 22, a particle starts at the origin and

travels along the x-axis with the velocity function v.t/ whose

graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph

of the resulting position function x.t/ for 0 5 t 5 10.
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19.
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FIGURE 1.2.6. Graph of the
velocity function v.t/ of Problem 19.
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FIGURE 1.2.7. Graph of the
velocity function v.t/ of Problem 20.
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FIGURE 1.2.8. Graph of the
velocity function v.t/ of Problem 21.
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FIGURE 1.2.9. Graph of the
velocity function v.t/ of Problem 22.

Problems 23 through 28 explore the motion of projectiles

under constant acceleration or deceleration. A calculator

will be helpful for many of the following problems.

23. What is the maximum height attained by the arrow of part

(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.

How long does it take to reach the ground? With what

speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at 100

km=h and provide a constant deceleration of 10 meters

per second per second (m=s2). How far does the car travel

before coming to a stop?

26. A projectile is fired straight upward with an initial veloc-

ity of 100 m=s from the top of a building 20 m high and

falls to the ground at the base of the building. Find (a) its

maximum height above the ground; (b) when it passes the

top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a

tall building. The initial speed of the ball is 10 m=s. It

strikes the ground with a speed of 60 m=s. How tall is the

building?

28. A baseball is thrown straight downward with an initial

speed of 40 ft=s from the top of the Washington Monu-

ment (555 ft high). How long does it take to reach the

ground, and with what speed does the baseball strike the

ground?

29. Variable acceleration A diesel car gradually speeds

up so that for the first 10 s its acceleration is given by

dv

dt
D .0:12/t2 C .0:6/t (ft=s2).

If the car starts from rest (x0 D 0, v0 D 0), find the distance

it has traveled at the end of the first 10 s and its velocity at

that time.

Problems 30 through 32 explore the relation between the speed

of an auto and the distance it skids when the brakes are

applied.

30. A car traveling at 60 mi=h (88 ft=s) skids 176 ft after its

brakes are suddenly applied. Under the assumption that

the braking system provides constant deceleration, what

is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its

brakes were fully applied for a distance of 75 m before

it came to a stop. The car in question is known to have

a constant deceleration of 20 m=s2 under these condi-

tions. How fast—in km=h—was the car traveling when the

brakes were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km=h

when the brakes are applied. Assuming that the car has

the same constant deceleration, how far will it skid if it is

moving at 100 km=h when the brakes are applied?
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Problems 33 and 34 explore vertical motion on a planet with

gravitational acceleration different than the earth’s.

33. On the planet Gzyx, a ball dropped from a height of 20 ft

hits the ground in 2 s. If a ball is dropped from the top of

a 200-ft-tall building on Gzyx, how long will it take to hit

the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur-

face of the earth to a maximum height of 144 ft. How

high could this person throw the ball on the planet Gzyx

of Problem 33?

35. Velocity in terms of height A stone is dropped from

rest at an initial height h above the surface of the earth.

Show that the speed with which it strikes the ground is

v D
p

2gh.

36. Suppose a woman has enough “spring” in her legs to jump

(on earth) from the ground to a height of 2.25 feet. If she

jumps straight upward with the same initial velocity on

the moon—where the surface gravitational acceleration

is (approximately) 5.3 ft/s2—how high above the surface

will she rise?

37. At noon a car starts from rest at point A and proceeds at

constant acceleration along a straight road toward point

B . If the car reaches B at 12:50 P.M. with a velocity of

60 mi=h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with

constant acceleration along a straight road toward point C ,

35 miles away. If the constantly accelerated car arrives at

C with a velocity of 60 mi=h, at what time does it arrive

at C ?

39. River crossing If a D 0:5 mi and v0 D 9 mi=h as in

Example 4, what must the swimmer’s speed vS be in order

that he drifts only 1 mile downstream as he crosses the

river?

40. River crossing Suppose that a D 0:5 mi, v0 D 9 mi=h,

and vS D 3 mi=h as in Example 4, but that the velocity of

the river is given by the fourth-degree function

vR D v0

 

1 � x4

a4

!

rather than the quadratic function in Eq. (18). Now find

how far downstream the swimmer drifts as he crosses the

river.

41. Interception of bomb A bomb is dropped from a

helicopter hovering at an altitude of 800 feet above the

ground. From the ground directly beneath the helicopter,

a projectile is fired straight upward toward the bomb,

exactly 2 seconds after the bomb is released. With what

initial velocity should the projectile be fired in order to hit

the bomb at an altitude of exactly 400 feet?

42. Lunar lander A spacecraft is in free fall toward the

surface of the moon at a speed of 1000 mph (mi/h). Its

retrorockets, when fired, provide a constant deceleration

of 20,000 mi/h2. At what height above the lunar sur-

face should the astronauts fire the retrorockets to insure

a soft touchdown? (As in Example 2, ignore the moon’s

gravitational field.)

43. Solar wind Arthur Clarke’s The Wind from the Sun

(1963) describes Diana, a spacecraft propelled by the solar

wind. Its aluminized sail provides it with a constant accel-

eration of 0:001g D 0:0098 m/s2. Suppose this spacecraft

starts from rest at time t D 0 and simultaneously fires a

projectile (straight ahead in the same direction) that trav-

els at one-tenth of the speed c D 3 � 108 m/s of light.

How long will it take the spacecraft to catch up with the

projectile, and how far will it have traveled by then?

44. Length of skid A driver involved in an accident claims

he was going only 25 mph. When police tested his car,

they found that when its brakes were applied at 25 mph,

the car skidded only 45 feet before coming to a stop. But

the driver’s skid marks at the accident scene measured

210 feet. Assuming the same (constant) deceleration,

determine the speed he was actually traveling just prior

to the accident.

45. Kinematic formula Use Eqs. (10) and (11) to show that

v.t/2 � v2
0 D 2aŒx.t/ � x0� for all t when the acceler-

ation a D dv=dt is constant. Then use this “kinematic

formula”—commonly presented in introductory physics

courses—to confirm the result of Example 2.

1.3 Slope Fields and Solution Curves

Consider a differential equation of the form

dy

dx
D f .x; y/ (1)

where the right-hand function f .x; y/ involves both the independent variable x and

the dependent variable y. We might think of integrating both sides in (1) with respect

to x, and hence write y.x/ D
R

f .x; y.x// dx C C . However, this approach does not

lead to a solution of the differential equation, because the indicated integral involves

the unknown function y.x/ itself, and therefore cannot be evaluated explicitly.

Actually, there exists no straightforward procedure by which a general differen-

tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking

differential equation as y0 D x2 C y2 cannot be expressed in terms of the ordinary

elementary functions studied in calculus textbooks. Nevertheless, the graphical and
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numerical methods of this and later sections can be used to construct approximate

solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential

equation y0 D f .x; y/. At each point .x; y/ of the xy-plane, the value of f .x; y/

determines a slope m D f .x; y/. A solution of the differential equation is simply

a differentiable function whose graph y D y.x/ has this “correct slope” at each

point .x; y.x// through which it passes—that is, y0.x/ D f .x; y.x//. Thus a solu-

tion curve of the differential equation y0 D f .x; y/—the graph of a solution of

the equation—is simply a curve in the xy-plane whose tangent line at each point

.x; y/ has slope m D f .x; y/. For instance, Fig. 1.3.1 shows a solution curve of

the differential equation y0 D x � y together with its tangent lines at three typical

points.

x

y

(x1, y1)

(x2, y2)

(x3, y3)

FIGURE 1.3.1. A solution curve for the differential equation

y0 D x � y together with tangent lines having

� slope m1 D x1 � y1 at the point .x1; y1/;

� slope m2 D x2 � y2 at the point .x2; y2/; and

� slope m3 D x3 � y3 at the point .x3; y3/.

This geometric viewpoint suggests a graphical method for constructing

approximate solutions of the differential equation y0 D f .x; y/. Through each of

a representative collection of points .x; y/ in the plane we draw a short line segment

having the proper slope m D f .x; y/. All these line segments constitute a slope field

(or a direction field) for the equation y0 D f .x; y/.

Example 1 Slope fields Figures 1.3.2 (a)–(d) show slope fields and solution curves for the

differential equation
dy

dx
D ky (2)

with the values k D 2, 0:5, �1, and �3 of the parameter k in Eq. (2). Note that each

slope field yields important qualitative information about the set of all solutions

of the differential equation. For instance, Figs. 1.3.2(a) and (b) suggest that each

solution y.x/ approaches ˙1 as x ! C1 if k > 0, whereas Figs. 1.3.2(c) and

(d) suggest that y.x/ ! 0 as x ! C1 if k < 0. Moreover, although the sign of

k determines the direction of increase or decrease of y.x/, its absolute value jkj
appears to determine the rate of change of y.x/. All this is apparent from slope

fields like those in Fig. 1.3.2, even without knowing that the general solution of

Eq. (2) is given explicitly by y.x/ D Cekx .

A slope field suggests visually the general shapes of solution curves of the

differential equation. Through each point a solution curve should proceed in such
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FIGURE 1.3.2(a) Slope field and
solution curves for y0 D 2y.
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FIGURE 1.3.2(b) Slope field and
solution curves for y0 D .0:5/y.
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FIGURE 1.3.2(c) Slope field and
solution curves for y0 D �y.
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FIGURE 1.3.2(d) Slope field
and solution curves for y0 D �3y.

x n y �4 �3 �2 �1 0 1 2 3 4

�4 0 �1 �2 �3 �4 �5 �6 �7 �8

�3 1 0 �1 �2 �3 �4 �5 �6 �7

�2 2 1 0 �1 �2 �3 �4 �5 �6

�1 3 2 1 0 �1 �2 �3 �4 �5

0 4 3 2 1 0 �1 �2 �3 �4

1 5 4 3 2 1 0 �1 �2 �3

2 6 5 4 3 2 1 0 �1 �2

3 7 6 5 4 3 2 1 0 �1

4 8 7 6 5 4 3 2 1 0

FIGURE 1.3.3. Values of the slope y0 D x � y for �4 � x; y � 4.

a direction that its tangent line is nearly parallel to the nearby line segments of the

slope field. Starting at any initial point .a; b/, we can attempt to sketch freehand an

approximate solution curve that threads its way through the slope field, following

the visible line segments as closely as possible.

Example 2 Solution curve Construct a slope field for the differential equation y0 D x � y

and use it to sketch an approximate solution curve that passes through the point

.�4; 4/.

Solution Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope

m D x � y appears at the intersection of the horizontal x-row and the vertical

y-column of the table. If you inspect the pattern of upper-left to lower-right diag-

onals in this table, you can see that it was easily and quickly constructed. (Of

course, a more complicated function f .x; y/ on the right-hand side of the differen-

tial equation would necessitate more complicated calculations.) Figure 1.3.4 shows

the corresponding slope field, and Fig. 1.3.5 shows an approximate solution curve

sketched through the point .�4; 4/ so as to follow this slope field as closely as pos-

sible. At each point it appears to proceed in the direction indicated by the nearby

line segments of the slope field.

Although a spreadsheet program (for instance) readily constructs a table of

slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient num-

ber of slope segments as in Fig. 1.3.4. However, most computer algebra systems

include commands for quick and ready construction of slope fields with as many

line segments as desired; such commands are illustrated in the Application material

for this section. The more line segments are constructed, the more accurately solu-

tion curves can be visualized and sketched. Figure 1.3.6 shows a “finer” slope field
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–5

FIGURE 1.3.4. Slope field for y0 D x � y
corresponding to the table of slopes in Fig. 1.3.3.
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FIGURE 1.3.5. The solution curve
through .�4; 4/.

for the differential equation y0 D x � y of Example 2, together with typical solution

Go To bit.ly/3p4Bp03 to
view an interactive version of
Fig. 1.3.5.

curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears

to be a straight line! Indeed, you can verify that the linear function y D x � 1 is

a solution of the equation y0 D x � y, and it appears likely that the other solution

curves approach this straight line as an asymptote as x ! C1. This inference illus-

trates the fact that a slope field can suggest tangible information about solutions that

is not at all evident from the differential equation itself. Can you, by tracing the

appropriate solution curve in this figure, infer that y.3/ � 2 for the solution y.x/ of

the initial value problem y0 D x � y, y.�4/ D 4?0 1 2 3 4
x

0
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4
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–1

–2

–3

–4

–4 –3 –2 –1

FIGURE 1.3.6. Slope field and
typical solution curves for y0 D x � y.

Applications of Slope Fields

The next two examples illustrate the use of slope fields to glean useful information

in physical situations that are modeled by differential equations. Example 3 is based

on the fact that a baseball moving through the air at a moderate speed v (less than

about 300 ft/s) encounters air resistance that is approximately proportional to v. If

the baseball is thrown straight downward from the top of a tall building or from a

hovering helicopter, then it experiences both the downward acceleration of gravity

and an upward acceleration of air resistance. If the y-axis is directed downward,

then the ball’s velocity v D dy=dt and its gravitational acceleration g D 32 ft/s2 are

both positive, while its acceleration due to air resistance is negative. Hence its total

acceleration is of the form
dv

dt
D g � kv: (3)

A typical value of the air resistance proportionality constant might be k D 0:16.

Example 3 Falling baseball Suppose you throw a baseball straight downward from a heli-

copter hovering at an altitude of 3000 feet. You wonder whether someone standing

0 5 10 15 20 25
0

100

200

300

400

t

v

FIGURE 1.3.7. Slope field and
typical solution curves for
v0 D 32 � 0:16v.

on the ground below could conceivably catch it. In order to estimate the speed with

which the ball will land, you can use your laptop’s computer algebra system to

construct a slope field for the differential equation

dv

dt
D 32 � 0:16v: (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves

corresponding to different values of the initial velocity v.0/ with which you might

throw the baseball downward. Note that all these solution curves appear to approach

the horizontal line v D 200 as an asymptote. This implies that—however you throw
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it—the baseball should approach the limiting velocity v D 200 ft/s instead of

accelerating indefinitely (as it would in the absence of any air resistance). The handy

fact that 60 mi/h D 88 ft/s yields

v D 200
�ft

�s
� 60 mi/h

88 �ft/�s
� 136.36

mi

h
:

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of

fielding this speeding ball.

Comment If the ball’s initial velocity is v.0/ D 200, then Eq. (4) gives v0.0/ D 32 �
.0:16/.200/ D 0, so the ball experiences no initial acceleration. Its velocity therefore remains

unchanged, and hence v.t/ � 200 is a constant “equilibrium solution” of the differential

equation. If the initial velocity is greater than 200, then the initial acceleration given by Eq.

(4) is negative, so the ball slows down as it falls. But if the initial velocity is less than 200,

then the initial acceleration given by (4) is positive, so the ball speeds up as it falls. It therefore

seems quite reasonable that, because of air resistance, the baseball will approach a limiting

velocity of 200 ft/s—whatever initial velocity it starts with. You might like to verify that—in

the absence of air resistance—this ball would hit the ground at over 300 mi/h.

In Section 2.1 we will discuss in detail the logistic differential equation

dP

dt
D kP.M � P / (5)

that often is used to model a population P.t/ that inhabits an environment with

carrying capacity M . This means that M is the maximum population that this envi-

ronment can sustain on a long-term basis (in terms of the maximum available food,

for instance).

Example 4 Limiting population If we take k D 0:0004 and M D 150, then the logistic

equation in (5) takes the form

dP

dt
D 0:0004P.150 � P / D 0:06P � 0:0004P 2: (6)

The positive term 0:06P on the right in (6) corresponds to natural growth at a

0 25 50 75 100
0
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100

150

200
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300

t

P

FIGURE 1.3.8. Slope field and
typical solution curves for
P 0 D 0:06P � 0:0004P 2.

6% annual rate (with time t measured in years). The negative term �0:0004P 2

represents the inhibition of growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution

curves corresponding to possible different values of the initial population P.0/. Note

that all these solution curves appear to approach the horizontal line P D 150 as an

asymptote. This implies that—whatever the initial population—the population P.t/

approaches the limiting population P D 150 as t ! 1.

Comment If the initial population is P.0/ D 150, then Eq. (6) gives

P 0.0/ D 0:0004.150/.150 � 150/ D 0;

so the population experiences no initial (instantaneous) change. It therefore remains

unchanged, and hence P.t/ � 150 is a constant “equilibrium solution” of the differential

equation. If the initial population is greater than 150, then the initial rate of change given by

(6) is negative, so the population immediately begins to decrease. But if the initial population

is less than 150, then the initial rate of change given by (6) is positive, so the population imme-

diately begins to increase. It therefore seems quite reasonable to conclude that the population

will approach a limiting value of 150—whatever the (positive) initial population.
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Existence and Uniqueness of Solutions

Before one spends much time attempting to solve a given differential equation, it

is wise to know that solutions actually exist. We may also want to know whether

there is only one solution of the equation satisfying a given initial condition—that

is, whether its solutions are unique.

Example 5 Failure of existence (a) The initial value problem

y0 D 1

x
; y.0/ D 0 (7)

has no solution, because no solution y.x/ D
R

.1=x/ dx D ln jxj C C of the differ-

ential equation is defined at x D 0. We see this graphically in Fig. 1.3.9, which

shows a direction field and some typical solution curves for the equation y0 D 1=x.

It is apparent that the indicated direction field “forces” all solution curves near the

y-axis to plunge downward so that none can pass through the point .0; 0/.

–1
–2

2

0

10
x

(0, 0)

y

FIGURE 1.3.9. Direction field and typical
solution curves for the equation y0 D 1=x.

1

1

0

0

x

y2(x) = 0

y

(0, 0)

y1(x) = x2

FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y0 D 2

p
y, y.0/ D 0.

Failure of uniqueness (b) On the other hand, you can readily verify that the initial

value problem

y0 D 2
p

y; y.0/ D 0 (8)

has the two different solutions y1.x/ D x2 and y2.x/ � 0 (see Problem 27). Figure

1.3.10 shows a direction field and these two different solution curves for the initial

value problem in (8). We see that the curve y1.x/ D x2 threads its way through the

indicated direction field, whereas the differential equation y0 D 2
p

y specifies slope

y0 D 0 along the x-axis y2.x/ D 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of

an initial value problem, we need to know that it has one and only one solution.

Questions of existence and uniqueness of solutions also bear on the process of

mathematical modeling. Suppose that we are studying a physical system whose

behavior is completely determined by certain initial conditions, but that our pro-

posed mathematical model involves a differential equation not having a unique

solution satisfying those conditions. This raises an immediate question as to whether

the mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y0 D f .x; y/,

y.a/ D b has one and only one solution defined near the point x D a on the x-axis,

provided that both the function f and its partial derivative @f=@y are continuous
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near the point .a; b/ in the xy-plane. Methods of proving existence and uniqueness

theorems are discussed in the Appendix.
y

b

R

x a
I

y = y(x)

(a, b)

FIGURE 1.3.11. The rectangle R
and x-interval I of Theorem 1, and the
solution curve y D y.x/ through the
point .a; b/.

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f .x; y/ and its partial derivative Dyf .x; y/ are

continuous on some rectangle R in the xy-plane that contains the point .a; b/ in

its interior. Then, for some open interval I containing the point a, the initial value

problem
dy

dx
D f .x; y/; y.a/ D b (9)

has one and only one solution that is defined on the interval I . (As illustrated in

Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle

R of continuity; see Remark 3 below.)

Remark 1 In the case of the differential equation dy=dx D �y of Example 1 and

Fig. 1.3.2(c), both the function f .x; y/ D �y and the partial derivative @f=@y D �1 are con-

tinuous everywhere, so Theorem 1 implies the existence of a unique solution for any initial

data .a; b/. Although the theorem ensures existence only on some open interval containing

x D a, each solution y.x/ D Ce�x actually is defined for all x.

Remark 2 In the case of the differential equation dy=dx D 2
p

y of Example 5(b) and

Eq. (8), the function f .x; y/ D 2
p

y is continuous wherever y > 0, but the partial derivative

@f=@y D 1=
p

y is discontinuous when y D 0, and hence at the point .0; 0/. This is why it is

possible for there to exist two different solutions y1.x/ D x2 and y2.x/ � 0, each of which

satisfies the initial condition y.0/ D 0.

Remark 3 In Example 7 of Section 1.1 we examined the especially simple differential

equation dy=dx D y2. Here we have f .x; y/ D y2 and @f=@y D 2y. Both of these functions

are continuous everywhere in the xy-plane, and in particular on the rectangle �2 < x < 2,

0 < y < 2. Because the point .0; 1/ lies in the interior of this rectangle, Theorem 1 guarantees

a unique solution—necessarily a continuous function—of the initial value problem

dy

dx
D y2; y.0/ D 1 (10)

on some open x-interval containing a D 0. Indeed this is the solution

y.x/ D 1

1 � x

that we discussed in Example 7. But y.x/ D 1=.1 � x/ is discontinuous at x D 1, so our unique

continuous solution does not exist on the entire interval �2 < x < 2. Thus the solution interval

I of Theorem 1 may not be as wide as the rectangle R where f and @f=@y are continuous.

Geometrically, the reason is that the solution curve provided by the theorem may leave the

rectangle—wherein solutions of the differential equation are guaranteed to exist—before it

reaches the one or both ends of the interval (see Fig. 1.3.12).

0 2 4
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(0, 1)
R

x

y

–2
–2–4

y = 1/(1 – x)

FIGURE 1.3.12. The solution curve
through the initial point .0; 1/ leaves
the rectangle R before it reaches the
right side of R.

The following example shows that, if the function f .x; y/ and/or its partial

derivative @f=@y fail to satisfy the continuity hypothesis of Theorem 1, then the

initial value problem in (9) may have either no solution or many—even infinitely

many—solutions.

Example 6 Consider the first-order differential equation

x
dy

dx
D 2y: (11)
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Applying Theorem 1 with f .x; y/ D 2y=x and @f=@y D 2=x, we conclude that Eq.
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y

(0, b) (0, 0)

−2

−4
−2 −1

FIGURE 1.3.13. There are infinitely
many solution curves through the point
.0; 0/, but no solution curves through
the point .0; b/ if b 6D 0.

(11) must have a unique solution near any point in the xy-plane where x 6D 0. Indeed,

we see immediately by substitution in (11) that

y.x/ D Cx2 (12)

satisfies Eq. (11) for any value of the constant C and for all values of the variable x.

In particular, the initial value problem

x
dy

dx
D 2y; y.0/ D 0 (13)

has infinitely many different solutions, whose solution curves are the parabolas y D
Cx2 illustrated in Fig. 1.3.13. (In case C D 0 the “parabola” is actually the x-axis

y D 0.)

Observe that all these parabolas pass through the origin .0; 0/, but none of

them passes through any other point on the y-axis. It follows that the initial value

problem in (13) has infinitely many solutions, but the initial value problem

x
dy

dx
D 2y; y.0/ D b (14)

has no solution if b 6D 0.

Finally, note that through any point off the y-axis there passes only one of the

parabolas y D Cx2. Hence, if a 6D 0, then the initial value problem

x
dy

dx
D 2y; y.a/ D b (15)

has a unique solution on any interval that contains the point x D a but not the origin

x D 0. In summary, the initial value problem in (15) has

� a unique solution near .a; b/ if a 6D 0;

� no solution if a D 0 but b 6D 0;

� infinitely many solutions if a D b D 0.

Still more can be said about the initial value problem in (15). Consider a typi-

cal initial point off the y-axis—for instance the point .�1; 1/ indicated in Fig. 1.3.14.

Then for any value of the constant C the function defined by

y.x/ D
(

x2 if x � 0,

Cx2 if x > 0
(16)

is continuous and satisfies the initial value problem

x
dy

dx
D 2y; y.�1/ D 1: (17)

For a particular value of C , the solution curve defined by (16) consists of the left

half of the parabola y D x2 and the right half of the parabola y D Cx2. Thus the

unique solution curve near .�1; 1/ branches at the origin into the infinitely many

solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees

0 1 2

0

2

4

x

y

−2

−4
−2 −1

y = x2

(−1, 1)

(0, 0)

FIGURE 1.3.14. There are infinitely
many solution curves through the point
.1; �1/.

uniqueness of the solution near the initial point .a; b/, but a solution curve through

.a; b/ may eventually branch elsewhere so that uniqueness is lost. Thus a solution

may exist on a larger interval than one on which the solution is unique. For instance,

the solution y.x/ D x2 of the initial value problem in (17) exists on the whole x-axis,

but this solution is unique only on the negative x-axis �1 < x < 0.
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1.3 Problems

In Problems 1 through 4, construct a slope field for the

given differential equation by drawing line segments with

the appropriate slopes through the points .x; y/ with x; y D
�2; �1; 0; 1; 2.

1.
dy

dx
D �y � sin x

2.
dy

dx
D x C y

3.
dy

dx
D y � sin x

4.
dy

dx
D x � y

In Problems 5 through 10, we have provided the slope field of

the indicated differential equation, together with one or more

solution curves (see Figs. 1.3.15 through 1.3.20). Sketch

likely solution curves through the additional points marked

in each slope field.

5.
dy

dx
D y � x C 1
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FIGURE 1.3.15.

6.
dy

dx
D x � y C 1
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FIGURE 1.3.16.

7.
dy

dx
D sin x C sin y
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FIGURE 1.3.17.

8.
dy

dx
D x2 � y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.18.

9.
dy

dx
D x2 � y � 2
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FIGURE 1.3.19.
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10.
dy

dx
D �x2 C sin y

0 2 31
x

0y

–1

–2 –1

–2

–3
–3

1

2

3

FIGURE 1.3.20.

A more detailed version of Theorem 1 says that, if the function

f .x; y/ is continuous near the point .a; b/, then at least one

solution of the differential equation y0 D f .x; y/ exists on some

open interval I containing the point x D a and, moreover, that

if in addition the partial derivative @f =@y is continuous near

.a; b/, then this solution is unique on some (perhaps smaller)

interval J . In Problems 11 through 20, determine whether exis-

tence of at least one solution of the given initial value problem

is thereby guaranteed and, if so, whether uniqueness of that

solution is guaranteed.

11.
dy

dx
D 2x2y2; y.1/ D �1

12.
dy

dx
D x ln y; y.1/ D 1

13.
dy

dx
D 3

p
y; y.0/ D 1

14.
dy

dx
D 3

p
y; y.0/ D 0

15.
dy

dx
D p

x � y; y.2/ D 2

16.
dy

dx
D p

x � y; y.2/ D 1

17. y
dy

dx
D x � 1; y.0/ D 1

18. y
dy

dx
D x � 1; y.1/ D 0

19.
dy

dx
D ln.1 C y2/; y.0/ D 0

20.
dy

dx
D x2 � y2; y.0/ D 1

In Problems 21 and 22, first use the method of Example 2

to construct a slope field for the given differential equation.

Then sketch the solution curve corresponding to the given ini-

tial condition. Finally, use this solution curve to estimate the

desired value of the solution y.x/.

21. y0 D x C y, y.0/ D 0; y.�4/ D ?

22. y0 D y � x, y.4/ D 0; y.�4/ D ?

Problems 23 and 24 are like Problems 21 and 22, but now

use a computer algebra system to plot and print out a slope

field for the given differential equation. If you wish (and know

how), you can check your manually sketched solution curve by

plotting it with the computer.

23. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ?

24. y0 D x C 1

2
y2, y.�2/ D 0; y.2/ D ?

25. Falling parachutist You bail out of the helicopter of

Example 3 and pull the ripcord of your parachute. Now

k D 1:6 in Eq. (3), so your downward velocity satisfies the

initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0:

In order to investigate your chances of survival, construct

a slope field for this differential equation and sketch the

appropriate solution curve. What will your limiting veloc-

ity be? Will a strategically located haystack do any good?

How long will it take you to reach 95% of your limiting

velocity?

26. Deer population Suppose the deer population P.t/ in

a small forest satisfies the logistic equation

dP

dt
D 0:0225P � 0:0003P 2:

Construct a slope field and appropriate solution curve to

answer the following questions: If there are 25 deer at time

t D 0 and t is measured in months, how long will it take

the number of deer to double? What will be the limiting

deer population?

The next seven problems illustrate the fact that, if the hypothe-

ses of Theorem 1 are not satisfied, then the initial value

problem y0 D f .x; y/, y.a/ D b may have either no solutions,

finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined

piecewise by

y.x/ D
(

0 for x 5 c,

.x � c/2 for x > c

satisfies the differential equation y0 D 2
p

y for all x

(including the point x D c). Construct a figure illustrating

the fact that the initial value problem y0 D 2
p

y, y.0/ D 0

has infinitely many different solutions. (b) For what val-

ues of b does the initial value problem y0 D 2
p

y, y.0/ D b

have (i) no solution, (ii) a unique solution that is defined

for all x?
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28. Verify that if k is a constant, then the function y.x/ �
kx satisfies the differential equation xy0 D y for all x.

Construct a slope field and several of these straight line

solution curves. Then determine (in terms of a and b) how

many different solutions the initial value problem xy0 D y,

y.a/ D b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined

piecewise by

y.x/ D
(

0 for x 5 c,

.x � c/3 for x > c

satisfies the differential equation y0 D 3y2=3 for all x. Can

you also use the “left half” of the cubic y D .x � c/3 in

piecing together a solution curve of the differential equa-

tion? (See Fig. 1.3.21.) Sketch a variety of such solution

curves. Is there a point .a; b/ of the xy-plane such that

the initial value problem y0 D 3y2=3, y.a/ D b has either

no solution or a unique solution that is defined for all x?

Reconcile your answer with Theorem 1.

x

y

c

y = (x – c)3

y = x3

FIGURE 1.3.21. A suggestion for Problem 29.

30. Verify that if c is a constant, then the function defined

piecewise by

y.x/ D

8

ˆ

<

ˆ

:

C1 if x 5 c,

cos.x � c/ if c < x < c C � ,

�1 if x = c C �

satisfies the differential equation y0 D �
p

1 � y2 for all x.

(Perhaps a preliminary sketch with c D 0 will be helpful.)

Sketch a variety of such solution curves. Then determine

(in terms of a and b) how many different solutions the

initial value problem y0 D �
p

1 � y2, y.a/ D b has.

31. Carry out an investigation similar to that in Problem 30,

except with the differential equation y0 D C
p

1 � y2.

Does it suffice simply to replace cos.x � c/ with sin.x � c/

in piecing together a solution that is defined for all x?

32. Verify that if c > 0, then the function defined piecewise by

y.x/ D
(

0 if x2 5 c,

.x2 � c/2 if x2 > c

satisfies the differential equation y0 D 4x
p

y for all x.

Sketch a variety of such solution curves for different val-

ues of c. Then determine (in terms of a and b) how many

different solutions the initial value problem y0 D 4x
p

y,

y.a/ D b has.

33. If c 6D 0, verify that the function defined by y.x/ D
x=.cx � 1/ (with the graph illustrated in Fig. 1.3.22) sat-

isfies the differential equation x2y0 C y2 D 0 if x 6D 1=c.

Sketch a variety of such solution curves for different val-

ues of c. Also, note the constant-valued function y.x/ � 0

that does not result from any choice of the constant c.

Finally, determine (in terms of a and b) how many dif-

ferent solutions the initial value problem x2y0 C y2 D 0,

y.a/ D b has.

x

y

(1/c, 1/c)

FIGURE 1.3.22. Slope field for x2y0 C y2 D 0 and
graph of a solution y.x/ D x=.cx � 1/.

34. (a) Use the direction field of Problem 5 to estimate the

values at x D 1 of the two solutions of the differ-

ential equation y0 D y � x C 1 with initial values

y.�1/ D �1:2 and y.�1/ D �0:8.

(b) Use a computer algebra system to estimate the values

at x D 3 of the two solutions of this differential equa-

tion with initial values y.�3/ D �3:01 and y.�3/ D
�2:99.

The lesson of this problem is that small changes in initial

conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the

values at x D 2 of the two solutions of the differ-

ential equation y0 D x � y C 1 with initial values

y.�3/ D �0:2 and y.�3/ D C0:2.

(b) Use a computer algebra system to estimate the values

at x D 2 of the two solutions of this differential equa-

tion with initial values y.�3/ D �0:5 and y.�3/ D
C0:5.

The lesson of this problem is that big changes in initial

conditions may make only small differences in results.
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1.3 Application Computer-Generated Slope Fields and Solution Curves

Widely available computer algebra systems and technical computing environments

Go to bit.ly/3EmOgiO

for additional discussion and
explorations of this topic using
computational resources such as
Maple/Mathematica/MATLAB.

include facilities to automate the construction of slope fields and solution curves, as

do some graphing calculators (see Figs. 1.3.23–1.3.25).

The additional material available online for this Application includes discus-

sion of MapleTM, MathematicaTM, and MATLAB resources for the investigation of

differential equations. For instance, the Maple command

with(DEtools):

DEplot(diff(y(x),x)=sin(x--y(x)), y(x), x=--5..5, y=--5..5);

and the Mathematica command

FIGURE 1.3.23. TI-84 Plus CE
Python graphing calculator and TI
NspireTM CX II CAS graphing
calculator. Screenshot from Texas
Instruments Incorporated. Courtesy of
Texas Instruments Incorporated.

VectorPlot[{1, Sin[x--y]}, {x, --5, 5}, {y, --5, 5}]

produce slope fields similar to the one shown in Fig. 1.3.25. Figure 1.3.25 itself

was generated with the MATLAB program dfield [John Polking and David

Arnold, Ordinary Differential Equations Using MATLAB, 3rd edition, York,

NY: Pearson Education, 2003]. The web site cs.unm.edu/~joel/dfield pro-

vides a freely-available Java version of dfield. When a differential equation

is entered in the dfield setup menu (Fig. 1.3.26), you can (with mouse but-

ton clicks) plot both a slope field and the solution curve (or curves) through any

desired point (or points). Another freely available and user-friendly MATLAB-

based ODE package with impressive graphical capabilities is Iode, available at

conf.math.illinois.edu/iode.

FIGURE 1.3.24. Slope field and solution curves for the differential
equation

dy

dx
D sin.x � y/

with initial points .0; b/, b D �2:5, �1, 1, 3.5 and window �5 � x; y � 5
on a TI NspireTM CX II CAS graphing calculator. Courtesy of Texas
Instruments Incorporated.

Modern technology platforms offer even further interactivity by allowing the

user to vary initial conditions and other parameters “in real time.” Mathematica’s

Manipulate command was used to generate Fig. 1.3.27, which shows three par-

ticular solutions of the differential equation dy=dx D sin.x � y/. The solid curve

corresponds to the initial condition y.1/ D 0. As the “locator point” initially at .1; 0/

is dragged—by mouse or touchpad—to the point .0; 3/ or .2; �2/, the solution curve

immediately follows, resulting in the dashed curves shown. The TI NspireTM CX II

CAS similar capability; indeed, as Fig. 1.3.24 appears on the Nspire display, each

of the initial points .0; b/ can be dragged to different locations using the Nspire’s

–4

–3

–2

–1

5

–5

4

3

2

1

x
0 5

0y

–5 1–4 2–3 3–2 4–1

y = x – π

2

FIGURE 1.3.25. Computer-
generated slope field and solution
curves for the differential equation
y0 D sin.x � y/.

touchpad, with the corresponding solution curves being instantly redrawn.
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FIGURE 1.3.26. MATLAB dfield setup to construct slope field and solution curves for
y0 D sin.x � y/.

Your Turn

Use a graphing calculator or computer system in the following investigations. You

might warm up by generating the slope fields and some solution curves for Problems

1 through 10 in this section.

INVESTIGATION A: Plot a slope field and typical solution curves for the differ-

ential equation dy=dx D sin.x �y/, but with a larger window than that of Fig. 1.3.25.

With �10 5 x 5 10, �10 5 y 5 10, for instance, a number of apparent straight line

solution curves should be visible, especially if your display allows you to drag the

–4 –2 0 2 4

–4

–2

0

2

4

FIGURE 1.3.27. Interactive
Mathematica solution of the
differential equation y0 D sin.x � y/.
The “locator point” corresponding to
the initial condition y.1/ D 0 can be
dragged to any other point in the
display, causing the solution curve to
be automatically redrawn.

initial point interactively from upper left to lower right.

(a) Substitute y D ax C b in the differential equation to determine what the coeffi-

cients a and b must be in order to get a solution. Are the results consistent with

what you see on the display?

(b) A computer algebra system gives the general solution

y.x/ D x � 2 tan�1

�

x � 2 � C

x � C

�

:

Plot this solution with selected values of the constant C to compare the resulting

solution curves with those indicated in Fig. 1.3.24. Can you see that no value of

C yields the linear solution y D x � �=2 corresponding to the initial condition

y.�=2/ D 0? Are there any values of C for which the corresponding solution

curves lie close to this straight line solution curve?

INVESTIGATION B: For your own personal investigation, let n be the smallest

digit in your student ID number that is greater than 1, and consider the differential

equation
dy

dx
D 1

n
cos.x � ny/:

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line

solutions.

(b) Then generate a slope field for this differential equation, with the viewing win-

dow chosen so that you can picture some of these straight lines, plus a sufficient
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number of nonlinear solution curves that you can formulate a conjecture about

what happens to y.x/ as x ! C1. State your inference as plainly as you can.

Given the initial value y.0/ D y0, try to predict (perhaps in terms of y0) how

y.x/ behaves as x ! C1.

(c) A computer algebra system gives the general solution

y.x/ D 1

n

�

x C 2 tan�1

�

1

x � C

�	

:

Can you make a connection between this symbolic solution and your graphi-

cally generated solution curves (straight lines or otherwise)?

1.4 Separable Equations and Applications

In the preceding sections we saw that if the function f .x; y/ does not involve the

variable y, then solving the first-order differential equation

dy

dx
D f .x; y/ (1)

is a matter of simply finding an antiderivative. For example, the general solution of

dy

dx
D �6x (2)

is given by

y.x/ D
Z

�6x dx D �3x2 C C:

If instead f .x; y/ does involve the dependent variable y, then we can no longer

solve the equation merely by integrating both sides: The differential equation

dy

dx
D �6xy (3a)

differs from Eq. (2) only in the factor y appearing on the right-hand side, but this

is enough to prevent us from using the same approach to solve Eq. (3a) that was

successful with Eq. (2).

And yet, as we will see throughout the remainder of this chapter, differential

equations like (3a) often can, in fact, be solved by methods which are based on the

idea of “integrating both sides.” The idea behind these techniques is to rewrite the

given equation in a form that, while equivalent to the given equation, allows both

sides to be integrated directly, thus leading to the solution of the original differential

equation.

The most basic of these methods, separation of variables, can be applied to

Eq. (3a). First, we note that the right-hand function f .x; y/ D �6xy can be viewed

as the product of two expressions, one involving only the independent variable x,

and the other involving only the dependent variable y:

dy

dx
5 (–6x) y

depends only on x

depends only on y
(3b)

Next, we informally break up the derivative dy=dx into the “free-floating” differen-

tials dx and dy—a notational convenience that leads to correct results, as we will

see below—and then multiply by dx and divide by y in Eq. (3b), leading to

dy

y
D �6x dx: (3c)
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Equation (3c) is an equivalent version of the original differential equation in

(3a), but with the variables x and y separated (that is, by the equal sign), and this is

what allows us to integrate both sides. The left-hand side is integrated with respect

to y (with no “interference” from the variable x), and vice versa for the right-hand

side. This leads to
Z

dy

y
D
Z

�6x dx;

or

ln jyj D �3x2 C C: (4)

This gives the general solution of Eq. (3a) implicitly, and a family of solution curves

is shown in Fig. 1.4.1.

In this particular case we can go on to solve for y to give the explicit general

solution
y.x/ D ˙ e�3x2CC D ˙e�3x2

eC D Ae�3x2

; (5)

where A represents the constant ˙ eC , which can take on any nonzero value. If we

0 1 2

0
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8

x

y
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–2 –1

(0, 7)

(0, –4)

FIGURE 1.4.1. Slope field and
solution curves for y0 D �6xy.

impose an initial condition on Eq. (3a), say y.0/ D 7, then in Eq. (5) we find that

A D 7, yielding the particular solution

y.x/ D 7e�3x2

;

which is the upper emphasized solution curve shown in Fig. 1.4.1. In the same way,

the initial condition y.0/ D �4 leads to the particular solution

y.x/ D �4e�3x2

;

which is the lower emphasized solution curve shown in Fig. 1.4.1.

To complete this example, we note that whereas the constant A in Eq. (5) is

nonzero, taking A D 0 in (5) leads to y.x/ � 0, and this is, in fact, a solution of the

given differential equation (3a). Thus Eq. (5) actually provides a solution of (3a) for

all values of the constant A, including A D 0. Why did the method of separation

of variables fail to capture all solutions of Eq. (3a)? The reason is that in the step

in which we actually separated the variables, that is, in passing from Eq. (3b) to

(3c), we divided by y, thus (tacitly) assuming that y 6D 0. As a result, our general

solution (5), with its restriction that A 6D 0, “missed” the particular solution y.x/ � 0

corresponding to A D 0. Such solutions are known as singular solutions, and we say

more about them—together with implicit and general solutions—below.

In general, the first-order differential equation (1) is called separable provided

that f .x; y/ can be written as the product of a function of x and a function of y:

dy

dx
D f .x; y/ D g.x/k.y/ D g.x/

h.y/
;

where h.y/ D 1=k.y/. In this case the variables x and y can be separated—isolated

on opposite sides of an equation—by writing informally the equation

h.y/ dy D g.x/ dx;

which we understand to be concise notation for the differential equation

h.y/
dy

dx
D g.x/: (6)

(In the preceding example, h.y/ D 1
y

and g.x/ D �6x.) As illustrated above, we can

solve this type of differential equation simply by integrating both sides with respect

to x:
Z

h.y.x//
dy

dx
dx D

Z

g.x/ dx C C I
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equivalently,
Z

h.y/ dy D
Z

g.x/ dx C C: (7)

All that is required is that the antiderivatives

H.y/ D
Z

h.y/ dy and G.x/ D
Z

g.x/ dx

can be found. To see that Eqs. (6) and (7) are equivalent, note the following

consequence of the chain rule:

DxŒH.y.x//� D H 0.y.x//y0.x/ D h.y/
dy

dx
D g.x/ D DxŒG.x/�;

which in turn is equivalent to

H.y.x// D G.x/ C C; (8)

because two functions have the same derivative on an interval if and only if they

differ by a constant on that interval.

Example 1 Solve the differential equation

dy

dx
D 4 � 2x

3y2 � 5
: (9)

Solution Because
4 � 2x

3y2 � 5
D .4 � 2x/ � 1

3y2 � 5
D g.x/k.y/

is the product of a function that depends only on x, and one that depends only on y,

−4 −2 0 2 4 6 8
−5

−3

−1

1

3

5

x

y

(1, 3)

(1, 0)

(1, −2)

FIGURE 1.4.2. Slope field and
solution curves for y0 D .4 � 2x/=
.3y2 � 5/ in Example 1.

Eq. (9) is separable, and thus we can proceed in much the same way as in Eq. (3a).

Before doing so, however, we note an important feature of Eq. (9) not shared by

Eq. (3a): The function k.y/ D 1

3y2 � 5
is not defined for all values of y. Indeed,

setting 3y2 � 5 equal to zero shows that k.y/, and thus
dy

dx
itself, becomes infinite

as y approaches either of ˙
q

5
3

. Because an infinite slope corresponds to a vertical

line segment, we would therefore expect the line segments in the slope field for

this differential equation to be “standing straight up” along the two horizontal lines

y D ˙
q

5
3

� ˙1:29; as Fig. 1.4.2 shows (where these two lines are dashed), this is

indeed what we find.

What this means for the differential equation (9) is that no solution curve of

this equation can cross either of the horizontal lines y D ˙
q

5
3

, simply because

along these lines
dy

dx
is undefined. Effectively, then, these lines divide the plane into

three regions—defined by the conditions y >

q

5
3

, �
q

5
3

< y <

q

5
3

, and y < �
q

5
3

—

with all solution curves of Eq. (9) remaining confined to one of these regions.

With this in mind, the general solution of the differential equation in Eq. (9)

is easy to find, at least in implicit form. Separating variables and integrating both

sides leads to
Z

3y2 � 5 dy D
Z

4 � 2x dx;
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and thus

y3 � 5y D 4x � x2 C C: (10)

Note that unlike Eq. (4), the general solution in Eq. (10) cannot readily be solved for

y; thus we cannot directly plot the solution curves of Eq. (9) in the form y D y.x/,

as we would like. However, what we can do is rearrange Eq. (10) so that the constant

C is isolated on the right-hand side:

y3 � 5y � .4x � x2/ D C: (11)

This shows that the solution curves of the differential equation in Eq. (9) are

contained in the level curves (also known as contours) of the function

F.x; y/ D y3 � 5y � .4x � x2/: (12)

Because no particular solution curve of Eq. (9) can cross either of the lines y D
˙
q

5
3

—despite the fact that the level curves of F.x; y/ freely do so—the particular

solution curves of Eq. (9) are those portions of the level curves of F.x; y/ which

avoid the lines y D ˙
q

5
3

.

For example, suppose that we wish to solve the initial value problem

dy

dx
D 4 � 2x

3y2 � 5
; y.1/ D 3: (13)

Substituting x D 1 and y D 3 into our general solution (10) gives C D 9. Therefore

our desired solution curve lies on the level curve

y3 � 5y � .4x � x2/ D 9 (14)

of F.x; y/; Fig. 1.4.2 shows this and other level curves of F.x; y/. However, because

the solution curve of the initial value problem (13) must pass through the point

.1; 3/, which lies above the line y D
q

5
3

in the xy-plane, our desired solution curve

is restricted to that portion of the level curve (14) which satisfies y >

q

5
3

. (In

Fig. 1.4.2 the solution curve of the initial value problem (13) is drawn more heavily

than the remainder of the level curve (14).) In the same way, Figure 1.4.2 also shows

the particular solutions of Eq. (9) subject to the initial conditions y.1/ D 0 and

y.1/ D �2. In each of these cases, the curve corresponding to the desired particular

solution is only a piece of a larger level curve of the function F.x; y/. (Note that in

fact, some of the level curves of F themselves consist of two pieces.)

Finally, despite the difficulty of solving Eq. (14) for y by algebraic means,

0 4 62
y

f(
y)
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FIGURE 1.4.3. Graph of
f .y/ D y3 � 5y � 9.

we can nonetheless “solve” for y in the sense that, when a specific value of x is

substituted in (14), we can attempt to solve numerically for y. For instance, taking

x D 4 yields the equation

f .y/ D y3 � 5y � 9 D 0I

Fig. 1.4.3 shows the graph of f . Using technology we can solve for the single real

root y � 2:8552, thus yielding the value y.4/ � 2:8552 for the solution of the initial

value problem (13). By repeating this process for other values of x, we can create a

table (like the one shown below) of corresponding x- and y-values for the solution

of (13); such a table serves effectively as a “numerical solution” of this initial value

problem.

x �1 0 1 2 3 4 5 6

y 2.5616 2.8552 3 3.0446 3 2.8552 2.5616 1.8342
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Implicit, General, and Singular Solutions

The equation K.x; y/ D 0 is commonly called an implicit solution of a differential

equation if it is satisfied (on some interval) by some solution y D y.x/ of the differ-

ential equation. But note that a particular solution y D y.x/ of K.x; y/ D 0 may or

may not satisfy a given initial condition. For example, differentiation of x2 C y2 D 4

yields

x C y
dy

dx
D 0;

so x2 C y2 D 4 is an implicit solution of the differential equation x C yy0 D 0. But

only the first of the two explicit solutions

y.x/ D C
p

4 � x2 and y.x/ D �
p

4 � x2

satisfies the initial condition y.0/ D 2 (Fig. 1.4.4).

3
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x
0 3

0y
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–1
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1–2 2–1
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y = –   4 – x2

y = +   4 – x2

FIGURE 1.4.4. Slope field and
solution curves for y0 D �x=y.

Remark 1 You should not assume that every possible algebraic solution y D y.x/ of

an implicit solution satisfies the same differential equation. For instance, if we multiply the

implicit solution x2 C y2 � 4 D 0 by the factor .y � 2x/, then we get the new implicit solution

.y � 2x/.x2 C y2 � 4/ D 0

that yields (or “contains”) not only the previously noted explicit solutions y D C
p

4 � x2

and y D �
p

4 � x2 of the differential equation x C yy0 D 0, but also the additional function

y D 2x that does not satisfy this differential equation.

Remark 2 Similarly, solutions of a given differential equation can be either gained or lost

when it is multiplied or divided by an algebraic factor. For instance, consider the differential

equation
.y � 2x/y

dy

dx
D �x.y � 2x/ (15)

having the obvious solution y D 2x. But if we divide both sides by the common factor .y �
2x/, then we get the previously discussed differential equation

y
dy

dx
D �x; or x C y

dy

dx
D 0; (16)

of which y D 2x is not a solution. Thus we “lose” the solution y D 2x of Eq. (15) upon its

division by the factor .y � 2x/; alternatively, we “gain” this new solution when we multiply

Eq. (16) by .y � 2x/. Such elementary algebraic operations to simplify a given differential

equation before attempting to solve it are common in practice, but the possibility of loss or

gain of such “extraneous solutions” should be kept in mind.

A solution of a differential equation that contains an “arbitrary constant” (like

the constant C appearing in Eqs. (4) and (10)) is commonly called a general solu-

tion of the differential equation; any particular choice of a specific value for C yields

a single particular solution of the equation.

The argument preceding Example 1 actually suffices to show that every partic-

ular solution of the differential equation h.y/y0 D g.x/ in (6) satisfies the equation

H.y.x// D G.x/ C C in (8). Consequently, it is appropriate to call (8) not merely a

general solution of (6), but the general solution of (6).

In Section 1.5 we shall see that every particular solution of a linear first-

order differential equation is contained in its general solution. By contrast, it is

common for a nonlinear first-order differential equation to have both a general solu-

tion involving an arbitrary constant C and one or several particular solutions that

cannot be obtained by selecting a value for C . These exceptional solutions are

frequently called singular solutions. In Problem 30 we ask you to show that the

general solution of the differential equation .y0/2 D 4y yields the family of parabo-

las y D .x � C /2 illustrated in Fig. 1.4.5, and to observe that the constant-valued

function y.x/ � 0 is a singular solution that cannot be obtained from the general

solution by any choice of the arbitrary constant C .
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FIGURE 1.4.5. The general solution

curves y D .x � C /2 and the singular
solution curve y D 0 of the differential
equation .y0/2 D 4y.
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Example 2 Find all solutions of the differential equation

dy

dx
D 6x.y � 1/2=3:

Solution Separation of variables gives

Z

1

3.y � 1/2=3
dy D

Z

2x dxI

.y � 1/1=3 D x2 C C I

y.x/ D 1 C .x2 C C /3:

Positive values of the arbitrary constant C give the solution curves in Fig. 1.4.6

that lie above the line y D 1, whereas negative values yield those that dip below

it. The value C D 0 gives the solution y.x/ D 1 C x6, but no value of C gives the

singular solution y.x/ � 1 that was lost when the variables were separated. Note

that the two different solutions y.x/ � 1 and y.x/ D 1 C .x2 � 1/3 both satisfy

the initial condition y.1/ D 1. Indeed, the whole singular solution curve y D 1

consists of points where the solution is not unique and where the function f .x; y/ D
6x.y � 1/2=3 is not differentiable.

Natural Growth and Decay

The differential equation

0 1 2

0

2

4

x

y

(1, 1)

–2

–4

–2 –1

y = 1 + x6

y = 1 + (x2 – 1)3

FIGURE 1.4.6. General and singular
solution curves for
y0 D 6x.y � 1/2=3.

dx

dt
D kx (k a constant) (17)

serves as a mathematical model for a remarkably wide range of natural

phenomena—any involving a quantity whose time rate of change is proportional

to its current size. Here are some examples.

POPULATION GROWTH: Suppose that P.t/ is the number of individuals in a

population (of humans, or insects, or bacteria) having constant birth and death rates

ˇ and ı (in births or deaths per individual per unit of time). Then, during a short

time interval �t , approximately ˇP.t/ �t births and ıP.t/ �t deaths occur, so the

change in P.t/ is given approximately by

�P � .ˇ � ı/P.t/ �t;

and therefore
dP

dt
D lim

�t!0

�P

�t
D kP; (18)

where k D ˇ � ı.

COMPOUND INTEREST: Let A.t/ be the number of dollars in a savings account

at time t (in years), and suppose that the interest is compounded continuously at an

annual interest rate r . (Note that 10% annual interest means that r D 0:10.) Continu-

ous compounding means that during a short time interval �t , the amount of interest

added to the account is approximately �A D rA.t/ �t , so that

dA

dt
D lim

�t!0

�A

�t
D rA: (19)
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RADIOACTIVE DECAY: Consider a sample of material that contains N.t/ atoms

of a certain radioactive isotope at time t . It has been observed that a constant fraction

of those radioactive atoms will spontaneously decay (into atoms of another element

or into another isotope of the same element) during each unit of time. Consequently,

the sample behaves exactly like a population with a constant death rate and no births.

To write a model for N.t/, we use Eq. (18) with N in place of P , with k > 0 in place

of ı, and with ˇ D 0. We thus get the differential equation

dN

dt
D �kN: (20)

The value of k depends on the particular radioactive isotope.

The key to the method of radiocarbon dating is that a constant proportion

of the carbon atoms in any living creature is made up of the radioactive isotope
14C of carbon. This proportion remains constant because the fraction of 14C in the

atmosphere remains almost constant, and living matter is continuously taking up

carbon from the air or is consuming other living matter containing the same constant

ratio of 14C atoms to ordinary 12C atoms. This same ratio permeates all life, because

organic processes seem to make no distinction between the two isotopes.

The ratio of 14C to normal carbon remains constant in the atmosphere because,

although 14C is radioactive and slowly decays, the amount is continuously replen-

ished through the conversion of 14N (ordinary nitrogen) to 14C by cosmic rays

bombarding the upper atmosphere. Over the long history of the planet, this decay

and replenishment process has come into nearly steady state.

Of course, when a living organism dies, it ceases its metabolism of carbon

and the process of radioactive decay begins to deplete its 14C content. There is no

replenishment of this 14C, and consequently the ratio of 14C to normal carbon begins

to drop. By measuring this ratio, the amount of time elapsed since the death of the

organism can be estimated. For such purposes it is necessary to measure the decay

constant k. For 14C, it is known that k � 0:0001216 if t is measured in years.

(Matters are not as simple as we have made them appear. In applying the tech-

nique of radiocarbon dating, extreme care must be taken to avoid contaminating the

sample with organic matter or even with ordinary fresh air. In addition, the cosmic

ray levels apparently have not been constant, so the ratio of 14C in the atmosphere

has varied over the past centuries. By using independent methods of dating sam-

ples, researchers in this area have compiled tables of correction factors to enhance

the accuracy of this process.)

DRUG ELIMINATION: In many cases the amount A.t/ of a certain drug in the

bloodstream, measured by the excess over the natural level of the drug, will decline

at a rate proportional to the current excess amount. That is,

dA

dt
D ��A; (21)

where � > 0. The parameter � is called the elimination constant of the drug.

The Natural Growth Equation

The prototype differential equation dx=dt D kx with x.t/ > 0 and k a con-

stant (either negative or positive) is readily solved by separating the variables and

integrating:

Z

1

x
dx D

Z

k dt I

ln x D kt C C:
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Then we solve for x:

Note elnx D x and
ekt+C D ekt � eC by properties
of the natural exponential
function.

eln x D ektCC I x D x.t/ D eC ekt D Aekt :

Because C is a constant, so is A D eC . It is also clear that A D x.0/ D x0, so the

particular solution of Eq. (17) with the initial condition x.0/ D x0 is simply

x.t/ D x0ekt : (22)

Because of the presence of the natural exponential function in its solution, the

differential equation
dx

dt
D kx (23)

is often called the exponential or natural growth equation. Figure 1.4.7 shows a

typical graph of x.t/ in the case k > 0; the case k < 0 is illustrated in Fig. 1.4.8.

x = x0
 ekt

     (k > 0)

t

x

x0

FIGURE 1.4.7. Natural growth.

x = x0
 e kt

     (k < 0)

t

x

x0

FIGURE 1.4.8. Natural decay.

Example 3 World population According to data listed at www.census.gov, the world’s

total population reached 6 billion persons in mid-1999, and was then increasing at

the rate of about 212 thousand persons each day. Assuming that natural population

growth at this rate continues, we want to answer these questions:

(a) What is the annual growth rate k?

(b) What will be the world population at the middle of the 21st century?

(c) How long will it take the world population to increase tenfold—thereby reach-

ing the 60 billion that some demographers believe to be the maximum for which the

planet can provide adequate food supplies?

Solution (a) We measure the world population P.t/ in billions and measure time in years.

We take t D 0 to correspond to (mid) 1999, so P0 D 6. The fact that P is increasing

by 212,000, or 0.000212 billion, persons per day at time t D 0 means that

P 0.0/ D .0:000212/.365:25/ � 0:07743

billion per year. From the natural growth equation P 0 D kP with t D 0 we now

obtain

k D P 0.0/

P.0/
� 0:07743

6
� 0:0129:

Thus the world population was growing at the rate of about 1.29% annually in 1999.

This value of k gives the world population function

P.t/ D 6e0:0129t :

(b) With t D 51 we obtain the prediction

P.51/ D 6e.0:0129/.51/ � 11.58 (billion)

for the world population in mid-2050 (so the population will almost have doubled

in the just over a half-century since 1999).

www.census.gov
www.census.gov
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(c) The world population should reach 60 billion when

60 D 6e0:0129t I that is, when t D ln 10

0:0129
� 178;

and thus in the year 2177.

Note Actually, the rate of growth of the world population is expected to slow somewhat dur-

ing the next half-century, and the best current prediction for the 2050 population is “only” 9.1

billion. A simple mathematical model cannot be expected to mirror precisely the complexity

of the real world.

The decay constant of a radioactive isotope is often specified in terms of

another empirical constant, the half-life of the isotope, because this parameter is

more convenient. The half-life � of a radioactive isotope is the time required for

half of it to decay. To find the relationship between k and � , we set t D � and

N D 1
2
N0 in the equation N.t/ D N0e�kt , so that 1

2
N0 D N0e�k� . When we solve

for � , we find that

� D ln 2

k
: (24)

For example, the half-life of 14C is � � .ln 2/=.0:0001216/, approximately 5700

years.

Example 4 Radiometric dating A specimen of charcoal found at Stonehenge turns out to

contain 63% as much 14C as a sample of present-day charcoal of equal mass. What

is the age of the sample?

Solution We take t D 0 as the time of the death of the tree from which the Stonehenge

charcoal was made and N0 as the number of 14C atoms that the Stonehenge sample

contained then. We are given that N D .0:63/N0 now, so we solve the equation

.0:63/N0 D N0e�kt with the value k D 0:0001216. Thus we find that

t D � ln.0:63/

0:0001216
� 3800 (years):

Thus the sample is about 3800 years old. If it has any connection with the builders of

Stonehenge, our computations suggest that this observatory, monument, or temple—

whichever it may be—dates from 1800 B.C. or earlier.

Cooling and Heating

According to Newton’s law of cooling (Eq. (3) of Section 1.1), the time rate of

change of the temperature T .t/ of a body immersed in a medium of constant

temperature A is proportional to the difference A � T . That is,

dT

dt
D k.A � T /; (25)

where k is a positive constant. This is an instance of the linear first-order differential

equation with constant coefficients:

dx

dt
D ax C b: (26)

It includes the exponential equation as a special case (b D 0) and is also easy to

solve by separation of variables.

Example 5 Cooling A 4-lb roast, initially at 50ıF, is placed in a 375ıF oven at 5:00 P.M.

After 75 minutes it is found that the temperature T .t/ of the roast is 125ıF. When

will the roast be 150ıF (medium rare)?
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Solution We take time t in minutes, with t D 0 corresponding to 5:00 P.M. We also assume

(somewhat unrealistically) that at any instant the temperature T .t/ of the roast is

uniform throughout. We have T .t/ < A D 375, T .0/ D 50, and T .75/ D 125. Hence

dT

dt
D k.375 � T /I

Z

1

375 � T
dT D

Z

k dt I

� ln.375 � T / D kt C C I

375 � T D Be�kt :

Now T .0/ D 50 implies that B D 325, so T .t/ D 375 � 325e�kt . We also know that

Here B represents e�C.

T D 125 when t D 75. Substitution of these values in the preceding equation yields

k D � 1
75

ln
�

250
325

�

� 0:0035:

Hence we finally solve the equation

150 D 375 � 325e.�0:0035/t

for t D �Œln.225=325/�=.0:0035/ � 105 (min), the total cooking time required.

Because the roast was placed in the oven at 5:00 P.M., it should be removed at

about 6:45 P.M.

Torricelli’s Law

Suppose that a water tank has a hole with area a at its bottom, from which water

is leaking. Denote by y.t/ the depth of water in the tank at time t , and by V.t/ the

volume of water in the tank then. It is plausible—and true, under ideal conditions—

that the velocity of water exiting through the hole is

v D
p

2gy; (27)

which is the velocity a drop of water would acquire in falling freely from the surface

of the water to the hole (see Problem 35 of Section 1.2). One can derive this formula

beginning with the assumption that the sum of the kinetic and potential energy of the

system remains constant. Under real conditions, taking into account the constriction

of a water jet from an orifice, v D c
p

2gy, where c is an empirical constant between

0 and 1 (usually about 0.6 for a small continuous stream of water). For simplicity

we take c D 1 in the following discussion.

As a consequence of Eq. (27), we have

dV

dt
D �av D �a

p

2gyI (28a)

equivalently,
dV

dt
D �k

p
y where k D a

p

2g: (28b)

This is a statement of Torricelli’s law for a draining tank. Let A.y/ denote the hori-

zontal cross-sectional area of the tank at height y. Then, applied to a thin horizontal

slice of water at height y with area A.y/ and thickness dy, the integral calculus

method of cross sections gives

V.y/ D
Z y

0

A.y/ dy:
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The fundamental theorem of calculus therefore implies that dV=dy D A.y/ and

hence that
dV

dt
D dV

dy
� dy

dt
D A.y/

dy

dt
: (29)

From Eqs. (28) and (29) we finally obtain

A.y/
dy

dt
D �a

p

2gy D �k
p

y; (30)

an alternative form of Torricelli’s law.

Example 6 Draining bowl A hemispherical bowl has top radius 4 ft and at time t D 0 is full

of water. At that moment a circular hole with diameter 1 in. is opened in the bottom

of the tank. How long will it take for all the water to drain from the tank?

Solution From the right triangle in Fig. 1.4.9, we see that

A.y/ D �r2 D �



16 � .4 � y/2
�

D �.8y � y2/:

With g D 32 ft=s2, Eq. (30) becomes

�.8y � y2/
dy

dt
D ��

�

1
24

�2p

2 � 32y I
Z

.8y1=2 � y3=2/ dy D �
Z

1
72

dt I

16
3

y3=2 � 2
5
y5=2 D � 1

72
t C C:

Now y.0/ D 4, so

C D 16
3

� 43=2 � 2
5

� 45=2 D 448
15

:

The tank is empty when y D 0, thus when

t D 72 � 448
15

� 2150 (s);

that is, about 35 min 50 s. So it takes slightly less than 36 min for the tank to drain.

Positive y-values

r

44 – y

y

FIGURE 1.4.9. Draining a
hemispherical tank.

1.4 Problems

Find general solutions (implicit if necessary, explicit if conve-

nient) of the differential equations in Problems 1 through 18.

Primes denote derivatives with respect to x.

1.
dy

dx
C 2xy D 0 2.

dy

dx
C 2xy2 D 0

3.
dy

dx
D y sin x 4. .1 C x/

dy

dx
D 4y

5. 2
p

x
dy

dx
D
p

1 � y2 6.
dy

dx
D 3

p
xy

7.
dy

dx
D .64xy/1=3 8.

dy

dx
D 2x sec y

9. .1 � x2/
dy

dx
D 2y 10. .1Cx/2 dy

dx
D .1Cy/2

11. y0 D xy3 12. yy0 D x.y2 C 1/

13. y3 dy

dx
D .y4 C 1/ cos x 14.

dy

dx
D 1 C

p
x

1 C p
y

15.
dy

dx
D .x � 1/y5

x2.2y3 � y/
16. .x2 C 1/.tan y/y0 D x

17. y0 D 1C x C y C xy (Suggestion: Factor the right-hand

side.)

18. x2y0 D 1 � x2 C y2 � x2y2

Find explicit particular solutions of the initial value problems

in Problems 19 through 28.

19.
dy

dx
D yex , y.0/ D 2e

20.
dy

dx
D 3x2.y2 C 1/, y.0/ D 1

21. 2y
dy

dx
D xp

x2 � 16
, y.5/ D 2

22.
dy

dx
D 4x3y � y, y.1/ D �3

23.
dy

dx
C 1 D 2y, y.1/ D 1

24.
dy

dx
D y cot x, y

�

1
2 �
�

D 1
2 �


