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Thomas’ Calculus: Early Transcendentals, Fifteenth Edition, continues its tradition of 

clarity and precision in calculus with a modern update to the popular text. The authors 

have worked diligently to add exercises, revise figures and narrative for clarity, and update 

many applications to modern topics. Thomas’ Calculus remains a modern and robust intro-

duction to calculus, focusing on developing conceptual understanding of the underlying 

mathematical ideas. This text supports a calculus sequence typically taken by students 

in STEM fields over several semesters. Intuitive and precise explanations, thoughtfully 

chosen examples, superior figures, and time-tested exercise sets are the foundation of this 

text. We continue to improve this text in keeping with shifts in both the preparation and the 

goals of today’s students, and in the applications of calculus to a changing world.

As Advanced Placement Calculus continues to grow in popularity for high school 

students, many instructors have communicated mixed reviews of the benefit for today’s 

university and community college students. Some instructors report receiving students 

with an overconfidence in their computational abilities coupled with underlying gaps in 

algebra and trigonometry mastery, as well as poor conceptual understanding. In this text, 

we seek to meet the needs of the increasingly varied population in the calculus sequence. 

We have taken care to provide enough review material (in the text and appendices), 

detailed solutions, and a variety of examples and exercises, to support a complete under-

standing of calculus for students at varying levels. Additionally, the MyLab Math course 

that accompanies the text provides significant support to meet the needs of all students. 

Within the text, we present the material in a way that supports the development of mathe-

matical maturity, going beyond memorizing formulas and routine procedures, and we 

show students how to generalize key concepts once they are introduced. References are 

made throughout, tying new concepts to related ones that were studied earlier. After 

studying calculus from Thomas, students will have developed problem-solving and rea-

soning abilities that will serve them well in many important aspects of their lives. 

Mastering this beautiful and creative subject, with its many practical applications across 

so many fields, is its own reward. But the real gifts of studying calculus are acquiring the 

ability to think logically and precisely; understanding what is defined, what is assumed, 

and what is deduced; and learning how to generalize conceptually. We intend this book to 

encourage and support those goals.

Preface



x Preface

New to This Edition

We welcome to this edition a new coauthor, Przemyslaw Bogacki from Old Dominion 

University. Przemek joined the team for the 4th edition of University Calculus and now 

joins the Thomas’ Calculus team. Przemek brings a keen eye for details as well as sig-

nificant experience in MyLab Math. Przemek has diligently reviewed every exercise and 

solution in MyLab Math for mathematical accuracy, fidelity with text methods, and effec-

tiveness for students. He has also recommended nearly 100 new Setup & Solve exercises 

and improved the sample assignments in MyLab. Przemek has also written the new appen-

dix on Optimization covering determinants, extreme values, and gradient descent.

The most significant update to this 15th edition includes new online chapters on 

Complex Functions, Fourier Series and Wavelets, and the new appendix on Optimization. 

These chapters can provide material for students interested in more advanced topics. The 

details are outlined below in the chapter descriptions.

We have also made the following updates:

• Many updated graphics and figures to bring out clear visualization and mathematical 

correctness.

• Many wording clarifications and revisions.

• Many instruction clarifications for exercises, such as suggesting where the use of a  

calculator may be needed.

• Notation of inverse trig functions favoring arcsin notation over sin 1− , etc.

New to MyLab Math

Pearson has continued to improve the general functionality of MyLab Math since the pre-

vious edition. Ongoing improvements to the grading algorithms, along with the develop-

ment of MyLab Math for our differential equations courses allows for more sophisticated 

acceptance of generic constants and better parsing of mathematical expressions.

• The full suite of interactive figures has been updated for accessibility meeting WCAG 

standards. The 180 figures are designed to be used in lecture as well as by students 

independently. The figures are editable using the freely available GeoGebra software. 

The figures were created by Marc Renault (Shippensburg University), Kevin Hopkins 

(Southwest Baptist University), Steve Phelps (University of Cincinnati), and Tim 

Brzezinski (Southington High School, CT).

• New! GeoGebra Exercises are gradable graphing and computational exercises that help 

students demonstrate their understanding. They enable students to interact directly with 

the graph in a manner that reflects how students would graph on paper.

• Nearly 100 additional Setup & Solve exercises have been created, selected by author 

Przemyslaw Bogacki. These exercises are designed to focus students on the process of 

problem solving by requiring them to set up their equations before moving on to the 

solution.

• Integrated Review quizzes and personalized homework are now built into all MyLab 

Math courses. No separate Integrated Review course is required.

• New online chapters and sections have exercises available, including exercises for the 

complex numbers and functions that many users have asked for.
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Chapter 1

• Section 1.2. Revised Example 4 to clarify the distinction 

between vertical and horizontal scaling of a graph.

• Section 1.3. Added new Figure 1.46, illustrating a geometric 

proof of the angle sum identities.

Chapter 2

• Section 2.2. New Example 11, illustrating the use of the 

Sandwich Theorem, with corresponding new Figure 2.14.

• Section 2.4. New subsection on “Limits at Endpoints of an 

Interval” added. New Example 2 added, illustrating limits at 

a boundary point of an interval.

• Section 2.5. Exercises 41–45 on limits involving trigonometric 

functions moved from Chapter 3.

• Additional and Advanced Exercises. Exercises 31–40 

on limits involving trigonometric functions moved from  

Chapter 3.

Chapter 3

• Section 3.8. Revised Figure 3.36 illustrating the relationship 

between slopes of graphs of inverse functions.

• Updated di�erentiation formulas involving exponential and 

logarithmic functions.

• Expanded Example 5.

• Expanded Example 7 to clarify the computation of the  

derivative of x .x

• Added new Exercises 11–14 involving the derivatives of 

inverse functions.

• Section 3.9. Updated di�erentiation formulas involving 

inverse trigonometric functions.

• Added new Example 3 to illustrate di�erentiating a compo-

sition involving the arctangent function.

• Rewrote the introduction to the subsection on the derivative 

of arcsec x.

• Section 3.10. Updated and improved related rates problem 

strategies, and correspondingly revised Examples 2–6.

Chapter 4

• Section 4.3. Added new Exercises 69–70.

• Section 4.4. Added new Exercises 107–108.

• Section 4.5. Improved the discussion of indeterminate forms.

• Expanded Example 1.

• Added new Exercises 19–20.

• Section 4.6. Updated and improved strategies for solving 

applied optimization problems.

• Added new Exercises 33–34.

• Section 4.8. Added Table 4.3 of integration formulas.

Chapter 5

• Section 5.1. The Midpoint Rule and the associated formula 

for calculating an integral numerically were given a more 

central role and used to introduce a numerical method.

• Section 5.3. New basic theory Exercise 89. Integrals of func-

tions that di�er at one point.

• Section 5.6. New Exercises 113–116. Compare areas using 

graphics and computation.

Chapter 6

Section 6.2. Discussion of cylinders in Example 1 clarified.

Chapter 7

• Clarified derivative formulas involving x versus those involv-

ing a di�erentiable function u.

• Section 7.1. Rewrote material on Logarithms and Laws on  

Exponents. Exercises 63–66 moved from Chapter 4. New 

Exer cise 67 added.

Chapter 8

• Section 8.3. Clarified computing integrals involving powers 

of sines and cosines. Exercise 42 replaced. Exercises 51 and 

52 added.

• Section 8.4. Ordering of exercises was updated.

• Section 8.5. Discussion of the method of partial fractions 

rewritten and clarified.

• Section 8.7. New subsection on the Midpoint Rule added. 

Discussion of Error Analysis expanded to include the Mid-

point Rule. Exercises 1–10 expanded to include the Mid-

point Rule.

• Section 8.8. Discussion of infinite limits of integration clari-

fied. Material on Tests for Convergence and Divergence, 

including the Direct Comparison Test and the Limit Com-

parison Test, their proofs, and associated examples, all 

revised. New Exercises 69–80 added.

Chapter 9

• Section 9.2. Added Figure 9.9.

• Section 9.4. Added a new application of the logistic function 

showing its connection to Machine Learning and Neural Net-

works. Added New Exercises 21–22 on the Logistic Equation.

Content Enhancements
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Chapter 10

• Section 10.2. Solution to Example 2 replaced. Solution to 

Example 8 replaced.

• Section 10.3. Solution to Example 5 revised.

• Section 10.5. Exercise 71 added.

• Section 10.6. Proof of Theorem 15 replaced. Discussion of 

Theorem 16 revised.

• Section 10.7. Discussion of absolute convergence added to 

the solution of Example 3. Figure 10.21 revised. New Exer-

cises 40–41 added. Exercise 66 entirely rewritten.

• Section 10.8. Ordering of Exercises was revised. New Exer-

cises 47 and 52 added.

• Section 10.9. Discussion of Taylor series between Examples 4 

and 5 rewritten.

• Section 10.10. Exercise 9 replaced.

• Practice Exercises. New Exercises 45–46 added.

• Additional and Advanced Exercises. New Exercises 30–31 

added.

Chapter 12

• Section 12.2. New subsection on Vectors in n Dimensions 

added, with corresponding new Figure 12.19, and new Exer-

cises 60–65.

• Section 12.3. New subsection on The Dot Product of Two 

n-Dimensional Vectors added, with new Example 9, and new 

Exercises 53–56.

• Section 12.6. Discussion of cylinders revised.

Chapter 13

Section 13.5. New Exercises 1–2 and 5–6 added.

Chapter 14

• Section 14.2. Added a Composition Rule to Theorem 1 and 

expanded Example 1.

• Section 14.3. Rewrote the concept of di�erentiability for 

functions of several variables to improve clarity.

• Expanded Example 8.

• Section 14.4. Added new Exercises 62–63 on the chain rule 

with multiple variables.

• Section 14.5. Added a new subsection on gradients for Func-

tions of More Than Three Variables.

• A new Example 7 illustrates a gradient of a 3-variable  

function.

• New Exercises 45–52 involve gradients of functions with 

several variables.

• Section 14.7. Added a definition of the Hessian matrix.

• Clarified Example 6.

• Section 14.8. Clarified the use of Lagrange Multipliers 

throughout, with a more explicit discussion of how to use 

them for finding maxima and minima.

Chapter 15

• Section 15.2. Added discussion of the properties of limits of 

iterated double integrals.

• Rewrote Exercises 1–8. Added new Exercises 19–26.

• Section 15.5. Added discussion of the properties of limits of 

iterated triple integrals. Revised and expanded Example 2.

• Section 15.7. Revised Figure 15.55 to clarify the shape of a 

spherical wedge involved in triple integration.

Appendices 

Rewrote Appendix A.7 to replace the prime notation with the 

subscript notation.

New Online Appendix B

B.1 Determinants

B.2  Extreme Values and Saddle Points for Functions of More 

than Two Variables

B.3 The Method of Gradient Descent

This new appendix covers many topics relevant to students 

interested in Machine Learning and Neural Networks.

New Online Chapter 18—Complex Functions 

This new online chapter gives an introduction to complex func-

tions. Section 1 is an introduction to complex numbers and their 

operations. It replaces Appendix A.7. Section 2 covers limits 

and continuity for complex functions. Section 3 introduces com-

plex derivatives and Section 4 the Cauchy-Riemann Equations. 

Section 5 develops the theory of complex series. Section 6 studies 

the standard functions such as sin z and Log z, and Section 7 ends 

the chapter by introducing the theory of conformal maps.

New Online Chapter 19—Fourier Series and Wavelets 

This new online chapter introduces Fourier series, and then 

treats wavelets as a more advanced topic.

It has sections on

19.1 Periodic Functions

19.2 Summing Sines and Cosines

19.3 Vectors and Approximation in Three and More Dimensions

19.4 Approximation of Functions

19.5 Advanced Topic: The Haar System and Wavelets
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Continuing Features

Rigor The level of rigor is consistent with that of earlier editions. We continue to distin-

guish between formal and informal discussions and to point out their differences. Starting 

with a more intuitive, less formal approach helps students understand a new or difficult con-

cept so they can then appreciate its full mathematical precision and outcomes. We pay atten-

tion to defining ideas carefully and to proving theorems appropriate for calculus students, 

while mentioning deeper or subtler issues they would study in a more advanced course. Our 

organization and distinctions between informal and formal discussions give the instructor a 

degree of flexibility in the amount and depth of coverage of the various topics. For example, 

while we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for 

continuous functions on a closed finite interval, we do state these theorems precisely, illus-

trate their meanings in numerous examples, and use them to prove other important results. 

Furthermore, for those instructors who desire greater depth of coverage, in Appendix A.6 we 

discuss the reliance of these theorems on the completeness of the real numbers.

Writing Exercises Writing exercises placed throughout the text ask students to explore 

and explain a variety of calculus concepts and applications. In addition, the end of each 

chapter contains a list of questions for students to review and summarize what they have 

learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects In addition to problems appearing after each 

section, each chapter culminates with review questions, practice exercises covering the 

entire chapter, and a series of Additional and Advanced Exercises with more challenging 

or synthesizing problems. Most chapters also include descriptions of several Technology 

Application Projects that can be worked by individual students or groups of students over 

a longer period of time. These projects require the use of Mathematica or Maple, along 

with pre-made files that are available for download within MyLab Math.

Writing and Applications This text continues to be easy to read, conversational, and 

mathematically rich. Each new topic is motivated by clear, easy-to-understand examples 

and is then reinforced by its application to real-world problems of immediate interest to 

students. A hallmark of this book has been the application of calculus to science and engi-

neering. These applied problems have been updated, improved, and extended continually 

over the last several editions.

Technology In a course using the text, technology can be incorporated according to the 

taste of the instructor. Each section contains exercises requiring the use of technology; 

these are marked with a T if suitable for calculator or computer use, or they are labeled 

Computer Explorations if a computer algebra system (CAS, such as Maple or Math-

ematica) is required.

MyLab Math Resources for Success

MyLab™ Math is available to accompany Pearson’s market-leading text options, includ-

ing Thomas’ Calculus: Early Transcendentals, 15th Edition (access code required).

MyLab is the teaching and learning platform that empowers you to reach every  

student. MyLab Math combines trusted author content—including full eText and assess-

ment with immediate feedback—with digital tools and a flexible platform to personalize 

the learning experience and improve results for each student.

MyLab Math supports all learners, regardless of their ability and background, to provide 

an equal opportunity for success. Accessible resources support learners for a more equitable 

experience no matter their abilities. And options to personalize learning and address individ-

ual gaps help to provide each learner with the specific resources they need to achieve success.
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Student Resources
Pearson eText—The eText is “reflowable” to adapt to use on tablets and smartphones. 

You can insert your own highlights, notes, and bookmarks. It is also fully accessible using 

screen-readers. Download the Pearson+ app to access your eText on your smartphone or 

tablet anytime—even offline.

Study Slides—PowerPoint slides featuring key ideas and examples are available 

for students within the Video & Resource Library. These slides are compatible with 

screen readers.

Address Under-Preparedness—Each student learns at a different pace. Personalized 

learning pinpoints the precise areas where each student needs practice, giving all students 

the support they need—when and where they need it—to be successful.

New! Integrated Review can be used for just-in-time prerequisite review.

• Integrated Review at the chapter level provides a Skills Check assessment to pin-

point which prerequisite topics, if any, students need to review.

• Students who require additional review proceed to a personalized homework  

assignment to remediate.

• Integrated Review videos provide additional instruction.

Instructors that prefer to review at the section level can assign the Enhanced 

Assignments instead.

Personalized Homework—With Personalized Homework, students take a quiz or test and 

receive a subsequent homework assignment that is personalized based on their performance. 

This way, students can focus on just the topics they have not yet mastered.

Motivate Your Students—Students are motivated to succeed when they’re engaged in the 

learning experience and understand the relevance and power of math.

▼ Interactive Figures bring mathematical concepts to life, helping students see the 

concepts through directed explorations and purposeful manipulation. Many of the  

instructional videos that accompany the text include Interactive Figures to teach key 

concepts. These figures are assignable in MyLab Math and encourage active learning, 

critical thinking, and conceptual understanding. The figures were created by Marc  

Renault (Shippensburg University), Steve Phelps (University of Cincinnati), Kevin Hopkins 

(Southwest Baptist University), and Tim Brzezinski (Southington High School, CT).
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▼ Instructional videos—Hundreds of videos are available as learning aids within  

exercises and for self-study under the Video and Resource Library.

Other student resources include:

• Student’s Solutions Manual The Student’s Solutions Manual provides detailed 

worked-out solutions to the odd-numbered exercises in Thomas’ Calculus: Early Tran-

scendentals. Available in MyLab Math.

• Just-In-Time Algebra and Trigonometry for Early Transcendentals Calculus, 

Fourth Edition ISBN: 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 

Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller 

and Ronald I. Brent is designed to bolster these skills while students study calculus. As 

students make their way through calculus, this brief supplementary text is with them 

every step of the way, showing them the necessary algebra or trigonometry topics and 

pointing out potential problem spots. The easy-to-use table of contents arranges topics 

in the order in which students will need them as they study calculus. This supplement 

is available in print only.

Instructor Resources
Your course is unique. So, whether you’d like to build your own assignments, teach mul-

tiple sections, or set prerequisites, MyLab gives you the flexibility to easily create your 

course to fit your needs.

Instructor’s eText—A page-for-page eText is available within the Instructor Resources 

section of MyLab Math.

Pre-Built Assignments are designed to maximize students’ performance. All assignments 

are fully editable to make your course your own.

New! Video Assignments featuring short videos with corresponding MyLab Math exercises 

are available for each section of the textbook. These editable assignments are especially help-

ful for online or “flipped” classes, where some or all the learning takes place independently.

Enhanced Assignments—These section-level assignments have three unique properties:

1. They help keep skills fresh with spaced practice of previously learned concepts.

2. Learning aids are strategically turned off for some exercises to ensure students under-

stand how to work the exercises independently.

3. They contain personalized prerequisite skills exercises for gaps identified in the  

chapter-level Skills Check Quiz.
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MyLab Math Question Library is correlated to the exercises in the text, reflecting the 

authors’ approach and learning style. They regenerate algorithmically to give students 

unlimited opportunity for practice and mastery. Below are a few exercise types available 

to assign:

▼ New! GeoGebra Exercises are gradable graphing and computational exercises that 

help students demonstrate their understanding. They enable students to interact directly 

with the graph in a manner that reflects how students would graph on paper.

• Nearly 100 More! Setup & Solve Exercises require students to first describe how they 

will set up and approach the problem. This reinforces conceptual understanding of the 

process applied in approaching the problem, promotes long-term retention of the skill, 

and mirrors what students will be expected to do on a test. This new exercise type was 

widely praised by users of the 14th edition, so more were added to the 15th edition.

• Conceptual Question Library focuses on deeper, theoretical understanding of the key  

concepts in calculus. These questions were written by faculty at Cornell University under 

a National Science Foundation grant and are also assignable through Learning Catalytics.

Learning Catalytics—With Learning Catalytics, you’ll hear from every student when it 

matters most. You pose a variety of questions in class (choosing from pre-loaded questions 

or your own) that help students recall ideas, apply concepts, and develop critical-thinking 

skills. Your students respond using their own smartphones, tablets, or laptops.

Performance Analytics enable instructors to see and analyze student performance across 

multiple courses. Based on their current course progress, individuals’ performance is iden-

tified above, at, or below expectations through a variety of graphs and visualizations.

Now included with Performance Analytics, Early Alerts use predictive analytics to 

identify struggling students—even if their assignment scores are not a cause for concern. 
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In both Performance Analytics and Early Alerts, instructors can email students individu-

ally or by group to provide feedback.

Accessibility—Pearson works continuously to ensure our products are as accessible as 

possible to all students. Currently, we are working toward achieving WCAG 2.0 AA for 

our existing products (2.1 AA for future products) and Section 508 standards, as expressed 

in the Pearson Guidelines for Accessible Educational Web Media (https://www.pearson 

.com/us/accessibility.html).

Other instructor resources include:

• Instructor’s Solutions Manual—The Instructor’s Solutions Manual provides com-

plete worked-out solutions for all exercises in Thomas’ Calculus: Early Transcen-

dentals. It can be downloaded from within MyLab Math or from Pearson’s online 

catalog at www.pearson.com.

• PowerPoint Lecture Slides feature editable lecture slides written and designed spe-

cifically for this text, including figures and examples.

• TestGen enables instructors to build, edit, print, and administer tests using a com-

puterized bank of questions developed to cover all the objectives of the text. TestGen 

is algorithmically based, allowing instructors to create multiple but equivalent ver-

sions of the same questions or test with the click of a button. Instructors can also 

modify test bank questions or add new questions. The software and test bank are 

available for download at www.pearson.com.

• Technology Manuals and Projects

Maple Manual and Projects

Mathematica Manual and Projects

TI-Graphing Calculator Manual

These manuals and projects cover Maple 2021, Mathematica 12, and TI-84 Plus and 

TI-89. Each manual provides detailed guidance for integrating a specific software 

package or graphing calculator throughout the course, including syntax and com-

mands. The projects include instructions and ready-made application files for Maple 

and Mathematica. Available to download within MyLab Math.

Learn more at pearson.com/mylab/math.

http://pearson.com/mylab/math
http://www.pearson.com/
http://www.pearson.com/
https://www.pearson.com/us/accessibility.html
https://www.pearson.com/us/accessibility.html
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OVERVIEW In this chapter we review what functions are and how they are visualized as 

graphs, how they are combined and transformed, and ways they can be classified.

Functions

1 

DEFINITION A function  f  from a set D to a set Y is a rule that assigns a single 

value f x( ) in Y to each x in D.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 

represented by an equation, a graph, a numerical table, or a verbal description; we will use 

all four representations throughout this text. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-

est paid on a cash investment depends on the length of time the investment is held. The 

area of a circle depends on the radius of the circle. The distance an object travels depends 

on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 

variable quantity, which we often call x. We say that “y is a function of x” and write this 

symbolically as

y f x y f x( ) “ equals of ” .( )=

The symbol  f  represents the function, the letter x is the independent variable represent-

ing the input value to f, and y is the dependent variable or output value of  f  at x.

A rule that assigns more than one value to an input x, such as the rule that assigns to a 

positive number both the positive and negative square roots of the number, does not describe 

a function.

The set D of all possible input values is called the domain of the function. The domain of  f  

will sometimes be denoted by D f( ). The set of all output values f x( ) as x varies throughout D 

is called the range of the function. The range might not include every element in the set Y. The 

domain and range of a function can be any sets of objects, but often in calculus they are sets of 

real numbers interpreted as points of a coordinate line. (In Chapters 13–16, we will encounter 

functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 

from the input variable. For instance, the equation π=A r 2 is a rule that calculates the 

area A of a circle from its radius r. When we define a function  f  with a formula y f x( )=  

and the domain is not stated explicitly or restricted by context, the domain is assumed to be 
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the largest set of real x-values for which the formula gives real y-values. This is called the 

natural domain of  f. If we want to restrict the domain in some way, we must say so. The 

domain of =y x 2 is the entire set of real numbers. To restrict the domain of the function 

to, say, positive values of x, we would write “ = >y x x, 02 .”

Changing the domain to which we apply a formula usually changes the range as well. 

The range of =y x 2 is [ )∞0, . The range of = ≥y x x, 22 , is the set of all numbers 

obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix A.1),  

the range is { }≥x x 22  or { }≥y y 4  or [ )∞4, .

When the range of a function is a set of real numbers, the function is said to be  

real-valued. The domains and ranges of most real-valued functions we consider are inter-

vals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function  f  is like a machine that produces an output value f x( ) in its range when-

ever we feed it an input value x from its domain (Figure 1.1). The function keys on a 

calculator give an example of a function as a machine. For instance, whenever you enter 

a nonnegative number x and press the x  key, the calculator gives an output value (the 

square root of x).

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow asso-

ciates to an element of the domain D a single element in the set Y. In Figure 1.2, the 

arrows indicate that f a( ) is associated with a, f x( ) is associated with x, and so on. Notice 

that a function can have the same output value for two different input elements in  

the domain (as occurs with f a( ) in Figure 1.2), but each input element x is assigned a 

single output value f x( ).

EXAMPLE 1  Verify the natural domains and associated ranges of some simple  

functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain x( ) Range y( )

y x 2= −( )∞ ∞, [ )∞0,

y x1= −( ) ( )∞ ∪ ∞, 0 0, −( ) ( )∞ ∪ ∞, 0 0,

y x= [ )∞0, [ )∞0,

y x4= − −( ]∞, 4 [ )∞0,

y x1 2= − −[ ]1,1 [ ]0,1

Solution The formula =y x 2 gives a real y-value for any real number x, so the domain is 

,−( )∞ ∞ . The range of =y x 2 is [ )∞0,  because the square of any real number is non-

negative and every nonnegative number y is the square of its own square root: ( )=y y
2
.

The formula y x1=  gives a real y-value for every x except =x 0. For consistency 

in the rules of arithmetic, we cannot divide any number by zero. The range of y x1= , the 

set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 

( )=y y1 1 . That is, for ≠y 0 the number x y1=  is the input that is assigned to the 

output value y.

The formula y x=  gives a real y-value only if ≥x 0. The range of =y x  is 

[ )∞0,  because every nonnegative number is some number’s square root (namely, it is the 

square root of its own square).

In = −y x4 , the quantity − x4  cannot be negative. That is, − ≥x4 0,  

or ≤x 4. The formula gives nonnegative real y-values for all ≤x 4. The range of − x4  

is [ )∞0, , the set of all nonnegative numbers.

The formula y x1 2= −  gives a real y-value for every x in the closed interval from 

1−  to 1. Outside this domain, − x1 2 is negative and its square root is not a real number. 

The values of − x1 2 vary from 0 to 1 on the given domain, and the square roots of these 

values do the same. The range of − x1 2  is [ ]0,1 . 

FIGURE 1.1 A diagram showing a func-

tion as a kind of machine.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.2 A function from a set D to  

a set Y assigns a unique element of Y to 

each element in D.

x

a f (a) f (x)

D = domain set Y = set containing
the range



 1.1  Functions and Their Graphs 3

Graphs of Functions

If  f  is a function with domain D, its graph consists of the points in the Cartesian plane 

whose coordinates are the input-output pairs for  f. In set notation, the graph is

x f x x D, ( ) .( ){ }∈

The graph of the function f x x( ) 2= +  is the set of points with coordinates ( )x y,  

for which = +y x 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function  f  is a useful picture of its behavior. If ( )x y,  is a point on the 

graph, then y f x( )=  is the height of the graph above (or below) the point x. The height 

may be positive or negative, depending on the sign of f x( ) (Figure 1.4).

FIGURE 1.3 The graph of f x x( ) 2= +  

is the set of points x y,( ) for which y has the 

value x 2+ .

x

y

- 2 0

2

y  = x + 2

FIGURE 1.4 If x y,( ) lies on the graph 

of f, then the value y f x( )=  is the height 

of the graph above the point x (or below x if 

f x( ) is negative).

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

x =y x 2

−2 4

−1 1

0 0

1 1

3

2

9

4

2 4 EXAMPLE 2  Graph the function =y x 2 over the interval −[ ]2, 2 .

Solution Make a table of xy-pairs that satisfy the equation =y x 2. Plot the points ( )x y,  

whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 

through the plotted points (see Figure 1.5). 

How do we know that the graph of =y x 2 doesn’t look like one of these curves?

FIGURE 1.5 Graph of the function 

in Example 2.

0 1 2- 1- 2

1

2

3

4
(- 2, 4)

(- 1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a   b
y = x2?

x

y

y = x2?

x

y

To find out, we could plot more points. But how would we then connect them? The basic 

question still remains: How do we know for sure what the graph looks like between the 

points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 

we will have to settle for plotting points and connecting them as best we can.
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Representing a Function Numerically

A function may be represented algebraically by a formula and visually by a graph 

(Example 2). Another way to represent a function is numerically, through a table of val-

ues. From an appropriate table of values, a graph of the function can be obtained using the 

method illustrated in Example 2, possibly with the aid of a computer. The graph consisting 

of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 

Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 

produced by a tuning fork. The table provides a representation of the pressure function 

(in micropascals) over time. If we first make a scatterplot and then draw a smooth curve 

that approximates the data points ( )t p,  from the table, we obtain the graph shown in  

the figure.

Time Pressure

0.00091 −0.080

0.00108 0.200

0.00125 0.480

0.00144 0.693

0.00162 0.816

0.00180 0.844

0.00198 0.771

0.00216 0.603

0.00234 0.368

0.00253 0.099

0.00271 −0.141

0.00289 −0.309

0.00307 −0.348

0.00325 −0.248

0.00344 −0.041

0.00362 0.217

0.00379 0.480

0.00398 0.681

0.00416 0.810

0.00435 0.827

0.00453 0.749

0.00471 0.581

0.00489 0.346

0.00507 0.077

0.00525 −0.164

0.00543 −0.320

0.00562 −0.354

0.00579 −0.248

0.00598 −0.035

FIGURE 1.6 A smooth curve approximating the  

plotted points gives a graph of the pressure function  

represented by the accompanying tabled data  

(Example 3).

−0.4

−0.2

0.2

0.4

0.6

0.8

1.0

−0.6

t (sec)

p (pressure, mPa)

0.001 0.002 0.004 0.0060.003 0.005

Data

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function  f  can 

have only one value f x( ) for each x in its domain, so no vertical line can intersect the graph 

of a function at more than one point. If a is in the domain of the function f, then the vertical 

line =x a will intersect the graph of  f  at the single point a f a, ( )( ).
A circle cannot be the graph of a function, since some vertical lines intersect the circle 

twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 

x, namely the upper semicircle defined by the function f x x( ) 1 2= −  and the lower 

semicircle defined by the function g x x( ) 1 2
−= −  (Figures 1.7b and 1.7c).

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The 

upper semicircle is the graph of the function f x x( ) 1 2= − . (c) The lower semicircle is the 

graph of the function g x x( ) 1 2
−= − .

- 1 10
x

y

(a) x2 + y2 = 1

- 1 10
x

y

- 1 1

0
x

y

(b) y = "1 - x2 (c) y = -"1 - x2
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Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 

of its domain. One example is the absolute value function

=
≥

− <









x
x x

x x

, 0

, 0

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 

function equals x if ≥x 0, and equals −x if <x 0. Piecewise-defined functions often 

arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4  The function

=

− <

≤ ≤

>











f x

x x

x x

x

( )

, 0

, 0 1

1, 1

First formula

Second formula

Third formula

2

is defined on the entire real line but has values given by different formulas, depending on 

the position of x. The values of  f  are given by −=y x  when < =x y x0, 2 when 

≤ ≤x0 1, and =y 1 when >x 1. The function, however, is just one function whose 

domain is the entire set of real numbers (Figure 1.9). 

EXAMPLE 5  The function whose value at any number x is the greatest integer less 

than or equal to x is called the greatest integer function or the integer floor function. It 

is denoted  x . Figure 1.10 shows the graph. Observe that

− −

− − − −

       

       

= = = =

= = = =

2.4 2, 1.9 1, 0 0, 1.2 2,

2 2, 0.2 0, 0.3 1, 2 2.

EXAMPLE 6  The function whose value at any number x is the smallest integer greater 

than or equal to x is called the least integer function or the integer ceiling function. It 

is denoted  x . Figure 1.11 shows the graph. For positive values of x, this function might 

represent, for example, the cost of parking x hours in a parking lot that charges $1 for each 

hour or part of an hour. 

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 

function is increasing. If the graph descends or falls as you move from left to right, the 

function is decreasing.

FIGURE 1.10 The graph of the greatest 

integer function y x =  lies on or below 

the line y x= , so it provides an integer 

floor for x (Example 5).

1

- 2

2

3

- 2 - 1 1 2 3

y = x

y = :x ;

x

y

FIGURE 1.11 The graph of the least 

integer function y x =  lies on or above 

the line y x= , so it provides an integer 

ceiling for x (Example 6).

x

y

1- 1- 2 2 3

- 2

- 1

1

2

3
y = x

y = <x=

FIGURE 1.8 The absolute value function 

has domain ,−( )∞ ∞  and range 0,[ )∞ .

x

y = 0 x 0
y = x

y = - x

y

- 3 - 2 - 1 0 1 2 3

1

2

3

FIGURE 1.9 To graph the function 

y f x( )=  shown here, we apply different 

formulas to different parts of its domain 

(Example 4).

- 2 - 1 0 1 2

1

2

x

y

y = - x

y = x2

y = 1

y = f (x)

DEFINITIONS Let  f  be a function defined on an interval I and let x1 and x 2 be 

two distinct points in I.

1. If >f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be increasing on I.

2. If <f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 

must be satisfied for every pair of points x1 and x 2 in I with <x x1 2. Because we use the 

inequality < to compare the function values, instead of ≤, it is sometimes said that  f  is 

strictly increasing or decreasing on I. The interval I may be finite (also called bounded) 

or infinite (unbounded).
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EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on , 0−( )∞  and increas-

ing on ( )0,1 . The function is neither increasing nor decreasing on the interval ( )∞1,  because 

the function is constant on that interval, and hence the strict inequalities in the definition of 

increasing or decreasing are not satisfied on ( )∞1, . 

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

FIGURE 1.12 (a) The graph  

of y x 2=  (an even function)  

is symmetric about the y-axis.  

(b) The graph of y x 3=  (an odd 

function) is symmetric about the 

origin.

(a)

(b)

0
x

y

y = x2

(x, y)(- x, y)

0
x

y

y = x3

(x, y)

(- x, - y)

DEFINITIONS A function y f x( )=  is an

−

− =

− =

x

x

f x f x

f x f x

even function of

odd function of

if ( ) ( ),

if ( ) ( ),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 

=y x 2 or =y x 4, it is an even function of x because − =x x( )2 2 and − =x x( )4 4. If  

y is an odd power of x, as in =y x  or =y x 3, it is an odd function of x because 

−− =x x( )1  and −− =x x( )3 3.

The graph of an even function is symmetric about the y-axis. Since − =f x f x( ) ( ),  

a point ( )x y,  lies on the graph if and only if the point −( )x y,  lies on the graph (Fig-

ure 1.12a). A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since −− =f x f x( ) ( ),  

a point ( )x y,  lies on the graph if and only if the point − −( )x y,  lies on the graph (Fig-

ure 1.12b). Equivalently, a graph is symmetric about the origin if a rotation of 180° 

about the origin leaves the graph unchanged.

Notice that each of these definitions requires that both x and −x be in the domain of  f.

EXAMPLE 8  Here are several functions illustrating the definitions.

f x x( ) 2= Even function: − =x x( )2 2 for all x; symmetry about y-axis. So 

− = =f f( 3) 9 (3). Changing the sign of x does not change the 

value of an even function. 

f x x( ) 12= +  Even function: − + = +x x( ) 1 12 2  for all x; symmetry about 

y-axis (Figure 1.13a).

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0- 1

1

y = x + 1

y = x

FIGURE 1.13 (a) When we add the constant term 1 to the function y x 2= , 

the resulting function y x 12= +  is still even and its graph is still symmetric 

about the y-axis. (b) When we add the constant term 1 to the function y x= ,  

the resulting function y x 1= +  is no longer odd, since the symmetry about 

the origin is lost. The function y x 1= +  is also not even (Example 8).
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f x x( ) = Odd function: −− =x x( )  for all x; symmetry about the origin. So 

−− =f ( 3) 3 while f (3) 3= . Changing the sign of x changes the 

sign of the value of an odd function.

f x x( ) 1= + Not odd: −− = +f x x( ) 1, but f x x( ) 1−− = − . The two are not 

equal.

Not even: − + ≠ +x x( ) 1 1 for all ≠x 0 (Figure 1.13b).

Common Functions

A variety of important types of functions are frequently encountered in calculus.

Linear Functions A function of the form f x mx b( ) = + , where m and b are fixed 

constants, is called a linear function. Figure 1.14a shows an array of lines f x mx( ) = . 

Each of these has =b 0, so these lines pass through the origin. The function f x x( ) = , 

where =m 1 and =b 0, is called the identity function. Constant functions result when 

the slope is =m 0 (Figure 1.14b).

DEFINITION Two variables y and x are proportional (to one another) if one 

is always a constant multiple of the other—that is, if =y kx for some nonzero 

constant k.

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function 

with slope =m 0.

0
x

y
m = - 3 m = 2

m = 1m = - 1

y = - 3x

y = - x

y = 2x

y = x

y = x
1

2

m =
1

2

(a)

x

y

0 1 2

1

2 y =
3
2

(b)

If the variable y is proportional to the reciprocal x1 , then sometimes it is said that y is 

inversely proportional to x (because x1  is the multiplicative inverse of x).

Power Functions A function f x x( ) a= , where a is a constant, is called a power 

function. There are several important cases to consider.

(a) f x x( ) a=  with =a n, a positive integer.

The graphs of f x x( ) n= , for =n 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-

tions are defined for all real values of x. Notice that as the power n gets larger, the curves 

tend to flatten toward the x-axis on the interval −( )1,1  and to rise more steeply for >x 1.  

Each curve passes through the point ( )1,1  and through the origin. The graphs of functions 

with even powers are symmetric about the y-axis; those with odd powers are symmetric about 

the origin. The even-powered functions are decreasing on the interval , 0−( ]∞  and increasing 

on [ )∞0, ; the odd-powered functions are increasing over the entire real line ,−( )∞ ∞ .
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FIGURE 1.15 Graphs of = =f x x n( ) , 1, 2, 3, 4, 5n , defined for x−∞ < < ∞.

- 1 0 1

- 1

1

x

y
y = x2

- 1 10

- 1

1

x

y
y = x

- 1 10

- 1

1

x

y
y = x3

- 1 0 1

- 1

1

x

y
y = x4

- 1 0 1

- 1

1

x

y
y = x5

FIGURE 1.16 Graphs of the power functions f x x( ) a= . 

(a) a 1−= . (b) a 2−= .

x

y

x

y

0

1

1

0

1

1

y =
1
x y =

1

x2

Domain: x Z 0

Range:   y Z 0
Domain: x Z 0

Range:   y 7 0

(a) (b)

FIGURE 1.17 Graphs of the power functions f x x( ) a=  for =a
1

2
,

1

3
,

3

2
, and

2

3
.

y

x
0

1

1

y = x3>2

Domain:

Range:

0 … x 6 q

0 … y 6 q

y

x

Domain:

Range:
- q 6 x 6 q

0 … y 6 q 

0

1

1

y = x2>3

x

y

0 1

1

Domain:

Range:

0 … x 6 q 

0 … y 6 q

y =  !x

x

y

Domain:

Range:
- q 6 x 6 q

- q 6 y 6 q

1

1

0

3
y =  !x

(b) f x x( ) a=  with −=a 1 or −=a 2.

The graphs of the functions f x x x( ) 11= =−  and f x x x( ) 12 2
= =−  are shown in 

Figure 1.16. Both functions are defined for all ≠x 0 (you can never divide by zero). The 

graph of =y x1  is the hyperbola =xy 1, which approaches the coordinate axes far from 

the origin. The graph of =y x1 2 also approaches the coordinate axes. The graph of the 

function f x x( ) 1=  is symmetric about the origin; this function is decreasing on the 

intervals , 0−( )∞  and ( )∞0, . The graph of the function f x x( ) 1 2
=  is symmetric about 

the y-axis; this function is increasing on , 0−( )∞  and decreasing on ( )∞0, .

(c) f x x( ) a=  with =a
1

2
,

1

3
,

3

2
,  or 

2

3
.

The functions f x x x( ) 1 2= =  and f x x x( ) 1 3 3
= =  are the square root and 

cube root functions, respectively. The domain of the square root function is [ )∞0, , but 

the cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, 

along with the graphs of =y x 3 2 and =y x .2 3  (Recall that =x x( )3 2 1 2 3 and 

=x x( ) .2 3 1 3 2 )
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Polynomials A function p is a polynomial if

= + + + +
−

−p x a x a x a x a( ) ,n
n

n
n

1
1

1 0�

where n is a nonnegative integer and the numbers …a a a a, , , , n0 1 2  are real constants 

(called the coefficients of the polynomial). All polynomials have domain ,−( )∞ ∞ . If the 

leading coefficient ≠a 0n , then n is called the degree of the polynomial. Linear functions 

with ≠m 0 are polynomials of degree 1. Polynomials of degree 2, usually written as 

= + +p x ax bx c( ) 2 , are called quadratic functions. Likewise, cubic functions are 

polynomials = + + +p x ax bx cx d( ) 3 2  of degree 3. Figure 1.18 shows the graphs of 

three polynomials. Techniques to graph polynomials are studied in Chapter 4.

FIGURE 1.18 Graphs of three polynomial functions.

x

y

0

y =  -      -  2x + 
x3

3

x2

2

1

3

(a)

y

x
- 1 1 2

2

- 2

- 4

- 6

- 8

- 10

- 12

y =  8x4 - 14x3 - 9x2 + 11x - 1

(b)

- 1 0 1 2

- 16

16

x

y

y =  (x - 2)4(x + 1)3(x - 1)

(c)

- 2- 4 2 4

- 4

- 2

2

4

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called 

asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.

(a) (b) (c)

2 4- 4 - 2

- 2

2

4

- 4

x

y

y =
2x2 - 3
7x +  4

0

- 2

- 4

- 6

- 8

2- 2- 4 4 6

2

4

6

8

x

y

y =
11x +  2

2x3 -  1

- 5 0

1

2

- 1

5 10

- 2

x

y

Line y =
5
3

y =
5x2 +  8x -  3

3x2 +  2

Rational Functions A rational function is a quotient or ratio =f x p x q x( ) ( ) ( ), 

where p and q are polynomials. The domain of a rational function is the set of all real x for 

which ≠q x( ) 0. The graphs of three rational functions are shown in Figure 1.19.

Algebraic Functions Any function constructed from polynomials using algebraic oper-

ations (addition, subtraction, multiplication, division, and taking roots) lies within the class 

of algebraic functions. All rational functions are algebraic, but also included are more 
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FIGURE 1.22 Graphs of exponential functions.

(a) (b)

y = 2-x

y = 3-x

y = 10-x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

y = 2x

y = 3x

y = 10x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.20 Graphs of three algebraic functions.

(a)

4-1

-3

-2

-1

1

2

3

4

x

y y = x1>3(x - 4)

(b)

0

y

x

y = (x2 - 1)2>33
4

(c)

11-1 0

-1

1

x

y

5

7

y = x(1 - x)2>5

FIGURE 1.21 Graphs of the sine and cosine functions.

y

x

1

- 1

p 2p

3p

(a)  f (x) = sin x

0

y

x

1

- 1

p

2

3

2 2

(b)  f (x) = cos x

0

p

2
- 

p

- p

5p

complicated functions (such as those satisfying an equation like − + =y xy x9 03 3 , 

studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in  

Section 1.3. The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions A function of the form f x a( ) x= , where >a 0 and ≠a 1,  

is called an exponential function (with base a). All exponential functions have domain 

,−( )∞ ∞  and range ( )∞0, , so an exponential function never assumes the value 0. We 

discuss exponential functions in Section 1.5. The graphs of some exponential functions are 

shown in Figure 1.22.
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Logarithmic Functions These are the functions f x x( ) loga= , where the base a 1≠  

is a positive constant. They are the inverse functions of the exponential functions, and we 

discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four logarithmic 

functions with various bases. In each case the domain is ( )∞0,  and the range is ,−( )∞ ∞ .

FIGURE 1.23 Graphs of four loga-

rithmic functions.

1

- 1

1

0
x

y

y = log3x

y = log10x

y = log2x

y = log5x

FIGURE 1.24 Graph of a catenary or 

hanging cable. (The Latin word catena 

means “chain.”)

- 1 10

1

x

y

Transcendental Functions These are functions that are not algebraic. They include the 

trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many other 

functions as well. The catenary is one example of a transcendental function. Its graph has 

the shape of a cable, like a telephone line or electric cable, strung from one support to another 

and hanging freely under its own weight (Figure 1.24). The function defining the graph is 

discussed in Section 7.3.

Functions

In Exercises 1–6, find the domain and range of each function.

 1. f x x( ) 1 2= +  2. f x x( ) 1= −

 3. = +F x x( ) 5 10  4. g x x x( ) 32= −

 5. f t
t

( )
4

3
=

−
 6. =

−
G t

t
( )

2

162

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 

and which are not? Give reasons for your answers.

 7. 

EXERCISES 1.1

x

y

0
x

y

0

 a.  b. 

 8. 

x

y

0
x

y

0

 a.  b. 

Finding Formulas for Functions

 9. Express the area and perimeter of an equilateral triangle as a func-

tion of the triangle’s side length x.

 10. Express the side length of a square as a function of the length d of 

the square’s diagonal. Then express the area as a function of the 

diagonal length.

 11. Express the edge length of a cube as a function of the cube’s diag-

onal length d. Then express the surface area and volume of the 

cube as a function of the diagonal length.
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 31. a.  b. 

x

y

1

2

(- 2, - 1) (3, - 1)(1, - 1)

x

y

3

1
(- 1, 1) (1, 1)

- 1
x

y

3

21

2

1

- 2

- 3

- 1
(2, - 1)

 12. A point P in the first quadrant lies on the graph of the function 

f x x( ) = . Express the coordinates of P as functions of the 

slope of the line joining P to the origin.

 13. Consider the point x y,( ) lying on the graph of the line 

x y2 4 5+ = . Let L be the distance from the point x y,( ) to the 

origin 0, 0( ). Write L as a function of x.

 14. Consider the point x y,( ) lying on the graph of y x 3= − . Let 

L be the distance between the points x y,( ) and 4, 0( ). Write L as 

a function of y.

Functions and Graphs

Find the natural domain and graph the functions in Exercises 15–20.

 15. f x x( ) 5 2= −  16. f x x x( ) 1 2 2= − −

 17. g x x( ) =  18. g x x( ) = −

 19. =F t t t( )  20. =G t t( ) 1

 21. Find the domain of y
x

x

3

4 92
=

+

− −
.

 22. Find the range of y x2 9 2= + + .

 23. Graph the following equations and explain why they are not 

graphs of functions of x.

 a. y x=  b. y x2 2=

 24. Graph the following equations and explain why they are not 

graphs of functions of x.

 a. x y 1+ =  b. + =x y 1

Piecewise-Defined Functions

Graph the functions in Exercises 25–28.

 25. f x
x x

x x
( )

, 0 1

2 , 1 2
=

≤ ≤

− < ≤







 26. g x
x x

x x
( )

1 , 0 1

2 , 1 2
=

− ≤ ≤

− < ≤







 27. =
− ≤

+ >






F x

x x

x x x
( )

4 , 1

2 , 1

2

2

 28. =
<

≤






G x

x x

x x
( )

1 , 0

, 0

Find a formula for each function graphed in Exercises 29–32.

 29. a.  b. 

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

x

y

52

2
(2, 1)

 30. a.  b. 

x

y

0

1

TT
2

(T, 1)

t

y

0

A

T

- A

T
2

3T
2

2T

 32. a.  b. 

The Greatest and Least Integer Functions

 33. For what values of x is

 a. x 0?  =  b. x 0?  =

 34. What real numbers x satisfy the equation x x   = ?

 35. Does x x− −   =  for all real x? Give reasons for your answer.

 36. Graph the function

f x
x x

x x
( )

, 0

, 0.

 

 
=

≥

<







  Why is f x( ) called the integer part of x?

Increasing and Decreasing Functions

Graph the functions in Exercises 37–46. What symmetries, if any, 

do the graphs have? Specify the intervals over which the function is 

increasing and the intervals where it is decreasing.

 37. y x 3
−=  38. y

x

1
2

−=

 39. y
x

1
−=  40. y

x

1
=

 41. y x=  42. y x= −

 43. y x 83=  44. y x4−=

 45. y x 3 2
−=  46. = −y x( ) 2 3

Even and Odd Functions

In Exercises 47–62, say whether the function is even, odd, or neither. 

Give reasons for your answer.

 47. f x( ) 3=  48. f x x( ) 5= −

 49. f x x( ) 12= +  50. f x x x( ) 2= +

 51. g x x x( ) 3= +  52. g x x x( ) 3 14 2= + −

 53. g x
x

( )
1

12
=

−
 54. g x

x

x
( )

12
=

−

 55. =
−

h t
t

( )
1

1
 56. =h t t( ) 3

 57. = +h t t( ) 2 1 58. = +h t t( ) 2 1

 59. sin 2x 60. xsin 2

 61. cos 3x 62. + x1 cos
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Theory and Examples

 63. The variable s is proportional to t, and s 25=  when t 75= . 

Determine t when s 60= .

 64. Kinetic energy The kinetic energy K of a mass is propor-

tional to the square of its velocity υ. If K 12,960=  joules when 

18 m secυ = , what is K when 10 m secυ = ?

 65. The variables r and s are inversely proportional, and r 6=  when 

s 4= . Determine s when r 10= .

 66. Boyle’s Law Boyle’s Law says that the volume V of a gas at con-

stant temperature increases whenever the pressure P decreases, so 

that V and P are inversely proportional. If P 14.7 lb in 2=  when 

V 1000 in 3= , then what is V when P 23.4 lb in 2= ?

 67. A box with an open top is to be constructed from a rectangular 

piece of cardboard with dimensions 14 in. by 22 in. by cutting out 

equal squares of side x at each corner and then folding up the sides 

as in the figure. Express the volume V of the box as a function of x.

 70. a. y x5=  b. y 5 x=  c. y x 5=

x

y

f

g

h

0

x

y

- 1 0 1x

A

B

P(x, ?)

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

x

y

f

h

g

0

x

x

x

x

x

x

x

x

22

14

In Exercises 69 and 70, match each equation with its graph. Do not use 

a graphing device, and give reasons for your answer.

 69. a. y x 4=  b. y x 7=  c. y x 10=

 68. The accompanying figure shows a rectangle inscribed in an isos-

celes right triangle whose hypotenuse is 2 units long.

 a. Express the y-coordinate of P in terms of x. (You might start 

by writing an equation for the line AB.)

 b. Express the area of the rectangle in terms of x.

 71. a.  Graph the functions f x x( ) 2=  and g x x( ) 1 4( )= +  

together to identify the values of x for which

x

x2
1

4
.> +

 b. Confirm your findings in part (a) algebraically.

 72. a.  Graph the functions f x x( ) 3 1( )= −  and g x x( ) 2 1( )= +  

together to identify the values of x for which

x x

3

1

2

1
.

−
<

+

 b. Confirm your findings in part (a) algebraically.

 73. For a curve to be symmetric about the x-axis, the point ( )x y,  must 

lie on the curve if and only if the point ( )−x y,  lies on the curve. 

Explain why a curve that is symmetric about the x-axis is not the 

graph of a function, unless the function is y 0= .

 74. Three hundred books sell for $40 each, resulting in a revenue of 

300 $40 $12,000( )( ) = . For each $5 increase in the price, 25 

fewer books are sold. Write the revenue R as a function of the 

number x of $5 increases.

 75. A pen in the shape of an isosceles right triangle with legs of length 

x ft and hypotenuse of length h ft is to be built. If fencing costs 

$5 ft for the legs and $10 ft for the hypotenuse, write the total 

cost C of construction as a function of h.

 76. Industrial costs A power plant sits next to a river where the river 

is 800 ft wide. Laying a new cable from the plant to a location in 

the city 2 mi downstream on the opposite side costs $180 per foot 

across the river and $100 per foot along the land.

T

T

 a. Suppose that the cable goes from the plant to a point Q on the 

opposite side that is x ft from the point P directly opposite  

the plant. Write a function C x( ) that gives the cost of laying 

the cable in terms of the distance x.

 b. Generate a table of values to determine whether the least 

expensive location for point Q is less than 2000 ft or greater 

than 2000 ft from point P.
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1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 

new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 

the denominator is zero) to produce new functions. If  f  and g are functions, then for every 

x that belongs to the domains of both  f  and g (that is, for x D f D g( ) ( )∈ ∩ ), we define 

functions + −f g f g, , and  fg by the formulas

( )

( )

+ = +

− = −

=

f g x f x g x

f g x f x g x

fg x f x g x

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ).

Notice that the + sign on the left-hand side of the first equation represents the operation of 

addition of functions, whereas the + on the right-hand side of the equation means addition 

of the real numbers f x( ) and g x( ).

At any point of ∩D f D g( ) ( ) at which g x( ) 0,≠  we can also define the function f g 

by the formula

( )







 = ≠

f

g
x

f x

g x
g x( )

( )

( )
where ( ) 0 .

Functions can also be multiplied by constants: If c is a real number, then the function 

cf is defined for all x in the domain of  f  by

=cf x cf x( )( ) ( ).

EXAMPLE 1  The functions defined by the formulas

f x x g x x( ) and ( ) 1= = −

have domains [ )= ∞D f( ) 0,  and ( ]= −∞D g( ) , 1 . The points common to these domains 

are the points in

[ ) ( ] [ ]∞ ∩ −∞ =0, ,1 0,1 .

The following table summarizes the formulas and domains for the various algebraic com-

binations of the two functions. We also write f g⋅  for the product function fg.

Function Formula Domain

+f g ( )+ = + −f g x x x( ) 1 [ ] = ∩D f D g0,1 ( ) ( )

f g− ( )− = − −f g x x x( ) 1 [ ]0,1

g f− ( )− = − −g f x x x( ) 1 [ ]0,1

f g⋅ f g x f x g x x x( ) ( ) ( ) 1( ) ( )⋅ = = − [ ]0,1

f g = =
−

f

g
x

f x

g x

x

x
( )

( )

( ) 1
[ )( )=x0,1 1 excluded

g f = =
−g

f
x

g x

f x

x

x
( )

( )

( )

1
( ]( )=x0,1 0 excluded

 

The graph of the function f g+  is obtained from the graphs of  f  and g by adding the 

corresponding y-coordinates f x( ) and g x( ) at each point ∈ ∩x D f D g( ) ( ), as in 

Figure 1.25. The graphs of f g+  and f g⋅  from Example 1 are shown in Figure 1.26.
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Composing Functions

Composition is another method for combining functions. In this operation the output from 

one function becomes the input to a second function.

FIGURE 1.25 Graphical addition of two 

functions.

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.26 The domain of the function f g+  

is the intersection of the domains of  f  and g, the 

interval 0,1[ ] on the x-axis where these domains 

overlap. This interval is also the domain of the  

function f g⋅  (Example 1).

5

1

5

2

5

3

5

4 10

1

x

y

2

1

g(x) = "1 - x f (x) = "x

y = f + g

y = f   g

FIGURE 1.27 The composition f g�  uses the 

output g x( ) of the first function g as the input for 

the second function ƒ. 

x g fg(x) f (g(x))

FIGURE 1.28 Arrow diagram for f g.�  If x lies in the 

domain of g and g x( ) lies in the domain of f, then the  

functions  f  and g can be composed to form f g x( ).�( )

x

f (g(x))

g(x)

g
f

f 
∘
 g

To find f g x( ),�( )  first find g x( ) and second find f g x( ( )). Figure 1.27 pictures f g�  

as a machine diagram, and Figure 1.28 shows the composition as an arrow diagram.

To evaluate the composition g f�  (when defined), we find f x( ) first and then find 

g( f x( )). The domain of g f�  is the set of numbers x in the domain of  f  such that f x( ) lies 

in the domain of g.

The functions f g�  and g f�  are usually quite different.

DEFINITION If  f  and g are functions, the function f g�  (“f composed with g”) 

is defined by

f g x f g x( ) ( ( ))�( ) =

and called the composition of  f  and g. The domain of f g�  consists of the num-

bers x in the domain of g for which g x( ) lies in the domain of  f.
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EXAMPLE 2  If f x x( ) =  and g x x( ) 1,= +  find

 (a) f g x( )�( )  (b) g f x( )�( )  (c) f f x( )�( )  (d) g g x( ).�( )

Solution 

Composition Domain

(a) f g x f g x g x x( ) ( ( )) ( ) 1�( ) = = = + [ )− ∞1,

(b) g f x g f x f x x( ) ( ( )) ( ) 1 1�( ) = = + = + [ )∞0,

(c) f f x f f x f x x x( ) ( ( )) ( ) 1 4
�( ) = = = = [ )∞0,

(d) g g x g g x g x x x( ) ( ( )) ( ) 1 1 1 2�( ) ( )= = + = + + = + ( )−∞ ∞,

To see why the domain of f g�  is [ )− ∞1, , notice that g x x( ) 1= +  is defined for all real 

x but g x( ) belongs to the domain of  f  only if x 1 0,+ ≥  that is to say, when ≥ −x 1. 

Notice that if f x x( ) 2=  and g x x( ) ,=  then f g x x x( ) .
2

� ( )( ) = =  How-

ever, the domain of f g�  is [ )∞0, , not ( )−∞ ∞, , since x  requires x 0.≥

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 

each output of the existing function, or to its input variable. The graph of the new function 

is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y f x k( )= + Shifts the graph of  f  up k units if k 0>

Shifts it down k  units if k 0<

Horizontal Shifts

( )= +y f x h Shifts the graph of  f  left h units if h 0>

Shifts it right h  units if h 0<

EXAMPLE 3

 (a) Adding 1 to the right-hand side of the formula y x 2=  to get y x 12= +  shifts the 

graph up 1 unit (Figure 1.29).

 (b) Adding 2−  to the right-hand side of the formula y x 2=  to get y x 22
= −  shifts the 

graph down 2 units (Figure 1.29).

 (c) Adding 3 to x in y x 2=  to get ( )= +y x 3 2 shifts the graph 3 units to the left, while 

adding 2−  shifts the graph 2 units to the right (Figure 1.30).

 (d) Adding 2−  to x in y x ,=  and then adding 1−  to the result, gives = − −y x 2 1 

and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). 

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y f x( )=  is to stretch or compress it, vertically or hori-

zontally. This is accomplished by multiplying the function f , or the independent variable x, 

by an appropriate constant c. Reflections across the coordinate axes are special cases 

where c 1.= −

FIGURE 1.29 To shift the graph of 

f x x( ) 2=  up (or down), we add positive 

(or negative) constants to the formula for  f  

(Examples 3a and b).

x

y

1

2

2 units

1 unit

- 2

- 1

0

y = x2 
- 2

y = x2

y = x2 
+ 1

y = x2 
+ 2

"2"2-
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EXAMPLE 4  Here we scale and reflect the graph of y x 1.= +

 (a) Vertical: Multiplying the right-hand side of y x 1= +  by 3 to get ( )= +y x3 1  

stretches the graph vertically by a factor of 3, whereas multiplying by 1 3 compresses 

the graph vertically by a factor of 3 (Figure 1.32).

 (b) Horizontal: The graph of = +y x3 1 is a horizontal compression of the graph of 

= +y x 1 by a factor of 3, and = +y x 3 1 is a horizontal stretching by a factor 

of 3 (Figure 1.33).

 (c) Reflection: The graph of ( )= − +y x 1  is a reflection of = +y x 1 across the 

x-axis, and = − +y x 1 is a reflection across the y-axis (Figure 1.34). 

FIGURE 1.30 To shift the graph of y x 2=  to the 

left, we add a positive constant to x (Example 3c). 

To shift the graph to the right, we add a negative 

constant to x.

x

y

0- 3 2

1

1

y = (x - 2)2y = x2y = (x + 3)2

Add a positive

constant to x.

Add a negative

constant to x.

FIGURE 1.31 The graph of y x=  

shifted 2 units to the right and 1 unit 

down (Example 3d).

- 4 - 2 2 4 6
- 1

1

4

x

y

y = 0 x - 2 0  - 1 

Vertical and Horizontal Scaling and Reflecting Formulas

For >c 1, the graph is scaled:

=y cf x( ) Stretches the graph of  f  vertically by a factor of c.

y
c

f x
1

( )= Compresses the graph of  f  vertically by a factor of c.

=y f cx( ) Compresses the graph of  f  horizontally by a factor of c.

( )=y f x c Stretches the graph of  f  horizontally by a factor of c.

For = −c 1, the graph is reflected:

y f x( )= − Reflects the graph of  f  across the x-axis.

= −y f x( ) Reflects the graph of  f  across the y-axis.

FIGURE 1.33 Horizontally stretching and 

compressing the graph of y x 1= +  by a 

factor of 3 (Example 4b).

y = "x + 1 

compress stretch

x

y

1 2 3 4 5

1

2

y = "3x + 1 y = "x/3 + 1

FIGURE 1.34 Reflections of the graph 

of y x 1= +  across the coordinate 

axes (Example 4c).

-2 -1 1 2

-1

-2

1

2

y = - ("x + 1)

x

y

y = "-x + 1 y = "x + 1 

FIGURE 1.32 Vertically stretching and 

compressing the graph of y x 1= +  

by a factor of 3 (Example 4a).

y = - ("x + 1)
3

1

y = 3 ("x + 1)

y = "x + 1 
stretch

compress

1 2
x

y

1

2

3

4

5

6

7



18 Chapter 1 Functions

EXAMPLE 5  Given the function f x x x( ) 4 104 3= − +  (Figure 1.35a), find for-

mulas for the graphs resulting from

 (a) horizontal compression by a factor of 2 followed by reflection across the y-axis  

(Figure 1.35b).

 (b) vertical compression by a factor of 2 followed by reflection across the x-axis  

(Figure 1.35c).

FIGURE 1.35 (a) The original graph of  f. (b) The horizontal compression of y f x( )=  in part (a) by a factor of 2, followed 

by a reflection across the y-axis. (c) The vertical compression of y f x( )=  in part (a) by a factor of 2, followed by a reflection 

across the x-axis (Example 5).

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

f (x) = x4 - 4x3 
+ 10

(a) (b)

y =  -   x4 + 2x3 
- 5

1

2

(c)

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

y = 16x4 
+ 32x3 + 10

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

Solution 

 (a) We multiply x by 2 to get the horizontal compression, and by −1 to give reflection 

across the y-axis. The formula is obtained by substituting − x2  for x in the right-hand 

side of the equation for  f :

= − = − − − +

= + +

y f x x x

x x

( 2 ) ( 2 ) 4( 2 ) 10

16 32 10.

4 3

4 3

 (b) The formula is

y f x x x
1

2
( )

1

2
2 5.4 3= − = − + −

Algebraic Combinations

In Exercises 1 and 2, find the domains of f g f g, , ,+  and f g.⋅

 1. f x x g x x( ) , ( ) 1= = −

 2. f x x g x x( ) 1, ( ) 1= + = −

In Exercises 3 and 4, find the domains of f g f g, , , and g f .

 3. f x g x x( ) 2, ( ) 12= = +

 4. f x g x x( ) 1, ( ) 1= = +

Compositions of Functions

 5. If f x x( ) 5= +  and g x x( ) 3,2= −  find the following.

  a. f g( (0)) b. g f( (0))

  c. f g x( ( )) d. g f x( ( ))

  e. −f f( ( 5)) f. g g( (2))

  g. f f x( ( )) h. g g x( ( ))

 6. If f x x( ) 1= −  and g x x( ) 1 1 ,( )= +  find the following.

  a. f g 1 2( )( ) b. g f 1 2( )( )

  c. f g x( ( )) d. g f x( ( ))

  e. f f( (2)) f. g g( (2))

  g. f f x( ( )) h. g g x( ( ))

EXERCISES 1.2
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x

y

- 7 0 4

Position (a) Position (b)y = - x2

In Exercises 7–10, write a formula for f g h.� �

 7. = + = = −f x x g x x h x x( ) 1, ( ) 3 , ( ) 4

 8. = + = − =f x x g x x h x x( ) 3 4, ( ) 2 1, ( ) 2

 9. = + =
+

=f x x g x
x

h x
x

( ) 1, ( )
1

4
, ( )

1

 10. =
+

−

=

+
= −f x

x

x
g x

x

x
h x x( )

2

3
, ( )

1
, ( ) 2

2

2

Let = − = =f x x g x x h x x( ) 3, ( ) , ( ) ,3  and =j x x( ) 2 . 

Express each of the functions in Exercises 11 and 12 as a composition 

involving one or more of f, g, h, and j.

 11. a. y x 3= −  b. y x2=

 c. y x 1 4=  d. y x4=

 e. y x 3 3( )= −  f. y x2 6 3( )= −

 12. a. y x2 3= −  b. y x 3 2=

 c. y x 9=  d. y x 6= −

 e. y x2 3= −  f. y x 33= −

 13. Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a. x 7− x ?

b. x 2+ x3 ?

c. ? x 5− x 52 −

d. 
x

x 1−

x

x 1−
?

e. ?
x

1
1

+ x

f. 
x

1
? x

 14. Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a. 
x

1

1−
x ?

b. ?
x

x

1− x

x 1+

c. ? x x

d. x ? x

 15. Evaluate each expression using the given table of values:

x 2− 1− 0 1 2

f x( ) 1 0 2− 1 2

g x( ) 2 1 0 1− 0

 a. −f g( ( 1)) b. g f( (0))

 c. −f f( ( 1)) d. g g( (2))

 e. −g f( ( 2)) f. f g( (1))

 16. Evaluate each expression using the functions

f x x g x
x x

x x
( ) 2 , ( )

, 2 0

1, 0 2.
= − =

− − ≤ <

− ≤ ≤







 a. f g( (0)) b. g f( (3)) c. −g g( ( 1))

 d. f f( (2)) e. g f( (0)) f. f g 1 2( )( )

In Exercises 17 and 18, (a) write formulas for f g�  and g f�  and  

(b) find the domain of each.

 17. f x x g x
x

( ) 1,   ( )
1

= + =

 18. f x x g x x( ) ,   ( ) 12= = −

 19. Let f x
x

x
( )

2
.=

−
 Find a function y g x( )=  so that 

f g x x( ) .�( ) =

 20. Let f x x( ) 2 4.3= −  Find a function y g x( )=  so that 

f g x x( ) 2.�( ) = +

 21. A balloon’s volume V is given by V s s2 3 cm ,2 3= + +  where 

s is the ambient temperature in C.°  The ambient temperature s 

at time t minutes is given by s t2 3 C.= − °  Write the balloon’s  

volume V as a function of time t.

 22. Use the graphs of  f  and g to sketch the graph of y f g x( ( )).=

 a.  b. 

x

y

−2

−4

0 2 4−2−4

2

4

f

g

24

2

2

2
x

y

−2

−4

0 2 4−2−4

2

4

f g

x

y

Position (a)

Position (b)

y = x2

- 5

0

3

Shifting Graphs

 23. The accompanying figure shows the graph of y x 2= −  shifted to 

two new positions. Write equations for the new graphs.

 24. The accompanying figure shows the graph of y x 2=  shifted to 

two new positions. Write equations for the new graphs.
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 25. Match the equations listed in parts (a)–(d) to the graphs in the 

accompanying figure.

 a. y x 1 42( )= − −  b. y x 2 22( )= − +

 c. y x 2 22( )= + +  d. y x 3 22( )= + −

 39. y x 2= −  40. y x1 1= − −

 41. y x1 1= + −  42. y x1= −

 43. y x 1 2 3( )= +  44. y x 8 2 3( )= −

 45. y x1 2 3= −  46. y x4 2 3
+ =

 47. y x 1 13
= − −  48. y x 2 13 2( )= + +

 49. y
x

1

2
=

−
 50. y

x

1
2= −

 51. y
x

1
2= +  52. y

x

1

2
=

+

 53. y
x

1

1 2( )
=

−
 54. y

x

1
1

2
= −

 55. y
x

1
1

2
= +  56. y

x

1

1 2( )
=

+

 57. The accompanying figure shows the graph of a function f x( ) with 

domain 0, 2[ ] and range 0,1 .[ ]  Find the domains and ranges of the 

following functions, and sketch their graphs.

x

y

Position 2 Position 1

Position 4

Position 3

- 4 - 3 - 2 - 1 0 1 2 3

(- 2, 2) (2, 2)

(- 3, - 2)

(1, - 4)

1

2

3

x

y

(- 2, 3)

(- 4, - 1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

t

y

- 3

- 2 0- 4

y = g(t)

x

y

0 2

1 y  = f (x) 26. The accompanying figure shows the graph of y x 2= −  shifted to 

four new positions. Write an equation for each new graph.

Exercises 27–36 tell how many units and in what directions the graphs 

of the given equations are to be shifted. Give an equation for the 

shifted graph. Then sketch the original and shifted graphs together, 

labeling each graph with its equation.

 27. x y 49 Down 3, left 22 2+ =

 28. x y 25 Up 3, left 42 2+ =

 29. y x Left 1, down 13=

 30. y x Right 1, down 12 3=

 31. y x Left 0.81=

 32. y x Right 3= −

 33. y x2 7 Up 7= −

 34. y x
1

2
1 5 Down 5, right 1( )= + +

 35. y x1 Up 1, right 1=

 36. y x1 Left 2, down 12
=

Graph the functions in Exercises 37–56.

 37. y x 4= +  38. y x9= −

 a. f x( ) 2+  b. f x( ) 1−

 c. f x2 ( ) d. f x( )−

 e. f x 2( )+  f. f x 1( )−

 g. −f x( ) h. f x 1 1( )− + +

 58. The accompanying figure shows the graph of a function g t( ) with 

domain 4, 0[ ]−  and range 3, 0 .[ ]−  Find the domains and ranges 

of the following functions, and sketch their graphs.

 a. −g t( ) b. g t( )−

 c. g t( ) 3+  d. g t1 ( )−

 e. g t 2( )− +  f. g t 2( )−

 g. g t1( )−  h. g t 4( )− −

Vertical and Horizontal Scaling

Exercises 59–68 tell in what direction and by what factor the graphs of 

the given functions are to be stretched or compressed. Give an equation 

for the stretched or compressed graph.

 59. y x 1, stretched vertically by a factor of 32= −

 60. y x 1, compressed horizontally by a factor of 22= −

 61. y
x

1
1

, compressed vertically by a factor of 2
2

= +
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 62. y
x

1
1

, stretched horizontally by a factor of 3
2

= +

 63. y x 1, compressed horizontally by a factor of 4= +

 64. y x 1, stretched vertically by a factor of 3= +

 65. y x4 , stretched horizontally by a factor of 22= −

 66. y x4 , compressed vertically by a factor of 32= −

 67. = −y x1 , compressed horizontally by a factor of 33

 68. = −y x1 , stretched horizontally by a factor of 23

Graphing

In Exercises 69–76, graph each function not by plotting points, but by 

starting with the graph of one of the standard functions presented in 

Figures 1.14–1.17 and applying an appropriate transformation.

 69. y x2 1= − +  70. y
x

1
2

= −

 71. y x 1 23( )= − +  72. y x1 23( )= − +

 73. y
x

1

2
1= −  74. y

x

2
1

2
= +

 75. y x
3

= −  76. = −y x( 2 ) 2 3

 77. Graph the function y x 1 .2= −

 78. Graph the function y x .=

Combining Functions

 79. Assume that  f  is an even function, g is an odd function, and both  f  

and g are defined on the entire real line , .( )−∞ ∞  Which of the 

following (where defined) are even? odd?

 a.   f g b. f g c. g f

 d. f f f2 =  e. g gg2 =  f. f g�

 g. g f�  h. f f�   i. g g�

 80. Can a function be both even and odd? Give reasons for your 

answer.

 81. (Continuation of Example 1.) Graph the functions f x x( ) =  

and g x x( ) 1= −  together with their (a) sum, (b) product,  

(c) two differences, (d) two quotients.

 82. Let f x x( ) 7= −  and g x x( ) .2=  Graph  f  and g together with 

f g�  and g f .�

T

T

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 
′ ′A CB  within a circle of radius r is defined as the number of “radius units” contained in the 

arc s subtended by that central angle. If we denote this central angle by θ when measured 

in radians, this means that θ = s r (Figure 1.36), or

If the circle is a unit circle having radius =r 1, then from Figure 1.36 and Equation (1), 

we see that the central angle θ measured in radians is just the length of the arc that the 

angle cuts from the unit circle. Since one complete revolution of the unit circle is °360  or 

π2  radians, we have

 radians 180π = ° (2)

and

1 radian
180

57.3 degrees or 1 degree
180

0.017 radians.
π

π
( ) ( )= ≈ = ≈

Table 1.1 shows the equivalence between degree and radian measures for some basic angles.

FIGURE 1.36 The radian mea-

sure of the central angle ′ ′A CB  is 

the number θ = s r . For a unit 

circle of radius θ=r 1,  is the 

length of arc AB that central angle 

ACB cuts from the unit circle.

B¿

B

s

A¿

C A
r

1

Circle of radiu
s 

r 

U
n it c irc le

 

u

TABLE 1.1   Angles measured in degrees and radians

Degrees −180 −135 90− −45 0 30 45 60 90 120 135 150 180 270 360

θ ( )radians π− 3

4

π−

2

π−

4

π− 0
6

π

4

π

3

π

2

π 2

3

π 3

4

π 5

6

π π
3

2

π 2π

 s r in radians .θ θ( )=  (1)
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An angle in the xy-plane is said to be in standard position if its vertex lies at the origin 

and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter- 

clockwise from the positive x-axis are assigned positive measures; angles measured clock-

wise are assigned negative measures.

FIGURE 1.39 Trigonometric 

ratios of an acute angle.
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FIGURE 1.40 The trigonometric 

functions of a general angle θ are 

defined in terms of x, y, and r.
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FIGURE 1.37 Angles in standard position in the xy-plane.
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FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 2 .π
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Angles describing counterclockwise rotations can go arbitrarily far beyond π2  radians 

or 360°. Similarly, angles describing clockwise rotations can have negative measures of all 

sizes (Figure 1.38).

Angle Convention: Use Radians From now on in this text, it is assumed that all angles 

are measured in radians unless degrees or some other unit is stated explicitly. When we talk 

about the angle π 3, we mean π 3 radians (which is °60 ), not π 3 degrees. Using radians 

simplifies many of the operations and computations in calculus.

The Six Basic Trigonometric Functions

The trigonometric functions of an acute angle are given in terms of the sides of a right tri-

angle (Figure 1.39). We extend this definition to obtuse and negative angles by first placing 

the angle in standard position in a circle of radius r. We then define the trigonometric  

functions in terms of the coordinates of the point ( )P x y,  where the angle’s terminal ray 

intersects the circle (Figure 1.40).

θ θ

θ θ

θ θ

= =

= =

= =

y

r

r

y

x

r

r

x
y

x

x

y

sine: cosecant:

cosine: secant:

tangent: cotangent:

sin csc

cos sec

tan cot

These extended definitions agree with the right-triangle definitions when the angle is acute.

Notice also that whenever the quotients are defined,

θ
θ

θ
θ

θ

θ
θ

θ
θ

= =

= =

tan
sin

cos
cot

1

tan

sec
1

cos
csc

1

sin
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As you can see, θtan  and θsec  are not defined if θ= =x cos 0. This means they are not 

defined if θ is π π± ± …2, 3 2, . Similarly, θcot  and θcsc  are not defined for values of θ 

for which =y 0, namely θ π π= ± ± …0, , 2 , .

The exact values of these trigonometric ratios for some angles can be read from the 

triangles in Figure 1.41. For instance,

π π π

π π π

π π π

= = =

= = =

= = =

sin
4

1

2
sin

6

1

2
sin

3

3

2

cos
4

1

2
cos

6

3

2
cos

3

1

2

tan
4

1 tan
6

1

3
tan

3
3

The ASTC rule (Figure 1.42) is useful for remembering when the basic trigonometric func-

tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

π π π
= = − = −sin

2

3

3

2
, cos

2

3

1

2
, tan

2

3
3.

TABLE 1.2   Values of θsin , θcos , and θtan  for selected values of θ

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

θ (radians) π− π−3

4 2

π−

4

π− 0
6

π

4

π

3

π

2

π 2

3

π 3

4

π 5

6

π π 3

2

π
π2

θsin 0
2

2

−
1−

2

2

−
0

1

2

2

2

3

2
1

3

2

2

2

1

2
0 1− 0

θcos 1−
− 2

2
0

2

2
1

3

2

2

2

1

2
0 −

1

2

− 2

2

− 3

2
−1 0 1

θtan 0 1 1− 0
3

3
1 3 − 3 1−

− 3

3
0 0

FIGURE 1.41 Radian angles and side 

lengths of two common triangles.
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FIGURE 1.42 The ASTC rule, remem-

bered by the statement “All Students Take 

Calculus,” tells which trigonometric func-

tions are positive in each quadrant.
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FIGURE 1.43 The triangle for cal-

culating the sine and cosine of 2 3π  

radians. The side lengths come from 

the geometry of right triangles.
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Using a similar method we obtain the values of θsin , θcos , and θtan  shown in Table 1.2.
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Periodicity and Graphs of the Trigonometric Functions

When an angle of measure θ and an angle of measure θ π+ 2  are in standard position, 

their terminal rays coincide. The two angles therefore have the same trigonometric  

function values: θ π θ θ π θ( ) ( )+ = + =sin 2 sin , tan 2 tan , and so on. Similarly, 

θ π θ θ π θ( ) ( )− = − =cos 2 cos , sin 2 sin , and so on. We describe this repeating 

behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function f x( ) is periodic if there is a positive number p such 

that f x p f x( )( )+ =  for every value of x. The smallest such value of p is the 

period of  f.

FIGURE 1.45 The reference triangle 

for a general angle θ.

y

x

u

1

P(cos u, sin u)
x2 

+ y2 
= 1

0 cos u 0

0 sin u 0

O

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading for each 

trigonometric function indicates its periodicity.

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y = cos x
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Period:    2p
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2

-    
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-    
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2
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2
p 3p

2
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3p
2

Domain: x Z ;    , ;       , . . . 

Range:   - q 6 y 6 q

Period:    p

y = sec x y = csc x y = cot x

3p
2

- 
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-
p

2
0
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2
p 3p

2
0

1

- p p 2p
-
p

2
p

2
3p
2

0

1

- p p 2p
-
p

2
p

2
3p
2

Domain: x Z 0, ; p, ; 2p, . . .

Range:    y … - 1 or y Ú 1

Period:    2p

Domain: x Z 0, ; p, ; 2p, . . .

Range:    - q 6 y 6 q

Period:    p

Domain: x Z ;    , ;        , . . . 

Range:    y … - 1 or y Ú 1

Period:    2p

p

2
3p
2

Even

− =

− =

x x
x x

cos ( ) cos
sec ( ) sec

Odd

− = −

− = −

− = −

− = −

x x
x x
x x
x x

sin ( ) sin
tan ( ) tan
csc ( ) csc
cot ( ) cot

When we graph trigonometric functions in the coordinate plane, we usually denote the 

independent variable by x instead of θ. Figure 1.44 shows that the tangent and cotangent 

functions have period π=p , and the other four functions have period π2 . Also, the sym-

metries in these graphs reveal that the cosine and secant functions are even and the other 

four functions are odd (although this does not prove those results).

Trigonometric Identities

The coordinates of any point ( )P x y,  in the plane can be expressed in terms of the point’s 

distance r from the origin and the angle θ that ray OP makes with the positive x-axis  

(Figure 1.40). Since θ=x r cos  and θ=y r sin , we have

θ θ= =x r y rcos , sin .

When =r 1 we can apply the Pythagorean theorem to the reference right triangle in  

Figure 1.45 and obtain the equation

Periods of Trigonometric Functions

Period π:
 

π

π

( )

( )

+ =

+ =

x x
x x

tan tan
cot cot

Period π2 : π

π

π

π

( )

( )

( )

( )

+ =

+ =

+ =

+ =

x x
x x
x x
x x

sin 2 sin
cos 2 cos
sec 2 sec
csc 2 csc

 cos sin 1.2 2θ θ+ =  (3)



 1.3  Trigonometric Functions 25

This equation, true for all values of θ, is the most frequently used identity in trigonometry. 

Dividing this identity in turn by θcos 2  and θsin 2  gives

Double-Angle Formulas

 
θ θ θ

θ θ θ

= −

=

cos 2 cos sin

sin 2 2 sin cos

2 2

 (5)

Half-Angle Formulas

 θ
θ

=
+

cos
1 cos 2

2
2  (6)

 θ
θ

=
−

sin
1 cos 2

2
2  (7)

Addition Formulas

 
( )

( )

+ = −

+ = +

A B A B A B

A B A B A B

cos cos cos sin sin

sin sin cos cos sin
 (4)

There are similar formulas for ( )−A Bcos  and ( )−A Bsin  (Exercises 35 and 36). 

All the trigonometric identities needed in this text derive from Equations (3) and (4). For 

example, substituting θ for both A and B in the addition formulas gives

Additional formulas come from combining the equations

θ θ θ θ θ+ = − =cos sin 1, cos sin cos 2 .2 2 2 2

We add the two equations to get θ θ= +2 cos 1 cos 22  and subtract the second from the 

first to get θ θ= −2 sin 1 cos 2 .2  This results in the following identities, which are useful 

in integral calculus.

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if θ is the angle opposite c, then

FIGURE 1.46 In a geometric proof of 

the angle sum identities we compare the 

opposite sides of the rectangle, which are 

equal. This assumes that A, B, and A B+  

are acute, but the identities hold for all  

values of A and B.
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The following formulas hold for all angles A and B (see Figure 1.46 and Exercise 58).

 θ= + −c a b ab2 cos .2 2 2  (8)

This equation is called the law of cosines.
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To establish these inequalities, we picture θ as a nonzero angle in standard position 

(Figure 1.48). The circle in the figure is a unit circle, so θ  equals the length of the circular 

arc AP. The length of line segment AP is therefore less than θ .

Triangle APQ is a right triangle with sides of length

θ θ= = −QP AQsin , 1 cos .

From the Pythagorean theorem and the fact that θ<AP , we get

 θ θ θ( )+ − = ≤APsin 1 cos ( ) .2 2 2 2  (9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than 

their sum and hence is less than or equal to θ :2

θ θ θ θ( )≤ − ≤sin and 1 cos .2 2 2 2

By taking square roots, this is equivalent to saying that

θ θ θ θ≤ − ≤sin and 1 cos ,

so

θ θ θ θ θ θ− ≤ ≤ − ≤ − ≤sin and 1 cos .

These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-

marized in the following diagram apply to the trigonometric functions we have discussed 

in this section.

To see why the law holds, we position the triangle in the xy-plane with the origin at C 

and the positive x-axis along one side of the triangle, as in Figure 1.47. The coordinates of 

A are ( )b, 0 ; the coordinates of B are θ θ( )a acos , sin . The square of the distance between 

A and B is therefore

� ������� �������

θ θ

θ θ θ

θ

( ) ( )

( )

= − +

= + + −

= + −

c a b a

a b ab

a b ab

cos sin

cos sin 2 cos

2 cos .

2 2 2

2 2 2

1

2

2 2

The law of cosines generalizes the Pythagorean theorem. If θ π= 2, then θ =cos 0 

and = +c a b .2 2 2

Two Special Inequalities

For any angle θ measured in radians, the sine and cosine functions satisfy

FIGURE 1.47 The square of the distance 

between A and B gives the law of cosines.
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FIGURE 1.48 From the geometry of 

this figure, drawn for 0,θ >  we get the 

inequality θ θ θ( )+ − ≤sin 1 cos .2 2 2
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θ θ θ θ θ θ− ≤ ≤ − ≤ − ≤sin and 1 cos .
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The transformation rules applied to the sine function give the general sine function or 

sinusoid formula

π( )( )= − +f x A
B

x C D( ) sin
2

,

where A  is the amplitude, B  is the period, C is the horizontal shift, and D is the vertical 

shift. A graphical interpretation of the various terms is given below.

D

y

x

Vertical

shift (D)

Horizontal

shift (C)

D - A

D + A

Amplitude (A)

This distance is

the period ( kB k ).

This axis is the

line y =  D.

a                  by  = A sin  + D(x  - C)2p
B

0

Radians and Degrees

 1. On a circle of radius 10 m, how long is an arc that subtends a cen-

tral angle of (a) 4 5π  radians? (b) 110°?

 2. A central angle in a circle of radius 8 is subtended by an arc of 

length 10 .π  Find the angle’s radian and degree measures.

 3. You want to make an 80° angle by marking an arc on the perim-

eter of a 12-in.-diameter disk and drawing lines from the ends of 

the arc to the disk’s center. To the nearest tenth of an inch, how 

long should the arc be?

 4. If you roll a 1-m-diameter wheel forward 30 cm over level ground, 

through what angle will the wheel turn? Answer in radians (to the 

nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions

 5. Copy and complete the following table of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 

calculator or tables.

θ π− 2 3π− / 0 2π/ 3 4π/

θsin

θcos

θtan

θcot

θsec

θcsc

T

T

 6. Copy and complete the following table of function values. If the 

function is undefined at a given angle, enter “UND.” Do not use a 

calculator or tables.

θ 3 2π− / 3π− / 6π/− 4π/ 5 6π/

θsin

θcos

θtan

θcot

θsec

θcsc

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the other 

two if x lies in the specified interval.

 7. 
π
π= ∈







x xsin

3

5
,

2
,  8. 

π
= ∈







x xtan 2, 0,

2

 9. 
π

= ∈ −






x xcos

1

3
,

2
, 0  10. 

π
π= − ∈







x xcos

5

13
,

2
,

 11. π
π

= ∈






x xtan

1

2
, ,

3

2
 12. π

π
= − ∈







x xsin

1

2
, ,

3

2

Graphing Trigonometric Functions

Graph the functions in Exercises 13–22. What is the period of each 

function?

 13. xsin 2  14. xsin 2( )

 15. πxcos  16. 
πx

cos
2

 17. 
π

−
x

sin
3

 18. π− xcos 2

 19. xcos
2

π( )−  20. xsin
6

π( )+

EXERCISES 1.3
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 21. xsin
4

1
π( )− +  22. xcos

2

3
2

π( )+ −

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-

tal, s-axis vertical). What is the period of each function? What sym-

metries do the graphs have?

 23. =s tcot 2  24. π= −s ttan

 25. s
t

sec
2

π( )=  26. s
t

csc
2
( )=

 27. a.  Graph =y xcos  and =y xsec  together for x3 2π− ≤

π≤ 3 2. Comment on the behavior of sec x in relation to the 

signs and values of cos x.

 b.  Graph =y xsin  and =y xcsc  together for x 2 .π π− ≤ ≤  

Comment on the behavior of csc x in relation to the signs and 

values of sin x.

 28. Graph =y xtan  and =y xcot  together for x7 7.− ≤ ≤  

Comment on the behavior of cot x in relation to the signs and val-

ues of tan x.

 29. Graph =y xsin  and =  y xsin  together. What are the domain 

and range of  xsin ?

 30. Graph =y xsin  and =  y xsin  together. What are the domain 

and range of  xsin ?

Using the Addition Formulas

Use the addition formulas to derive the identities in Exercises 31–36.

 31. 
π( )− =x xcos
2

sin  32. 
π( )+ = −x xcos
2

sin

 33. 
π( )+ =x xsin
2

cos  34. 
π( )− = −x xsin
2

cos

 35. ( )− = +A B A B A Bcos cos cos sin sin  (Exercise 57 provides 

a different derivation.)

 36. ( )− = −A B A B A Bsin sin cos cos sin

 37. What happens if you take B A=  in the trigonometric identity 
( )− = +A B A B A Bcos cos cos sin sin ? Does the result agree 

with something you already know?

 38. What happens if you take B 2π=  in the addition formulas? Do 

the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and 

cos x.

 39. xcos π( )+  40. xsin 2π( )−

 41. xsin
3

2

π( )−  42. xcos
3

2

π( )+

 43. Evaluate sin
7

12

π
 as sin

4 3
.

π π( )+

 44. Evaluate cos
11

12

π
 as cos

4

2

3
.

π π( )+

 45. Evaluate cos
12

.
π

 46. Evaluate 
π

sin
5

12
.

Using the Half-Angle Formulas

Find the function values in Exercises 47–50.

 47. cos
8

2 π  48. cos
5

12
2 π

 49. sin
12

2 π  50. sin
3

8
2 π

T

T

Solving Trigonometric Equations

For Exercises 51–54, solve for the angle ,θ  where 0 2 .θ π≤ ≤

 51. θ =sin
3

4
2  52. θ θ=sin cos2 2

 53. θ θ− =sin 2 cos 0 54. θ θ+ =cos 2 cos 0

Theory and Examples

 55. The tangent sum formula The standard formula for the tangent 

of the sum of two angles is

( )+ =
+

−
A B

A B

A B
tan

tan tan

1 tan tan
.

Derive the formula.

 56. (Continuation of Exercise 55.) Derive a formula for A Btan .( )−

 57. Apply the law of cosines to the triangle in the accompanying  

figure to derive the formula for A Bcos .( )−

x

y

A
B

0 1

1

1

A

B C
a

hc b

A

B C
a

hc
b

 58. a.  Apply the formula for A Bcos( )−  to the identity θ =sin

cos
2

π
θ( )−  to obtain the addition formula for A Bsin .( )+

 b. Derive the formula for A Bcos( )+  by substituting B−  for B 

in the formula for A Bcos( )−  from Exercise 35.

 59. A triangle has sides a 2=  and b 3=  and angle C 60 .= °  Find 

the length of side c.

 60. A triangle has sides a 2=  and b 3=  and angle C 40 .= °  Find 

the length of side c.

 61. The law of sines The law of sines says that if a, b, and c are the 

sides opposite the angles A, B, and C in a triangle, then

= =
A

a

B

b

C

c

sin sin sin
.

  Use the accompanying figures and the identity sin π θ( )− =

θsin , if required, to derive the law.

 62. A triangle has sides a 2=  and b 3=  and angle C 60= ° (as in 

Exercise 59). Find the sine of angle B using the law of sines.
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B

A C

h

b

a g

 63. A triangle has side c 2=  and angles A 4π=  and B 3.π=  

Find the length a of the side opposite A.

 64. Consider the length h of the perpendicular from point B to side b 

in the given triangle. Show that

α γ

α γ
=

+
h

b tan tan

tan tan

T  67. π( )= + −y x2 sin 1  68. π π( )= − +y x
1

2
sin

1

2

 69. 
π

π

π
( )= − +y t

2
sin

2

1
 70. 

π

π
= >y

L t

L
L

2
sin

2
, 0

COMPUTER EXPLORATIONS

In Exercises 71–74, you will explore graphically the general sine 

function

π( )( )= − +f x A
B

x C D( ) sin
2

as you change the values of the constants A, B, C, and D. Use a CAS or 

computer grapher to perform the steps in the exercises.

 71. The period B Set the constants A 3=  and C D 0.= =

 a. Plot f x( ) for the values B 1, 3, 2 , 5π π=  over the interval 

x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as the period increases.

 b. What happens to the graph for negative values of B? Try it 

with B 3= −  and B 2 .π= −

 72. The horizontal shift C Set the constants A B D3, 6, 0.= = =

 a. Plot f x( ) for the values C 0,=  1, and 2 over the interval 

x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as C increases through positive values.

 b. What happens to the graph for negative values of C?

 c. What smallest positive value should be assigned to C so the 

graph exhibits no horizontal shift? Confirm your answer with 

a plot.

 73. The vertical shift D Set the constants A B C3, 6, 0.= = =

 a. Plot f x( ) for the values D 0, 1,=  and 3 over the interval 

x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as D increases through positive values.

 b. What happens to the graph for negative values of D?

 74. The amplitude A Set the constants B 6=  and C D 0.= =

 a. Describe what happens to the graph of the general sine func-

tion as A increases through positive values. Confirm your 

answer by plotting f x( ) for the values A 1, 5,=  and 9.

 b. What happens to the graph for negative values of A?

1.4 Graphing with Software

Many computers, calculators, and smartphones have graphing applications that enable us 

to graph very complicated functions with high precision. Many of these functions could 

not otherwise be easily graphed. However, some care must be taken when using such 

graphing software, and in this section we address some of the issues that can arise. In 

Chapter 4 we will see how calculus helps us determine that we are accurately viewing the 

important features of a function’s graph.

Graphing Windows

When software is used for graphing, a portion of the graph is visible in a display or 

viewing window. Depending on the software, the default window may give an incom-

plete or misleading picture of the graph. We use the term square window when the 

r
a

u

 65. Refer to the given figure. Write the radius r of the circle in terms 

of α and .θ

 66. The approximation sin x x≈  It is often useful to know that, 

when x is measured in radians, sin x x≈  for numerically small 

values of x. In Section 3.11, we will see why the approximation 

holds. The approximation error is less than 1 in 5000 if x 0.1.<

 a. With your grapher in radian mode, graph =y xsin  and 

y x=  together in a viewing window about the origin. What 

do you see happening as x nears the origin?

 b. With your grapher in degree mode, graph =y xsin  and 

y x=  together about the origin again. How is the picture dif-

ferent from the one obtained with radian mode?

General Sine Curves

For
π( )( )= − +f x A

B
x C D( ) sin

2
,

identify A, B, C, and D for the sine functions in Exercises 67–70 and 

sketch their graphs.

T
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units or scales used on both axes are the same. This term does not mean that the dis-

play window itself is square (usually it is rectangular), but instead it means that the 

x-unit is the same length as the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of 

scaling in order to capture essential features of the graph. This difference in scaling can cause 

visual distortions that may lead to erroneous interpretations of the function’s behavior.  

Some graphing software enables us to set the viewing window by specifying one or both of 

the intervals, ≤ ≤a x b and ≤ ≤c y d, and it may allow for equalizing the scales used 

for the axes as well. The software selects equally spaced x-values in [ ]a b,  and then plots 

the points x f x, ( )( ). A point is plotted if and only if x lies in the domain of the function and 

f x( ) lies within the interval [ ]c d, . A short line segment is then drawn between each plotted 

point and its next neighboring point. We now give illustrative examples of some common 

problems that may occur with this procedure.

EXAMPLE 1  Graph the function f x x x( ) 7 283 2= − +  in each of the following 

display or viewing windows:

 (a) [ ]−10,10  by [ ]−10,10  (b) [ ]−4, 4  by [ ]−50,10  (c) [ ]−4,10  by [ ]−60, 60

Solution 

 (a) We select − −= = =a b c10, 10, 10, and d 10=  to specify the interval of  

x-values and the range of y-values for the window. The resulting graph is shown in 

Figure 1.49a. It appears that the window is cutting off the bottom and top parts of the 

graph and that the interval of x-values is too large. Let’s try the next window.

 (b) We see some new features of the graph (Figure 1.49b), but the top is still missing and 

we need to view more to the right of x 4=  as well. The next window should help.

 (c) Figure 1.49c shows the graph in this new viewing window. Observe that we get a more 

complete picture of the graph in this window, and it is a reasonable graph of a third-

degree polynomial. 

EXAMPLE 2  When a graph is displayed, the x-unit may differ from the y-unit, as in 

the graphs shown in Figure 1.49. The result is distortion in the picture, which may be mis-

leading. The display window can be made square by compressing or stretching the units on 

one axis to match the scale on the other, giving the true graph. Many software systems have 

built-in options to make the window “square.” If yours does not, you may have to bring to 

your viewing some foreknowledge of the true picture.

Figure 1.50a shows the graphs of the perpendicular lines y x=  and y x 3 2,−= +  

together with the semicircle y x9 ,2= −  in a nonsquare [ ]−4, 4  by [ ]−6, 8  display 

window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-

circle appears to be elliptical in shape.

FIGURE 1.49 The graph of f x x x( ) 7 283 2= − +  in different viewing windows. Selecting a window that gives a clear 

picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically 

display the graph in (c).
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Figure 1.50b shows the graphs of the same functions in a square window in which  

the x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis  

for Figure 1.50a has been compressed in Figure 1.50b to make the window square. Fig-

ure 1.50c gives an enlarged view of Figure 1.50b with a square [ ]−3, 3  by [ ]0, 4  window. 

FIGURE 1.51 Graphs of the function =y xsin 100  in three viewing windows. Because the period is π ≈2 100 0.063, 

the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

(a)
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(b)
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- 1
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(c)

1
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FIGURE 1.50 Graphs of the perpendicular lines y x=  and y x 3 2−= +  and of the semicircle 

y x9 2= −  appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows 

(Example 2). Some software may not provide options for the views in (b) or (c).
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If the denominator of a rational function is zero at some x-value within the viewing 

window, graphing software may produce a steep, near-vertical line segment from the top to 

the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-

ing software plots the points of the graph and connects them, many of the maximum and 

minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3  Graph the function =f x x( ) sin 100 .

Solution Figure 1.51a shows the graph of  f  in the viewing window [ ]−12,12  by [ ]−1,1 . 

We see that the graph looks very strange because the sine curve should oscillate periodi-

cally between 1−  and 1. This behavior is not exhibited in Figure 1.51a. We might experi-

ment with a smaller viewing window, say [ ]−6, 6  by [ ]−1,1 , but the graph is not better 

(Figure 1.51b). The difficulty is that the period of the trigonometric function =y xsin 100  

is very small π( )≈2 100 0.063 . If we choose the much smaller viewing window 

[ ]−0.1, 0.1  by [ ]−1,1  we get the graph shown in Figure 1.51c. This graph reveals the 

expected oscillations of a sine curve. 

EXAMPLE 4  Graph the function = +y x xcos
1

200
sin 200 .

Solution In the viewing window [ ]−6, 6  by [ ]−1,1  the graph appears much like the 

cosine function with some very small sharp wiggles on it (Figure 1.52a). We get a better 


