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USEFUL COMMANDS FOR STATA

Task Command Example Chapter

Help help help summarize 2

Comment line * * This is a comment line 2

Comment on command line /* */ use "C:\Data.dta" /* This is a comment */

Continue line /* */ reg y X1 X2 X3 /* 2

*/ X4 X5

Load Stata data �le use use "C:/Data.dta" 2

Load text data �le insheet insheet using "C:/Data.txt" 2

Display variables in memory list list /* Lists all observations for all variables */ 2

list Y X /* Lists all observations for Y and X */ 2

list X in 1/10 /* Lists �rst 10 observations for X */ 2

Descriptive statistics summarize summarize X1 X2 Y 2

Frequency table tabulate tabulate X1 2

Scatter plot scatter scatter Y X 2

scatter Y X, mlabel(name) /* Adds labels */ 2

Limit data if summarize X1 if X2 > 1 2

Equal (as used in if statement, for example) == summarize X1 if X2 == 1 2

Not equal != summarize X1 if X2!=0 2

And & list X1 if X2 == 1 & X3 > 18 2

Or | list X1 if X2 == 1 | X3 > 18 2

Delete a variable drop drop X7 2

Missing data in Stata . * Caution: Stata treats missing data as having

in�nite value, so list X1 if X2 > 0 will include

values of X1 for which X2 is missing

2

Regression reg reg Y X1 X2 3

Heteroscedasticity robust regression , robust reg Y X1 X2, robust 3

Generate predicted values predict predict FittedY /* Run this after reg command */ 3

Add regression line to scatter plot twoway, l�t twoway (scatter Y X) (l�t Y X) 3

Critical value for t distribution, two-sided invttail display invttail(120, .05/2) /* For model with 120

degrees of freedom and α = 0.05; note that we

divide α by 2 */

4

Critical value for t distribution, one-sided invttail display invttail(120, .05) /* For model with 120

degrees of freedom and α = 0.05 */

4

Critical value for normal distribution, two-sided invnormal display invnormal(.975) /* For α = 0.05, note that

we divide α by 2 */

4

Critical value for normal distribution, one-sided invnormal display invnormal(.05) 4

Two-sided p values [Reported in reg output] 4

One-sided p values ttail display 2*ttail(120, 1.69) /* For model with 120

degrees of freedom and a t statistic of 1.69 */

4

Con�dence intervals [Reported in reg output] 4

Produce standardized regression coef�cients , beta reg Y X1 X2, beta 5

Produce standardized variable egen egen X_std = std(X) /* Creates variable called

X_std */

5

xxii



USEFUL COMMANDS FOR STATA xxiii

Task Command Example Chapter

F test test test X1 = X2 = 0 /* Run this after regression with

X1 and X2 in model */

5

Critical value for F test invF display invF(2, 120, 0.95) /* Degrees of freedom

equal 2 and 120 and α = 0.05 */

5

p value for F statistic Ftail Ftail(2, 1846, 7.77) /* Degrees of freedom equal 2

and 1846 and F statistic = 7.77*/

5

Difference of means test using OLS reg reg Y Dum /* Where Dum is a dummy variable */ 6

Create an interaction variable gen gen DumX = Dum * X 6

Include dummies for categorical variable i.varname reg Y i.X1 /* Includes appropriate number of

dummy variables for categorical variable X1 */

6

Set reference category ib#.varname reg Y ib2.X1 /* Sets 2nd category as reference

category */

6

Create a squared variable gen gen X_sq = Xˆ2 7

Create a logged variable gen gen X_log =log( X) 7

Generate dummy variables for each unit tabulate and

generate

tabulate City, generate(City_dum) 8

LSDV model for panel data reg reg Y X1 X2 City_dum2 - City_dum80 8

De-meaned model for panel data xtreg xtreg Y X1 X2, fe i(City) 8

Two-way �xed effects xtreg xtreg Y X1 X2 i.year Yr2- Yr10, fe i(City) 8

2SLS model ivregress ivregress 2sls Y X2 X3 (X1 = Z), �rst 9

Probit probit probit Y X1 X2 X3 12

Normal CDF normal normal(0) /* The normal CDF evaluated at 0

(which is 0.5)*/

12

Logit logit logit Y X1 X2 X3 12

Critical value for χ2 test invchi2 display invchi2(1, 0.95) /* Degrees of freedom = 1

and 0.95 con�dence level */

12

Account for autocorrelation in time series data prais tsset Year

prais Y X1 X2, corc twostep

13

Include lagged dependent variable L.Y reg Y L.Y X1 X2 /* Run tsset command �rst */ 13

Augmented Dickey-Fuller test dfuller dfuller Y, trend lags(1) regress 13

Generate draws from standard normal

distribution

rnormal gen Noise = rnormal(0,1) /* Length will be same

as length of variables in memory */

14

Indicate to Stata unit and time variables tsset tsset ID time 15

Panel model with autocorrelation xtregar xtregar Y X1 X2, fe rhotype(regress) twostep 15

Include lagged dependent variable L.Y xtreg Y L.Y X1 X2, fe i(ID) 15

Random effects panel model , re xtreg Y X1 X2, re 15
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Task Command Example Chapter

Help ? ?mean # Describes the "mean" command 2

Comment line # # This is a comment 2

Load R data �le load Data = load("C:/Data.RData") 2

Load text data �le read.table Data = read.table("C:/Data.txt", header = TRUE) 2

Display names of variables in memory objects objects() # Will list names of all variables in memory 2

Display variables in memory [enter variable

name]

X1 # Display all values of this variable; enter directly in console

or highlight in editor and press ctrl-r

2

X1[1:10] # Display �rst 10 values of X1 2

Missing data in R NA

Mean mean mean(X1) 2

mean(X1, na.rm=TRUE) # Necessary if there are missing values

Variance var var(X1) 2

var(X1, na.rm=TRUE) # Necessary if there are missing values

sqrt(var(X1)) # This is the standard deviation of X1

Minimum min min(X1, na.rm=TRUE) 2

Maximum max max(X1, na.rm=TRUE) 2

Number of observations sum and is.�nite sum(is.�nite(X1)) 2

Frequency table table table(X1) 2

Scatter plot plot plot(X, Y) 2

text(X, Y, name) # Adds labels from variable called "name" 2

Limit data (similar to an if statement) [] plot(Y[X3<10], X1[X3<10]) 2

Equal (as used in if statement, for example) == mean(X1[X2==1]) # Mean of X1 for cases where X2 equals 1 2

Not equal != mean(X1[X1!=0]) # Mean of X1 for observations where X1 is

not equal to 0

2

And & X1[X2 == 1 & X3 > 18] 2

Or | X1[X2 == 1 | X3 > 18] 2

Regression lm lm(Y ˜X1 + X2) # lm stands for "linear model" 3

Results = lm(Y˜X) # Creates an object called "Results" that

stores coef�cients, standard errors, �tted values, and other

information about this regression

3

Display results summary summary(Results) # Do this after creating "Results" 3

Install a package install.packages install.packages("AER") # Only do this once for each computer 3

Load a package library library(AER) # Include in every R session in which we use

package speci�ed in command

Heteroscedasticity robust regression coeftest coeftest(Results, vcov = vcovHC(Results, type = "HC1"))

# Need to install and load AER package for this command. Do

this after creating OLS regression object called "Results"

3

Generate predicted values $�tted.values Results$�tted.values # Run after creating OLS regression object

called "Results"

3

Add regression line to scatter plot abline abline(Results) # Run after plot command and after creating

"Results" object based on a bivariate regression

3
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Task Command Example Chapter

Critical value for t distribution, two-sided qt qt(0.975, 120) # For α = 0.05 and 120 degrees of freedom;

divide α by 2

4

Critical value for t distribution, one-sided qt qt(0.95, 120) # For α = 0.05 and 120 degrees of freedom 4

Critical value for normal distribution, two-sided qnorm qnorm(0.975) # For α = 0.05; divide α by 2 4

Critical value for normal distribution, one-sided qnorm qnorm(0.95) # For α = 0.05 4

Two-sided p values [Reported in summary(Results) output]

One-sided p values pt 2*(1-pt(abs(1.69), 120)) # For model with 120 degrees of

freedom and a t statistic of 1.69

4

Con�dence intervals con�nt con�nt(Results, level = 0.95) # For OLS object "Results" 4

Produce standardized regression coef�cients scale Res.std = lm(scale(Y) ˜scale(X1) + scale(X2) ) 5

Display R squared $r.squared summary(Results)$r.squared 5

Critical value for F test qf qf(.95, df1 = 2, df2 = 120) # Degrees of freedom equal 2 and

120 and α = 0.05

5

p value for F statistic pf 1 - pf(7.77, df1=2, df2=1,846) # For F statistic = 7.77, and

degrees of freedom equal 2 and 1846

5

Include dummies for categorical variable factor lm(Y ∼ factor(X1)) # Includes appropriate number of dummy

variables for categorical variable X1

6

Set reference category relevel X1 = relevel(X1, ref = “south”) # Sets 2nd category as

reference category; include before OLS model

6

Difference of means test using OLS lm lm(Y˜Dum) # Where Dum is a dummy variable 6

Create an interaction variable DumX = Dum * X # Or use <- in place of = 6

Create a squared variable X_sq = Xˆ2 7

Create a logged variable X_log =log( X) 7

LSDV model for panel data factor Results = lm(Y ∼ X1 + factor(country)) # Factor adds a

dummy variable for every value of variable called country

8

One-way �xed-effects model (de-meaned) plm library(plm)

Results = plm(Y ˜X1+ X2+ X3, data = dta,

index=c("country"), model="within")

8

Two-way �xed-effects model (de-meaned) plm library(plm)

Results = plm(Y ˜X1+ X2+ X3, data = dta,

index=c("country", "year"), model="within",

effect = "twoways")

8

2SLS model ivreg library(AER)

ivreg(Y ˜X1 + X2 + X3 |Z1 + Z2 + X2 + X3)

9

Probit glm glm(Y ˜X1 + X2, family = binomial(link ="probit")) 12

Normal CDF pnorm pnorm(0) # The normal CDF evaluated at 0 (which is 0.5) 12

Logit glm glm(Y ˜X1 + X2, family = binomial(link ="logit")) 12

Generate draws from standard normal distribution rnorm Noise = rnorm(500) # 500 draws from standard normal

distribution

14

Panel model with autocorrelation [See Computing Corner in Chapter 15] 15

Include lagged dependent variable plm with

lag(Y)

Results = plm(Y ˜lag(Y) + X1 + X2, data = dta, index = c("ID",

"time"), effect = "twoways")

15

Random effects panel model plm with

"random"

Results = plm(Y ˜X1 + X2, data = dta, model = "random") 15



PREFACE FOR STUDENTS:
HOW THIS BOOK CAN HELP YOU
LEARN ECONOMETRICS

“Less dull than traditional texts.”—Student A.H.

“It would have been immensely helpful for me to have a textbook like this in
my classes throughout my college and graduate experience. It feels more like
an interactive learning experience than simply reading equations and facts out
of a book and being expected to absorb them.”—Student S.A.

“I wish I had had this book when I was first exposed to the material—it would
have saved a lot of time and hair-pulling . . .”—Student J.H.

“Material is easy to understand, hard to forget.”—Student M.H.

This book introduces the econometric tools necessary to answer important ques-

tions. Do antipoverty programs work? Does unemployment affect in�ation? Does

campaign spending affect election outcomes? These and many more questions are

not only interesting but also important to answer correctly if we want to support

policies that are good for people, countries, and the world.

When using econometrics to answer such questions, we need always to

remember a single big idea: correlation is not causation. Just because variable

Y rises when variable X rises does not mean that variable X causes variable Y to

rise. The essential goal is to �gure out when we can say that changes in variable

X will lead to changes in variable Y.

This book helps us learn how to identify causal relationships with three

features seldom found in other econometrics textbooks. First, it focuses on

the tools that economic researchers use most. These are the real econometric

techniques that help us make reasonable claims about whether X causes Y, and

by using these tools, we can produce analyses that others can respect. We’ll get

the most out of our data while recognizing the limits in what we can say or how

con�dent we can be.

This emphasis on real econometricsmeans that we skip obscure econometric

tools that could come up under certain conditions. Econometrics is too often

complicated by books and teachers trying to do too much. This book shows that

we can have a sophisticated understanding of statistical inference without having

to catalog every method that our instructor had to learn as a student.

Second, this bookworkswith a single unifying framework.We don’t start over

with each new concept; instead, we build around a core model. That means there

is a single equation and a unifying set of assumptions that we poke, probe, and

xxvi



PREFACE FOR STUDENTS xxvii

expand throughout the book. This approach reduces the learning costs of moving

through the material and allows us to go back and revisit material. As with any

skill, we probably won’t fully understand any given technique the �rst time we see

it. We have to work at it; we have to work with it. We’ll get comfortable; we’ll see

connections. Then it will click.Whether the skill is jumping rope, typing, throwing

a baseball, or analyzing data, we have to do things many times to get good at it.

By sticking to a unifying framework, we have more chances to revisit what we

have already learned. You’ll also notice that I’m not afraid to repeat myself on the

important stuff. Really, I’m not afraid to repeat myself.

Third, this book uses many examples from the policy, political, and economic

worlds. So even if you do not care about “two-stage least squares” or “maximum

likelihood” in and of themselves, you will see how understanding these techniques

will affect what you think about education policy, trade policy, election outcomes,

and many other interesting issues. The examples and case studies make it clear

that the tools developed in this book are being used by contemporary applied

economists who are actually making a difference with their empirical work.

Real Econometrics is meant to serve as the primary textbook in an introduc-

tory econometrics course or as a supplemental text providing more intuition and

context in amore advanced econometric methods course. Asmore andmore public

policy and corporate decisions are based on statistical and econometric analysis,

this book can also be used outside of course work. Econometrics has in�ltrated

into every area of our lives—from entertainment to sports (I no longer spit out my

coffee when I come across an article on regression analysis of National Hockey

League players)—and a working knowledge of basic econometric techniques can

help anyone make better sense of the world around them.

What’s in This Book?

The preparation necessary to use this book successfully is modest. We use basic

algebra a fair bit, being careful to explain every step. You do not need calculus. We

refer to calculus when useful, and the book certainly could be used by a course that

works through some of the concepts using calculus. However, you can understand

everything without knowing calculus.

We start with two introductory chapters. Chapter 1 lays out the central

challenge in econometrics. This is the challenge of making probabilistic yet

accurate claims about causal relations between variables. We present experiments

as an ideal way to conduct research, but we also show how experiments in the

real world are tricky and can’t answer every question we care about. This chapter

provides the “big picture” context for econometric analysis that is every bit as

important as the speci�cs that follow.

Chapter 2 provides a practical foundation related to good econometric

practices. In every econometric analysis, data meets software, and if we’re not

careful, we lose control. This chapter therefore seeks to teach good habits about

documenting analysis and understanding data.
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The �ve chapters of Part One constitute the heart of the book. They introduce

ordinary least squares (OLS), also known as regression analysis. Chapter 3

introduces the most basic regression model, the bivariate OLS model. Chapter

4 shows how to use OLS to test hypotheses. Chapters 5 through 7 introduce

the multivariate OLS model and applications. By the end of Part One, you will

understand regression and be able to control for anything you can measure. You’ll

also be able to �t curves to data and assess whether the effects of some variables

differ across groups, among other skills that will impress your friends.

Part Two introduces techniques that constitute the contemporary econometric

toolkit. These are the techniques people use when they want to get published—or

paid. These techniques build on multivariate OLS to give us a better chance of

identifying causal relations between two variables. Chapter 8 covers a simple yet

powerful way to control for many factors we can’t measure directly. Chapter 9

covers instrumental variable techniques, which work if we can �nd a variable

that affects our independent variable but not our dependent variable. Instrumental

variable techniques are a bit funky, but they can be very useful for isolating causal

effects. Chapter 10 covers randomized experiments. Although ideal in theory, in

practice such experiments often raise a number of challenges we need to address.

Chapter 11 covers regression discontinuity tools that can be used when we’re

studying the effect of variables that were allocated based on a �xed rule. For

example, Medicare is available to people in the United States only when they turn

65, and admission to certain private schools depends on a test score exceeding

some threshold. Focusing on policies that depend on such thresholds turns out to

be a great context for conducting credible econometric analysis.

Part Three contains a single chapter (Chapter 12) that covers dichotomous

dependent variable models. These are simply models in which the outcome we

care about takes on two possible values. Examples and case studies include high

school graduation (someone graduates or doesn’t), unemployment (someone has

a job or doesn’t), and alliances (two countries sign an alliance treaty or don’t). We

show how to apply OLS to such models and then provide more elaborate models

that address the de�ciencies of OLS in this context.

Part Four supplements the book with additional useful material. Chapter 13

covers time series data. The �rst part of the chapter is a variation on OLS; the

second part introduces dynamic models that differ from OLS models in important

ways. Chapter 14 derives important OLS results and extends discussion on speci�c

topics. Chapter 15 goes into greater detail on the vast literature on panel data,

showing how the various strands �t together.

Chapter 16 concludes the book with tips on adopting the mind-set of an

econometric realist. In fact, if you are looking for an overall understanding of the

power and limits of statistics, you might want to read this chapter �rst—and then

read it again once you’ve learned all the statistical concepts covered in the other

chapters.
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How to Use This Book

Real Econometrics is designed to help you master the material. Each section ends

with a “Remember This” box that highlights the key points of that section. If you

rememberwhat’s in each of these boxes, you’ll have a great foundation in statistics.

Key Terms are boldfaced where they are �rst introduced in the text, de�ned brie�y

in the margins, and de�ned again in the glossary at the end of the book.

Review Questions and Discussion Questions appear at the end of selected

sections. I recommend using these. Answering questions helps us be realistic

about whether we’re truly on track. What we’re �ghting is something cognitive

psychologists call the “illusion of explanatory depth.” That’s a fancy way of saying

we don’t always know as much as we think we do. By answering the Review

Questions and Discussion Questions, we can see where we are. The Review

Questions are more concrete and have speci�c answers, which are found at the

end of the book. The Discussion Questions are more open-ended and encourage

us to explore how the concepts apply to issues we care about. Once invested in

this way, we’re no longer doing econometrics for the sake of doing econometrics;

instead, we’re doing econometrics to help us learn about important issues.

And remember, learning is not only about answering questions: coming up

with your own questions for your instructor or classmates or the dude next to you

on the bus is a great way to learn. Doing so will help you formulate exactly what is

unclear and will open the door to an exchange of ideas. Heck, maybe you’ll make

friends with the bus guy or, worst case, you’ll see an empty seat open up next to

you . . .

Finally, you may have noticed that this book is opinionated and a bit chatty.

This is not the usual tone of econometrics books, but being chatty is not the

same as being dumb. You’ll see real material, with real equations and real

research—sometimes accompanied by smart-ass asides that you may not see in

other books. This approach makes the material more accessible and also reinforces

the right mind-set: econometrics is not simply a set of mathematical equations;

instead, econometrics provides a set of practical tools that curious people use to

learn from theworld. But don’t let the tone fool you. This book is notEconometrics

for Dummies; it’s Real Econometrics. Learn the material, and you will be well on

your way to using econometrics to answer important questions.
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HOW TO HELP YOUR STUDENTS
LEARN ECONOMETRICS

We econometrics teachers have high hopes for our students. We want them to

understand how econometrics can shed light on important economic and policy

questions. Sometimes they humor us with incredible insight. The heavens part;

angels sing. We want that to happen daily. Sadly, a more common experience is

seeing a furrowed brow of confusion and frustration. It’s cloudy and rainy in that

place.

It doesn’t have to be this way. If we distill the material to the most critical

concepts, we can inspire more insight and less brow-furrowing. Unfortunately,

conventional statistics and econometrics books all too often manage to be too

simple and too confusing at the same time. Many are too simple in that they

provide a semester’s worth of material that hardly gets past rudimentary ordinary

least squares (OLS). Some are too confusing in that they get to OLS by way of

going deep into the weeds of probability theory without showing students how

econometrics can be useful and interesting.

Real Econometrics is predicated on the belief that we are most effective

when we teach the tools we use. What we use are regression-based tools with an

increasing focus on experiments and causal inference. If students can understand

these fundamental concepts, they can legitimately participate in analytically sound

conversations. They can produce analysis that is interesting—and believable!

They can understand experiments and the sometimes subtle analysis required

when experimental methods meet social scienti�c reality. They can appreciate that

causal effects are hard to tease out with observational data and that standard errors

estimated on crap coef�cients, however complex, do no one any good. They can

sniff out when others are being naive or cynical. It is only when we muck around

too long in the weeds of less useful material that statistics becomes the quagmire

students fear.

Hence this book seeks to be analytically sophisticated in a simple and relevant

way. It focuses on tools actually used by real analysts. Nothing useless. No clutter.

To do so, the book is guided by three principles: relevance, opportunity costs, and

pedagogical ef�ciency.

Relevance

Relevance is a crucial �rst principle for successfully teaching econometrics in

the social sciences. Every experienced instructor knows that most students care
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more about the real world than math. How do we get such students to engage

with econometrics? One option is to cajole them to care more and work harder.

We all know how well that works. A better option is to show them how a

sophisticated understanding of statistical concepts helps them learn more about

the topics that concern them. Think of a mother trying to get a child to commit to

the training necessary to play competitive sports. She could start with a semester

of theory. . . .No, that would be cruel. And counterproductive. Much better to let

the child play and experience the joy of the sport. Then there will be time (and

motivation!) to understand nuances. Thus every chapter is built around examples

and case studies on topics students might actually care about—topics like violent

crime in the United States (Chapter 2), global warming (Chapter 7), and the

relationship between alcohol consumption and grades (Chapter 11).

Learning econometrics is not that different from learning anything else. We

need to care to truly learn. Therefore this book takes advantage of a careful

selection of material to spend more time on the real examples that students care

about.

Opportunity Costs

Opportunity costs are, as we all tell our students, what we have to give up to

do something. So, while some topic might be a perfectly respectable part of an

econometric toolkit, we should include it only if it does not knock out something

more important. The important stuff all too often gets shunted aside as we �ll up

the early part of students’ analytical trainingwith statistical knick-knacks, material

“some people still use” or that students “might see.”

Therefore this book goes quickly through descriptive statistics and doesn’t

cover χ2 tests for two-way tables, weighted least squares, and other denizens of

conventional statistics books. These concepts—and many, many more—are all

perfectly legitimate. Some are covered elsewhere (descriptive statistics are covered

in elementary schools these days). Others are valuable enough to rate inclusion

here in an “advanced material” section for students and instructors who want

to pursue these topics further. And others simply don’t make the cut. Only by

focusing the material can we get to the tools used by researchers today, tools such

as panel data analysis, instrumental variables, and regression discontinuity. The

core ideas behind these tools are not particularly dif�cult, but we need to make

time to cover them.

Pedagogical Efficiency

Pedagogical ef�ciency refers to streamlining the learning process by using a single

uni�ed framework. Everything in this book builds from the standard regression

model. Hypothesis testing, difference of means, and experiments can be—and

often are—taught independently of regression. Causal inference is sometimes

taught with potential outcomes notation. There is nothing intellectually wrong

with these approaches. But is using them pedagogically ef�cient? If we teach
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these as stand-alone concepts we have to take time and, more important, student

brain space to set up each separate approach. For students, this is really hard.

Remember the furrowed brows? Students work incredibly hard to get their heads

around difference of means and where to put degrees of freedom corrections and

how to know if the means come from correlated groups or independent groups and

what the equation is for each of these cases. Then BAM! Suddenly the professor is

talking about residuals and squared deviations. The transition is old hat for us, but

it can overwhelm students �rst learning thematerial. It is more ef�cient to teach the

OLS framework and use that to cover difference of means, experiments, and the

contemporary canon of econometric analysis, including panel data, instrumental

variables, and regression discontinuity. Each tool builds from the same regression

model. Students start from a comfortable place and can see the continuity that

exists.

An important bene�t of working with a single framework is that it allows

students to revisit the core model repeatedly throughout the term. Despite the

brilliance of our teaching, students rarely can put it all together with one pass

through the material. I know I didn’t when I was beginning. Students need to see

the material a few times, work with it a bit, and then it will �nally click. Imagine

if sports were coached the way we do econometrics. A tennis coach who said

“This week we’ll cover forehands (and only forehands), next week backhands (and

only backhands), and the week after that serves (and only serves)” would not be a

tennis coach for long. Instead, coaches introduce material, practice, and then keep

working on the fundamentals. Working with a common framework throughout

makes it easier to build in mini-drills about fundamentals as new material is

introduced.

Course Adoption

Real Econometrics is organized to work well in three different kinds of courses.

First, it can be used in an introductory econometrics course that follows a semester

of probability and statistics. In such a course, students should probably be able to

move quickly through the early material and then pick up where they left off,

typically with multivariate OLS.

Second, this book can be used with students who have not previously (or

recently) studied statistics, either in a one-semester course covering Part One or

a year-long course covering the whole book. Using this book as a �rst course

avoids the “warehouse problem,” which occurs when we treat students’ statistical

education as a warehouse, �lling it up with tools �rst and accessing them only

later. One challenge is that things rot in a warehouse. Another challenge is that

instructors tend to hoard a bit, putting things in the warehouse “just in case”

and creating clutter. And students �nd warehouse work achingly dull. Using this

book in a �rst-semester course avoids the warehouse problem by going directly

to interesting and useful material, providing students with a more just-in-time

approach. For example, they see statistical distributions, but in the context of trying

to solve a speci�c problem rather than as an abstract concept that will become

useful later.
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Finally, Real Econometrics can be used as a supplement in a more advanced

econometrics course, providing intuition and context that sometimes gets lost in

the more technical courses.

Real Econometrics is also designed to encourage two particularly useful

pedagogical techniques. One is interweaving, the process of weaving material

from previous lessons into later lessons. Numbered sections end with a “Remem-

ber This” box that summarizes key points. Connecting back to these points

in later lessons is remarkably effective at getting the material into the active

part of students’ brains. The more we ask students about omitted variable bias

or multicollinearity or properties of instruments (and in sometimes surprising

contexts), the more they become able to actively apply the material on their own.

The second teaching technique is to use frequent low-stakes quizzes to convert

students to active learners with less stress than the exams they will also be taking.

These quizzes need not be hard. They just need to give students a chance to

independently access and apply the material. Students can test themselves with the

Review Questions at the end of many sections, as the answers to these questions

are at the back of the book. It can also be useful for students to discuss or at

least re�ect on the Discussion Questions at the ends of many sections, as these

enable students to connect the material to real world examples. Brown, Roediger,

and McDaniel (2014) provide an excellent discussion of these and other teaching

techniques.

Overview

The �rst two chapters of the book serve as introductory material and introduce

the science of statistics. Chapter 1 lays out the theme of how important—and

hard—it is to generate unbiased estimates. This is a good time to let students offer

hypotheses about questions of the day, because these questions can help bring

to life the subsequent material. Chapter 2, which introduces computer programs

and good practices, is a con�dence builder that gets students who are not already

acclimated to statistical computing over the hurdle of using statistical software.

Part One covers core OLS material. Chapter 3 introduces bivariate OLS.

Chapter 4 covers hypothesis testing, and Chapter 5 moves to multivariate OLS.

Chapters 6 and 7 proceed to practical tasks such as use of dummy variables, logged

variables, interactions, and F tests.

Part Two covers essential elements of the contemporary econometric toolkit,

including panel data, instrumental variables, analysis of experiments, and regres-

sion discontinuity. Chapter 10, on experiments, uses instrumental variables.

Chapters 8, 9, and 11 can be covered in any order, however, so instructors can

pick and choose among these chapters as needed.

Part Three contains a single chapter (Chapter 12) on dichotomous dependent

variables. It develops the linear probability model in the context of OLS and

uses the probit and logit models to introduce students to maximum likelihood.

Instructors can cover this chapter any time after Part One if dichotomous

dependent variables play a major role in the course.
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Part Four introduces some advanced material. Chapter 13 discusses time

series models, introducing techniques to account for autocorrelation and to

estimate dynamic time series models; this chapter can also be covered at any

time following Part One. Chapter 14 offers derivations of the OLS model and

additional material on omitted variable bias. Instructors seeking to expose students

to derivations and extensions of the core OLS material can use this chapter as an

auxiliary to Chapters 3 through 5. Chapter 15 introduces more advanced topics in

panel data. This chapter builds on material from Chapters 8 and 13.

Chapter 16 concludes the book by discussing ways to maximize the chances

that we use econometrics properly to answer important questions about the world.

Every chapter ends with a series of learning tools. Each conclusion sum-

marizes the learning objectives by section and provides a list of key terms

introduced in the chapter (along with the page where �rst introduced). Each

Further Reading section guides students to additional resources on the material

covered in the chapter. The Computing Corners provide a guide to the syntax

needed to implement the analysis discussed in the chapters. We provide this syntax

for both Stata and R computing languages. Finally, the Exercises provide a variety

of opportunities for students to analyze real data sets from important papers on

interesting topics.

Several appendices provide supporting material. An appendix on math and

probability covers background ranging from mathematical functions to important

concepts in probability. In addition, citations and additional notes are linked to

the text by page numbers and elaborate on some �ner points. Answers to Review

Questions are also provided.

Teaching econometrics is dif�cult. When the going gets tough it is tempting

to blame students, to say they are unwilling to do the work. Before we go

that route, we should recognize that many students �nd the material quite

foreign and (unfortunately) irrelevant. If we can streamline what we teach and

connect it to things students care about, we can improve our chances of getting

students to understand the material, which not only is intrinsically interesting

but also forms the foundation for all empirical work. When students understand,

teaching becomes easier. And better. The goal of this book is to help get us there.

Supplements Accompanying Real Econometrics

A broad array of instructor and student resources for Real Econometrics are

available online at www.oup.com/us/bailey.

Data

Much of the supplementary material for Real Econometrics focuses on

data—through online access to the data sets referenced in the chapters, their

documentation, and additional data sets. These include:
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• Chapter-speci�c libraries of downloadable �gures, graphs, and data sets

(and their documentation) for the examples and exercises found in the text.

• Links to other data sets (both experimental and non-experimental) for

creating new assignments.

Instructor’s Manual

Each chapter in the Instructor’s Manual provides an overview of the chapter

goals and section-by-section teaching tips along with suggested responses to the

in-chapter Discussion Questions. The Instructor’s Manual also contains sample

data sets for the Computing Corner activities and solutions to the Exercises found

at the end of each chapter.

PowerPoint Presentations

Presentation slides offer bullet-point summaries as well as all the tables and graphs

from the book to help guide and design lectures. A separate set of slides containing

only the text tables and graphs is also available.

Computerized Test Bank

The computerized test bank that accompanies this text enables instructors to

easily create quizzes and exams, using any combination of publisher-provided

questions and their own questions. Questions can be edited and easily assembled

into assessments that can then be exported for use in learningmanagement systems

or printed for paper-based assessments.

LearningManagement Systems Support

For instructors using an online learning management system (e.g., Moodle, Sakai,

Blackboard, or others), Oxford University Press can provide all the electronic

components of the package in a format suitable for easy upload. Adopting

instructors should contact their local Oxford University Press sales representative

or OUP’s Customer Service (800-445-9714) for more information.
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The Quest for Causality 1

How do we know what we know? Or at least, why

do we think what we think? The modern answer

is evidence. In order to convince others—in order

to convince ourselves—we need to provide infor-

mation that others can verify. Something that is a

hunch or something that we simply “know” may

be important, but it is not the kind of evidence that

drives the modern scienti�c process.

What is the basis of our evidence? In some

cases, we can see cause and effect. We see a

burning candle tip over and start a �re. Now

we know what caused the �re. This is perfectly

good knowledge. Sometimes in politics and policy

we trace back a chain of causality in a similar

way. This process can get complicated, though.

Why do some economies stagnate while others

thrive? What are the economic and social effects

of international trade?Why didDonald Trumpwin

the presidential election in 2016? Why has crime

gone down in the United States? For these types

of questions, we are not looking only at a single

candle; there are lightning strikes, faulty wires,

arsonists, and who knows what else to worry

about. Clearly, it will bemuch harder to trace cause

and effect.

When there is no way of directly observing cause and effect, we naturally turn

to data. And data holds great promise. A building collapses during an earthquake.

What about the building led it—and not others in the same city—to collapse? Was

it the building material? The height? The design? Age? Location near a fault?

While we might not be able to see the cause directly, we can gather information

on buildings that did and did not collapse. If the older buildings were more likely

1
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FIGURE 1.1: Rule #1

to collapse, we might reasonably suspect that building age mattered. If buildings

constructed without steel reinforcement collapsed no matter what their age, we

might reasonably suspect that buildings without reinforcement designs were more

likely to collapse.

And yet, we should not get overcon�dent. Even if old buildings were more

likely to collapse, we do not know for certain that age of the building is the main

explanation for the collapse. It could be that more buildings from a certain era

were designed a certain way; it could be that there were more old buildings in

a neighborhood where the seismic activity was most severe. Or the collapse of

many buildings that happened to be old could represent a massive coincidence. In

other words, correlation is not the same as causation. We put this fact in big blue

letters in Figure 1.1 because it is a fundamental starting point in any serious data

analysis.

The econometrics we learn in this book will help us to identify causes and

make claims about what reallymattered—andwhat didn’t. If correlation is not cau-

sation, what does imply causation? It will take the whole book to fully �esh out the

answer, but here’s the short version: if we can �nd exogenous variation, then cor-

relation is probably causation. Our task then will be to �gure out what exogenous

variation means and how to distinguish randomness from causality as best we can.

In this chapter, we introduce three concepts at the heart of the book.

Section 1.1 explains the core model we use throughout. Section 1.2 introduces

two major challenges that can make it hard to use data to learn about the world.

Neither is math. (Really!) The �rst is randomness: sometimes the luck of the

draw will lead us to observe relationships that aren’t real; other times random

chance will lead us to miss relationships that are real. The second is endogeneity,

a phenomenon that can cause us to wrongly think a variable causes some effect

when it doesn’t. Section 1.3 presents randomized experiments as the ideal way to

overcome endogeneity. Usually, these experiments aren’t possible, and even when

they are, things can go wrong. Hence, the rest of the book is about developing a

toolkit that helps us meet (or approximate) the idealized standard of randomized

experiments.

1.1 The Core Model

When we talk about cause and effect, we’ll refer to the outcome of interest as the

dependent variable. We’ll refer to a possible cause as an independent variable.
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The dependent variable, usually denoted as Y , is called that because its valuedependent variable

The outcome of interest,

usually denoted as Y .
depends on the independent variable. The independent variable, usually denoted

by X, is called that because it does whatever the hell it wants. It is potentially the

cause of some change in the dependent variable.

independent

variable A variable

that possibly influences

the value of the

dependent variable.

At root, social scienti�c theories posit that a change in one thing (the

independent variable) will lead to a change in another (the dependent variable).

We’ll formalize this relationship in a bit, but let’s start with an example. Suppose

we’re interested in the U.S. obesity epidemic and want to analyze the in�uence

of snack food on health. We may wonder, for example, if donuts cause health

problems. Our model is that eating donuts (variable X, our independent variable)

causes some change in weight (variable Y , our dependent variable). If we can �nd

data on how many donuts people ate and how much they weighed, we might be

on the verge of a scienti�c breakthrough.

Let’s conjure up a small midwestern town and do a little research. Figure 1.2

plots donuts eaten and weights for 13 individuals from a randomly chosen town:

Spring�eld, U.S.A. Our raw data is displayed in Table 1.1. Each person has a line in

the table. Homer is observation 1. Since he ate 14 donuts per week, Donuts1 = 14.

We’ll often refer to Xi or Yi, which are the values of X and Y for person i in the

data set. The weight of the seventh person in the data set, Smithers, is 160 pounds,

meaning Weight7 = 160, and so forth.

Figure 1.2 is a scatterplot of data, with each observation located at thescatterplot A plot of

data in which each

observation is located at

the coordinates defined

by the independent and

dependent variables.

coordinates de�ned by the independent and dependent variables. The value of

donuts per week is on the X-axis, and weights are on the Y-axis. Just by looking

at this plot, we sense there is a positive relationship between donuts and weight

because the more donuts eaten, the higher the weight tends to be.

TABLE 1.1 Donut Consumption andWeight

Observation Name Donuts Weight

number per week (pounds)

1 Homer 14 275

2 Marge 0 141

3 Lisa 0 70

4 Bart 5 75

5 Comic Book Guy 20 310

6 Mr. Burns 0.75 80

7 Smithers 0.25 160

8 Chief Wiggum 16 263

9 Principal Skinner 3 205

10 Rev. Lovejoy 2 185

11 Ned Flanders 0.8 170

12 Patty 5 155

13 Selma 4 145
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FIGURE 1.2: Weight and Donuts in Springfield

We use a simple equation to characterize the relationship between the two

variables:

Weighti = β0 + β1Donutsi + εi (1.1)

• The dependent variable, Weighti, is the weight of person i.

• The independent variable, Donutsi, is how many donuts person i eats per

week.

• β1 is the slope coef�cient on donuts, indicating how much more1 a person

slope coefficient

The coefficient on an

independent variable. It

reflects how much the

dependent variable

increases when the

independent variable

increases by one.

weighs for each donut eaten. (For those whose Greek is a bit rusty, β is the

Greek letter beta.)

• β0 is the constant or intercept, indicating the expected weight of people

constant The

parameter β0 in a

regression model. It is

the point at which a

regression line crosses

the Y-axis. Also referred

to as the intercept.

who eat zero donuts.

1Or less—be optimistic!
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FIGURE 1.3: Regression Line for Weight and Donuts in Springfield

• εi is the error term that captures anything else that affects weight. (ε is the

Greek letter epsilon)

This equation will help us estimate the two parameters necessary to charac-

error term The term

associated with

unmeasured factors in a

regression model,

typically denoted as ε .
terize a line. Remember Y = mX + b from junior high? This is the equation for

a line where Y is the value of the line on the vertical axis, X is the value on the

horizontal axis, m is the slope, and b is the intercept, or the value of Y when X is

zero. Equation 1.1 is essentially the same, only we refer to the “b” term as β0 and

call the “m” term β1.

Figure 1.3 shows an example of a possible line from this model for our

Spring�eld data. The intercept (β0) is the value of weight when donut consumption

is zero (X = 0). The slope (β1) is the amount that weight increases for each donut

eaten. In this case, the intercept is about 123, whichmeans that the expected weight

for those who eat zero donuts is around 123 pounds. The slope is around 9.1, which

means that for each donut eaten per week, weight is about 9.1 pounds higher.

More generally, our core model can be written as

Yi = β0 + β1Xi + εi (1.2)



6 CHAPTER 1 The Quest for Causality

where β0 is the intercept that indicates the value of Y when X = 0 and β1 is the

slope that indicates how much change in Y is expected if X increases by one unit.

We almost always care a lot about β1, which characterizes the relationship between

X and Y . We usually don’t care a whole lot about β0. It plays an important role in

helping us get the line in the right place, but determining the value of Y when X is

zero is seldom our core research interest.

In Figure 1.3, we see that the actual observations do not fall neatly on the

line that we’re using to characterize the relationship between donuts and weight.

The implication is that our model does not perfectly explain the data. Of course

it doesn’t! Spring�eld residents are much too complicated for donuts to explain

them completely (except, apparently, Comic Book Guy).

The error term, εi, comes to the rescue by giving us some wiggle room. The

error term is what is left over after the variables have done their work in explaining

variation in the dependent variable. In doing this service, it plays an incredibly

important role for the entire econometric enterprise. As this book proceeds, we

will keep coming back to the importance of getting to know our error term.

The error term, εi, is not simply a Greek letter. It is something real. What it

covers depends on the model. In our simple model—in which weight is a function

only of how many donuts a person eats—oodles of factors are contained in the

error term. Basically, anything else that affects weight will be in the error term:

sex, height, other eating habits, exercise patterns, genetics, and on and on. The

error term includes everything we haven’t measured in our model.

We’ll often see εi referred to as random error, but be careful about that one.

Yes, for the purposes of the model we are treating the error term as something

random, but it is not random in the sense of a roll of the dice. It is random more in

the sense that we don’t know what the value of it is for any individual observation.

But as a practical matter every error term re�ects, at least in part, some relationship

to real things that we have not measured or included in the model. We will come

back to this point often.

R E M E M B E R T H I S

Our core statistical model is

Yi = β0 + β1Xi + εi

1. β1, the slope, indicates how much change in Y (the dependent variable) is expected if X (the

independent variable) increases by one unit.

2. β0, the intercept, indicates where the regression line crosses the Y-axis. It is the value of Y when

X is zero.

3. β1 is usually more interesting than β0 because β1 characterizes a relationship between X and

Y .
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FIGURE 1.4: Examples of Lines Generated by Core Statistical Model (for Review Question)

Review Question

For each of the panels in Figure 1.4, determine whether β0 and β1 are greater than, equal to, or less

than zero. [Be careful with β0 in panel (d)!]

1.2 TwoMajor Challenges: Randomness and Endogeneity

Understanding that there are real factors in the error term helps us be smart about

making causal claims. Our data seems to suggest that the more donuts people ate,

themore they packed on the pounds. It’s not crazy to think that donuts causeweight

gain.
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But can we be certain that donuts, and not some other factor, cause weight

gain? Two core challenges in econometric analysis should make us cautious. One

is randomness. Any timewe observe a relationship in data, we need to keep inmind

that some coincidence could explain it. Perhaps we happened to pick some unusual

people for our data set. Or perhaps we picked perfectly representative people, but

they happened to have had unusual measurements on the day we examined them.

In the donut example, the possibility of such randomness should worry us, at

least a little. Perhaps the people in Figure 1.3 are a bit odd. Perhaps if we had more

people, we might get more heavy folks who don’t eat donuts and skinny people

who scarf them down. Adding those folks to the data set would change the �gure

and our conclusions. Or perhaps even with the set of folks we observed, we might

have gotten some of them on a bad (or a good) day, whereas if we had looked at

them another day, we might have observed a different relationship.

Every legitimate econometric analysis therefore will account for randomness

in an effort to distinguish results that could happen by chance from those that

would be unlikely to happen by chance. The bad news is that we will never escape

the possibility that the results we observe are due to randomness rather than a

causal effect. The good news, though, is that we can often do a pretty good job

characterizing our con�dence that the results are not simply due to randomness.

Another major challenge arises from the possibility that an observed relation-

ship between X and Y is actually due to another variable, which causes Y and

is associated with X. In the donuts example, worry about scenarios in which we

wrongly attribute to our key independent variable (in this case, donut consumption)

changes in weight that were caused by other factors. What if tall people eat more

donuts? Height is in the error term as a contributing factor to weight, and if tall

people eat more donuts, we may wrongly attribute to donuts the effect of height.

There are loads of other possibilities. What if men eat more donuts? What if

exercise addicts don’t eat donuts? What if people who eat donuts are also more

likely to down a tub of Ben and Jerry’s ice cream every night? What if thin people

can’t get donuts down their throats? Beingmale, exercising, bingeing on ice cream,

having itty-bitty throats—all these things are probably in the error term (meaning

they affect weight), and all could be correlated with donut eating.

Speaking econometrically, we highlight this major statistical challenge by

saying that the donut variable is endogenous. An independent variable isendogenous An

independent variable is

endogenous if changes

in it are related to factors

in the error term.

endogenous if changes in it are related to factors in the error term. The pre�x

“endo” refers to something internal, and endogenous independent variables are

“in the model” in the sense that they are related to other things that also determine

Y (but are not already accounted for by X).

In the donuts example, donut consumption is likely endogenous because how

many donuts a person eats is not independent of other factors that in�uence weight

gain. Factors that cause weight gain (e.g., eating Ben and Jerry’s ice cream)

might be associated with donut eating; in other words, factors that in�uence the

dependent variable Y might also be associated with the independent variable X,

muddying the connection between correlation and causation. If we can’t be sure

that our variation in X is not associated with factors that in�uence Y , we need to

worry about wrongly attributing to X the causal effect of some other variable.

We might wrongly conclude that donuts cause weight gain when really donut
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eaters are more likely to eat tubs of Ben and Jerry’s, with the ice cream being

the real culprit.

In all these examples, something in the error term that really causes weight

gain is related to donut consumption. When this connection exists, we risk

spuriously attributing to donut consumption the causal effect of some other factor.

Remember, anything not measured in the model is in the error term, and here,

at least, we have a wildly simple model in which only donut consumption is

measured. So Ben and Jerry’s, genetics, and everything else are in the error term.

Endogeneity is everywhere; it’s endemic. Suppose we want to know if raising

teacher salaries increases test scores. It’s an important and timely question.

Answering it may seem easy enough: we could simply see if test scores (a

dependent variable) are higher in places where teacher salaries (an independent

variable) are higher. It’s not that easy, though, is it? Endogeneity lurks. Test

scores might be determined by unmeasured factors that also affect teacher salaries.

Maybe school districts with lots of really poor families don’t have very good test

scores and don’t have enough money to pay teachers high salaries. Or perhaps

the relationship is the opposite—poor school districts get extra federal funds to

pay teachers more. Either way, teacher salaries are endogenous because their

levels depend in part on factors in the error term (like family income) that affect

educational outcomes. Simply looking at the relationship of test scores to teacher

salaries risks confusing the effect of family income and teacher salaries.2

The opposite of endogeneity is exogeneity. An independent variable is

exogenous if changes in it are not related to factors in the error term. The pre�xexogenous An

independent variable is

exogenous if changes in

it are unrelated to

factors in the error term.

“exo” refers to something external, and exogenous independent variables are

“outside the model” in the sense that their values are unrelated to other things

that also determine Y . For example, if we use an experiment to randomly set the

value of X, then changes in X are not associated with factors that also determine

Y . This gives us a clean view of the relationship between X and Y , unmuddied by

associations between X and other factors that affect Y .

One of our central challenges is to avoid endogeneity and thereby achieve

exogeneity. If we succeed, we can be more con�dent that we have moved beyond

correlation and closer to understanding if X causes Y—our fundamental goal. This

process is not automatic or easy. Often we won’t be able to �nd purely exogenous

variation, so we’ll have to think through how close we can get. Nonetheless, the

bottom line is this: if we can �nd exogenous variation in X, we will be in a good

position to make reasonable inferences about what will happen to variable Y if we

change variable X.

To formalize these ideas, we’ll use the concept of correlation, which mostcorrelation

Measures the extent to

which two variables are

linearly related to each

other.

people know, at least informally. Two variables are correlated (“co-related”) if

they move together. A positive correlation means that high values of one variable

are associated with high values of the other; a negative correlation indicates that

high values of one variable are associated with low values of the other.

Figure 1.5 shows examples of variables that have positive correlation

[panel (a)], no correlation [panel (b)], and negative correlation [panel (c)].

2A good idea is to measure these things and put them in the model so that they are no longer in the

error term. That’s what we do in Chapter 5.
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FIGURE 1.5: Correlation

Correlations range from 1 to −1. A correlation of 1 means that the variables move

perfectly together.

Correlations close to zero indicate weak relationships between variables.

When the correlation is zero, there is no linear relationship between two variables.3

We use correlation in our de�nitions of endogeneity and exogeneity. If our

independent variable has a relationship to the error term like the one in panel (a) of

Figure 1.5 (which shows positive correlation) or in panel (c) (which shows negative

correlation), then we have endogeneity. In other words, we have endogeneity when

the unmeasured stuff that constitutes the error term is correlated with our indepen-

dent variable, and endogeneity will make it dif�cult to tell whether changes in the

dependent variable are caused by our independent variable or the error term.

On the other hand, if our independent variable has no relationship to the error

term as in panel (b), we have exogeneity. In this case, if we observe Y rising with

X, we can feel con�dent that X is causing Y .

The challenge is that the true error term is not observable. Hence, much of

what we do in econometrics attempts to get around the possibility that something

3 In Appendix E (page 541), we provide an equation for correlation and discuss how it relates to our

ordinary least squares estimates from Chapter 3. Correlation measures linear relationships between

variables; we’ll discuss non-linear relationships in ordinary least squares on page 221.
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unobserved in the error termmay be correlated with the independent variable. This

quest makes econometrics challenging and interesting.

As a practical matter, we should begin every analysis by assessing endogene-

ity. First, look away from the model for a moment and list all the things that could

determine the dependent variable. Second, ask if anything on the list correlates

with the independent variable in the model and explain why it might. That’s it. Do

that, and we are on our way to identifying endogeneity.

R E M E M B E R T H I S

1. There are two fundamental challenges in econometrics: randomness and endogeneity.

2. Randomness can produce data that suggests X causes Y even when it does not. Randomness

can also produce data that suggests X does not cause Y even when it does.

3. An independent variable is endogenous if it is correlated with the error term in the model.

(a) An independent variable is exogenous if it is not correlated with the error term in the

model.

(b) The error term is not observable, making it a challenge to know whether an independent

variable is endogenous or exogenous.

(c) It is dif�cult to assess causality for endogenous independent variables.

Discussion Questions

1. Each panel of Figure 1.6 on page 12 shows relationships among three variables:X is an observed

independent variable, ε is a variable re�ecting some unobserved characteristic, and Y is the

dependent variable. (In our donut example, X corresponds to the number of donuts eaten, ε

corresponds to an unobserved characteristic such as exercise, and Y corresponds to the outcome

of interest, which is weight.) If an arrow connects X and Y , then X has a causal effect on Y .

If an arrow connects ε and Y , then the unobserved characteristic has a causal effect on Y . If a

double arrow connects X and ε, then these two variables are correlated (and we won’t worry

about which causes which).

For each panel, explain whether endogeneity will cause problems for an analysis of the

relationship between X and Y . For concreteness, assume X is grades in college, ε is IQ, and Y

is salary at age 26.

2. Come up with your own independent variable, unmeasured error variable, and dependent

variable. Decide which of the panels in Figure 1.6 best characterizes the relationship of the

variables you chose, and discuss the implications for econometric analysis.
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FIGURE 1.6: Possible Relationships Between X ,ε, and Y (for Discussion Questions)
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CASE STUDY Flu Shots

Agreatway to appreciate the challenges raised by endo-

geneity is to look at real examples. Here is one we all can

relate to: Do flu shots work?

No one likes the flu. It kills about 36,000 people in

theUnited States each year,mostly among the elderly. At

the same time, no one enjoys schlepping down to some

hospital basement or drugstore lobby, rolling up a shirt

sleeve, and getting a flu shot. Nonetheless, every year

100,000,000 Americans dutifully go through this ritual.

The evidence that flu shots prevent people from

dying from the flu must be overwhelming, right? Sup-

pose we start by considering a study using data on whether people died (the

dependent variable) and whether they got a flu shot (the independent variable):

Deathi = β0 +β1Flu shoti + εi (1.3)

where Deathi is a (creepy) variable that is 1 if person i died in the time frame of the

study and 0 if he or she did not. Flu shoti is 1 if the person i got a flu shot and 0 if

not.4

A number of studies have done essentially this analysis and found that people

who get flu shots are less likely to die. According to some estimates, those who

receive flu shots are asmuch as 50 percent less likely to die. This effect is enormous.

Going home with a Band-Aid that has a little bloodstain is worth it after all.

But are we convinced? Is there any chance of endogeneity? If there exists some

factor in the error term that affected whether someone died andwhether he or she

got a flu shot, we would worry about endogeneity.

What is in the error term? Goodness, lots of things affect the probability

of dying: age, health status, wealth, cautiousness—the list is immense. All these

factors and more are in the error term.

How could these factors cause endogeneity? Let’s focus on overall health.

Clearly, healthier people die at a lower rate thanunhealthy people. If healthy people

are also more likely to get flu shots, we might erroneously attribute life-saving

power to flu shots when perhaps all that is going on is that people who are healthy

in the first place tend to get flu shots.

It’s hard, of course, to get measures of health for people, so let’s suppose we

don’t have them. We can, however, speculate on the relationship between health

and flu shots. Figure 1.7 shows two possible states of the world. In each figure we

plot flu-shot status on the X-axis. A person who did not get a flu shot is in the 0

group; someone who got a flu shot is in the 1 group. On the Y-axis we plot health

4We discuss dependent variables that equal only 0 or 1 in Chapter 12 and independent variables that

equal 0 or 1 in Chapter 6.
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FIGURE 1.7: Two Scenarios for the Relationship between Flu Shots and Health

related to everything but flu (supposing we could get an index that factors in age,

heart health, absence of disease, etc.). In panel (a) of Figure 1.7, health and flu

shots don’t seem to go together; in other words the correlation is zero. If panel (a)

represents the state of the world, then our results that flu shots are associated with

lower death rates is looking pretty good because flu shots are not reflecting overall

health. In panel (b), health and flu shots do seem to go together, with the flu shot

population being healthier. In this case, we have correlation of our main variable

(flu shots) and something in the error term (health).

Brownlee and Lenzer (2009) discuss some indirect evidence suggesting that flu

shots and health are actually correlated. A clever approach to assessing this matter

is to look at death rates of people in the summer. The flu rarely kills people in the

summer, which means that if people who get flu shots also die at lower rates in the

summer, it is because they are healthier overall. And if people who get flu shots die

at the same rates as others during the summer, it would be reasonable to suggest

that the flu-shot and non-flu-shot populations have similar health. It turns out that

people who get flu shots have an approximately 60 percent lower probability of

dying outside the flu season.
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Other evidence backs up the idea that healthier people get flu shots. As it

happened, vaccine production faltered in 2004, and 40 percent fewer people got

vaccinated. What happened? Flu deaths did not increase. And in some years, the flu

vaccine was designed to attack a set of viruses that turned out to be different from

the viruses that actually spread; again, there was no clear change in mortality. This

data suggests that people who get flu shots may live longer because getting flu

shots is associated with other healthy behavior, such as seeking medical care and

eating better.

Thepoint is not toputusoffflu shots.We’vediscussedonlymortality—whether

peopledie fromtheflu—notwhether they’remore likely to contract thevirusor stay

home from work because they are sick.5 The point is to highlight how hard it is to

really know if something (in this case, a vaccine) works. If something as widespread

and seemingly straightforward as a flu shot is hard to assess definitively, think about

the care we must take when trying to analyze policies that affect fewer people and

have more complicated effects.

CASE STUDY Country Music and Suicide

Does music affect our behavior? Are we more serious

whenwe listen to classical music? Does bubblegum pop

make us bounce through the halls? Both ideas seem

plausible, but how can we know for sure?

Stack and Gundlach (1992) looked at data to assess

one particular question: Does country music depress

us? They argued that country music, with all its lyrics

about broken relationships and bad choices, may be so

depressing that it increases suicide rates.6 We can test

this claim with the following statistical model:

Suicide ratesi = β0 +β1Country musici + εi (1.4)

where Suicide ratesi is the suicide rate in metropolitan area i and Country musici is

the proportion of radio airtime devoted to country music in metropolitan area i.7

It turns out that suicides are indeed higher in metropolitan areas where radio

stations play more country music. But do we believe this is a causal relationship?

5Demicheli, Jefferson, Ferroni, Rivetti, and Di Pietrantonj (2018) summarize 52 randomized

controlled trials of �u vaccines and conclude that the vaccines reduce the incidence of �u in healthy

adults from 2.3 to 0.9 percent. The �u vaccine also reduces the incidence of �u-like illness from 21.5

to 18.1 percent. The effect on hospitalization is not large and not statistically signi�cant. There is no

evidence of reducing days off of work. See also DiazGranados, Denis, and Plotkin (2012) as well as

Osterholm, Kelley, Sommer, and Belongia (2012).
6Really, this is an actual published paper.
7 Their analysis is based on a more complicated model, but this is the general idea.
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(In other words, is country music exogenous?) If radio stations play more country

music, should we expect more suicides?

Let’s work through this example.

Whatdoesβββ0mean?Whatdoesβββ1mean? In thismodel,β0 is theexpected level

of suicide in metropolitan areas that play no country music. β1 is the amount by

which suicide rates change for each one-unit increase in the proportion of country

music played in a metropolitan area. We don’t know what β1 is; it could be positive

(suicides increase), zero (no relation to suicides), or negative (suicides decrease). For

the record, we don’t knowwhat β0 is either, but since this variable does not directly

characterize the relationship between music and suicides the way β1 does, we are

less interested in it.

What is in the error term? The error term contains factors that are associated

with higher suicide rates, such as alcohol and drug use, availability of guns, divorce

and poverty rates, lack of sunshine, lack of access to mental health care, and

probably many more.

What are the conditions for X to be endogenous? An independent variable is

endogenous if it is correlated with factors in the error term. Therefore, we need to

ask whether the amount of country music played on radio stations in metropolitan

areas is correlated with drinking, drug use, and all the other stuff in the error term.

Is the independent variable likely to be endogenous? Are booze, divorce, and

guns likely to be correlated to the amount of country music someone has listened

to?Have you listened to any countrymusic?Drinking anddivorce comeupnowand

again. Could this music appeal more in areas where people drink toomuch and get

divorced more frequently? (To complicate matters, country music could decrease

suicide because it lauds family and religion more than many other types of music.)

Or could it simply be that people in rural areaswho like countrymusic also have a lot

of guns? All of these factors—alcohol, divorce, and guns—are plausible influences

on suicide rates. To the extent that countrymusic is correlatedwith any of them, the

country music variable would be endogenous.

Explain how endogeneity could lead to incorrect inferences. Suppose for a

moment that country music has no effect whatsoever on suicide rates, but that

regions with lots of guns and drinking also have more suicides and that people in

these regions also listen to more country music. If we look only at the relationship

between country music and suicide rates, we will see a positive relationship: places

with lots of country music will have higher suicide rates, and places with little

country music will have lower suicide rates. The explanation could be that the

countrymusic areas have lots of drinking and guns and the areas with little country

music have less drinking and fewer guns. Therefore, while it may be correct to say

there are more suicides in places where there is more country music, it would be

incorrect to conclude that country music causes suicides. Or, to put it in another
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way, it would be incorrect to conclude that wewould save lives by banning country

music.

As it turns out, Snipes andMaguire (1995) account for the amount of guns and

divorce in metropolitan areas and find no relationship between country music and

metropolitan suicide rates. So there’s no reason to turn off the radio and put away

those cowboy boots.

Discussion Questions

1. Labor economists often study the returns on investment in education (see, e.g., Card 1999).

Suppose we have data on salaries of a set of people, some of whom went to college and some

of whom did not. A simple model linking education to salary is

Salaryi = β0 + β1College graduatei + εi

where the value of Salaryi is the salary of person i and the value of College graduatei is 1 if

person i graduated from college and is 0 if person i did not.

(a) What does β0 mean? What does β1 mean?

(b) What is in the error term?

(c) What are the conditions for the independent variable X to be endogenous?

(d) Is the independent variable likely to be endogenous? Why or why not?

(e) Explain how endogeneity could lead to incorrect inferences.

2. Donuts aren’t the only food that people worry about. Consider the following model based on

Solnick and Hemenway (2011):

Violencei = β0 + β1Soft drinksi + εi

where Violencei is the number of physical confrontations student i was in during a school year

and Soft drinksi is the average number of cans of soda student i drinks per week.

(a) What does β0 mean? What does β1 mean?

(b) What is in the error term?

(c) What are the conditions for the independent variable X to be endogenous?

(d) Is the independent variable likely to be endogenous? Why or why not?

(e) Explain how endogeneity could lead to incorrect inferences.

3. We know U.S. political candidates spend an awful lot of time raising money. And we know

they use the money to in�ict mind-numbing ads on us. Do we know if the money and the ads


