


FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant N
A

6.022 141 29 1023 mol−1

Gas constant R = N
A
k 8.314 4621 J K−1 mol−1

Faraday’s constant F = N
A
e 9.648 533 65 104 C mol−1

Mass

 Electron m
e

9.109 382 91 10−31 kg

 Proton m
p

1.672 621 777 10−27 kg

 Neutron m
n

1.674 927 351 10−27 kg

 Atomic mass constant m
u

1.660 538 921 10−27 kg

Vacuum permeability μ
0

4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε
0
 = 1/μ

0
c2 8.854 187 817 10−12 J−1 C2 m−1

4πε
0

1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μ
B
 = eħ/2m

e
9.274 009 68 10−24 J T−1

Nuclear magneton μ
N
 = eħ/2m

p
5.050 783 53 10−27 J T−1

Proton magnetic moment μ
p

1.410 606 743 10−26 J T−1

g-Value of electron g
e

2.002 319 304

Magnetogyric ratio  

 Electron γ
e
 = −g

e
e/2m

e
−1.001 159 652 1010 C kg−1

 Proton γ
p
 = 2μ

p
/ħ 2.675 222 004 108 C kg−1

Bohr radius a
0
 = 4πε

0
ħ2/e2m

e
5.291 772 109  10−11 m

Rydberg constant �
∞

R
 
= m

e
e4/8h3cε

0
2

hc �
∞

R /e

1.097 373 157 

13.605 692 53

 105 cm−1

eV

Fine-structure constant α = μ
0
e2c/2h

α−1

7.297 352 5698

1.370 359 990 74 

10−3

102

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2 

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response 

to users’ comments and our own imagination. �e principal 

change in this edition is the addition of a new co-author to the 

team, and we are very pleased to welcome James Keeler of the 

University of Cambridge. He is already an experienced author 

and we are very happy to have him on board.

As always, we strive to make the text helpful to students 

and usable by instructors. We developed the popular ‘Topic’ 

arrangement in the preceding edition, but have taken the 

concept further in this edition and have replaced chapters by 

Focuses. Although that is principally no more than a change of 

name, it does signal that groups of Topics treat related groups 

of concepts which might demand more than a single chapter 

in a conventional arrangement. We know that many instruc-

tors welcome the �exibility that the Topic concept provides, 

because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement 

as it makes processing of the material they cover less daunt-

ing and more focused. With them in mind we have developed 

additional help with the manipulation of equations in the 

form of annotations, and �e chemist’s toolkits provide further 

background at the point of use. As these Toolkits are o�en rel-

evant to more than one Topic, they also appear in consolidated 

and enhanced form on the website. Some of the material pre-

viously carried in the ‘Mathematical backgrounds’ has been 

used in this enhancement. �e web also provides a number 

of sections called A deeper look. As their name suggests, these 

sections take the material in the text further than we consider 

appropriate for the printed version but are there for students 

and instructors who wish to extend their knowledge and see 

the details of more advanced calculations.

Another major change is the replacement of the 

‘Justi�cations’ that show how an equation is derived. Our in-

tention has been to maintain the separation of the equation 

and its derivation so that review is made simple, but at the 

same time to acknowledge that mathematics is an integral fea-

ture of learning. �us, the text now sets up a question and the 

How is that done? section that immediately follows develops 

the relevant equation, which then �ows into the following text.

�e worked Examples are a crucially important part of the 

learning experience. We have enhanced their presentation by 

replacing the ‘Method’ by the more encouraging Collect your 

thoughts, where with this small change we acknowledge that 

di�erent approaches are possible but that students welcome 

guidance. �e Brief illustrations remain: they are intended 

simply to show how an equation is implemented and give a 

sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-

ing interests and approaches to teaching, some subjects wither 

and die and are replaced by new growth. We listen carefully 

to trends of this kind, and adjust our treatment accordingly. 

�e topical approach enables us to be more accommodating 

of fading fashions because a Topic can so easily be omitted by 

an instructor, but we have had to remove some subjects simply 

to keep the bulk of the text manageable and have used the web 

to maintain the comprehensive character of the text without 

overburdening the presentation.

�is book is a living, evolving text. As such, it depends very 

much on input from users throughout the world, and we wel-

come your advice and comments.

PWA

JdeP

JK



vi 12 The properties of gases

USING THE BOOK 

TO THE STUDENT

For this eleventh edition we have developed the range of 

learning aids to suit your needs more closely than ever before. 

In addition to the variety of features already present, we now 

derive key equations in a helpful new way, through the How 

is that done? sections, to emphasize how mathematics is an 

interesting, essential, and integral feature of understanding 

physical chemistry. 

Innovative structure

Short Topics are grouped into Focus sections, making the 

subject more accessible. Each Topic opens with a comment 

on why it is important, a statement of its key idea, and a brief 

summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making 

common mistakes. Among other things, they encourage con-

formity to the international language of science by setting out 

the conventions and procedures adopted by the International 

Union of Pure and Applied Chemistry (IUPAC).

 

Resource section

�e Resource section at the end of the book includes a table 

of useful integrals, extensive tables of physical and chemical 

data, and character tables. Short extracts of most of these 

tables appear in the Topics themselves: they are there to give 

you an idea of the typical values of the physical quantities 

mentioned in the text. 

 

Checklist of concepts

A checklist of key concepts is provided at the end of each 

Topic, so that you can tick o� the ones you have mastered.

 

For example, a closed system can expand and thereby raise a 

weight in the surroundings; a closed system may also transfer 

energy to the surroundings if they are at a lower temperature. 

An isolated system is a closed system that has neither me-

chanical nor thermal contact with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk 

systems, it is immeasurably enriched by understanding the 

molecular origins of these observations.

(a) Operational de�nitions

�e fundamental physical property in thermodynamics is 

work: work is done to achieve motion against an opposing 

force (�e chemist’s toolkit 6). A simple example is the process 

of raising a weight against the pull of gravity. A process does 

work if in principle it can be harnessed to raise a weight some-

where in the surroundings. An example of doing work is the 

expansion of a gas that pushes out a piston: the motion of the 

piston can in principle be used to raise a weight. Another ex-

ample is a chemical reaction in a cell, which leads to an electric 

TOPIC 2A Internal energy

➤ Why do you need to know this material?

The First Law of thermodynamics is the foundation of the 

discussion of the role of energy in chemistry. Wherever the 

generation or use of energy in physical transformations or 

chemical reactions is of interest, lying in the background 

are the concepts introduced by the First Law.

➤ What is the key idea?

The total energy of an isolated system is constant.

➤ What do you need to know already?

This Topic makes use of the discussion of the properties of 

gases (Topic 1A), particularly the perfect gas law. It builds 

on the de�nition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided 

into two parts, the system and its surroundings. �e system is 

the part of the world of interest. It may be a reaction vessel, an 

engine, an electrochemical cell, a biological cell, and so on. �e 

surroundings comprise the region outside the system and are 

where measurements are made. �e type of system depends 

on the characteristics of the boundary that divides it from the 

A note on good practice An allotrope is a particular molecular 

form of an element (such as O2 and O3) and may be solid, liquid, 

or gas. A polymorph is one of a number of solid phases of an ele-

ment or compound.

�e number of phases in a system is denoted P. A gas, or a 

gaseous mixture, is a single phase (P = 1), a crystal of a sub-

Contents

1 Common integrals 866

2 Units 868

3 Data 869

862

864

865

Checklist of concepts

☐ 1. �e physical state of a sample of a substance, its physi-

cal condition, is de
ned by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 

pressure on either side of a shared movable wall.

352

354

355
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PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-

sonable assumptions and the details of the mathematical steps 

involved. �is is accomplished in the text through the new 

‘How is that done?’ sections, which replace the Justi�cations of 

earlier editions. Each one leads from an issue that arises in the 

text, develops the necessary mathematics, and arrives at the 

equation or conclusion that resolves the issue. �ese sections 

maintain the separation of the equation and its derivation 

so that you can �nd them easily for review, but at the same 

time emphasize that mathematics is an essential feature of  

physical chemistry. 

The chemist’s toolkits 

�e chemist’s toolkits, which are much more numerous in this  

edition, are reminders of the key mathematical, physical, and 

chemical concepts that you need to understand in order to  

follow the text. �ey appear where they are �rst needed. Many 

of these Toolkits are relevant to more than one Topic, and a 

compilation of them, with enhancements in the form of more 

information and brief illustrations, appears on the web site.  

www.oup.com/uk/pchem11e/

Annotated equations and equation labels 

We have annotated many equations to help you follow how 

they are developed. An annotation can take you across the 

equals sign: it is a reminder of the substitution used, an 

approximation made, the terms that have been assumed 

constant, an integral used, and so on. An annotation can 

also be a reminder of the signi�cance of an individual term 

in an expression. We sometimes colour a collection of num-

bers or symbols to show how they carry from one line to the 

next. Many of the equations are labelled to highlight their  

signi�cance. 

Checklists of equations 

A handy checklist at the end of each topic summarizes the 

most important equations and the conditions under which  

they apply. Don’t think, however, that you have to memorize 

every equation in these checklists.

How is that done? 4A.1 Deducing the phase rule

�e argument that leads to the phase rule is most easily appre-

ciated by 
rst thinking about the simpler case when only one 

component is present and then generalizing the result to an 

arbitrary number of components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be 

varied independently, so F = 2. Now consider the case where 

two phases α and β are in equilibrium (P = 2). If the phases 

are in equilibrium at a given pressure and temperature, their 

chemical potentials must be equal:

Checklist of equations

Property Equation

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB)

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB)

The chemist’s toolkit 2 Properties of bulk matter

�e state of a bulk sample of matter is de�ned by specifying the 

values of various properties. Among them are:

�e mass, m, a measure of the quantity of matter present 

(unit: kilogram, kg).

�e volume, V, a measure of the quantity of space the sam-

ple occupies (unit: cubic metre, m3).

�e amount of substance, n, a measure of the number of 

speci�ed entities (atoms, molecules, or formula units) pre-

sent (unit: mole, mol).
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SET TING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-

cept that has just been introduced in the text. It shows you 

how to use data and manipulate units correctly. It also helps 

you to become familiar with the magnitudes of quantities. 

Examples

Worked Examples are more detailed illustrations of the appli-

cation of the material, and typically require you to assemble 

and deploy the relevant concepts and equations. 

We suggest how you should collect your thoughts (that is a 

new feature) and then proceed to a solution. All the worked 

Examples are accompanied by Self-tests to enable you to test 

your grasp of the material a�er working through our solution 

as set out in the Example. 

Discussion questions

Discussion questions appear at the end of every Focus, and are 

organised by Topic. �ese questions are designed to encour-

age you to re�ect on the material you have just read, to review 

the key concepts, and sometimes to think about its implica-

tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every 

Focus and organised by Topic. Exercises are designed as 

relatively straightforward numerical tests; the Problems are 

more challenging and typically involve constructing a more 

detailed answer. �e Exercises come in related pairs, with 

�nal numerical answers available online for the ‘a’ questions. 

Final numerical answers to the odd-numbered Problems are 

also available online.

Integrated activities

At the end of every Focus you will �nd questions that span 

several Topics. �ey are designed to help you use your knowl-

edge creatively in a variety of ways.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant 

temperature, Vf/Vi = 2, and hence the change in molar entropy 

of the system is

ΔSm = (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 mol−1

Example 1A.1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 

a vessel of constant volume at a pressure of 100 atm and a 

temperature of 300 K. �e gas is then heated to 500 K. What 

pressure would the gas then exert, assuming that it behaved 

as a perfect gas?

Collect your thoughts �e pressure is expected to be greater 

on account of the increase in temperature. �e perfect gas 

FOCUS 3 The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions

D3A.1 �e evolution of life requires the organization of a very large number 

of molecules into biological cells. Does the formation of living organisms 

violate the Second Law of thermodynamics? State your conclusion clearly and 

present detailed arguments to support it.

D3A.2 Discuss the signi�cance of the terms ‘dispersal’ and ‘disorder’ in the 

context of the Second Law.

D3A.3 Discuss the relationships between the various formulations of the 

Second Law of thermodynamics.

Exercises

E3A.1(a) Consider a process in which the entropy of a system increases by 

125 J K−1 and the entropy of the surroundings decreases by 125 J K−1. Is the 

process spontaneous?

E3A.1(b) Consider a process in which the entropy of a system increases by 

105 J K−1 and the entropy of the surroundings decreases by 95 J K−1. Is the 

process spontaneous?

E3A.2(a) Consider a process in which 100 kJ of energy is transferred reversibly 

and isothermally as heat to a large block of copper. Calculate the change in 

entropy of the block if the process takes place at (a) 0 °C, (b) 50 °C.

E3A.2(b) Consider a process in which 250 kJ of energy is transferred reversibly 

and isothermally as heat to a large block of lead. Calculate the change in 

entropy of the block if the process takes place at (a) 20 °C, (b) 100 °C.

E3A.3(a) Calculate the change in entropy of the gas when 15 g of carbon dioxide 

gas are allowed to expand isothermally from 1.0 dm3 to 3.0 dm3 at 300 K.

E3A.3(b) Calculate the change in entropy of the gas when 4.00 g of nitrogen is 

allowed to expand isothermally from 500 cm3 to 750 cm3 at 300 K.

E3A.4(a) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when a sample of nitrogen 

gas of mass 14 g at 298 K doubles its volume in (a) an isothermal reversible 

expansion, (b) an isothermal irreversible expansion against pex = 0, and (c) an 

adiabatic reversible expansion.

E3A.4(b) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when the volume of a sample 

of argon gas of mass 2.9 g at 298 K increases from 1.20 dm3 to 4.60 dm3 in (a) 

an isothermal reversible expansion, (b) an isothermal irreversible expansion 

against pex = 0, and (c) an adiabatic reversible expansion.

E3A.5(a) In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the 

hot source at 273 K and 3.00 kJ of work is generated. What is the temperature 

of cold sink?

E3A.5(b) In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat 

is withdrawn from the hot source and 3.00 kJ of work is generated, at what 

temperature is the hot source?

E3A.6(a) What is the e�ciency of an ideal heat engine in which the hot source 

is at 100 °C and the cold sink is at 10 °C?

E3A.6(b) An ideal heat engine has a hot source at 40 °C. At what temperature 

must the cold sink be if the e�ciency is to be 10 per cent?

Problems

P3A.1 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 

expanded isothermally from an initial pressure of 3.00 atm to a �nal pressure 

of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 

pressure of 1.00 atm. Evaluate q, w, ΔU, ΔH, ΔS, ΔSsurr, and ΔStot in each case.

P3A.2 A sample consisting of 0.10 mol of perfect gas molecules is held by a 

piston inside a cylinder such that the volume is 1.25 dm3; the external pressure 

is constant at 1.00 bar and the temperature is maintained at 300 K by a 

thermostat. �e piston is released so that the gas can expand. Calculate (a) the 

volume of the gas when the expansion is complete; (b) the work done when 

the gas expands; (c) the heat absorbed by the system. Hence calculate ΔStot.

P3A.3 Consider a Carnot cycle in which the working substance is 0.10 mol of 

perfect gas molecules, the temperature of the hot source is 373 K, and that 

of the cold sink is 273 K; the initial volume of gas is 1.00 dm3, which doubles 

over the course of the �rst isothermal stage. For the reversible adiabatic stages 

it may be assumed that VT 3/2 = constant. (a) Calculate the volume of the gas 

a�er Stage 1 and a�er Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas a�er 

Stage 3 by considering the reversible adiabatic compression from the starting 

point. (c) Hence, for each of the four stages of the cycle, calculate the heat 

transferred to or from the gas. (d) Explain why the work done is equal to the 

di�erence between the heat extracted from the hot source and that deposited 

in the cold sink. (e) Calculate the work done over the cycle and hence the 

e�ciency η. (f) Con�rm that your answer agrees with the e�ciency given by 

eqn 3A.9 and that your values for the heat involved in the isothermal stages 

are in accord with eqn 3A.6.

P3A.4 �e Carnot cycle is usually represented on a pressure−volume 

diagram (Fig. 3A.8), but the four stages can equally well be represented 

on temperature−entropy diagram, in which the horizontal axis is entropy 

and the vertical axis is temperature; draw such a diagram. Assume that the 

temperature of the hot source is Th and that of the cold sink is Tc, and that the 

volume of the working substance (the gas) expands from VA to VB in the �rst 

isothermal stage. (a) By considering the entropy change of each stage, derive 

an expression for the area enclosed by the cycle in the temperature−entropy 

diagram. (b) Derive an expression for the work done over the cycle. (Hint: �e 

work done is the di�erence between the heat extracted from the hot source 

and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment 

on the relation between your answers to (a) and (b).
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‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 

variety of modern contexts. �ey showcase physical chemistry 

as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

�ese online sections take some of the material in the text 

further and are there if you want to extend your knowledge 

and see the details of some of the more advanced derivations 

www.oup.com/uk/pchem11e/

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-

loaded, designed for use with the Spartan Student™ so�ware. 

However they can also be completed using any modelling 

so�ware that allows Hartree–Fock, density functional, and 

MP2 calculations. �e site can be accessed at www.oup.com/

uk/pchem11e/.

THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

TO THE INSTRUC TOR

We have designed the text to give you maximum �exibility in 

the selection and sequence of Topics, while the grouping of 

Topics into Focuses helps to maintain the unity of the subject.  

Additional resources are:

Figures and tables from the book

Lecturers can �nd the artwork and tables from the book in 

ready-to-download format. �ese may be used for lectures 

without charge (but not for commercial purposes without 

speci�c permission).

Key equations 

Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of 

the textbook. To register, simply visit www.oup.com/uk/pchem11e/  

and follow the appropriate links. 

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar, 

Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie 

Smith, and James Keeler.

�e Student’s Solutions Manual (ISBN 9780198830085) 

provides full solutions to the ‘a’ Exercises and to the odd-

numbered Problems.

�e Instructor’s Solutions Manual provides full solutions 

to the ‘b’ Exercises and to the even-numbered Problems 

(available to download online for registered adopters of the  

book only).

IMPAC T 1  …ON ENVIRONMENTAL SCIENCE:  
The gas laws and the weather

�e biggest sample of gas readily accessible to us is the 

atmosphere, a mixture of gases with the composition 

summarized in Table 1. �e composition is maintained 

moderately constant by di�usion and convection (winds, 

particularly the local turbulence called eddies) but the 

pressure and temperature vary with altitude and with 

the local conditions, particularly in the troposphere (the 

‘sphere of change’), the layer extending up to about 11 km.
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A DEEPER LOOK 2  The fugacity

At various stages in the development of physical chemistry 

it is necessary to switch from a consideration of ideal-

ized systems to real systems. In many cases it is desirable 

to preserve the form of the expressions that have been 

derived for an idealized system. �en deviations from the 

idealized behaviour can be expressed most simply. For 

instance, the pressure-dependence of the molar Gibbs 

energy of a perfect gas is

G G RT
p

p
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m m
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○
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−−
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In this expression, f1 is the fugacity when the pressure is 

p1 and f2 is the fugacity when the pressure is p2. �at is, 

from eqn 3b,
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For a perfect gas,
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PROLOGUE Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss mo-

lecular structures, reactions, and many other processes. What 

follows is an informal �rst look at the important features of 

energy. Its precise de�nition and role will emerge throughout 

the course of this text.

�e transformation of energy from one form to another is 

described by the laws of thermodynamics. �ey are applicable 

to bulk matter, which consists of very large numbers of atoms 

and molecules. �e ‘First Law’ of thermodynamics is a state-

ment about the quantity of energy involved in a transforma-

tion; the ‘Second Law’ is a statement about the dispersal of that 

energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules 

that make up samples of bulk matter it is necessary to use 

quantum mechanics. According to this theory, the energy as-

sociated with the motion of a particle is ‘quantized’, meaning 

that the energy is restricted to certain values, rather than being 

able to take on any value. �ree di�erent kinds of motion can 

occur: translation (motion through space), rotation (change of 

orientation), and vibration (the periodic stretching and bend-

ing of bonds). Figure 1 depicts the relative sizes and spacing of 

the energy states associated with these di�erent kinds of mo-

tion of typical molecules and compares them with the typi-

cal energies of electrons in atoms and molecules. �e allowed 

energies associated with translation are so close together in 

normal-sized containers that they form a continuum. In con-

trast, the separation between the allowed electronic energy 

states of atoms and molecules is very large.

�e link between the energies of individual molecules and the 

energy of bulk matter is provided by one of the most important 

concepts in chemistry, the Boltzmann distribution. Bulk matter 

consists of large numbers of molecules, each of which is in one of 

its available energy states. �e total number of molecules with a 

particular energy due to translation, rotation, vibration, and its 

electronic state is called the ‘population’ of that state. Most mole-

cules are found in the lowest energy state, and higher energy states 

are occupied by progressively fewer molecules. �e Boltzmann 

distribution gives the population, N
i
, of any energy state in terms 

of the energy of the state, ε
i
, and the absolute temperature, T:

N
i
 ∝ e−ε

i
/kT

In this expression, k is Boltzmann’s constant (its value is 

listed inside the front cover), a universal constant (in the sense 

of having the same value for all forms of matter). Figure 2 

shows the Boltzmann distribution for two temperatures: as 

the temperature increases higher energy states are populated 

at the expense of states lower in energy. According to the 

Boltzmann distribution, the temperature is the single param-

eter that governs the spread of populations over the available 

energy states, whatever their nature.

C
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Translation Rotation Vibration Electronic
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Figure 1 The relative energies of the allowed states of various 

kinds of atomic and molecular motion. 

Figure 2 The relative populations of states at (a) low, (b) high 

temperature according to the Boltzmann distribution. 
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2 Prologue Energy, temperature, and chemistry 

�e Boltzmann distribution, as well as providing insight 

into the signi�cance of temperature, is central to understand-

ing much of chemistry. �at most molecules occupy states of 

low energy when the temperature is low accounts for the exist-

ence of compounds and the persistence of liquids and solids. 

�at highly excited energy levels become accessible at high 

temperatures accounts for the possibility of reaction as one 

substance acquires the ability to change into another. Both 

features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution 

(which is treated in greater depth later in the text) whenever 

considering the interpretation of the properties of bulk matter 

and the role of temperature. An understanding of the �ow of 

energy and how it is distributed according to the Boltzmann 

distribution is the key to understanding thermodynamics, 

structure, and change throughout chemistry.



FOCUS 7

Quantum theory

It was once thought that the motion of atoms and subatomic 
particles could be expressed using ‘classical mechanics’, the 
laws of motion introduced in the seventeenth century by Isaac 
Newton, for these laws were very successful at explaining the 
motion of everyday objects and planets. However, a proper 
description of electrons, atoms, and molecules requires a dif-
ferent kind of mechanics, ‘quantum mechanics’, which is in-
troduced in this Focus and applied widely throughout the text.

7A The origins of quantum mechanics

Experimental evidence accumulated towards the end of the 
nineteenth century showed that classical mechanics failed 
when it was applied to particles as small as electrons. More 
speci�cally, careful measurements led to the conclusion that 
particles may not have an arbitrary energy and that the classi-
cal concepts of a particle and wave blend together. �is Topic 
shows how these observations set the stage for the develop-
ment of the concepts and equations of quantum mechanics in 
the early twentieth century.

7A.1 Energy quantization; 7A.2 Wave–particle duality

7B Wavefunctions

In quantum mechanics, all the properties of a system are ex-
pressed in terms of a wavefunction which is obtained by solv-
ing the equation proposed by Erwin Schrödinger. �is Topic 
focuses on the interpretation of the wavefunction, and speci�-
cally what it reveals about the location of a particle.

7B.1 The Schrödinger equation; 7B.2 The Born interpretation

7C Operators and observables

A central feature of quantum theory is its representation of 
observables by ‘operators’, which act on the wavefunction and 
extract the information it contains. �is Topic shows how op-

erators are constructed and used. One consequence of their 
use is the ‘uncertainty principle’, one of the most profound 
departures of quantum mechanics from classical mechanics.

7C.1 Operators; 7C.2 Superpositions and expectation values; 7C.3 The 

uncertainty principle; 7C.4 The postulates of quantum mechanics

7D Translational motion

Translational motion, motion through space, is one of the 
fundamental types of motion treated by quantum mechan-
ics. According to quantum theory, a particle constrained to 
move in a �nite region of space is described by only certain 
wavefunctions and can possess only certain energies. �at 
is, quantization emerges as a natural consequence of solving 
the Schrödinger equation and the conditions imposed on it. 
�e solutions also expose a number of non-classical features 
of particles, especially their ability to tunnel into and through 
regions where classical physics would forbid them to be found.

7D.1 Free motion in one dimension; 7D.2 Confined motion in one 

dimension; 7D.3 Confined motion in two and more dimensions; 

7D.4 Tunnelling

7E Vibrational motion

�is Topic introduces the ‘harmonic oscillator’, a simple but 
very important model for the description of vibrations. It 
shows that the energies of an oscillator are quantized and that 
an oscillator may be found at displacements that are forbidden 
by classical physics.

7E.1 The harmonic oscillator; 7E.2 Properties of the harmonic 

oscillator

7F Rotational motion

�e constraints on the wavefunctions of a body rotating in two 
and three dimensions result in the quantization of its energy. 



In addition, because the energy is related to the angular mo-
mentum, it follows that angular momentum is also restricted 
to certain values. �e quantization of angular momentum is a 
very important aspect of the quantum theory of electrons in 
atoms and of rotating molecules.

7F.1 Rotation in two dimensions; 7F.2 Rotation in three dimensions

Web resources What is an application 
of this material?

Impact 11 highlights an application of quantum mechanics 
which still requires much research before it becomes a use-
ful technology. It is based on the expectation that a ‘quantum 

computer’ can carry out calculations on many states of a sys-
tem simultaneously, leading to a new generation of very fast 
computers. ‘Nanoscience’ is the study of atomic and molecu-
lar assemblies with dimensions ranging from 1 nm to about 
100 nm, and ‘nanotechnology’ is concerned with the incor-
poration of such assemblies into devices. Impact 12 explores 
quantum mechanical e�ects that show how the properties of a 
nanometre-sized assembly depend on its size.



TOPIC 7A The origins of quantum 

mechanics

late in the nineteenth century scientists started to make ob-
servations that could not be explained by classical mechanics. 
�ey were forced to revise their entire conception of the na-
ture of matter and replace classical mechanics by a theory that 
became known as quantum mechanics.

7A.1 Energy quantization

�ree experiments carried out near the end of the nineteenth 
century drove scientists to the view that energy can be trans-
ferred only in discrete amounts.

(a) Black-body radiation

�e key features of electromagnetic radiation according to 
classical physics are described in �e chemist’s toolkit 13. It 
is observed that all objects emit electromagnetic radiation 
over a range of frequencies with an intensity that depends on 
the temperature of the object. A familiar example is a heated 
metal bar that �rst glows red and then becomes ‘white hot’ 
upon further heating. As the temperature is raised, the colour 
shi�s from red towards blue and results in the white glow.

➤  Why do you need to know this material?

Quantum theory is central to almost every explanation in 

chemistry. It is used to understand atomic and molecular 

structure, chemical bonds, and most of the properties of 

matter.

➤  What is the key idea?

Experimental evidence led to the conclusion that energy 

can be transferred only in discrete amounts, and that 

the classical concepts of a ‘particle’ and a ‘wave’ blend 

together.

➤  What do you need to know already?

You should be familiar with the basic principles of classical 

mechanics, especially momentum, force, and energy set 

out in The chemist’s toolkits 3 (in Topic 1B) and 6 (in Topic 

2A). The discussion of heat capacities of solids makes light 

use of material in Topic 2A.

�e classical mechanics developed by Newton in the seven-
teenth century is an extraordinarily successful theory for de-
scribing the motion of everyday objects and planets. However, 

The chemist’s toolkit 13 Electromagnetic radiation

Electromagnetic radiation consists of oscillating electric and 

magnetic disturbances that propagate as waves. �e two com-

ponents of an electromagnetic wave are mutually perpendicu-

lar and are also perpendicular to the direction of propagation 

(Sketch 1). Electromagnetic waves travel through a vacuum 

at a constant speed called the speed of light, c, which has the 

de�ned value of exactly 2.997 924 58 × 108 m s−1.

Magnetic

�eld

Electric

�eld

Propagation

direction, at speed c

E

B

Sketch 1

A wave is characterized by its wavelength, λ (lambda), the 

distance between consecutive peaks of the wave (Sketch 2). 

�e classi�cation of electromagnetic radiation according to its 

wavelength is shown in Sketch 3. Light, which is electromagnetic 

radiation that is visible to the human eye, has a wavelength in the 

range 420 nm (violet light) to 700 nm (red light). �e properties 

of a wave may also be expressed in terms of its frequency, ν (nu), 

the number of oscillations in a time interval divided by the 

duration of the interval. Frequency is reported in hertz, Hz, with 

1 Hz = 1 s−1 (i.e. 1 cycle per second). Light spans the frequency 

range from 710 THz (violet light) to 430 THz (red light).

Wavelength, λ

Sketch 2
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�e radiation emitted by hot objects is discussed in terms of 
a black body, a body that emits and absorbs electromagnetic 
radiation without favouring any wavelengths. A good approx-
imation to a black body is a small hole in an empty container 
(Fig. 7A.1). Figure 7A.2 shows how the intensity of the radia-
tion from a black body varies with wavelength at several tem-
peratures. At each temperature T there is a wavelength, λmax, at 
which the intensity of the radiation is a maximum, with T and 
λmax related by the empirical Wien’s law: 

T 2.9 10 mK
max

3
λ = ×

−  Wien’s law  (7A.1)

�e intensity of the emitted radiation at any temperature de-
clines sharply at short wavelengths (high frequencies). �e 
intensity is e�ectively a window on to the energy present in-
side the container, in the sense that the greater the intensity 
at a given wavelength, the greater is the energy inside the con-
tainer due to radiation at that wavelength.

�e energy density, E(T), is the total energy inside the con-
tainer divided by its volume. �e energy spectral density, 
ρ(λ,T), is de�ned so that ρ(λ,T)dλ is the energy density at 
temperature T due to the presence of electromagnetic radia-
tion with wavelengths between λ and λ + dλ. A high energy 
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Sketch 3

�e wavelength and frequency of an electromagnetic wave 

are related by: 

λν=c �
The relation between wavelength 
and frequency in a vacuum

It is also common to describe a wave in terms of its wavenum-

ber, �ν  (nu tilde), which is de�ned as

� �
c

1
 or equivalently ν

λ
ν

ν
= = �  Wavenumber 

[definition]

�us, wavenumber is the reciprocal of the wavelength and 

can be interpreted as the number of wavelengths in a given 

distance. In spectroscopy, for historical reasons, wavenumber 

is usually reported in units of reciprocal centimetres (cm−1). 

Visible light therefore corresponds to electromagnetic radia-

tion with a wavenumber of 14 000 cm−1 (red light) to 24 000 cm−1 

(violet light).

Electromagnetic radiation that consists of a single frequency 

(and therefore single wavelength) is monochromatic, because 

it corresponds to a single colour. White light consists of elec-

tromagnetic waves with a continuous, but not uniform, spread 

of frequencies throughout the visible region of the spectrum.

A characteristic property of waves is that they interfere with 

one another, which means that they result in a greater ampli-

tude where their displacements add and a smaller amplitude 

where their displacements subtract (Sketch 4). �e former 

is called ‘constructive interference’ and the latter ‘destruc-

tive interference’. �e regions of constructive and destructive 

interference show up as regions of enhanced and diminished 

intensity. �e phenomenon of di�raction is the interference 

caused by an object in the path of waves and occurs when the 

dimensions of the object are comparable to the wavelength of 

the radiation. Light waves, with wavelengths of the order of 

500 nm, are di�racted by narrow slits.

Constructive interference

Destructive interference

Sketch 4
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spectral density at the wavelength λ and temperature T simply 
means that there is a lot of energy associated with wavelengths 
lying between λ and λ + dλ at that temperature. �e energy 
density is obtained by summing (integrating) the energy spec-
tral density over all wavelengths:

T T( ) ( , )d
0∫ ρ λ λ=
∞

E  (7A.2)

�e units of E(T) are joules per metre cubed (J m−3), so the units of 
ρ(λ,T) are J m−4. Empirically, the energy density is found to vary 
as T 4, an observation expressed by the Stefan–Boltzmann law:

E(T) = constant × T 4 Stefan–Boltzmann law  (7A.3)

with the constant equal to 7.567 × 10−16 J m−3 K−4.
�e container in Fig. 7A.1 emits radiation that can be 

thought of as oscillations of the electromagnetic �eld stimu-
lated by the oscillations of electrical charges in the material 
of the wall. According to classical physics, every oscillator 
is excited to some extent, and according to the equipartition 
principle (�e chemist’s toolkit 7 in Topic 2A) every oscillator, 

regardless of its frequency, has an average energy of kT. On this 
basis, the physicist Lord Rayleigh, with minor help from James 
Jeans, deduced what is now known as the Rayleigh–Jeans law:

T
kT

( , )
8

4ρ λ
λ

=
π

 Rayleigh–Jeans law  (7A.4)

where k is Boltzmann’s constant (k = 1.381 × 10−23 J K−1).
�e Rayleigh–Jeans law is not supported by the experimen-

tal measurements. As is shown in Fig. 7A.3, although there 
is agreement at long wavelengths, it predicts that the energy 
spectral density (and hence the intensity of the radiation emit-
ted) increases without going through a maximum as the wave-
length decreases. �at is, the Rayleigh–Jeans law is inconsistent 
with Wien’s law. Equation 7A.4 also implies that the radiation 
is intense at very short wavelengths and becomes in�nitely 
intense as the wavelength tends to zero. �e concentration of 
radiation at short wavelengths is called the ultraviolet catas-

trophe, and is an unavoidable consequence of classical physics.
In 1900, Max Planck found that the experimentally ob-

served intensity distribution of black-body radiation could 
be explained by proposing that the energy of each oscillator is 
limited to discrete values. In particular, Planck assumed that 
for an electromagnetic oscillator of frequency ν, the permitted 
energies are integer multiples of hν:

E = nhν  n = 0, 1, 2, …  (7A.5)

In this expression h is a fundamental constant now known as 
Planck’s constant. �e limitation of energies to discrete values 
is called energy quantization. On this basis Planck was able to 
derive an expression for the energy spectral density which is 
now called the Planck distribution:

T
hc

( , )
8

(e 1)hc kT5 /ρ λ
λ

=
π

−λ  Planck distribution  (7A.6a)

�is expression is plotted in Fig. 7A.4 and �ts the experimental 
data very well at all wavelengths. �e value of h, which is an 

Figure 7A.1 Black-body radiation can be detected by allowing 

it to leave an otherwise closed container through a pinhole. 

The radiation is reflected many times within the container and 

comes to thermal equilibrium with the wall. Radiation leaking out 

through the pinhole is characteristic of the radiation inside the 

container.

Detected

radiation

Pinhole

Container

at a

temperature T

Figure 7A.2 The energy spectral density of radiation from a 

black body at several temperatures. Note that as the temperature 

increases, the maximum in the energy spectral density moves to 

shorter wavelengths and increases in intensity overall.
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Figure 7A.3 Comparison of the experimental energy spectral 

density with the prediction of the Rayleigh–Jeans law (eqn 7A.4). 

The latter predicts an infinite energy spectral density at short 

wavelengths and infinite overall energy density. 
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undetermined parameter in the theory, can be found by vary-
ing its value until the best �t is obtained between the eqn 7A.6a 
and experimental measurements. �e currently accepted value  
is h = 6.626 × 10−34 J s.

For short wavelengths, hc/λkT >> 1, and because ehc/λkT → ∞ 
faster than λ5 → 0 it follows that ρ → 0 as λ → 0. Hence, the 
energy spectral density approaches zero at short wavelengths, 
and so the Planck distribution avoids the ultraviolet catastro-
phe. For long wavelengths in the sense hc/λkT << 1, the de-
nominator in the Planck distribution can be replaced by (see 
�e chemist’s toolkit 12 in Topic 5B)

�

hc
kT

hc
kT

e 1 1 1
hc kT/

λ λ− = + +





− ≈λ

When this approximation is substituted into eqn 7A.6a, the 
Planck distribution reduces to the Rayleigh–Jeans law, eqn 7A.4. 
�e wavelength at the maximum can be found by di�erentiation, 
and is given by λmaxT = constant, in accord with Wien’s law; the 
value of the constant found in this way, hc/5k, agrees with the ex-
perimentally determined value. Finally, the total energy density is

∫ λ
λ

π

−
= =

π
λ

∞

T
hc

aT a
k

hc
( ) =

8

(e 1)
d   with   

8

15( )hc kT5 /

4

0

5 4

3E  (7A.7)

which is �nite and agrees with the Stefan–Boltzmann law 
(eqn 7A.3), including predicting the value of its constant cor-
rectly.

Brief illustration 7A.1

Consider eqn 7A.6a with λ1 = 450 nm (blue light) and λ2 = 

700 nm (red light), and T = 298 K. It follows that

 hc

kT

(6.626 10 Js) (2.998 10 ms )

(450 10 m) (1.381 10 JK ) (298K)
107.2

1

34 8 1

9 23 1λ
=

× × ×

× × × ×
= …

− −

− − −

hc

kT

(6.626 10 Js) (2.998 10 ms )

(700 10 m) (1.381 10 JK ) (298K)
68.9

2

34 8 1

9 23 1λ
=

× × ×

× × × ×
= …

− −

− − −

and

ρ
ρ =

×
×







×
−
−

−

−

…

…
(450nm,298K)
(700nm,298K)

700 10 m

450 10 m

e 1

e 1

9

9

5 68.9

107.2

 = × × = ×
− −9.11 (2.30 10 ) 2.10 1017 16

At room temperature, the proportion of shorter wavelength 

radiation is insigni�cant.

�ere is a single reason why Planck’s approach is success-
ful but Rayleigh’s is not. Instead of allowing each oscillator 
to have the same average energy, regardless of its frequency, 
Planck used the Boltzmann distribution (see the Prologue to 
this text) to argue that higher frequency oscillators, which 
generate shorter wavelength radiation, are less likely to be ex-
cited than lower frequency oscillators. Indeed, for very high 
frequencies the minimum excitation energy of hν is too large 
for the oscillator to be excited at all. �is elimination of the 
contribution from very high frequency oscillators avoids the 
ultraviolet catastrophe.

It is sometimes convenient to express the Planck distribution 
in terms of the frequency. �en ρ(ν,T)dν is the energy density 
at temperature T due to the presence of electromagnetic radia-
tion with frequencies between ν and ν + dν, and

ρ ν
ν

=
π

−
ν

T
h

c
( , )

8

(e 1)h kT

3

3 /  
Planck distribution in 
terms of frequency  (7A.6b)

(b) Heat capacity

When energy is supplied as heat to a substance its temperature 
rises; the heat capacity (Topic 2A) is the constant of propor-
tionality between the energy supplied and the temperature 
rise (C = dq/dT and, at constant volume, CV,m = (∂Um/∂T)V). 
Experimental measurements made during the nineteenth 
century had shown that at room temperature the molar heat 
capacities of many monatomic solids are about 3R, where R is 
the gas constant.1 However, when measurements were made at 
much lower temperatures it was found that the heat capacity 
decreased, tending to zero as the temperature approached zero.

Classical physics was unable to explain this temperature de-
pendence. �e classical picture of a solid is of atoms oscillating 
about �xed positions, with the expectation that each oscillating 
atom will have the same average energy kT. �is model predicts 
that a solid consisting of N atoms, each free to oscillate in three 
dimensions, will have energy U = 3NkT and hence heat capac-
ity CV = (∂U/∂T)V = 3Nk. �e molar heat capacity is therefore 
predicted to be 3NAk which, recognizing that NAk = R, is equal 
to 3R at all temperatures. In 1905, Einstein suggested applying 
Planck’s hypothesis and supposing that each oscillating atom 

Figure 7A.4 The Planck distribution (eqn 7A.6a) accounts for the 

experimentally determined energy distribution of black-body 

radiation. It coincides with the Rayleigh–Jeans distribution at long 

wavelengths. 

ρ
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1 �e gas constant occurs in the context of solids because it is actually the 
more fundamental Boltzmann’s constant in disguise: R = NAk.
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could have an energy nhν, where n is an integer and ν is the fre-
quency of the oscillation. Einstein went on to show by using the 
Boltzmann distribution that each oscillator is unlikely to be 
excited to high energies and at low temperatures few oscillators 
can be excited at all. As a consequence, because the oscillators 
cannot be excited, the heat capacity falls to zero. �e quantita-
tive result that Einstein obtained (as shown in Topic 13E) is

C T Rf T f T
T

( ) 3 ( ),       ( )
e

e 1
V

T

T,m E E
E

2 /2

/

2
E

E

θ
= = 



 −







θ

θ   

 Einstein formula  (7A.8a)

In this expression θE is the Einstein temperature, θE = hν/k.
At high temperatures (in the sense T >> θE) the exponentials 

in fE can be expanded as �= + +xe 1
x  and higher terms ignored 

(�e chemist’s toolkit 12 in Topic 5B). �e result is

�

�

f T
T

T
T T T

( )
1 /2

(1 / ) 1
1
/

1E
E

2

E

E

2

E

2

E

2θ θ
θ

θ
θ{ } { }= 





+ +
+ + − ≈ 





≈   

 (7A.8b)

and the classical result (CV,m = 3R) is obtained. At low tempera-
tures (in the sense T << θE), θe T/E  >>1 and

f T
T T

( )
e

e
e

T

T
T

E
E

2 /2

/

2

E

2

/
E

E

E
θ θ

≈











= 





θ

θ
θ−  (7A.8c)

�e strongly decaying exponential function goes to zero more 
rapidly than 1/T 2 goes to in�nity; so fE → 0 as T → 0, and the 
heat capacity approaches zero, as found experimentally. �e 
physical reason for this success is that as the temperature is 
lowered, less energy is available to excite the atomic oscilla-
tions. At high temperatures many oscillators are excited into 
high energy states leading to classical behaviour.

Figure 7A.5 shows the temperature dependence of the heat 
capacity predicted by the Einstein formula and some experi-

mental data; the value of the Einstein temperature is adjusted 
to obtain the best �t to the data. �e general shape of the curve 
is satisfactory, but the numerical agreement is in fact quite 
poor. �is discrepancy arises from Einstein’s assumption that 
all the atoms oscillate with the same frequency. A more sophis-
ticated treatment, due to Peter Debye, allows the oscillators to 
have a range of frequencies from zero up to a maximum. �is 
approach results in much better agreement with the experi-
mental data and there can be little doubt that mechanical mo-
tion as well as electromagnetic radiation is quantized.

(c) Atomic and molecular spectra

�e most compelling and direct evidence for the quantiza-
tion of energy comes from spectroscopy, the detection and 
analysis of the electromagnetic radiation absorbed, emitted, 
or scattered by a substance. �e record of the variation of the 
intensity of this radiation with frequency (ν), wavelength (λ), 
or wavenumber (ν� = ν/c, see �e chemist’s toolkit 13) is called 
its spectrum (from the Latin word for appearance).

An atomic emission spectrum is shown in Fig. 7A.6, and a 
molecular absorption spectrum is shown in Fig. 7A.7. �e ob-
vious feature of both is that radiation is emitted or absorbed at 
a series of discrete frequencies. �is observation can be under-
stood if the energy of the atoms or molecules is also con�ned 
to discrete values, because then the energies that a molecule 
can discard or acquire are also con�ned to discrete values 
(Fig. 7A.8). If the energy of an atom or molecule decreases by 
ΔE, and this energy is carried away as radiation, the frequency 
of the radiation ν and the change in energy are related by the 
Bohr frequency condition:

ΔE = hν Bohr frequency condition  (7A.9)

A molecule is said to undergo a spectroscopic transition, a 
change of state, and as a result an emission ‘line’, a sharply de-
�ned peak, appears in the spectrum at frequency ν.

Figure 7A.5 Experimental low-temperature molar heat capacities 

(open circles) and the temperature dependence predicted on 

the basis of Einstein’s theory (solid line). His equation (eqn 7A.8) 

accounts for the dependence fairly well, but is everywhere too 

low.
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Figure 7A.6 A region of the spectrum of radiation emitted by 

excited iron atoms consists of radiation at a series of discrete 

wavelengths (or frequencies).
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Brief illustration 7A.2

Atomic sodium produces a yellow glow (as in some street 

lamps) resulting from the emission of radiation of 590 nm. �e 

spectroscopic transition responsible for the emission involves 

electronic energy levels that have a separation given by eqn 7A.9:

E h
hc (6.626 10 Js) (2.998 10 ms )

590 10 m

3.37 10 J

34 8 1

9

19

ν
λ

∆ = = =
× × ×

×

= ×

− −

−

−

�is energy di�erence can be expressed in a variety of ways. 

For instance, multiplication by Avogadro’s constant results in 

an energy separation per mole of atoms, of 203 kJ mol−1, com-

parable to the energy of a weak chemical bond.

7A.2 Wave–particle duality

�e experiments about to be described show that electromag-
netic radiation—which classical physics treats as wave-like—
actually also displays the characteristics of particles. Another 
experiment shows that electrons—which classical physics treats 
as particles—also display the characteristics of waves. �is wave–

particle duality, the blending together of the characteristics of 
waves and particles, lies at the heart of quantum mechanics.

(a) The particle character of electromagnetic 
radiation

�e Planck treatment of black-body radiation introduced the 
idea that an oscillator of frequency ν can have only the ener-
gies 0, hν, 2hν, … . �is quantization leads to the suggestion 
(and at this stage it is only a suggestion) that the resulting elec-
tromagnetic radiation of that frequency can be thought of as 
consisting of 0, 1, 2, … particles, each particle having an en-
ergy hν. �ese particles of electromagnetic radiation are now 
called photons. �us, if an oscillator of frequency ν is excited 
to its �rst excited state, then one photon of that frequency is 
present, if it is excited to its second excited state, then two pho-
tons are present, and so on. �e observation of discrete spec-
tra from atoms and molecules can be pictured as the atom or 
molecule generating a photon of energy hν when it discards an 
energy of magnitude ΔE, with ΔE = hν.

Example 7A.1 Calculating the number of photons

Calculate the number of photons emitted by a 100 W yellow 

lamp in 1.0 s. Take the wavelength of yellow light as 560 nm, 

and assume 100 per cent e�ciency.

Collect your thoughts Each photon has an energy hν, so the 

total number N of photons needed to produce an energy E is 

N = E/hν. To use this equation, you need to know the frequen-

cy of the radiation (from ν = c/λ) and the total energy emitted 

by the lamp. �e latter is given by the product of the power 

(P, in watts) and the time interval, Δt, for which the lamp is 

turned on: E = PΔt (see �e chemist’s toolkit 8 in Topic 2A).

The solution �e number of photons is

N
E
h

P t

h c

P t
hc( / )ν λ

λ
= =

∆
=

∆

Substitu tion of the data gives

N
(5.60 10 m) (100Js ) (1.0s)

(6.626 10 Js) (2.998 10 ms )
2.8 10

7 1

34 8 1

20
=

× × ×

× × ×

= ×

− −

− −

Figure 7A.7 A molecule can change its state by absorbing 

radiation at definite frequencies. This spectrum is due to the 

electronic, vibrational, and rotational excitation of sulfur dioxide 

(SO2) molecules. The observation of discrete spectral lines 

suggests that molecules can possess only discrete energies, not 

an arbitrary energy.
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Figure 7A.8 Spectroscopic transitions, such as those shown in 

Fig. 7A.6, can be accounted for by supposing that an atom (or 

molecule) emits electromagnetic radiation as it changes from a 

discrete level of high energy to a discrete level of lower energy. 

High-frequency radiation is emitted when the energy change is 

large. Transitions like those shown in Fig. 7A.7 can be explained 

by supposing that a molecule (or atom) absorbs radiation as it 

changes from a low-energy level to a higher-energy level.
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A note on good practice To avoid rounding and other numeri-

cal errors, it is best to carry out algebraic calculations �rst, 

and to substitute numerical values into a single, �nal formula. 

Moreover, an analytical result may be used for other data without 

having to repeat the entire calculation.

Self-test 7A.1 How many photons does a monochromatic 

(single frequency) infrared range�nder of power 1 mW and 

wavelength 1000 nm emit in 0.1 s?

Answer: 5 × 10
14

So far, the existence of photons is only a suggestion. 
Experimental evidence for their existence comes from the 
measurement of the energies of electrons produced in the pho-

toelectric e�ect, the ejection of electrons from metals when 
they are exposed to ultraviolet radiation. �e experimental 
characteristics of the photoelectric e�ect are as follows:

•	 No electrons are ejected, regardless of the intensity of the 
radiation, unless its frequency exceeds a threshold value 
characteristic of the metal.

•	 �e kinetic energy of the ejected electrons increases lin-
early with the frequency of the incident radiation but is 
independent of the intensity of the radiation.

•	 Even at low radiation intensities, electrons are ejected 
immediately if the frequency is above the threshold value.

Figure 7A.9 illustrates the �rst and second characteristics.
�ese observations strongly suggest that in the photoelec-

tric e�ect a particle-like projectile collides with the metal 
and, if the kinetic energy of the projectile is high enough, an 
electron is ejected. If the projectile is a photon of energy hν 
(ν is the frequency of the radiation), the kinetic energy of the 

electron is Ek, and the energy needed to remove an electron 
from the metal, which is called its work function, is Φ (upper-
case phi), then as illustrated in Fig. 7A.10, the conservation of 
energy implies that

hν�=�Ek + Φ����or Ek = hν − Φ Photoelectric effect  (7A.10)

�is model explains the three experimental observations:

•	 Photoejection cannot occur if hν < Φ because the photon 
brings insu�cient energy.

•	 �e kinetic energy of an ejected electron increases lin-
early with the frequency of the photon.

•	 When a photon collides with an electron, it gives up all 
its energy, so electrons should appear as soon as the colli-
sions begin, provided the photons have su�cient energy.

A practical application of eqn 7A.10 is that it provides a 
technique for the determination of Planck’s constant, because 
the slopes of the lines in Fig. 7A.9 are all equal to h.

�e energies of photoelectrons, the work function, and 
other quantities are o�en expressed in the alternative energy 
unit the electronvolt (eV): 1 eV is de�ned as the kinetic energy 
acquired when an electron (of charge −e) is accelerated from 
rest through a potential di�erence Δϕ = 1 V. �at kinetic en-
ergy is eΔϕ, so

Ek = eΔϕ = (1.602 ×�10−19 C) × 1 V = 1.602 × 10−19 C V = 1 eV

Because 1 C V = 1 J, it follows that the relation between elec-
tronvolts and joules is

1 eV = 1.602 × 10−19 J

Figure 7A.9 In the photoelectric effect, it is found that no 

electrons are ejected when the incident radiation has a frequency 

below a certain value that is characteristic of the metal. Above 

that value, the kinetic energy of the photoelectrons varies linearly 

with the frequency of the incident radiation.
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Figure 7A.10 The photoelectric effect can be explained if it is 

supposed that the incident radiation is composed of photons that 

have energy proportional to the frequency of the radiation. (a) 

The energy of the photon is insufficient to drive an electron out 

of the metal. (b) The energy of the photon is more than enough 

to eject an electron, and the excess energy is carried away as the 

kinetic energy of the photoelectron (the ejected electron).
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Example 7A.2 Calculating the longest wavelength 
capable of photoejection

A photon of radiation of wavelength 305 nm ejects an electron 

with a kinetic energy of 1.77 eV from a metal. Calculate the 

longest wavelength of radiation capable of ejecting an electron 

from the metal.

Collect your thoughts You can use eqn 7A.10, rearranged into 

Φ� = hν − Ek, to compute the work function because you know 

the frequency of the photon from ν = c/λ. �e threshold for 

photoejection is the lowest frequency at which electron ejec-

tion occurs without there being any excess energy; that is, the 

kinetic energy of the ejected electron is zero. Setting Ek = 0 in 

Ek = hν − Φ gives the minimum photon frequency as νmin = 

Φ/h. Use this value of the frequency to calculate the corre-

sponding wavelength, λmax.

The solution �e minimum frequency for photoejection is

ν
Φ ν

λ
= =

−
= −

h

h E

h

c E

hmin

k k

�e longest wavelength that can cause photoejection is there-

fore

λ
ν λ λ

= =
−

=
−

c c

c E h E hc/ /
1

1/ /max
min k k

Now substitute the data. �e kinetic energy of the electron is

= × × ×
− − −

E 1.77eV (1.602 10 JeV ) = 2.83… 10 Jk
19 1 19

so

=
×

× × ×

= …×

−

− −

−
E

hc

2.83… 10 J

(6.626 10 Js) (2.998 10 ms )
1.42 10 mk

19

34 8 1
6 1

�erefore, with λ = = …×
−1/ 1/305nm 3.27 10 m6 1,

λ =
…× − …×

= ×
− −

−1

(3.27 10 m ) (1.42 10 m )
5.40 10 m max 6 1 6 1

7

or 540 nm.

Self-test 7A.2 When ultraviolet radiation of wavelength 

165 nm strikes a certain metal surface, electrons are ejected 

with a speed of 1.24 Mm s−1. Calculate the speed of electrons 

ejected by radiation of wavelength 265 nm.

Answer: 735 km s
−1

(b) The wave character of particles

Although contrary to the long-established wave theory of ra-
diation, the view that radiation consists of particles had been 
held before, but discarded. No signi�cant scientist, however, 
had taken the view that matter is wave-like. Nevertheless, 

ν λ= /c experiments carried out in 1925 forced people to consider that 
possibility. �e crucial experiment was performed by Clinton 
Davisson and Lester Germer, who observed the di�raction of 
electrons by a crystal (Fig. 7A.11). As remarked in �e chem-

ist’s toolkit 13, di�raction is the interference caused by an ob-
ject in the path of waves. Davisson and Germer’s success was 
a lucky accident, because a chance rise of temperature caused 
their polycrystalline sample to anneal, and the ordered planes 
of atoms then acted as a di�raction grating. �e Davisson–
Germer experiment, which has since been repeated with other 
particles (including α particles, molecular hydrogen, and 
neutrons), shows clearly that particles have wave-like proper-
ties. At almost the same time, G.P. �omson showed that a 
beam of electrons was di�racted when passed through a thin 
gold foil.

Some progress towards accounting for wave–particle du-
ality had already been made by Louis de Broglie who, in 
1924, suggested that any particle, not only photons, trav-
elling with a linear momentum p = mv (with m the mass 
and v the speed of the particle) should have in some sense 
a wavelength given by what is now called the de Broglie 

relation:

λ =
h
p  de Broglie relation  (7A.11)

�at is, a particle with a high linear momentum has a short 
wavelength. Macroscopic bodies have such high momenta 
even when they are moving slowly (because their mass is so 
great), that their wavelengths are undetectably small, and the 
wave-like properties cannot be observed. �is undetectability 
is why classical mechanics can be used to explain the behav-
iour of macroscopic bodies. It is necessary to invoke quantum 
mechanics only for microscopic bodies, such as atoms and 
molecules, in which masses are small.

Figure 7A.11 The Davisson–Germer experiment. The scattering 

of an electron beam from a nickel crystal shows a variation in 

intensity characteristic of a diffraction experiment in which waves 

interfere constructively and destructively in different directions.

Electron

beam

Diffracted

electrons

Ni crystal
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Example 7A.3 Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been acceler-

ated from rest through a potential di�erence of 40 kV.

Collect your thoughts To use the de Broglie relation, you need 

to know the linear momentum, p, of the electrons. To calcu-

late the linear momentum, note that the energy acquired by 

an electron accelerated through a potential di�erence Δϕ is 

eΔϕ, where e is the magnitude of its charge. At the end of the 

period of acceleration, all the acquired energy is in the form 

of kinetic energy, Ek = 1
2

mev
2 = p2/2me. You can therefore cal-

culate p by setting p2/2me equal to eΔϕ. For the manipulation 

of units use 1 V C = 1 J and 1 J = 1 kg m2 s−2.

The solution �e expression p2/2me = eΔϕ implies that p = 

(2meeΔϕ)1/2 then, from the de Broglie relation λ = h/p, 

h

m e(2 )e
1/2λ

φ
=

∆

Substitution of the data and the fundamental constants gives

6.626 10 Js

{2 (9.109 10 kg) (1.602 10 C) (4.0 10 V)}
 

6.1 10 m

34

31 19 4 1/2

12

λ =
×

× × × × × ×

= ×

−

− −

−

or 6.1 pm.

Comment. Electrons accelerated in this way are used in 

the technique of electron di�raction for imaging biological 

systems and for the determination of the structures of solid 

surfaces (Topic 19A).

Self-test 7A.3 Calculate the wavelength of (a) a neutron with a 

translational kinetic energy equal to kT at 300 K, (b) a tennis 

ball of mass 57 g travelling at 80 km h−1.

Answer: (a) 178 pm, (b) 5.2 × 10
−34

 m

Checklist of concepts

☐ 1. A black body is an object capable of emitting and 
absorbing all wavelengths of radiation without favour-
ing any wavelength.

☐ 2. An electromagnetic �eld of a given frequency can take 
up energy only in discrete amounts.

☐ 3. Atomic and molecular spectra show that atoms and 
molecules can take up energy only in discrete amounts.

☐ 4. �e photoelectric e�ect establishes the view that elec-
tromagnetic radiation, regarded in classical physics as 
wave-like, consists of particles (photons).

☐ 5. �e di�raction of electrons establishes the view that elec-
trons, regarded in classical physics as particles, are wave-
like with a wavelength given by the de Broglie relation.

☐ 6. Wave–particle duality is the recognition that the con-
cepts of particle and wave blend together.

Checklist of equations

Property Equation Comment
Equation 
number

Wien’s law λ = ×
−

T 2.9 10 mKmax
3 7A.1

Stefan–Boltzmann law E(T) = constant ×�T4 7A.3

Planck distribution
ρ λ λ= −λT hc( , ) 8π /{ (e 1)}

hc kT5 /

ρ ν ν= π −
νT h c( , ) 8 /{ (e 1)}h kT3 3 /

Black-body radiation 7A.6

Einstein formula for heat capacity of a solid =C T Rf T( ) 3 ( )V,m E

θ= −
θ θf T T( ) ( / ) {e /(e 1)}T T

E E
2 /2 / 2E E

Einstein temperature:
θE = hν/k

7A.8

Bohr frequency condition ΔE = hν 7A.9

Photoelectric e�ect Ek = hν�− Φ Φ is the work function 7A.10

de Broglie relation λ = h/p λ is the wavelength of a particle of linear 
momentum p

7A.11



TOPIC 7B Wavefunctions

➤  Why do you need to know this material?

Wavefunctions provide the essential foundation for under-

standing the properties of electrons in atoms and mol-

ecules, and are central to explanations in chemistry.

➤  What is the key idea?

All the dynamical properties of a system are contained 

in its wavefunction, which is obtained by solving the 

Schrödinger equation.

➤  What do you need to know already?

You need to be aware of the shortcomings of classical 

physics that drove the development of quantum theory 

(Topic 7A).

In classical mechanics an object travels along a de�nite path 
or trajectory. In quantum mechanics a particle in a particular 
state is described by a wavefunction, ψ (psi), which is spread 
out in space, rather than being localized. �e wavefunction 
contains all the dynamical information about the object in 
that state, such as its position and momentum.

7B.1 The Schrödinger equation

In 1926 Erwin Schrödinger proposed an equation for �nd-
ing the wavefunctions of any system. �e time-independent 

Schrödinger equation for a particle of mass m moving in one 
dimension with energy E in a system that does not change 
with time (for instance, its volume remains constant) is

m x
V x E

2

d

d
( )

2 2

2

ψ
ψ ψ− + =

�
 Time-independent 

Schrödinger equation
 (7B.1)

�e constant � = h/2π (which is read h-cross or h-bar) is a 
convenient modi�cation of Planck’s constant used widely in 
quantum mechanics; V(x) is the potential energy of the parti-
cle at x. Because the total energy E is the sum of potential and 
kinetic energies, the �rst term on the le� must be related (in 
a manner explored later) to the kinetic energy of the particle. 
�e Schrödinger equation can be regarded as a fundamental 
postulate of quantum mechanics, but its plausibility can be 

demonstrated by showing that, for the case of a free particle, it 
is consistent with the de Broglie relation (Topic 7A).

How is that done? 7B.1 Showing that the Schrödinger 
equation is consistent with the de Broglie relation

�e potential energy of a freely moving particle is zero every-

where, V(x) = 0, so the Schrödinger equation (eqn 7B.1) 

becomes

�

ψ
ψ= −

x

mEd

d

22

2 2

Step 1 Find a solution of the Schrödinger equation for a free 

particle

A solution of this equation is ψ = kxcos , as you can con�rm 

by noting that

ψ
ψ= = − = −

x

kx

x
k kx k

d

d

d cos

d
cos

2

2

2

2
2 2

It follows that �− = −k mE2 /2 2
 and hence

�
= 





k
mE2
2

1/2

�e energy, which is only kinetic in this instance, is related to 

the linear momentum of the particle by E = p2/2m (�e chem-

ist’s toolkit 6 in Topic 2A), so it follows that

� �
=







=k
m p m p2 ( /2 )2

2

1/2

�e linear momentum is therefore related to k by �=p k .

Step 2 Interpret the wavefunction in terms of a wavelength

Now recognize that a wave (more speci�cally, a ‘harmonic 

wave’) can be described mathematically by a sine or cosine 

function. It follows that cos kx can be regarded as a wave that 

goes through a complete cycle as kx increases by 2π. �e wave-

length is therefore given by kλ = 2π, so λ=k 2π/ . �erefore, 

the linear momentum is related to the wavelength of the 

wavefunction by 

�
λ λ

= =
π

×
π

=p k
h h2
2

which is the de Broglie relation. �e Schrödinger equation 

therefore has solutions consistent with the de Broglie relation.
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7B.2 The Born interpretation

One piece of dynamical information contained in the wave-
function is the location of the particle. Max Born used an 
analogy with the wave theory of radiation, in which the square 
of the amplitude of an electromagnetic wave in a region is in-
terpreted as its intensity and therefore (in quantum terms) as a 
measure of the probability of �nding a photon present in the 
region. �e Born interpretation of the wavefunction is:

If the wavefunction of a particle has the value ψ 
at x, then the probability of �nding the particle 
between x and x + dx is proportional to |ψ|2dx  
(Fig. 7B.1).

�e quantity |ψ|2 = ψ*ψ allows for the possibility that ψ is 
complex (see �e chemist’s toolkit 14). If the wavefunction is 
real (such as cos kx), then |ψ|2 = ψ�2.

Because |ψ|2dx is a (dimensionless) probability, |ψ|2 is the 
probability density, with the dimensions of 1/length (for a one-
dimensional system). �e wavefunction ψ itself is called the 
probability amplitude. For a particle free to move in three di-
mensions (for example, an electron near a nucleus in an atom), 
the wavefunction depends on the coordinates x, y, and z and is 
denoted ψ(r). In this case the Born interpretation is (Fig. 7B.2):

If the wavefunction of a particle has the value ψ at r, then the 
probability of �nding the particle in an in�nitesimal volume 
dτ = dxdydz at that position is proportional to |ψ|2dτ.
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In this case, |ψ|2 has the dimensions of 1/length3 and the wave-
function itself has dimensions of 1/length3/2 (and units such 
as m−3/2).

�e Born interpretation does away with any worry about the 
signi�cance of a negative (and, in general, complex) value of ψ 
because |ψ|2 is always real and nowhere negative. �ere is no 
direct signi�cance in the negative (or complex) value of a wave-
function: only the square modulus is directly physically signif-
icant, and both negative and positive regions of a wavefunction 
may correspond to a high probability of �nding a particle in a 
region (Fig. 7B.3). However, the presence of positive and nega-
tive regions of a wavefunction is of great indirect signi�cance, 
because it gives rise to the possibility of constructive and de-
structive interference between di�erent wavefunctions.

A wavefunction may be zero at one or more points, and at 
these locations the probability density is also zero. It is impor-
tant to distinguish a point at which the wavefunction is zero 
(for instance, far from the nucleus of a hydrogen atom) from 
the point at which it passes through zero. �e latter is called 
a node. A location where the wavefunction approaches zero 
without actually passing through zero is not a node. �us, the 

Figure 7B.1 The wavefunction ψ is a probability amplitude in 

the sense that its square modulus (ψ�*ψ or |ψ|2) is a probability 

density. The probability of finding a particle in the region 

between x and x + dx is proportional to |ψ|2dx. Here, the 

probability density is represented by the density of shading in the 

superimposed band.

dx

|ψ|2

Probability = |ψ|2dx

x x + dx

Figure 7B.2 The Born interpretation of the wavefunction in three-

dimensional space implies that the probability of finding the particle 

in the volume element dτ = dxdydz at some position r is proportional 

to the product of dτ and the value of |ψ|2 at that position.

dx
dy

dz

z

x y

r

The chemist’s toolkit 14 Complex numbers

Complex numbers have the general form

z = x + iy

where = −i 1. �e real number x is the ‘real part of z’, denoted 

Re(z); likewise, the real number y is ‘the imaginary part of z’, 

Im(z). �e complex conjugate of z, denoted z*, is formed by 

replacing i by −i:

z* = x − iy

�e product of z* and z is denoted |z|2 and is called the 

square modulus of z. From the de�nition of z and z* and i2 = 

−1 it follows that

|z|2 = z*z = (x + iy)(x − iy) = x2 + y2

�e square modulus is a real, non-negative number. �e abso-

lute value or modulus is denoted |z| and is given by:

z z z x y| | ( * ) ( )1/2 2 2 1/2
= = +

For further information about complex numbers, see �e 

chemist’s toolkit 16 in Topic 7C.
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wavefunction cos kx has nodes wherever kx is an odd integral 
multiple of 1

2
π (where the wave passes through zero), but the 

wavefunction −

e
kx has no nodes, despite becoming zero as x → ∞.

Example 7B.1 Interpreting a wavefunction

�e wavefunction of an electron in the lowest energy state of a 

hydrogen atom is proportional to −e r a/ 0 , where a0 is a constant 

and r the distance from the nucleus. Calculate the relative 

probabilities of �nding the electron inside a region of volume 

δV = 1.0 pm3, which is small even on the scale of the atom, 

located at (a) the nucleus, (b) a distance a0 from the nucleus.

Collect your thoughts �e region of interest is so small on the 

scale of the atom that you can ignore the variation of ψ within 

it and write the probability, P, as proportional to the prob-

ability density (ψ�2; note that ψ is real) evaluated at the point 

of interest multiplied by the volume of interest, δV. �at is, P 

∝ ψ�2δV, with ψ ∝
−e r a2 2 / 0.

The solution In each case δV = 1.0 pm3. (a) At the nucleus,  

r = 0, so

P ∝ e0 × (1.0 pm3) = 1 × (1.0 pm3) = 1.0 pm3

(b) At a distance r = a0 in an arbitrary direction,

P ∝ e−2 × (1.0 pm3) = 0.14 … × (1.0 pm3) = 0.14 pm3

�erefore, the ratio of probabilities is 1.0/0.14 = 7.1.

Comment. Note that it is more probable (by a factor of 7) 

that the electron will be found at the nucleus than in a vol-

ume element of the same size located at a distance a0 from the 

nucleus. �e negatively charged electron is attracted to the 

positively charged nucleus, and is likely to be found close to it.

Self-test 7B.1 �e wavefunction for the electron in its lowest 

energy state in the ion He+ is proportional to −e r a2 / 0. Repeat the 

calculation for this ion and comment on the result.

Answer: 55; the wavefunction is more compact
(a) Normalization

A mathematical feature of the Schrödinger equation is that if 
ψ is a solution, then so is Nψ, where N is any constant. �is 
feature is con�rmed by noting that because ψ occurs in every 
term in eqn 7B.1, it can be replaced by Nψ�and the constant 
factor N cancelled to recover the original equation. �is free-
dom to multiply the wavefunction by a constant factor means 
that it is always possible to �nd a normalization constant, N, 
such that rather than the probability density being propor-

tional to |ψ|2 it becomes equal to |ψ|2.
A normalization constant is found by noting that, for a 

normalized wavefunction Nψ, the probability that a parti-
cle is in the region dx is equal to (Nψ*)(Nψ)dx (N is taken to 
be real). Furthermore, the sum over all space of these indi-
vidual probabilities must be 1 (the probability of the particle 
being somewhere is 1). Expressed mathematically, the latter 
requirement is

∫ ψ ψ =
−∞

∞
N x* d 12  (7B.2)

and therefore

∫ ψ ψ( )
=

−∞

∞
N

x

1

* d
1/2  (7B.3)

Provided this integral has a �nite value (that is, the wavefunc-
tion is ‘square integrable’), the normalization factor can be 
found and the wavefunction ‘normalized’ (and speci�cally 
‘normalized to 1’). From now on, unless stated otherwise, all 
wavefunctions are assumed to have been normalized to 1, in 
which case in one dimension

∫ ψ ψ =
−∞

∞
x* d 1 (7B.4a)

and in three dimensions

x y z*  d d d 1∫∫∫ ψ ψ =
−∞

∞

−∞

∞

−∞

∞
 (7B.4b)

In quantum mechanics it is common to write all such integrals 
in a short-hand form as

ψ ψ τ∫ =*  d 1 (7B.4c)

where dτ is the appropriate volume element and the integra-
tion is understood as being over all space.

Example 7B.2 Normalizing a wavefunction

Carbon nanotubes are thin hollow cylinders of carbon with 

diameters between 1 nm and 2 nm, and lengths of sev-

eral micrometres. According to one simple model, the lowest-

energy electrons of the nanotube are described by the wave-

function sin(πx/L), where L is the length of the nanotube. Find 

the normalized wavefunction.

Collect your thoughts Because the wavefunction is one-

dimensional, you need to �nd the factor N that guarantees 

Figure 7B.3 The sign of a wavefunction has no direct 

physical significance: the positive and negative regions of 

this wavefunction both correspond to the same probability 

distribution (as given by the square modulus of ψ and depicted 

by the density of the shading).

Wavefunction Probability density
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that the integral in eqn 7B.4a is equal to 1. �e wavefunction 

is real, so ψ* = ψ. Relevant integrals are found in the Resource 

section.

The solution Write the wavefunction as ψ = N sin(πx/L), 

where N is the normalization factor. �e limits of integration 

are x = 0 to x = L because the wavefunction spans the length 

of the tube. It follows that

N
x

L
x N L* d sin d = 1

2

L
2 2

0

2∫ ∫ψ ψ τ =
π

� ��� ���

For the wavefunction to be normalized, this integral must be 

equal to 1; that is, =N L 11

2

2 , and hence

N
L

 
2

1/2

= 





�e normalized wavefunction is therefore

L
x
L

 
2

sin
π

1/2

ψ = 





Comment. Because L is a length, the dimensions of ψ are 

1/length1/2, and therefore those of ψ2 are 1/length, as is appro-

priate for a probability density in one dimension.

Self-test 7B.2 �e wavefunction for the next higher ener-

gy level for the electrons in the same tube is sin(2πx/L). 

Normalize this wavefunction.

Answer: N = (2/L)
1/2

To calculate the probability of �nding the system in a �nite 
region of space the probability density is summed (integrated) 
over the region of interest. �us, for a one-dimensional sys-
tem, the probability P of �nding the particle between x1 and x2 

is given by

P x x( ) d
x

x 2

1

2

∫ ψ=   
Probability
[one-dimensional region]  (7B.5)

Example 7B.3 Determining a probability

As seen in Example 7B.2, the lowest-energy electrons of a 

carbon nanotube of length L can be described by the normal-

ized wavefunction (2/L)1/2 sin(πx/L). What is the probability of 

�nding the electron between x = L/4 and x = L/2?

Collect your thoughts Use eqn 7B.5 and the normalized wave-

function to write an expression for the probability of �nding 

the electron in the region of interest. Relevant integrals are 

given in the Resource section.

The solution From eqn 7B.5 the probability is

� ���� ����

P
L

x L x
2
  sin ( / ) d

L

L
2

/4

/2

∫= π

Integral T.2

Integral T.2

It follows that

P
L

x x L
L L

L L L2

2

sin(2 / )

4 /
 

2

4 8
0

4
0.409

L

L

/4

/2

= −
π
π







= − − + π






=

Comment. �ere is a chance of about 41 per cent that the 

electron will be found in the region.

Self-test 7B.3 As remarked in Self-test 7B.2, the normalized 

wavefunction of the next higher energy level of the electron 

in this model of the nanotube is (2/L)1/2 sin(2πx/L). What is 

the probability of �nding the electron between x = L/4 and 

x = L/2?

Answer: 0.25

(b) Constraints on the wavefunction

�e Born interpretation puts severe restrictions on the ac-
ceptability of wavefunctions. �e �rst constraint is that ψ 
must not be in�nite over a �nite region, because if it were, 
the Born interpretation would fail. �is requirement rules 
out many possible solutions of the Schrödinger equation, 
because many mathematically acceptable solutions rise to 
in�nity and are therefore physically unacceptable. �e Born 
interpretation also rules out solutions of the Schrödinger 
equation that give rise to more than one value of |ψ|2 at a 
single point because it would be absurd to have more than 
one value of the probability density for the particle at a point. 
�is restriction is expressed by saying that the wavefunction 
must be single-valued; that is, it must have only one value at 
each point of space.

The Schrödinger equation itself also implies some math-
ematical restrictions on the type of functions that can 
occur. Because it is a second-order differential equation (in 
the sense that it depends on the second derivative of the 
wavefunction), d2ψ/dx2 must be well-defined if the equa-
tion is to be applicable everywhere. The second derivative 
is defined only if the first derivative is continuous: this 
means that (except as specified below) there can be no 
kinks in the function. In turn, the first derivative is de-
fined only if the function is continuous: no sharp steps are 
permitted.

Overall, therefore, the constraints on the wavefunction, 
which are summarized in Fig. 7B.4, are that it

•	 must not be in�nite over a �nite region;

•	 must be single-valued;

•	 must be continuous;

•	 must have a continuous �rst derivative (slope).

�e last of these constraints does not apply if the potential en-
ergy has abrupt, in�nitely high steps (as in the particle-in-a-
box model treated in Topic 7D).
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(c) Quantization

�e constraints just noted are so severe that acceptable solu-
tions of the Schrödinger equation do not in general exist for 
arbitrary values of the energy E. In other words, a particle may 
possess only certain energies, for otherwise its wavefunction 
would be physically unacceptable. �at is,

As a consequence of the restrictions on its wavefunction, 
the energy of a particle is quantized.

�ese acceptable energies are found by solving the Schrödinger 
equation for motion of various kinds, and selecting the solu-
tions that conform to the restrictions listed above.

Figure 7B.4 The wavefunction must satisfy stringent conditions 

for it to be acceptable: (a) unacceptable because it is infinite over 

a finite region; (b) unacceptable because it is not single-valued; 

(c) unacceptable because it is not continuous; (d) unacceptable 

because its slope is discontinuous. 

ψψ

ψψ

(c) (d)

(b)(a)

Checklist of concepts

☐ 1. A wavefunction is a mathematical function that con-
tains all the dynamical information about a system.

☐ 2. �e Schrödinger equation is a second-order di�erential 
equation used to calculate the wavefunction of a system.

☐ 3. According to the Born interpretation, the probability 
density at a point is proportional to the square of the 
wavefunction at that point.

☐ 4.  A node is a point where a wavefunction passes through 

zero.

☐ 5. A wavefunction is normalized if the integral over all 
space of its square modulus is equal to 1.

☐ 6. A wavefunction must be single-valued, continuous, 
not in�nite over a �nite region of space, and (except in 
special cases) have a continuous slope.

☐ 7. �e quantization of energy stems from the constraints 
that an acceptable wavefunction must satisfy.

Checklist of equations

Property Equation Comment
Equation 
number

�e time-independent Schrödinger equation –( 2
� /2m)(d2ψ/dx2) + V(x)ψ = Eψ One-dimensional system* 7B.1

Normalization ∫ψ ψ τ =*  d 1 Integration over all space 7B.4c

Probability of a particle being between x1 and x2 P x x( ) d  
x

x 2

1

2

∫ ψ= One-dimensional region 7B.5

* Higher dimensions are treated in Topics 7D, 7F, and 8A.



TOPIC 7C Operators and observables

➤  Why do you need to know this material?

To interpret the wavefunction fully it is necessary to be 

able to extract dynamical information from it. The predic-

tions of quantum mechanics are often very different from 

those of classical mechanics, and those differences are 

essential for understanding the structures and properties 

of atoms and molecules.

➤  What is the key idea?

The dynamical information in the wavefunction is extract-

ed by calculating the expectation values of hermitian 

operators.

➤  What do you need to know already?

You need to know that the state of a system is fully 

described by a wavefunction (Topic 7B), and that the prob-

ability density is proportional to the square modulus of the 

wavefunction.

�e quantity Ĥ (commonly read h-hat) is an operator, an ex-
pression that carries out a mathematical operation on a func-
tion. In this case, the operation is to take the second derivative 
of ψ, and (a�er multiplication by − 2

� /2m) to add the result to 
the outcome of multiplying ψ by V(x).

�e operator Ĥ plays a special role in quantum mechanics, and 
is called the hamiltonian operator a�er the nineteenth century 
mathematician William Hamilton, who developed a form of clas-
sical mechanics which, it subsequently turned out, is well suited 
to the formulation of quantum mechanics. �e hamiltonian op-
erator (and commonly simply ‘the hamiltonian’) is the operator 
corresponding to the total energy of the system, the sum of the 
kinetic and potential energies. In eqn 7C.1b the second term on 
the right is the potential energy, so the �rst term (the one involv-
ing the second derivative) must be the operator for kinetic energy.

In general, an operator acts on a function to produce a new 
function, as in

(operator)(function) = (new function)

In some cases the new function is the same as the original 
function, perhaps multiplied by a constant. Combinations of 
operators and functions that have this property are of great 
importance in quantum mechanics.

Brief illustration 7C.1

For example, when the operator d/dx, which means ‘take the 

derivative of the following function with respect to x’, acts 

on the function sin ax, it generates the new function a cos ax. 

However, when d/dx operates on e ax−  it generates ae ax
−

− , 

which is the original function multiplied by the constant −a.

(a) Eigenvalue equations

�e Schrödinger equation written as in eqn 7C.1a is an eigen-

value equation, an equation of the form

(operator)(function) = (constant factor) × (same function)  
 (7C.2a)

In an eigenvalue equation, the action of the operator on the 
function generates the same function, multiplied by a con-
stant. If a general operator is denoted Ωˆ  (where Ω is uppercase 
omega) and the constant factor by ω (lowercase omega), then 
an eigenvalue equation has the form

Ωψ ωψ=ˆ  Eigenvalue equation  (7C.2b)

A wavefunction contains all the information it is possible to 
obtain about the dynamical properties of a particle (for ex-
ample, its location and momentum). �e Born interpretation 
(Topic 7B) provides information about location, but the wave-
function contains other information, which is extracted by 
using the methods described in this Topic.

7C.1 Operators

�e Schrödinger equation can be written in the succinct form

ψ ψ=H Eˆ  Operator form of 
Schrödinger equation

 (7C.1a)

Comparison of this expression with the one-dimensional 
Schrödinger equation

m x
V x E

2

d

d
( )

2 2

2

ψ
ψ ψ− + =

�

shows that in one dimension

H
m x

V xˆ
2

d

d
( )

2 2

2= − +
�

 Hamiltonian operator  (7C.1b)
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If this relation holds, the function ψ is said to be an eigenfunc-

tion of the operator Ωˆ , and ω is the eigenvalue associated with 
that eigenfunction. With this terminology, eqn 7C.2a can be 
written

(operator)(eigenfunction) = (eigenvalue) × (eigenfunction) 
 (7C.2c)

Equation 7C.1a is therefore an eigenvalue equation in which ψ 
is an eigenfunction of the hamiltonian and E is the associated 
eigenvalue. It follows that ‘solving the Schrödinger equation’ 
can be expressed as ‘�nding the eigenfunctions and eigenval-
ues of the hamiltonian operator for the system’.

Just as the hamiltonian is the operator corresponding to the 
total energy, there are operators that represent other observa-

bles, the measurable properties of the system, such as linear 
momentum or electric dipole moment. For each such operator 
Ω
ˆ  there is an eigenvalue equation of the form Ωψ ωψ=ˆ , with 

the following signi�cance:

If the wavefunction is an eigenfunction of the operator Ωˆ  
corresponding to the observable Ω, then the outcome of 
a measurement of the property Ω will be the eigenvalue 
corresponding to that eigenfunction.

Quantum mechanics is formulated by constructing the op-
erator corresponding to the observable of interest and then 
predicting the outcome of a measurement by examining the 
eigenvalues of the operator.

(b) The construction of operators

A basic postulate of quantum mechanics speci�es how to set 
up the operator corresponding to a given observable.

Observables are represented by operators built from the fol-
lowing position and linear momentum operators: 

= × =x x p
x

ˆ                   ˆ
i

d

dx

�
� Specification of operators  (7C.3)

�at is, the operator for location along the x-axis is multipli-
cation (of the wavefunction) by x, and the operator for linear 
momentum parallel to the x-axis is ħ/i times the derivative (of 
the wavefunction) with respect to x.

�e de�nitions in eqn 7C.3 are used to construct operators 
for other spatial observables. For example, suppose the poten-
tial energy has the form V(x) = 12 kfx

2, where kf is a constant (this 
potential energy describes the vibrations of atoms in molecules). 
Because the operator for x is multiplication by x, by extension the 
operator for x2 is multiplication by x and then by x again, or mul-
tiplication by x2. �e operator corresponding to 12kfx

2 is therefore

V x k xˆ( ) f

21
2= × (7C.4)

In practice, the multiplication sign is omitted and multiplica-
tion is understood. To construct the operator for kinetic en-

ergy, the classical relation between kinetic energy and linear 
momentum, Ek = px

2/2m is used. �en, by using the operator 
for px from eqn 7C.3:

�
��� ��

�
��� ��

�
= 











= −E
m x x m x

ˆ 1
2 i

d
d i

d
d 2

d

dk

2 2

2  (7C.5)

It follows that the operator for the total energy, the hamilto-
nian operator, is

H E V
m x

V xˆ ˆ ˆ
2

d

d
ˆ( )k

2 2

2= + = − +
�

� Hamiltonian operator  (7C.6)

where V xˆ( ) is the operator corresponding to whatever form 
the potential energy takes, exactly as in eqn 7C.1b.

Example 7C.1 Determining the value of an observable

What is the linear momentum of a free particle described by 

the wavefunctions (a) x( ) e kxi
ψ =  and (b) ψ =

−x( ) e kxi ?

Collect your thoughts You need to operate on ψ with the 

operator corresponding to linear momentum (eqn 7C.3), and 

inspect the result. If the outcome is the original wavefunction 

multiplied by a constant (that is, if the application of the oper-

ator results in an eigenvalue equation), then you can identify 

the constant with the value of the observable.

The solution (a) For ψ =x( ) e kxi ,

� � �
�
�

ψ
ψ

ψ= = = × = +p
x x

k kˆ
i
d
d i

de
d i

i ex

kx
kx

i
i

�is is an eigenvalue equation, with eigenvalue +kħ. It follows 

that a measurement of the momentum will give the value px= 

+kħ.

(b) For ψ =
−x( ) e kxi ,

� � �
�
�

ψ
ψ

ψ= = = × − = −

−

−p
x x

k kˆ
i
d
d i

de
d i

( i )ex

kx
kx

i
i

Now the eigenvalue is −kħ, so px = −kħ. In case (a) the momen-

tum is positive, meaning that the particle is travelling in the 

positive x-direction, whereas in (b) the particle is moving in 

the opposite direction.

Comment. A general feature of quantum mechanics is that 

taking the complex conjugate of a wavefunction reverses the 

direction of travel. An implication is that if the wavefunction is 

real (such as cos kx), then taking the complex conjugate leaves 

the wavefunction unchanged: there is no net direction of travel.

Self-test 7C.1 What is the kinetic energy of a particle described 

by the wavefunction cos kx?

Answer: Ek = ħ
2
k

2
/2m

p
x
ˆ p

x
ˆ

Eigenvalue

Eigenvalue
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�e expression for the kinetic energy operator (eqn 7C.5) 
reveals an important point about the Schrödinger equation. In 
mathematics, the second derivative of a function is a measure 
of its curvature: a large second derivative indicates a sharply 
curved function (Fig. 7C.1). It follows that a sharply curved 
wavefunction is associated with a high kinetic energy, and one 
with a low curvature is associated with a low kinetic energy.

�e curvature of a wavefunction in general varies from 
place to place (Fig. 7C.2): wherever a wavefunction is sharply 
curved, its contribution to the total kinetic energy is large; 
wherever the wavefunction is not sharply curved, its contribu-
tion to the overall kinetic energy is low. �e observed kinetic 
energy of the particle is an average of all the contributions 
of the kinetic energy from each region. Hence, a particle can 
be expected to have a high kinetic energy if the average curva-
ture of its wavefunction is high. Locally there can be both pos-
itive and negative contributions to the kinetic energy (because 

the curvature can be either positive, ∪, or negative, ∩) locally, 
but the average is always positive.

�e association of high curvature with high kinetic energy 
is a valuable guide to the interpretation of wavefunctions and 
the prediction of their shapes. For example, suppose the wave-
function of a particle with a given total energy and a potential 
energy that decreases with increasing x is required. Because 
the di�erence E − V = Ek increases from le� to right, the wave-
function must become more sharply curved by oscillating 
more rapidly as x increases (Fig. 7C.3). It is therefore likely 
that the wavefunction will look like the function sketched in 
the illustration, and more detailed calculation con�rms this  
to be so.

(c) Hermitian operators

All the quantum mechanical operators that correspond to ob-
servables have a very special mathematical property: they are 
‘hermitian’. A hermitian operator is one for which the follow-
ing relation is true:

∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=* ˆ d * ˆ d
*

i j j i   Hermiticity
[definition]

 (7C.7)

As stated in Topic 7B, in quantum mechanics … τ∫ d  implies 
integration over the full range of all relevant spatial variables.

It is easy to con�rm that the position operator (x ×) is her-
mitian because in this case the order of the factors in the inte-
grand can be changed:

∫ ∫ ∫ψ ψ τ ψ ψ τ ψ ψ τ{ }= =x x x* d *d * d
*

i j j i j i

�e �nal step uses ψ ψ=( *)* . �e demonstration that the linear 
momentum operator is hermitian is more involved because 
the order of functions being di�erentiated cannot be changed.

Figure 7C.1 The average kinetic energy of a particle can be 

inferred from the average curvature of the wavefunction. This 

figure shows two wavefunctions: the sharply curved function 

corresponds to a higher kinetic energy than the less sharply 

curved function.

High curvature,

high kinetic energy

Low curvature,

low kinetic energy
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Figure 7C.2 The observed kinetic energy of a particle is an 

average of contributions from the entire space covered by the 

wavefunction. Sharply curved regions contribute a high kinetic 

energy to the average; less sharply curved regions contribute 

only a small kinetic energy.

W
a

v
e
fu

n
c
ti

o
n

, 
ψ

x

Region contributes

high kinetic energy

Region contributes

low kinetic energy

Figure 7C.3 The wavefunction of a particle with a potential 

energy V that decreases towards the right. As the total energy 

is constant, the kinetic energy Ek increases to the right, which 

results in a faster oscillation and hence greater curvature of the 

wavefunction.
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The chemist’s toolkit 15 Integration by parts

Many integrals in quantum mechanics have the form 

∫ f x h x x( ) ( )d  where f(x) and h(x) are two di�erent functions. 

Such integrals can o�en be evaluated by regarding h(x) as the 

derivative of another function, g(x), such that h(x) = dg(x)/dx. 

For instance, if h(x) = x, then g(x) = x1

2

2. �e integral is then 

found using integration by parts:

∫ ∫= −f
g
x

x fg g
f
x

x
d
d

d
d
d

d

�e procedure is successful only if the integral on the right 

turns out to be one that can be evaluated more easily than the 

one on the le�. �e procedure is o�en summarized by express-

ing this relation as

∫ ∫= −f g fg g fd d

As an example, consider integration of xe−ax. In this case, f(x) = 

x, so df(x)/dx = 1 and dg(x)/dx = e−ax, so g(x) = −(1/a)e−ax. �en

∫ ∫=
−

−
−−

− − �� ��

� �

x x x
a a

xe d
e e

1dax
ax ax

∫= − + = − − +
−

−
− −x

a a
x

x
a a

    
e 1

e d
e e

 constant

ax
ax

ax ax

2

df/dx
gg

fdg/dxf

How is that done? 7C.1 Showing that the linear 
momentum operator is hermitian

�e task is to show that

p p* ˆ d * ˆ d
*

i x j j x i∫ ∫ψ ψ τ ψ ψ τ{ }=

with p̂x  given in eqn 7C.3. To do so, use ‘integration by parts’ 

(see �e chemist’s toolkit 15) which, when applied to the pre-

sent case, gives

�

� �
���
�

�
�

�

∫ ∫

∫

ψ ψ τ ψ
ψ

ψ ψ ψ
ψ

=

= −

−∞

∞

−∞

∞

−∞

∞

p
x

x

x
x

* ˆ d
i

*
d  

d
d

i
*

i

d *  

d
d

i x j i

j

i j j
i

�e blue term is zero because all wavefunctions are either zero 

at x = ±∞ (see Topic 7B) or the product ψ�i*ψj converges to the 

same value at x = +∞ and x = −∞. As a result

p
x

x
x

x

p

* ˆ d
i

d *  

d
d

i
*
d  

d
d

*

* ˆ d
*

i x j j
i

j
i

j x i

∫ ∫ ∫

∫

ψ ψ τ ψ
ψ

ψ
ψ

ψ ψ τ

{ }
{ }

= − =

=

−∞

∞

−∞

∞� �

as was to be proved. �e �nal line uses (ψ*)* = ψ and i* = −i.

Hermitian operators are enormously important in quan-
tum mechanics because their eigenvalues are real: that is, 
ω* = ω. Any measurement must yield a real value because a 
position, momentum, or an energy cannot be complex or im-
aginary. Because the outcome of a measurement of an observ-
able is one of the eigenvalues of the corresponding operator, 
those eigenvalues must be real. It therefore follows that an op-
erator that represents an observable must be hermitian. �e 

f
dg/dx

fg
df/dx

0

g

proof that their eigenfunctions are real makes use of the de�-
nition of hermiticity in eqn 7C.7.

How is that done? 7C.2 Showing that the eigenvalues of 
hermitian operators are real

Begin by setting ψi and ψj to be the same, writing them both 

as ψ. �en eqn 7C.7 becomes

*
ˆ

d *
ˆ

d
*

∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=

Next suppose that ψ is an eigenfunction of Ωˆ  with eigenvalue 

ω. �at is, Ωψ ωψ=ˆ . Now use this relation in both integrals 

on the le�- and right-hand sides:

* d * d
*

∫ ∫ψ ωψ τ ψ ωψ τ{ }=

�e eigenvalue is a constant that can be taken outside the 

integrals:

* d * d
*

* *d∫ ∫ ∫ω ψ ψ τ ω ψ ψ τ ω ψψ τ{ }= =

Finally, the (blue) integrals cancel, leaving ω ω= *. It follows 

that ω is real.

(d) Orthogonality

To say that two di�erent functions ψi and ψj are orthogonal 

means that the integral (over all space) of ψi*ψj is zero:

∫ψ ψ τ = ≠i j* d 0  for i j   Orthogonality
[definition]

 (7C.8)

Functions that are both normalized and mutually orthogonal 
are called orthonormal. Hermitian operators have the impor-
tant property that

Eigenfunctions that correspond to di�erent eigenvalues of 
a hermitian operator are orthogonal.

�e proof of this property also follows from the de�nition of 
hermiticity (eqn 7C.7).

��� ��
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How is that done? 7C.3 Showing that the eigenfunctions 
of hermitian operators are orthogonal

Start by supposing that ψj is an eigenfunction of Ω
ˆ  with 

eigenvalue ωj (i.e. Ωψ ω ψ=ˆ
j j j) and that ψi is an eigenfunction 

with a di�erent eigenvalue ωi (i.e. Ωψ ω ψ=ˆ
i i i, with ωi ≠ ωj). 

�en eqn 7C.7 becomes

∫ ∫ψ ω ψ τ ψ ω ψ τ{ }=* d * d
*

i j j j i i

�e eigenvalues are constants and can be taken outside the 

integrals; moreover, they are real (being the eigenvalues of 

hermitian operators), so ω*i  = ω i . �en

∫ ∫ω ψ ψ τ ω ψ ψ τ{ }=* d * d
*

j i j i j i

Next, note that ∫ ∫ψ ψ τ ψ ψ τ{ } =* d
*

* dj i j i , so

∫ ∫ ∫ω ψ ψ τ ω ψ ψ τ ω ω ψ ψ τ= − =* d * d ,    hence    ( ) * d 0j i j i j i j i i j

�e two eigenvalues are di�erent, so ωj  −�ωi ≠�0; therefore it 

must be the case that ∫ψ ψ τ =* d 0i j . �at is, the two eigenfunc-

tions are orthogonal, as was to be proved.

�e hamiltonian operator is hermitian (it corresponds to an 
observable, the energy, but its hermiticity can be proved spe-
ci�cally). �erefore, if two of its eigenfunctions correspond 
to di�erent energies, the two functions must be orthogonal. 
�e property of orthogonality is of great importance in quan-
tum mechanics because it eliminates a large number of inte-
grals from calculations. Orthogonality plays a central role in 
the theory of chemical bonding (Focus 9) and spectroscopy 
(Focus 11).

Example 7C.2 Verifying orthogonality

Two possible wavefunctions for a particle constrained to move 

along the x axis between x = 0 and x = L are x Lsin( / )1ψ = π  

and x Lsin(2 / )2ψ = π . Outside this region the wavefunctions 

are zero. �e wavefunctions correspond to di�erent energies. 

Verify that the two wavefunctions are mutually orthogonal.

Collect your thoughts To verify the orthogonality of two func-

tions, you need to integrate ψ ψ = π πx L x L*  sin(2 / )sin( / )2 1  over 

all space, and show that the result is zero. In principle the inte-

gral is taken from x = −∞ to x = +∞, but the wavefunctions are 

zero outside the range x = 0 to L so you need integrate only over 

this range. Relevant integrals are given in the Resource section.

The solution To evaluate the integral, use Integral T.5 from 

the Resource section with a L2 /= π  and b L/= π :

x L x L x
x L
L

x L
L

sin (2 / ) sin ( / ) d
sin ( / )

2( / )

sin (3 / )

2(3 / )
0

L
L L

0
0 0

∫ π π =
π
π

−
π
π

=

�e sine functions have been evaluated by using nsin 0π =  

for = ± ± …n 0, 1, 2,  . �e two functions are therefore mutually 

orthogonal.

Self-test 7C.2 The next higher energy level has 

x Lsin(3 / )3ψ = π . Con�rm that the functions x Lsin( / )1ψ = π  

and x Lsin(3 / )3ψ = π  are mutually orthogonal.

Answer: ∫ππ= xLxLx sin(3/)sin(/)d0
L

0

7C.2 Superpositions and expectation values

�e hamiltonian for a free particle moving in one dimension is

m x
ˆ

2

d

d

2 2

2Η = −
�

�e particle is ‘free’ in the sense that there is no potential 
to constrain it, hence V(x) = 0. It is easily con�rmed that 
ψ =x kx( ) cos  is an eigenfunction of this operator

� �
ψ = − =H x

m x
kx

k

m
kxˆ ( )

2

d

d
cos

2
cos

2 2

2

2 2

�e energy associated with this wavefunction, �k m/22 2 , is 
therefore well de�ned, as it is the eigenvalue of an eigenvalue 
equation. However, the same is not necessarily true of other 
observables. For instance, cos kx is not an eigenfunction of the 
linear momentum operator:

� � �
ψ

ψ
= = −p x

x
kx
x

k
kxˆ ( ) =

i
d
d i

dcos
d i

sinx  (7C.9)

�is expression is not an eigenvalue equation, because the 
function on the right (sin kx) is di�erent from that on the le� 
(cos kx).

When the wavefunction of a particle is not an eigenfunction 
of an operator, the corresponding observable does not have a 
de�nite value. However, in the current example the momentum 
is not completely inde�nite because the cosine wavefunction 
can be written as a linear combination, or sum,1 of eikx and e−ikx: 

kxcos (e e )kx kx1
2

i i
= +

−

 (see �e chemist’s toolkit 16). As shown in 
Example 7C.1, these two exponential functions are eigenfunc-
tions of p̂x with eigenvalues +kħ and −kħ, respectively. �ey 
therefore each correspond to a state of de�nite but di�erent mo-
mentum. �e wavefunction cos kx is said to be a superposition 

of the two individual wavefunctions eikx and e−ikx, and is written

� �

ψ = +
+ −e ekx kxi i

�e interpretation of this superposition is that if many re-
peated measurements of the momentum are made, then half 
the measurements would give the value px = +kħ, and half 
would give the value px = −kħ. �e two values ±kħ occur equally 
o�en since eikx  and e−ikx contribute equally to the superposition. 
All that can be inferred from the wavefunction cos kx about 
the linear momentum is that the particle it describes is equally 

Particle with linear 

momentum −kħ

Particle with linear 

momentum +kħ

1 A linear combination is more general than a sum, for it includes 
weighted sums of the form ax + by + … where a, b, … are constants. A sum is 
a linear combination with a = b = … = 1.
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likely to be found travelling in the positive and negative x di-
rections, with the same magnitude, kħ, of the momentum.

A similar interpretation applies to any wavefunction writ-
ten as a linear combination of eigenfunctions of an operator. 
In general, a wavefunction can be written as the following lin-
ear combination

� ∑ψ ψ ψ ψ= + +c c c=
k k

k

1 1 2 2  
Linear combination 
of eigenfunctions  (7C.10)

where the ck are numerical (possibly complex) coe�cients and 
the ψk are di�erent eigenfunctions of the operator Ωˆ  corre-
sponding to the observable of interest. �e functions ψk are 
said to form a complete set in the sense that any arbitrary 
function can be expressed as a linear combination of them. 
�en, according to quantum mechanics:

•	 A single measurement of the observable corresponding 
to the operator Ωˆ  will give one of the eigenvalues corre-
sponding to the ψk that contribute to the superposition.

•	 �e probability of measuring a speci�c eigenvalue 
in a series of measurements is proportional to the 
square modulus (|ck|

2) of the corresponding coe�-
cient in the linear combination. P
h

ys
ic

al
 in

te
rp

re
ta
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o

n

�e average value of a large number of measurements of an 
observable Ω is called the expectation value of the operator
Ω
ˆ , and is written 〈Ω〉. For a normalized wavefunction ψ, the 

expectation value of Ωˆ �is calculated by evaluating the integral

∫Ω = ψ Ωψ τ〈 〉 * ˆ d  
Expectation value
[normalized wavefunction, 
definition]

 (7C.11) 

�is de�nition can be justi�ed by considering two cases, one 
where the wavefunction is an eigenfunction of the operator Ωˆ  
and another where the wavefunction is a superposition of that 
operator’s eigenfunctions.

How is that done? 7C.4 Justifying the expression for the 
expectation value of an operator

If the wavefunction ψ is an eigenfunction of Ω
ˆ  with eigen-

value ω (so Ωψ ωψ=ˆ ),

∫ ∫ ∫Ω ψ Ωψ τ ψ ωψ τ ω ψ ψ τ ω〈 〉= = = =
�

*
ˆ

d * d * d

ω a constant ψ�normalizedωψ

The chemist’s toolkit 16 Euler’s formula

A complex number z = x + iy can be represented as a point in a 

plane, the complex plane, with Re(z) along the x-axis and Im(z) 

along the y-axis (Sketch 1). �e position of the point can also 

be speci�ed in terms of a distance r and an angle ϕ (the polar 

coordinates). �en x = r cos ϕ and y = r sin ϕ, so it follows that

z = r(cos ϕ�+ i sin ϕ)

�e angle ϕ, called the argument of z, is the angle that r makes 

with the x-axis. Because y/x = tan ϕ, it follows that

r x y z
y
x

( )        arctan
2 2 1/2 φ= + = =

0
Re(z)

Im
(z
)

r

ϕ

(x,iy)

Sketch 1

One of the most useful relations involving complex numbers 

is Euler’s formula:

eiϕ = cos ϕ + i sin ϕ

from which it follows that z = r(cos ϕ�+ i sin ϕ) can be written

z = reiϕ

Two more useful relations arise by noting that e−iϕ = cos(−ϕ) + 

i sin(−ϕ)�=�cos ϕ − i sin ϕ;�it then follows that

cos ϕ = 12 (eiϕ + e−iϕ)  sin ϕ�= −�12 i(eiϕ�−�e−iϕ)

�e polar form of a complex number is commonly used to per-

form arithmetical operations. For instance, the product of two 

complex numbers in polar form is

= =φ φ φ φ+z z r r r r( e )( e ) e1 2 1
i

2
i

1 2
i( )1 2 1 2

�is construction is illustrated in Sketch 2.

0
Re(z)

Im
(z

)

r
1

r
1
r

2

r
2

ϕ
1

ϕ
1
 + ϕ

2

ϕ
2

Sketch 2
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�e interpretation of this expression is that, because the 

wavefunction is an eigenfunction of Ω
ˆ , each observation of 

the property Ω results in the same value ω; the average value 

of all the observations is therefore ω.

Now suppose the (normalized) wavefunction is the linear 

combination of two eigenfunctions of the operator Ωˆ , each of 

which is individually normalized to 1. �en

c c c c( )* ˆ ( )d1 1 2 2 1 1 2 2∫Ω ψ ψ Ω ψ ψ τ〈 〉 = + +

��� ���

c c c c( )* ˆ ˆ d1 1 2 2 1 1 2 2∫ ψ ψ Ωψ Ωψ τ= + +






∫ ψ ψ ω ψ ω ψ τ= + +c c c c( )*( )d1 1 2 2 1 1 1 2 2 2

� �� �� � �� ��

∫ ∫ω ψ ψ τ ω ψ ψ τ= +c c c c* * d * * d1 1 1 1 1 2 2 2 2 2

� �� �� � �� ��

∫ ∫ω ψ ψ τ ω ψ ψ τ+ +c c c c* * d * * d1 2 2 1 2 2 1 1 2 1

�e �rst two integrals on the right are both equal to 1 because 

the wavefunctions ψ1 and ψ2 are individually normalized. 

Because ψ1 and ψ2 correspond to di�erent eigenvalues of a 

hermitian operator, they are orthogonal, so the third and 

fourth integrals on the right are zero. �erefore

〈Ω〉 = |c1|
2ω1 + |c2|

2ω2 

�e interpretation of this expression is that in a series of meas-

urements each individual measurement yields either ω1 or ω2, 

but that the probability of ω1
 occurring is |c1|

2, and likewise 

the probability of ω2
 occurring is |c2|

2. �e average is the sum 

of the two eigenvalues, but with each weighted according to 

the probability that it will occur in a measurement:

average = (probability of ω1 occurring) × ω1   
     +�(probability of ω2 occurring) × ω2

�e expectation value therefore predicts the result of taking 

a series of measurements, each of which gives an eigenvalue, 

and then taking the weighted average of these values. �is 

justi�es the form of eqn 7C.11.

Example 7C.3 Calculating an expectation value

Calculate the average value of the position of an electron in 

the lowest energy state of a one-dimensional box of length 

L, with the (normalized) wavefunction ψ = πL x L(2/ ) sin( / )1/2  

inside the box and zero outside it.

Collect your thoughts �e average value of the position is the 

expectation value of the operator corresponding to position, 

which is multiplication by x. To evaluate 〈x〉, you need to 

evaluate the integral in eqn 7C.11 with Ω = = ×x xˆ ˆ

ω1ψ1 ω2ψ2

1 1

0 0

The solution �e expectation value of position is

x x x
L

x
L

x=x* ˆ d with
2

sin and ˆ
L

0

1/2

∫ ψ ψ ψ〈 〉 = =





π
×

�e integral is restricted to the region x = 0 to x = L because 

outside this region the wavefunction is zero. Use Integral T.11 

from the Resources section to obtain

x
L

x
x
L

x
L
L

L
2

sin d
2
4

1
2

L
2

0

2

∫〈 〉 =
π

= =

� ��� ���

Comment. �is result means that if a very large number of 

measurements of the position of the electron are made, then the 

mean value will be at the centre of the box. However, each di�er-

ent observation will give a di�erent and unpredictable individual 

result somewhere in the range 0 ≤ x ≤ L because the wavefunc-

tion is not an eigenfunction of the operator corresponding to x.

Self-test 7C.3 Evaluate the mean square position, 〈x2〉, of the 

electron; you will need Integral T.12 from the Resource section.

 

Answer: L
2
{
1
3 − 

1
2π

2
} = 0.217L

2

�e mean kinetic energy of a particle in one dimension is the 
expectation value of the operator given in eqn 7C.5. �erefore,

E E x
m x

x* ˆ d
2

*
d

d
dk k

2 2

2∫∫ ψ ψ ψ
ψ

〈 〉 = = −
−∞

∞

−∞

∞ �
 (7C.12)

�is conclusion con�rms the previous assertion that the kinetic 
energy is a kind of average over the curvature of the wavefunction: 
a large contribution to the observed value comes from regions 
where the wavefunction is sharply curved (so d2ψ/dx2 is large) and 
the wavefunction itself is large (so that ψ�* is large there too).

7C.3 The uncertainty principle

�e wavefunction ψ = eikx is an eigenfunction of p̂x with eigenvalue 
+kħ: in this case the wavefunction describes a particle with a de�nite 
state of linear momentum. Where, though, is the particle? �e prob-
ability density is proportional to ψ*ψ, so if the particle is described 
by the wavefunction eikx the probability density is proportional to 
(eikx)*eikx = e−ikxeikx = e−ikx +�ikx = e0 = 1. In other words, the probabil-
ity density is the same for all values of x: the location of the particle 
is completely unpredictable. In summary, if the momentum of the 
particle is known precisely, it is not possible to predict its location.

�is conclusion is an example of the consequences of the 
Heisenberg uncertainty principle, one of the most celebrated 
results of quantum mechanics:

It is impossible to specify simultaneously, with 
arbitrary precision, both the linear momentum 
and the position of a particle.

Integral T.11
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Note that the uncertainty principle also implies that if the po-
sition is known precisely, then the momentum cannot be pre-
dicted. �e argument runs as follows.

Suppose the particle is known to be at a de�nite location, 
then its wavefunction must be large there and zero everywhere 
else (Fig. 7C.4). Such a wavefunction can be created by super-
imposing a large number of harmonic (sine and cosine) func-
tions, or, equivalently, a number of eikx functions (because eikx = 
cos kx + i sin kx). In other words, a sharply localized wavefunc-
tion, called a wavepacket, can be created by forming a linear 
combination of wavefunctions that correspond to many dif-
ferent linear momenta. 

�e superposition of a few harmonic functions gives a 
wavefunction that spreads over a range of locations (Fig. 7C.5). 
However, as the number of wavefunctions in the superposition 
increases, the wavepacket becomes sharper on account of the 
more complete interference between the positive and nega-

tive regions of the individual waves. When an in�nite number 
of components are used, the wavepacket is a sharp, in�nitely 
narrow spike, which corresponds to perfect localization of the 
particle. Now the particle is perfectly localized but all infor-
mation about its momentum has been lost. A measurement of 
the momentum will give a result corresponding to any one of 
the in�nite number of waves in the superposition, and which 
one it will give is unpredictable. Hence, if the location of the 
particle is known precisely (implying that its wavefunction is a 
superposition of an in�nite number of momentum eigenfunc-
tions), then its momentum is completely unpredictable.

�e quantitative version of the uncertainty principle is

Δ�pq�Δ�q ≥�12 ħ 
Heisenberg 
uncertainty principle  (7C.13a)

In this expression Δpq is the ‘uncertainty’ in the linear mo-
mentum parallel to the axis q, and Δq is the uncertainty in 
position along that axis. �ese ‘uncertainties’ are given by the 
root-mean-square deviations of the observables from their 
mean values:

Δpq = {〈�pq
2 〉 − 〈�pq�〉

2}1/2  Δq = {〈q2�〉 − 〈q�〉2}1/2 (7C.13b)

If there is complete certainty about the position of the particle 
(Δq = 0), then the only way that eqn 7C.13a can be satis�ed is 
for Δpq = ∞, which implies complete uncertainty about the mo-
mentum. Conversely, if the momentum parallel to an axis is 
known exactly (Δpq = 0), then the position along that axis must 
be completely uncertain (Δq = ∞).

�e p and q that appear in eqn 7C.13a refer to the same direc-
tion in space. �erefore, whereas simultaneous speci�cation of 
the position on the x-axis and momentum parallel to the x-axis 
are restricted by the uncertainty relation, simultaneous location 
of position on x and motion parallel to y or z are not restricted.

Example 7C.4 Using the uncertainty principle

Suppose the speed of a projectile of mass 1.0 g is known to 

within 1 µm s−1. What is the minimum uncertainty in its 

position?

Collect your thoughts You can estimate Δp from mΔv, where 

Δv is the uncertainty in the speed; then use eqn 7C.13a to 

estimate the minimum uncertainty in position, Δq, by using it 

in the form Δ�pΔ�q =� 12 ħ rearranged into Δq =� 12 ħ/Δ�p. You will 

need to use 1 J = 1 kg m2 s−2.

The solution �e minimum uncertainty in position is

v

�
∆

∆

=
×

× × × ×

= ×

−

− − −

−

q
m

=
2

1.055 10 Js

2 (1.0 10 kg) (1 10 ms )
5 10 m

34

3 6 1
26

Comment. �is uncertainty is completely negligible for all 

practical purposes. However, if the mass is that of an electron, 

Figure 7C.4 The wavefunction of a particle at a well-defined 

location is a sharply spiked function that has zero amplitude 

everywhere except at the position of the particle.
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Figure 7C.5 The wavefunction of a particle with an ill-

defined location can be regarded as a superposition of 

several wavefunctions of definite wavelength that interfere 

constructively in one place but destructively elsewhere. As more 

waves are used in the superposition (as given by the numbers 

attached to the curves), the location becomes more precise at 

the expense of uncertainty in the momentum of the particle. 

An infinite number of waves are needed in the superposition to 

construct the wavefunction of the perfectly localized particle.
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then the same uncertainty in speed implies an uncertainty in 

position far larger than the diameter of an atom (the analo-

gous calculation gives Δq = 60 m).

Self-test 7C.4 Estimate the minimum uncertainty in the 

speed of an electron in a one-dimensional region of length 

2a0, the approximate diameter of a hydrogen atom, where a0 

is the Bohr radius, 52.9 pm.

Answer: 500 km s
−1

�e Heisenberg uncertainty principle is more general than 
even eqn 7C.13a suggests. It applies to any pair of observables, 
called complementary observables, for which the correspond-
ing operators Ωˆ

1
 and Ω̂2  have the property

Ω Ω ψ Ω Ωψ≠ˆ ˆ ˆ ˆ
1 2 2 1  

Complementarity 
of observables  (7C.14)

�e term on the le� implies that Ω̂2  acts �rst, then Ω
ˆ
1
acts 

on the result, and the term on the right implies that the op-
erations are performed in the opposite order. When the e�ect 
of two operators applied in succession depends on their order 
(as this equation implies), they do not commute. �e di�er-
ent outcomes of the e�ect of applying Ωˆ

1
and Ω̂2  in a di�erent 

order are expressed by introducing the commutator of the two 
operators, which is de�ned as

[ ˆ , ˆ ] ˆ ˆ ˆ ˆ
1 2 1 2 2 1Ω Ω Ω Ω Ω Ω= −   Commutator

[definition]
 (7C.15)

By using the de�nitions of the operators for position and mo-
mentum, an explicit value of this commutator can be found.

How is that done? 7C.5 Evaluating the commutator of 
position and momentum

You need to consider the e�ect of xpˆˆx  (i.e. the e�ect of p̂x  fol-

lowed by the e�ect on the outcome of multiplication by x) on 

an arbitrary wavefunction ψ, which need not be an eigenfunc-

tion of either operator.

xp x
x

ˆˆ =
i
d
dx

�
ψ

ψ
×

�en you need to consider the e�ect of p xˆ ˆ
x  on the same func-

tion (that is, the e�ect of multiplication by x followed by the 

e�ect of p̂x  on the outcome):

p x
x

x
x

x
ˆ ˆ

i
d( )
d i

d
dx ψ

ψ
ψ

ψ
= = +





� �

�e second expression is di�erent from the �rst, so 
p x xpˆ ˆ ˆˆ
x xψ ψ≠  and therefore the two operators do not com-

mute. You can infer the value of the commutator from the 

di�erence of the two expressions:

x p xp p x x p[ ˆ, ˆ ] ˆˆ ˆ ˆ
i

i , so [ ˆ, ˆ ] ix x x xψ ψ ψ ψ ψ ψ ψ= − = − = =
�

� �

fg x f x g f g xd( )/d (d /d ) (d /d )= +

�is relation is true for any wavefunction ψ, so the commuta-

tor is

x p[ ˆ, ˆ ] ix = � 
(7C.16)

�e commutator in eqn 7C.16 is of such central signi�cance 
in quantum mechanics that it is taken as a fundamental dis-
tinction between classical mechanics and quantum mechan-
ics. In fact, this commutator may be taken as a postulate of 
quantum mechanics and used to justify the choice of the op-
erators for position and linear momentum in eqn 7C.3.

Classical mechanics supposed, falsely as is now known, that 
the position and momentum of a particle could be speci�ed 
simultaneously with arbitrary precision. However, quantum 
mechanics shows that position and momentum are comple-
mentary, and that a choice must be made: position can be 
speci�ed, but at the expense of momentum, or momentum 
can be speci�ed, but at the expense of position.

7C.4 The postulates of quantum 
mechanics

�e principles of quantum theory can be summarized as a se-
ries of postulates, which will form the basis for chemical appli-
cations of quantum mechanics throughout the text.

�e wavefunction: All dynamical information is contained 
in the wavefunction ψ for the system, which is a mathematical 
function found by solving the appropriate Schrödinger equa-
tion for the system.

�e Born interpretation: If the wavefunction of a particle 
has the value ψ at some position r, then the probability of �nd-
ing the particle in an in�nitesimal volume dτ = dxdydz at that 
position is proportional to |ψ|2dτ.

Acceptable wavefunctions: An acceptable wavefunction 
must be single-valued, continuous, not in�nite over a �nite re-
gion of space, and (except in special cases) have a continuous 
slope.

Observables: Observables, Ω, are represented by hermitian 
operators, Ωˆ , built from the position and momentum opera-
tors speci�ed in eqn 7C.3.

Observations and expectation values: A single measurement 
of the observable represented by the operator Ωˆ  gives one of 
the eigenvalues of Ωˆ . If the wavefunction is not an eigenfunc-
tion of Ωˆ , the average of many measurements is given by the 
expectation value, 〈Ω〉, de�ned in eqn 7C.11.

�e Heisenberg uncertainty principle: It is impossible to 
specify simultaneously, with arbitrary precision, both the lin-
ear momentum and the position of a particle and, more gener-
ally, any pair of observables represented by operators that do 
not commute.

Commutator of position 
and momentum operators
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Checklist of concepts

☐ 1. �e Schrödinger equation is an eigenvalue equation.

☐ 2. An operator carries out a mathematical operation on a 
function.

☐ 3. �e hamiltonian operator is the operator correspond-
ing to the total energy of the system, the sum of the 
kinetic and potential energies.

☐ 4. �e wavefunction corresponding to a speci�c energy is 
an eigenfunction of the hamiltonian operator.

☐ 5. Two di�erent functions are orthogonal if the integral 
(over all space) of their product is zero.

☐ 6. Hermitian operators have real eigenvalues and orthog-
onal eigenfunctions.

☐ 7. Observables are represented by hermitian operators.

☐ 8. Sets of functions that are normalized and mutually 
orthogonal are called orthonormal.

☐ 9. When the system is not described by a single eigen-
function of an operator, it may be expressed as a super-

position of such eigenfunctions.

☐ 10. �e mean value of a series of observations is given by 
the expectation value of the corresponding operator.

☐ 11. �e uncertainty principle restricts the precision with 
which complementary observables may be speci�ed 
and measured simultaneously.

☐ 12. Complementary observables are observables for which 
the corresponding operators do not commute.

Checklist of equations

Property Equation Comment
Equation 
number

Eigenvalue equation ˆΩψ ωψ= ψ eigenfunction; ω eigenvalue 7C.2b

Hermiticity
∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=*

ˆ
d *

ˆ
d

*
i j j i

Hermitian operators have real eigenvalues and orthogonal 
eigenfunctions

7C.7

Orthogonality ∫ψ ψ τ = ≠i j* d 0 fori j Integration over all space 7C.8

Expectation value *
ˆ

d∫Ω ψ Ωψ τ〈 〉 = De�nition; assumes ψ normalized 7C.11

Heisenberg uncertainty principle ΔpqΔq ≥ 12 � For position and momentum 7C.13a

Commutator of two operators [ ˆ , ˆ ] ˆ ˆ ˆ ˆ
1 2 1 2 2 1Ω Ω Ω Ω Ω Ω= −

Special case: x p[ ˆ, ˆ ] ix = �

�e observables are complementary if [ ˆ , ˆ ] 01 2Ω Ω ≠ 7C.15

7C.16



➤  Why do you need to know this material?

The application of quantum theory to translational motion 

reveals the origin of quantization and non-classical fea-

tures, such as tunnelling and zero-point energy. This mate-

rial is important for the discussion of atoms and molecules 

that are free to move within a restricted volume, such as a 

gas in a container.

➤  What is the key idea?

The translational energy levels of a particle confined to 

a finite region of space are quantized, and under certain 

conditions particles can pass into and through classically 

forbidden regions.

➤  What do you need to know already?

You should know that the wavefunction is the solution of 

the Schrödinger equation (Topic 7B), and be familiar, in 

one instance, with the techniques of deriving dynamical 

properties from the wavefunction by using the operators 

corresponding to the observables (Topic 7C).

TOPIC 7D Translational motion

How is that done? 7D.1 Finding the solutions to the 
Schrödinger equation for a free particle in one dimension

�e general solution of a second-order di�erential equation of 

the kind shown in eqn 7D.1 is

x A B( ) e e
k

kx kxi i
ψ = +

−

where k, A, and B are constants. You can verify that ψ x( )k  

is a solution of eqn 7D.1 by substituting it into the le�-hand 

side of the equation, evaluating the derivatives, and then con-

�rming that you have generated the right-hand side. Because 

de±ax/dx = ±ae±ax, the le�-hand side becomes

m x
A B

m
A k B k

2
d

d
( e e )

2
{ (i ) e ( i ) e }kx kx kx kx

2 2

2
i i

2
2 i 2 i

− + = − + −
− −

�
� ��� ���

�

k
m

A B
2

 ( e e )
kx kx

2 2
i i

= +
−

�
� �� ���

�

�e le�-hand side is therefore equal to a constant × x( )kψ , 

which is the same as the term on the right-hand side of eqn 7D.1 

provided the constant, the term in blue, is identi�ed with E. 

�e value of the energy depends on the value of k, so hence-

forth it will be written Ek. �e wavefunctions and energies of 

a free particle are therefore

�
ψ = + =

−x A B E
k
m

( )   e e     
2k

kx kx
k

i i
2 2

 
(7D.2)

�e wavefunctions in eqn 7D.2 are continuous, have con-
tinuous slope everywhere, are single-valued, and do not go to 
in�nity: they are therefore acceptable wavefunctions for all 
values of k. Because k can take any value, the energy can take 
any non-negative value, including zero. As a result, the trans-

lational energy of a free particle is not quantized.
In Topic 7C it is explained that in general a wavefunction 

can be written as a superposition (a linear combination) of the 
eigenfunctions of an operator. �e wavefunctions of eqn 7D.2 
can be recognized as superpositions of the two functions e±ikx 
which are eigenfunctions of the linear momentum operator 
with eigenvalues ±k� (Topic 7C). �ese eigenfunctions corre-
spond to states with de�nite linear momentum:

x A B( ) e e
k

kx kxi i
ψ = +

+ −

��� �

ψk (x)

Ek ψk (x)

Wavefunctions and energies
[one dimension]

Translation, motion through space, is one of the basic types of 
motion. Quantum mechanics, however, shows that translation 
can have a number of non-classical features, such as its con-
�nement to discrete energies and passage into and through 
classically forbidden regions.

7D.1 Free motion in one dimension

A free particle is unconstrained by any potential, which may 
be taken to be zero everywhere. In one dimension V(x) = 0 eve-
rywhere, so the Schrödinger equation becomes (Topic 7B)

m
x

x
E x

2
d ( )

d
( )

2 2

2

� ψ
ψ− =  

Free motion in 
one dimension  (7D.1)

�e most straightforward way to solve this simple second-
order di�erential equation is to take the known general form 
of solutions of equations of this kind, and then show that it 
does indeed satisfy eqn 7D.1. Particle with linear 

momentum +kħ

Particle with linear 

momentum −kħ
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7D.2 Confined motion in one 
dimension

Consider a particle in a box in which a particle of mass m is 
con�ned to a region of one-dimensional space between two 
impenetrable walls. �e potential energy is zero inside the box 
but rises abruptly to in�nity at the walls located at x = 0 and 
x = L (Fig. 7D.1). When the particle is between the walls, the 
Schrödinger equation is the same as for a free particle (eqn 
7D.1), so the general solutions given in eqn 7D.2 are also the 
same. However, it will prove convenient to rewrite the wave-
function in terms of sines and cosines by using e±ikx = cos kx ± 
i sin kx (�e chemist’s toolkit 16 in Topic 7C)

ψk (x) = Aeikx + Be−ikx 
= A(cos kx + i sin kx) + B(cos kx − i sin kx)
= (A + B)cos kx + i(A − B)sin kx

According to the interpretation given in Topic 7C, if a system 
is described by the wavefunction ψk(x), then repeated meas-
urements of the momentum will give +k� (that is, the particle 
travelling in the positive x-direction) with a probability pro-
portional to A2, and −k� (that is, the particle travelling in the 
negative x-direction) with a probability proportional to B2. 
Only if A or B is zero does the particle have a de�nite momen-
tum of −k� or +k�, respectively.

Brief illustration 7D.1

Suppose an electron emerges from an accelerator moving 

towards positive x with kinetic energy 1.0 eV (1 eV = 1.602 × 

10−19 J). �e wavefunction for such a particle is given by eqn 

7D.2 with B = 0 because the momentum is de�nitely in the 

positive x-direction. �e value of k is found by rearranging the 

expression for the energy in eqn 7D.2 into

k
m E2 2 (9.109 10 kg) (1.6 10 J)

(1.055 10 Js)
ke

2

1/2 31 19

34 2

1/2

= 





=
× × × ×

×






− −

−
�

5.1 10 m9 1
= ×

−

or 5.1 nm−1 (with 1 nm = 10−9 m). �erefore, the wavefunction 

is x A( ) e x5.1i /nm
ψ = .

So far, the motion of the particle has been con�ned to the 
x-axis. In general, the linear momentum is a vector (see �e 

chemist’s toolkit 17) directed along the line of travel of the par-
ticle. �en p = k� and the magnitude of the vector is p = k� and 
its component on each axis is pq = kq �, with the wavefunction 
for each component proportional to e  

k qi q with q = x, y, or z 
and overall equal to + +

e
k x k y k zi( )x y z .1

Figure 7D.1 The potential energy for a particle in a one-

dimensional box. The potential is zero between x = 0 and 

x = L, and then rises to infinity outside this region, resulting in 

impenetrable walls which confine the particle.
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1 In terms of scalar products, this overall wavefunction would be 
written k r⋅ei .

The chemist’s toolkit 17 Vectors

A vector is a quantity with both magnitude and direction. �e 

vector v shown in Sketch 1 has components on the x, y, and z axes 

with values vx, vy, and vz, respectively, which may be positive or 

negative. For example, if vx = −1.0, the x-component of the vector 

v has a magnitude of 1.0 and points in the −x direction. �e mag-

nitude of a vector is denoted v or |v| and is given by

v = (vx
2 + vy

2 + vz
2)1/2

�us, a vector with components vx = −1.0, vy = +2.5, and vz = +1.1 

has magnitude 2.9 and would be represented by an arrow of 

length 2.9 units and the appropriate orientation (as in the inset 

in the Sketch). Velocity and momentum are vectors; the magni-

tude of a velocity vector is called the speed. Force, too, is a vector. 

Electric and magnetic �elds are two more examples of vectors.

v

v
x

v
y

v
z

0

+1.1

+2.5

–1.0 Length 2.9

Sketch 1

�e operations involving vectors (addition, multiplication, 

etc.) needed for this text are described in �e chemist’s toolkit 

22 in Topic 8C.


