


FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant N
A

6.022 141 29 1023 mol−1

Gas constant R = N
A
k 8.314 4621 J K−1 mol−1

Faraday’s constant F = N
A
e 9.648 533 65 104 C mol−1

Mass

 Electron m
e

9.109 382 91 10−31 kg

 Proton m
p

1.672 621 777 10−27 kg

 Neutron m
n

1.674 927 351 10−27 kg

 Atomic mass constant m
u

1.660 538 921 10−27 kg

Vacuum permeability μ
0

4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε
0
 = 1/μ

0
c2 8.854 187 817 10−12 J−1 C2 m−1

4πε
0

1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μ
B
 = eħ/2m

e
9.274 009 68 10−24 J T−1

Nuclear magneton μ
N
 = eħ/2m

p
5.050 783 53 10−27 J T−1

Proton magnetic moment μ
p

1.410 606 743 10−26 J T−1

g-Value of electron g
e

2.002 319 304

Magnetogyric ratio  

 Electron γ
e
 = −g

e
e/2m

e
−1.001 159 652 1010 C kg−1

 Proton γ
p
 = 2μ

p
/ħ 2.675 222 004 108 C kg−1

Bohr radius a
0
 = 4πε

0
ħ2/e2m

e
5.291 772 109  10−11 m

Rydberg constant �
∞

R
 
= m

e
e4/8h3cε

0
2

hc �
∞

R /e

1.097 373 157 

13.605 692 53

 105 cm−1

eV

Fine-structure constant α = μ
0
e2c/2h

α−1

7.297 352 5698

1.370 359 990 74 

10−3

102

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2 

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response 

to users’ comments and our own imagination. �e principal 

change in this edition is the addition of a new co-author to the 

team, and we are very pleased to welcome James Keeler of the 

University of Cambridge. He is already an experienced author 

and we are very happy to have him on board.

As always, we strive to make the text helpful to students 

and usable by instructors. We developed the popular ‘Topic’ 

arrangement in the preceding edition, but have taken the 

concept further in this edition and have replaced chapters by 

Focuses. Although that is principally no more than a change of 

name, it does signal that groups of Topics treat related groups 

of concepts which might demand more than a single chapter 

in a conventional arrangement. We know that many instruc-

tors welcome the �exibility that the Topic concept provides, 

because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement 

as it makes processing of the material they cover less daunt-

ing and more focused. With them in mind we have developed 

additional help with the manipulation of equations in the 

form of annotations, and �e chemist’s toolkits provide further 

background at the point of use. As these Toolkits are o�en rel-

evant to more than one Topic, they also appear in consolidated 

and enhanced form on the website. Some of the material pre-

viously carried in the ‘Mathematical backgrounds’ has been 

used in this enhancement. �e web also provides a number 

of sections called A deeper look. As their name suggests, these 

sections take the material in the text further than we consider 

appropriate for the printed version but are there for students 

and instructors who wish to extend their knowledge and see 

the details of more advanced calculations.

Another major change is the replacement of the 

‘Justi�cations’ that show how an equation is derived. Our in-

tention has been to maintain the separation of the equation 

and its derivation so that review is made simple, but at the 

same time to acknowledge that mathematics is an integral fea-

ture of learning. �us, the text now sets up a question and the 

How is that done? section that immediately follows develops 

the relevant equation, which then �ows into the following text.

�e worked Examples are a crucially important part of the 

learning experience. We have enhanced their presentation by 

replacing the ‘Method’ by the more encouraging Collect your 

thoughts, where with this small change we acknowledge that 

di�erent approaches are possible but that students welcome 

guidance. �e Brief illustrations remain: they are intended 

simply to show how an equation is implemented and give a 

sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-

ing interests and approaches to teaching, some subjects wither 

and die and are replaced by new growth. We listen carefully 

to trends of this kind, and adjust our treatment accordingly. 

�e topical approach enables us to be more accommodating 

of fading fashions because a Topic can so easily be omitted by 

an instructor, but we have had to remove some subjects simply 

to keep the bulk of the text manageable and have used the web 

to maintain the comprehensive character of the text without 

overburdening the presentation.

�is book is a living, evolving text. As such, it depends very 

much on input from users throughout the world, and we wel-

come your advice and comments.

PWA

JdeP

JK



vi 12 The properties of gases

USING THE BOOK 

TO THE STUDENT

For this eleventh edition we have developed the range of 

learning aids to suit your needs more closely than ever before. 

In addition to the variety of features already present, we now 

derive key equations in a helpful new way, through the How 

is that done? sections, to emphasize how mathematics is an 

interesting, essential, and integral feature of understanding 

physical chemistry. 

Innovative structure

Short Topics are grouped into Focus sections, making the 

subject more accessible. Each Topic opens with a comment 

on why it is important, a statement of its key idea, and a brief 

summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making 

common mistakes. Among other things, they encourage con-

formity to the international language of science by setting out 

the conventions and procedures adopted by the International 

Union of Pure and Applied Chemistry (IUPAC).

 

Resource section

�e Resource section at the end of the book includes a table 

of useful integrals, extensive tables of physical and chemical 

data, and character tables. Short extracts of most of these 

tables appear in the Topics themselves: they are there to give 

you an idea of the typical values of the physical quantities 

mentioned in the text. 

 

Checklist of concepts

A checklist of key concepts is provided at the end of each 

Topic, so that you can tick o� the ones you have mastered.

 

For example, a closed system can expand and thereby raise a 

weight in the surroundings; a closed system may also transfer 

energy to the surroundings if they are at a lower temperature. 

An isolated system is a closed system that has neither me-

chanical nor thermal contact with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk 

systems, it is immeasurably enriched by understanding the 

molecular origins of these observations.

(a) Operational de�nitions

�e fundamental physical property in thermodynamics is 

work: work is done to achieve motion against an opposing 

force (�e chemist’s toolkit 6). A simple example is the process 

of raising a weight against the pull of gravity. A process does 

work if in principle it can be harnessed to raise a weight some-

where in the surroundings. An example of doing work is the 

expansion of a gas that pushes out a piston: the motion of the 

piston can in principle be used to raise a weight. Another ex-

ample is a chemical reaction in a cell, which leads to an electric 

TOPIC 2A Internal energy

➤ Why do you need to know this material?

The First Law of thermodynamics is the foundation of the 

discussion of the role of energy in chemistry. Wherever the 

generation or use of energy in physical transformations or 

chemical reactions is of interest, lying in the background 

are the concepts introduced by the First Law.

➤ What is the key idea?

The total energy of an isolated system is constant.

➤ What do you need to know already?

This Topic makes use of the discussion of the properties of 

gases (Topic 1A), particularly the perfect gas law. It builds 

on the de�nition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided 

into two parts, the system and its surroundings. �e system is 

the part of the world of interest. It may be a reaction vessel, an 

engine, an electrochemical cell, a biological cell, and so on. �e 

surroundings comprise the region outside the system and are 

where measurements are made. �e type of system depends 

on the characteristics of the boundary that divides it from the 

A note on good practice An allotrope is a particular molecular 

form of an element (such as O2 and O3) and may be solid, liquid, 

or gas. A polymorph is one of a number of solid phases of an ele-

ment or compound.

�e number of phases in a system is denoted P. A gas, or a 

gaseous mixture, is a single phase (P = 1), a crystal of a sub-

Contents

1 Common integrals 866

2 Units 868

3 Data 869

862

864

865

Checklist of concepts

☐ 1. �e physical state of a sample of a substance, its physi-

cal condition, is de
ned by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 

pressure on either side of a shared movable wall.

408

410

411
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PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-

sonable assumptions and the details of the mathematical steps 

involved. �is is accomplished in the text through the new 

‘How is that done?’ sections, which replace the Justi�cations of 

earlier editions. Each one leads from an issue that arises in the 

text, develops the necessary mathematics, and arrives at the 

equation or conclusion that resolves the issue. �ese sections 

maintain the separation of the equation and its derivation 

so that you can �nd them easily for review, but at the same 

time emphasize that mathematics is an essential feature of  

physical chemistry. 

The chemist’s toolkits 

�e chemist’s toolkits, which are much more numerous in this  

edition, are reminders of the key mathematical, physical, and 

chemical concepts that you need to understand in order to  

follow the text. �ey appear where they are �rst needed. Many 

of these Toolkits are relevant to more than one Topic, and a 

compilation of them, with enhancements in the form of more 

information and brief illustrations, appears on the web site.  

www.oup.com/uk/pchem11e/

Annotated equations and equation labels 

We have annotated many equations to help you follow how 

they are developed. An annotation can take you across the 

equals sign: it is a reminder of the substitution used, an 

approximation made, the terms that have been assumed 

constant, an integral used, and so on. An annotation can 

also be a reminder of the signi�cance of an individual term 

in an expression. We sometimes colour a collection of num-

bers or symbols to show how they carry from one line to the 

next. Many of the equations are labelled to highlight their  

signi�cance. 

Checklists of equations 

A handy checklist at the end of each topic summarizes the 

most important equations and the conditions under which  

they apply. Don’t think, however, that you have to memorize 

every equation in these checklists.

How is that done? 4A.1 Deducing the phase rule

�e argument that leads to the phase rule is most easily appre-

ciated by 
rst thinking about the simpler case when only one 

component is present and then generalizing the result to an 

arbitrary number of components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be 

varied independently, so F = 2. Now consider the case where 

two phases α and β are in equilibrium (P = 2). If the phases 

are in equilibrium at a given pressure and temperature, their 

chemical potentials must be equal:

Checklist of equations

Property Equation

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB)

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB)

The chemist’s toolkit 2 Properties of bulk matter

�e state of a bulk sample of matter is de�ned by specifying the 

values of various properties. Among them are:

�e mass, m, a measure of the quantity of matter present 

(unit: kilogram, kg).

�e volume, V, a measure of the quantity of space the sam-

ple occupies (unit: cubic metre, m3).

�e amount of substance, n, a measure of the number of 

speci�ed entities (atoms, molecules, or formula units) pre-

sent (unit: mole, mol).
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SET TING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-

cept that has just been introduced in the text. It shows you 

how to use data and manipulate units correctly. It also helps 

you to become familiar with the magnitudes of quantities. 

Examples

Worked Examples are more detailed illustrations of the appli-

cation of the material, and typically require you to assemble 

and deploy the relevant concepts and equations. 

We suggest how you should collect your thoughts (that is a 

new feature) and then proceed to a solution. All the worked 

Examples are accompanied by Self-tests to enable you to test 

your grasp of the material a�er working through our solution 

as set out in the Example. 

Discussion questions

Discussion questions appear at the end of every Focus, and are 

organised by Topic. �ese questions are designed to encour-

age you to re�ect on the material you have just read, to review 

the key concepts, and sometimes to think about its implica-

tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every 

Focus and organised by Topic. Exercises are designed as 

relatively straightforward numerical tests; the Problems are 

more challenging and typically involve constructing a more 

detailed answer. �e Exercises come in related pairs, with 

�nal numerical answers available online for the ‘a’ questions. 

Final numerical answers to the odd-numbered Problems are 

also available online.

Integrated activities

At the end of every Focus you will �nd questions that span 

several Topics. �ey are designed to help you use your knowl-

edge creatively in a variety of ways.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant 

temperature, Vf/Vi = 2, and hence the change in molar entropy 

of the system is

ΔSm = (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 mol−1

Example 1A.1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 

a vessel of constant volume at a pressure of 100 atm and a 

temperature of 300 K. �e gas is then heated to 500 K. What 

pressure would the gas then exert, assuming that it behaved 

as a perfect gas?

Collect your thoughts �e pressure is expected to be greater 

on account of the increase in temperature. �e perfect gas 

FOCUS 3 The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions

D3A.1 �e evolution of life requires the organization of a very large number 

of molecules into biological cells. Does the formation of living organisms 

violate the Second Law of thermodynamics? State your conclusion clearly and 

present detailed arguments to support it.

D3A.2 Discuss the signi�cance of the terms ‘dispersal’ and ‘disorder’ in the 

context of the Second Law.

D3A.3 Discuss the relationships between the various formulations of the 

Second Law of thermodynamics.

Exercises

E3A.1(a) Consider a process in which the entropy of a system increases by 

125 J K−1 and the entropy of the surroundings decreases by 125 J K−1. Is the 

process spontaneous?

E3A.1(b) Consider a process in which the entropy of a system increases by 

105 J K−1 and the entropy of the surroundings decreases by 95 J K−1. Is the 

process spontaneous?

E3A.2(a) Consider a process in which 100 kJ of energy is transferred reversibly 

and isothermally as heat to a large block of copper. Calculate the change in 

entropy of the block if the process takes place at (a) 0 °C, (b) 50 °C.

E3A.2(b) Consider a process in which 250 kJ of energy is transferred reversibly 

and isothermally as heat to a large block of lead. Calculate the change in 

entropy of the block if the process takes place at (a) 20 °C, (b) 100 °C.

E3A.3(a) Calculate the change in entropy of the gas when 15 g of carbon dioxide 

gas are allowed to expand isothermally from 1.0 dm3 to 3.0 dm3 at 300 K.

E3A.3(b) Calculate the change in entropy of the gas when 4.00 g of nitrogen is 

allowed to expand isothermally from 500 cm3 to 750 cm3 at 300 K.

E3A.4(a) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when a sample of nitrogen 

gas of mass 14 g at 298 K doubles its volume in (a) an isothermal reversible 

expansion, (b) an isothermal irreversible expansion against pex = 0, and (c) an 

adiabatic reversible expansion.

E3A.4(b) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when the volume of a sample 

of argon gas of mass 2.9 g at 298 K increases from 1.20 dm3 to 4.60 dm3 in (a) 

an isothermal reversible expansion, (b) an isothermal irreversible expansion 

against pex = 0, and (c) an adiabatic reversible expansion.

E3A.5(a) In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the 

hot source at 273 K and 3.00 kJ of work is generated. What is the temperature 

of cold sink?

E3A.5(b) In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat 

is withdrawn from the hot source and 3.00 kJ of work is generated, at what 

temperature is the hot source?

E3A.6(a) What is the e�ciency of an ideal heat engine in which the hot source 

is at 100 °C and the cold sink is at 10 °C?

E3A.6(b) An ideal heat engine has a hot source at 40 °C. At what temperature 

must the cold sink be if the e�ciency is to be 10 per cent?

Problems

P3A.1 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 

expanded isothermally from an initial pressure of 3.00 atm to a �nal pressure 

of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 

pressure of 1.00 atm. Evaluate q, w, ΔU, ΔH, ΔS, ΔSsurr, and ΔStot in each case.

P3A.2 A sample consisting of 0.10 mol of perfect gas molecules is held by a 

piston inside a cylinder such that the volume is 1.25 dm3; the external pressure 

is constant at 1.00 bar and the temperature is maintained at 300 K by a 

thermostat. �e piston is released so that the gas can expand. Calculate (a) the 

volume of the gas when the expansion is complete; (b) the work done when 

the gas expands; (c) the heat absorbed by the system. Hence calculate ΔStot.

P3A.3 Consider a Carnot cycle in which the working substance is 0.10 mol of 

perfect gas molecules, the temperature of the hot source is 373 K, and that 

of the cold sink is 273 K; the initial volume of gas is 1.00 dm3, which doubles 

over the course of the �rst isothermal stage. For the reversible adiabatic stages 

it may be assumed that VT 3/2 = constant. (a) Calculate the volume of the gas 

a�er Stage 1 and a�er Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas a�er 

Stage 3 by considering the reversible adiabatic compression from the starting 

point. (c) Hence, for each of the four stages of the cycle, calculate the heat 

transferred to or from the gas. (d) Explain why the work done is equal to the 

di�erence between the heat extracted from the hot source and that deposited 

in the cold sink. (e) Calculate the work done over the cycle and hence the 

e�ciency η. (f) Con�rm that your answer agrees with the e�ciency given by 

eqn 3A.9 and that your values for the heat involved in the isothermal stages 

are in accord with eqn 3A.6.

P3A.4 �e Carnot cycle is usually represented on a pressure−volume 

diagram (Fig. 3A.8), but the four stages can equally well be represented 

on temperature−entropy diagram, in which the horizontal axis is entropy 

and the vertical axis is temperature; draw such a diagram. Assume that the 

temperature of the hot source is Th and that of the cold sink is Tc, and that the 

volume of the working substance (the gas) expands from VA to VB in the �rst 

isothermal stage. (a) By considering the entropy change of each stage, derive 

an expression for the area enclosed by the cycle in the temperature−entropy 

diagram. (b) Derive an expression for the work done over the cycle. (Hint: �e 

work done is the di�erence between the heat extracted from the hot source 

and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment 

on the relation between your answers to (a) and (b).
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‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 

variety of modern contexts. �ey showcase physical chemistry 

as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

�ese online sections take some of the material in the text 

further and are there if you want to extend your knowledge 

and see the details of some of the more advanced derivations 

www.oup.com/uk/pchem11e/

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-

loaded, designed for use with the Spartan Student™ so�ware. 

However they can also be completed using any modelling 

so�ware that allows Hartree–Fock, density functional, and 

MP2 calculations. �e site can be accessed at www.oup.com/

uk/pchem11e/.

THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

TO THE INSTRUC TOR

We have designed the text to give you maximum �exibility in 

the selection and sequence of Topics, while the grouping of 

Topics into Focuses helps to maintain the unity of the subject.  

Additional resources are:

Figures and tables from the book

Lecturers can �nd the artwork and tables from the book in 

ready-to-download format. �ese may be used for lectures 

without charge (but not for commercial purposes without 

speci�c permission).

Key equations 

Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of 

the textbook. To register, simply visit www.oup.com/uk/pchem11e/  

and follow the appropriate links. 

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar, 

Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie 

Smith, and James Keeler.

�e Student’s Solutions Manual (ISBN 9780198830078) 

provides full solutions to the ‘a’ Exercises and to the odd-

numbered Problems.

�e Instructor’s Solutions Manual provides full solutions 

to the ‘b’ Exercises and to the even-numbered Problems 

(available to download online for registered adopters of the  

book only).

IMPAC T 1  …ON ENVIRONMENTAL SCIENCE:  
The gas laws and the weather

�e biggest sample of gas readily accessible to us is the 

atmosphere, a mixture of gases with the composition 

summarized in Table 1. �e composition is maintained 

moderately constant by di�usion and convection (winds, 

particularly the local turbulence called eddies) but the 

pressure and temperature vary with altitude and with 

the local conditions, particularly in the troposphere (the 

‘sphere of change’), the layer extending up to about 11 km.
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A DEEPER LOOK 2  The fugacity

At various stages in the development of physical chemistry 

it is necessary to switch from a consideration of ideal-

ized systems to real systems. In many cases it is desirable 

to preserve the form of the expressions that have been 

derived for an idealized system. �en deviations from the 

idealized behaviour can be expressed most simply. For 

instance, the pressure-dependence of the molar Gibbs 

energy of a perfect gas is

G G RT
p

p
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In this expression, f1 is the fugacity when the pressure is 

p1 and f2 is the fugacity when the pressure is p2. �at is, 

from eqn 3b,
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For a perfect gas,
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PROLOGUE Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss mo-

lecular structures, reactions, and many other processes. What 

follows is an informal �rst look at the important features of 

energy. Its precise de�nition and role will emerge throughout 

the course of this text.

�e transformation of energy from one form to another is 

described by the laws of thermodynamics. �ey are applicable 

to bulk matter, which consists of very large numbers of atoms 

and molecules. �e ‘First Law’ of thermodynamics is a state-

ment about the quantity of energy involved in a transforma-

tion; the ‘Second Law’ is a statement about the dispersal of that 

energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules 

that make up samples of bulk matter it is necessary to use 

quantum mechanics. According to this theory, the energy as-

sociated with the motion of a particle is ‘quantized’, meaning 

that the energy is restricted to certain values, rather than being 

able to take on any value. �ree di�erent kinds of motion can 

occur: translation (motion through space), rotation (change of 

orientation), and vibration (the periodic stretching and bend-

ing of bonds). Figure 1 depicts the relative sizes and spacing of 

the energy states associated with these di�erent kinds of mo-

tion of typical molecules and compares them with the typi-

cal energies of electrons in atoms and molecules. �e allowed 

energies associated with translation are so close together in 

normal-sized containers that they form a continuum. In con-

trast, the separation between the allowed electronic energy 

states of atoms and molecules is very large.

�e link between the energies of individual molecules and the 

energy of bulk matter is provided by one of the most important 

concepts in chemistry, the Boltzmann distribution. Bulk matter 

consists of large numbers of molecules, each of which is in one of 

its available energy states. �e total number of molecules with a 

particular energy due to translation, rotation, vibration, and its 

electronic state is called the ‘population’ of that state. Most mole-

cules are found in the lowest energy state, and higher energy states 

are occupied by progressively fewer molecules. �e Boltzmann 

distribution gives the population, N
i
, of any energy state in terms 

of the energy of the state, ε
i
, and the absolute temperature, T:

N
i
 ∝ e−ε

i
/kT

In this expression, k is Boltzmann’s constant (its value is 

listed inside the front cover), a universal constant (in the sense 

of having the same value for all forms of matter). Figure 2 

shows the Boltzmann distribution for two temperatures: as 

the temperature increases higher energy states are populated 

at the expense of states lower in energy. According to the 

Boltzmann distribution, the temperature is the single param-

eter that governs the spread of populations over the available 

energy states, whatever their nature.
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Figure 1 The relative energies of the allowed states of various 

kinds of atomic and molecular motion. 

Figure 2 The relative populations of states at (a) low, (b) high 

temperature according to the Boltzmann distribution. 
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2 Prologue Energy, temperature, and chemistry 

�e Boltzmann distribution, as well as providing insight 

into the signi�cance of temperature, is central to understand-

ing much of chemistry. �at most molecules occupy states of 

low energy when the temperature is low accounts for the exist-

ence of compounds and the persistence of liquids and solids. 

�at highly excited energy levels become accessible at high 

temperatures accounts for the possibility of reaction as one 

substance acquires the ability to change into another. Both 

features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution 

(which is treated in greater depth later in the text) whenever 

considering the interpretation of the properties of bulk matter 

and the role of temperature. An understanding of the �ow of 

energy and how it is distributed according to the Boltzmann 

distribution is the key to understanding thermodynamics, 

structure, and change throughout chemistry.



FOCUS 1

The properties of gases

A gas is a form of matter that �lls whatever container it oc-

cupies. �is Focus establishes the properties of gases that are 

used throughout the text.

1A The perfect gas

�is Topic is an account of an idealized version of a gas, a ‘per-

fect gas’, and shows how its equation of state may be assembled 

from the experimental observations summarized by Boyle’s 

law, Charles’s law, and Avogadro’s principle.

1A.1 Variables of state; 1A.2 Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building 

models of molecular behaviour that seek to explain observed 

phenomena. A prime example of this procedure is the de-

velopment of a molecular model of a perfect gas in terms of 

a collection of molecules (or atoms) in ceaseless, essentially 

random motion. As well as accounting for the gas laws, this 

model can be used to predict the average speed at which mol-

ecules move in a gas, and its dependence on temperature. In 

combination with the Boltzmann distribution (see the text’s 

Prologue), the model can also be used to predict the spread of 

molecular speeds and its dependence on molecular mass and 

temperature.

1B.1 The model; 1B.2 Collisions

1C Real gases

�e perfect gas is a starting point for the discussion of prop-

erties of all gases, and its properties are invoked throughout 

thermodynamics. However, actual gases, ‘real gases’, have 

properties that di�er from those of perfect gases, and it is nec-

essary to be able to interpret these deviations and build the ef-

fects of molecular attractions and repulsions into the model. 

�e discussion of real gases is another example of how initially 

primitive models in physical chemistry are elaborated to take 

into account more detailed observations.

1C.1 Deviations from perfect behaviour; 1C.2 The van der Waals 

equation

Web resources What is an application 
of this material?

�e perfect gas law and the kinetic theory can be applied to 

the study of phenomena con�ned to a reaction vessel or en-

compassing an entire planet or star. In Impact 1 the gas laws 

are used in the discussion of meteorological phenomena—the 

weather. Impact 2 examines how the kinetic model of gases 

has a surprising application: to the discussion of dense stellar 

media, such as the interior of the Sun.



of pressure, the pascal (Pa, 1 Pa = 1 N m−2), is introduced in 

�e chemist’s toolkit 1. Several other units are still widely used 

(Table 1A.1). A pressure of 1 bar is the standard pressure for 

reporting data; it is denoted p
⦵

.

If two gases are in separate containers that share a common 

movable wall (Fig. 1A.1), the gas that has the higher pressure 

will tend to compress (reduce the volume of) the gas that has 

lower pressure. �e pressure of the high-pressure gas will fall as 

it expands and that of the low-pressure gas will rise as it is com-

pressed. �ere will come a stage when the two pressures are 

equal and the wall has no further tendency to move. �is con-

dition of equality of pressure on either side of a movable wall is 

a state of mechanical equilibrium between the two gases. �e 

pressure of a gas is therefore an indication of whether a con-

tainer that contains the gas will be in mechanical equilibrium 

with another gas with which it shares a movable wall.

TOPIC 1A The perfect gas

➤  Why do you need to know this material?

Equations related to perfect gases provide the basis for 

the development of many relations in thermodynamics. 

The perfect gas law is also a good first approximation for 

accounting for the properties of real gases.

➤  What is the key idea?

The perfect gas law, which is based on a series of empirical 

observations, is a limiting law that is obeyed increasingly 

well as the pressure of a gas tends to zero.

➤  What do you need to know already?

You need to know how to handle quantities and units in 

calculations, as reviewed in The chemist’s toolkit 1. You also 

need to be aware of the concepts of pressure, volume, 

amount of substance, and temperature, all reviewed in The 

chemist’s toolkit 2.

�e properties of gases were among the �rst to be established 

quantitatively (largely during the seventeenth and eighteenth 

centuries) when the technological requirements of travel in 

balloons stimulated their investigation. �ese properties set 

the stage for the development of the kinetic model of gases, as 

discussed in Topic 1B.

1A.1 Variables of state

�e physical state of a sample of a substance, its physical con-

dition, is de�ned by its physical properties. Two samples of the 

same substance that have the same physical properties are in 

the same state. �e variables needed to specify the state of a 

system are the amount of substance it contains, n, the volume 

it occupies, V, the pressure, p, and the temperature, T.

(a) Pressure

�e origin of the force exerted by a gas is the incessant bat-

tering of the molecules on the walls of its container. �e col-

lisions are so numerous that they exert an e�ectively steady 

force, which is experienced as a steady pressure. �e SI unit 

Table 1A.1 Pressure units*

Name Symbol Value

pascal Pa 1 Pa = 1 N m−2, 1 kg m−1 s−2

bar bar 1 bar = 105 Pa

atmosphere atm 1 atm = 101.325 kPa

torr Torr 1 Torr = (101 325/760) Pa = 133.32… Pa

millimetres of mercury mmHg 1 mmHg = 133.322… Pa

pounds per square inch psi 1 psi = 6.894 757… kPa

* Values in bold are exact.

Movable

wallHigh

pressure

High

pressure

Low

pressure

Low

pressure

Equal

pressures

Equal

pressures

(a)

(b)

(c)

Figure 1A.1 When a region of high pressure is separated from a 

region of low pressure by a movable wall, the wall will be pushed 

into one region or the other, as in (a) and (c). However, if the 

two pressures are identical, the wall will not move (b). The latter 

condition is one of mechanical equilibrium between the two 

regions.
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�e pressure exerted by the atmosphere is measured with 

a barometer. �e original version of a barometer (which was 

invented by Torricelli, a student of Galileo) was an inverted 

tube of mercury sealed at the upper end. When the column of 

mercury is in mechanical equilibrium with the atmosphere, 

the pressure at its base is equal to that exerted by the atmos-

phere. It follows that the height of the mercury column is pro-

portional to the external pressure.

�e pressure of a sample of gas inside a container is 

measured by using a pressure gauge, which is a device with 

properties that respond to the pressure. For instance, a 

Bayard–Alpert pressure gauge is based on the ionization of 

the molecules present in the gas and the resulting current of 

ions is interpreted in terms of the pressure. In a capacitance 

manometer, the de�ection of a diaphragm relative to a �xed 

electrode is monitored through its e�ect on the capacitance 

of the arrangement. Certain semiconductors also respond to 

pressure and are used as transducers in solid-state pressure 

gauges.

(b) Temperature

�e concept of temperature is introduced in �e chemist’s 

toolkit 2. In the early days of thermometry (and still in labora-

tory practice today), temperatures were related to the length 

of a column of liquid, and the di�erence in lengths shown 

when the thermometer was �rst in contact with melting ice 

and then with boiling water was divided into 100 steps called 

‘degrees’, the lower point being labelled 0. �is procedure led 

to the Celsius scale of temperature. In this text, temperatures 

on the Celsius scale are denoted θ (theta) and expressed in de-

grees Celsius (°C). However, because di�erent liquids expand 

to di�erent extents, and do not always expand uniformly over 

a given range, thermometers constructed from di�erent mate-

rials showed di�erent numerical values of the temperature be-

tween their �xed points. �e pressure of a gas, however, can be 

used to construct a perfect-gas temperature scale that is inde-

pendent of the identity of the gas. �e perfect-gas scale turns 

out to be identical to the thermodynamic temperature scale 

(Topic 3A), so the latter term is used from now on to avoid a 

proliferation of names.

On the thermodynamic temperature scale, temperatures 

are denoted T and are normally reported in kelvins (K; not °K). 

�ermodynamic and Celsius temperatures are related by the 

exact expression

T/K = θ/°C + 273.15 Celsius scale 
[definition]

 (1A.1) 

�is relation is the current de�nition of the Celsius scale in 

terms of the more fundamental Kelvin scale. It implies that a 

di�erence in temperature of 1 °C is equivalent to a di�erence 

of 1 K.

Brief illustration 1A.1

To express 25.00 °C as a temperature in kelvins, eqn 1A.1 is 

used to write

T/K = (25.00 °C)/°C + 273.15 = 25.00 + 273.15 = 298.15

The chemist’s toolkit 1 Quantities and units

�e result of a measurement is a physical quantity that is 

reported as a numerical multiple of a unit:

physical quantity = numerical value × unit

It follows that units may be treated like algebraic quantities and 

may be multiplied, divided, and cancelled. �us, the expression 

(physical quantity)/unit is the numerical value (a dimension-

less quantity) of the measurement in the speci�ed units. For 

instance, the mass m of an object could be reported as m = 2.5 kg 

or m/kg = 2.5. In this instance the unit of mass is 1 kg, but it is 

common to refer to the unit simply as kg (and likewise for other 

units). See Table A.1 in the Resource section for a list of units.

Although it is good practice to use only SI units, there will be 

occasions where accepted practice is so deeply rooted that physical 

quantities are expressed using other, non-SI units. By international 

convention, all physical quantities are represented by oblique 

(sloping) letters (for instance, m for mass); units are given in 

roman (upright) letters (for instance m for metre).

Units may be modi�ed by a pre�x that denotes a factor of a 

power of 10. Among the most common SI pre�xes are those 

listed in Table A.2 in the Resource section. Examples of the use 

of these pre�xes are:

1 nm = 10−9 m   1 ps = 10−12 s  1 µmol = 10−6 mol

Powers of units apply to the pre�x as well as the unit they mod-

ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 

that 1 cm3 does not mean 1 c(m3). When carrying out numerical 

calculations, it is usually safest to write out the numerical value 

of an observable in scienti�c notation (as n.nnn × 10n).

�ere are seven SI base units, which are listed in Table A.3 

in the Resource section. All other physical quantities may be 

expressed as combinations of these base units. Molar concen-

tration (more formally, but very rarely, amount of substance 

concentration) for example, which is an amount of substance 

divided by the volume it occupies, can be expressed using the 

derived units of mol dm−3 as a combination of the base units for 

amount of substance and length. A number of these derived 

combinations of units have special names and symbols. For 

example, force is reported in the derived unit newton, 1 N = 

1 kg m s−2 (see Table A.4 in the Resource section).
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p = 0, regardless of the size of the units, such as bar or pascal). 

However, it is appropriate to write 0 °C because the Celsius scale 

is not absolute.

1A.2 Equations of state

Although in principle the state of a pure substance is speci�ed 

by giving the values of n, V, p, and T, it has been established 

experimentally that it is su�cient to specify only three of these 

variables since doing so �xes the value of the fourth variable. 

The chemist’s toolkit 2 Properties of bulk matter

�e state of a bulk sample of matter is de�ned by specifying the 

values of various properties. Among them are:

�e mass, m, a measure of the quantity of matter present 

(unit: kilogram, kg).

�e volume, V, a measure of the quantity of space the sam-

ple occupies (unit: cubic metre, m3).

�e amount of substance, n, a measure of the number of 

speci�ed entities (atoms, molecules, or formula units) pre-

sent (unit: mole, mol).

�e amount of substance, n (colloquially, ‘the number of 

moles’), is a measure of the number of speci�ed entities present 

in the sample. ‘Amount of substance’ is the o�cial name of the 

quantity; it is commonly simpli�ed to ‘chemical amount’ or 

simply ‘amount’. A mole is currently de�ned as the number of 

carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision 

was taken to replace this de�nition, but the change has not yet, 

in 2018, been implemented.) �e number of entities per mole is 

called Avogadro’s constant, NA; the currently accepted value is 

6.022 × 1023 mol−1 (note that NA is a constant with units, not a 

pure number).

�e molar mass of a substance, M (units: formally kg mol−1 

but commonly g mol−1) is the mass per mole of its atoms, its 

molecules, or its formula units. �e amount of substance of 

speci�ed entities in a sample can readily be calculated from its 

mass, by noting that

=n
m

M
    Amount of substance

A note on good practice Be careful to distinguish atomic or 

molecular mass (the mass of a single atom or molecule; unit: kg) 

from molar mass (the mass per mole of atoms or molecules; 

units: kg mol−1). Relative molecular masses of atoms and mol-

ecules, Mr = m/mu, where m is the mass of the atom or molecule 

and mu is the atomic mass constant (see inside front cover), 

are still widely called ‘atomic weights’ and ‘molecular weights’ 

even though they are dimensionless quantities and not weights 

(‘weight’ is the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: pascal, 

Pa; 1 Pa = 1 kg m−1 s−2), which is de�ned as the force, F, it is subjected 

to, divided by the area, A, to which that force is applied. Although 

the pascal is the SI unit of pressure, it is also common to express 

pressure in bar (1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa 

exactly), both of which correspond to typical atmospheric pres-

sure. Because many physical properties depend on the pressure 

acting on a sample, it is appropriate to select a certain value of the 

pressure to report their values. �e standard pressure for report-

ing physical quantities is currently de�ned as p
⦵

 = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give 

its temperature, T. �e temperature is formally a property that 

determines in which direction energy will �ow as heat when 

two samples are placed in contact through thermally conduct-

ing walls: energy �ows from the sample with the higher tem-

perature to the sample with the lower temperature. �e symbol 

T is used to denote the thermodynamic temperature which is 

an absolute scale with T = 0 as the lowest point. Temperatures 

above T = 0 are then most commonly expressed by using 

the Kelvin scale, in which the gradations of temperature are 

expressed in kelvins (K). �e Kelvin scale is currently de�ned 

by setting the triple point of water (the temperature at which 

ice, liquid water, and water vapour are in mutual equilibrium) 

at exactly 273.16 K (as for certain other units, a decision has 

been taken to revise this de�nition, but it has not yet, in 2018, 

been implemented). �e freezing point of water (the melting 

point of ice) at 1 atm is then found experimentally to lie 0.01 K 

below the triple point, so the freezing point of water is 273.15 K.

Suppose a sample is divided into smaller samples. If a property 

of the original sample has a value that is equal to the sum of its val-

ues in all the smaller samples (as mass would), then it is said to be 

extensive. Mass and volume are extensive properties. If a property 

retains the same value as in the original sample for all the smaller 

samples (as temperature would), then it is said to be intensive. 

Temperature and pressure are intensive properties. Mass density, 

ρ = m/V, is also intensive because it would have the same value for 

all the smaller samples and the original sample. All molar proper-

ties, Xm = X/n, are intensive, whereas X and n are both extensive.

Note how the units (in this case, °C) are cancelled like num-

bers. �is is the procedure called ‘quantity calculus’ in which 

a physical quantity (such as the temperature) is the product 

of a numerical value (25.00) and a unit (1 °C); see �e chem-

ist’s toolkit 1. Multiplication of both sides by K then gives 

T = 298.15 K.

A note on good practice �e zero temperature on the thermody-

namic temperature scale is written T = 0, not T = 0 K. �is scale 

is absolute, and the lowest temperature is 0 regardless of the size 

of the divisions on the scale (just as zero pressure is denoted 



1A The perfect gas 7

�at is, it is an experimental fact that each substance is de-

scribed by an equation of state, an equation that interrelates 

these four variables.

�e general form of an equation of state is 

p = f(T,V,n) General form of an equation of state  (1A.2)

�is equation states that if the values of n, T, and V are known 

for a particular substance, then the pressure has a �xed value. 

Each substance is described by its own equation of state, but 

the explicit form of the equation is known in only a few special 

cases. One very important example is the equation of state of 

a ‘perfect gas’, which has the form p = nRT/V, where R is a con-

stant independent of the identity of the gas.

�e equation of state of a perfect gas was established by 

combining a series of empirical laws.

(a) The empirical basis

�e following individual gas laws should be familiar:

Boyle’s law:  pV = constant, at constant n, T  (1A.3a)

Charles’s law:  V = constant × T, at constant n, p  (1A.3b)

       p = constant × T, at constant n, V  (1A.3c)

Avogadro’s principle: 

       V = constant × n at constant p, T   (1A.3d)

Boyle’s and Charles’s laws are examples of a limiting law, a law 

that is strictly true only in a certain limit, in this case p → 0. 

For example, if it is found empirically that the volume of a sub-

stance �ts an expression V = aT + bp + cp2, then in the limit 

of p → 0, V = aT. Many relations that are strictly true only at 

p = 0 are nevertheless reasonably reliable at normal pressures 

(p ≈ 1 bar) and are used throughout chemistry.

Figure 1A.2 depicts the variation of the pressure of a sam-

ple of gas as the volume is changed. Each of the curves in the 
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Figure 1A.2 The pressure–volume dependence of a fixed amount 

of perfect gas at different temperatures. Each curve is a hyperbola 

(pV = constant) and is called an isotherm.
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Figure 1A.4 The variation of the volume of a fixed amount of a 

perfect gas with the temperature at constant pressure. Note that 

in each case the isobars extrapolate to zero volume at T = 0, 

corresponding to θ = −273.15 °C. 
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Figure 1A.3 Straight lines are obtained when the pressure of a 

perfect gas is plotted against 1/V at constant temperature. These 

lines extrapolate to zero pressure at 1/V = 0. 

graph corresponds to a single temperature and hence is called 

an isotherm. According to Boyle’s law, the isotherms of gases 

are hyperbolas (a curve obtained by plotting y against x with 

xy = constant, or y = constant/x). An alternative depiction, a 

plot of pressure against 1/volume, is shown in Fig. 1A.3. �e 

linear variation of volume with temperature summarized by 

Charles’s law is illustrated in Fig. 1A.4. �e lines in this illus-

tration are examples of isobars, or lines showing the variation 

of properties at constant pressure. Figure 1A.5 illustrates the 

linear variation of pressure with temperature. �e lines in this 

diagram are isochores, or lines showing the variation of prop-

erties at constant volume.

A note on good practice To test the validity of a relation between 

two quantities, it is best to plot them in such a way that they 

should give a straight line, because deviations from a straight 

line are much easier to detect than deviations from a curve. �e 

development of expressions that, when plotted, give a straight 

line is a very important and common procedure in physical 

chemistry.
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Figure 1A.5 The pressure of a perfect gas also varies linearly with 

the temperature at constant volume, and extrapolates to zero at  

T = 0 (−273.15 °C). 
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�e empirical observations summarized by eqn 1A.3 can be 

combined into a single expression:

pV = constant × nT

�is expression is consistent with Boyle’s law (pV = constant) 

when n and T are constant, with both forms of Charles’s law 

(p ∝ T, V ∝ T) when n and either V or p are held constant, and 

with Avogadro’s principle (V ∝ n) when p and T are constant. 

�e constant of proportionality, which is found experimen-

tally to be the same for all gases, is denoted R and called the 

(molar) gas constant. �e resulting expression

pV = nRT Perfect gas law  (1A.4)

is the perfect gas law (or perfect gas equation of state). It is the 

approximate equation of state of any gas, and becomes in-

creasingly exact as the pressure of the gas approaches zero. A 

gas that obeys eqn 1A.4 exactly under all conditions is called 

a perfect gas (or ideal gas). A real gas, an actual gas, behaves 

more like a perfect gas the lower the pressure, and is described 

exactly by eqn 1A.4 in the limit of p → 0. �e gas constant R 

can be determined by evaluating R = pV/nT for a gas in the 

limit of zero pressure (to guarantee that it is behaving per-

fectly).

A note on good practice Despite ‘ideal gas’ being the more 

common term, ‘perfect gas’ is preferable. As explained in 

Topic 5B, in an ‘ideal mixture’ of A and B, the AA, BB, and 

AB interactions are all the same but not necessarily zero. In a 

perfect gas, not only are the interactions all the same, they are 

also zero.

�e surface in Fig. 1A.6 is a plot of the pressure of a �xed 

amount of perfect gas against its volume and thermodynamic 

temperature as given by eqn 1A.4. �e surface depicts the only 

possible states of a perfect gas: the gas cannot exist in states 

that do not correspond to points on the surface. �e graphs 

in Figs. 1A.2 and 1A.4 correspond to the sections through the 

surface (Fig. 1A.7).
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Figure 1A.6 A region of the p,V,T surface of a fixed amount of 

perfect gas. The points forming the surface represent the only 

states of the gas that can exist.
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Figure 1A.7 Sections through the surface shown in Fig. 1A.6 

at constant temperature give the isotherms shown in Fig. 1A.2. 

Sections at constant pressure give the isobars shown in Fig. 1A.4. 

Sections at constant volume give the isochores shown in Fig. 

1A.5. 

Example 1A.1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 

a vessel of constant volume at a pressure of 100 atm and a 

temperature of 300 K. �e gas is then heated to 500 K. What 

pressure would the gas then exert, assuming that it behaved 

as a perfect gas?

Collect your thoughts �e pressure is expected to be greater 

on account of the increase in temperature. �e perfect gas 

law in the form pV/nT = R implies that if the conditions are 

changed from one set of values to another, then because pV/nT 

is equal to a constant, the two sets of values are related by the 

‘combined gas law’

pV
nT

p V
n T

1 1

1 1

2 2

2 2

=
  Combined gas law  (1A.5)
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�is expression is easily rearranged to give the unknown 

quantity (in this case p2) in terms of the known. �e known 

and unknown data are summarized as follows:

n p V T 

Initial Same 100 atm Same 300 K

Final Same ? Same 500 K

The solution Cancellation of the volumes (because V1 = V2) 

and amounts (because n1 = n2) on each side of the combined 

gas law results in

p
T

p
T

1

1

2

2

=
 

which can be rearranged into

p
T
T

p
2

2

1

1
= ×

 

Substitution of the data then gives

p
500K

300K
(100 atm) 167 atm2 = × =

 

Self-test 1A.1 What temperature would result in the same 

sample exerting a pressure of 300 atm?

Answer: 900 K

�e perfect gas law is of the greatest importance in physical 

chemistry because it is used to derive a wide range of relations 

that are used throughout thermodynamics. However, it is also 

of considerable practical utility for calculating the properties 

of a gas under a variety of conditions. For instance, the molar 

volume, Vm = V/n, of a perfect gas under the conditions called 

standard ambient temperature and pressure (SATP), which 

means 298.15 K and 1 bar (i.e. exactly 105 Pa), is easily calculated 

from Vm = RT/p to be 24.789 dm3 mol−1. An earlier de�nition, 

standard temperature and pressure (STP), was 0 °C and 1 atm; 

at STP, the molar volume of a perfect gas is 22.414 dm3 mol−1.

�e molecular explanation of Boyle’s law is that if a sam-

ple of gas is compressed to half its volume, then twice as many 

molecules strike the walls in a given period of time than be-

fore it was compressed. As a result, the average force exerted 

on the walls is doubled. Hence, when the volume is halved the 

pressure of the gas is doubled, and pV is a constant. Boyle’s law 

applies to all gases regardless of their chemical identity (pro-

vided the pressure is low) because at low pressures the average 

separation of molecules is so great that they exert no in�uence 

on one another and hence travel independently. �e molecu-

lar explanation of Charles’s law lies in the fact that raising the 

temperature of a gas increases the average speed of its mol-

ecules. �e molecules collide with the walls more frequently 

and with greater impact. �erefore they exert a greater pres-

sure on the walls of the container. For a quantitative account 

of these relations, see Topic 1B.

(b) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary 

to know the contribution that each component makes to 

the total pressure of the sample. The partial pressure, pJ, 

of a gas J in a mixture (any gas, not just a perfect gas), is 

defined as

pJ = xJp 
Partial pressure 
[definition]

 (1A.6)

where xJ is the mole fraction of the component J, the amount 

of J expressed as a fraction of the total amount of molecules, n, 

in the sample:

�x
n

n
n n nJ

J

A B= = + +  
Mole fraction 
[definition]

 (1A.7)

When no J molecules are present, xJ = 0; when only J mole-

cules are present, xJ = 1. It follows from the de�nition of xJ that, 

whatever the composition of the mixture, xA + xB + … = 1 and 

therefore that the sum of the partial pressures is equal to the 

total pressure:

pA + pB + … = (xA + xB + …)p = p  (1A.8)

�is relation is true for both real and perfect gases.

When all the gases are perfect, the partial pressure as de-

�ned in eqn 1A.6 is also the pressure that each gas would exert 

if it occupied the same container alone at the same tempera-

ture. �e latter is the original meaning of ‘partial pressure’. 

�at identi�cation was the basis of the original formulation of 

Dalton’s law: 

�e pressure exerted by a mixture of gases is the  

sum of the pressures that each one would exert  

if it occupied the container alone.  Dalton’s law

�is law is valid only for mixtures of perfect gases, so it is not 

used to de�ne partial pressure. Partial pressure is de�ned by 

eqn 1A.6, which is valid for all gases.

Example 1A.2 Calculating partial pressures

�e mass percentage composition of dry air at sea level is 

approximately N2: 75.5; O2: 23.2; Ar: 1.3. What is the par-

tial pressure of each component when the total pressure is 

1.20 atm?

Collect your thoughts Partial pressures are de�ned by eqn 

1A.6. To use the equation, �rst calculate the mole fractions 

of the components, by using eqn 1A.7 and the fact that the 

amount of atoms or molecules J of molar mass MJ in a sample 

of mass mJ is nJ = mJ/MJ. �e mole fractions are independent of 

the total mass of the sample, so choose the latter to be exactly 

100 g (which makes the conversion from mass percentages 

very easy). �us, the mass of N2 present is 75.5 per cent of 

100 g, which is 75.5 g.
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The solution �e amounts of each type of atom or molecule 

present in 100 g of air are, in which the masses of N2, O2, and 

Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

n(N )
75.5 g

28.02 gmol

75.5
28.02

mol 2.69mol2 1= = =
−

 

n(O )
23.2 g

32.00 gmol

23.2
32.00

mol 0.725mol2 1= = =
−

 

n(Ar)
1.3 g

39.95 gmol

1.3
39.95

mol 0.033mol1= = =
−

 

�e total is 3.45 mol. �e mole fractions are obtained by divid-

ing each of the above amounts by 3.45 mol and the partial 

pressures are then obtained by multiplying the mole fraction 

by the total pressure (1.20 atm):

 N2 O2 Ar

Mole fraction: 0.780 0.210 0.0096

Partial pressure/atm: 0.936 0.252 0.012

Self-test 1A.2 When carbon dioxide is taken into account, 

the mass percentages are 75.52 (N2), 23.15 (O2), 1.28 (Ar), and 

0.046 (CO2). What are the partial pressures when the total 

pressure is 0.900 atm?

Answer: 0.703, 0.189, 0.0084, and 0.00027 atm

Checklist of concepts

☐ 1. �e physical state of a sample of a substance, its physi-

cal condition, is de�ned by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 

pressure on either side of a shared movable wall.

☐ 3. An equation of state is an equation that interrelates the 

variables that de�ne the state of a substance.

☐ 4. Boyle’s and Charles’s laws are examples of a limiting 

law, a law that is strictly true only in a certain limit, in 

this case p → 0.

☐ 5. An isotherm is a line in a graph that corresponds to a 

single temperature.

☐ 6. An isobar is a line in a graph that corresponds to a 

single pressure.

☐ 7. An isochore is a line in a graph that corresponds to a 

single volume.

☐ 8. A perfect gas is a gas that obeys the perfect gas law 

under all conditions.

☐ 9. Dalton’s law states that the pressure exerted by a 

mixture of (perfect) gases is the sum of the pressures 

that each one would exert if it occupied the container 

alone.

Checklist of equations

Property Equation Comment Equation number

Relation between temperature scales T/K = θ/°C + 273.15 273.15 is exact 1A.1

Perfect gas law pV = nRT Valid for real gases in the limit p → 0 1A.4

Partial pressure pJ = xJp Valid for all gases 1A.6

Mole fraction =x n n/J J

= + +�n n nA B

De�nition 1A.7



In the kinetic theory of gases (which is sometimes called the 

kinetic-molecular theory, KMT) it is assumed that the only 

contribution to the energy of the gas is from the kinetic ener-

gies of the molecules. �e kinetic model is one of the most re-

markable—and arguably most beautiful—models in physical 

chemistry, for from a set of very slender assumptions, power-

ful quantitative conclusions can be reached.

1B.1 The model

�e kinetic model is based on three assumptions:

1. �e gas consists of molecules of mass m in ceaseless ran-

dom motion obeying the laws of classical mechanics.

2. �e size of the molecules is negligible, in the sense that 

their diameters are much smaller than the average dis-

tance travelled between collisions; they are ‘point-like’.

3. �e molecules interact only through brief elastic collisions.

TOPIC 1B  The kinetic model

➤  Why do you need to know this material?

This material illustrates an important skill in science: the 

ability to extract quantitative information from a qualita-

tive model. Moreover, the model is used in the discussion 

of the transport properties of gases (Topic 16A), reaction 

rates in gases (Topic 18A), and catalysis (Topic 19C).

➤  What is the key idea?

A gas consists of molecules of negligible size in ceaseless 

random motion and obeying the laws of classical mechan-

ics in their collisions.

➤  What do you need to know already?

You need to be aware of Newton’s second law of motion, 

that the acceleration of a body is proportional to the force 

acting on it, and the conservation of linear momentum 

(The chemist’s toolkit 3).

The chemist’s toolkit 3 Momentum and force

�e speed, v, of a body is de�ned as the rate of change of posi-

tion. �e velocity, v, de�nes the direction of travel as well as 

the rate of motion, and particles travelling at the same speed 

but in di�erent directions have di�erent velocities. As shown 

in Sketch 1, the velocity can be depicted as an arrow in the 

direction of travel, its length being the speed v and its com-

ponents vx, vy, and vz along three perpendicular axes. �ese 

components have a sign: vx = +5 m s−1, for instance, indicates 

that a body is moving in the positive x-direction, whereas vx = 

−5 m s−1 indicates that it is moving in the opposite direction. 

�e length of the arrow (the speed) is related to the components 

by Pythagoras’ theorem: v2 = vx
2 + vy

2 + vz
2.

v   v   

v
x

v
y

v
z

length v⎛
⎨

⎝

Sketch 1

�e concepts of classical mechanics are commonly expressed 

in terms of the linear momentum, p, which is de�ned as 

p mv=  Linear momentum 
[definition]

Momentum also mirrors velocity in having a sense of direction; 

bodies of the same mass and moving at the same speed but in 

di�erent directions have di�erent linear momenta.

Acceleration, a, is the rate of change of velocity. A body 

accelerates if its speed changes. A body also accelerates if its 

speed remains unchanged but its direction of motion changes. 

According to Newton’s second law of motion, the acceleration 

of a body of mass m is proportional to the force, F, acting on it:

F am=  Force

Because mv is the linear momentum and a is the rate of change 

of velocity, ma is the rate of change of momentum. �erefore, 

an alternative statement of Newton’s second law is that the force 

is equal to the rate of change of momentum. Newton’s law indi-

cates that the acceleration occurs in the same direction as the 

force acts. If, for an isolated system, no external force acts, then 

there is no acceleration. �is statement is the law of conserva-

tion of momentum: that the momentum of a body is constant 

in the absence of a force acting on the body.
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An elastic collision is a collision in which the total transla-

tional kinetic energy of the molecules is conserved.

(a) Pressure and molecular speeds

From the very economical assumptions of the kinetic model, it 

is possible to derive an expression that relates the pressure and 

volume of a gas.

How is that done? 1B.1 Using the kinetic model to derive 

an expression for the pressure of a gas

Consider the arrangement in Fig. 1B.1, and then follow these 

steps.

Step 1 Set up the calculation of the change in momentum

When a particle of mass m that is travelling with a component 

of velocity vx parallel to the x-axis collides with the wall on the 

right and is re�ected, its linear momentum changes from mvx 

before the collision to −mvx a�er the collision (when it is trav-

elling in the opposite direction). �e x-component of momen-

tum therefore changes by 2mvx on each collision (the y- and 

z-components are unchanged). Many molecules collide with 

the wall in an interval Δt, and the total change of momentum 

is the product of the change in momentum of each molecule 

multiplied by the number of molecules that reach the wall 

during the interval.

Step 2 Calculate the change in momentum

Because a molecule with velocity component vx travels a 

distance vxΔt along the x-axis in an interval Δt, all the mol-

ecules within a distance vxΔt of the wall strike it if they are 

travelling towards it (Fig. 1B.2). It follows that if the wall has 

area A, then all the particles in a volume A × vxΔt reach the 

wall (if they are travelling towards it). �e number density of 

particles is nNA/V, where n is the total amount of molecules in 

the container of volume V and NA is Avogadro’s constant. It 

follows that the number of molecules in the volume AvxΔt is 

(nNA/V) × AvxΔt.

At any instant, half the particles are moving to the right and 

half are moving to the le�. �erefore, the average number of 

collisions with the wall during the interval Δt is 1
2
nNAAvxΔt/V. 

�e total momentum change in that interval is the product of 

this number and the change 2mvx:

nN A t

V
mMomentumchange

∆
2

2x

x

A
v

v
= ×

 

M
�

nmN A t
V

nMA t
V

∆ ∆x xA

2 2
v v

= =

 

Step 3 Calculate the force

�e rate of change of momentum, the change of momentum 

divided by the interval ∆t during which it occurs, is

nMA
V

Rate of change of momentum x
2
v

=

 

According to Newton’s second law of motion this rate of 

change of momentum is equal to the force.

Step 4 Calculate the pressure

�e pressure is this force ( vnMA V/x
2 ) divided by the area (A) 

on which the impacts occur. �e areas cancel, leaving

nM
V

Pressure x
2
v

=

 

Not all the molecules travel with the same velocity, so the 

detected pressure, p, is the average (denoted 〈…〉) of the quan-

tity just calculated:

p
nM

V
x
2
v

=
〈 〉

 

�e average values of x
2
v , y

2
v , and z

2
v  are all the same, and 

because = + +x y z
2 2 2 2
v v v v , it follows that x

2 1
3

2
v v〈 〉= 〈 〉.

At this stage it is useful to de�ne the root-mean-square 

speed, vrms, as the square root of the mean of the squares of 

the speeds, v, of the molecules. �erefore 

vrms = 〈v2 〉1/2 Root-mean-square speed 
[definition]  (1B.1)

mv
x

–mv
x

x

Before

collision

After

collision

Figure 1B.1 The pressure of a gas arises from the impact of its 

molecules on the walls. In an elastic collision of a molecule with 

a wall perpendicular to the x-axis, the x-component of velocity is 

reversed but the y- and z-components are unchanged.

Will
Won’t

|v
x
  t|

Volume = |v
x
  t|A

Area, A

x

Δ

Δ

Figure 1B.2 A molecule will reach the wall on the right within 

an interval of time ∆t if it is within a distance vx∆t of the wall and 

travelling to the right.
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�e mean square speed in the expression for the pressure can 

therefore be written x
2 1

3

2 1

3 rms

2
v v v〈 〉= 〈 〉=  to give

pV nM1

3 rms

2
v=

 (1B.2)

 Relation between pressure and volume 
[KMT]

�is equation is one of the key results of the kinetic model. 

If the root-mean-square speed of the molecules depends only 

on the temperature, then at constant temperature

pV = constant 

which is the content of Boyle’s law. �e task now is to show that 

the right-hand side of eqn 1B.2 is equal to nRT.

(b) The Maxwell–Boltzmann distribution 
of speeds

In a gas the speeds of individual molecules span a wide 

range, and the collisions in the gas ensure that their speeds 

are ceaselessly changing. Before a collision, a molecule may 

be travelling rapidly, but a�er a collision it may be acceler-

ated to a higher speed, only to be slowed again by the next 

collision. To evaluate the root-mean-square speed it is nec-

essary to know the fraction of molecules that have a given 

speed at any instant. �e fraction of molecules that have 

speeds in the range v to v + dv is proportional to the width 

of the range, and is written f(v)dv, where f(v) is called the 

distribution of speeds. An expression for this distribution 

can be found by recognizing that the energy of the mole-

cules is entirely kinetic, and then using the Boltzmann dis-

tribution to describe how this energy is distributed over the 

molecules.

How is that done? 1B.2 Deriving the distribution 

of speeds

�e starting point for this derivation is the Boltzmann distri-

bution (see the text’s Prologue).

Step 1 Write an expression for the distribution of the kinetic 

energy

�e Boltzmann distribution implies that the fraction of mole-

cules with velocity components vx, vy, and vz is proportional to 

an exponential function of their kinetic energy: f(v) = Ke−ε/kT, 

where K is a constant of proportionality. �e kinetic energy is

m m mx y z
1

2

2 1

2

2 1

2

2
v v vε = + +  

�erefore, use the relation ax+y+z = axayaz to write

f K K( ) e e e em m m kT m kT m kT m kT( )/2 /2 /2 /2x y z x y z
2 2 2 2 2 2

v
v v v v v v

= =
− + + − − −  

�e distribution factorizes into three terms as f(v) = f(vx) f(vy) f(vz) 

and K = KxKyKz, with

f K( ) ex x
m kT/2x

2

v
v

=
−

 

and likewise for the other two coordinates.

Step 2 Determine the constants Kx, Ky, and Kz

To determine the constant Kx, note that a molecule must have 

a velocity component somewhere in the range −∞ < vx < ∞, so 

integration over the full range of possible values of vx must 

give a total probability of 1:

f ( )d 1x xv v∫ =
−∞

∞

 

(See �e chemist’s toolkit 4 for the principles of integration.) 

Substitution of the expression for f(vx) then gives

IntegralG.1
� ��� ���

K K
kT
m

1 e d
2

x
m kT

x x
/2

1/2

x
2

v
v∫= =

π





−

−∞

∞

 

�erefore, Kx = (m/2πkT)1/2 and 

f
m
kT

( )
2

ex
m kT

1/2

/2x
2

v
v= π







−  (1B.3)

�e expressions for f(vy) and f(vz) are analogous.

Step 3 Write a preliminary expression for 

f f f( ) ( ) ( )d d dx y z x y zv v v v v v

�e probability that a molecule has a velocity in the range vx 

to vx + dvx, vy to vy + dvy, vz to vz + dvz, is

e
m v v v kT2x y z

2 2 2

� ����� �����

f f f
m
kT

( ) ( ) ( )d d d
2

e e e

d d d

x y z x y z
m kT m kT m kT

x y z

3/2

/2 /2 /2

( )/

x y z
2 2 2

v v v v v v

v v v

v v v= π






×

− − −

− + +

m
kT2

e d d dm kT
x y z

3/2

/22

v v v
v= π







−

where x y z
2 2 2 2
v v v v= + + .

Step 3 Calculate the probability that a molecule has a speed in 

the range v to v + dv

To evaluate the probability that a molecule has a speed in the 

range v to v + dv regardless of direction, think of the three 

velocity components as de�ning three coordinates in ‘velocity 

space’, with the same properties as ordinary space except 

that the axes are labelled ( , , )x y zv v v  instead of (x, y, z). Just as  

the volume element in ordinary space is dxdydz, so the volume 

element in velocity space is v v vd d dx y z . �e sum of all the vol-

ume elements in ordinary space that lie at a distance r from the 

centre is the volume of a spherical shell of radius r and thickness 

dr. �at volume is the product of the surface area of the shell, 
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4πr2, and its thickness dr, and is therefore 4πr2dr. Similarly, 

the analogous volume in velocity space is the volume of a shell 

of radius v and thickness dv, namely 4πv2dv (Fig. 1B.3). Now, 

because f f f( ) ( ) ( )x y zv v v , the term in blue in the last equation, 

depends only on 2
v , and has the same value everywhere in a 

shell of radius v, the total probability of the molecules possess-

ing a speed in the range v to v + dv is the product of the term 

in blue and the volume of the shell of radius v and thickness dv. 

If this probability is written f(v)dv, it follows that

f
m
kT

( )d 4 d
2

e m kT2

3/2

/22

v v v v
v= π π







−  

Figure 1B.3 To evaluate the probability that a molecule has a 

speed in the range v to v + dv, evaluate the total probability that 

the molecule will have a speed that is anywhere in a thin shell of 

radius v = (vx

2 + vy

2 + vz

2)1/2 and thickness dv.

v
z

v
y

v
x

v

Thickness, dvSurface area, 4πv2

The chemist’s toolkit 4 Integration

Integration is concerned with the areas under curves. �e inte-

gral of a function f(x), which is denoted f x x( )d∫  (the symbol ∫  is 

an elongated S denoting a sum), between the two values x = a 

and x = b is de�ned by imagining the x-axis as divided into 

strips of width δx and evaluating the following sum:

f x x f x x( )d lim ( )
xa

b

i

i
0∫ ∑= δ

δ →
  Integration 

[definition]

As can be appreciated from Sketch 1, the integral is the area 

under the curve between the limits a and b. �e function to be 

integrated is called the integrand. It is an astonishing math-

ematical fact that the integral of a function is the inverse of the 

di�erential of that function. In other words, if di�erentiation of 

f is followed by integration of the resulting function, the result 

is the original function f (to within a constant).

�e integral in the preceding equation with the limits speci-

�ed is called a de�nite integral. If it is written without the lim-

its speci�ed, it is called an inde�nite integral. If the result of 

carrying out an inde�nite integration is g(x) + C, where C is a 

constant, the following procedure is used to evaluate the cor-

responding de�nite integral:

I f x x g x C
b

a
g b C g a C

g b g a

( )d { ( ) } { ( ) } { ( ) }

( ) ( )

a

b

∫= = + = + − +

= −

Note that the constant of integration disappears. �e de�nite 

and inde�nite integrals encountered in this text are listed in 

the Resource section. �ey may also be calculated by using 

mathematical so�ware.

x

f(x)

a b

δx

Sketch 1

Definite integral

and f(v) itself, a�er minor rearrangement, is

f
m
kT

( ) 4
2

e m kT

3/2

2 /22

v v
v= π π







−

 

Because R = NAk (Table 1B.1), m/k = mNA/R = M/R, it follows 

that 

f
M
RT

( ) 4
2

e M RT

3/2

2 /22

v v
v= π π







−

 (1B.4)

 Maxwell–Boltzmann 
distribution 
[KMT]

�e function f(v) is called the Maxwell–Boltzmann distribu-

tion of speeds. Note that, in common with other distribution 

functions, f(v) acquires physical signi�cance only a�er it is 

multiplied by the range of speeds of interest.

Table 1B.1 The (molar) gas constant*

R

8.314 47 J K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

8.314 47 × 10−2 dm3 bar K−1 mol–1

8.314 47 Pa m3 K−1 mol–1

62.364 dm3 Torr K−1 mol–1

1.987 21 cal K−1 mol−1

* �e gas constant is now de�ned as R = NAk, where NA is Avogadro’s constant and 

k is Boltzmann’s constant.
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�e important features of the Maxwell–Boltzmann distri-

bution are as follows (and are shown pictorially in Fig. 1B.4):

•	 Equation 1B.4 includes a decaying exponential func-

tion (more speci�cally, a Gaussian function). Its 

presence implies that the fraction of molecules with 

very high speeds is very small because −

e
x2

 becomes 

very small when x is large.

•	 �e factor M/2RT multiplying v2 in the exponent is 

large when the molar mass, M, is large, so the expo-

nential factor goes most rapidly towards zero when 

M is large. �at is, heavy molecules are unlikely to be 

found with very high speeds.

•	 �e opposite is true when the temperature, T, is high: 

then the factor M/2RT in the exponent is small, so the 

exponential factor falls towards zero relatively slowly 

as v increases. In other words, a greater fraction of 

the molecules can be expected to have high speeds at 

high temperatures than at low temperatures.

•	 A factor v2 (the term before the e) multiplies the 

exponential. �is factor goes to zero as v goes to 

zero, so the fraction of molecules with very low 

speeds will also be very small whatever their mass.

•	 �e remaining factors (the term in parentheses in 

eqn 1B.4 and the 4π) simply ensure that, when the 

fractions are summed over the entire range of speeds 

from zero to in�nity, the result is 1.
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Figure 1B.4 The distribution of molecular speeds with 

temperature and molar mass. Note that the most probable speed 

(corresponding to the peak of the distribution) increases with 

temperature and with decreasing molar mass, and simultaneously 

the distribution becomes broader.

the fraction, F, of molecules with speeds in the range v1 to v2 

evaluate the integral 

F f( , ) ( )d1 2
1

2

v v v v
v

v

∫=   (1B.5) 

�is integral is the area under the graph of f as a function of v 

and, except in special cases, has to be evaluated numerically by 

using mathematical so�ware (Fig. 1B.5). �e average value of 

v
n is calculated as

f ( )d
n n

0

∞

v v v v∫〈 〉 =   (1B.6)

In particular, integration with n = 2 results in the mean square 

speed, 2
v〈 〉, of the molecules at a temperature T:

RT
M
32

v〈 〉 =  Mean square speed 
[KMT]

 (1B.7)

It follows that the root-mean-square speed of the molecules of 

the gas is 

RT
M
3

rms
2 1/2

1/2

v v= 〈 〉 = 



  Root-mean-square speed 

[KMT]
 (1B.8)

which is proportional to the square root of the temperature 

and inversely proportional to the square root of the molar 

mass. �at is, the higher the temperature, the higher the 

root-mean-square speed of the molecules, and, at a given 

temperature, heavy molecules travel more slowly than light 

molecules.

�e important conclusion, however, is that when eqn 1B.8 

is substituted into eqn 1B.2, the result is pV = nRT, which is 

the equation of state of a perfect gas. �is conclusion con-

�rms that the kinetic model can be regarded as a model of a 

perfect gas.

(c) Mean values

With the Maxwell–Boltzmann distribution in hand, it is pos-

sible to calculate the mean value of any power of the speed by 

evaluating the appropriate integral. For instance, to evaluate 

Speed, v
v

1
v

2

D
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

, 
f
(v

)

Figure 1B.5 To calculate the probability that a molecule will have 

a speed in the range v1 to v2, integrate the distribution between 

those two limits; the integral is equal to the area under the curve 

between the limits, as shown shaded here. 
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�e mean relative speed, 
rel
v , the mean speed with which 

one molecule approaches another of the same kind, can also 

be calculated from the distribution:

2rel
1/2

meanv v=   Mean relative speed 
[KMT, identical molecules]

 (1B.11a)

�is result is much harder to derive, but the diagram in 

Fig. 1B.7 should help to show that it is plausible. For the relative 

mean speed of two dissimilar molecules of masses mA and mB: 

kT m m

m m

8
rel

1/2

A B

A B

v µ µ= π






= +  
Mean relative 
speed 
[perfect gas]

 (1B.11b)

Example 1B.1 Calculating the mean speed of molecules 

in a gas

Calculate vrms and the mean speed, vmean, of N2 molecules at 

25 °C.

Collect your thoughts �e root-mean-square speed is cal-

culated from eqn 1B.8, with M = 28.02 g mol–1 (that is, 

0.028 02 kg mol–1) and T = 298 K. �e mean speed is obtained 

by evaluating the integral

∫=
∞

f ( )dmean
0

v v v v

with f(v) given in eqn 1B.3. Use either mathematical so�ware 

or the integrals listed in the Resource section and note that 

1 J = 1 kg m2 s–2.

The solution �e root-mean-square speed is

3 (8.3145JK mol ) (298K)

0.028 02kgmol
515msrms

1 1

1

1/2

1
v =

× ×







=
− −

−
−

�e integral required for the calculation of vmean is

IntegralG.4
� ��� ���

M
RT

4
2

e dM RT
mean

3/2

3 /2

0

2

v v v
v∫= π π







−∞

M
RT

RT
M

RT
M

4
2

2 8
3/2

1
2

2 1/2

= π π






× 





= π






Substitution of the data then gives

8 (8.3145JK mol ) (298K)

(0.028 02kgmol )
475msmean

1 1

1

1/2

1
v =

× ×
π×







=
− −

−
−

Self-test 1B.1 Con�rm that eqn 1B.7 follows from eqn 1B.6.

As shown in Example 1B.1, the Maxwell–Boltzmann distri-

bution can be used to evaluate the mean speed, meanv , of the 

molecules in a gas:

RT
M

8 8
3mean

1/2 1/2

rmsv v= π






= π




  

Mean speed 
[KMT]

 (1B.9)

�e most probable speed, mpv , can be identi�ed from the loca-

tion of the peak of the distribution by di�erentiating f(v) with 

respect to v and looking for the value of v at which the deriva-

tive is zero (other than at v = 0 and v = ∞; see Problem 1B.11):

RT
M
2 2

3mp

1/2 1/2

rmsv v= 





= 



  

Most probable 
speed 
[KMT]

 (1B.10)

Figure 1B.6 summarizes these results.

v
mp

 = (2RT/M)1/2

v
mean

 = (8RT/πM)1/2

v
rms

 = (3RT/M)1/2

1
(4/π)1/2 v/(2RT/M)1/2

f
(v

)/
4
π
(M

/2
π
R

T
)3

/2

(3/2)1/2

Figure 1B.6 A summary of the conclusions that can be deduced 

from the Maxwell distribution for molecules of molar mass M at a 

temperature T: vmp is the most probable speed, vmean is the mean 

speed, and vrms is the root-mean-square speed. 

v

v

vv

v
v

v

v

0 2v

21/2v

21/2v

Figure 1B.7 A simplified version of the argument to show 

that the mean relative speed of molecules in a gas is related 

to the mean speed. When the molecules are moving in the 

same direction, the mean relative speed is zero; it is 2v when 

the molecules are approaching each other. A typical mean 

direction of approach is from the side, and the mean speed of 

approach is then 21/2
v. The last direction of approach is the most 

characteristic, so the mean speed of approach can be expected 

to be about 21/2
v. This value is confirmed by more detailed 

calculation.
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Brief illustration 1B.1

As already seen (in Example 1B.1), the mean speed of N2 

molecules at 25 °C is 475 m s–1. It follows from eqn 1B.11a that 

their relative mean speed is

2 (475ms ) 671msrel

1/2 1 1
v = × =

− −

1B.2 Collisions

�e kinetic model can be used to develop the qualitative pic-

ture of a perfect gas, as a collection of ceaselessly moving, col-

liding molecules, into a quantitative, testable expression. In 

particular, it provides a way to calculate the average frequency 

with which molecular collisions occur and the average dis-

tance a molecule travels between collisions.

(a) The collision frequency

Although the kinetic model assumes that the molecules are 

point-like, a ‘hit’ can be counted as occurring whenever the 

centres of two molecules come within a distance d of each 

other, where d, the collision diameter, is of the order of the ac-

tual diameters of the molecules (for impenetrable hard spheres 

d is the diameter). �e kinetic model can be used to deduce the 

collision frequency, z, the number of collisions made by one 

molecule divided by the time interval during which the colli-

sions are counted.

How is that done? 1B.3 Using the kinetic model to derive 

an expression for the collision frequency

Consider the positions of all the molecules except one to be 

frozen. �en note what happens as this one mobile molecule 

travels through the gas with a mean relative speed v
rel

 for a 

time ∆t. In doing so it sweeps out a ‘collision tube’ of cross-

sectional area σ = πd2, length v t∆
rel

 and therefore of volume 

σ t∆
rel
v  (Fig. 1B.8). �e number of stationary molecules with 

centres inside the collision tube is given by the volume V of 

the tube multiplied by the number density N V/N = , where 

N is the total number of molecules in the sample, and is 

t∆
rel
vσN . �e collision frequency z is this number divided 

by Δt. It follows that 

z
rel
Nvσ=

 (1B.12a)

 Collision frequency 
[KMT]

 

 

�e parameter σ is called the collision cross-section of the 

molecules. Some typical values are given in Table 1B.2.

An expression in terms of the pressure of the gas is obtained 

by using the perfect gas equation and R = NAk to write the 

number density in terms of the pressure:

N
V

nN
V

nN
nRT p

pN
RT

p
kT/

A A A
N = = = = =  

�en 

z
p

kT
rel
vσ

=   Collision frequency 
[KMT]

 (1B.12b)

Equation 1B.12a shows that, at constant volume, the col-

lision frequency increases with increasing temperature, 

because most molecules are moving faster. Equation 1B.12b 

shows that, at constant temperature, the collision frequency 

is proportional to the pressure. �e greater the pressure, the 

greater the number density of molecules in the sample, and 

the rate at which they encounter one another is greater even 

though their average speed remains the same.

Brief illustration 1B.2

For an N2 molecule in a sample at 1.00 atm (101 kPa) and 

25 °C, from Brief illustration 1B.1 v
rel

 = 671 m s−1. �erefore, 

from eqn 1B.12b, and taking σ = 0.45 nm2 (corresponding to 

0.45 × 10–18 m2) from Table 1B.2,

z
(0.45 10 m ) (671ms ) (1.01 10 Pa)

(1.381 10 JK ) (298K)

18 2 1 5

23 1=
× × × ×

× ×

− −

− −

 

7.4 10 s9 1
= ×

−

 

so a given molecule collides about 7 × 109 times each second. 

�e timescale of events in gases is becoming clear.
Figure 1B.8 The basis of the calculation of the collision 

frequency in the kinetic theory of gases. 

Miss

Hit

v
rel

  t

d

Area, σ

d

Δ

Table 1B.2 Collision cross-sections*

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Resource section.



18 1 The properties of gases

(b) The mean free path

�e mean free path, λ (lambda), is the average distance a mol-

ecule travels between collisions. If a molecule collides with a 

frequency z, it spends a time 1/z in free �ight between colli-

sions, and therefore travels a distance z(1/ ) relv . It follows that 

the mean free path is 

z
rel
v

λ =  
Mean free path 
[KMT]

 (1B.13)

Substitution of the expression for z from eqn 1B.12b gives

kT
p

λ
σ

=  
Mean free path 
[perfect gas]

 (1B.14)

Doubling the pressure shortens the mean free path by a factor 

of 2.

Brief illustration 1B.3 

From Brief illustration 1B.1 v
rel

 = 671 m s–1 for N2 molecules 

at 25 °C, and from Brief illustration 1B.2 z = 7.4 10 s9 1
×

−  when 

the pressure is 1.00 atm. Under these circumstances, the mean 

free path of N2 molecules is

671ms

7.4 10 s
9.1 10 m

1

9 1
8

λ =
×

= ×

−

−

−

 

or 91 nm, about 103 molecular diameters.

Although the temperature appears in eqn 1B.14, in a sam-

ple of constant volume, the pressure is proportional to T, so 

T/p remains constant when the temperature is increased. 

�erefore, the mean free path is independent of the tempera-

ture in a sample of gas provided the volume is constant. In a 

container of �xed volume the distance between collisions is 

determined by the number of molecules present in the given 

volume, not by the speed at which they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25 °C can 

be thought of as a collection of molecules travelling with a 

mean speed of about 500 m s−1. Each molecule makes a colli-

sion within about 1 ns, and between collisions it travels about 

103 molecular diameters.

Checklist of concepts

☐ 1. �e kinetic model of a gas considers only the contri-

bution to the energy from the kinetic energies of the 

molecules.

☐ 2. Important results from the model include expressions 

for the pressure and the root-mean-square speed.

☐ 3. �e Maxwell–Boltzmann distribution of speeds gives 

the fraction of molecules that have speeds in a speci�ed 

range.

☐ 4. �e collision frequency is the average number of colli-

sions made by a molecule in an interval divided by the 

length of the interval.

☐ 5. �e mean free path is the average distance a molecule 

travels between collisions.

Checklist of equations

Property Equation Comment
Equation 
number

Pressure of a perfect gas from the kinetic model pV = nM1
3 rms

2
v

Kinetic model of a 
perfect gas

1B.2

Maxwell–Boltzmann distribution of speeds f M RT( ) 4 ( /2π ) e
M RT3/2 2 /2

2

v v
v

= π
− 1B.4

Root-mean-square speed RT M(3 / )rms
1/2

v = 1B.8

Mean speed RT M(8 / )mean
1/2

v = π 1B.9

Most probable speed RT M(2 / )mp
1/2

v = 1B.10

Mean relative speed kT(8 / )rel
1/2

v µ= π
  

  m m m m/( )A B A Bµ = +

1B.11b

�e collision frequency z p kT d/ ,rel
2

vσ σ= = π 1B.12b

Mean free path λ = vrel/z 1B.13



TOPIC 1C Real gases

➤  Why do you need to know this material?

The properties of actual gases, so-called ‘real gases’, are 

different from those of a perfect gas. Moreover, the devia-

tions from perfect behaviour give insight into the nature 

of the interactions between molecules.

➤  What is the key idea?

Attractions and repulsions between gas molecules account 

for modifications to the isotherms of a gas and account for 

critical behaviour.

➤  What do you need to know already?

This Topic builds on and extends the discussion of perfect 

gases in Topic 1A. The principal mathematical technique 

employed is the use of differentiation to identify a point of 

inflexion of a curve (The chemist’s toolkit 5).

ine�ective when the molecules are far apart (well to the right in 

Fig. 1C.1). Intermolecular forces are also important when the 

temperature is so low that the molecules travel with such low 

mean speeds that they can be captured by one another.

�e consequences of these interactions are shown by shapes 

of experimental isotherms (Fig. 1C.2). At low pressures, when 

the sample occupies a large volume, the molecules are so far 

apart for most of the time that the intermolecular forces play no 

signi�cant role, and the gas behaves virtually perfectly. At mod-

erate pressures, when the average separation of the molecules is 

only a few molecular diameters, the attractive forces dominate 

the repulsive forces. In this case, the gas can be expected to be 

more compressible than a perfect gas because the forces help to 

draw the molecules together. At high pressures, when the av-

erage separation of the molecules is small, the repulsive forces 

dominate and the gas can be expected to be less compressible 

because now the forces help to drive the molecules apart.

Consider what happens when a sample of gas initially in the 

state marked A in Fig. 1C.2b is compressed (its volume is re-

duced) at constant temperature by pushing in a piston. Near 

A, the pressure of the gas rises in approximate agreement with 

Boyle’s law. Serious deviations from that law begin to appear 

when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon diox-

ide), all similarity to perfect behaviour is lost, for suddenly the 

Real gases do not obey the perfect gas law exactly except in the 

limit of p → 0. Deviations from the law are particularly impor-

tant at high pressures and low temperatures, especially when a 

gas is on the point of condensing to liquid.

1C.1 Deviations from perfect 
behaviour

Real gases show deviations from the perfect gas law because 

molecules interact with one another. A point to keep in mind 

is that repulsive forces between molecules assist expansion 

and attractive forces assist compression.

Repulsive forces are signi�cant only when molecules are al-

most in contact: they are short-range interactions, even on a 

scale measured in molecular diameters (Fig. 1C.1). Because they 

are short-range interactions, repulsions can be expected to be 

important only when the average separation of the molecules is 

small. �is is the case at high pressure, when many molecules 

occupy a small volume. On the other hand, attractive intermo-

lecular forces have a relatively long range and are e�ective over 

several molecular diameters. �ey are important when the mol-

ecules are fairly close together but not necessarily touching (at 

the intermediate separations in Fig. 1C.1). Attractive forces are 
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Figure 1C.1 The dependence of the potential energy of two 

molecules on their internuclear separation. High positive 

potential energy (at very small separations) indicates that the 

interactions between them are strongly repulsive at these 

distances. At intermediate separations, attractive interactions 

dominate. At large separations (far to the right) the potential 

energy is zero and there is no interaction between the molecules. 
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ured molar volume of a gas, Vm = V/n, to the molar volume of a 

perfect gas, Vm°, at the same pressure and temperature:

Z
V

V

m

m

=
°

 
Compression factor 
[definition]

 (1C.1)

Because the molar volume of a perfect gas is equal to RT/p, an 

equivalent expression is Z = pVm/RT, which can be written as

pVm = RTZ (1C.2)

Because for a perfect gas Z = 1 under all conditions, deviation 

of Z from 1 is a measure of departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1C.3. At 

very low pressures, all the gases shown have Z ≈ 1 and behave 

nearly perfectly. At high pressures, all the gases have Z > 1, sig-

nifying that they have a larger molar volume than a perfect gas. 

Repulsive forces are now dominant. At intermediate pressures, 

most gases have Z < 1, indicating that the attractive forces are 

reducing the molar volume relative to that of a perfect gas.

Brief illustration 1C.1

�e molar volume of a perfect gas at 500 K and 100 bar is 

Vm° = 0.416 dm3 mol–1. �e molar volume of carbon dioxide 

under the same conditions is Vm = 0.366 dm3 mol–1. It follows 

that at 500 K

Z
0.366dm mol

0.416dm mol
0.880

3 1

3 1= =

−

−
  

�e fact that Z < 1 indicates that attractive forces dominate 

repulsive forces under these conditions.

(b) Virial coefficients

At large molar volumes and high temperatures the real-gas 

isotherms do not di�er greatly from perfect-gas isotherms. 

Figure 1C.2 (a) Experimental isotherms of carbon dioxide at 

several temperatures. The ‘critical isotherm’, the isotherm at the 

critical temperature, is at 31.04 °C (in blue). The critical point 

is marked with a star. (b) As explained in the text, the gas can 

condense only at and below the critical temperature as it is 

compressed along a horizontal line (such as CDE). The dotted 

black curve consists of points like C and E for all isotherms below 

the critical temperature. 
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piston slides in without any further rise in pressure: this stage 

is represented by the horizontal line CDE. Examination of the 

contents of the vessel shows that just to the le� of C a liquid ap-

pears, and there are two phases separated by a sharply de�ned 

surface. As the volume is decreased from C through D to E, 

the amount of liquid increases. �ere is no additional resist-

ance to the piston because the gas can respond by condensing. 

�e pressure corresponding to the line CDE, when both liquid 

and vapour are present in equilibrium, is called the vapour 

pressure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its 

surface. Any further reduction of volume requires the exertion 

of considerable pressure, as is indicated by the sharply rising 

line to the le� of E. Even a small reduction of volume from E to 

F requires a great increase in pressure.

(a) The compression factor

As a �rst step in understanding these observations it is useful 

to introduce the compression factor, Z, the ratio of the meas-
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Figure 1C.3 The variation of the compression factor, Z, with 

pressure for several gases at 0 °C. A perfect gas has Z = 1 at all 

pressures. Notice that, although the curves approach 1 as p → 0, 

they do so with different slopes.
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�e small di�erences suggest that the perfect gas law pVm = RT 

is in fact the �rst term in an expression of the form

pVm = RT(1 + B′p + C′p2 + …) (1C.3a)

�is expression is an example of a common procedure in 

physical chemistry, in which a simple law that is known to be 

a good �rst approximation (in this case pVm = RT) is treated as 

the �rst term in a series in powers of a variable (in this case p). 

A more convenient expansion for many applications is

�pV RT
B

V

C

V
1

m

m m

2
= + + +







 Virial equation of state  (1C.3b)

�ese two expressions are two versions of the virial equation 

of state.1 By comparing the expression with eqn 1C.2 it is seen 

that the term in parentheses in eqn 1C.3b is just the compres-

sion factor, Z.

�e coe�cients B, C, …, which depend on the temperature, 

are the second, third, … virial coe�cients (Table 1C.1); the 

�rst virial coe�cient is 1. �e third virial coe�cient, C, is usu-

ally less important than the second coe�cient, B, in the sense 

that at typical molar volumes C/Vm
2 << B/Vm. �e values of the 

virial coe�cients of a gas are determined from measurements 

of its compression factor.

Brief illustration 1C.2

To use eqn 1C.3b (up to the B term) to calculate the pres-

sure exerted at 100 K by 0.104 mol O2(g) in a vessel of volume 

0.225 dm3, begin by calculating the molar volume:

V
V
n

0.225dm
0.104mol

2.16 dm mol 2.16 10 m molm
O

3
3 1 3 3 1

2

= = = = ×
− − −

�en, by using the value of B found in Table 1C.1 of the 

Resource section,

p
RT
V

B
V

1
m m

= +





 

 
(8.3145Jmol K ) (100K)

2.16 10 m mol
1

1.975 10 m mol

2.16 10 m mol

1 1

3 3 1

4 3 1

3 3 1=
×

×
−

×
×







− −

− −

− −

− −

3.50 10  Pa
5

= × , or 350 kPa

where 1 Pa = 1 J m−3. �e perfect gas equation of state would 

give the calculated pressure as 385 kPa, or 10 per cent higher 

than the value calculated by using the virial equation of state. 

�e di�erence is signi�cant because under these conditions 

B/Vm ≈ 0.1 which is not negligible relative to 1.

An important point is that although the equation of state of 

a real gas may coincide with the perfect gas law as p → 0, not 

all its properties necessarily coincide with those of a perfect 

gas in that limit. Consider, for example, the value of dZ/dp, the 

slope of the graph of compression factor against pressure (see 

�e chemist’s toolkit 5 for a review of derivatives and di�eren-

tiation). For a perfect gas dZ/dp = 0 (because Z = 1 at all pres-

sures), but for a real gas from eqn 1C.3a

�

Z
p

B pC B p
d

d
2  as  0= ′+ ′+ → ′ →  (1C.4a)

However, B′ is not necessarily zero, so the slope of Z with 

respect to p does not necessarily approach 0 (the perfect gas 

value), as can be seen in Fig. 1C.4. By a similar argument (see 

�e chemist’s toolkit 5 for evaluating derivatives of this kind),

Z

V
B V

d

d 1/
 as 

m

m( )
→ → ∞ (1C.4b)

Because the virial coe�cients depend on the temperature, 

there may be a temperature at which Z → 1 with zero slope 

at low pressure or high molar volume (as in Fig. 1C.4). At 

this temperature, which is called the Boyle temperature, TB, 

the properties of the real gas do coincide with those of a per-

1 �e name comes from the Latin word for force. �e coe�cients are 

sometimes denoted B2, B3, ….

Table 1C.1 Second virial coefficients, B/(cm3 mol−1)*

Temperature

273 K 600 K

Ar –21.7 11.9

CO2 –149.7 –12.4

N2 –10.5 21.7

Xe –153.7 –19.6

* More values are given in the Resource section.
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Figure 1C.4 The compression factor, Z, approaches 1 at low 

pressures, but does so with different slopes. For a perfect gas, 

the slope is zero, but real gases may have either positive or 

negative slopes, and the slope may vary with temperature. At 

the Boyle temperature, the slope is zero at p = 0 and the gas 

behaves perfectly over a wider range of conditions than at other 

temperatures.
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fect gas as p → 0. According to eqn 1C.4a, Z has zero slope 

as p → 0 if B′ = 0, so at the Boyle temperature B′ = 0. It then 

follows from eqn 1C.3a that pVm ≈ RTB over a more extended 

range of pressures than at other temperatures because the �rst 

term a�er 1 (i.e. B′p) in the virial equation is zero and C′p2 and 

higher terms are negligibly small. For helium TB = 22.64 K; for 

air TB = 346.8 K; more values are given in Table 1C.2.

The chemist’s toolkit 5 Differentiation

Di�erentiation is concerned with the slopes of functions, such 

as the rate of change of a variable with time. �e formal de�ni-

tion of the derivative, df/dx, of a function f(x) is

f
x

f x x f x

x

d

d
lim

( ) ( )

x 0
=

+δ −

δδ →

 
First derivative 
[definition]

As shown in Sketch 1, the derivative can be interpreted as the 

slope of the tangent to the graph of f(x) at a given value of x. 

A positive �rst derivative indicates that the function slopes 

upwards (as x increases), and a negative �rst derivative indi-

cates the opposite. It is sometimes convenient to denote the �rst 

derivative as f ′(x). �e second derivative, d2f/dx2, of a function is 

the derivative of the �rst derivative (here denoted f ′):

f
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=
′ +δ − ′
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Second derivative 
[definition]

It is sometimes convenient to denote the second derivative f ′′. 
As shown in Sketch 2, the second derivative of a function can 

be interpreted as an indication of the sharpness of the curva-

ture of the function. A positive second derivative indicates that 

the function is ∪ shaped, and a negative second derivative indi-

cates that it is ∩ shaped. �e second derivative is zero at a point 

of in�ection, where the �rst derivative changes sign.

�e derivatives of some common functions are as follows:
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It follows from the de�nition of the derivative that a variety of 

combinations of functions can be di�erentiated by using the 

following rules:
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It is sometimes convenient to di�erentiate with respect to a 

function of x, rather than x itself. For instance, suppose that

f x a
b
x

c

x
( ) 2= + +

where a, b, and c are constants and you need to evaluate 

df/d(1/x), rather than df/dx. To begin, let y = 1/x. �en f(y) = 

a + by + cy2 and

f
y

b cy
d
d

2= +

Because y = 1/x, it follows that

f
x

b
c
x

d
d(1/ )

2
= +

dy/dx < 0

dy/dx > 0

dy/dx = 0

dy/dx = 0

x

y

Sketch 1

d2y/dx2 > 0

d2y/dx2 < 0 d2y/dx2 = 0

x

y

Sketch 2

(c) Critical constants

�ere is a temperature, called the critical temperature, Tc, 

which separates two regions of behaviour and plays a special 

role in the theory of the states of matter. An isotherm slightly 

below Tc behaves as already described: at a certain pressure, a 

liquid condenses from the gas and is distinguishable from it by 
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How is that done? 1C.1 Deriving the van der Waals 

equation of state

�e repulsive interaction between molecules is taken into 

account by supposing that it causes the molecules to behave 

as small but impenetrable spheres, so instead of moving in 

a volume V they are restricted to a smaller volume V − nb, 

where nb is approximately the total volume taken up by the 

molecules themselves. �is argument suggests that the perfect 

gas law p = nRT/V should be replaced by

p
nRT
V nb

=

−

 

when repulsions are signi�cant. To calculate the excluded vol-

ume, note that the closest distance of approach of two hard-

sphere molecules of radius r (and volume Vmolecule = 4

3
πr3) is 

2r, so the volume excluded is 4
3
π(2r)3, or 8Vmolecule. �e volume 

excluded per molecule is one-half this volume, or 4Vmolecule, so 

b ≈ 4VmoleculeNA.

�e pressure depends on both the frequency of collisions 

with the walls and the force of each collision. Both the fre-

quency of the collisions and their force are reduced by the 

attractive interaction, which acts with a strength proportional 

to the number of interacting molecules and therefore to the 

molar concentration, n/V, of molecules in the sample. Because 

both the frequency and the force of the collisions are reduced 

by the attractive interactions, the pressure is reduced in pro-

portion to the square of this concentration. If the reduction of 

pressure is written as a(n/V)2, where a is a positive constant 

characteristic of each gas, the combined e�ect of the repulsive 

and attractive forces is the van der Waals equation:

 
(1C.5a)

p
nRT
V nb

a
n

V

2

2=

−

−

 van der Waals equation of state

�e constants a and b are called the van der Waals coef-

�cients, with a representing the strength of attractive inter-

actions and b that of the repulsive interactions between the 

molecules. �ey are characteristic of each gas and taken to 

be independent of the temperature (Table 1C.3). Although 

a and b are not precisely de�ned molecular properties, they 

correlate with physical properties that re�ect the strength 

of intermolecular interactions, such as critical temperature, 

vapour pressure, and enthalpy of vaporization.

Table 1C.2 Critical constants of gases*

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

Ar 48.0 75.3 150.7 0.292 411.5

CO2 72.9 94.0 304.2 0.274 714.8

He 2.26 57.8 5.2 0.305 22.64

O2 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.

the presence of a visible surface. If, however, the compression 

takes place at Tc itself, then a surface separating two phases 

does not appear and the volumes at each end of the horizontal 

part of the isotherm have merged to a single point, the critical 

point of the gas. �e pressure and molar volume at the critical 

point are called the critical pressure, pc, and critical molar 

volume, Vc, of the substance. Collectively, pc, Vc, and Tc are the 

critical constants of a substance (Table 1C.2).

At and above Tc, the sample has a single phase which oc-

cupies the entire volume of the container. Such a phase is, by 

de�nition, a gas. Hence, the liquid phase of a substance does 

not form above the critical temperature. �e single phase that 

�lls the entire volume when T > Tc may be much denser than 

considered typical for gases, and the name supercritical �uid 

is preferred.

Brief illustration 1C.3

�e critical temperature of oxygen, 155 K, signi�es that it is 

impossible to produce liquid oxygen by compression alone if 

its temperature is greater than 155 K. To liquefy oxygen the 

temperature must �rst be lowered to below 155 K, and then 

the gas compressed isothermally. 

1C.2 The van der Waals equation

Conclusions may be drawn from the virial equations of state 

only by inserting speci�c values of the coe�cients. It is o�en 

useful to have a broader, if less precise, view of all gases, such 

as that provided by an approximate equation of state.

(a) Formulation of the equation

�e equation introduced by J.D. van der Waals in 1873 is an 

excellent example of an expression that can be obtained by 

thinking scienti�cally about a mathematically complicated 

but physically simple problem; that is, it is a good example of 

‘model building’.

Table 1C.3 van der Waals coefficients*

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20

CO2 3.610 4.29

He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Resource section.
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�e acceptable root is x = 0.366 (Fig. 1C.5), which implies that 

Vm = 0.366 dm3 mol−1. �e molar volume of a perfect gas under 

these conditions is 0.410 dm3 mol–1.

Self-test 1C.1 Calculate the molar volume of argon at 100 °C 

and 100 atm on the assumption that it is a van der Waals gas.

Answer: 0.298 dm
3
 mol

–1

(b) The features of the equation

To what extent does the van der Waals equation predict the be-

haviour of real gases? It is too optimistic to expect a single, sim-

ple expression to be the true equation of state of all substances, 

and accurate work on gases must resort to the virial equation, 

use tabulated values of the coe�cients at various temperatures, 

and analyse the system numerically. �e advantage of the van 

der Waals equation, however, is that it is analytical (that is, 

expressed symbolically) and allows some general conclusions 

about real gases to be drawn. When the equation fails another 

equation of state must be used (some are listed in Table 1C.4), 

yet another must be invented, or the virial equation is used.

�e reliability of the equation can be judged by compar-

ing the isotherms it predicts with the experimental iso-

therms in Fig. 1C.2. Some calculated isotherms are shown 

in Figs. 1C.6 and 1C.7. Apart from the oscillations below 

the critical temperature, they do resemble experimental iso-

therms quite well. �e oscillations, the van der Waals loops, 

are unrealistic because they suggest that under some condi-

tions an increase of pressure results in an increase of volume. 

�erefore they are replaced by horizontal lines drawn so the 

loops de�ne equal areas above and below the lines: this pro-

cedure is called the Maxwell 

construction (1). �e van 

der Waals coe�cients, such 

as those in Table 1C.3, are 

found by �tting the calcu-

lated curves to the experi-

mental curves.

Brief illustration 1C.4

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) and 

b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal boil-

ing point is 353 K. Treated as a perfect gas at T = 400 K and 

p = 1.0 atm, benzene vapour has a molar volume of Vm = 

RT/p = 33 dm3 mol−1, so the criterion Vm >> b for perfect gas 

behaviour is satis�ed. It follows that a/Vm
2 ≈ 0.017 atm, which is 

1.7 per cent of 1.0 atm. �erefore, benzene vapour is expected 

to deviate only slightly from perfect gas behaviour at this 

temperature and pressure.

Equation 1C.5a is o�en written in terms of the molar vol-

ume Vm = V/n as 

p
RT

V b

a

V
m m

2
=

−

−  (1C.5b)

Example 1C.1 Using the van der Waals equation to 

estimate a molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by 

treating it as a van der Waals gas.

Collect your thoughts You need to �nd an expression for the 

molar volume by solving the van der Waals equation, eqn 

1C.5b. To rearrange the equation into a suitable form, mul-

tiply both sides by (Vm − b)Vm
2, to obtain

(Vm − b)Vm
2  p = RTVm

2 − (Vm − b)a 

�en, a�er division by p, collect powers of Vm to obtain

V b
RT
p

V
a
p

V
ab
p

    0
m

3

m

2

m
− +



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+ 





+ =  

Although closed expressions for the roots of a cubic equation 

can be given, they are very complicated. Unless analytical 

solutions are essential, it is usually best to solve such equa-

tions with mathematical so�ware; graphing calculators can 

also be used to help identify the acceptable root.

The solution According to Table 1C.3, a = 3.592 dm6 atm mol−2 

and b = 4.267 × 10−2 dm3 mol−1. Under the stated conditions, 

RT/p = 0.410 dm3 mol−1. �e coe�cients in the equation for Vm 

are therefore

b + RT/p = 0.453 dm3 mol−1 

a/p = 3.61 × 10–2 (dm3 mol−1)2 

ab/p = 1.55 × 10–3 (dm3 mol−1)3 

�erefore, on writing x = Vm/(dm3 mol−1), the equation to 

solve is

x3 − 0.453x2 + (3.61 × 10−2)x − (1.55 × 10−3) = 0 

0 0.1 0.2 0.3 0.4x

1
0
0
0
f
(x
)
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–2

0

2

4

6

Figure 1C.5 The graphical solution of the cubic equation for V 

in Example 1C.1.

Equal areas

1
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Table 1C.4 Selected equations of state

Critical constants

Equation Reduced form* pc Vc Tc

Perfect gas p
nRT
V

=

van der Waals p
nRT
V nb

n a

V
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− p
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V V
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* Reduced variables are de�ned as Xr = X/Xc with X = p, Vm, and T. Equations of state are sometimes expressed in terms of the molar volume, Vm = V/n.
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Figure 1C.6 The surface of possible states allowed by the van der 

Waals equation. The curves drawn on the surface are isotherms, 

labelled with the value of T/Tc, and correspond to the isotherms in 

Fig. 1C.7. 
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Figure 1C.7 Van der Waals isotherms at several values of T/Tc. The 

van der Waals loops are normally replaced by horizontal straight 

lines. The critical isotherm is the isotherm for T/Tc = 1, and is 

shown in blue.

�e principal features of the van der Waals equation can be 

summarized as follows.

1. Perfect gas isotherms are obtained at high temperatures 

and large molar volumes.

When the temperature is high, RT may be so large that the �rst 

term in eqn 1C.5b greatly exceeds the second. Furthermore, 

if the molar volume is large in the sense Vm >> b, then the de-

nominator Vm − b ≈ Vm. Under these conditions, the equation 

reduces to p = RT/Vm, the perfect gas equation.

2. Liquids and gases coexist when the attractive and repul-

sive e�ects are in balance.

�e van der Waals loops occur when both terms in eqn 1C.5b 

have similar magnitudes. �e �rst term arises from the kinetic 

energy of the molecules and their repulsive interactions; the 

second represents the e�ect of the attractive interactions.

3. �e critical constants are related to the van der Waals 

coe�cients.

For T < Tc, the calculated isotherms oscillate, and each one 

passes through a minimum followed by a maximum. �ese 

extrema converge as T → Tc and coincide at T = Tc; at the criti-

cal point the curve has a �at 

in�exion (2). From the prop-

erties of curves, an in�exion 

of this type occurs when 

both the �rst and second 

derivatives are zero. Hence, 

the critical constants can be 

found by calculating these derivatives and setting them equal 

to zero at the critical point:

p
V

RT

V b
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V
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�e solutions of these two equations (and using eqn 1C.5b to 

calculate pc from Vc and Tc; see Problem 1C.12) are

V b p
a

b
T

a
bR

3        
27

        
8

27c c 2  c
= = =  (1C.6)

�ese relations provide an alternative route to the determina-

tion of a and b from the values of the critical constants. �ey 

can be tested by noting that the critical compression factor, 

Zc, is predicted to be

Z
p V
RT

3
8c

c c

c

= =  (1C.7)

for all gases that are described by the van der Waals equation 

near the critical point. Table 1C.2 shows that although Zc < 38  

= 0.375, it is approximately constant (at 0.3) and the discrep-

ancy is reasonably small.

(c) The principle of corresponding states

An important general technique in science for comparing the 

properties of objects is to choose a related fundamental prop-

erty of the same kind and to set up a relative scale on that basis. 

�e critical constants are characteristic properties of gases, so 

it may be that a scale can be set up by using them as yardsticks 

and to introduce the dimensionless reduced variables of a gas 

by dividing the actual variable by the corresponding critical 

constant:

V
V
V

p
p
p

T
T
T

                r
m

c
r

c
r

c

= = =  Reduced variables 
[definition]

 (1C.8)

If the reduced pressure of a gas is given, its actual pressure is 

calculated by using p = prpc, and likewise for the volume and 

temperature. Van der Waals, who �rst tried this procedure, 

hoped that gases con�ned to the same reduced volume, Vr, at 

the same reduced temperature, Tr, would exert the same re-

duced pressure, pr. �e hope was largely ful�lled (Fig. 1C.8). 

�e illustration shows the dependence of the compression fac-

tor on the reduced pressure for a variety of gases at various re-

duced temperatures. �e success of the procedure is strikingly 

clear: compare this graph with Fig. 1C.3, where similar data 

are plotted without using reduced variables.

�e observation that real gases at the same reduced volume 

and reduced temperature exert the same reduced pressure is 

called the principle of corresponding states. �e principle is 

only an approximation. It works best for gases composed of 

spherical molecules; it fails, sometimes badly, when the mol-

ecules are non-spherical or polar.

Brief illustration 1C.5

�e critical constants of argon and carbon dioxide are given 

in Table 1C.2. Suppose argon is at 23 atm and 200 K, its 

reduced pressure and temperature are then

p T
23atm

48.0 atm
0.48       

200K

150.7K
1.33r r= = = =

For carbon dioxide to be in a corresponding state, its pressure 

and temperature would need to be

p T0.48 (72.9 atm) 35 atm         1.33 304.2K 405K= × = = × =

�e van der Waals equation sheds some light on the princi-

ple. When eqn 1C.5b is expressed in terms of the reduced vari-

ables it becomes

p p
RTT

VV b
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r c

r c r
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c
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−

Now express the critical constants in terms of a and b by using 

eqn 1C.6:

ap
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and, a�er multiplying both sides by 27b2/a, reorganize it into

p
T

V V

8

3 1

3
r

r

r r

2
=

−

−  (1C.9)

�is equation has the same form as the original, but the coe�-

cients a and b, which di�er from gas to gas, have disappeared. It 

follows that if the isotherms are plotted in terms of the reduced 

variables (as done in fact in Fig. 1C.7 without drawing attention 

to the fact), then the same curves are obtained whatever the 

gas. �is is precisely the content of the principle of correspond-

ing states, so the van der Waals equation is compatible with it.
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Figure 1C.8 The compression factors of four of the gases 

shown in Fig. 1C.3 plotted using reduced variables. The curves 

are labelled with the reduced temperature Tr = T/Tc. The use of 

reduced variables organizes the data on to single curves.
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Looking for too much signi�cance in this apparent triumph 

is mistaken, because other equations of state also accommo-

date the principle. In fact, any equation of state (such as those 

in Table 1C.4) with two parameters playing the roles of a and 

b can be manipulated into a reduced form. �e observation 

that real gases obey the principle approximately amounts to 

saying that the e�ects of the attractive and repulsive interac-

tions can each be approximated in terms of a single parameter. 

�e importance of the principle is then not so much its theo-

retical interpretation but the way that it enables the properties 

of a range of gases to be coordinated on to a single diagram 

(e.g. Fig. 1C.8 instead of Fig. 1C.3).

Checklist of concepts

☐ 1. �e extent of deviations from perfect behaviour is sum-

marized by introducing the compression factor.

☐ 2. �e virial equation is an empirical extension of the 

perfect gas equation that summarizes the behaviour of 

real gases over a range of conditions.

☐ 3. �e isotherms of a real gas introduce the concept of 

critical behaviour.

☐ 4. A gas can be lique�ed by pressure alone only if its tem-

perature is at or below its critical temperature.

☐ 5. �e van der Waals equation is a model equation of 

state for a real gas expressed in terms of two param-

eters, one (a) representing molecular attractions and 

the other (b) representing molecular repulsions.

☐ 6. �e van der Waals equation captures the general fea-

tures of the behaviour of real gases, including their 

critical behaviour.

☐ 7. �e properties of real gases are coordinated by express-

ing their equations of state in terms of reduced variables.

Checklist of equations

Property Equation Comment
Equation 
number

Compression factor Z = Vm/Vm° De�nition 1C.1

Virial equation of state pVm = RT(1 + B/Vm + C/Vm
2 + …) B, C depend on temperature 1C.3b

van der Waals equation of state p = nRT/(V − nb) − a(n/V)2 a parameterizes attractions, 
b parameterizes repulsions

1C.5a

Reduced variables Xr = X/Xc X = p, Vm, or T 1C.8
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FOCUS 1 The properties of gases

TOPIC 1A The perfect gas

Discussion questions

D1A.1 Explain how the perfect gas equation of state arises by combination of 

Boyle’s law, Charles’s law, and Avogadro’s principle.

D1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a 

limiting law.

Exercises

E1A.1(a) Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.

E1A.1(b) Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals.

E1A.2(a) Could 131 g of xenon gas in a vessel of volume 1.0 dm3 exert a 

pressure of 20 atm at 25 °C if it behaved as a perfect gas? If not, what pressure 

would it exert?

E1A.2(b) Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a pressure 

of 2.0 bar at 30 °C if it behaved as a perfect gas? If not, what pressure would it 

exert?

E1A.3(a) A perfect gas undergoes isothermal compression, which reduces its 

volume by 2.20 dm3. �e �nal pressure and volume of the gas are 5.04 bar  

and 4.65 dm3, respectively. Calculate the original pressure of the gas in (i) bar,  

(ii) atm.

E1A.3(b) A perfect gas undergoes isothermal compression, which reduces its 

volume by 1.80 dm3. �e �nal pressure and volume of the gas are 1.97 bar  

and 2.14 dm3, respectively. Calculate the original pressure of the gas in (i) bar,  

(ii) torr.

E1A.4(a) A car tyre (an automobile tire) was in�ated to a pressure of 24 lb in−2 

(1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature was −5 °C. 

What pressure will be found, assuming no leaks have occurred and that the 

volume is constant, on a subsequent summer’s day when the temperature is 

35 °C? What complications should be taken into account in practice?

E1A.4(b) A sample of hydrogen gas was found to have a pressure of 125 kPa 

when the temperature was 23 °C. What can its pressure be expected to be 

when the temperature is 11 °C?

E1A.5(a) A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the 

perfect gas law to calculate the pressure of the gas.

E1A.5(b) A homeowner uses 4.00 × 103 m3 of natural gas in a year to heat a 

home. Assume that natural gas is all methane, CH4, and that methane is a 

perfect gas for the conditions of this problem, which are 1.00 atm and 20 °C. 

What is the mass of gas used?

E1A.6(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg 

m−3. What is the molecular formula of sulfur under these conditions?

E1A.6(b) At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 

0.6388 kg m−3. What is the molecular formula of phosphorus under these 

conditions?

E1A.7(a) Calculate the mass of water vapour present in a room of volume 

400 m3 that contains air at 27 °C on a day when the relative humidity is 60 per 

cent. Hint: Relative humidity is the prevailing partial pressure of water vapour 

expressed as a percentage of the vapour pressure of water vapour at the same 

temperature (in this case, 35.6 mbar).

E1A.7(b) Calculate the mass of water vapour present in a room of volume 

250 m3 that contains air at 23 °C on a day when the relative humidity is 

53 per cent (in this case, 28.1 mbar).

E1A.8(a) Given that the mass density of air at 0.987 bar and 27 °C is 1.146 kg 

m−3, calculate the mole fraction and partial pressure of nitrogen and oxygen 

assuming that (i) air consists only of these two gases, (ii) air also contains 

1.0 mole per cent Ar.

E1A.8(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and 

225 mg of neon. �e partial pressure of neon at 300 K is 8.87 kPa. Calculate  

(i) the volume and (ii) the total pressure of the mixture.

E1A.9(a) �e mass density of a gaseous compound was found to be 1.23 kg m−3 

at 330 K and 20 kPa. What is the molar mass of the compound?

E1A.9(b) In an experiment to measure the molar mass of a gas, 250 cm3 of the 

gas was con�ned in a glass vessel. �e pressure was 152 Torr at 298 K, and 

a�er correcting for buoyancy e�ects, the mass of the gas was 33.5 mg. What is 

the molar mass of the gas?

E1A.10(a) �e densities of air at −85 °C, 0 °C, and 100 °C are 1.877 g dm−3, 

1.294 g dm−3, and 0.946 g dm−3, respectively. From these data, and assuming 

that air obeys Charles’ law, determine a value for the absolute zero of 

temperature in degrees Celsius.

E1A.10(b) A certain sample of a gas has a volume of 20.00 dm3 at 0 °C and 

1.000 atm. A plot of the experimental data of its volume against the Celsius 

temperature, θ, at constant p, gives a straight line of slope 0.0741 dm3 °C−1. 

From these data alone (without making use of the perfect gas law), determine 

the absolute zero of temperature in degrees Celsius.

E1A.11(a) A vessel of volume 22.4 dm3 contains 2.0 mol H2(g) and 1.0 mol 

N2(g) at 273.15 K. Calculate (i) the mole fractions of each component, 

(ii) their partial pressures, and (iii) their total pressure.

E1A.11(b) A vessel of volume 22.4 dm3 contains 1.5 mol H2(g) and 2.5 mol 

N2(g) at 273.15 K. Calculate (i) the mole fractions of each component, 

(ii) their partial pressures, and (iii) their total pressure.

Problems

P1A.1 A manometer consists of a U-shaped tube containing a liquid. One side 

is connected to the apparatus and the other is open to the atmosphere. �e 

pressure p inside the apparatus is given p = pex + ρgh, where pex is the external 

pressure, ρ is the mass density of the liquid in the tube, g = 9.806 m s−2 is the 

acceleration of free fall, and h is the di�erence in heights of the liquid in the 

two sides of the tube. (�e quantity ρgh is the hydrostatic pressure exerted by 

a column of liquid.) (i) Suppose the liquid in a manometer is mercury, the 

external pressure is 760 Torr, and the open side is 10.0 cm higher than the side 

connected to the apparatus. What is the pressure in the apparatus? �e mass 

density of mercury at 25 °C is 13.55 g cm−3. (ii) In an attempt to determine an 

accurate value of the gas constant, R, a student heated a container of volume 

20.000 dm3 �lled with 0.251 32 g of helium gas to 500 °C and measured the 

pressure as 206.402 cm in a manometer �lled with water at 25 °C. Calculate the 

value of R from these data. �e mass density of water at 25 °C is 0.997 07 g cm−3.
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P1A.2 Recent communication with the inhabitants of Neptune have revealed 

that they have a Celsius-type temperature scale, but based on the melting 

point (0 °N) and boiling point (100 °N) of their most common substance, 

hydrogen. Further communications have revealed that the Neptunians know 

about perfect gas behaviour and they �nd that in the limit of zero pressure, 

the value of pV is 28 dm3 atm at 0 °N and 40 dm3 atm at 100 °N. What is the 

value of the absolute zero of temperature on their temperature scale?

P1A.3 �e following data have been obtained for oxygen gas at 273.15K. From 

the data, calculate the best value of the gas constant R. 

p/atm 0.750 000 0.500 000 0.250 000

Vm/(dm3 mol−1) 29.8649 44.8090 89.6384

P1A.4 Charles’s law is sometimes expressed in the form V = V0(1 + αθ), 

where θ is the Celsius temperature, α is a constant, and V0 is the volume of 

the sample at 0 °C. �e following values for have been reported for nitrogen 

at 0 °C: 

p/Torr 749.7 599.6 333.1 98.6 

103α/°C –1 3.6717 3.6697 3.6665 3.6643

 For these data estimate the absolute zero of temperature on the Celsius scale.

P1A.5 Deduce the relation between the pressure and mass density, ρ, of a 

perfect gas of molar mass M. Con�rm graphically, using the following data on 

methoxymethane (dimethyl ether) at 25 °C, that perfect behaviour is reached 

at low pressures and �nd the molar mass of the gas.

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3

ρ/(kg m–3) 0.225 0.456 0.664 1.062 1.468 1.734

P1A.6 �e molar mass of a newly synthesized �uorocarbon was measured 

in a gas microbalance. �is device consists of a glass bulb forming one 

end of a beam, the whole surrounded by a closed container. �e beam is 

pivoted, and the balance point is attained by raising the pressure of gas 

in the container, so increasing the buoyancy of the enclosed bulb. In one 

experiment, the balance point was reached when the �uorocarbon pressure 

was 327.10 Torr; for the same setting of the pivot, a balance was reached 

when CHF3 (M = 70.014 g mol−1) was introduced at 423.22 Torr. A repeat of 

the experiment with a di�erent setting of the pivot required a pressure of 

293.22 Torr of the �uorocarbon and 427.22 Torr of the CHF3. What is the 

molar mass of the �uorocarbon? Suggest a molecular formula.

P1A.7 A constant-volume perfect gas thermometer indicates a pressure of 

6.69 kPa at the triple point temperature of water (273.16 K). (a) What change 

of pressure indicates a change of 1.00 K at this temperature? (b) What pressure 

indicates a temperature of 100.00 °C? (c) What change of pressure indicates a 

change of 1.00 K at the latter temperature?

P1A.8 A vessel of volume 22.4 dm3 contains 2.0 mol H2(g) and 1.0 mol N2(g) 

at 273.15 K initially. All the H2 then reacts with su�cient N2 to form NH3. 

Calculate the partial pressures of the gases in the �nal mixture and the total 

pressure.

P1A.9 Atmospheric pollution is a problem that has received much attention. 

Not all pollution, however, is from industrial sources. Volcanic eruptions can 

be a signi�cant source of air pollution. �e Kilauea volcano in Hawaii emits 

200−300 t (1 t = 103 kg) of SO2 each day. If this gas is emitted at 800 °C and 

1.0 atm, what volume of gas is emitted?

P1A.10 Ozone is a trace atmospheric gas which plays an important role in 

screening the Earth from harmful ultraviolet radiation, and the abundance 

of ozone is commonly reported in Dobson units. Imagine a column passing 

up through the atmosphere. �e total amount of O3 in the column divided 

by its cross-sectional area is reported in Dobson units  with 1 Du = 

0.4462 mmol m−2. What amount of O3 (in moles) is found in a column 

of atmosphere with a cross-sectional area of 1.00 dm2 if the abundance is 

250 Dobson units (a typical midlatitude value)? In the seasonal Antarctic 

ozone hole, the column abundance drops below 100 Dobson units; how 

many moles of O3 are found in such a column of air above a 1.00 dm2 area? 

Most atmospheric ozone is found between 10 and 50 km above the surface 

of the Earth. If that ozone is spread uniformly through this portion of the 

atmosphere, what is the average molar concentration corresponding to (a) 

250 Dobson units, (b) 100 Dobson units?

P1A.11‡ In a commonly used model of the atmosphere, the atmospheric 

pressure varies with altitude, h, according to the barometric formula:

p = p0e
–h/H

 where p0 is the pressure at sea level and H is a constant approximately equal 

to 8 km. More speci�cally, H = RT/Mg, where M is the average molar mass 

of air and T is the temperature at the altitude h. �is formula represents the 

outcome of the competition between the potential energy of the molecules 

in the gravitational �eld of the Earth and the stirring e�ects of thermal 

motion. Derive this relation by showing that the change in pressure dp 

for an in�nitesimal change in altitude dh where the mass density is ρ is 

dp = −ρgdh. Remember that ρ depends on the pressure. Evaluate (a) the 

pressure di�erence between the top and bottom of a laboratory vessel 

of height 15 cm, and (b) the external atmospheric pressure at a typical 

cruising altitude of an aircra� (11 km) when the pressure at ground level 

is 1.0 atm.

P1A.12‡ Balloons are still used to deploy sensors that monitor meteorological 

phenomena and the chemistry of the atmosphere. It is possible to investigate 

some of the technicalities of ballooning by using the perfect gas law. Suppose 

your balloon has a radius of 3.0 m and that it is spherical. (a) What amount of 

H2 (in moles) is needed to in�ate it to 1.0 atm in an ambient temperature of 

25 °C at sea level? (b) What mass can the balloon li� (the payload) at sea level, 

where the mass density of air is 1.22 kg m−3? (c) What would be the payload if 

He were used instead of H2?

P1A.13‡ Chloro�uorocarbons such as CCl3F and CCl2F2 have been linked to 

ozone depletion in Antarctica. In 1994, these gases were found in quantities 

of 261 and 509 parts per trillion by volume (World Resources Institute, 

World resources 1996–97). Compute the molar concentration of these gases 

under conditions typical of (a) the mid-latitude troposphere (10 °C and 

1.0 atm) and (b) the Antarctic stratosphere (200 K and 0.050 atm). Hint: 

�e composition of a mixture of gases can be described by imagining that 

the gases are separated from one another in such a way that each exerts the 

same pressure. If one gas is present at very low levels it is common to 

express its concentration as, for example, ‘x parts per trillion by volume’. 

�en the volume of the separated gas at a certain pressure is x × 10−12 of 

the original volume of the gas mixture at the same pressure. For a mixture 

of perfect gases, the volume of each separated gas is proportional to its 

partial pressure in the mixture and hence to the amount in moles of the gas 

molecules present in the mixture.

P1A.14 At sea level the composition of the atmosphere is approximately 

80 per cent nitrogen and 20 per cent oxygen by mass. At what height above 

the surface of the Earth would the atmosphere become 90 per cent nitrogen 

and 10 per cent oxygen by mass? Assume that the temperature of the 

atmosphere is constant at 25 °C. What is the pressure of the atmosphere at 

that height? Hint: Use a barometric formula, see Problem P1A.11, for each 

partial pressure.

‡ �ese problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 1B The kinetic model

Discussion questions

D1B.1 Specify and analyse critically the assumptions that underlie the kinetic 

model of gases.

D1B.2 Provide molecular interpretations for the dependencies of the mean free 

path on the temperature, pressure, and size of gas molecules.

D1B.3 Use the kinetic model of gases to explain why light gases, such as He, 

are rare in the Earth’s atmosphere but heavier gases, such as O2, CO2, and N2, 

once formed remain abundant.

Exercises

E1B.1(a) Determine the ratios of (i) the mean speeds, (ii) the mean 

translational kinetic energies of H2 molecules and Hg atoms at 20 °C.

E1B.1(b) Determine the ratios of (i) the mean speeds, (ii) the mean 

translational kinetic energies of He atoms and Hg atoms at 25 °C.

E1B.2(a) Calculate the root-mean-square speeds of H2 and O2 molecules at 

20 °C.

E1B.2(b) Calculate the root-mean-square speeds of CO2 molecules and He 

atoms at 20 °C.

E1B.3(a) Use the Maxwell–Boltzmann distribution of speeds to estimate the 

fraction of N2 molecules at 400 K that have speeds in the range 200–210 m s−1. 

Hint: �e fraction of molecules with speeds in the range v to v + dv is equal to 

f(v)dv, where f(v) is given by eqn 1B.4.

E1B.3(b) Use the Maxwell–Boltzmann distribution of speeds to estimate 

the fraction of CO2 molecules at 400 K that have speeds in the range 

400–405 m s−1. See the hint in Exercise E1B.3(a).

E1B.4(a) What is the relative mean speed of N2 and H2 molecules in a gas at 

25 °C?

E1B.4(b) What is the relative mean speed of O2 and N2 molecules in a gas at 

25 °C?

E1B.5(a) Calculate the most probable speed, the mean speed, and the mean 

relative speed of CO2 molecules at 20 °C.

E1B.5(b) Calculate the most probable speed, the mean speed, and the mean 

relative speed of H2 molecules at 20 °C.

E1B.6(a) Evaluate the collision frequency of H2 molecules in a gas at 1.00 atm 

and 25 °C.

E1B.6(b) Evaluate the collision frequency of O2 molecules in a gas at 1.00 atm 

and 25 °C.

E1B.7(a) Assume that air consists of N2 molecules with a collision diameter of 

395 pm. Calculate (i) the mean speed of the molecules, (ii) the mean free path, 

(iii) the collision frequency in air at 1.0 atm and 25 °C.

E1B.7(b) �e best laboratory vacuum pump can generate a vacuum of about 

1 nTorr. At 25 °C and assuming that air consists of N2 molecules with a 

collision diameter of 395 pm, calculate at this pressure (i) the mean speed of 

the molecules, (ii) the mean free path, (iii) the collision frequency in the gas.

E1B.8(a) At what pressure does the mean free path of argon at 20 °C become 

comparable to the diameter of a 100 cm3 vessel that contains it? Take 

σ = 0.36 nm2.

E1B.8(b) At what pressure does the mean free path of argon at 20 °C become 

comparable to 10 times the diameters of the atoms themselves? Take 

σ = 0.36 nm2.

E1B.9(a) At an altitude of 20 km the temperature is 217 K and the pressure is 

0.050 atm. What is the mean free path of N2 molecules? (σ = 0.43 nm2).

E1B.9(b) At an altitude of 15 km the temperature is 217 K and the pressure is 

12.1 kPa. What is the mean free path of N2 molecules? (σ = 0.43 nm2).

Problems

P1B.1 A rotating slotted-disc apparatus consists of �ve coaxial 5.0 cm diameter 

discs separated by 1.0 cm, the radial slots being displaced by 2.0° between 

neighbours. �e relative intensities, I, of the detected beam of Kr atoms for 

two di�erent temperatures and at a series of rotation rates were as follows:

ν/Hz 20 40 80 100 120

I (40 K) 0.846 0.513 0.069 0.015 0.002

I (100 K) 0.592 0.485 0.217 0.119 0.057

 Find the distributions of molecular velocities, f(vx), at these temperatures, and 

check that they conform to the theoretical prediction for a one-dimensional 

system for this low-pressure, collision-free system.

P1B.2 Consider molecules that are con�ned to move in a plane (a two-

dimensional gas). Calculate the distribution of speeds and determine the 

mean speed of the molecules at a temperature T.

P1B.3 A specially constructed velocity-selector accepts a beam of molecules 

from an oven at a temperature T but blocks the passage of molecules with a 

speed greater than the mean. What is the mean speed of the emerging beam, 

relative to the initial value? Treat the system as one-dimensional.

P1B.4 What, according to the Maxwell–Boltzmann distribution, is the 

proportion of gas molecules having (i) more than, (ii) less than the root mean 

square speed? (iii) What are the proportions having speeds greater and smaller 

than the mean speed? Hint: Use mathematical so�ware to evaluate the integrals.

P1B.5 Calculate the fractions of molecules in a gas that have a speed in a range 

Δv at the speed nvmp relative to those in the same range at vmp itself. �is 

calculation can be used to estimate the fraction of very energetic molecules 

(which is important for reactions). Evaluate the ratio for n = 3 and n = 4.

P1B.6 Derive an expression for 〈vn〉1/n from the Maxwell–Boltzmann 

distribution of speeds. Hint: You will need the integrals given in the Resource 

section, or use mathematical so�ware.

P1B.7 Calculate the escape velocity (the minimum initial velocity that will 

take an object to in�nity) from the surface of a planet of radius R. What is the 

value for (i) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, (ii) Mars, R = 3.38 × 

106 m, mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules 

have mean speeds equal to their escape speeds? What proportion of the 

molecules have enough speed to escape when the temperature is (i) 240 K, 

(ii) 1500 K? Calculations of this kind are very important in considering the 

composition of planetary atmospheres.

P1B.8 Plot di�erent Maxwell–Boltzmann speed distributions by keeping the 

molar mass constant at 100 g mol−1 and varying the temperature of the sample 

between 200 K and 2000 K.

P1B.9 Evaluate numerically the fraction of O2 molecules with speeds in the 

range 100 m s−1 to 200 m s−1 in a gas at 300 K and 1000 K.


