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P R E FAC E

We are pleased to introduce the eighth edition of Tietz 
Fundamentals of Clinical Chemistry and Molecular Diagnostics. 
We built on the excellent work of our predecessors and used 
electronic tools to produce a state-of-the-art product for stu-
dents, trainees, and practicing clinical laboratory scientists.

Chapters were extensively updated, and more than 60 new 
authors were recruited to present the most current and rele-
vant information. We aimed to harmonize the presentation of 
information among chapters while retaining the personality 
and unique style of each author, hoping for a readable, edu-
cational text.

Unlike most other textbooks, all chapters in this edition 
were reviewed by three individuals: a reviewer, an associate 
editor, and a senior editor. We believe that these e�orts have 
led to a better product. In addition, we made a concerted 
e�ort to create an international rather than an American 
product to re�ect di�erent practices from around the world; 
for example, all measurements are presented both in tradi-
tional and SI units.

In addition to the print format of Fundamentals, a wealth 
of supplementary educational materials including clinical 
case studies, biochemical calculations, multiple-choice ques-
tions, and references are available on the Elsevier Evolve plat-
form for an enhanced learning experience.

�is project has been a true group e�ort and represents 
the collective intellect, knowledge, and experience of approx-
imately 120 leaders in laboratory medicine from 13 countries. 
We are in debt not only to the authors, reviewers, and editors 
of the chapters but also to the contributors of the supplemen-
tary materials that greatly enrich the product. We are grateful 
to Elsevier, and particularly to Laurie Gower, for supporting 
us throughout this project.

We sincerely hope that this product will be a valuable edu-
cational and reference resource for the clinical laboratory sci-
entists’ community worldwide.

Nader Rifai

Andrea Rita Horvath

Carl T. Wittwer
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PART I Principles of Laboratory Medicine

1
Clinical Chemistry and 
Molecular Diagnostics

�e disciplines of clinical chemistry and molecular diagnos-
tics elicit di�erent images. For clinical chemistry, one thinks 
of pH measurements or large chemistry analyzers, whereas 
molecular diagnostics conjures up the human genome project, 
companion diagnostics, and personalized and precision med-
icine. Although clinical chemistry is at the core of laboratory 
medicine, molecular diagnostics is a more recent but explosive 
upstart. Clinical chemistry excels in random access testing, but 
molecular diagnostics has evolved massively parallel methods. 
On the surface, these disciplines appear clearly di�erent.

However, consider the meaning behind the words that 
compose “clinical chemistry” and “molecular diagnostics.” 
Chemistry by its very nature is molecular, and the study of 
molecules is chemistry. �ere is no di�erence here. Perhaps 
the “molecular” in “molecular diagnostics” suggests com-
plex polymers with meaningful sequence, excluding simpler 
chemicals. DNA and RNA sequences largely de�ne life, and 
powerful technologies for nucleic acids now eclipse those for 
other complex polymers such as proteins and carbohydrates. 
In common parlance, molecular diagnostics is dominated by 
nucleic acids. �e words “clinical” and “diagnostics” are also 
similar, connecting both �elds to human disease. “Clinical” 
is more generic than “diagnostics,” but again in common 
use, “molecular diagnostics” includes not only diagnostics 
but prognosis and genetic predisposition as well. In each 

O B J E C T I V E S

 1.  De�ne the following terms:
 •  Ethics
 •  Laboratory medicine
 •  Molecular diagnostics
 2.  List and explain the reasons for performing a laboratory test.
 3.  Describe the �eld of laboratory medicine, including 

subdisciplines, information handling, and ethical issues.
 4.  Describe the role of the clinical chemist.
 5.  Describe the possible career paths for the clinical chemist.

 6.  State the applications of molecular diagnostics in 
laboratory medicine.

 7.  List and explain �ve ethical issues that confront 
laboratorians; describe the critical importance of 
maintaining con�dentiality in the laboratory.

 8.  Evaluate a possible con�dentiality or con�ict of interest 
issue and determine whether it is an ethics violation.

 9.  State the roles of authors, editors, reviewers, and publishers 
in providing high quality scienti�c publications.

K E Y  W O R D S  A N D  D E F I N I T I O N S

Ethics Rules or standards governing the conduct of an 
individual or the members of a profession.

Laboratory medicine A component of laboratory 
science that is involved in the selection, provision, 
and interpretation of diagnostic testing of individual 
specimens.

Laboratory testing A process conducted in a clinical 
laboratory to rule in or rule out a diagnosis, to select and 

monitor disease treatment, to provide a prognosis, to 
screen for a disease, or to determine the severity of and 
monitor a physiological disturbance.

Molecular diagnostics Use of molecular biology 
techniques to predict, prevent, diagnose, and monitor 
disease, including the selection and optimization of 
therapies.

  

* �e authors gratefully acknowledge the contributions by David E. 

Bruns, François A. Rousseau, and Carl A. Burtis on which portions 

of this chapter are based.

Nader Rifai, Andrea Rita Horvath, Carl T. Wittwer*
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two-word combination, the sum is greater than its parts, with 
combined meanings evolving to �t needs and interest. We 
believe that molecular diagnostics is best viewed as a subset 
of clinical chemistry.

According to the de�nition of the International Federation 
of Clinical Chemistry and Laboratory Medicine (IFCC), 
“Clinical Chemistry is the largest subdiscipline of Laboratory 
Medicine which is a multidisciplinary medical and scien-
ti�c specialty with several interacting subdisciplines, such as 
hematology, immunology, clinical biochemistry, and others. 
�rough these activities clinical chemists in�uence the prac-
tice of medicine for the bene�t of the public.”

Clinical laboratories provide in vitro testing of chemical, 
biochemical, and genetic markers in various �uids or tissues 
of the human body to screen for a disease, con�rm or exclude 
a diagnosis, help to select or monitor a treatment, or assess 
prognosis. Laboratory testing impacts health care delivery to 
virtually every patient.

LOOKING BACK

�e examination of body �uids for the diagnosis of disease is 
certainly not a modern concept. �e Greeks noticed before 
400 bc that ants are attracted to “sweet urine.” However, lab-
oratory testing was not always appreciated by clinicians; the 
famous Dublin physician Robert James Graves (1796–1853) 
once remarked, “Few and scanty, indeed, are the rays of light 
which chemistry has �ung on the vital mysteries,” and the 
pioneer Max Josef von Pettenkofer (1818–1901) stated that 
clinicians use their chemistry laboratory services only when 
needed for “luxurious embellishment for a clinical lecture.” 
Such views have changed throughout the years, and labora-
tory testing has proven to be a useful tool to clinicians who 
have grown to depend and rely on laboratory testing in the 
routine management of their patients Box 1.1.

Although it may be di�cult to pinpoint the exact date 
when the concept of the clinical laboratory was born, all indi-
cations point to the mid-19th century. One such indication is 
an article titled “Hospital Construction” by Francis H. Brown 
that was published in the Boston Medical and Surgical Journal, 
the precursor of the New England Journal of Medicine, in 
1861. Dr. Brown stated, “[Every hospital should have] a small 

room at the end of the ward to serve as a general laboratory 
… necessary small cooking might be accomplished here; 
dishes and other articles washed, etc.; and it would serve as 
a general store-room for brooms, pails, and other articles.” 
Although Baron Justus von Liebig (1803–73) boasted that 
his clinical laboratory performed more than 400 tests per 
annum, the average mid- to large-sized laboratory nowadays 
performs several million tests yearly. �e term clinical chemis-
try was purportedly coined by Charles Henry Ralfe (1842–96) 
of London Hospital when he used it as the title of his 1883 
treatise. �e �rst laboratory attached to a hospital was estab-
lished in 1886 in Munich, Germany, by Hugo Wilhelm von 
Ziemssen. In the United States the �rst clinical laboratory 
was �e William Pepper Laboratory of Clinical Medicine, 
established in 1895 at the University of Pennsylvania in 
Philadelphia.

Molecular diagnostics has more recent origins. “Molecular 
diagnosis” was �rst mentioned in 1968 as the title of a New 
England Journal of Medicine editorial, commenting on a new 
inborn error of metabolism that overproduced oxalic acid, 
resulting in kidney stones. “Molecular” referred to an enzy-
matic pathway and the substrates, not nucleic acid variants. 
Twenty years later, additional articles describing “molecular 
diagnostics” began to appear. In 1986, molecular diagnostics 
was de�ned as, “… the detection and quanti�cation of speci�c 
genes by nucleic acid hybridization procedures,” exempli�ed 
by speciation of plant nematodes. In 1987, molecular diag-
nostics was used to describe mapping of antigenic substances 
by a�nity chromatography using immobilized antibodies. 
In 1988 the term was used to describe methods for detecting 
gene ampli�cation and rearrangement using Southern blot-
ting. With the advent of polymerase chain reaction (PCR), 
the term “molecular diagnostics” became more common, 
its use doubling in the medical literature every 6 to 7 years. 
By 1997, commercial real-time PCR instruments solidi�ed 
“molecular diagnostics” as a branch of clinical chemistry and 
laboratory medicine. 

EXPANDING BOUNDARIES DEFINED BY 

TECHNOLOGY

Unlike other specialties in laboratory medicine, clinical chem-
istry is very much in�uenced and shaped by technology. No 
discipline in laboratory medicine uses more technologies than 
clinical chemistry. Technologies that evolved over time not 
only changed practice but also remodeled the boundaries of 
the traditional clinical chemistry laboratory. For example, with 
the emergence of immunochemical techniques in the 1970s, 
the US Food and Drug Administration approved many tests 
for the measurement of proteins, small molecule hormones, 
and drugs, a development that profoundly changed clinical 
chemistry and its armamentarium of testing. Integrated auto-
mated platforms later enabled the measurement of hormones 
and therapeutic drugs by immunoassays simultaneously with 
electrolytes, glucose, and other general chemistry tests, thus 
subsuming the “endocrine lab” and the “drug lab.”

 •  Confirming a clinical suspicion (which could include making 

a diagnosis)

 •  Excluding a diagnosis

 •  Assisting in selection, optimization, and monitoring of 

treatment

 •  Providing a prognosis

 •  Screening for disease in the absence of clinical signs or 

symptoms

 •  Establishing and monitoring the severity of a physiological 

disturbance

BOX 1.1 Uses of Testing in the Clinical 
Laboratory
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Serologic tests for hepatitis and human immunode�ciency 
virus (HIV) and tests for autoimmune diseases also moved 
from their traditional home in microbiology and immunol-
ogy to chemistry analyzers. Immunoglobulin analysis fol-
lowed a similar path. �e typical clinical chemistry laboratory 
includes testing for general chemistries, speci�c proteins and 
immunoglobulins, therapeutic and abused drugs, blood gases, 
hormones, biogenic amines, porphyrins, vitamins, and trace 
elements. Testing for inborn errors of metabolism (such as the 
measurements of amino acids and organic acids), measure-
ments of coagulation factors, general hematologic testing, and 
serologic assays can belong either to the clinical chemistry labo-
ratory or to another subspecialty, depending on the institution.

Clinical chemists have embraced technology over the 
years and used it e�ectively to derive answers to clinical ques-
tions. In modern clinical chemistry laboratories, technologies 
include spectrophotometry, atomic absorption, �ame emis-
sion photometry, nephelometry, electrochemical and optical 
sensor technologies, electrophoresis, and chromatography. 
�e in�uence of automation, information technology, and 
miniaturization is evident in current clinical chemistry lab-
oratories. Mass spectrometry, once thought of as a research 
tool, is playing an ever-growing role in clinical chemistry for 
the measurement of both small molecules and peptides, and 
more recently proteins. Point-of-care testing is a disruptive 
innovation that decentralizes laboratory testing and presents 
the clinical chemist with many challenges and opportunities.

Molecular diagnostics has forever changed virology and 
microbiology, introducing faster and more sensitive meth-
ods based on nucleic acid ampli�cation rather than microbial 
replication. Nanotechnology, micro�uidics, electrical imped-
ance, re�ectance spectroscopy, and time-resolved �uores-
cence are only a few of the technologies used in point-of-care 
testing for proteins, drugs, DNA, and analysis of metabolites 
in small samples of whole blood. Molecular diagnostics in 
particular impacts diverse specialties, including infectious 
disease, genetics, and oncology, providing new tools for study 
at a molecular detail never before considered. In summary, 
the boundaries of clinical chemistry expand with technology, 
making the profession vibrant, interesting, and ever evolving.

�e scope of the profession is constantly changing for the very 
same reasons. Scienti�c and technological developments, medi-
cal needs, patient demands, and economic pressures bring vari-
ous disciplines of medicine closer together, and this integration 
results in more e�ective health care. For example, companion 
diagnostics, which help predict therapeutic responses and indi-
vidualize patient treatment options, bring together pharmacy 
and medical laboratories. Point-of-care testing in real time with 
medical intervention breaks the walls of laboratories to bring 
the profession closer to clinicians and patients. New disruptive 
technologies (e.g., “lab on a chip,” nanotechnology, home mon-
itoring) as well as movement toward patient empowerment and 
direct-to-consumer testing bring laboratory testing closer to 
patients. All of these developments present special challenges to 
the future generations of laboratory professionals both in terms 
of how they should be trained and how they will practice.

Technology alone is not the answer to more e�ective and 
cost-e�ective clinical practice. �e laboratory data obtained 
must be meaningful and support clinical management deci-
sions. �e generation of more data does not necessarily lead 
to better patient management and outcomes. In the 1960s and 
1970s, with the advent of automated clinical analyzers, labo-
ratories reported chemistry panels of 10 to 20 results. More 
recently, dense data from expression arrays, genome-wide 
association studies, epigenomics, and microRNA analyses 
excel in discovery research, but translation to clinical practice 
has been slower than anticipated. �e promise of greater clin-
ical signi�cance with larger data sets seems intuitive, but his-
tory suggests caution. Clinical chemists in this world of “big 
data” translate high-quality measurement data into clinically 
relevant information. �is information—when integrated 
with clinical history and presentation, clinical signs, and an 
understanding of pathophysiology—becomes knowledge. 
Knowledge, in the context of the experience and judgment of 
the clinician, is converted to wisdom that translates to clinical 
action for improved patient outcomes. 

HOW IS CLINICAL CHEMISTRY PRACTICED?

Although the majority of clinical chemists choose a career 
in a clinical laboratory environment, many work in the 
in  vitro diagnostics (IVD) and pharmaceutical industries. 
Clinical chemists, by virtue of their training, are transla-
tional researchers who are capable of developing, evalu-
ating, and validating biochemical and genetic assays for 
clinical use; they develop skills that are essential for new 
biomarker assays, reagent kits, and companion diagnostics. 
Clinical chemists also provide interfaces between research-
ers, clinicians, the clinical laboratory, and the IVD industry 
to help translate biomarker research into clinically mean-
ingful decisions and actions.

Clinical chemists practicing in the IVD or the pharma-
ceutical industry may not need to routinely interact with cli-
nicians or interpret laboratory results, but they understand 
and appreciate the clinical utility and relevance of the assays 
and companion diagnostics they are developing and thus 
contribute more e�ectively to the development of diagnostics 
that improve health. �e daily practice of the profession has 
changed over time. In the 1960s and 1970s, clinical chemists 
developed laboratory tests. At present, de novo assay develop-
ment is still active only in certain areas such as chromatogra-
phy, mass spectrometry, and molecular diagnostics.

However, as the profession matured and the instrumen-
tation changed from open systems to “black boxes,” the tra-
ditional analytical focus of the profession has signi�cantly 
diminished. Clinical chemists are now more active in the pre-
analytical and postanalytical phases of testing and in estab-
lishing processes such as how best to select the right test for 
the right patient and to communicate test results to clinicians 
in a medically meaningful way, how to build laboratory pro-
cesses that reduce error, and how to continuously improve the 
quality of laboratory practices (Box 1.2).
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In the current health care environment, there is increas-
ing emphasis on clinical impact and cost e�ectiveness. 
Laboratories are expected to demonstrate evidence of 
improved measurable clinical outcomes and the usefulness 
and added value of tests to clinical decision making. Proving 
the fact that laboratory testing contributes to improved patient 
outcomes is challenging because the relationship between 
testing and clinical outcomes is mostly indirect. Nevertheless, 
clinical chemists should move away from being just providers 
of high-quality data. Transforming laboratory data to infor-
mation and knowledge requires more skills in information 
and information management technology, evidence-based 
medicine, epidemiology, data mining, and translational 
research. It also requires a shi� of thinking from essentialism 
to consequentialism and from technology-driven to custom-
er-focused and patient-centered laboratory medicine.

To summarize, today’s clinical chemists are laboratory 
professionals who are trained in pathophysiology and tech-
nology. �e execution of their daily duties, which are more 
clinically or technology oriented, is in�uenced by their train-
ing (such as MD vs. PhD), interests, institutional needs, and 
the country where they practice. Clearly the practice of our 
profession has evolved over the past half a century, and there 
are even more challenges on the horizon that will expand and 
change its scope and role and enhance its diversity. 

GUIDING PRINCIPLES OF PRACTICING THE 

PROFESSION

As in other branches of medicine, practitioners in the clinical 
laboratory are faced with ethical issues, o�en on a daily basis; 
examples are listed in Box 1.3. 

CONFIDENTIALITY OF GENETIC 

INFORMATION

Con�dentiality of genetic information has been prominent in 
the news in the �rst and second decades of this millennium. 

Legislation was considered necessary to prevent denial of health 
insurance or employment to people found by DNA testing to be 
at risk of disease. Less appreciated is the fact that the issue of con-
�dentiality of clinical laboratory data predated DNA testing. In 
fact, many non-DNA tests, old and new, also carry information 
about risks of illness and death. Clinical laboratory professionals 
have long been responsible for maintaining the con�dentiality 
of all laboratory results, a situation made even more critical with 
the advent of increasingly powerful genetic testing. 

CONFIDENTIALITY OF PATIENT MEDICAL 

INFORMATION

New test development requires the use of patient sam-
ples and may involve the use of patient medical informa-
tion. Ethical judgments are required regarding the type of 
informed consent that is needed from patients for use of 
their samples and clinical information. Clinical laboratory 
physicians and scientists o�en serve on institutional review 
boards that examine proposed research on human sub-
jects. In these discussions, ethical concepts such as clinical 
equipoise―which refers to the genuine uncertainty in the 
expert medical community over whether a particular treat-
ment will be bene�cial―and con�dentiality are central to 
decisions. 

ALLOCATION OF RESOURCES

Because resources are �nite, laboratory professionals must 
make ethically responsible decisions about allocation of 
resources. �ere is o�en a trade-o� between cost and quality. 
What is best for patients generally? How can the most good 
be done with the available resources? For laboratorians in 
business, creative accounting may tarnish the profession if 
patient care is not kept paramount. 

CODES OF CONDUCT

Most professional organizations publish a code of conduct 
that requires adherence by their members. For example, the 
American Association for Clinical Chemistry (AACC) has 
published ethical guidelines that require AACC members 
to endorse principles of ethical conduct in their professional 
activities, including (1) selection and performance of clinical 
procedures, (2) research and development, (3) teaching, (4) 
management, (5) administration, and (6) other forms of pro-
fessional service. 

 •  Confidentiality of genetic information

 •  Confidentiality of patient medical information

 •  Allocation of resources

 •  Codes of conduct

 •  Publishing issues

 •  Conflicts of interest

BOX 1.3 Ethical Issues in Clinical 
Chemistry and Molecular Diagnostics

 •  Develop and validate de novo laboratory tests to meet 

clinical needs.

 •  Evaluate and characterize the analytical and clinical perfor-

mance of laboratory tests.

 •  Present laboratory results to clinicians in an effective manner.

 •  Provide education and advice on the selection and interpre-

tation of laboratory tests as part of the clinical team.

 •  Determine the cost effectiveness and intrinsic value of 

laboratory tests.

 •  Participate in the development of clinical testing algorithms 

and clinical practice guidelines.

 •  Ensure compliance with regulatory requirements.

 •  Participate in quality assurance and improvement of the 

laboratory service.

 •  Teach and train future generations of laboratory specialists.

 •  Participate in basic or clinical research.

BOX 1.2 Functions of the Laboratory 
Professional



5CHAPTER 1 Clinical Chemistry and Molecular Diagnostics

PUBLISHING ISSUES

Publication of documents having high scienti�c integrity 
depends on editors, authors, and reviewers all working in 
concert in an environment governed by high ethical stan-
dards.

Editors are responsible for the overall process, including 
identifying reviewers, evaluating the reviews and the authors’ 
response to them, and making the �nal decision of whether to 
accept or reject a manuscript. Editors are also responsible for 
establishing policies and procedures to ensure consistency in 
the editorial process. Finally, the editor-in-chief is responsi-
ble for developing a con�ict of interest policy and monitoring 
it among his or her editors. Publishers, being commercial or 
scienti�c societies, should monitor any con�icts of interest of 
the editor-in-chief.

Authors are responsible for honest and complete report-
ing of original data produced in ethically conducted research 
studies. Practices such as fraud, plagiarism (verbatim, mosaic), 
and falsi�cation or fabrication of data are unacceptable. �e 
International Committee of Medical Journal Editors and the 
Committee on Publication Ethics have published policies that 
address such behavior. Other practices to be avoided include 
duplicate publication, redundant publication, and inappro-
priate authorship credit. In addition, ethical policies require 
that factors that might in�uence the interpretation of study 
�ndings must be revealed, such as (1) the role of the commer-
cial sponsor in the design and conduct of the study, (2) inter-
pretation of results, and (3) preparation of the manuscript. 
Additional undesirable and harmful practices are publication 
bias and selective reporting, in which only studies with pos-
itive �ndings are reported and authors use “data dredging” 
and meaningless subanalyses to �nd a positive association 
rather than reporting the original hypothesis that was neg-
ative. �ese practices in�ate the actual value of observations 
or utility of markers and diminish the quality of meta-anal-
yses. As a result, a comprehensive registry of diagnostic and 
prognostic studies, similar to the registry of clinical trials, has 
been advocated.

Reviewers must provide a timely, fair, and impartial 
assessment of manuscripts. They must maintain confi-
dentiality and never contact the authors until after the 
publication of the report. Finally, reviewers must excuse 
themselves from the review process if they perceive a con-
flict of interest.

Most journals now require authors to complete con�ict of 
interest forms and delineate each author’s contribution. Some 
journals, including Clinical Chemistry, publish this informa-
tion along with the article for enhanced transparency. 

CONFLICTS OF INTEREST

�e interrelationships between practitioners in the medical 
�eld and commercial suppliers of drugs, devices, and equip-
ment can be positive or negative. Concerns led the National 
Institutes of Health in 1995 to require o�cial institutional 

review of �nancial disclosure by researchers and management 
in situations when disclosure indicates potential or actual 
con�icts of interest. In 2009 the Institute of Medicine issued 
a report that questioned inappropriate relationships between 
pharmaceutical device companies and physicians and other 
health care professionals. Similarly, the relationship between 
clinical laboratory professionals and manufacturers and pro-
viders of diagnostic equipment and supplies can be scruti-
nized.

As a consequence of these concerns and as a result of 
the enactment of various laws designed to prevent fraud, 
abuse, and waste in Medicare, Medicaid, and other health 
care reimbursement programs, professional organizations 
that represent manufacturers of IVD and other device and 
health care companies have published codes of ethics. For 
example, the Advanced Medical Technology Association 
has published a revised code of ethics that became e�ec-
tive on July 1, 2009. Topics discussed in this revised code 
include gi�s and entertainment, consulting arrangements 
and royalties, reimbursement for testing, and educa-
tion. Similarly, the European Diagnostic Manufacturers 
Association has published a code of ethics, including 
issues of member-sponsored product training and educa-
tion, support for third-party educational conferences, sales 
and promotional meetings, consultants, gi�s, provision of 
reimbursements, and donations for charitable and philan-
thropic purposes. Both documents address demands from 
regulators while nurturing the unique role that laboratory 
and other health care professionals play in developing and 
re�ning new technology. 

WHAT IS IN THIS TEXTBOOK?

In this textbook, we have assembled what is essential to 
e�ectively practice clinical chemistry and molecular diag-
nostics. We begin with introductory chapters that describe 
the basics of laboratory medicine, including statistics, sam-
ple handling, preanalytical processes, reference intervals, 
and quality control. �is is followed by a section on ana-
lytical techniques and applications, describing the main 
methods used in clinical chemistry, including immunoas-
says, mass spectrometry, and point-of-care testing. Next, all 
the major analytes are discussed, including enzymes, tumor 
markers, therapeutic drugs, and toxicology, among many 
others. �is is followed by a section on pathophysiology 
that covers disease states and malfunction of di�erent organ 
systems that correlate with abnormal laboratory �ndings. 
Finally, our last section is dedicated to molecular diagnos-
tics, perhaps the fastest growing �eld in clinical chemistry. 
An appendix tabulates reference intervals for the clinical 
laboratory. �e online version includes clinical cases, pod-
casts, and biochemical calculations. Our aim is to provide 
current scienti�c and practical knowledge to support labo-
ratory professionals with knowledge resources that interface 
between science and technology on the one hand and the 
clinician and the patient on the other.



PART I Principles of Laboratory Medicine6

SUGGESTED READINGS

Altman, D. G. (2014). �e time has come to register diagnostic and 

prognostic research. Clinical Chemistry, 60, 580–582.

Annesley, T. M., Boyd, J. C., & Rifai, N. (2009). Publication ethics: 

clinical chemistry editorial standards. Clinical Chemistry, 55, 

1–4.

Hallworth, M. J., Epner, P. L., Ebert, C., et al. (2015). Current 

evidence and future perspectives on the e�ective practice of 

patient-centered laboratory medicine. Clinical Chemistry, 61(4), 

589–599.

McMurray, J., Zerah, S., Hallworth, M., et al. (2010). �e European 

Register of Specialists in Clinical Chemistry and Laboratory 

Medicine: guide to the Register, version 3-2010. Clinical Chemis-

try and Laboratory Medicine, 48, 999–1008.

Rifai, N., Annesley, T., & Boyd, J. (2010). International year of 

chemistry 2011: Clinical Chemistry celebrates. Clinical Chemis-

try, 56, 1783–1785.

 •  Clinical chemistry is the largest subdiscipline of laboratory 

medicine, and molecular diagnostics is a subset of clinical 

chemistry.

 •  Clinical chemistry is a profession that has been shaped and 

defined by technology.

 •  The role of clinical chemists evolved over time from analyt-

ically and technology focused to customer and patient cen-

tered.

 •  Clinical chemists are translational researchers who convert 

laboratory data to clinical knowledge.

 •  Career paths of clinical chemists are heterogeneous and 

include work in clinical laboratories and in vitro diagnostics 

and pharmaceutical industries.

 •  Clinical chemists must adhere to guiding principles of prac-

ticing the profession, which include maintaining confiden-

tiality of genetic and medical information, using resources 

appropriately, abiding by codes of conduct, following ethical 

publishing rules, and managing and disclosing conflict of 

interest.

POINTS TO REMEMBER

   R E V I E W  Q U E S T I O N S

 1.  �e clinical laboratory discipline that is used most o�en to 
assess inherited disease through study of the constitutive 
genome is:

 a.  transfusion services.
 b.  clinical chemistry.
 c.  molecular diagnostics.
 d.  hematology.
 2.  When a practitioner in clinical chemistry has an inappro-

priate personal relationship with a commercial supplier of 
chemistry analyzers, there may be a potential issue with:

 a.  publication ethics.
 b.  con�dentiality.
 c.  selection of treatment.
 d.  con�ict of interest.

 3.  “Molecular testing” involves the clinical analysis of:
 a.  atoms and molecules.
 b.  nucleic acids.
 c.  cellular components of blood.
 d.  the physical structure of compounds.
 4.  Which one of the following is not considered an ethical 

issue facing a clinical laboratorian?
 a.  Allocation of resources
 b.  Con�icts of interest
 c.  Discussion of one’s salary
 d.  Maintenance of con�dentiality
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2

Analytical and Clinical Evaluation of Methods

Kristian Linnet, Karel G.M. Moons, James C. Boyd

O B J E C T I V E S

 1.  De�ne the following:
 •  Analytical measurement range
 •  Analytical speci�city
 •  Bias
 •  Coe�cient of variation
 •  Correlation coe�cient
 •  Di�erence curve
 •  Error model
 •  Frequency distribution
 •  Gaussian probability distribution
 •  Limit of detection
 •  Linearity
 •  Mean
 •  Median
 •  Population
 •  Precision
 •  Random error
 •  Random sample
 •  Regression analysis
 •  Sample
 •  Standard deviation
 •  Systematic error
 •  Student t distribution
 •  Trueness
 •  Uncertainty
 2.  List and describe three criteria that must be 

considerations in laboratory method selection, 
including the speci�c parameters involved in each 
criterion.

 3.  Compare population and sample mean, population 
parameter and sample statistic, and population 
standard deviation and sample standard deviation, 
including a description of each, symbols used to 
express these, how they are calculated, and the 
information they provide.

 4.  State the connection of the following concepts to 
analytical methods:

 •  Accuracy
 •  Analytical sensitivity
 •  Analytical speci�city
 •  Calibration
 •  Limit of detection

 •  Linearity
 •  Precision
 •  Repeatability
 •  Reproducibility
 5.  List two common approaches used to objectively 

analyze data in a methods comparison study.
 6.  Describe the components of a di�erence plot, including 

the plot’s use in method comparison and how the plot is 
interpreted.

 7.  Discuss assessment of error in an objective analysis 
of data in method comparison, including how 
error occurrence relates to an assay’s performance 
characteristics, the di�erence between random and 
systematic error, what causes error, and how error is 
evaluated in a di�erence plot.

 8.  For the following types of analyses, list the components 
of the analysis, its application in method comparison, 
how it is computed, how outliers a�ect it, and how the 
results are interpreted:

 •  Deming regression
 •  Nonparametric regression
 •  Ordinary least-squares regression
 •  Regression
 9.  Describe the calibration hierarchy, including the tracing 

of values of routine clinical chemistry measurements 
to a primary reference, how the values are obtained, 
and the methods involved; draw a calibration hierarchy 
given a speci�c analyte.

 10.  Discuss the concept of uncertainty in relation to clinical 
laboratory results, including the components of the 
standard uncertainty formula and two ways in which 
uncertainty is assessed.

 11.  Given appropriate values, state the formula and 
calculate the following:

 •  Coe�cient of variation
 •  Coe�cient of variation percent
 •  Deming regression
 •  Linear regression
 •  Population mean
 •  Precision analyses
 •  Standard deviation
 •  Standard uncertainty
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 •  Likelihood ratio
 •  Odds ratio
 •  Predictive value
 •  Prevalence
 •  Receiver operating characteristic curve
 •  Sensitivity
 •  Speci�city
 •  True/false positive
 •  True/false negative
 12.  State the formulas for and calculate, given appropriate 

information, the following: sensitivity, speci�city, 
predictive value for positive/negative tests (posterior 
probabilities), odds ratio, and positive/negative 
likelihood ratio.

 13.  State the relationship between high sensitivity and false 
negatives; state the relationship between high speci�city 
and false positives.

 14.  Compare dichotomous and continuous tests; include 
de�nition, sensitivity/speci�city, and a clinical example 
of each type of test.

 15.  State how the predictive value of a laboratory test 
(posterior probability) is a�ected by prevalence.

 16.  Construct and interpret a receiver operating 
characteristic curve using data from a diagnostic test 
study.

 17.  Describe the added value of combination testing as it 
is used in the clinical laboratory; include examples, 
diagnostic usefulness, and associated problems.

K E Y  W O R D S  A N D  D E F I N I T I O N S

Accuracy of analytical method Closeness of agreement of a 
single measurement with “true value.”

Analyte �e substance being analyzed in an analytical 
procedure.

Analytical measurement range �e analyte concentration 
range over which measurements are within the declared 
tolerances for imprecision and bias; also referred to as 
reportable range.

Analytical sensitivity �e ability of an analytical method to 
assess small variations in the concentration of analyte.

Analytical speci�city �e ability of an assay procedure 
to determine speci�cally the concentration of the 
target analyte in the presence of potentially interfering 
substances or factors in the sample matrix.

Assay comparison Comparison of measurements by two 
methods that is carried out objectively using statistical 
procedures and graphics displays.

Bias In an analytical method, the di�erence between 
the average value and the true value that is expressed 
numerically and is inversely related to the trueness.

Calibration In relation to analytical methods, a function 
that describes the relationship between instrument signal 
and concentration of analyte.

Coe�cient of variation Relative standard deviation.
Commutability �e equivalence of the mathematical 

relationships between the results of di�erent 
measurement procedures for a reference material and 
for representative samples from healthy and diseased 
individuals.

Correlation coe�cient Measure of association between two 
variables.

Deming regression Least-squares regression analysis taking 
measurement errors in both variables into account.

Di�erence plot A bias plot that shows the dispersion  
of observed di�erences between the measurements  
of two methods as a function of the average 
concentration of the measurements; also referred to as a 
Bland-Altman plot.

Error model A model of the error structure.
Frequency distribution A distribution of the frequency 

(ordinate) as a function of the variable value (abscissa), 
that is, a histogram of absolute or relative frequencies.

Gaussian probability distribution Bell shaped relative 
frequency distribution described under basic statistics.

Likelihood ratio �e probability of occurrence of a speci�c 
test value given that the disease is present divided by 
the probability of the same test value if the disease was 
absent.

Linearity Range of values for which there is a linear 
relationship between concentration and signal.

Limit of detection An assay characteristic de�ned as the 
lowest value that signi�cantly exceeds the measurements 
of a blank sample.

Matrix In relation to analytical methods, human serum that 
contains analytes.

Mean Arithmetic average of variables. See Basic Statistics.
Median Equal to the 50th percentile of a set of variables. 

See Basic Statistics.
Negative predictive value �e proportion of subjects with 

a negative test who do not have the disease.
Odds ratio �e probability of the presence of a speci�c 

disease divided by the probability of its absence.
Ordinary least-squares regression (OLR) analysis A method 

used to estimate the unknown parameters in a linear 
regression assessment performed to minimize the sum of 
squared vertical distances between observed responses and 
responses predicted by linear approximation.

Population In relation to analytical methods, the complete 
set of all observations that might occur as the result of 
performing a particular procedure according to speci�ed 
conditions.

Positive predictive value �e proportion of subjects with a 
positive test who have the disease.

Precision �e closeness of agreement between independent 
results of measurements obtained under stipulated 
conditions. Usually expressed as the standard deviation.
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Prevalence �e frequency of disease in the population 
examined.

Random error Error that arises from imprecision of 
measurement of the type that is described by a Gaussian 
distribution (e.g., caused by pipetting variability, signal 
variability).

Random sample A random sample from a population is 
one in which each member has an equal chance of being 
selected.

Receiver operating characteristic curve A graph of 
sensitivity versus 1—speci�city for all possible cuto� 
values of a diagnostic test; used to estimate sensitivity and 
speci�city for various decision cuto�s.

Reference measurement procedure A procedure of highest 
analytical quality that has been shown to yield values 
having an uncertainty of measurement commensurate 
with its intended use, especially in assessing the trueness 
of other measurement procedures for the same quantity 
and in characterizing reference materials.

Regression analysis A statistical analysis that compares 
measurement relations between two analytical methods.

Repeatability Closeness of agreement between results of 
successive measurements carried out under the same 
conditions (i.e., corresponding to within-run precision).

Reproducibility Closeness of agreement between results 
of successive measurements carried out under changed 
conditions (e.g., corresponding to between-runs).

Sample A �nite set of variables drawn from an in�nite 
population of variables.

Sensitivity �e proportion of subjects with disease who 
have a positive laboratory test result.

Speci�city �e proportion of subjects without disease who 
have a negative laboratory test result.

Standard deviation Square root of sum of squared 
deviations from the mean divided by number of variables 
minus one. See under Basic Statistics.

Student t distribution Distribution related to the Gaussian 
distribution given a limited sample size. See under Basic 
Statistics.

Systematic error Error in measurement that arises from 
calibration bias or nonspeci�city of an assay and, in 
the course of a number of analyses of the same analyte, 
remains constant (y-intercept deviation from zero) or 
varies in a proportional way (slope deviation from unity) 
based on the analyte concentration.

Traceability In relation to analytical methods, a concept 
based on a chain of comparisons of measurements that 
lead to a known reference value done to ensure reasonable 
agreement between measurements of routine methods.

Trueness A qualitative term that describes the closeness of 
agreement between the average value obtained from a 
large series of results of measurements and a true value.

Uncertainty A parameter associated with the result of a 
measurement that characterizes the dispersion of the 
values that could reasonably be attributed to the measure; 
more brie�y, uncertainty is a parameter characterizing 
the range of values within which the value of the quantity 
being measured is expected to lie.

  

ASSAY SELECTION OVERVIEW

�e introduction of new or revised laboratory tests, markers, 
or assays is a common occurrence in the clinical laboratory. 
Test selection and evaluation are key steps in the process of 
implementing new measurement procedures (Fig. 2.1).

Evaluation of tests, markers, or assays in the clinical 
laboratory is in�uenced strongly by guidelines and accred-
itation or other regulatory standards. �e Clinical and 
Laboratory Standards Institute (CLSI) has published a 
series of consensus protocols for clinical chemistry labora-
tories and manufacturers to follow when evaluating meth-
ods (http://www. clsi.org). �e International Organization 
for Standardization (ISO) has also developed several doc-
uments related to method evaluation (ISOs). In addition, 
meeting laboratory accreditation requirements has become 
an important aspect in most countries. Abbreviations are 
listed in Box 2.1.

Analytical Performance Criteria
In evaluation of a laboratory test, (1) trueness (formerly 
termed accuracy), (2) precision, (3) analytical range, (4) 
detection limit, and (5) analytical speci�city are of prime 
importance. �e sections in this chapter on laboratory test 

evaluation and comparison contain detailed outlines of these 
concepts. Estimated test performance parameters should be 
related to analytical performance speci�cations that ensure 
acceptable clinical use of the test and its results. For more 
details related to the recommended models for setting ana-
lytical performance speci�cations, readers are referred to 
Chapters 4 and 7. From a practical point of view, the “rugged-
ness” of the test in routine use is of importance, and reliable 
performance, when used by di�erent operators and with dif-
ferent batches of reagents over long time periods, is essential. 

BASIC STATISTICS

In this section, fundamental statistical concepts and techniques 
are introduced in the context of typical analytical investigations. 
�e basic concepts of (1) populations, (2) samples, (3) param-
eters, (4) statistics, and (5) probability distributions are de�ned 
and illustrated. Two important probability distributions—
Gaussian and Student t—are introduced and discussed.

Frequency Distribution
A graphical device for displaying a large set of laboratory test 
results is the frequency distribution, also called a histogram. 

http://www.clsi.org
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Fig. 2.2 shows a frequency distribution displaying the results 
of serum gamma-glutamyltransferase (GGT) measurements 
of 100 apparently healthy 20- to 29-year-old men. �e fre-
quency distribution is constructed by dividing the measure-
ment scale into cells of equal width; counting the number, 
ni, of values that fall within each cell; and drawing a rectan-
gle above each cell whose area (and height because the cell 
widths are all equal) is proportional to ni. In this example, the 
selected cells were 5 to 9, 10 to 14, 15 to 19, 20 to 24, 25 to 29, 
and so on, with 60 to 64 being the last cell (range of values, 
5 to 64 U/L). �e ordinate axis of the frequency distribution 

gives the number of values falling within each cell. When this 
number is divided by the total number of values in the data 
set, the relative frequency in each cell is obtained.

O�en, the position of the value for an individual within a 
distribution of values is useful medically. �e nonparametric 
approach can be used to determine directly the percentile of 
a given subject. Having ranked N subjects according to their 
values, the n-percentile, Percn, may be estimated as the value of 
the [N(n/100) + 0.5] ordered observation. In the case of a non-
integer value, interpolation is carried out between neighbor 
values. �e 50th percentile is the median of the distribution. 

Population and Sample
It is useful to obtain information and draw conclusions about 
the characteristics of the test results for one or more target 
populations. In the GGT example, interest is focused on the 
location and spread of the population of GGT values for 20- 
to 29-year-old healthy men. �us a working de�nition of a 
population is the complete set of all observations that might 
occur as a result of performing a particular procedure accord-
ing to speci�ed conditions.

Most target populations of interest in clinical chemistry are in 
principle very large (millions of individuals) and so are impossi-
ble to study in their entirety. Usually a subgroup of observations 
is taken from the population as a basis for forming conclusions 
about population characteristics. �e group of observations 
that has been selected from the population is called a sample. 
For example, the 100 GGT values make up a sample from a 
respective target population. However, a sample is used to study 
the characteristics of a population only if it has been properly 
selected. For instance, if the analyst is interested in the popula-
tion of GGT values over various lots of materials and some time 
period, the sample must be selected to be representative of these 
factors, as well as of age, sex, and health factors of the individuals 
in the targeted population. Consequently, exact speci�cation of 
the target population(s) is necessary before a plan for obtaining 
the sample(s) can be designed. In this chapter, a sample is also 
used as a specimen, depending on the context. 

Probability and Probability Distributions
Consider again the frequency distribution in Fig. 2.2. In 
addition to the general location and spread of the GGT 
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Fig. 2.2 Frequency distribution of 100 gamma-glutamyltransferase 

(GGT) values.

Quality control practices

Routine analysis

Implementation

Method verification/
validation

Method selection/
development

Definition of quality goal

Establish need

Result report

Fig. 2.1 A flow diagram that illustrates the process of introducing a 

new assay into routine use.

CI Confidence interval

CV Coefficient of variation (= SD/x, where x is the 

concentration)

CV% = CV × 100%

CVA Analytical coefficient of variation

CVRB Sample-related random bias coefficient of 

variation

ISO International Organization for Standardization

OLR Ordinary least-squares regression analysis

SD Standard deviation

SEM Standard error of the mean
(

= SD/
√

N
)

SDA Analytical standard deviation

SDRB Sample-related random bias standard deviation

xm Mean

xmw Weighted mean

BOX 2.1 Abbreviations
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determinations, other useful information can be easily 
extracted from this frequency distribution. For instance, 
96% (96 of 100) of the determinations are less than 55 U/L, 
and 91% (91 of 100) are greater than or equal to 10 but 
less than 50 U/L. Because the cell interval is 5 U/L in this 
example, statements such as these can be made only to the 
nearest 5 U/L. A larger sample would allow a smaller cell 
interval and more refined statements. For a sufficiently 
large sample, the cell interval can be made so small that 
the frequency distribution can be approximated by a con-
tinuous, smooth curve, similar to that shown in Fig. 2.3. In 
fact, if the sample is large enough, this can be considered 
a close representation of the “true” target population fre-
quency distribution. In general, the functional form of the 
population frequency distribution curve of a variable x is 
denoted by f(x).

�e population frequency distribution allows us to make 
probability statements about the GGT of a randomly selected 
member of the population of healthy 20- to 29-year-old 
men. For example, the probability Pr(x > xa) that the GGT 
value x of a randomly selected 20- to 29-year-old healthy 
man is greater than some particular value xa is equal to the 
area under the population frequency distribution to the 
right of xa. If xa = 58, then from Fig. 2.3, Pr(x > 58) = 0.05. 
Similarly, the probability Pr(xa < x < xb) that x is greater than 
xa but less than xb is equal to the area under the population 
frequency distribution between xa and xb. For example, if  
xa = 9 and xb = 58, then from Fig. 2.3, Pr(9 < x < 58) = 0.90. 
Because the population frequency distribution provides all 
information related to probabilities of a randomly selected 
member of the population, it is called the probability dis-
tribution of the population. Although the true probability 
distribution is never exactly known in practice, it can be 
approximated with a large sample of observations, that is, 
test results. 

Parameters: Descriptive Measures of a 
Population
Any population of values can be described by measures of its 
characteristics. A parameter is a constant that describes some 
particular characteristic of a population. Although most pop-
ulations of interest in analytical work are in�nite in size, for 
the following de�nitions, the population will be considered to 
be of �nite size N, where N is very large.

One important characteristic of a population is its central 
location. �e parameter most commonly used to describe the 
central location of a population of N values is the population 
mean (μ):

μ =
∑

xi

N

An alternative parameter that indicates the central ten-
dency of a population is the median, which is de�ned as the 
50th percentile, Perc50.

Another important characteristic is the dispersion of val-
ues about the population mean. A parameter very useful in 
describing this dispersion of a population of N values is the 
population variance σ2 (sigma squared):

σ2 =
∑

(xi − μ)2

N
�e population standard deviation (SD) σ, the positive square 

root of the population variance, is a parameter frequently used 
to describe the population dispersion in the same units (e.g., 
mg/dL) as the population values. For a Gaussian distribution, 
95% of the population of values are located within the mean 
±1.96 σ. If a distribution is non-Gaussian (e.g., asymmetric), 
an alternative measure of dispersion based on the percentiles 
may be more appropriate, such as the distance between the 
25th and 75th percentiles (the interquartile interval). 

Statistics: Descriptive Measures of the Sample
As noted earlier, clinical chemists usually have at hand only a 
sample of observations (i.e., test results) from the overarching 
targeted population. A statistic is a value calculated from the 
observations in a sample to estimate a particular characteris-
tic of the target population. As introduced earlier, the sample 
mean xm is the arithmetical average of a sample, which is an 
estimate of μ. Likewise, the sample standard deviation (SD) 
is an estimate of σ, and the coe�cient of variation (CV) is the 
ratio of the SD to the mean multiplied by 100%. �e equations 
used to calculate xm, SD, and CV, respectively, are as follows:

xm =
∑

xi

N

SD =

√

∑

(xi − xm)
2

N − 1
=

�

�

�

�

∑

x2
i − (

∑

xi)
2

N
N − 1

CV = SD

xm
× 100%

where xi is an individual measurement and N is the number of 
sample measurements.

�e SD is an estimate of the dispersion of the distribution. 
In addition, from the SD, an estimate of the uncertainty of xm 
can be derived as an estimate of μ (see later discussion). 

Random Sampling
A random sample of individuals from a target population is 
one in which each member of the population has an equal 
chance of being selected. A random sample is one in which 
each member of the sample can be considered to be a random 
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selection from the target population. Although much of sta-
tistical analysis and interpretation depends on the assump-
tion of a random sample from some population, actual data 
collection o�en does not satisfy this assumption. In particu-
lar, for sequentially generated data, it is o�en true that obser-
vations adjacent to each other tend to be more alike than 
observations separated in time. 

Gaussian Probability Distribution
�e Gaussian probability distribution, illustrated in Fig. 2.4, 
is of fundamental importance in statistics for several reasons. 
As mentioned earlier, a particular test result x will not usually 
be equal to the true value μ of the specimen being measured. 
Rather, associated with this particular test result x will be a 
particular measurement error ε = x − μ, which is the result of 
many contributing sources of error. Pure measurement errors 
tend to follow a probability distribution similar to that shown 
in Fig. 2.4, where the errors are symmetrically distributed, 
with smaller errors occurring more frequently than larger 
ones, and with an expected value of 0. �is important fact is 
known as the central limit e�ect for distribution of errors: if a 
measurement error ε is the sum of many independent sources 
of error, such as ε1, ε2, … , εk, several of which are major con-
tributors, the probability distribution of the measurement 
error ε will tend to be Gaussian as the number of sources of 
error becomes large.

Another reason for the importance of the Gaussian proba-
bility distribution is that many statistical procedures are based 
on the assumption of a Gaussian distribution of values; this 
approach is commonly referred to as parametric. Furthermore, 
these procedures usually are not seriously invalidated by 
departures from this assumption. Finally, the magnitude of 
the uncertainty associated with sample statistics can be ascer-
tained based on the fact that many sample statistics computed 
from large samples have a Gaussian probability distribution.

�e Gaussian probability distribution is completely char-
acterized by its mean μ and its variance σ2. �e notation 
N(μ, σ2) is o�en used for the distribution of a variable that is 
Gaussian with mean μ and variance σ2. Probability statements 

about a variable x that follows an N(μ, σ2) distribution are 
usually made by considering the variable z,

z = x − μ
σ

which is called the standard Gaussian variable. �e variable 
z has a Gaussian probability distribution with μ = 0 and  
σ 2 = 1, that is, z is N(0, 1). �e probably that x is within 2σ of μ 
[i.e., Pr(|x − μ| < 2σ) =] is 0.9544. Most computer spreadsheet 
programs can calculate probabilities for all values of z. 

Student t Probability Distribution
To determine probabilities associated with a Gaussian dis-
tribution, it is necessary to know the population SD σ. In 
actual practice, σ is o�en unknown, so z cannot be calculated. 
However, if a random sample can be taken from the Gaussian 
population, the sample SD can be calculated, by substituting 
SD for σ, and computing the value t:

t = x − μ
SD

Under these conditions, the variable t has a probability dis-
tribution called the Student t distribution. �e t distribution is 
a family of distributions depending on the degrees of freedom 
ν (= N − 1) for the sample SD. Several t distributions from this 
family are shown in Fig. 2.5. When the size of the sample and 
the degrees of freedom for SD are in�nite, there is no uncer-
tainty in SD, so the t distribution is identical to the standard 
Gaussian distribution. However, when the sample size is small, 
the uncertainty in SD causes the t distribution to have greater 
dispersion and heavier tails than the standard Gaussian distri-
bution, as illustrated in Fig. 2.5. At sample sizes above 30, the 
di�erence between the t distribution and the Gaussian distri-
bution becomes relatively small and can usually be neglected. 
Most computer spreadsheet programs can calculate probabili-
ties for all values of t, given the degrees of freedom for SD.

�e Student t distribution is commonly used in signi�-
cance tests, such as comparison of sample means, or in test-
ing conducted if a regression slope di�ers signi�cantly from 
1. Descriptions of these tests can be found in statistics text-
books. Another important application is the estimation of 
con�dence intervals (CIs). CIs are intervals that indicate the 
uncertainty of a given sample estimate. For example, it can 
be proved that Xm ± talpha (SD/N0.5) provides an approximate 
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2alpha-CI for the mean. A common value for alpha is 0.025 or 
2.5%, which thus results in a 0.95% or 95% CI. Given sample 
sizes of 30 or higher, talpha is about 2. (SD/N0.5) is called the 
standard error (SE) of the mean. A CI should be interpreted as 
follows. Suppose a sampling experiment of drawing 30 obser-
vations from a Gaussian population of values is repeated 100 
times, and in each case, the 95% CI of the mean is calculated 
as described. �en, in 95% of the drawings, the true mean 
μ is included in the 95% CI. According to the central limit 
theorem, distributions of mean values converge toward the 
Gaussian distribution irrespective of the primary type of dis-
tribution of x. �is means that the 95% CI is a robust estimate 
only minimally in�uenced by deviations from the Gaussian 
distribution. In the same way, the t-test is robust toward devi-
ations from normality. 

Nonparametric Statistics
Distribution-free statistics, often called nonparametric 
statistics, provides an alternative to parametric statistical 
procedures that assume data to have Gaussian distribu-
tions. For example, distributions of reference values are 
often skewed and so do not conform to the Gaussian dis-
tribution (see Chapter 5 on reference intervals). Formally, 
to judge whether a distribution is Gaussian or not, a good-
ness of fit test should be conducted. A commonly used 
test is the Kolmogorov-Smirnov test, in which the shape 
of the sample distribution is compared with the shape 
presumed for a Gaussian distribution. If the difference 
exceeds a given critical value, the hypothesis of a Gaussian 
distribution is rejected, and it is then appropriate to apply 
nonparametric statistics. A special problem is the occur-
rence of outliers, (i.e., single measurements highly deviat-
ing from the remaining measurements). Outliers may rely 
on biological factors and so be of real significance (e.g., in 
the context of estimating reference intervals) or they may 
be related to clerical errors. Special tests exist for handling 
outliers.

Given that a distribution is non-Gaussian, it is appropriate 
to apply nonparametric descriptive statistics based on the per-
centile or quantile concept. �e n-percentile, Percn, of a sample 
of N values may be estimated as the value of the [N(n/100) +  
0.5] ordered observation. In the case of a noninteger value, 
interpolation is carried out between neighbor values. �e 
median is the 50th percentile, which is used as a measure of 
the center of the distribution. For the GGT example, we would 
order the N = 100 values according to size. �e median or 50th 
percentile is then the value of the [100(50/100) + 0.5 = 50.5] 
ordered observation (the interpolated value between the 50th 
and 51st ordered values). �e 2.5th and 97.5th percentiles are 
values of the [100(2.5/100) + 0.5 = 3] and [100(97.5/100) +  
0.5 = 98] ordered observations, respectively. When a 95% 
reference interval is estimated, a nonparametric approach 
is o�en preferable because many distributions of reference 
values are asymmetric. Generally, distributions based on the 
many biological sources of variation are o�en non-Gaussian 
compared with distributions of pure measurement errors that 
usually are Gaussian.

�e nonparametric counterpart to the t-test is the Mann-
Whitney test, which provides a signi�cance test for the dif-
ference between median values of the two groups to be 
compared, given the same shape of the distributions. When 
there are more than two groups, the Kruskal-Wallis test can 
be applied. 

Categorical Variables
When dealing with qualitative tests and in the context of 
evaluating diagnostic testing, categorical variables that 
only take the value positive or negative come into play. 
�e performance is here given as proportions or percent-
ages, which are proportions multiplied by 100. For exam-
ple, the diagnostic sensitivity of a test is the proportion of 
diseased subjects who have a positive result. Having tested, 
for example, 100 patients, 80 might have had a positive test 
result. �e sensitivity then is 0.8% or 80%. Exact estimates 
of the uncertainty can be derived from the so-called bino-
mial distribution, but for practical purposes, an approx-
imate expression for the 95% CI is usually applied as the 
estimated proportion P ± 2SE, where the SE in this context 
is derived as:

SE= [P (1−P) /N ]
0.5

where P is here a proportion and not a percentage. In the 
example, the SE equals 0.0016 and so the 95% CI is 0.77 to 
0.83 or 77% to 83%. �e applied approximate formula for the 
SE is regarded as reasonably valid when NP and N(1 − P) both 
are equal to or higher than 5. 

TECHNICAL VALIDITY OF ANALYTICAL 
ASSAYS

�is section de�nes the basic concepts used in this chapter: 
(1) calibration, (2) trueness and accuracy, (3) precision, (4) 
linearity, (5) limit of detection (LOD), (6) limit of quanti�ca-
tion, (7) speci�city, and (8) others.

Calibration
�e calibration function is the relation between instrument 
signal (y) and concentration of analyte (x), that is,

y = f (x)

�e inverse of this function, also called the measuring 
function, yields the concentration from response:

x= f
−1(y)

�is relationship is established by measurement of samples 
with known quantities of analyte (calibrators). Solutions of 
pure chemical standards should be distinguished from samples 
with known quantities of analyte present in the typical matrix 
that is to be measured (e.g., human serum). �e �rst situation 
applies typically to a reference measurement procedure that is 
not in�uenced by matrix e�ects; the second case corresponds 
typically to a routine method that o�en is in�uenced by matrix 
components and so preferably is calibrated using the relevant 
matrix. Calibration functions may be linear or curved and, in 
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the case of immunoassays, may o�en take a special form (e.g., 
modeled by the four-parameter logistic curve). An alternative, 
model-free approach is to estimate a smoothed spline curve, 
which o�en is performed for immunoassays. If the assumed 
calibration function does not correctly re�ect the true rela-
tionship between instrument response and analyte concentra-
tion, a systematic error or bias is likely to be associated with 
the analytical method.

�e precision of the analytical method depends on the sta-
bility of the instrument response for a given quantity of analyte. 
In principle, a random dispersion of instrument signal (vertical 
direction) at a given true concentration transforms into dis-
persion on the measurement scale (horizontal direction), as 
is shown schematically (Fig. 2.6). If the calibration function is 
linear and the imprecision of the signal response is the same 
over the analytical measurement range, the analytical SD (SDA) 
of the method tends to be constant over the analytical measure-
ment range (see Fig. 2.6). If the imprecision increases propor-
tionally to the signal response, the analytical SD of the method 
tends to increase proportionally to the concentration (x), which 
means that the relative imprecision (CV = SD/x) may be con-
stant over the analytical measurement range assuming that the 
intercept of the calibration line is zero. 

Trueness and Accuracy
Trueness of measurements is de�ned as closeness of agree-
ment between the average value obtained from a large series 
of results of measurements and the true value.

�e di�erence between the average value (strictly, the 
mathematical expectation) and the true value is the bias, 
which is expressed numerically and so is inversely related to 
the trueness. Trueness in itself is a qualitative term that can be 
expressed, for example, as low, medium, or high. From a the-
oretical point of view, the exact true value for a clinical sample 
is not available; instead, an “accepted reference value” is used, 
which is the “true” value that can be determined in practice. 
Trueness can be evaluated by comparison of measurements 
by the new test and by some preselected reference measure-
ment procedure, both on the same sample or individuals.

�e ISO has introduced the trueness expression as a 
replacement for the term accuracy, which now has gained a 
slightly di�erent meaning. Accuracy is the closeness of agree-
ment between the result of a measurement and a true con-
centration of the analyte. Accuracy thus is in�uenced by both 
bias and imprecision and in this way re�ects the total error. 
Accuracy, which in itself is a qualitative term, is inversely 
related to the “uncertainty” of measurement, which can be 
quanti�ed as described later (Table 2.1).

In relation to trueness, the concepts recovery, dri�, and carry-
over may also be considered. Recovery is the fraction or percent-
age increase in concentration that is measured in relation to the 
amount added. Recovery experiments are typically carried out 
in the �eld of drug analysis. It is useful to distinguish between 
extraction recovery, which o�en is interpreted as the fraction of 
compound that is carried through an extraction process, and the 
recovery measured by the entire analytical procedure, in which 
the addition of an internal standard compensates for losses in the 
extraction procedure. A recovery close to 100% is a prerequisite 
for a high degree of trueness, but it does not ensure unbiased 
results because possible nonspeci�city against matrix compo-
nents (e.g., an interfering substance) is not detected in a recovery 
experiment. Dri� is caused by instrument or reagent instability 
over time, so that calibration becomes gradually biased. Assay 
carryover also must be close to zero to ensure unbiased results. 

Precision
Precision has been de�ned as the closeness of agreement 
between independent results of measurements obtained under 
stipulated conditions. �e degree of precision is usually derived 
from statistical measures of imprecision, such as SD or CV  
(CV = SD/x, where x is the measurement concentration), which 
is inversely related to precision. Imprecision of measurements 
is solely related to the random error of measurements and has 
no relation to the trueness of measurements.

Precision is speci�ed as follows:
Repeatability: Repeatability is the closeness of agreement bet-

ween results of successive measurements carried out under the 
same conditions (i.e., corresponding to within-run precision).

y

x

�x

�y

Fig. 2.6 Relation between concentration (x) and signal response (y) 

for a linear calibration function. The dispersion in signal response (σy) 

is projected onto the x-axis and is called assay imprecision [σx (=σA)].

TABLE 2.1 Overview of Qualitative Terms 
and Quantitative Measures Related to 
Method Performance

Qualitative Concept Quantitative Measure

Trueness Bias

Closeness of agreement of mean 

value with “true value”

A measure of the sys-

tematic error

Precision Imprecision (SD)

Repeatability (within run) A measure of the 

dispersion of random 

errors

Intermediate precision (long term)

Reproducibility (interlaboratory)

Accuracy Error of measurement

Closeness of agreement of a single 

measurement with “true value”

Comprises both ran-

dom and systematic 

influences

SD, Standard deviation.
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Reproducibility: Reproducibility is the closeness of agreement 
between results of measurements performed under changed 
conditions of measurements (e.g., time, operators, calibra-
tors, reagent lots). Two speci�cations of reproducibility are 
o�en used: total or between-run precision in the laboratory, 
o�en termed intermediate precision, and inter-laboratory 
precision (e.g., as observed in external quality assessment 
schemes [EQAS]) (see Table 2.1).
�e total SD (σT) may be divided into within-run and 

between-run components using the principle of analysis of 
variance of components (variance is the squared SD):

σ2
T = σ2

Within-run + σ2
Between-run

It is not always clear in clinical chemistry publications what 
is meant by “between-run” variation. Some authors use the 
term to refer to the total variation of an assay, but others apply 
the term between-run variance component as de�ned earlier.

In laboratory studies of analytical variation, estimates of 
imprecision are obtained. It is important to have an adequate 
number so that analytical variation is not underestimated. 
Commonly, the number 20 is given as a reasonable number of 
observations (e.g., suggested in the CLSI guideline for man-
ufacturers). To verify method precision by users, it has been 
recommended to run internal QC samples for 5 consecutive 
days in 5 replicates.

To estimate both the within-run imprecision and the total 
imprecision, a common approach is to measure duplicate con-
trol samples in a series of runs. Suppose, for example, that a 
control is measured in duplicate for 20 runs, in which case 20 
observations are present with respect to both components. �e 
dispersion of the means (xm) of the duplicates is given as follows:

σ2
xm

= σ2
Within-run

2
+ σ2

Between-run

From the 20 sets of duplicates, the within-run SD can be 
derived using the following formula:

SDWithin‐run = Σ
d
2

i

(2× 20)

0.5

where di refers to the di�erence between the ith set of dupli-
cates. When SDs are estimated, the concept degrees of free-
dom (df) is used. In a simple situation, the number of degrees 
of freedom equals N − 1. For N duplicates, the number 
of degrees of freedom is N(2 − 1) = N. �us both variance 
components are derived in this way. �e advantage of this 
approach is that the within-run estimate is based on several 
runs, so that an average estimate is obtained rather than only 
an estimate for one particular run if all 20 observations had 
been obtained in the same run.

Generally, the estimate of the imprecision improves as more 
observations become available. Exact con�dence limits for the 
SD can be derived from the χ2 distribution. A graphical display of 
95% CIs at various sample sizes is shown in Fig. 2.7. For example, 
suppose we have estimated the imprecision as an SD of 5.0 on the 
basis of N = 20 observations. From the �gure, the 95% CI extends 
from about 0.75 × 5.0 to about 1.45 × 5.0, i.e., from 3.8 to 7.3.

Precision o�en depends on the concentration of analyte 
being considered. A presentation of precision as a function of 
analyte concentration is the precision pro�le, which usually is 
plotted in terms of the SD or the CV as a function of analyte 
concentration (Fig. 2.8). 

Linearity
Linearity refers to the relationship between measured and 
expected values over the analytical measurement range. 
Linearity may be considered in relation to actual or relative 
analyte concentrations. In the latter case, a dilution series 
of a sample may be examined. �is dilution series examines 
whether the measured concentration changes as expected 
according to the proportional relationship between samples 
introduced by the dilution factor. Dilution is usually carried 
out with an appropriate sample matrix (e.g., human serum 
[individual or pooled serum] or a veri�ed sample diluent).

Evaluation of linearity can be performed visually or by 
statistical tests. When repeated measurements are available at 
each concentration, the random variation between measure-
ments and the variation around an estimated regression line 
may be evaluated by an F-test. When signi�cant nonlinearity 
is found, it may be useful to explore nonlinear alternatives to 
the linear regression line (i.e., polynomials of higher degrees). 
Another approach is to assess the residuals of an estimated 
regression line. An additional consideration for evaluating 
proportional concentration relationships is whether an esti-
mated regression line passes through zero or not. 

Analytical Measurement Range and Limits of 
Quantification
�e analytical measurement range (measuring interval, 
reportable range) is the analyte concentration range over which 
measurements are within the declared tolerances for impreci-
sion and bias of the method. Taking drug assays as an exam-
ple, there exist (arbitrary) requirements of a CV% of less than 
15% and a bias of less than 15%. �e measurement range then 
extends from the lowest concentration (lower limit of quanti-
�cation [LLOQ]) to the highest concentration (upper limit of 
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Fig. 2.7 Relation between factors indicating the 95% confidence 

intervals (CIs) of standard deviations (SDs) and the sample size. The 

true SD is 1, and the solid line indicates the mean estimate, which is 

slightly downward biased at small sample sizes.
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quanti�cation [ULOQ]) for which these performance speci�-
cations are ful�lled. �e LLOQ is medically important for many 
analytes, e.g., thyroid-stimulating hormone (TSH), where low 
TSH results are useful for the diagnosis of hyperthyroidism.

�e LOD may be de�ned as the lowest value that signi�-
cantly exceeds the measurements of a blank sample. �us the 
limit has been estimated on the basis of repeated measure-
ments of a blank sample and has been reported as the mean 
plus 2 or 3 SDs of the blank measurements. In the inter-
val from LOD up to LLOQ, a result should be reported as 
“detected” but not provided as a quantitative result.

�e LLOQ of an assay should not be confused with analyt-
ical sensitivity. �e analytical sensitivity is de�ned as ability 
of an analytical method to assess small di�erences in the con-
centration of analyte. �e analytical sensitivity depends on 
the precision of the method. �e smallest di�erence that will 
be statistically signi�cant equals 

A
2× 2×SD  at a 5% signif-

icance level. 

Analytical Specificity and Interference
Analytical speci�city is the ability of an assay procedure to 
determine the concentration of the target analyte without 
in�uence from potentially interfering substances or factors 
in the sample matrix (e.g., hyperlipemia, hemolysis, bilirubin, 
antibodies, other metabolic molecules, degradation products 
of the analyte, exogenous substances, anticoagulants). 

ASSAY COMPARISON

Comparison of measurements by two assays can be carried 
out by parallel measurements of a set of patient samples. To 
prevent arti�cial matrix-induced di�erences, fresh patient 
samples are the optimal material. A nearly even distribution 
of values over the analytical measurement range is also pref-
erable. In an ordinary laboratory, comparison of two rou-
tine assays is the most frequently occurring situation. Less 
commonly, comparison of a routine assay with a reference 
measurement procedure is undertaken. When two routine 
assays are compared, it is not possible to establish that one 
set of measurements is the correct one. Rather, the question is 
whether the new assay can replace the existing one without a 
systematic change in result values. To address this question, a 
statistical procedure with graphics display should be applied. 
A di�erence (bias) plot, which shows di�erences as a func-
tion of the average concentration of measurements (Bland-
Altman plot), or a regression analysis.

CV
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CV
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Analyte concentration

Analyte concentration

Analyte concentration

Fig. 2.8 Relations between analyte concentration and standard devi-

ation (SD)/coefficient of variation (CV). (A) The SD is constant, so that 

the CV varies inversely with the analyte concentration. (B) The CV is 

constant because of a proportional relationship between concentra-

tion and SD. (C) A mixed situation with constant SD in the low range 

and a proportional relationship in the rest of the analytical measure-

ment range.

 •  Technical validation of analytical methods focuses on (1) 

calibration, (2) trueness and accuracy, (3) precision, (4) lin-

earity, (5) LOD, (6) limit of quantification, (7) specificity, and 

(8) others.

 •  The difference between the average measured value and 

the true value is the bias, which can be evaluated by com-

parison of measurements by the new test and by some 

preselected reference measurement procedure, both on 

the same sample or individuals.

 •  The degree of precision is usually expressed on the basis 

of statistical measures of imprecision, such as SD or CV 

(CV = SD/x, where x is the measurement concentration).

 •  The measurement range extends from the lowest con-

centration (LLOQ) to the highest concentration (ULOQ) for 

which the analytical performance specifications (impreci-

sion, bias) are fulfilled.

 •  Analytical specificity is the ability of an assay procedure to 

determine the concentration of the target analyte without 

influence from potentially interfering substances or factors 

in the sample matrix.

POINTS TO REMEMBER
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Basic Error Model
�e occurrence of measurement errors is related to the per-
formance characteristics of the assay. It is important to distin-
guish between pure, random measurement errors, which are 
present in all measurement procedures, and errors related to 
incorrect calibration and nonspeci�city of the assay. Whereas 
a reference measurement procedure is associated only with 
pure random error, a routine method, additionally, is likely to 
have some bias related to errors in calibration and limitations 
with regard to speci�city. Whereas an erroneous calibration 
function gives rise to a systematic error, nonspeci�city gives 
an error that typically varies from sample to sample. �e error 
related to nonspeci�city thus has a random character, but in 
contrast to the pure measurement error, it cannot be reduced 
by repeated measurements of a sample. Although errors 
related to nonspeci�city for a group of samples look like ran-
dom errors, for the individual sample, this type of error is a 
bias. Because this bias varies from sample to sample, it has 
been called a sample-related random bias. In the following 
section, the various error components are incorporated into a 
formal error model.

Measured Value, Target Value, Modified Target Value, 
and True Value

Taking into account that an analytical method measures ana-
lyte concentrations with some random measurement error, 
it is necessary to distinguish between the actual, measured 
value and the average result obtained if the given sample was 
measured an in�nite number of times. If the assay is a refer-
ence assay without bias and nonspeci�city, the following sim-
ple relationship holds:

xi = XTruei + εi

where xi represents the measured value, XTruei is the average 
value for an in�nite number of measurements, and εi is the 
deviation of the measured value from the average value. If the 
sample was measured repeatedly, the average of εi would be 
zero and the SD would equal the analytical SD (σA) of the ref-
erence measurement procedure. Pure, random measurement 
error will usually be Gaussian distributed.

In the case of a routine assay, the relationship between the 
measured value for a sample and the true value becomes more 
complicated:

xi = XTruei + Cal-Bias + Random‐Biasi + εi

�e Cal-Bias term (calibration bias) is a systematic error 
related to the calibration of the method. �is systematic error 
may be a constant for all measurements corresponding to an 
o�set error, or it may be a function of the analyte concentra-
tion (e.g., corresponding to a slope deviation in the case of a 
linear calibration function). �e Random-Biasi term is a bias 
that is speci�c for a given sample related to nonspeci�city 
of the method. It may arise because of codetermination of 
substances that vary in concentration from sample to sam-
ple. For example, a chromogenic creatinine method code-
termines some other components with creatinine in serum.

�e �nal term in the equation above is the random mea-
surement error term, εi. If an in�nite number of measurements 
of a speci�c sample is performed by the routine method, the 
random measurement error term εi would be zero. �e cal-
bias and the random-biasi, however, would be unchanged. 
�us the average value of an in�nite number of measure-
ments would equal the sum of the true value and these bias 
terms. �is average value may be regarded as the target value 
(XTargeti) of the given sample for the routine method:

XTargeti = XTruei + Cal-Bias + Random-Biasi

As mentioned, the calibration bias represents a system-
atic error component in relation to the true values measured 
by a reference measurement procedure. In the context of 
regression analysis, this systematic error corresponds to the 
intercept and the slope deviation from unity when a routine 
method is compared with a reference measurement proce-
dure (outlined in detail later). It is convenient to introduce 
a modi�ed target value expression (X′Targeti) for the routine 
method to delineate this systematic calibration bias, so that:

X
′

Targeti = XTruei + Cal-Bias

�us, for a set of samples measured by a routine method, 
the XTargeti values are distributed around the respective  
X′Targeti values with an SD, which is called σRB.

If the assay is a reference method without bias and nonspe-
ci�city, the target value and the modi�ed target value equal 
the true value, that is,

XTargeti = X
′

Targeti = XTruei

�e error model is outlined in Fig. 2.9. 

Calibration Bias and Random Bias

For an individual measurement, the total error is the devia-
tion of xi from the true value, that is,

Total error of xi = Cal-Bias + Random-Biasi + εi

Estimation of the bias terms requires parallel measure-
ments between the method in question and a reference 
method. With regard to calibration bias, the possibility of 
lot-to-lot variation in analytical kit sets should be recog-
nized. Lot-to-lot variation shows up as a calibration bias that 
changes from lot to lot.

�e previous exposition de�nes the total error in broader 
terms than is o�en seen. A traditional total error expression is:

Total error = Bias + 2 SDA

�is is o�en interpreted as the calibration bias plus 2 SDA. 
If a one-sided statistical perspective is taken, the expression 
is modi�ed to Bias + 1.65 SDA, indicating that 5% of results 
are located outside the limit. Interpreting the bias as identical 
with the calibration bias may lead to an underestimation of 
the total error.

Random bias related to sample-speci�c interferences may 
take several forms. It may be a regularly occurring additional 
random error component, perhaps of the same order of 
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magnitude as the analytical error. In this context, it is natural 
to quantify the error in the form of an SD or CV. �e most 
straightforward procedure is to carry out a method compar-
ison study based on a set of patient samples in which one of 
the methods is a reference method, as outlined later. Another 
form of sample-related random interference is more rarely 
occurring gross errors, which typically are seen in the con-
text of immunoassays and are related to unexpected antibody 
interactions. Such an error usually shows up as an outlier in 
method comparison studies. Outliers should be investigated 
to identify their cause, which may be an important limitation 
in using a given assay. 

Assay Comparison Data Model
Here we consider the error model described earlier in rela-
tion to the method comparison situation. For a given sample 
measured by two analytical methods, 1 and 2, the following 
equations apply:

x1i = X1Targeti + ε1i = XTruei + Cal-Bias1

+ Random-Bias1i + ε1i

x2i = X2Targeti + ε2i = XTruei + Cal-Bias2
+ Random-Bias2i + ε2i

In the following, some typical situations using this general 
model are described. First, comparison of a routine assay with 

a reference measurement procedure will be treated. Second, 
comparison of two routine assays is considered.

Assuming that method 1 is a reference method, the bias 
components disappear by de�nition, and the following situa-
tion can be described:

x1i = X1Targeti + ε1i = XTruei + ε1i

x2i = X2Targeti + ε2i = XTruei + Cal-Bias2
+ Random-Bias2i + ε2i

�e paired di�erences become

(x2i − x1i) = Cal-Bias2 + Random-Bias2i + (ε2i − ε1i)

We thus have an expression consisting of a systematic 
error term (calibration bias of method 2) and two random 
terms. �e Random-Bias2 term is distributed around Cal-
Bias2 according to an unde�ned distribution. (ε2i − ε1i) is a 
di�erence between two random measurement errors that are 
independent and, commonly, Gaussian distributed. However, 
we remind readers that the SD for analytical methods o�en 
depends on the concentration, as mentioned earlier. For ana-
lytes with a wide analytical measurement range (e.g., some 
hormones), both sample-related random interferences and 
analytical SDs are likely to depend on the measurement con-
centration, o�en in a roughly proportional manner. It may 
then be more useful to evaluate the relative di�erences—(x2i −  
x1i)/[(x2i + x1i)/2]—and accordingly express mean and  
random bias and analytical error as proportions.

In the comparison of two routine methods, the paired dif-
ferences become

(x2i − x1i) = (Cal ‐Bias2 − Cal‐Bias1)

+ (Random‐Bias2i − Random‐Bias1i)

+ (ε2i − ε1i)

�e expression again consists of a constant term, the dif-
ference between the two calibration biases, and two random 
terms. �e �rst random term is a di�erence between two ran-
dom-bias components that may or may not be independent. 
If the two �eld methods are based on the same measurement 
principle, the random bias terms are likely to be correlated. 
For example, two chromogenic methods for creatinine are 
likely to be subject to interference from the same chromo-
genic compounds present in a given serum sample. On the 
other hand, a chromogenic method and an enzymatic cre-
atinine method are subject to di�erent types of interfering 
compounds, and the random bias terms may be relatively 
independent. In the ε2i − ε1i term, the same relationships as 
described previously are likely to apply. �e general form of 
the expressed di�erences is the same in the two situations and 
the same statistical principles apply. 

Planning a Method Comparison Study
Several points require attention, including the (1) number of 
samples necessary, (2) distribution of analyte concentrations 
(preferably uniform over the analytical measurement range), 
and (3) representativeness of the samples. To address the 
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Fig. 2.9 Outline of basic error model for measurements by a routine 

assay. (A) The distribution of repeated measurements of the same 

sample, representing a normal distribution around the target value 

(XTargeti) (vertical line) of the sample with a dispersion corresponding 

to the analytical standard deviation, σA. (B) Schematic outline of the 

dispersion of target value deviations from the respective true values 

for a population of patient samples. A distribution of an arbitrary form 

is displayed. The standard deviation equals σRB. The vertical line indi-

cates the mean of the distribution. (C) The distance from zero to the 

mean of the target value deviations from the true values represents 

the calibration bias (mean bias = cal-bias) of the assay.



19CHAPTER 2 Analytical and Clinical Evaluation of Methods

latter point, samples from relevant patient categories should 
be included, so that possible interference phenomena can be 
discovered. Practical aspects related to storage and treatment 
of samples (e.g., container) and possible artifacts induced by 
storage (e.g., freezing of samples) and addition of anticoag-
ulants should be considered. Comparison of measurements 
should preferably be undertaken over several days (e.g., at 
least 5 days) so that the comparison of methods does not 
become dependent on the performance of the methods in 
one particular analytical run. �e CLSI guideline EP-09-A3, 
“Method Comparison and Bias Estimation Using Patient 
Samples,” suggests measurement of 40 samples in duplicate 
by each method when a new method is introduced in the lab-
oratory as a substitute for an established one. Additionally, 
100 samples in duplicate is proposed for a vendor of an ana-
lytical test system. �e EP15 guideline “User Veri�cation of 
Manufacturer’s Claims” suggests a more condensed approach 
based on a bias or di�erence plot for 20 samples. 

Difference (Bland-Altman) Plot
�e Bland-Altman plot is usually understood as a plot of the 
di�erences against the average results of the methods. �us 
the di�erence plot in this version provides information on 
the relation between di�erences and concentration, which 
is useful in evaluating whether problems exist at certain 
ranges (e.g., in the high range) caused by nonlinearity of one 
of the methods. It may also be of interest to observe whether 
di�erences tend to increase proportionally with the concen-
tration or whether they are independent of concentration.

�e basic version of the di�erence plot requires plotting 
of the di�erences against the average of the measurements.  
Fig. 2.10 shows the plot for the drug assay comparison data. 
�e interval ±2 SD of the di�erences is o�en delineated 
around the mean di�erence. To assess whether the bias is sig-
ni�cantly di�erent from zero, the SE of the mean di�erence 
is estimated as the SD divided by the square root of the num-
ber of paired measurements (SE = SD/N0.5) and tested against 
zero by a t-test (t = [Mean − 0]/SE).

Nonparametric limits may also be considered. A con-
stant bias over the analytical measurement range changes the 
average concentration away from zero. �e presence of sam-
ple-related random interferences increases the width of the 
distribution. If the calibration bias depends on the concentra-
tion, if the dispersion varies with the concentration, or if both 
occur, the relations become more complex, and the interval 
mean ±2 SD of the di�erences may not �t very well as a 95% 
interval throughout the analytical measurement range.

�e displayed Bland-Altman plot for the drug assay com-
parison data (see Fig. 2.10) shows a tendency toward increas-
ing scatter with increasing concentration, which is a re�ection 
of increasing random error with concentration. �us a plot of 
the relative di�erences against the average concentration is of 
relevance (Fig. 2.11). 

Regression Analysis
Regression analysis has the advantage that it allows the rela-
tion between the target values for the two compared methods 

to be studied over the full analytical measurement range. In 
linear regression analysis, it is assumed that the systematic 
di�erence between target values can be modeled as a con-
stant systematic di�erence (intercept deviation from zero) 
combined with a proportional systematic di�erence (slope 
deviation from unity), usually related to a discrepancy with 
regard to calibration of the methods. In situations when 
random errors have a constant SD, unweighted regression 
procedures are used (e.g., Deming regression analysis). For 
cases with SDs that are proportional to the concentration, 
the weighted Deming regression procedure is preferred.

As outlined previously, we distinguish between the mea-
sured value (xi) and the target value (XTargeti) of a sample 
subjected to analysis by a given method. In linear regression 
analysis, we assume a linear relationship between values 
devoid of random error of any kind. �us to operate with a 
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Fig. 2.10 Bland-Altman plot of differences for the drug comparison 

example. The differences are plotted against the average concentra-

tion. The mean difference (42 nmol/L) with ±2 standard deviation of 
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linear relationship between values without random measure-
ment error and sample-related random bias, we have to intro-
duce modi�ed target values:

X1Targeti = X1′
Targeti +Random‐Bias1 >i

X2Targeti = X2′
Targeti + Random‐Bias2i

where we now assume a linear relationship between these 
modi�ed target values:

X2′
Targeti = α0 + βX1′

Targeti

In this model, α0 corresponds to a constant di�erence with 
regard to calibration, and (β − 1) is a proportional deviation. 
�us the systematic error or calibration di�erence between 
the measurements corresponds to

X2′
Targeti − X1′

Targeti = α0 + (β − 1) X1′
Targeti

Because of sample-related random interferences and mea-
surement imprecision (of the type that can be described by 
a Gaussian distribution, e.g., caused by pipetting variability, 
signal variability), individually measured pairs of values (x1i, 
x2i) will be scattered around the line expressing the relation-
ship between X1′Targeti and X2′Targeti. Fig. 2.12 outlines sche-
matically how the random distribution of x1 and x2 values 
occurs around the regression line. We have

x1i = X1Targeti + ε1i = X1′
Targeti + Random‐Bias1i + ε1i

x2i = X2Targeti + ε2i = X2′
Targeti + Random‐Bias2i + ε2i

�e random error components may be expressed as SDs, 
and generally we can assume that sample-related random bias 
(SD σRB) and analytical imprecision (SD σA) are independent 
for each analyte, yielding the relations

σ2
ex1 = σ2

RB1 + σ2
A1

σ2
ex2 = σ2

RB2 + σ2
A2

σex1 and σex2 are the total SDs of the distributions of x1i and 
x2i around their respective modi�ed target values, X1′Targeti 
and X2′Targeti. �e sample-related random bias components 
for methods 1 and 2 may not necessarily be independent. 
�ey also may not be Gaussian distributed, contrary to the 
analytical components. �us, when a regression procedure is 
applied, the explicit assumptions to take into account should 
be considered. In situations without random bias components 
of any signi�cance, the relationships simplify to

σ2
ex1 = σ2

A1

σ2
ex2 = σ2

A2

In this situation, it usually can be assumed that the error 
distributions are Gaussian, and estimates of the analytical SDs 
may be available from QC data.

Another methodologic problem concerns the question of 
whether the dispersion of sample-related random bias and 
the analytical imprecision are constant or change with the 
analyte concentration. In cases with a considerable range (i.e., 
a decade or longer), this phenomenon should also be taken 
into account when a regression analysis is applied. Fig. 2.13 
schematically shows how dispersions may increase propor-
tionally with concentration.

Deming Regression Analysis and Ordinary Least-Squares 
Regression Analysis (Constant Standard Deviations)

To reliably estimate the relationship between modi�ed target 
values (i.e., a0 for α0 and b for β), a regression procedure tak-
ing into account errors in both x1 and x2 is preferable (i.e., 
Deming approach) (see Fig. 2.12). Although the ordinary 
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Fig. 2.12 Outline of the relation between x1 and x2 values measured 

by two assays subject to random errors with constant standard devi-

ations over the analytical measurement range. A linear relationship 

between the modified target values (X1′Targeti, X2′Targeti) is presumed. 

The x1i and x2i values are Gaussian distributed around X1′Targeti and 

X2′Targeti, respectively, as schematically shown. σ21 (σyx) is demar-

cated.
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Fig. 2.13 Outline of the relation between x1 and x2 values measured 

by two assays subject to proportional random errors. A linear relation-

ship between the modified target values is assumed. The x1i and x2i 

values are Gaussian distributed around X1′Targeti and X2′Targeti, respec-

tively, with increasing scatter at higher concentrations, as is shown 

schematically.
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least-squares regression (OLR) procedure is commonly 
used in method comparison studies, it does not take errors 
in x1 into account but is based on the assumption that only 
the x2 measurements are subject to random errors (Fig. 2.14). 
In the Deming procedure, the sum of squared distances from 
measured sets of values (x1i, x2i) to the regression line is min-
imized at an angle determined by the ratio between SDs for 
the random variations of x1 and x2. It can be proven theoret-
ically that, given Gaussian error distributions, this estimation 
procedure is optimal. It should here be noted that it is the 
error distributions that should be Gaussian, not the disper-
sion of values over the measurement range. In Fig. 2.15, the 
symmetric case is illustrated with a regression slope of 1 and 
equal SDs for the random variations of x1 and x2, in which 
case the sum of squared distances is minimized orthogonally 
in relation to the line.

OLR regression is not recommended except in special situ-
ations. In OLR, the sum of squared distances is minimized in 
the vertical direction to the line (see Fig. 2.15). �e neglect of 
the random error in x1 induces a downward biased slope esti-
mate, which depends on the ratio between the SD for the ran-
dom error in x1 and the SD of the X1′ target values. Fig. 2.16 
shows the bias as a function of the ratio of the random error 
SD to the SD of the X1′ target value dispersion. For a ratio 
up to 0.1, the bias is less than 1%. At a ratio of 0.33, the bias 
amounts to 10%. In a given case, the analytical SD (e.g., from 
QC data) can be divided by the SD of the measured x1 values, 
which approximately equals the SD of X1′ target values. As an 
example, a typical comparison study for two serum sodium 
methods may be associated with a downward directed slope 
bias of about 10% (Fig. 2.17). 

Computation Procedures for Ordinary Least-Squares  
Regression and Deming Regression

Assuming no errors in x1 and a Gaussian error distribu-
tion of x2 with constant SD throughout the analytical mea-
surement range, OLR is the optimal estimation procedure. 
Given errors in both x1 and x2, the Deming approach is 

the method of choice. It should be noted for these para-
metric procedures that only the error distributions must be 
Gaussian or normal to ensure the nominal type I errors for 
associated statistical tests for slope and intercept hold true. 
The procedures are generally robust toward deviations 
from normality, but they are sensitive to outliers because 
of the squaring principle. Finally, the distribution of the x1 
and x2 values over the measurement range does not have 
to be normal. A uniform distribution over the analytical 
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Fig. 2.14 The model assumed in ordinary least-squares regression. 

The x2 values are Gaussian distributed around the line with constant 

standard deviation over the analytical measurement range. The x1 

values are assumed to be without random error. σ21 (σyx) is shown.
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Fig. 2.15 In ordinary least-squares regression (OLR), the sum of 

squared deviations from the line is minimized in the vertical direction. 

In Deming regression analysis, the sum of squared deviations is min-

imized at an angle to the line, depending on the random error ratio. 

Here the symmetric case is displayed with orthogonal deviations. 

(From Linnet, K. [1998]. The performance of Deming regression anal-

ysis in case of a misspecified analytical error ratio. Clinical Chemistry, 

44, 1024–1031.)
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measurement range is generally of advantage, but the dis-
tribution in principle may take any form. For both pro-
cedures, we may evaluate the SD of the dispersion in the 
vertical direction around the line (commonly denoted 
SDy⋅x and here given as SD21). We have

SD21 =
[

Σ(x2i − X2Targetesti)
2/ (N − 2)

]0.5

Further discussion regarding the interpretation of SD21 
will be given later.

To compute the slope in Deming regression analysis, the 
ratio between the SDs of the random errors of x1 and x2 is 
necessary, that is,

λ =
(

σ2
RB1 + σ2

A1

)

/
(

σ2
RB2 + σ2

A2

)

SDAs can be estimated from duplicate sets of measure-
ments as

SD2
A1 = (1/2N)

[

Σ(x12i − x11i)
2
]

SD2
A2 = (1/2N)

[

Σ(x22i − x21i)
2
]

If a speci�c value for λ is not available and the two routine 
methods that are compared are likely to be associated with 
random errors of the same order of magnitude, λ can be set to 
1. �e Deming procedure is generally relatively insensitive to 
a misspeci�cation of the λ value.

Formulas for computing slope (β), intercept (α0), and their 
SEs are available from other sources and are not provided 
here. 

Evaluation of the Random Error Around an Estimated 
Regression Line

�e estimated slope and intercept provide an estimate of 
the systematic di�erence or calibration bias between two 

methods over the analytical measurement range. An esti-
mate of the random error is the dispersion around the line 
in the vertical direction, which is quanti�ed as SDy⋅x (here 
denoted SD21). We have here without sample-related ran-
dom interferences

σ2
21 = β2σ2

A1 + σ2
A2

Thus σ21 reflects the random error both in x1 (with a res-
caling) and in x2. Often β is close to unity, and in this 
case, σ221 becomes approximately the sum of the individ-
ual squared SDs. This relation holds true for both Deming 
and OLR analyses. Frequently, OLR is applied in situations 
associated with random measurement error in both x1  
and x2, and in these situations, σ21 reflects the errors in 
both.

�e presence of sample-related random interferences in 
both x1 and x2 gives the following expression:

σ2
21 =

(

β2σ2
A1 + σ2

A2

)

+
(

β2σ2
RB1 + σ2

RB2

)

Thus the σ21 value is influenced by the slope value and 
the analytical error components σA1 and σA2 (grouped in 
the first bracket) and σRB1 and σRB2 (grouped in the sec-
ond bracket). In many cases, the slope is close to unity, 
in which case we have simple addition of the components. 
Information on the analytical components is usually avail-
able from duplicate sets of measurements or from QC data. 
On this basis, the combined random bias term in the sec-
ond bracket can be derived by subtracting the analytical 
components from σ21. Overall, it can be judged whether 
the total random error is acceptable or not. The systematic 
difference can be adjusted for relatively easily by rescaling 
one of the sets of measurements. However, if the random 
error term is very large, such a rescaling does not ensure 
equivalency of measurements with regard to individual 
samples. 

Assessment of Outliers

�e distance from a suspected outlier to the line is recorded 
in SD units, and the outlier is rejected if the distance exceeds 
a predetermined limit (e.g., 3 or 4 SD units). In the case of 
OLR, the SD unit equals SD21, and the vertical distance is 
considered. For Deming regression analysis, the unit is the 
SD of the deviation of the points from the line at an angle 
determined by the error variance ratio λ. A plot of these devi-
ations, a so-called residuals plot, conveniently illustrates the 
occurrence of outliers. Fig. 2.18A illustrates an example of 
Deming regression analysis with occurrence of an outlier and 
the associated residuals plot (see Fig. 2.18B), which clearly 
shows the outlier pattern. In this example, the residuals plot 
was standardized to unit SD. Use of an outlier limit of 4 SD 
units in this example led to rejection of the outlier, and a 
reanalysis was undertaken. In this example, rejection of the 
outlier changed the slope from 1.14 to 1.03. With regard to 
outliers, the reason for their presence should be investigated 
as a method limitation (e.g., possibly a nonspeci�city for the 
analyte). 
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Fig. 2.17 Simulated comparison of two sodium methods. The solid 

line indicates the average estimated ordinary least-squares regres-

sion (OLR) line, and the dotted line is the identity line. Even though 

no systematic difference is evident between the two methods, the 

average OLR line deviates from the identity line corresponding to a 

downward slope bias of about 10%.
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Correlation Coefficient

�e ordinary correlation coe�cient, ρ, also called the Pearson 
product moment correlation coe�cient, is estimated as r from 
sums of squared deviations for x1 and x2 values as follows:

r = p/(uq)0.5

where

p= Σ (x1i − x1m) (x2i − x2m)

u = Σ(x1i − x1m)
2
and q = Σ(x2i − x2m)

2

and

x1m = Σx1i/N and x2m = Σx2i/N

�e correlation coe�cient r is a relative indicator of the 
amount of dispersion around the regression line. If the 
numeric interval of values is short, r tends to be low and vice 
versa for a long range of values. For example, consider sim-
ulated examples, where the random errors of x1 and x2 are 
the same but the width of the distributions of measured val-
ues di�ers (Fig. 2.19A and B). In A, the target values are uni-
formly distributed over the range 1 to 3, and in B, the range is 
1 to 6. �e random error SD is presumed constant, and it is set 
to 0.15 for both x1 and x2, corresponding to a CV of 5% at the 
value 3. Given sets of 50 paired measurements, the correlation 
coe�cient is 0.93 in case A and 0.99 in case B. Furthermore, a 
single point located outside the range of the rest of the obser-
vations exerts a strong in�uence, resulting in a value of 0.97 
(see Fig. 2.19C).

Although σ21 is the relevant measure for random error 
in method comparison studies, ρ is still incorrectly used as 
a supposed measure of agreement between two methods. A 
systematic di�erence due to a di�erence with regard to cal-
ibration is not expressed through ρ but solely in the form of 
an intercept (α0) deviation from zero or a slope (β) deviation 
from unity. 

Regression Analysis in Cases of Proportional  
Random Error

For analytes with extended ranges (e.g., 1 or several 
decades), the SDA is seldom constant. Rather, a propor-
tional relationship may apply. This may also be true for 
the random bias components. In this situation, the regres-
sion procedures described previously may still be used, but 
they are not optimal because the SEs of slope and intercept 
become larger than is the case when a weighted form of 
regression analysis is applied. Given a proportional rela-
tionship, a weighted procedure assigns larger weights to 
observations in the low range; low-range observations are 
more precise than measurements at higher concentrations 
that are subject to larger random errors. More specifically, 
weights are applied in the computations that are inversely 
proportional to the squared SDs (variances) that express 
the random error. In the weighted modification of the 
Deming procedure, distances from (x1i, x2i) to the line are 
inversely weighted according to the squared SDs at a given 
concentration (Fig. 2.20). 

Testing for Linearity

Splitting of the systematic error into a constant and a pro-
portional component depends on the assumption of lin-
earity. A convenient test is a runs test, which in principle 
assesses whether negative and positive deviations from 
the points to the line are randomly distributed. The term 
run here relates to a sequence of deviations with the same 
sign. Consider, for example, the situation with a downward 
trend of x2 values at the upper end of the analytical mea-
surement range (Fig. 2.21A). The SDs from the line (i.e., 
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Fig. 2.19 Scatter plots illustrating the effect of the range on the value 

of the correlation coefficient ρ. (A) Target values are uniformly dis-

tributed over the range 1 to 3 with random errors of both x1 and x2 

corresponding to a standard deviation (SD) of 5% of the target value 

at 3 (constant error SDs). (B) The range is extended to 1 to 6 with the 

same random error levels. The correlation coefficient equals 0.93 in 

A and 0.99 in B. (C) The effect of a single aberrant point is shown. 

Forty-nine of the target values are distributed over the range 1 to 3, 

with a single point at 6. The correlation coefficient is 0.97.
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Fig. 2.20 Distances from data points to the line in weighted Deming 

regression assuming proportional random errors in x1 and x2. The 

symmetric case is illustrated with equal random errors and a slope 

of unity yielding orthogonal projections onto the line. (Modified from 

Linnet, K. [1999]. Necessary sample size for method comparison 

studies based on regression analysis. Clinical Chemistry, 45, 882–

894. Used with permission.)

0
0

50

100

150

200

250

50 100 150 200 250A

B

50

�2

�1

0

1

2

100 150 200 250

Fig. 2.21 (A) Scatter plot showing an example of nonlinearity in the 

form of downward-deviating x2 values at the upper part of the range. 

(B) Plot of residuals showing the effects of nonlinearity. At the upper 

end of the analytical measurement range, a sequence (run) of nega-

tive residuals is present.
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the residuals) will tend to be negative in this area instead of 
being randomly distributed above and below the line (see 
Fig. 2.21B). 

Nonparametric Regression Analysis (Passing-Bablok 
Procedure)

�e slope and the intercept may be estimated by a nonpara-
metric procedure, which is robust to outliers and requires 
no assumptions of Gaussian error distributions. �e method 
takes measurement errors for both x1 and x2 into account, but 
it presumes that the ratio between random errors is related to 
the slope in a �xed manner:

λ =
(

SD2
RB1 + SD2

A1

)

/
(

SD2
RB2 + SD2

A2

)

= 1/β2

Otherwise, a biased slope estimate is obtained. The 
procedure may be applied both in situations with random 
errors with constant SDs and in cases with proportional 
SDs. The method is not as efficient as the corresponding 
parametric procedures. Slope and intercept with CIs are 
provided, together with Spearman’s rank correlation coef-
ficient. 

Interpretation of Systematic Differences Between Methods 
Obtained on the Basis of Regression Analysis

A systematic di�erence between two methods is identi�ed 
if the estimated intercept di�ers signi�cantly from zero or if 
the slope deviates signi�cantly from 1. �is is decided on the 
basis of t-tests:

t = (a0 − 0) /SE (a0)

t = (b − 1) /SE (b)

�e t-tests can be supplemented with 95% CIs.
SE(a0) and SE(b) are the SEs of the estimated intercept a0 

and the slope b, respectively. SEs can be derived by a com-
puterized resampling principle called the jackknife procedure, 
which in practice can be carried out using appropriate so�-
ware. Having estimated a0 and b, we have the estimate of the 
systematic di�erence between the methods, Dc, at a selected 
concentration, X1′Targetc:

Dc = X2
′
Targetestc − X1′Targetc = a0 + (b− 1) X1′Targetc

X2′Targetestc is the estimated X2′ target value at X1′c. Note 
that Dc refers to the systematic di�erence (i.e., the di�erence 
between modi�ed target values corresponding to a calibra-
tion di�erence). �e SE of Dc can be derived by the jackknife 
procedure using a so�ware program. By evaluating the SE 
throughout the analytical measurement range, a con�dence 
region for the estimated line can be displayed. If method com-
parison is performed to assess the calibration to a reference 
measurement procedure, correction of a signi�cant system-
atic di�erence Deltac will o�en be performed by recalibration 
[x2rec = (x1 − a0)/b]. �e associated standard uncertainty is 
the SE of Deltac. 

Example of Application of Regression Analysis  
(Weighted Deming Analysis)

Application of weighted Deming regression analysis may be 
illustrated by the comparison of drug assays example [N = 
65 (x1, x2) single measurements]. As outlined in the section 
on the Bland-Altman plot (see Fig. 2.10), in this example 
the random error of the di�erences increases with the con-
centration, suggesting that the weighted form of Deming 
regression analysis is appropriate. Fig. 2.22 shows (A) the 
estimated regression line with 95% con�dence bands and 
(B) a plot of normalized residuals. �e nearly homogeneous 
scatter in the residuals plot supports the assumed propor-
tional random error model and the assumption of linearity. 
�e slope estimate (1.014) is not signi�cantly di�erent from 
1 (95% CI: 0.97 to 1.06), and the intercept is not signi�cantly 
di�erent from zero (95% CI: −6.7 to 47.4) (Table 2.2). A runs 
test for linearity does not contradict the assumption of lin-
earity. �e amount of random error is quanti�ed in the form 
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Fig. 2.22 An example of weighted Deming regression analysis for 

the comparison of drug assays. (A) The solid line is the estimated 

weighted Deming regression line, the dashed curves indicate the 

95% confidence region, and the dotted line is the line of identity. (B) 

A plot of residuals standardized to unit standard deviation. The homo-

geneous scatter supports the assumed proportional error model and 

the assumption of linearity.
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of the SD21 proportionality factor equal to 0.11, or 11%. In 
the present example, with a slope close to unity and two rou-
tine methods with assumed random errors of about the same 
magnitude, we divide the random error by the square root 
of 2 and get CVx1 = CVx2 = 7.8%. QC data in the laboratory 
have provided CVAs of 6.1% and 7.2% for methods 1 and 2, 
respectively. �us in this example, the random error may be 
attributed largely to analytical error. �e assay principle for 
both methods is high performance liquid chromatography 
(HPLC), which generally is a rather speci�c measurement 
principle; considerable random bias e�ects are not expected 
in this case.

In Table 2.2, estimated systematic di�erences at the limits 
of the therapeutic interval (300 and 2000 nmol/L) are dis-
played (24.6 and 48.9 nmol/L, respectively). �is corresponds 
to percentage values of 8.2% and 2.4%, respectively. Estimated 
SEs by the jackknife procedure yield the 95% CIs, as shown in 
the table. At the low concentration, the di�erence is signi�-
cant (95% CI: 5.7 to 44 nmol/L; does not include zero), which 
is not the case at the high level (95% CI: −19 to 117 nmol/L). 
Even though the intercept and slope estimates separately are 
not signi�cantly di�erent from the null hypothesis values of 
0 and 1, respectively, the combined di�erence Deltac is signif-
icant at low concentrations in this example. If the di�erence 
is considered of medical importance and both methods are to 
be used simultaneously in the laboratory, recalibration of one 
of the methods might be considered. 

MONITORING SERIAL RESULTS

An important aspect of clinical chemistry is monitoring of 
disease or treatment (e.g., tumor markers in cases of cancer, 
drug concentrations in cases of therapeutic drug monitoring). 
To assess changes in a rational way, various imprecision com-
ponents have to be taken into account. Biologic within-sub-
ject variation (SDI) and preanalytical (SDPA) and analytical 
variation (SDA) all have to be recognized. Assuming that 
preanalytical variation is already included in the estimated 

within-subject variation SD, a total SD (SDT) can be esti-
mated as follows:

SD2
T = SD2

WithinB + SD2
A

�e limit for statistically signi�cant changes then is [fx2], 
where k depends on the desired probability level. Considering 
a two-sided 5% level, k is 1.96. �e corresponding one-sided 
factor is 1.65. If a higher probability level is desired, k should 
be increased. 

TRACEABILITY

To ensure reasonable agreement between measurements of 
routine methods, the concept of traceability comes into focus. 
(See also Chapter 7 for further detail.) Traceability is based on 
an unbroken chain of comparisons of measurements leading  
to a known reference value (Fig. 2.23). For well-established 
analytes, a hierarchy of methods exists with a reference mea-
surement procedure at the top, selected measurement procedures 
at an intermediate level, and �nally routine measurement pro-
cedures at the bottom. A reference measurement procedure 
is a fully understood procedure of highest analytical quality 
containing a complete uncertainty budget given in Système 
Internationale (SI) units. Reference procedures are used to 
measure the analyte concentration in secondary reference 
materials, which typically have the same matrix as samples 
that are to be measured by routine procedures (e.g., human 
serum). Secondary reference materials are usually of high 

TABLE 2.2 Results of Weighted Deming 
Regression Analysis for the Comparison of 
Drug Assays Example, n = 65 Single (x1, x2) 
Measurements

Estimate SE 95% CI

Slope (b) 1.014 0.022 0.97–1.06

Intercept (a0) 20.3 13.5 −6.7 to 

47.4

Weighted correlation  

coefficient

0.98

SD21 proportionality factor 0.11

Runs test for linearity NS

Deltac = X2 − X1 at Xc = 300 24.6 9.5 5.72–43.6

Deltac = X2 − X1 at Xc = 2000 48.9 34.2 −19.3 to 

117

CI, Confidence interval; NS, not significant; SD, standard deviation; 

SE, standard error.
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Fig. 2.23 The calibration hierarchy from a reference measurement 

procedure to a routine assay. The uncertainty increases from top to 

bottom. Cal., Calibration.
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analytical quality, and certi�ed secondary reference materials 
must be validated for commutability with clinical samples 
if they are intended for use as trueness controls for routine 
methods. Otherwise, their use is restricted to selected mea-
surement procedures for which they are intended. �e cer-
ti�cate of analysis should state the methods for which the 
secondary reference materials have been validated to be 
commutable with clinical samples. When no information is 
given for commutability, it must be assumed that the refer-
ence material is not commutable with clinical samples, and 
the user has the responsibility to validate commutability for 
the methods of interest.

Using cortisol as an example, the primary reference mate-
rial is crystalline cortisol with a chemical analysis for impuri-
ties (National Institute of Standards and Technology [NIST] 
standard reference material 921, cortisol [hydrocortisone]). A 
primary calibrator is then a cortisol preparation with a stated 
mass fraction (purity) (e.g., 0.998 and a 95% CI of ±0.001). 
�e reference measurement procedure is an isotope-dilu-
tion gas chromatography–mass spectrometry method that is 
calibrated with the primary calibrator. A panel of individual 
frozen serum samples that have values assigned by the pri-
mary reference measurement procedure is available from the 
Institute for Reference Materials and Measurements (IRMM) 
as secondary reference materials (European Reference 
Material [ERM]-DA451/International Federation of Clinical 
Chemistry and Laboratory Medicine [IFCC]). A manufac-
turer’s selected measurement procedure is calibrated with the 
secondary reference materials and is used for measurement of 
the quantity in the manufacturer’s product calibrator, which 
is the calibrator used for the routine method in clinical lab-
oratories.

In case a reference measurement procedure exists for 
an analyte (measurand), comparable results among mea-
surement procedures can be achieved as described earlier, 
so-called standardization. When reference measurement 
procedures are not available, so-called harmonization refers 
to the process of establishing comparable results among mea-
surement procedures for the given analyte. Harmonization is 
typically based on distribution among laboratories of com-
mutable secondary reference materials with arbitrarily set 
target values (see Chapter 7).

Uncertainty Concept
According to the ISO’s “Guide to the Expression of Uncertainty 
in Measurement” (GUM), uncertainty is formally de�ned as 
“a parameter associated with the result of a measurement that 
characterizes the dispersion of the values that could reason-
ably be attributed to the measurand.” In practice, this means 
that the uncertainty is given as an interval around a reported 
laboratory result that speci�es the location of the true value 
with a given probability (e.g., 95%). In general, the uncer-
tainty of a result, which is traceable to a particular reference, 
is the uncertainty of that reference together with the overall 
uncertainty of the traceability chain.

In the outline of the uncertainty concept, it is assumed that 
any known systematic error components of a measurement 

method have been corrected, and the speci�ed uncertainty 
includes uncertainty associated with correction of the sys-
tematic error(s). A distinction between type A and B uncer-
tainties is made. Type A uncertainties are frequency-based 
estimates of SDs (e.g., an SD of the imprecision). Type B 
uncertainties are uncertainty components for which fre-
quency-based SDs are not available. Instead, uncertainty is 
estimated by other approaches or by the opinion of experts. 
Finally, the total uncertainty is derived from a combination of 
all sources of uncertainty and can be expressed as a standard 
uncertainty (ust), which is equivalent to an SD. By multiplica-
tion of a standard uncertainty with a coverage factor (k), the 
uncertainty corresponding to a speci�ed probability level is 
derived, e.g. multiplication with a coverage factor of 2 yields 
a probability level of ≈95%, given a Gaussian distribution. 
When the total uncertainty of an analytical result obtained by 
a routine method is considered (ust), preanalytical variation 
(uPAst), method imprecision (uAst), sample-related random 
interferences (uRBst), and uncertainty related to calibration 
and bias corrections (traceability) (uTracst) should be taken 
into account. In expressing the uncertainty components as 
standard uncertainties, we have:

ust = u
2

PAst + u
2

Ast + u
2

RBst + u
2

Tracst

0.5

In principle, uncertainty can be judged directly from mea-
surement comparisons (“top down”) or indirectly from an 
analysis of individual error sources according to the law of 
error propagation (“error budget,” “bottom up”).

Example of Direct Assessment of Uncertainty on the Basis 
of Measurements of a Commutable Certified Reference 
Material

Suppose a CRM is available that was validated to be commut-
able with patient samples for a given routine method with a 
speci�ed value 10.0 mmol/L and a standard uncertainty of 0.2 
mmol/L. Ten repeated measurements in independent runs 
give a mean value of 10.3 mmol/L with SD 0.5 mmol/L. �e 
SE of the mean is then [fx3]. �e mean is not signi�cantly 
di�erent from the assigned value [t = (10.3 − 10.0)/(0.22 + 
0.162)0.5 = 1.17]. �e total standard uncertainty with regard 
to traceability is then uTracst = (0.162 + 0.22)0.5 = 0.26 mmol/L. 
If the bias had been signi�cant, a correction to the method 
could have been carried out, and the standard uncertainty 
would then be the same at the given concentration. �us 
measurements of the CRM provide an estimate of the uncer-
tainty related to traceability, given the assumption of commut-
ability with patient samples. �e other components have to be 
estimated separately. Concerning method imprecision, long-
term imprecision (e.g., observed from QC measurements) 
should be used rather than the short-term SD observed for 
CRM material. Here we suppose that the long-term SDA is 
0.8 mmol/L. Data on preanalytical variation can be obtained 
by sampling in duplicates from a series of patients or can be 
a matter of judgment (type B uncertainty) based on literature 
data or data on similar analytes. We here suppose that SDPA 
equals half the analytical SD (i.e., 0.4 mmol/L). Finally, we lack 
data on a possible sample-related random bias component, 
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which we may choose to ignore in the present example. �e 
standard uncertainty of the results then becomes

ust = u
2
PAst

+ u
2
Ast

+ u
2
RBst

+ u
2
Tracst

0.5

= 0.4
2

+ 0.8
2

+0.26
2

0.5

=0.93 (

( )
mmol/L)

In this case, the major uncertainty component is the long-
term imprecision in the laboratory. To attain a reasonably 
precise uncertainty estimate, estimated SDs should be based 
on an appropriate number of repetitions. In the subsection on 
method precision, it can be seen that N = 30 repetitions pro-
vides SD estimates with 95% CIs extending from about 20% 
below to 35% above an estimated value (see Fig. 2.7), which 
may be regarded as reasonable. 

Indirect Evaluation of Uncertainty by Quantification of 
Individual Error Source Components

On the basis of a detailed quantitative model of the analyti-
cal procedure, the standard approach is to assess the standard 
uncertainties associated with individual input parameters 
and combine them according to the law of propagation of 
uncertainties. �e relationship between the combined stan-
dard uncertainty uc(y) of a value y and the uncertainty of the 
independent parameters x1, x2, … xn, on which it depends, is

uc [y (x1 x2,, … )] = Σc2
i u(x1)

2
0.5

where ci is a sensitivity coe�cient (the partial di�erential of y 
with respect to xi). �ese sensitivity coe�cients indicate how 
the value of y varies with changes in the input parameter xi. If 
the variables are not independent, the relationship becomes

uc [y (x1, x2, … )] = Σc2
i u(x1)

2
+ Σcicku(xi , xk)

2
0.5

where u(xi, xk) is the covariance between xi and xk, and ci and 
ck are the sensitivity coe�cients. �e covariance is related to 
the correlation coe�cient ρik by

u (xi, xk) = u (xi) u (xk) ρik

�is is a complex relationship that usually will be di�cult 
to evaluate in practice. In many situations, however, the con-
tributing factors are independent, thus simplifying the pic-
ture. Below, some simple examples of combined expressions 
are shown. �e rules are presented in the form of combining 
SDs or CVs given independent input components.

q = x + y SD (q) = SD(x)
2

+ SD(y)
2

0.5

q = x − y SD (q) = SD(x)
2

+ SD(y)
2

0.5

q = ax SD (q) = aSD (x) and CV (q) = CV (x)

q = xp CV (q) = p CV (x)

q = xy CV (q) = CV(x)
2

+ CV(y)
2

0.5

q = x/y CV (q) = CV(x)
2

+ CV(y)
2

0.5

�e formulas shown may be used, for example, to calculate 
the combined uncertainty of a calibrator solution from the 
uncertainties of the reference compound, the weighting, and 
dilution steps. In some situations, a Monte Carlo simulation 
model of a complex analytical method may be established to 
estimate the combined uncertainty of the method on the basis 
of input uncertainties. 

DIAGNOSTIC ACCURACY OF LABORATORY 
TESTS

We here consider the basic steps for evaluation of the clinical 
accuracy of laboratory tests. In diagnostic accuracy studies, 
the measurements or results of one (or more) laboratory test 
under evaluation (i.e., the so-called index test) are compared 
with the results of a reference standard or method. �is refer-
ence is the best prevailing test or strategy that is used to estab-
lish the presence or absence of the disease of interest (i.e., the 
so-called target disease that is to be detected or excluded by 
the index tests). �is reference standard is conducted and its 
results interpreted as blindly for and independently from the 
index test(s) results as possible. Test accuracy studies show the 
concordance in results of the index test(s) with the presence or 
absence of disease as de�ned by the reference standard results. 
�ese studies provide information regarding the frequency of 
types of errors (i.e., false positive and negative test results) by 
the index test in relation to the reference standard.

Diagnostic Accuracy, Sensitivity, and Specificity  
of a Test in Isolation

In a diagnostic accuracy study the results of the index test 
are compared with those of a reference test in the same 
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individuals, all of whom are suspected to have the target dis-
ease (the suspected disease cohort design). �e simplest sit-
uation is a comparison of a single index test, with only two 
result categories (i.e., a dichotomous or binary index test) to 
a reference standard (i.e., a single-test accuracy study). �e 
ideal dichotomous index test correctly identi�es all individ-
uals as diseased or nondiseased with an error rate of zero. 
A zero error rate is only possible when there is no overlap 
between index test results in the diseased and nondiseased 
individuals. However, when there is overlap in index test 
results, some individuals are classi�ed wrongly as shown 
below in an example concerning the diagnosis of deep venous 
thrombosis (DVT) using a d-dimer index test. When using a 
quantitative (continuous) index test to classify individuals as 
diseased or nondiseased, a cuto� value needs to be chosen to 
estimate these error rates. �is results in a so-called dichoto-
mized index test.

Values of the dichotomous or dichotomized index test that 
exceed the cuto� in individuals having the target disease are 
classi�ed as true positives (TP) (Fig. 2.24). Similarly, index 
test results lower than the cuto� in nondiseased individuals 
are true negatives (TN). Accordingly, index test results below 
the cuto� in truly diseased subjects are false negative (FN), 
and index test results exceeding the cuto� in truly nondis-
eased subjects are false positive (FP). Based on the frequen-
cies of FN and FP results, an overall error rate or non-error 
rate can be derived. �e overall diagnostic accuracy of an 
index test is then de�ned as the fraction of true classi�cations 
out of all classi�cations:

Diagnostic accuracy = (TN + TP) / (TN + TP + FP + FN)

�is is an overall non-error rate that can be subdivided 
into the non-error rate of the nondiseased individuals, which 
is the speci�city of the test and the non-error rate of diseased 
individuals which is the sensitivity of the test

Specificity = TN/ (TN + FP)

Sensitivity = TP/ (TP + FN)

Whereas a very speci�c test provides negative results for 
all or almost all subjects who are free of the target disease, a 
very sensitive test detects all or almost all diseased subjects. 
To assess the (im)precision of these estimates, CIs should be 
speci�ed as described under Categorical Variables. Table 2.3 
displays the widths of the 95% CIs at various sample sizes of 

20 to 1000 for two selected proportions. �e speci�city and 
sensitivity of two tests applied in the same study subjects can 
be statistically compared using the McNemar’s test. 

Clinical Example: Accuracy of D-Dimer Test in Diagnosis 
of Deep Venous Thrombosis

We illustrate the concepts using some of the empirical data 
of a previously published study in primary care patients sus-
pected of having DVT, the target disease (Fig. 2.25).

�e study consisted of 2086 patients suspected of DVT, 
where DVT was de�ned as present in patients manifesting 
at least one of the following symptoms or signs: presence of 
swelling, redness, or pain in the leg. All patients were given a 
standardized diagnostic workup, including medical history; 
clinical examination; and testing for d-dimer, the (quantita-
tive) index test. �e reference procedure consisted of repeated 
compression ultrasonography tests and was performed in all 
patients, blinded to and independent of the index test results. 
A total of 416 (20%) of the 2086 included patients had DVT.

Disease status

Test result Diseased Nondiseased

Positive TP FP

Negative FN TN

Fig. 2.24 The basic 2-by-2 table for estimating the diagnostic accu-

racy of a dichotomized quantitative test result. Positive test results 

are divided into true positives (TPs) and false positives (FPs) and 

negative results into true negatives (TNs) and false negatives (FNs). 

(From Linnet, K., Bossuyt, P. M., Moons, K. G., & Reitsma, J. B. 

[2012]. Quantifying the accuracy of a diagnostic test or marker. Clini-

cal Chemistry, 58, 1292–1301.)

TABLE 2.3 Relationship Between Sample 
Size and 95% Confidence Intervals of a Propor-
tion (e.g., a Sensitivity or Specificity): Selected 
Examples of Proportions of 0.05 and 0.80

Sample Size

95% CI of a  

Proportion of 0.05

95% CI of a  

Proportion of 0.80

20 0.00–0.25 0.56–0.94

60 0.01–0.14 0.68–0.90

100 0.02–0.11 0.71–0.87

500 0.03–0.07 0.76–0.83

1000 0.04–0.07 0.77–0.82

CI, Confidence interval.
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Fig. 2.25 Distribution of the quantitative D-dimer values for deep 

venous thrombosis (DVT) and non-DVT subjects in the example 

study. Light blue line, non-DVT; blue line, DVT. The dashed line indi-

cates the commonly used cutoff value of 500 μg/L. (From Linnet, K., 

Bossuyt, P. M., Moons, K. G., & Reitsma, J. B. [2012]. Quantifying 

the accuracy of a diagnostic test or marker. Clinical Chemistry, 58, 

1292–1301.)
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Applying a commonly used cuto� of 500 μg/L or greater 
for the (originally) quantitative d-dimer assay (dashed line in 
Fig. 2.25), the sensitivity was 0.97 (i.e., 3% of the subjects with 
DVT had a value <500 μg/L). �e speci�city was only 0.37. 
�e resulting overall diagnostic accuracy was 0.50. Whereas 
the test displayed good sensitivity at this threshold, detect-
ing all but 3% of those having DVT, its speci�city at this test 
threshold was relatively low, resulting in many FP results. �e 
SEs were 0.012 for the speci�city and 0.008 for the sensitivity, 
resulting in CIs of 0.356 to 0.402 and 0.955 to 0.987, respec-
tively. 

Receiver Operating Characteristic Curves

For a quantitative index test, the speci�city and sensitivity 
depend on the selected cuto� point. A plot of the sensitiv-
ity and speci�city pairs for all possible cuto� values over the 
measurement range provides the so-called receiver operating 

characteristic (ROC) curve (Fig. 2.26) Usually, sensitivity (y) is 
plotted against (1 − speci�city) (x) at each possible cuto� value. 
�e better the performance of the test, the higher the ROC 
curve is located in the le�, upper region of the plot. With use 
of the ROC curve, an appropriate combination of speci�city 
and sensitivity may be chosen, and the corresponding cuto� 
then selected.

An area under the ROC curve (i.e., the ROC area or 
so-called concordance or c-index) can be assessed by either 
parametric or nonparametric statistics. Given an SE of the 
ROC area or c-index, it is possible to test whether the area 
signi�cantly exceeds 0.5, which would demonstrate that the 
index test performs better than chance. A worthless test has 
an area of 0.5. Furthermore, using the SE, also a 95% CI can 
be derived for the ROC area or c-index. For the d-dimer test 
example, the area under the ROC curve was 0.86 (SE, 0.011), 
with a 95% CI of 0.84 to 0.88. 

Selection of Cutoff Value in Case of Quantitative  
Index Tests

�e speci�city and sensitivity determined for an index test 
almost always vary inversely over the range of possible cut-
o�s. �e cuto� point that provides the maximum of the sum 
of the speci�city and sensitivity could be selected. In the d-di-
mer example, this cuto� would be close to 2000 μg/L, yield-
ing a speci�city of 0.76 and a sensitivity of 0.80 (Fig. 2.27A). 
However, this method of cuto� selection is commonly not 
recommended. �e selection should rather be based on the 
intended purpose of the index test. If an index test is applied 
primarily to rule out the presence of disease (e.g., in the case 
of the d-dimer assay for exclusion of DVT), the cuto� point 
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Fig. 2.26 Receiver operating characteristic curve of the D-dimer 

assay result for diagnosis of deep venous thrombosis in our example 

study. The blue markers correspond to various cutoff choices (from 

left to right, 5435 μg/L, 2133 μg/L, and 500 μg/L). (From Linnet, K., 

Bossuyt, P. M., Moons, K. G., & Reitsma, J. B. [2012]. Quantifying 

the accuracy of a diagnostic test or marker. Clinical Chemistry, 58, 

1292–1301.)
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Fig. 2.27 Alternative cutoffs to 500 μg/L in the D-dimer example. (A) 

Cutoff (2133 μg/L) giving maximum value of the sum of the specific-

ity and sensitivity. (B) Cutoff (5435 μg/L) providing a high specificity 

(0.975). Light blue line, non–deep venous thrombosis (DVT); blue line, 

DVT. The dashed line indicates the cutoff value. (From Linnet, K., 

Bossuyt, P. M., Moons, K. G., & Reitsma, J. B. [2012]. Quantifying 

the accuracy of a diagnostic test or marker. Clinical Chemistry, 58, 

1292–1301.)
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should be at the lower end of the distribution of values of dis-
eased individuals (see Fig. 2.25) (e.g., a cuto� of 500 μg/L). At 
this cuto�, the sensitivity approaches 1.0. But attaining such 
a high sensitivity is at the cost of a loss of speci�city because 
of overlap of test values in the diseased and nondiseased indi-
viduals. Conversely, when FP results are judged unacceptable, 
the cuto� should be toward the upper limit of the distribu-
tion of values for the nondiseased group. For the d-dimer test 
example, a cuto� value corresponding to the 97.5 percentile 
of the distribution of values for those not having DVT (5435 
μg/L) resulted in a speci�city of 0.975, but now the sensitivity 
was only 0.36 (i.e., nearly the opposite of the situation with a 
cuto� of 500 μg/L) (see Fig. 2.27B). 

Posterior Probabilities (Predictive Values)

Unlike sensitivity and speci�city, the positive predictive 

value assesses the probability of having the disease given 
a positive test result, P (D | Tpos), whereas the negative 

predictive value assesses the probability of not having the 
disease given a negative test result P (Non − D | Tneg). �e 
probability of presence of target disease given the index test 
result is an example of a so-called posterior disease proba-
bility, where the prior probability corresponds to the prev-
alence of the disease in the given situation. �e prevalence 
of disease (P[D]) in the study sample is the a priori (pretest) 
probability of disease.

Given a positive test result (Tpos), the posterior disease 
probability is estimated as the fraction of TP out of all test 
result positives:

P (D | Tpos) = TP/ (TP + FP)

Analogously for a negative result (Tneg), the probability 
that the given disease is absent is

P (Non − D | Tneg) = TN/ (TN + FN)

Just as with sensitivity and speci�city values, these poste-
rior disease probabilities depend on the selected cuto� point 
for a quantitative test. In case of a dichotomous or dichoto-
mized index test, these posterior probabilities are also called 
predictive values. �ey are highly dependent on the disease 
prevalence.

From the Bayes rule, the following relations exist:

P (D | Tpos) = [Sensitivity × P (D)] / [Sensitivity × P (D)
+ (1 − Specificity) (1 − P (D))

P (Non−D Tneg) = [Sensitivity× (1−P (D))] /
[Specificity × (1−P (D)) +P (D)

× (1−Specificity)]

|
 

Likelihood Ratios and Odds Ratios

From relative frequency distributions for results of the 
index test in the nondiseased and diseased groups, the 
so-called diagnostic likelihood ratio (LR) of an index 
test result (X) can be calculated as the ratio between the 
heights of the relative frequency (f) distributions at that 
specific test value. We get:

LR (X) = fD (X) /fNon − D (X)

In case the relative frequency of the distribution of dis-
eased individuals is higher than that of the nondiseased indi-
viduals, the ratio exceeds 1. �is indicates that disease is more 
likely than nondisease given this particular index test result. 
More formally, the ratio can be used to calculate posterior 
disease probabilities given speci�c values of the index test (X) 
and the disease prevalence (D):

P (D | X) = P (D) × LR (X) / [P (D) × LR (X) + (1 − P (D))]

or a more simple calculation can be carried out using odds 
instead of probabilities:

Odds (D | X) = Odds (D) × LR (X)

based on the relation:

Odds = P / (1 − P)

Odds is an alternative way of expressing probabilities com-
monly used in betting games in Anglo-Saxon countries. For 
example, a probability of 0.80, or 80%, corresponds to an odds 
value of 4 according to the formula above. �e higher the odds, 
the closer a probability is to one. From the equation, the poste-
rior odds are equal to the prior odds multiplied by the diagnos-
tic LR for the result X.

For a dichotomous or dichotomized index test, the follow-
ing relationships apply:

LR (pos) = Sensitivity/ (1 − Specificity)

LR (neg) = (1 − Sensitivity) /Specificity

A simple way of achieving the posttest probability of dis-
ease from the prevalence (pretest probability of disease) and 
the diagnostic LR is to use the Fagan nomogram. A recent 
example is the estimation of the probability of DVT from test-
ing for d-dimer. 

Comparison of Diagnostic Accuracy of Two  
Tests in Isolation

�e diagnostic accuracy—that is, the ability to detect or 
exclude the target disease as determined by the reference 
method—of a new diagnostic index test is usually compared 
with another, established, index test. We here focus on the 
pure performances of the tests without consideration of other 
tests (i.e., we consider each test in isolation). When com-
paring the accuracy of two or more diagnostic index tests, a 
paired design is generally preferable for reasons of both valid-
ity and e�ciency. In the target disease-suspected patients, the 
two index tests under comparison and the reference stan-
dard are performed on all subjects, again independently and 
blinded with regard to each other’s test results. An example 
of a paired comparison is displayed in Fig. 2.28. Overall, the 
index test having the largest area under the ROC curve rep-
resents the best test. Preferably, CIs of areas and di�erences of 
areas should be provided.
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�e STARD (Standards for Reporting of Diagnostic 
Accuracy Studies) initiative (Box 2.2) and the so-called 
QUADAS-2 (Quality Assessment Tool for Diagnostic 
Accuracy Studies) aim at improving diagnostic accuracy 
studies (http://www.quadas.org). 

Diagnostic Accuracy of a Test in the  
Clinical Context
�e diagnostic process commonly consists of a series of 
sequential steps in which much diagnostic information 
(i.e., diagnostic test results) is acquired. A�er each step, 
the physician intuitively judges the probability of the tar-
get disease being present. �e initial step always consists of 
patient history and physical signs. If uncertainty about the 
presence and type of disease remains, subsequent tests are 
performed, o�en in another stepwise fashion. �ese sup-
plementary tests may consist of simple blood or urine tests 
or be imaging, electrophysiology, or genetic tests or even 
later in the process more invasive testing such as biopsy, 
angiography, or arthroscopy. �e supplementary infor-
mation of each subsequent test is implicitly added to the 
already collected diagnostic information, and the target 
disease probability is constantly updated. �is process con-
tinues until the target disease can be included or excluded 
with su�cient certainty.

Diagnostic test studies should re�ect the steps in the diag-
nostic process so that the added value of such tests in excess 

of the information that is already present can be assessed. 
Depending on the situation, studies may reveal that the diag-
nostic information of any subsequent test is already supplied 
by the simpler previous test results. When regarded in isola-
tion, such subsequent test or marker may indeed show diag-
nostic accuracy or value, but when assessed in the overall 
diagnostic workup, it does not. Such a case can arise because 
di�erent tests may gauge the same underlying pathologic pro-
cesses to varying degrees and thus provide related diagnostic 
information.

Clinical Example: Added Value of D-Dimer Testing in the 
Diagnosis of Suspected Deep Venous Thrombosis

The same DVT case study described earlier is considered. 
A total of 2086 patients were suspected of DVT, having at 
least one of the following symptoms: swelling, redness, or 
pain in the leg. All patients had a standardized diagnos-
tic workup consisting of index tests from medical history 
taking, physical examination, and quantitative d-dimer 
testing. The reference standard was repeated compression 
ultrasonography, according to current clinical practice, 
carried out in all patients independent of the results of the 
index tests and blinded with regard to all preceding col-
lected index test results. In total, 416 of the 2068 included 
patients (20%) had DVT confirmed by ultrasonography. 
We focus on estimating the added value of d-dimer testing 
to the information provided by history taking and physical 
examination.

A multivariable statistical approach is needed to assess 
the diagnostic accuracy of combined index test results. 
Logistic regression models express the probability of DVT 
(on the logit scale) as a linear function of the included index 
test results. Note that index test results may be included as 
binary, categorical, or even continuous results. Table 2.4 
(model 1) shows the results from history and physical exam-
ination test results that were signi�cantly related to DVT in 
the multivariable analysis, here de�ned as a multivariable 
odds ratio signi�cantly (P < .05) di�erent from 1 (no asso-
ciation).

To quantify whether the quantitative d-dimer assay 
result has added diagnostic value beyond the history and 
physical examination results combined, the basic model 1 
was simply extended by including the index test d-dimer 
value, resulting in model 2 (see Table 2.4). After the inclu-
sion of the d-dimer assay result, the regression coefficients 
of most history and physical tests in model 2 are found 
to be different from those in model 1: They now express 
the contribution of the corresponding test results, given a 
specific d-dimer result. This change reveals that the his-
tory and physical and the d-dimer results are indeed cor-
related and partly provide the same diagnostic information 
regarding whether DVT is present or not. The trend of 
lower regression coefficients of most findings can be inter-
preted as follows: A portion of the information supplied 
by the history and physical items is now replaced by the 
d-dimer assay result. 
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Fig. 2.28 Comparison of the receiver operating characteristic curves 

of two hypothetical index tests for the same target disease under-

taken in the same individuals. The dotted blue curve represents a 

superior diagnostic test, both with regard to sensitivity and specific-

ity over all possible cutoff points. The dashed diagonal represents a 

worthless test, with equal probability of a false-positive (1 − Specific-

ity) and false-negative (1 − Sensitivity) result across all cutoff values 

(i.e., flipping a coin test). (From Linnet, K., Bossuyt, P. M., Moons, K. 

G., & Reitsma, J. B. [2012]. Quantifying the accuracy of a diagnostic 

test or marker. Clinical Chemistry, 58, 1292–1301.)

http://www.quadas.org
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Diagnostic Accuracy of Combinations of Diagnostic Tests: 
Receiver Operating Characteristic Area

�e multivariable diagnostic model, which is based on a com-
bination of diagnostic index tests, as exempli�ed in models 
1 and 2 in Table 2.4, can be considered as a single (overall 
or combined) quantitative index test, consisting of a com-
posite of individual index tests. �e test result of this “com-
bined index test model” for each study patient is simply the 

calculated posterior probability of DVT presence given the 
observed pattern of the individual index test results in that 
patient. (See the footnote to Table 2.4 on how to calculate this 
probability of disease presence.)

As for single continuous index tests described earlier, also 
for “test combinations” combined into a single multivariable 
model, the ROC area (c-statistic) can be calculated to indicate 
the ability of this “test combination” to discriminate between 
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the presence versus absence of the target disease (here DVT). 
Fig. 2.29 shows the ROC curves and areas for models 1 and 2. 
Adding the quantitative d-dimer assay to model 1 mediated 
an increase in the ROC area from 0.72 to 0.87, a considerable 
and statistically signi�cant gain (P < .01). 

Impact of Diagnostic Tests

When thinking about approaches to evaluate the impact of 
diagnostic tests on medical decision making, patient out-
comes, and healthcare at large, it is useful to describe the 
pathways through which bene�ts (and risks) of using the test 
are likely to occur. �is so-called working pathway provides 
a framework (Fig. 2.30) to explain how a given test leads to 
bene�ts or risks for patients’ health or healthcare. Such work-
ing pathways include:
 1.  �e anticipated technical or analytical capabilities of the 

test
 2.  �e unintended and intended results and e�ects of the test 

(e.g., bene�ts of diagnosis and treatment) when applied in 
the targeted context

 3.  Those individuals in whom these effects are likely to 
occur (e.g., in the targeted patients or in the care pro-
viders)

 4.  �e anticipated mechanisms through which these poten-
tial e�ects will occur

 5.  Existing care in the targeted context and individuals
 6.  �e expected time frame in which potential risks and ben-

e�ts might occur
A clear description of the working pathway of a new test 

can determine the current bene�ts (and risks) of prevailing 
care in the intended medical context. It also helps deter-
mine what added value or bene�ts the new test must provide 
to improve existing care and what evidence is necessary to 
quantify whether these (added) bene�ts are indeed achieved 
at what risks or costs.

TABLE 2.4 Basic and Extended Multivariable Diagnostic Model to Discriminate Between Deep 
Venous Thrombosis Presence Versus Absencea

MODEL 1 (BASIC MODEL) MODEL 2 (BASIC MODEL + D-DIMER)

Regression 

Coefficient (SE) OR (95% CI) P value

Regression 

Coefficient (SE) OR (95% CI) P value

(Intercept) −3.70 (0.26) — <.01 −4.94 (0.32) — <.01

Presence of malignancy 0.62 (0.22) 1.9 (1.2–2.9) <.01 0.22 (0.26) 1.2 (0.7–2.1) 0.41

Recent surgery 0.44 (0.16) 1.6 (1.1–2.1) <.01 0.003 (0.19) 1.0 (0.7–1.5) 0.99

Absence of leg trauma 0.75 (0.18) 2.1 (1.5–3.0) <.01 0.67 (0.20) 2.0 (1.3–2.9) <.01

Vein distension 0.48 (0.13) 1.6 (1.1–-2.1) <.01 0.25 (0.16) 1.3 (0.9–1.8) 0.12

Pain on walking 0.41 (0.15) 1.5 (1.1–2.0) <.01 0.46 (0.18) 1.6 (1.1–2.3) 0.01

Swelling whole leg 0.36 (0.12) 1.4 (1.1–1.8) <.01 0.47 (0.14) 1.6 (1.2–2.1) <.01

Difference in calf circumference  

(per cm)

0.36 (0.04) 1.4 (1.3–1.5) <.01 0.29 (0.04) 1.3 (1.2–1.4) <.01

D-Dimer (per 500 ng/mL) NA NA NA 0.29 (0.02) 1.3 (1.3–1.4) <.01

aExp (regression coefficient) is the odds ratio (OR) of a diagnostic test result. For example, an odds ratio of 2 for absence of leg trauma (model 2)  

means that a suspected patient without a recent leg trauma has a two times higher chance of having deep venous thrombosis (DVT) than a 

patient with a recent leg trauma (because in the latter the leg trauma would more likely be the cause of the presenting symptoms and signs). 

Similarly, an odds ratio of 1.3 for calf difference in cm (model 2) means that for every centimeter increase in calf circumference difference, a 

patient has a 1.3 times (or 30%) higher chance of having DVT.

A diagnostic model can be considered as a single overall or combined test consisting of different test results, with the probability of DVT presence 

as its test result. For example, for a male subject without malignancy, recent surgery, or leg trauma but with vein distension and a painful not 

swollen leg when walking with a calf difference of 6 cm the formula is (model 1):

Z = −3.70 + 0.62*0 + 0.44*0 + 0.75*0 + 0.48*1 + 0.41*1 + 0.36*0 + 0.36*6 = −0.65

The probability for this patient of the presence of DVT based on the basic model then is exp(−0.65)/(1 + exp[−0.65]) = 34%.

CI, Confidence interval; NA, not applicable; SE, standard error.
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Fig. 2.29 Receiver operating characteristic (ROC) curves for the com-

bination of history and physical examination tests before and after 

addition of the D-dimer assay result. (From Moons, K. G., de Groot, 

J. A., Linnet, K., Reitsma, J. B., & Bossuyt, P. M. [2012]. Quantifying 

the added value of a diagnostic test or marker. Clinical Chemistry, 58, 

1408–1417.)
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 R E V I E W  Q U E S T I O N S

 1.  Which statement applies to a sample of values drawn 
from a Gaussian distribution?

 a.  �e central location is best described by the median.
 b.  �e dispersion is best described by the interquartile 

range.
 c.  �e distribution of the values is likely to be asymmetric.
 d.  �e t distribution is useful for estimation of the 95% 

CI for the mean value.
 2.  �e analytical speci�city of an assay is:
 a.  the ability of an assay procedure to determine the 

concentration of a target analyte in the presence of 
interfering substances in the sample matrix.

 b.  the detection limit of a method.
 c.  the ability of an analytical method to assess small 

variations in the concentration of analyte.
 d.  the analyte concentration range over which measure-

ments are within the declared tolerances for impreci-
sion and bias of the method.

 3.  Two analytical methods are to be compared by analysis in 
parallel of a suitable number of patient samples. Which of 
the following is correct?

 a.  Ordinary least-squares regression analysis is the most 
appropriate data analysis approach.

 b.  It is generally recommended that the manufacturer 
use 40 samples for comparison and the user laborato-
ry 100 samples.

 c.  A calibration di�erence is most typically disclosed by 
an intercept estimate signi�cantly di�erent from zero 
obtained by regression analysis.

 d.  In case of constant CV%s, the Bland-Altman di�er-
ence plot shows an increasing scatter of the measured 
di�erences at increasing measurement values.

 •  The diagnostic accuracy of a test indicates the frequency and 

type of errors that a test will produce when differentiating 

between patients with and without the target disease.

 •  The cohort design based on patients suspected of the dis-

eases targeted by the index test is generally preferable for 

evaluating diagnostic accuracy.

 •  It is not meaningful to regard estimates of diagnostic perfor-

mance as properties of the test itself but rather to interpret 

them as depending on the setting in which the index test 

was applied and dependent on other tests that are com-

monly used in that setting.

 •  Focus has been on approaches and measures for quantifi-

cation of the diagnostic accuracy of combinations of index 

tests and of the added value of a new diagnostic test beyond 

existing diagnostic tests.

POINTS TO REMEMBER
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Fig. 2.30 Relationship between the pathway through which devices may lead to benefits or added benefits 

for health or health care and the three dimensions of quality for evidence (indirectness of evidence, risk of 

bias, precision of estimates). (From KNAW. [2014]. Evaluation of new technology in health care. In need of 

guidance for relevant evidence. Amsterdam: KNAW.)
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 4.  In a regression analysis comparing results of two meth-
ods, the y-intercept is calculated to be 2.0 and the slope is 
3. �is indicates a(n):

 a.  calibration error.
 b.  uncertainty.
 c.  systematic di�erence.
 d.  interference in one method.
 5.  Which one of the following, when stated as an interval 

around a reported laboratory result, will specify the loca-
tion of the true value with a given probability?

 a.  Traceability
 b.  Coe�cient of variation
 c.  Trueness
 d.  Uncertainty
 6.  �e traceability chain extends downwards from the ref-

erence measurement procedure to the routine analytical 
method. Which of the following is correct?

 a.  A reference measurement procedure is sensitive to 
matrix e�ects.

 b.  �e standard uncertainty indicates a 95% uncertainty 
interval.

 c.  Harmonization of laboratory measurements do not 
presuppose traceability to a reference measurement 
procedure.

 d.  �e reference measurement procedure is always 
more precise than the routine analytical method.

 7.  �e diagnostic accuracy of a test is assessed on a num-
ber of subjects suspected of having a given target disease. 
Which of the following is correct?

 a.  �e diagnostic accuracy is characteristic for the test 
and is not in�uenced by the actual setting in which it 
is evaluated.

 b.  �e ROC area provides a measure of the diagnostic 
accuracy, which is not dependent on a selected cut-
o� value.

 c.  When the cut-o� value of a quantitative test is increased, 
the speci�city declines and the sensitivity increases.

 d.  In order to rule out the presence of disease, it is im-
portant that the speci�city is high.

 8.  �e probability of the presence of a speci�c disease 
divided by the probability of its absence is the:

 a.  likelihood ratio.
 b.  odds ratio.
 c.  prevalence.
 d.  predictive value.
 9.  When a receiver operating characteristic curve is plotted, 

the x-axis represents the:
 a.  false-positive rate.
 b.  true-positive rate.
 c.  false-negative rate.
 d.  true-negative rate.
 10.  A new test is added to an existing set of diagnostic proce-

dures. Which of the following is correct?
 a.  �e diagnostic accuracy of the new test is the most 

important point to consider.
 b.  A multivariate data treatment based on logistic regres-

sion analysis presupposes quantitative test results.
 c.  It is unlikely that results from several tests are correlated.
 d.  �e di�erence between the ROC curve area a�er ad-

dition of the new test and the area of the ROC curve 
of the original diagnostic procedure expresses the 
added value of the new test.
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