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This original editor continues to marvel at the advances in 
the field of stroke, justifying the seventh edition of this book. 
Among other topics, the first edition had a mere 15 chap-
ters, and in 347 pages covered “Stroke Therapy.” The subjects 
ranged from management of risk factors to rehabilitation. 
This edition has no less than 28 such chapters, clustered in 
stand-alone sections for medical and interventional therapy. 
The page length for all of subjects has steadily expanded by 
editions: proof, if needed, of progress. Gone—and good rid-
dance!—are the days when those interested in stroke were 
considered clinically irrelevant for lack of definitive therapies. 
Instead, far from an arcane subspecialty, stroke prevention 
and management now has an impact on the clinical practice 
of many medical and surgical fields whose training not long 
ago scarcely touched on the subject.

Stroke clinicians now find their clinical judgment 
tested—sometimes to their vexation—by the application of 
hyperacute management algorithms driven mainly by scor-
ing systems, meta-analyses, and outcomes from the wave of 
clinical trials. Few can argue with the positive effect of rapid 
assessment and intervention, especially for acute ischemic 
strokes. Insights spanning genetics, basic biology, computer-
driven population studies, web-based meta-analyses, and 
increasingly common longitudinal outcome reports are wel-
come signs of progress. Only novelists should designate their 
published work free from revision. The current contributors 
can expect further changes to justify an eighth edition in the 
foreseeable future.

The growing participation in stroke management by 
those in allied fields has done nothing to displace the role 
of neurovascular clinicians, whose commitment includes 
studying how the brain works. Insights from modern basic 
biology, increasingly sophisticated imaging, prospective 
clinically detailed databases, and even access to video Zoom 
follow-ups are providing windows into what was formerly 
called semiology. Decades ago, the neurology literature was 
dotted with titles beginning with “The Neurology of…” by 
which the author(s) implied how a clinical syndrome allowed 
insight into diagnosis or prognosis. Today, a surprising number 
of outcomes for acute focal syndromes formerly considered 
static, prevented from their full development, or deemed 
modified favorably by acute interventions, are yielding insights 
into the mysteries of functional reorganization. The increasing 
opportunities to understand this effect offers literature-
oriented neurovascular clinicians the chance to be links in an 
unbroken chain of inquiry dating back to antiquity.

J.P. Mohr, MD
Daniel Sciarra Professor of Neurology

Department of Neurology
Director and Neurologist

Doris and Stanley Tanenbaum Stroke Center 
Columbia University Irving Medical Center

New York, New York

Foreword to the Seventh Edition
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The seventh edition of the text has a number of important 
changes. First, this edition has even more on-line features, 
making it easier to access its content in a digital-friendly for-
mat. The eBook includes the entire book plus full reference 
lists (as opposed to the Key References that appear in the chap-
ters) and a larger number of videos than the previous edition. 
Access to the Expert Consult eBook version is included with 
print purchase. This enhanced eBook experience allows you 
to search all of the text, figures, and references on a variety of 
devices. The content can also be downloaded to tablets and 
smart phones for offline use.

Another important change includes our new Surgical 
Therapy section editor, Arthur Day, MD. Dr. Day is an 
international authority on the surgical management of 
cerebral aneurysms, intracranial hemorrhage, and extracranial 
vascular disease. He is the recipient of numerous neurosurgical 
leadership awards, and from first-hand experience I can attest 
to his passion for teaching and the wisdom that has grown 
out of decades of skillfully managing the complexities of the 
entire array of neurovascular surgical cases. Of particular value 
for his role as editor, Dr. Day has been an important leader 
of the neurosurgical field as it has emerged from open to 
endovascular approaches and as it has partnered with vascular 
neurology in the conduct of clinical trials. As a result of his 
intimate knowledge of the entire neurovascular landscape and 
its leaders, you will see that the authors of almost all of the 
chapters in the Surgical Therapy section have changed and the 
chapters have all been updated. I think that the readers will be 
impressed by the combined experience, fresh perspective, and 
new information in every chapter in the section.

Other notable changes in this edition justified enlarging 
attention given to several underappreciated and yet unresolved 
problems in the field. In line with the increasing evidence of 
vascular disease as the most important modifiable contributor 
to dementia and much-needed attention to the biology 
underlying small vessel disease, a new chapter on this topic 
has been added to the Pathophysiology section, which has 
been overseen by the senior editor, Dr. Lo. In addition, the 
chapters on the clinical aspects of vascular dementia and 
small vessel disease have been updated by new authors (Drs. 
Rundek, Seshadri, and Caunca) in the Epidemiology and Risk 
Factors section, and important new information is found in the 
chapters on genetics and CADASIL. Somewhat linked to this 
topic and also reflecting a maturing interest in non-imaging 
stroke biomarkers in general is an entirely new chapter on 
“OMICs,” written by Drs. Jickling and Sharp.

Disparities in stroke incidence and outcomes has become 
a hot topic, accentuated recently by the spotlight cast on this 
issue during the COVID-19 pandemic and the racial unrest in 
the United States. The already outstanding chapter on stroke 
disparities by Drs. Howard, Howard, and McCullough has 
been updated, and this topic has also been woven through 
other chapters where relevant.

Other unsolved areas that receive substantial updating 
include intracerebral hemorrhage by new author Dr. Anderson 
and arteriovenous malformations by Drs. Samaniego, Roa, 
Ortega-Gutierrez, and Derdeyn. In addition, the chapters 
on the surgical management of different types of brain 
hemorrhage have all been updated by new authors.

The previous edition appeared just as the trials demonstrating 
the benefit of endovascular thrombectomy were published, so 
the coverage of this revolution in treatment was incomplete. 
In this edition, Dr. Broderick’s section, Interventional Therapy, 
and in particular the chapter by Drs. Saver and Jahn on the 
endovascular treatment of acute ischemic stroke, have been 
substantially updated to include the results of all those pivotal 
clinical trials, as well as the myriad studies that followed.

The final unresolved topic receiving increased coverage 
in this edition is how best to deliver these effective new 
treatments (e.g., stroke systems of care). We have added a new 
chapter on this topic, written by Drs. Czap, Harmel, Audebert, 
and myself, that explores different models and approaches to 
reorganizing our stroke centers, resources, and staffing. and 
In addition, first-time contributors to this title, Drs. Kircher 
and Adeoye, have expanded the chapter on prehospital and 
emergency care.

While I have focused my editorial spotlight on a few of the 
major unresolved topics that are receiving substantial and well-
deserved increased attention, I want to emphasize that each and 
every chapter has been updated with new information. There 
is a new chapter on posterior reversible encephalopathy, which 
replaces the old chapter on hypertensive encephalopathy with 
new authors (Drs. Balu and Fischer); the imaging chapters on 
CT and MRI have been updated, with expanded discussion of 
the important role of imaging in patient selection for acute 
therapy; the chapters on cardiac disease, cryptogenic stroke, 
and secondary prevention provide more information on 
atrial fibrillation detection, other possible causes of embolic-
appearing stroke without known source, and their long 
term management; the antiplatelet therapy chapter includes 
updated data from recent trials of dual antiplatelet therapy; 
and the design of stroke clinical trials chapter has been 
rewritten by new authors (Drs. Perez, Elm, and Saver) and 
includes emerging novel approaches to figuring out if new 
treatments work.

All in all, I hope that the exciting relevant new data that fill 
the pages of our journals and make stroke such a dynamic and 
interesting field are distilled into these pages in a readable and 
authoritative format that will help the reader understand their 
patients and their underlying disease, which they see every 
day, and also provide the foundation for new knowledge that 
will be the substrate for the next edition.

James C. Grotta, MD

Preface
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AHA Evidence-Based Classifications

TABLE 1 Applying Classification of Recommendations and Level of Evidence

S I Z E  O F  T R E A T M E N T  E F F E C T

CLASS I CLASS IIa CLASS IIb

CLASS III No Benefit 

or CLASS III Harm

Benefit > > > Risk

Procedure/

Treatment

SHOULD be 

performed/

administered

Benefit > > Risk

Additional studies with 

focused objectives 

needed

IT IS REASONABLE to 

perform procedure/

administer treatment

Benefit ≥ Risk

Additional studies with 

broad objectives 

needed; additional 

registry data would be 

helpful

Procedure/Treatment

MAY BE CONSIDERED

Procedure/ 

Test

Treatment

COR 

III: No 

benefit

Not  

Helpful

No Proves 

Benefit
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III: 
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T LEVEL A

Multiple 

populations 

evaluated*

Data derived from 

multiple 

randomized 

clinical trials or 

meta-analyses

• Recommendation 
that procedure or 
treatment is 
useful/effective

• Sufficient 
evidence from 
multiple 
randomized trails 
or meta-analyses

• Recommendation in 
favor of treatment 
or procedure being 
useful/effective

• Some conflicting 
evidence from 
multiple randomized 
trials or meta-

analyses

• Recommendation’s 
usefulness/efficacy 
less well established

• Greater conflicting 
evidence from 
multiple randomized 
trials or meta-

analyses

• Recommendation that procedure or 
treatment is not useful/effective 
and may be harmful

• Sufficient evidence from multiple 
randomized trials or meta-analyses

LEVEL B
Limited 
populations 
evaluated*

Data derived from 
a single 
randomized trial 
or nonrandomized 
studies

• Recommendation 
that procedure or 
treatment is 
useful/effective

• Evidence from 
single 
randomized trial 
or nonrandomized 
studies

• Recommendation in 
favor of treatment 
or procedure being 
useful/effective

• Some conflicting 
evidence from 
single randomized 
trial or 
nonrandomized 
studies

• Recommendation’s 
usefulness/efficacy 
less well established

• Greater conflicting 
evidence from single 
randomized trial or 
nonrandomized 
studies

• Recommendation that procedure or 
treatment is not useful/effective 
and may be harmful

• Evidence from single randomized 
trial or nonrandomized studies

LEVEL C
Very limited 
populations 
evaluated*

Only consensus 
opinion of experts, 
case studies, or 
standard of care

• Recommendation 
that procedure or 
treatment is 
useful/effective

• Only expert 
opinion, case 
studies, or 
standard of care

• Recommendation in 
favor of treatment 
or procedure being 
useful/effective

• Only diverging 
expert opinion, case 
studies, or standard 
of care

• Recommendation’s 
usefulness/efficacy 
less well established

• Only diverging expert 
opinion, case 
studies, or standard 
of care

• Recommendation that procedure or 
treatment is not useful/effective 
and may be harmful

• Only expert opinion, case studies, 
or standard of care

Suggested phrases 

for writing 

recommendations†

should

is recommended

is indicated

is useful/effective/

beneficial

is reasonable

can be useful/effective/

beneficial

is probably 

recommended or 

indicated

may/might be considered

may/might be reasonable

usefulness/effectiveness is 

unknown/unclear/

uncertain or not well 

established

COR III

No Benefit

is not 

recommended

is not indicated

should not be 

done

is not useful/

beneficial/effective

COR III

Harm

potentially

harmful

causes harm

associated with 

excess morbidity/

mortality

should not be done

Comparative 

effectiveness 

phrases†

treatment/strategy A 

is recommended/

indicated in 

preference to 

treatment B treatment 

A should be chosen 

over treatment B

treatment/strategy A is 

probably recommended/

indicated in preference 

to treatment B

it is reasonable to 

choose treatment A over 

treatment B

Reprinted with permission Circulation. 2010;121:1544–1579 ©2010, American Heart Association, Inc.
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 BOX 1    Evidence Classifications

 1.  Size of treatment effect

	 •	  Class I: Benefit >>> Risk. Procedure/treatment SHOULD be 

performed/administered.

	 •	  Class IIa: Benefit >> Risk. IT IS REASONABLE to perform 

procedure/administer treatment.

	 •	  Class IIb: Benefit ≥ Risk. Procedure/treatment MAY BE 

CONSIDERED.

	 •	  Class III: No Benefit/Harm. Procedure/treatment is not useful/

effective and may be harmful.

 2.  Certainty of treatment effect

	 •	  Level A: Data derived from multiple randomized clinical trials or 

meta-analyses.

	 •	  Level B: Data derived from a single randomized trial or 

nonrandomized studies.

	 •	  Level C: Only consensus opinion of experts, case studies, or 

standard of care.

Adapted from Sacco RL, Adams R, Albers G, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement 

for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke. Stroke. 2006;37:577–617.
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Eng H. Lo

The first section in this new edition of Stroke provides an 
updated and comprehensive survey of the molecular, cellular, 
and pathophysiologic mechanisms that underlie the brain’s 
reaction to ischemia and hemorrhage. At the cellular level, 
stroke affects pathways of hemostasis and perturbs interac-
tions between circulating blood elements, the blood vessel 
itself, and brain parenchyma. At the functional level, the regu-
lation and dysregulation of hemodynamics and metabolism 
mediates an integrated neurologic response. At the organ level, 
stroke induces histopathologic reactions in all neural, glial, 
and vascular cells. Hence this section begins with three chap-
ters that define basic principles of vascular biology, cerebral 
blood flow and metabolism, and brain tissue injury. Updates 
include new information on hemodynamic responses to 
thrombectomy and reperfusion, as well as new sections that 
discuss correlations between experimental animal models and 
clinical pathology.

Building on these fundamental principles, the next few 
chapters then explore the molecular mechanisms of cell death 
and survival. Genes and pathways underlying necrosis and 
programmed cell death are balanced against an expanding 
family of endogenous neuroprotection mediators. The neuro-
vascular unit chapter remains a centerpiece for the overall 
concept of cell-cell signaling. However, beyond the brain 
itself, interactions with other organ systems are also discussed 
in terms of crosstalk with neuroinflammatory cascades and 

immune cells. New sections describe emerging opportunities 
in tolerance and preconditioning, as well as interactions 
between the immune system and the microbiome. The 
chapter on stroke recovery reviews a complex spectrum of 
compensatory response in resident precursor and circulating 
progenitor cells. New insights have been added to explore 
the role of exosomes and micro-RNA that may transfer and 
coordinate signals between all cell types in the remodeling 
neurovascular unit. The chapter on white matter has also 
been expanded, with added material that links exercise to 
oligodendrocyte homeostasis and resilience. The chapter 
on cerebral hemorrhage surveys advances in molecular and 
cellular phenomena with new ideas that may link ferroptosis 
to translational opportunities and clinical trials. The chapter 
on vascular malformations has been updated to link signaling 
cascades in advanced zebrafish and mouse models with genes 
that are implicated in clinical disease. Finally, this section ends 
with the addition of a new chapter that defines novel pathways 
in the neurovascular unit that mediate vascular contributions 
to cognitive impairment and dementia.

Optimal translation for cerebrovascular disease cannot 
occur without a rigorous dissection of the molecular and 
cellular fundamentals in neurovascular and gliovascular  
biology. The basic principles established in this section should 
provide not only mechanistic foundations but also a rational 
basis for pursuing therapeutics and diagnostics in stroke.

SECTION 

I Pathophysiology
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Pathophysiology

INTRODUCTION

The brain has a limited supply of nutrients; thus normal brain 
function relies on adequate perfusion by the cerebral circula-
tion for the delivery of oxygen and nutrients, as well as the 
removal of waste products. It is for this reason that cerebral 
vascular tone is tightly regulated, and why any alterations in 
mechanisms that modulate cerebral vessel function can pre-
dispose to cerebrovascular disease and stroke. Atherosclerosis 
is the underlying pathologic process for both coronary and 
cerebral artery disease, which are the two most common forms 
of cardiovascular disease.1

The purpose of this chapter is thus to provide insight into 
major mechanisms that regulate cerebral artery function, 
and alterations in these mechanisms in two major clinical 
conditions that have a significant negative impact on health 
worldwide—hypertension and atherosclerosis. The scope 
is mostly limited to discussion of cerebral blood vessels 
and mechanisms that regulate their tone, either under 
basal conditions or in response to physiologically relevant 
agonists. 

ORGANIZATION OF THE CEREBRAL CIRCULATION

The brain is predominantly perfused by three pairs of intracra-
nial arteries: the anterior, middle, and posterior cerebral arter-
ies (ACA, MCA, and PCA, respectively). These arise from the 
circle of Willis, a ring of arteries formed by the anterior and pos-
terior communicating arteries that connect the terminal ends 
of the basilar and internal carotid arteries. The ACA, MCA, and 
PCA travel along the pial surface of the brain, branching into 
smaller arterioles. Importantly, anastomoses exist between 
the smaller arterioles of these three major arterial trees, and 

collateral flow is thought to be important when blood flow in 
one region is compromised.2 The pial arterioles then dive into 
the brain to give rise to parenchymal arterioles. Parenchymal 
arterioles are long, relatively unbranched arterioles that per-
fuse a distinct area of brain tissue.3 The capillary network arises 
from the parenchymal arterioles, which is where the majority 
of nutrient and gas exchange occurs. Although much less is 
known about their function during health or disease, cerebral 
venules and veins are also important components of the cere-
bral circulation. For example, major disruption to blood-brain 
barrier function during acute hypertension occurs in the pial 
venules.4 

PHYSIOLOGIC REGULATION OF CEREBRAL 
VASCULAR TONE

Numerous mechanisms regulate cerebral artery function. Most 
of the recent experimental evidence regarding such mecha-
nisms has come from pharmacologic studies and the use of 
genetically modified mice. Major mechanisms include the 
release of nitric oxide (NO) from the endothelium to underly-
ing smooth muscle cells (discussed in the Nitric Oxide and 
Cyclic Guanosine Monophosphate section); potassium ion 
(K+) channels (see K+ Channels), which includes a discussion 
of the newly described two-pore domain (K2P) channels, Rho/
Rho-kinase activity (see RhoA/Rho-Kinase); reactive oxygen 
species (ROS), which are discussed in the Reactive Oxygen 
Species section; and the recently described transient receptor 
potential (TRP) channels (discussed in the Transient Receptor 
Potential Channels section).

Nitric Oxide and Cyclic Guanosine Monophosphate

A major mechanism for maintenance of vascular tone by 
the endothelium involves the production of endothelium-
derived NO. In endothelium, NO is synthesized from endo-
thelial nitric oxide synthase (eNOS); it then diffuses to the 
underlying smooth muscle, where it activates soluble gua-
nylate cyclase, which in turn leads to increased intracellu-
lar cyclic guanosine monophosphate levels and subsequent 
relaxation of the smooth muscle.5 Experimental evidence 
for modulation of cerebral vascular tone by endothelium-
derived NO has been obtained by applying inhibitors of 
NOS to cerebral blood vessels from several different species, 
both in vivo and in vitro, and has involved such inhibitors 
causing vasoconstriction (reviewed extensively in Faraci and 
Heistad6).

NO release from the endothelium can also be stimulated 
in response to receptor- (e.g., acetylcholine, bradykinin) 
or non-receptor-mediated agonists, or in response to shear 
stress. Endothelium-dependent, NO-mediated cerebral 
vascular relaxation in response to such agonists is often used 
to determine the functional integrity of the endothelium. 
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	•	 	Cerebral	artery	tone	is	substantially	modulated	under	
physiologic conditions by endothelium-derived 
nitric oxide, by reactive oxygen species, and through 
hyperpolarization mediated by several types of K+ 
channels.

	•	 	Cerebral	vascular	function	is	very	sensitive	to	
endothelial dysfunction that occurs during chronic 
disease, resulting in impairment of vasodilator 
mechanisms.

	•	 	Oxidative	stress	and	inflammation	occur	in	the	
cerebral circulation in response to cardiovascular risk 
factors present during atherosclerosis and chronic 
hypertension, such as elevated plasma levels of 
cholesterol and angiotensin II, respectively.
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Endothelial dysfunction, manifested as diminished NO 
bioavailability experimentally by impaired endothelium-
dependent vasodilation, or reduced vasoconstriction in 
response to a NOS inhibitor, is a common feature of many 
cerebrovascular-related diseases (discussed in the Alterations 
in Cerebral Vascular Function During Hypertension and 
Atherosclerosis section). Such exogenously applied agonists 
are often useful in this way experimentally, and they may 
also be important endogenously. For example, neurovascular 
coupling in some brain regions is mediated by neuronally 
released acetylcholine acting on the endothelium to 
stimulate eNOS.7 

K+ Channels

The activity of K+ channels is a major regulator of smooth 
muscle cell membrane potential and, as such, is an important 
regulator of vascular tone. This is because vessel diameter is in 
large part dependent on cytosolic Ca2+ concentration, which 
in turn is dependent on membrane potential. There are five 
major types of K+ channels known to be expressed in cerebral 
blood vessels: calcium (Ca2+)-activated (KCa) K+ channels, ATP 
sensitive K+ (KATP) channels, voltage-sensitive K+ (KV) chan-
nels, inwardly rectifying K+ (KIR) channels, and tandem-pore 
(TREK-1) channels, and all are regulators of vascular tone. 
This is supported by the wealth of information using both 
pharmacologic inhibitors and gene-targeted mice to study 
the regulation of membrane potential and vascular function. 
Potassium channels are also important mediators of vasodi-
lator responses to several vasodilators that regulate vascular 
tone, and this will be also be discussed.

KCa-Activated K+ Channels

There are three subtypes of KCa channels present in the vascu-
lature: large-conductance KCa (BKCa) channels, intermediate-
conductance (IKCa) channels, and small-conductance (SKCa) 
channels. Most research regarding the functional importance 
of this channel, especially in cerebral arteries, has centered 
around the BKCa channel.

As the name suggests, these channels are activated in 
response to increases in intracellular Ca2+. Membrane 
depolarization, myogenic responses (i.e., pressure-induced 
vasoconstriction, important in development and maintenance 
of basal vascular tone), and elevations in arterial pressure are 
associated with elevations in intracellular Ca2+ concentration 
in cells of the vasculature.8 Thus an important function of 
these channels appears to be to act as a negative feedback 
mechanism during increases in Ca2+ to limit vasoconstriction. 
A major mechanism of elevations in intracellular Ca2+ appears 
to be via Ca2+ sparks, which are localized elevations in 
cytosolic Ca2+, due to the opening of ryanodine-sensitive Ca2+ 
release channels in the sarcoplasmic reticulum to KCa channels 
located on the plasma membrane.

These channels are important in modulating the basal 
tone of cerebral arteries, as selective inhibition of BKCa 
channels with tetraethylammonium ion (TEA) produces 
vasoconstriction.8–10 In mice deficient in the β1 subunit of 
BKCa channels, increased intracellular Ca2+ concentration 
in response to ryanodine (which at low concentrations 
depletes Ca2+ stores from the sarcoplasmic reticulum so 
that intracellular Ca2+ concentration increases) and cerebral 
vascular constriction to iberiotoxin (selective inhibitor of BKCa 
channels) was reduced, suggesting that Ca2+ spark activity 
modulates myogenic tone through BKCa channel activation.11 
These channels may be more important in the modulation of 
basal tone in larger cerebral arteries.8

Recent evidence of the importance of Ca2+ spark activity 
and BKCa channels as mediators of vasodilators has emerged, 
as TEA and iberiotoxin inhibit vasodilator responses in 
response to vasodilators that activate adenylate cyclase and 
guanylate cyclase.12 Acidosis markedly increased Ca2+ spark 
activity and caused dilatation of brain parenchymal arterioles. 
Dilatation was inhibited by inhibitors of ryanodine receptors 
(ryanodine) and BKCa channels (paxilline), as well as in mice 
lacking the BKCa channel.13 Hydrogen sulfide (an important 
signaling molecule in the regulation of vascular tone and 
blood pressure) also increased Ca2+ spark and BKCa current 
frequency, as well as causing dilatation in cerebral arterioles—
the vasodilatation was inhibited by ryanodine and iberiotoxin, 
suggesting Ca2+ spark activity is important in the response.14 
Intermittent hypoxia increased myogenic tone through loss of 
hydrogen sulfide activation of KCa channels.15 Hypoxia had 
no effect on Ca2+ spark frequency but reduced KCa channel 
activity.16 Protein expression of KCa2.2, 2.3, and 3.1,16 as well 
as α- and β1-subunits of BKCa channels17 in cerebral arteries, 
have been reported. 

KATP Channels

KATP channels are defined by their sensitivity to intracellular 
ATP, with their activity being inhibited by intracellular ATP.18 
Generally, the intracellular concentration of ATP is normally 
sufficient that these channels have a low open probability 
in most vascular smooth muscle cells under normal condi-
tions,19 and this appears to also be the case in the cerebral 
circulation, where glibenclamide, a selective inhibitor of KATP 
channels, has no effect on cerebral vascular tone.20 However, 
KATP channels appear to be present and functional in cerebral 
vessels based on direct evidence for their expression (discussed 
as follows) and a wealth of evidence reporting glibenclamide-
sensitive relaxation of cerebral arteries in response to KATP 
channel activators.18

Several more recent studies have investigated the expression 
of KATP in cerebral vessels. KATP channels are thought to be a 
hetero-multimeric complex of two subunits: one is a pore-
forming inward-rectifying K+ channel type 6 (i.e., 6.1 or 6.2), 
and the other is a sulfonylurea receptor (SUR), either SUR1 and 
SUR2, with the SUR2 gene generating the two splice variants 
SUR2A and SUR2B.21 Messenger RNA (mRNA) expression for 
both the pore-forming subunits (KIR6.1 and 6.2) and SUR1, 
2A, and 2B has been demonstrated in cerebral arteries,21,22 
although another study investigating SUR expression found 
no expression of SUR1 and reported only SUR2B expression.23 
Protein expression of KIR6.1 and 6.2, as well as SUR1 and 2B, 
was also reported.22 Cerebral arterioles were found to express 
KIR6.1 and SUR2B,24 with human cerebral arteries found to 
express SUR2B.23

Acidosis and reductions in intracellular pO2 are known 
to produce cerebral vasodilatation. KATP channels have been 
shown to be involved in cerebral vasodilatation in response 
to acidosis,25,26 as well as in vasodilatation to NMDA, which 
may be important in the coupling of cerebral metabolism 
and blood flow.27 More direct evidence for a role of KATP 
channels in mediating vasodilatation in response to oxygen/
glucose deprivation was reported in that vasodilatation was 
impaired in SUR-deficient compared with wild-type mice.23 
Myogenic tone, and vasodilatation in response to hypoxia, are 
not dependent on SUR2 expression,23 although relaxation to 
hypoxia is inhibited by glibenclamide,18,28 suggesting a role 
for KATP channels in hypoxia-induced vasodilatation where the 
KATP subunit composition does not involve SUR2. Hydrogen 
sulfide also dilates cerebral arteries, an effect that is inhibited 
by glibenclamide and in SUR2-deficient mice.24 
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KV channels are activated in response to increases in pressure 
in cerebral arteries and modulate cerebral vascular tone, in that 
pharmacologic inhibition of KV channels with 4-aminopyri-
dine causes cerebral artery depolarization and constriction.29,30 
KV channels are also known to mediate cerebral artery dila-
tions, including in response to NO.29,31 KV channel subunits 
are expressed in cerebral vessels (e.g., KV1.2 and 1.5,32–34 and 
KV2.1 and 2.235,36)—including in humans.37 KV2-mediated 
current is proposed to underlie KV-dependent modulation of 
cerebral artery tone in that inhibition of the KV2 channel with 
stromatoxin-caused cerebral artery constriction.36 

KIR Channels

This channel is so named since it conducts K+ current more 
readily into than out of the cell over a wide range of mem-
brane potentials. However, at membrane potentials within 
the physiologic range, these channels actually conduct a small 
outward current. Consequently, when this channel is inhibited 
with the pharmacologic blocker, barium ion (Ba2+), depolar-
ization and constriction of cerebral arteries are observed.38–44 
Furthermore, in mice lacking the KIR2.1 subunit—the subunit 
thought to be important in mediating vascular KIR current—
cerebral artery KIR channel currents are absent.45

In the cerebral circulation, K+ is released during neuronal 
activity and may be siphoned to cerebral vessels directly by 
astrocytes after neuronal activation.46 Basal concentration of K+ 
in cerebrospinal fluid is ∼3 mM and may increase to between 
4 and 7 mM during neuronal activity. In this concentration 
range (i.e., from 3 to 10 mM), K+ causes dilatation of cerebral 
arteries38,40–42,47,48 and arterioles.39,43,44,49–56 Moreover, 
K+-induced hyperpolarization and vasodilatation in this 
concentration range are inhibited by Ba2+,38–42,48,53–55,57–59 
suggesting KIR-mediated K+-induced vasodilation may be an 
important mechanism in the coupling of cerebral metabolism 
and blood flow (neurovascular coupling). Furthermore, cerebral 
vascular relaxation responses to K+ are absent in mice lacking 
the KIR2.1 subunit.45 There have been reports of KIR2.1 channel 
expression in cerebral arteries.38,58 Regarding the role for KIR2.1 
channels in neurovascular coupling, recent work identified 
KIR2.1 channel on capillaries as critical for sensing neuronal 
activity (via K+ release) and initiating a retrograde signal to 
dilate upstream arterioles, thereby increasing local blood flow.60 

K2P Channels

A new family of channels—two pore domain K+ (K2P) chan-
nels—have recently been characterized.61 These channels 
require two protein subunits, each contributing two pore 
domains, to form a functional channel. There are several 
members of the K2P family expressed in the vasculature, with 
some reported to be functionally important in the cerebral 
vasculature. Expression of TREK-1, TREK-2, TASK-1, TWIK-2, 
TRAAK, and THIK-1 has been reported in cerebral arteries, 
with TREK-1 being the most abundant.62,63 Protein and mRNA 
expression of TREK-1 in the basilar artery was associated with 
vasodilatation induced by polyunsaturated fatty acids (which 
are important, as they improve brain resistance against cere-
bral ischemia), such as α-linolenic acid in wild-type mice; 
vasodilatation in response to linolenic acid was absent in mice 
deficient in TREK-1.64 Nevertheless, another study reported 
similar vasodilator responses of the basilar artery to α-linolenic 
acid in wild-type and TREK-1-deficient mice.65 Cerebral artery 
expression of TRAAK was associated with an important role in 
mediating endothelium-independent vasodilatation.66 

RhoA/Rho-Kinase

Smooth muscle cell contractility is ultimately governed by the 
phosphorylation state of myosin light chain (MLC), vascular 
smooth muscle tone occurring in association with increasing 
levels of MLC phosphorylation. MLC is phosphorylated by 
MLC-kinase—a Ca2+-calmodulin-dependent enzyme—and is 
dephosphorylated by MLC phosphatase (MLCP). MLC phos-
phorylation and smooth muscle contractility are not always 
directly proportional to intracellular Ca2+ concentration. 
Other mechanisms can regulate smooth muscle contractility 
independent of changes in intracellular Ca2+ concentration, a 
phenomenon known as Ca2+-sensitization. Ca2+-sensitization 
can occur through several pathways and ultimately results 
in inhibition of MLCP. One such pathway is the RhoA/Rho-
kinase (ROCK) pathway. When ROCK is activated, it phos-
phorylates the myosin-binding (i.e., regulatory) subunit of 
MLCP, and thus inhibits MLCP activity, which ultimately leads 
to smooth muscle (and thus vascular) contractility.67,68

In vascular muscle, RhoA can be activated by stretch. 
This is important since myogenic tone is characterized by 
pressure-induced vasoconstriction, making it important for 
the development of basal vascular tone. The contribution of 
ROCK activity to the cerebral artery myogenic response has 
been studied through the use of Y-27632 and fasudil (HA-
1077), pharmacologic inhibitors of Rho-kinase.69 For example, 
Y-27632 relaxes cerebral artery segments following pressure-
induced constriction,70 and pressure-induced cerebral artery 
constriction is inhibited by Y-27632 and fasudil.71–73 In vivo, 
where myogenic tone is present, several studies have reported 
that Y-27632 and fasudil cause the dilatation of cerebral 
arteries74–78 and arterioles.79 Recent work has begun to define 
the role of ROCK isoforms in the cerebral vasculature. The use 
of the selective ROCK2 inhibitor SLX-2119 (also known as 
KD025) has revealed that myogenic tone in brain parenchymal 
arterioles is ROCK2-dependent.80 In addition, SLX-2119 dilates 
pial arterioles in vivo.80

ROCK is also important in the regulation of endothelial 
cell function via effects on NO signaling. ROCK has been 
shown to reduce NO bioavailability, which occurs via 
reducing NO production via reducing phosphorylation of the 
stimulatory Ser,11, 77 direct phosphorylation of the inhibitory 
Thr495 residue on endothelial NOS, and/or reducing eNOS 
mRNA stability. These findings, in combination with the role 
of ROCK in vascular muscle, provide good evidence that the 
RhoA/Rho-kinase pathway is a major mechanism contributing 
to cerebral vascular tone. 

Reactive Oxygen Species

ROS are known to influence cerebral vascular tone, and this 
is reviewed extensively elsewhere.81 These ROS include the 
parent molecule superoxide (O2

−), as well as hydroxyl radical 
(OH) and hydrogen peroxide (H2O2). The closely related reac-
tive nitrogen species (RNS)—peroxynitrite—is also commonly 
involved in such effects.

Superoxide, a negatively charged anion, can elicit either 
dilatation82–85 or constriction82,86 of cerebral arteries. 
Superoxide reacts extremely efficiently with NO. As has 
been discussed, NO is a major regulator of cerebral vascular 
tone; thus reduced NO bioavailability following increased 
superoxide levels will likely result in vasoconstriction, 
with vasoconstriction being reported in response to higher 
concentrations of superoxide82,83 and vasorelaxation at low 
concentrations.82

H2O2 is a chemically more stable species than superoxide, 
and it diffuses much more readily across cell membranes, thus 
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potentially being important as a signaling molecule. Many 
studies have reported that H2O2 acts as a cerebral vasodilator, 
both in vivo and in vitro,85,87–94 although vasoconstriction has 
also been reported.95

Peroxynitrite, formed from the rapid chemical reaction of 
superoxide with NO, can also affect cerebral vascular tone, 
with both dilatation96,97 and constriction97–99 of cerebral 
arteries reported. Lower concentrations of peroxynitrite appear 
to cause cerebral vasoconstriction, with higher concentrations 
typically causing vasodilatation.97,100 

Transient Receptor Potential Channels

TRP channels are a superfamily of cation channels compris-
ing at least 28 members and are assigned to 6 subfamilies 
based on their sequence homology.101 These are TRPC (clas-
sical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), 
TRPP (polycystin), and TRPML (mucolipin).102 The structure, 
expression profile, and function of TRP channels have been 
reviewed in detail.103

Depending on the specific TRP channel in question, 
activation can result in constriction or dilation of cerebral 
arteries. TRPC1 channels have been shown to mediate 
constriction of cerebral arteries via facilitating receptor-
operated calcium entry in response to endothelin-1.104 TRPC3 
channels also facilitates vasoconstriction to endothelin-1,105 
but this does not occur via receptor-operated calcium entry. 
TRPC3 has also been shown to mediate constriction to the 
nucleotide, uridine triphosphate.106 Myogenic tone in cerebral 
arteries isolated from hypertensive mice was inhibited by 
treatment with SKF93635 (a specific inhibitor of TRPC6 
channels at the concentration used in that study). SKF93635 
was without effect in arteries from aged mice, suggesting 
TRP channel function is disrupted in cerebral arteries from 
aged mice.107 Some TRP channels, such as the vanilloid TRP 
channel (TRPV3), are chemosensitive. The TRPV3 channel 
is expressed in the endothelium of cerebral arteries, and the 
dietary agonist carvacrol, which may be cardioprotective, 
mediates endothelium-dependent cerebral vasodilatation 
that is inhibited by a pharmacologic inhibitor of TRPV1-4 
channels.108 TRPV4 channels are expressed in endothelium 
and vascular muscle cells and appear to mediate vasodilation. 
While activation of TRPV4 channels results in calcium entry 
in vascular muscle cells, the resulting calcium sparks activate 
BK channels and thus hyperpolarization and dilation of the 
artery.109 Endothelial TRPV4 channels are activated (resulting 
in calcium influx) and mediate dilation in response to shear 

stress110 and uridine triphosphate.111 TRPV1, TRPV5, and 
TRPV6 channels do not appear to be expressed in cerebral 
arteries.112 The melastatin TRP channel 4 (TRPM 4) is 
activated by high levels of intracellular Ca2+ and is known 
to be expressed in cerebral arteries.113 Expression in smooth 
muscle cells is consistent with a role in the myogenic response, 
in that myogenic vasoconstriction was attenuated in cerebral 
arteries administered TRPM4 antisense.114 Pharmacologic 
inhibition of the TRPM4 channel with 9-phenanthrol was 
able to cause hyperpolarization and prevent the development 
and maintenance of myogenic tone, further underlining 
its importance in the maintenance of myogenic tone in the 
cerebral circulation.115 Another study also reported cerebral 
vascular expression of TRPM4 protein, which, once inactivated, 
results in reduced myogenic vasoconstriction in response to a 
PKC activator.116 TRPA1 channels are known to be expressed 
in cerebral vessels, specifically in endothelium, and mediate 
endothelium-dependent vasodilatation.117 Finally, TRPP2 
channels have been shown to contribute to myogenic tone 
generation in cerebral arteries.118 The role, if any, of other TRP 
channels in the cerebral vasculature is presently unknown. 

ALTERATIONS IN CEREBRAL VASCULAR FUNCTION 
DURING HYPERTENSION AND ATHEROSCLEROSIS

Atherosclerosis

Atherosclerosis is the underlying pathologic process for both 
coronary and cerebral artery disease.1 However, atheroscle-
rotic lesions progress at a slower rate in intracranial arteries 
compared with extracranial arteries in both animal models 
and humans.119 Atherosclerosis is thought to be initiated by 
trapping of lipids in the subendothelial layer, leading to the 
generation of biologically active oxidized species (i.e., oxi-
dized low-density lipoprotein [LDL]), ultimately leading 
to recruitment of leukocytes to the artery wall.120 Oxidative 
modification of LDL present in the intima by ROS may thus 
be a key initiating step in atherosclerosis.121 Endothelial dys-
function is an early step in the development of atherosclerosis, 
and traditional cardiovascular risk factors (e.g., dyslipidemia, 
hypertension) are associated with endothelial dysfunction.122 
Furthermore, atherosclerosis is characterized by chronic 
inflammation of the vasculature; thus these three key pro-
cesses characteristic of atherosclerosis—oxidative stress, endo-
thelial dysfunction, and inflammation—will be discussed here 
(also summarized in Fig. 1.1), with much of the discussion 
referring to data from the apolipoprotein E-deficient (ApoE−/−) 

Fig. 1.1. Schematic diagram summarizing cerebrovascular 

effects of hypercholesterolemia, and elevated Ang II and 

hypertension. Hypercholesterolemia induces oxidative 

stress, and ultimately inflammation—comprising leukocyte 

and platelet adhesion, and endothelial dysfunction. These 

effects are all attenuated in NOX2 oxidase-deficient mice. 

Ang II increases leukocyte and platelet adhesion, infiltration 

of inflammatory/immune cells, and causes endothelial 

dysfunction due to reduced nitric oxide (NO) bioavailability. 

These effects are largely inhibited by AT1 receptor (AT1R) 

inhibitors and in AT1R-deficient mice; reactive oxygen 

species (ROS) scavengers and NOX2 oxidase-deficiency, as 

well as in lymphocyte-deficiency (RAG−/−) mice, implicating 

AT1R; and nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase-derived ROS and the adaptive immune 

system in the detrimental effects of chronic hypertension in 

the cerebral circulation.
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1
mouse. The ApoE−/− mouse, characterized by high levels of 
plasma cholesterol due to deletion of the APOE gene (impor-
tant in cholesterol metabolism), provides a very useful experi-
mental model for understanding the mechanisms of disease 
initiation.1

Cerebral Vascular Oxidative Stress in Models of 
Atherosclerosis

Some evidence suggests the prevalence of oxidative stress in 
cerebral vessels during hypercholesterolemia or atherosclero-
sis. For example, in wild-type mice placed on a high choles-
terol diet for 2 weeks,123 and ApoE−/− mice on high-fat diet for 
7 weeks,124 oxidative stress was found to be present in cerebral 
arteries. The study by Miller et al.124 went on to suggest that 
NOX2 oxidase was the source of the oxidative stress, as the oxi-
dative stress present in ApoE−/− was abolished in mice deficient 
in both ApoE and NOX2 (i.e., ApoE−/−/NOX2−/y; Fig. 1.2). 

Cerebral Vascular Endothelial Dysfunction in Models of 
Atherosclerosis

Several lines of evidence suggest that atherosclerosis is asso-
ciated with reduced NO bioavailability and endothelial dys-
function. In earlier reports, relaxation responses of the basilar 
artery to acetylcholine were impaired in hypercholesterolemic 
versus normal rabbits,125 although cerebral vascular responses 
to acetylcholine were reportedly preserved126,127 or even aug-
mented128 during atherosclerosis. In atherosclerotic mon-
keys, contraction of basilar arteries in response to inhibition 
of soluble guanylate cyclase was reduced compared with that 
in normal monkeys, suggesting the basal influence of soluble 
guanylate cyclase on basal tone of cerebral arteries is dimin-
ished during atherosclerosis, perhaps reflecting a reduced pro-
duction/activity of NO during atherosclerosis.129 Similarly, 
cerebral artery contractions in response to the application 
of L-NAME (a NOS inhibitor) were reduced in vessels from 
ApoE−/− compared to normal mice,124 suggesting reduced NO 
bioavailability was present during atherosclerosis. Reduced 
cerebral vascular relaxation to acetylcholine in ApoE−/ versus 
normal mice further suggests that reduced NO bioavailability 
is associated with endothelial dysfunction in the cerebral cir-
culation during atherosclerosis.130,131 Interestingly, magnetic 
resonance imaging of cerebral arteries in rabbits fed a diet 
high in cholesterol were narrower compared with their control 
counterparts,132 which may suggest increased vascular tone or 
potentially structural alterations.

Further experiments were conducted to provide a link 
between oxidative stress and vascular dysfunction. Impaired 
NO-dependent responses of cerebral vessels from ApoE−/− 
mice were reversed in vessels from ApoE−/− mice treated 
with a scavenger of ROS (tempol),124,130 the nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase inhibitor 
apocynin,130 or in ApoE−/−/NOX2−/y mice,124 strongly suggesting 
that NOX2 oxidase-derived superoxide is a major mediator of 
cerebral vascular dysfunction during atherosclerosis (see Fig. 1.2). 
Oxidative stress and endothelial dysfunction is present despite 
the apparent absence of lesions in cerebral blood vessels.124,130 

Cerebral Vascular Inflammation in Models of 
Atherosclerosis

Atherosclerosis is characterized by chronic inflammation of 
the vasculature. Platelet endothelial cell adhesion molecule-1 
(PECAM-1) is involved in the inflammatory process and 
in leukocyte-endothelial interactions, and its expression is 
increased in cerebral arterioles of ApoE−/− mice.133 Leukocyte 
and platelet adhesion, as well as oxidative stress, were elevated 

in cerebral vessels of hypercholesterolemic mice—leukocyte 
and platelet adhesion was prevented by immunoneutraliza-
tion of P-selectin and in NOX2-deficient mice, suggesting that 
P-selectin and NOX2-dependent oxidative stress are important 
mechanisms in hypercholesterolemia-induced inflammation 
in the brain.123 Arginase type 1 expression was also increased 
in cerebral vessels from ApoE−/− mice,134 which is relevant 
since oxidized LDL increases arginase activity and decreases 
endothelial NO levels, ultimately leading to impaired NO 
function in the vascular endothelium.135 Vascular cell adhe-
sion molecule-1 (VCAM-1) expression was not altered in brain 
microvessels of ApoE−/− mice.136 

Hypertension

Hypertension profoundly and negatively impacts the cere-
bral circulation and brain, and is a major risk factor for stroke 
and a leading cause of cognitive decline and dementia.137 
Hypertension may promote the formation of atherosclerotic 
plaques in cerebral arteries and arterioles,137 and there is a wealth 
of experimental evidence demonstrating detrimental functional 
consequences of hypertension on the cerebral circulation. Many 
initial studies focused on the spontaneously hypertensive rat 
(SHR), where augmented NADPH oxidase-derived superoxide 
production91 and impaired endothelium-dependent responses 
have been reported.58,75,138–141 What follows is a discussion of 
more recent data regarding the influence of hypertension on 
the cerebral circulation—specifically, hypertension in response 
to elevated angiotensin II (Ang II) levels (also summarized in 
Fig. 1.1). Ang II is of major importance because it is involved in 
many of the functional and structural changes occurring in the 
cerebral circulation during chronic hypertension.5,119,137

Oxidative Stress in Hypertension Involving  
Elevated Ang II

Ang II increases ROS production in the cerebral circulation. 
Work from Iadecola’s group has found that acute intravenous 
infusion of mice with Ang II increases both blood pressure 
and ROS production by cerebral blood vessels.142–146 Increased 
ROS levels were prevented by treatment with the ROS scavenger 
MnTBAP.146 This treatment also reportedly increases 3-nitro-
tyrosine immunoreactivity (indicative of nitrosative stress) in 
mouse cerebral vascular endothelial cells, an effect that was 
prevented by a peroxynitrite scavenger and a NOS inhibitor, 
and was also absent in NOX2 oxidase-deficient mice.143 Thus 
these findings suggest that Ang II increases peroxynitrite forma-
tion in the cerebral vasculature largely via the reaction of NOX2  
oxidase-derived superoxide with NO (see Fig. 1.2). 

Endothelial Dysfunction in Hypertension Involving 
Elevated Ang II

Acute intravenous administration of Ang II has been reported 
to impair NO-dependent increases in cerebral blood 
flow(CBF),145,146 an effect that was reversed by MnTBAP and 
the angiotensin type 1 (AT1) receptor antagonist losartan.146 
Topical application of Ang II to cerebral arterioles in vivo 
causes impaired NO-dependent responses that can be pre-
vented by the superoxide scavenger tiron.147 Similarly, Ang 
II-induced endothelial dysfunction in cerebral arterioles of 
ECSOD-deficient mice in vivo was reversed by tempol.148 In a 
more chronic model of Ang II-dependent hypertension, Ang II 
increased blood pressure and caused endothelial dysfunction 
of the basilar artery. This effect of Ang II was absent in NOX2 
oxidase-deficient mice, and partially attenuated in NOX1 
oxidase-deficient mice, suggesting Ang II-induced endothelial 
dysfunction is dependent on NOX2 oxidase and, perhaps to 
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some, extent NOX1 oxidase.149 In spite of these findings, Ang 
II increases blood pressure in both NOX2 and NOX1 oxidase 
deficient mice, suggesting that the cerebral vascular and pressor 
actions of Ang II are independent of one another.149 To further 
confirm this point, previous studies have reported that systemic 
administration of a nonpressor dose of Ang II caused endo-
thelial dysfunction in the cerebral circulation.150 In addition, 
endothelial dysfunction precedes the development of hyperten-
sion in response to a slow-pressor dose of Ang II.151 Endothelial 
dysfunction in response to Ang II was reversed by ROS scav-
engers.150,152 It has recently been reported that inhibition of 
the mineralocorticoid receptor (MR) improves endothelial 

dysfunction in Ang II hypertension via a mechanism involving 
TRPV4.153 Thus there is potential cross-talk between AT1R and 
MR. In a genetic model of hypertension (mice overexpressing 
human renin and angiotensinogen), endothelial dysfunction of 
the basilar artery was completely reversed by the administration 
of polyethylene glycol superoxide dismutase (PEG-SOD).154 
Taken together, these data suggest that Ang II causes endothe-
lial dysfunction in the cerebral circulation by activating AT1R 
expressed in the vessel wall, leading to an increase in superox-
ide production, and subsequent oxidative inactivation of NO 
(see Fig. 1.2). Recent evidence suggests that MR may also be 
involved in the dysfunction caused by Ang II. 
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Fig. 1.2. Atherosclerosis/hypercholesterolemia and hypertension profoundly alter key mechanisms that modulate cerebral artery tone. 

Atherosclerosis/hypercholesterolemia and hypertension increase oxidative stress via activation of NOX2 oxidase. The increased superoxide (O2
−) 

levels scavenges endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO), resulting in reduced NO bioavailability and hence reduced 

NO-mediated vasodilation and peroxynitrite formation (ONOO−). ONOO− can directly influence cerebrovascular tone (see text). K+ channel activity 

modulates vascular tone. Most studies have investigated the effect of hypertension on BKCa channel function, with the outcome (i.e., increased 

or decreased channel function) depending on the model of hypertension studied (see text). Baseline KV channel function is impaired, as is 

KATP-mediated vasodilatation compared with normotensive conditions. Baseline KIR channel function is augmented, whereas KIR-mediated K+-

induced vasodilatation is impaired. In endothelial cells, Rho kinase can reduce eNOS activity (see text for details). In vascular muscle, Rho kinase 

phosphorylates (and inactivates) myosin light chain phosphatase (MLCP), leading to enhanced phosphorylation of myosin light chain (MLC) and 

increased contractility. During hypertension, Rho kinase activity is increased, impairing normal cerebrovascular regulation.
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Cerebrovascular Inflammation in Hypertension Involving 
Elevated Ang II

Hypertension induces inflammation in the cerebral circula-
tion. This includes models that involve Ang II. Ang II results 
in elevated leukocyte and platelet adhesion in cerebral ves-
sels, an effect prevented by the AT1 receptor antagonists can-
desartan and losartan, as well as diphenyleneiodonium, an 
inhibitor of flavoproteins such as NADPH oxidase.155 In stud-
ies performed to extend these findings, Ang II-induced hyper-
tension was associated with a marked increase in leukocyte 
and platelet adhesion in cerebral vessels, which was attenu-
ated in RAG−/− mice (i.e., deficient in T and B lymphocytes), 
AT1R−/− mice, and by treatment with losartan,156 suggesting 
the involvement of immune cells and AT1 receptors in this 
effect. Leukocyte adhesion in response to Ang II in pial vessels 
in vivo was also prevented by tempol,157 further confirming 
that cerebrovascular inflammation involves ROS production 
and oxidative stress. Interestingly, although leukocyte and 
platelet adhesion in cerebral vessels was enhanced in models 
of Ang II and deoxycorticosterone acetate (DOCA)-salt hyper-
tension, these effects were prevented in the presence of mild 
hypercholesterolemia, possibly due to the involvement of 
high-density lipoprotein (HDL), suggesting that mild eleva-
tions in certain types of cholesterol may be beneficial in the 
setting of hypertension.158

Other models of hypertension have also implicated a role 
for Ang II in cerebrovascular inflammation. For example, 
in a DOCA-salt model of hypertension, leukocyte and 
platelet adhesion was prevented by losartan and in AT1R−/− 
mice.159 Furthermore, not only were these effects inhibited 
by tempol; they were also inhibited by mito-tempol,159 
implicating mitochondria-derived ROS in the cerebrovascular 
inflammatory response. These anti-inflammatory effects 
occurred in the absence of any depressor action, suggesting 
that blood pressure is not necessarily a key mediator of 
cerebrovascular inflammation where Ang II is involved. In the 
SHR, increased expression of intracellular adhesion molecule-1 
(ICAM-1), as well as an increased number of infiltrating and 
adherent macrophages in brain microvessels, were inhibited 
by candesartan.160 Widespread inflammation in many brain 
regions of the SHR was also inhibited by candesartan,161 
further implicating a role for activation of AT1R by Ang II 
and demonstrating a beneficial use for AT1R inhibitors in 
preventing inflammation associated with cerebrovascular 
disease.

Perivascular macrophages appear to play a central 
role in cerebrovascular dysfunction in response to Ang 
II.162 Faraco et al. showed that Ang II acts on AT1R on 
perivascular macrophages, resulting in NOX2 oxidase-
dependent ROS production and endothelial dysfunction.162 
Thus inflammation appears to be a key mechanism, 
leading to both oxidative stress and subsequent endothelial 
dysfunction. 

K+ Channel Function in Chronic Hypertension

Expression of K+ channels in the cerebral vasculature and the 
importance of their role in modulating arterial tone, includ-
ing mediation of vasodilator responses, has been described. 
The deleterious actions of chronic hypertension in the cere-
bral vasculature are also well known;137 it is thus unsurprising 
that K+ channel function is altered in association with chronic 
hypertension (see Fig. 1.2).

BKCa Channels. Basal activity of BKCa channels may be great-
er in cerebral arteries during chronic hypertension, in that 

pharmacologic inhibition of these channels (with TEA and 
iberiotoxin) elicits greater contraction of cerebral arteries from 
hypertensive vs normotensive rats.10 Consistent with this, ibe-
riotoxin elicited enhanced contraction of cerebral arterioles 
from hypertensive versus normotensive rats, an effect associ-
ated with enhanced cerebral vascular expression of the KCa 
channel α subunit.163 Inhibition of BKCa channels with TEA 
and charybdotoxin cause cerebral vascular contraction in hy-
pertensive but not normotensive rats.164

By contrast, in a model of Ang II-dependent hypertension, 
contraction of cerebral arteries in response to iberiotoxin was 
reduced in hypertensive vs normotensive rats, and this was 
associated with reduced coupling efficiency between Ca2+ sparks 
and BKCa channels, as well as reduced β1 subunit expression, 
although α subunit expression was unaltered during chronic 
hypertension.165 The mechanism may involve calcineurin/
NFATc3 signaling, as Ang II-induced reduction in β1 subunit 
expression was absent in calcineurin/NFATc3-deficient mice. 
Calcineurin/NFATc3 is also important in the development 
of Ang II-dependent hypertension.166 Furthermore, although 
iberiotoxin caused myogenic constriction in normal mice, in 
a model of Ang II-dependent hypertension, it had no effect 
on myogenic constriction in cerebral arteries.107 In a model 
of diet-induced obesity where blood pressure was elevated, 
cerebral vascular BKCaβ1 subunit expression was increased, 
although myogenic tone was not altered.17 Thus functional 
alterations in KCa channels appear to be dependent on the 
model of experimental hypertension studied. 

KATP Channels. To our knowledge, there is little information 
regarding KATP channel function in hypertension. Vasodilator 
responses to the KATP channel activator aprikalim were signifi-
cantly impaired in cerebral arteries from hypertensive versus 
normotensive rats, suggesting impaired KATP channel function 
during hypertension.138 Although SUR2B expression appears 
to be increased in small cerebral arteries from hypertensive 
rats compared with their normotensive controls,167 the func-
tional significance of this finding is unknown. 

KV Channels. Experimental hypertension may be associated 
with cerebral artery depolarization and increased myogenic re-
sponse, perhaps indicating impaired KV channel function. Phar-
macologic inhibition of KV channels with correolide and psora-4 
constricted cerebral arteries from normotensive rats, but was 
without effect in cerebral arteries from two models of hyperten-
sion, suggesting a reduced contribution of KV channels to the 
modulation of basal tone. This was associated with reduced ex-
pression of the pore-forming α1.2 and α1.5 subunits that compose 
KV channels in hypertensive versus normotensive rats.168 This is 
in agreeance with the impaired KV2 channel function of cerebral 
arteries reported in a model of Ang II-dependent hypertension, 
in that stromatoxin-induced contraction of cerebral arteries was 
decreased in arteries from hypertensive vs normotensive rats.36 
In Dahl salt-sensitive rats, KV channel current density was de-
creased in cerebral artery myocytes from hypertensive vs normo-
tensive rats.169 Lower KV current density was reported in cerebral 
vascular smooth muscle cells from SHR compared with WKY.170 

KIR Channels. The first evidence for impaired KIR channel 
function during chronic hypertension was the finding that 
Ba2+-sensitive cerebral vascular relaxant responses to K+ in hy-
pertensive rats were impaired when compared with normo-
tensive controls.171 A subsequent study reported altered KIR 
channel function during chronic hypertension, whereby KIR 
channels were not the predominant mediator of cerebral vaso-
dilator responses to K+, unlike in normal animals. This was 
despite responses to K+ being preserved (or even enhanced), 
KIR2.1 expression being preserved, and an enhanced role for 
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KIR channels in modulating arterial tone during chronic hy-
pertension.58 In the cerebral microvasculature, preserved (or 
even enhanced) vasorelaxation to K+ during chronic hyper-
tension was mediated by KIR channels.55 KIR channel function 
may thus be preserved in smaller arterioles55 during chronic 
hypertension, as opposed to impaired function in larger arter-
ies,58,171 at least in mediating responses to K+. 

Rho-Kinase in Hypertension

Enhanced dilator responses of the basilar artery to Y-27632 
in models of chronic hypertension suggest an increase in 
Rho-kinase function in hypertension (see Fig. 1.2).75,77,78 
Furthermore, pressure-dependent development of myogenic 
tone of cerebral arteries is inhibited by Y-27632 to a greater 
extent in hypertensive vs normotensive rats,172 thus support-
ing an important role for Rho-kinase in increased myogenic 
tone of cerebral arteries. A recent study demonstrated that 
acute systemic elevations in endothelin-1 levels impaired cere-
bral vascular endothelial function, an effect that was reversed 
by Y-27632.173 Interestingly, the role of Rho-kinase as a key 
mediator of cerebral vascular dysfunction during chronic 
hypertension may be dependent on the cause of the hyperten-
sion, as Ang II-induced cerebral endothelial dysfunction was 
not reversed by Y-27632.173 

CONCLUSION

Experimental evidence for some major mechanisms regulating 
cerebral vascular function has been presented, together with 
how many of these mechanisms are altered during hyperten-
sion and atherosclerosis—two disease states that predispose 
to clinical stroke. Consequently, molecular targets that may be 
of benefit in cerebrovascular disease, and perhaps the preven-
tion and/or treatment of ischemic stroke, are being identified. 
However, clearly further work is needed to ultimately iden-
tify effective therapies, as these diseases are currently poorly 
controlled.

 The complete reference list is available at 
www.expertconsult.inkling.com.
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Thrombosis, and thrombus growth, dissolution, and migra-
tion are inextricably connected. Thrombus formation involves 
activation of platelets, activation of the coagulation system, 
and the processes of fibrin dissolution. The central feature of 
each of these processes is the generation of thrombin from 
prothrombin. Thrombin, in turn, generates the thrombus 
fibrin network by the cleavage of circulating fibrinogen with 
formation of the fibrin network. Excess local vascular fibrin 
deposition can contribute to thrombus growth, while vascular 
injury and excess degradation of fibrin in “hemostatic plugs” 
at sites of vascular injury can lead to hemorrhage. Plasmin can 
degrade fibrin and fibrinogen. Plasminogen activators (PAs), 
which convert plasminogen to plasmin, have been exploited 
to dissolve clinically significant vascular thrombi acutely. 

Notably, all substances that promote plasmin formation have 
the potential to increase the risk of hemorrhage.

The acute use of PAs has been associated with detectable 
clinical improvement in selected patients with symptoms 
of focal cerebral ischemia.1-9 Acute thrombolysis has thus 
attained pride of place in the treatment of ischemic stroke 
so far. Currently, recombinant tissue plasminogen activator 
(rt-PA) is licensed in the United States, Japan, Europe, and 
many other countries for the treatment of ischemic stroke 
within 3 hours of symptom onset, and up to 4.5 hours in 
some jurisdictions.6,9 Early studies, a phase III prospective 
trial, and more recent experience suggest that extension of the 
treatment window is possible with strict limitations to patient 
selection.3-5,9 Early on, few studies of acute rt-PA delivery 
correlated improvement in patient outcome with imaging 
evidence of recanalization of an occluded brain-supplying 
artery, however.4

The development of agents that promote fibrin degradation 
in the clinical setting stems from observations in the 19th 
century of the spontaneous liquefaction of clotted blood and 
the dissolution of fibrin thrombi. A growing understanding of 
plasma proteolytic digestion of fibrin paralleled enquiry into 
the mechanisms of streptococcal fibrinolysis. Streptokinase 
(SK) was the first PA employed to dissolve closed space 
(intrapleural) fibrin clots, but purified preparations were 
required for lysis of intravascular thrombi. The development 
of PAs for therapeutic lysis of vascular thrombi has progressed 
along with insights into the mechanisms of thrombus 
formation and degradation. It should be remembered that 
the concentrations of PAs used to degrade fibrin thrombi 
clinically far exceed those required to perform the same task 
endogenously.

THROMBUS FORMATION

The relative platelet-fibrin composition of a specific thrombus 
depends on the vascular bed, the local development of fibrin, 
platelet activation, and regional blood flow or shear stress. 
Even in the same arterial territory there may be considerable 
variability and local heterogeneity in thrombus composition 
as evidenced by thrombi removed in situ.10-13 Pharmacologic 
inhibition of the platelet activation/aggregation and coagula-
tion processes can also alter thrombus composition and vol-
ume. At arterial flow rates thrombi are predominantly platelet 
rich, whereas at lower shear rates characteristic of venous flow, 
activation of coagulation seems to predominate. It has been 
suggested that the efficacy of pharmacologic thrombus lysis 
depends on (i) the relative fibrin content and (ii) the extent of 
fibrin cross-linking of the thrombus that may reflect thrombus 
age and thrombus remodeling. The latter may vary with loca-
tion within a vascular bed (e.g., arterial, capillary, or venular).

Thrombin (factor IIa) is the central player in clot formation 
(Fig. 2.1). Thrombin, a serine protease, cleaves fibrinogen to 
generate fibrin, which forms the scaffolding for the growing 
thrombus. Inter-fibrin strand cross-linking requires active 
factor XIII, a transglutaminase bound to fibrinogen that 
is itself activated by thrombin. Factor XIIIa stabilizes the 
fibrin network (Fig. 2.2).14,15 Thrombin-mediated fibrin 
polymerization leads to the generation of fibrin I and fibrin 
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	•	 	The	fundamental	processes	involved	in	thrombus	
formation, thrombus dissolution, and thrombus 
stability and their relevance to the central nervous 
system (CNS) are described.

	•	 	The	role(s)	of	endogenous	plasminogen	activators	
(PAs, including tissue-type plasminogen activator, 
urokinase-type plasminogen activator) in 
thrombus dissolution are presented, together with 
considerations of their regulation in vivo. Their 
relevance to derived therapeutics is emphasized.

	•	 	Fibrinolytic	agents	tested	or	used	as	pharmaceuticals	
including recombinant and purified endogenous 
PAs and exogenous PAs (including streptokinase, 
staphylokinase, PAs derived from Desmodus species, 
and novel plasminogen activators) are presented.

	•	 	The	molecular	basis	for	PA	inhibition	and	modulation	
of vascular fibrinolysis is made.

	•	 	These	considerations	form	a	basis	for	exploration	of	
current information about the impact of PAs and of 
plasmin generation on CNS vessel and microvessel 
integrity.

	•	 	Exploration	of	the	role(s)	of	endogenous	PAs	in	
CNS development, CNS integrity, and on neuronal 
function in the CNS is presented, and the potential 
effects of therapeutic PAs on the CNS.

	•	 	The	pioneering	use	of	therapeutic	plasminogen	
activation in the acute setting in ischemic/thrombotic 
stroke, acute cerebral arterial recanalization, and its 
consequences are described.

	•	 	The	use	of	PAs	in	experimental	cerebral	ischemia,	
recanalization and tissue injury reduction, and their 
limitations and relevance to the clinical setting are 
discussed.

	•	 	The	risks	of	PAs	in	the	acute	intervention	in	ischemic	
stroke and the quantitative effects on intracerebral 
hemorrhage are presented. Limitations to the clinical use 
of fibrinolytic agents in ischemic stroke are considered.
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Fig. 2.1. Intrinsic and extrinsic coagulation pathways (see text). Phospholipid-containing membranes (e.g., platelets) provide the scaffold for 

accelerating coagulation pathway activation. Both intrinsic and extrinsic pathways lead to prothrombin (factor II) activation, with fibrin generation 

from circulating fibrinogen. The extrinsic pathway initiates coagulation through the interaction of factor VII with tissue factor (TF) in the vascular 

adventitia, brain perivascular parenchyma, and activated monocytes. The TF:VIIa complex catalyzes activation of factor X and acceleration 

of thrombin generation. The intrinsic system involves activation of components within the vascular lumen. Initiation of coagulation through 

this pathway involves pre-kallikrein, kallikrein, high-molecular-weight kininogen (HMWK), and factors XI and XII. (A) Thrombin generation. The 

intrinsic system activates factor X through the “tenase” complex (factors VIIIa and IXa, and Ca2+ on phospholipid). Both intrinsic and extrinsic 

pathways activate prothrombin through the common “prothrombinase” complex (factors Xa and Va, and Ca2+). The platelet surface has 

receptors for factors Va and VIIIa. Cleavage of prothrombin generates the prothrombin fragment 1.2 (PF 1.2) and thrombin (factor IIa). (B) 

Thrombin has multiple stimulatory positive feedback effects. It catalyzes activation of factors XI and VIII as well as the activities of the tenase 

and prothrombinase complexes. Thrombin also stimulates activation of platelets and granule secretion via specific thrombin receptors on their 

surface. (C) Coagulation activation is regulated by interleaving inhibitor pathways. The effects of factors Va, Xa, and VIIIa are modulated by the 

protein C pathway. Activated protein C (APC), generated by the action of the endothelial cell receptor thrombomodulin on protein C, with its 

cofactor protein S, inhibits the action of factor V. AT, Antithrombin; HC-III, heparin cofactor-III.
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II monomers and to the release of fibrinopeptide A (FPA) and 
fibrinopeptide B (FPB).

Platelet activation is required for thrombus formation 
under arterial flow conditions and accompanies thrombin-
mediated fibrin formation. Platelet membrane receptors 
and phospholipids form a workbench for the generation of 
thrombin through both the intrinsic and extrinsic coagulation 
pathways.16 Platelets promote activation of the early stages 
of intrinsic coagulation by a process that involves the factor 
XI receptor and high-molecular-weight kininogen (HMWK) 
(see Fig. 2.1).17 Also, factors V and VIII interact with specific 
platelet membrane phospholipids (receptors) to facilitate the 
activation of factor X to Xa (the “tenase complex”) and the 
conversion of prothrombin to thrombin (the “prothrombinase 
complex”) on the platelet surface.18 Platelet-bound thrombin-
modified factor V (factor Va) serves as a high-affinity platelet 
receptor for factor Xa.19 These mechanisms accelerate the rate 
of thrombin generation, further catalyzing fibrin formation 
and the fibrin network.

This process also leads to the conversion of plasminogen 
to plasmin and to the activation of endogenous fibrinolysis. 
Thrombin provides one direct connection between thrombus 
formation and plasmin generation, through the localized 
release of tissue plasminogen activator (t-PA) and single chain 
urokinase (scu-PA) from endothelial cells. Thrombin has been 
shown in vitro and in vivo to markedly stimulate t-PA release 
from endothelial stores.19,20 In one experiment, infusion of 
factor Xa and phospholipid into non-human primates resulted 
in a pronounced increase in circulating t-PA activity, suggesting 
that significant vascular stores of this PA can be released by 

active components of coagulation. Other vascular and cellular 
stimuli also augment PA release, thereby pushing the hemostatic 
balance toward thrombolysis (see below).

The development of arterial or venous thrombi requires loss 
of the constitutive antithrombotic characteristics of endothelial 
cells. In addition to both the antithrombotic properties of 
endothelial cells and the circulating anticoagulants and 
their cofactors (i.e., activated protein C [APC], protein S), 
thrombus growth is limited by the endogenous thrombolytic 
system. Thrombus dissolution or remodeling results from the 
preferential conversion of plasminogen to plasmin on the 
thrombus surface. There, fibrin binds t-PA in proximity to its 
substrate (fibrin-bound) plasminogen, thereby accelerating 
local plasmin formation, in concert with local shear stress.21 
The parallel role of scu-PA is discussed below.

These processes may also promote embolization into the 
downstream cerebral vasculature. However, little is known 
about the endogenous generation and secretion of PAs within 
cerebral vessels.22 Exogenous application of pharmacologic 
doses of PAs can accelerate conversion of plasminogen 
to plasmin and thereby prevent thrombus formation and 
promote thrombus dissolution, as discussed later. 

FIBRINOLYSIS

Plasmin formation is central to the lysis of vascular thrombi. 
The endogenous fibrinolytic system comprises plasmino-
gen, scu-PA, urokinase (u-PA), and t-PA, and their inhibi-
tors. Hence, plasmin degrades fibrin (and fibrinogen). 
Plasminogen, its activators, and their inhibitors contribute 
to the balance between vascular thrombosis and hemorrhage 
(Fig. 2.3; Tables 2.1 and 2.2).

Plasmin formation occurs (i) in the plasma, where it can 
cleave circulating fibrinogen and fibrin into soluble products,23 

IIa FPA

Fibrinogen

Cross-linked
fibrin

Fibrin I

Fibrin II

XIII

XIIIa IIa FPB

Ca2+ IIa

Fig. 2.2. Generation of cross-linked fibrin. Fibrinogen is cleaved 

successively to form fibrin I and fibrin II by thrombin (factor IIa) with 

the release of fibrinopeptides A and B (FPA and FPB). Thrombin 

activates factor XIII to the active transglutaminase, which promotes 

cross-linking of fibrin and stabilization of the growing thrombus.

PAPAI

Plasminogen

Plasmin
Fibrin(ogen) FDP

Fig. 2.3. Plasminogen activation and fibrin(ogen)olysis. Degradation 

of fibrinogen and fibrin is catalyzed by plasmin. Plasminogen 

activators (PAs), including tissue PA, urokinase PA, and novel 

constructs, cleave plasminogen to the active plasmin. Characteristic 

products of fibrin and fibrinogen degradation (FDP) are generated 

(see text). PAI, Plasminogen activator inhibitor.

TABLE 2.1  Plasminogen Activators.

Plasminogen Activators

Molecular 

Weight (kDa) Chains

Plasma 

Concentration  

(mg/dL)

Plasma 

Concentration 

Half-Life (t1/2) Substrates

ENDOGENOUS

Plasminogen 92 2 20 2.2 days (Fibrin)

Tissue PA (t-PA) 68 (59) 1→2 5 × 10−4 5–8 min Fibrin/plasminogen

Single-chain urokinase PA 

(scu-PA)

54 (46) 1→2 2–20 × 10−4 8 min Fibrin/plasmin(ogen)

Urokinase PA (u-PA) 54 (46) 2 8 × 10−4 9–12 min Plasminogen

EXOGENOUS

Streptokinase 47 1 0 41 and 30 min Plasminogen, 

fibrin(ogen)

Anisoylated plasminogen-

streptokinase activator 

complex (APSAC)

131 Complex 0 70–90 min Fibrin(ogen)

Staphylokinase 16.5 0 Plasminogen

Desmoteplase 52 1 0 138 min Plasminogen
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and (ii) on reactive surfaces (e.g., thrombi or cells). The fibrin 
network provides the scaffold for plasminogen activation, 
whereas various cells, including polymorphonuclear (PMN) 
leukocytes, platelets, and endothelial cells, express receptors 
for plasminogen to bind to.23 Specific cellular receptors 
concentrate plasminogen and specific activators (e.g., 
urokinase plasminogen activator [u-PA]) on the cell surface, 
thereby enhancing local plasmin production. Similar receptors 
on tumor cells (e.g., the urokinase plasminogen activator 
receptor [u-PAR], which concentrates u-PA) also facilitate 
dissolution of basement membranes and matrix, promoting 
metastases. u-PA and u-PAR are both expressed by microvessels 
and neurons in the ischemic bed.24,25 Plasmin can also cleave 
various extracellular matrix (ECM) glycoprotein components 
(e.g., laminins, collagen IV, perlecan) found in the basal 
lamina of microvessels of the central nervous system, and in 
other organs.26-28

Plasminogen

The naturally circulating PAs, single-chain t-PA and single-chain 
u-PA (scu-PA or pro-UK), catalyze plasmin formation.29,30 
Plasmin derives from the zymogen plasminogen, a glycosyl-
ated single-chain 92-kDa serine protease.31,32 Structurally, 
plasminogen contains five kringles and a protease domain, 
two of which (K1 and K5) mediate the binding of plasmino-
gen to fibrin through characteristic lysine-binding sites (Fig. 
2.4).31,33,34 Glu-plasminogen has an NH2-terminal glutamic 
acid, and lys-plasminogen, which lacks an 8-kDa peptide, has 
an NH2-terminal lysine. Plasmin cleavage of the NH2-terminal 
fragment of glu-plasminogen generates lys-plasminogen. Glu-
plasminogen has a plasma clearance half-life (t1/2) of ∼2.2 
days, whereas the t1/2 of lys-plasminogen is 0.8 days. Both 
t-PA and u-PA catalyze the conversion of glu-plasminogen to 
lys-plasmin through either of two intermediates, glu-plasmin 
or lys-plasminogen.35 The lysine-binding sites of plasmino-
gen mediate the binding of plasminogen to α2-antiplasmin, 
thrombospondin, components of the vascular ECM, and 
histidine-rich glycoprotein (HRG).32 α2-Antiplasmin prevents 
binding of plasminogen to fibrin by this mechanism.35 Partial 
degradation of the fibrin network enhances the binding of glu-
plasminogen to fibrin, promoting further local fibrinolysis. 

Plasminogen Activation

Plasminogen activation is tied to activation of the coagulation 
system and can involve secretion of physiologic PAs (“extrinsic 
activation”). It has been suggested that kallikrein, factor XIa, 
and factor XIIa, in the presence of HMWK, can directly acti-
vate plasminogen.35,36 Several lines of evidence suggest that 
scu-PA activates plasminogen under physiologic conditions. 
Tissue-type PA, which is secreted from the endothelium and 
other cellular sources, appears to be the primary PA in the 

vasculature. Thrombin, generated by either intrinsic or extrin-
sic coagulation, stimulates secretion of t-PA from endothelial 
stores.19,37

Several serine proteases can convert plasminogen to 
plasmin by cleaving the arg560-val561 bond.31 Serine proteases 
have common structural features, including an NH2-terminal 
“A” chain with substrate-binding affinity, a COOH-terminal 
“B” chain with the active site, and intra-chain disulfide 
bridges. Plasminogen-cleaving serine proteases include the 
coagulation proteins factor IX, factor X, and prothrombin 
(factor II), protein C, chymotrypsin and trypsin, various 
leukocyte elastases, the plasminogen activators u-PA and t-PA, 
and plasmin itself.31

Activation of plasminogen by t-PA is accelerated by a 
ternary complex with fibrin. In the circulation, plasmin 
binds rapidly to the inhibitor α2-antiplasmin and is thereby 
inactivated. Activation of thrombus-bound plasminogen also 
protects plasmin from the inhibitors α2-antiplasmin and 
α2-macroglobulin.31 Here, the lysine-binding sites and the 
catalytic site of plasmin are occupied by fibrin, thereby blocking 
its interaction with α2-antiplasmin.31 Furthermore, fibrin and 
fibrin-bound plasminogen render t-PA relatively inaccessible 
to inhibition by other circulating plasma inhibitors. 

Thrombus Dissolution

Fibrinolysis occurs predominantly at the surface, and so may 
be augmented by increased local blood flow, but also by flow 
within the thrombus.38,39 During thrombus consolidation, plas-
minogen bound to fibrin and to platelets allows local release of 
plasmin. In the circulation, plasmin cleaves the fibrinogen Aα 
chain appendage, generating fragment X (DED), Aα fragments, 
and Bβ. Further cleavage of fragment X leads to the generation 
of fragments DE, D, and E. By contrast, degradation of the fibrin 
network generates YY/DXD, YD/DY, and the unique DD/E (frag-
ment X = DED and fragment Y = DE). Cross-linkage of DD with 
fragment E is vulnerable to further cleavage, producing D-dimer 
fragments. The measurement of D-dimer levels can have clinical 
utility, in that the absence of circulating D dimer correlates with 
the absence of massive thrombosis.40 Ordinarily, in the setting 
of focal cerebral ischemia, the thrombus load is small and the 
meaning of any D-dimer elevation is uncertain. The generation 
of the degradation products has two consequences: (i) incor-
poration of some of these products into the forming thrombus 
destabilizes the fibrin network of the thrombus and (ii) reduced 
circulating fibrinogen and the generation of breakdown prod-
ucts of fibrin(ogen) limits the protection from hemorrhage by 
hemostatic thrombi. 

PLASMINOGEN ACTIVATORS

All fibrinolytic agents are obligate PAs (see Table 2.1). 
Tissue PA, scu-PA, and u-PA are endogenous PAs involved in 

TABLE 2.2  Plasminogen Activator Inhibitors.

Inhibitor

Molecular Weight 

(kDa) Chains

Plasma Concentration 

(mg/dL−1)

Plasma Concentration 

Half-Life (t1/2) Inhibitor Substrates

PLASMIN INHIBITORS

α2-antiplasmin 65 1 7 3.3 min Plasmin

α2-macroglobulin 740 4 250 Plasmin (excess)

PLASMINOGEN ACTIVATOR INHIBITORS

PAI-1 48–52 1 5 × 10−2 7 min t-PA, u-PA

PAI-2 47, 70 1 <5 × 10−4 24 h t-PA, u-PA

PAI-3 50 u-PA, t-PA

PAI, Plasminogen activator inhibitor; t1/2, half-life; t-PA, tissue plasminogen activator; u-PA, urokinase plasminogen activator.
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physiologic fibrinolysis. Recombinant t-PA, scu-PA, and u-PA, 
as well as SK, acylated plasminogen streptokinase activator 
complex (APSAC), staphylokinase (STK), PAs from Desmodus 
species, and other newer novel agents in clinical use (e.g. 
reteplase [r-PA], and tenecteplase [TNK]), are termed exogenous 
PAs.38,39 t-PA, scu-PA, and a number of novel agents have rela-
tive fibrin and thrombus specificity.40

Endogenous Plasminogen Activators

Tissue Plasminogen Activator

Tissue PA is a 70-kDa, single-chain glycosylated serine prote-
ase that has four distinct domains—a finger (F-) domain, an 
epidermal growth factor (EGF) domain (residues 50–87), two 
kringle regions (K1 and K2), and a serine protease domain 
(Fig. 2.5).41 The COOH-terminal serine protease domain con-
tains the active site for plasminogen cleavage, and the finger 
and K2 domains are responsible for fibrin affinity.41,42 The 

two kringle domains are homologous to the kringle regions 
of plasminogen.

The single-chain form of t-PA is converted to the two-chain 
form by plasmin cleavage of the arg275-isoleu276 bond. Both 
single-chain and two-chain species are enzymatically active 
and have relatively fibrin-selective properties. Infusion studies 
in humans indicate that both single-chain and two-chain t-PA 
have circulating plasma t1/2 values of 3–8 minutes, although 
the biologic t1/2s are longer. Tissue PA is considered to be fibrin-
selective because of its favorable binding constant for fibrin-bound 
plasminogen and its activation of plasminogen in association 
with fibrin. Significant inactivation of circulating factors V and 
VIII does not occur with infused rt-PA, and an anticoagulant state 
is generally not produced. However, if sufficiently high rt-PA 
dose-rates are employed, clinically measurable fibrinogenolysis 
and plasminogen consumption can be produced.

Physiologically, secretion of t-PA from cultured endothelial 
cells is stimulated by thrombin,37,43 APC,44 histamine,37 
phorbol myristate esterase, and other mediators.45 Physical 
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Fig. 2.4. The secondary structure of plasminogen.
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exercise and certain vasoactive substances produce measurable 
increases in circulating t-PA levels, and 1-deamino(8-D-
arginine) vasopressin (DDAVP) may produce a 3-4-fold 
increase in t-PA antigen levels within 60 minutes of parenteral 
infusion in some patients. Both t-PA and u-PA have been 
reported to be secreted by endothelial cells, neurons, 
astrocytes, and microglia in vivo or in vitro.22,46-51 The reasons 
for this broad cell expression are not known, however. 

Urokinase-Type Plasminogen Activator

Single-chain u-PA is a 54-kDa glycoprotein synthesized by 
endothelial and renal cells as well as by certain malignant cells 
(Fig. 2.6).23 This single-chain proenzyme of u-PA is unusual 
in that it has fibrin-selective plasmin-generating activity52 and 
also has been synthesized by recombinant techniques.53

The relationship of scu-PA to u-PA is complex: cleavage or 
removal of lys158 from scu-PA by plasmin produces 54-kDa, 
two-chain u-PA. This PA consists of an A-chain (157 residues) 
and a glycosylated B-chain (253 residues), which are linked 
by the disulfide bridge between cys148 and cys279. Further 
cleavages at lys135 and arg156 produce low-molecular-weight 
(31-kDa) u-PA.41 Both high- and low-molecular-weight species 
are enzymatically active.

The 54-kDa urokinase (u-PA) activates plasminogen 
by first-order kinetics.38,53 The two forms of u-PA exhibit 
measurable fibrinolytic and fibrinogenolytic activities in vitro 
and in vivo, and have plasma t1/2 values of 9–12 minutes.54,55 
When infused as a therapeutic agent, pharmacologic doses 
of u-PA lead to plasminogen consumption and inactivation 
of factors II (prothrombin), V, and VIII. The latter changes 
constitute the systemic lytic state.

It has been postulated that t-PA is primarily involved in 
the maintenance of hemostasis through the dissolution of 
fibrin, whereas u-PA is involved in generating pericellular 
proteolytic activity by cells expressing the u-PA receptor, 
which is needed for degradation of the ECM for migration. 
The roles of these two PAs in central nervous system cell 
function are not fully understood. However, recent work has 
provided further insight between the interactions of t-PA and 
the u-PA precursor. 

Recent Considerations of Endogenous 
Thrombolysis That Suggest Approaches to 
Thrombotic Stroke

The antithrombotic milieu of the endothelium is maintained 
in part by secretion of t-PA and the single-chain urokinase PA 
(scu-PA, pro-UK) and two-chain u-PA (urokinase). As pointed 
out above, t-PA binds to fibrin and fibrin-bound plasminogen 
within the thrombus in a ternary complex that efficiently ini-
tiates fibrin degradation.56,57 Plasmin thus generated exposes 
two new plasminogen binding sites,58,59 the first of which 
causes a conformational change in the plasminogen that scu-
PA recognizes, which is then activated to plasmin.60 Plasmin 
further activates scu-PA to two-chain u-PA, which in turn acti-
vates fibrin-bound plasminogen on the second binding site.61 
Hence, t-PA activates one fibrin-bound plasminogen initially 
and u-PA activates plasminogen on newly exposed binding 
sites on degraded fibrin in the thrombus.62,63 This provides 
a further efficiency to endogenous thrombus lysis and is the 
basis for potential further refinement of pharmacologic vascu-
lar thrombolysis.64 
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Fig. 2.5. The secondary structure of tissue plasminogen activator (t-PA). Conversion of single-chain t-PA to two-chain t-PA by plasmin occurs at 
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Mechanisms of Thrombosis and Thrombolysis 17

2

Exogenous Plasminogen Activators

Streptokinase

Streptokinase (SK) is a 47-kDa, single-chain polypeptide 
derived from group C β-hemolytic streptococci. The active 
[SK-plasminogen] complex converts circulating plasminogen 
directly to plasmin and undergoes further activation to form the 
[SK-plasmin] complex. The [SK-plasminogen], [SK-plasmin], 
and plasmin species circulate together.65 The [SK-plasmin] 
complex (not bound by the inhibitor α2-antiplasmin) and free 
circulating plasmin degrade both fibrinogen and fibrin and 
inactivate prothrombin, factor V, and factor VIII.

The kinetics of SK elimination are complex. 
Antistreptococcal antibodies formed from antecedent 
infections neutralize infused SK and arise maximally by 4–7 
days after initiation of an SK infusion. Therefore, the doses 
of SK required to achieve steady-state plasminogen activation 
must be individualized. Plasminogen depletion through 
conversion to plasmin and by, as yet, poorly understood 
clearance mechanisms for the [SK-plasminogen] complex 
can lead to hypoplasminogenemia. Generation of plasmin is 
limited at both low and high SK infusion dose-rates because 
of inadequate plasminogen conversion and depletion of 
plasminogen, respectively.

APSAC (e.g., Anistreplase) was an artificial activator 
construct consisting of plasminogen and SK bound non-
covalently. Fibrin selectivity relies on the fibrin-attachment 
properties of the plasminogen kringles. The activity of APSAC 
depends on the deacylation rate of the acyl-plasminogen 
component. Hydrolytic activation of the acyl-protected 
active site of plasminogen allows plasmin formation by SK 
within the complex in the presence of fibrin. From those 
observations and on the basis of the terminal t1/2 of SK and 
the t1/2 for APSAC deacylation, APSAC has a longer circulation 
time than SK.66,67 However, despite these clinically favorable 
characteristics APSAC has not found a place in the treatment 
of vascular thrombosis. 

Staphylokinase

Staphylokinase (STK) is a 16.5-kDa polypeptide derived from 
certain strains of Staphylococcus aureus.67-69 STK combines stoi-
chiometrically (1:1) with plasminogen to form an irreversible 

complex that activates free plasminogen. The binding of STK 
to plasmin has been worked out in detail.67,69,70 Recombinant 
STK has been prepared from the known gene nucleotide 
sequence and has been tested in the setting of acute myocar-
dial infarction (MI), and has been tested preliminarily in focal 
cerebral ischemia model studies.71,72

Plasminogen Activators Derived From Desmodus 

rotundus

Recombinant PAs identical to those derived from the saliva 
of Desmodus species are fibrin-dependent. The α form of 
Desmodus salivary PA (DSPA-α; desmoteplase) and vampire 
bat salivary plasminogen activator (bat-PA) are more fibrin-
dependent than t-PA and may be superior to t-PA in terms 
of sustained recanalization without fibrinogenolysis.73,74 
The plasma t1/2 of DSPA-α is significantly longer than that of 
rt-PA.73 A program of studies of desmoteplase as acute treat-
ment for ischemic stroke by several sponsors has so far failed 
to demonstrate improved outcomes in patients.75 Recently, 
treatment of ischemic stroke patients, appearing within 3–9 
hours after symptom onset, with desmoteplase was not found 
to have different outcome (mRS = 0–2) compared to those 
treated with placebo, and no difference in the hemorrhagic 
risk or mortality was observed.76 No additional studies of this 
compound have been reported. 

Novel Plasminogen Activators

Efforts to alter the stability and thrombus selectivity of endog-
enous PAs have led to a growing list of possible pharmacologic 
agents. Point and deletion mutations in t-PA and u-PA have 
provided molecules with unique specificities.77 For instance, 
t-PA sequences lacking the K1 and K2 domains possess fibrin 
specificity, normal specific activity, but reduced inhibition by 
PA inhibitor-1 (PAI-1).42 In theory, the increased fibrin selec-
tivity might provide greater thrombolytic effect; however, in 
studies of the use of this agent in coronary artery thromboses, 
significant advantages did not arise.

For the clinical target of myocardial ischemia, several 
t-PA mutants with prolonged t1/2 and delayed clearance have 
been devised that may have benefit when infused as a single 
bolus78,79:

Fig. 2.6. The secondary structure of single-

chain urokinase plasminogen activator (scu-

PA; 54 kDa). Activation by plasmin takes place 

at the 158–159 bond (arrow). The zigzag line 

represents the glycosylation site.
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	•	 	Reteplase, a non-glycosylated PA consisting of the K2 and 

protease domains of t-PA, has a 4.5- to 12.3-fold longer t1/2 
owing in part to lower affinity for the hepatic cell t-PA recep-
tor.79,80 It also possesses lower fibrin selectivity.

	•	 	Tenecteplase (TNK-t-PA or TNK) differs from t-PA at three 
mutation sites (T103N, N117Q, and KHRR[296–299]AAAA), 
which alter two glycosylation sites and increase fibrin selec-
tivity. The changes also result in decreased clearance and pro-
longed t1/2.81 Application of TNK to clinical ischemic stroke 
has been formally tested in a small trial,82 based upon lim-
ited experimental studies. Recent report of a non-random-
ized pilot study indicates the feasibility of intravenous TNK 
treatment within 3–6 hours of symptom onset.83 In addition 
to enhanced fibrin selectivity, TNK has relative resistance to 
inhibition by PAI-1. A recent report has suggested that TNK 
may be relatively useful as a preparation for endovascular re-
moval of thrombi in a symptomatic artery;84 however, further 
controlled examination of this analysis is required.

	•	 	Lanoteplase (n-PA), another t-PA mutant with greater t1/2, 
derives from deletion of the fibronectin finger and EGF do-
mains and mutation of asn117 to gln117.78

	•	 	Monteplase (E6010) is a t-PA–like construct with moderate 
fibrin selectivity. This molecule differs from t-PA in the loca-
tion and organization of disulfide bridges and the complex-
ity of glycosylation.

	•	 	Pamiteplase (YM866) has fibrin selectivity and spe-
cific activity that are nearly identical to those of t-PA, but 
pamiteplase has a longer t1/2.85,86

  

These mutants have been developed for bolus infusion 
application in the setting of MI.

What advantage delayed clearance or prolonged t1/2 of a 
t-PA mutant may have in acute application in ischemic stroke 
is yet to be demonstrated.87 Dose-adjustment studies in 
patients with stroke have not been reported. One unproven 
concern with long t1/2 molecules is that they may increase the 
intracerebral hemorrhage risk in the setting of ischemic stroke.

A similar situation exists for other novel PA constructs. 
These have included single-site mutants and variants of rt-PA 
and recombinant scu-PA, t-PA/scu-PA and t-PA/u-PA chimerae, 
u-PA/antifibrin monoclonal antibodies, u-PA/antiplatelet 
monoclonal antibodies, bifunctional antibody conjugates, 
and scu-PA deletion mutants.88-90

Recently, interest in recombinant pro-UK (scu-PA) has 
reappeared, based upon a report of its potential utility in acute 
MI.91 M5, a single site mutation (K300H) of pro-UK, is more 
stable in plasma than pro-UK and can remain in its pro-enzymatic 
form at therapeutic doses.92,93 The mutation reduces the intrinsic 
activity of pro-UK five-fold and increases its reactivity to plasma 
C1 inhibitor, which forms a complex with the enzymatic form. 
Complex formation potentially reduces the risk of hemorrhage 
without interfering with the thrombolytic effect. 

Sequential Combinations of Plasminogen Activators in 
Exogenous Thrombolysis

When given following a low dose rt-PA bolus infusion, pro-UK 
produced acceptable arterial recanalization acutely in coronary 
artery thrombosis patients compared historically to rt-PA alone.91 
This has been the basis for the development of a more stable pro-
UK analogue with a longer circulation time than the wild-type 
molecule that will be tested acutely in ischemic stroke patients. 

REGULATION OF ENDOGENOUS FIBRINOLYSIS

Endogenous fibrinolysis is modulated by several families of 
inhibitors of plasmin and of the PAs.

In the circulation, α2-antiplasmin is the primary inhibitor 
of fibrinolysis, inhibiting plasmin directly. Excess plasmin is 
inactivated by α2-macroglobulin. The potential risk of vascular 
thrombosis then depends on the balance between plasminogen 
activation and plasmin activity and their respective inhibitors 
in the circulation.

Thrombospondin interferes with fibrin-associated 
plasminogen activation by t-PA. Inhibitors of the contact 
activation system and complement (C1 inhibitor) have an 
indirect effect on fibrinolysis. HRG is a competitive inhibitor of 
plasminogen. Generally, though, these physiologic modulators 
of plasmin activity are overwhelmed by pharmacologic 
concentrations of PAs.

For SK, APSAC, and STK, circulating neutralizing antibodies 
appear, which directly inhibit their activation of plasminogen.

α2-Antiplasmin and α2-Macroglobulin

Circulating plasmin generated during fibrinolysis is bound by 
α2-antiplasmin in the plasma. The two forms of α2-antiplasmin 
are (i) the native form, which binds plasminogen, and (ii) a 
second form that cannot bind plasminogen.94 Ordinarily, α2-
antiplasmin is found in either plasminogen-bound or free cir-
culating forms. Fibrin-bound plasmin is protected because of 
its interaction with fibrin and because α2-antiplasmin is already 
occupied. Excess free plasmin is bound by α2-macroglobulin. 
α2-Macroglobulin is a relatively nonspecific inhibitor of fibri-
nolysis that inactivates plasmin, kallikrein, t-PA, and u-PA. 

INHIBITORS OF PLASMINOGEN ACTIVATORS AND 
FIBRINOLYSIS

PAIs also reduce the activity of t-PA, scu-PA, and u-PA by direct 
binding (see Table 2.2).

PAI-1 specifically inhibits both plasma t-PA and u-PA. PAI-1 
is derived from both endothelial cell and platelet sources.95 
Several lines of evidence indicate that the K2 domain of t-PA 
is responsible for the interaction between t-PA and PAI-1 and 
that this interaction is altered by the presence of fibrin.96 PAI-1 
is also an acute-phase reactant,97 and deep venous thrombosis, 
septicemia, and type II diabetes mellitus, for instance, are 
associated with elevated plasma PAI-1 levels.

PAI-2, which is found in a 70-kDa form and a 47-kDa low-
molecular-weight form, has a lower Ki for u-PA and two-chain 
t-PA. PAI-2 is derived from placental tissue, granulocytes, 
monocytes/macrophages, and histiocytes.98 This inhibitor 
probably plays little role in the physiologic antagonism of t-PA, 
and is most important in the utero-placental circulation.99 The 
kinetics of PA inhibition by PAI-2 differs from that for PAI-1.

PAI-3 is a serine protease inhibitor of u-PA, t-PA, and APC 
found in plasma and urine.

Thrombin-activable fibrinolysis inhibitor (TAFI) is an 
endogenous inhibitor of glu-plasminogen and therefore 
fibrinolysis. TAFI is a precursor of plasma carboxypeptidase B 
and, when activated by thrombin in the plasma, produces an 
antifibrinolytic effect. 

CLINICAL CONSEQUENCES OF THERAPEUTIC 
PLASMINOGEN ACTIVATION

PAs given at pharmacologic doses significantly alter hemosta-
sis and have been used as treatments of acute vascular throm-
bosis. u-PA, SK, and occasionally t-PA produce systemically 
detectable fibrin(ogen) degradation, measured by a fall in 
fibrinogen concentration, and a reduction in circulating plas-
minogen and α2-antiplasmin (through binding of the plasmin 
generated). Both u-PA and SK inactivate factors V and VIII, 
which contribute to the “systemic lytic state” or “anticoagulant 
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state.” Fragments of fibrin(ogen) interfere with fibrin multi-
merization and contribute to thrombus destabilization, 
whereas the circulating fragments, hypofibrinogenemia, and 
factor depletion produce an anticoagulant state that limits 
thrombus formation and extension. The clinical consequences 
of u-PA or SK infusion include a progressive decrease or deple-
tion of circulating plasminogen and fibrinogen, prolongation 
of the aPTT due to significant fibrinogen reduction, and inac-
tivation of factors V and VIII. With repletion of these elements 
the anticoagulant state may be transient.

Platelet function can also be affected. Clinical studies 
of rt-PA have demonstrated prolongation of standardized 
template bleeding times.100 In experimental systems, infusion 
of rt-PA produces greater hemorrhage.101 Furthermore, t-PA is 
known to cause disaggregation of human platelets through 
selective proteolysis of interplatelet fibrin, which is inhibitable 
by α2-antiplasmin.102 Lys-plasminogen and glu-plasminogen 
can potentiate the platelet disaggregatory effect of rt-PA. It is 
likely that the risk of intracerebral hemorrhage that attends PA 
infusion involves disruption of sustained platelet aggregation 
and lysis of fibrin formed at sites of vascular injury. 

LIMITATIONS TO THE CLINICAL USE OF 
FIBRINOLYTIC AGENTS FOR ISCHEMIC STROKE

The clinical setting in which PAs are used is an important and 
relevant variable for both the efficacy and the reduction of 
hemorrhagic risk. Intracerebral hemorrhage is a known risk 
of the clinical use of PAs. The use of rt-PA in pharmacologic 
doses in the acute setting of ischemic stroke must conform to 
the original report,6 as confirmed subsequently,103 and in the 
package insert (see https://www.accessdata.fda.gov/drugsatfda
_docs/label/2015/103172s5203lbl.pdf).

An abbreviated summary of the strict contraindications to 
the use of fibrinolytic agents includes (i) a history of previous 
intracranial hemorrhage, (ii) septic embolism, (iii) malignant 
hypertension or sustained diastolic or systolic blood pressure 
in excess of 180/110, (iv) conditions consistent with ongoing 
parenchymal hemorrhage (e.g., gastrointestinal source), (v) 
pregnancy or parturition, (vi) a history of recent trauma or 
surgery, and (vii) known acquired (e.g., from anticoagulant use) 
or inherited hemorrhagic diatheses. These contraindications 
currently apply to the use of rt-PA in selected patients with 
ischemic stroke less than 3 hours after symptom onset as well 
as other approved clinical indications for the use of rt-PA, 
u-PA, or SK. Somewhat different selection criteria were used 
for the 4.5 hour entry window in the subsequent randomized 
placebo-controlled study ECASS III.9 

PLASMINOGEN ACTIVATORS IN CEREBRAL TISSUE

Although current clinical focus is on the use of PAs as thera-
peutic agents for vascular reperfusion, cerebral tissue also gen-
erates and uses PAs. PA activity has been associated with brain 
tissue development, vascular remodeling, cell migration, neu-
ron viability, tumor development, and vascular invasion in the 
central nervous system. However, the pathways involved are 
still under study.

In normal cerebral tissue, t-PA antigen is expressed by 
microvessels similar in size to those of the vasa vasorum of 
the aorta.21 Expression of PA activity has been reported in 
non-ischemic tissues of mice, spontaneously hypertensive and 
Wistar-Kyoto rats, and primates.104 Sappino et al. described 
the localization of t-PA and protease nexin (PN)-1 in the 
adult mouse brain,105 while u-PA mRNA has been shown to 
be expressed in the adult brain.50 Tissue-type PA and u-PA 
are secreted by endothelial cells, neurons, astrocytes, and 
microglia in vivo or in vitro.46-51 u-PA mRNA is expressed in 

neurons and oligodendrocytes during process outgrowth in 
the rodent brain.105 Although t-PA is expressed by neurons in 
many brain regions, extracellular proteolysis seems confined 
to specific, discrete brain regions. Studies suggesting that 
t-PA can mediate neurodegeneration during excitotoxicity or 
following focal cerebral ischemia in the hippocampus have 
opened a discussion about whether PAs play roles in cellular 
viability outside the fibrinolytic system in the circulation.106 
Strickland and colleagues have summarized studies indicating 
the involvement of t-PA on CNS cellular function and 
experimental focal ischemia outcomes.107 Other more recent 
summaries have highlighted specific aspects of this data.108,109

Plasminogen generation is confined to discrete regions of the 
CNS.105 Early during focal ischemia, activators of plasminogen 
are expressed by microvessels and adjacent neurons (e.g., 
u-PA);25 however, there is little evidence yet that plasmin 
activity per se is generated in the ischemic territory. Although 
the loss of basal lamina components are compatible with its 
action,28 other proteases are generated that can account for 
this. In addition, evidence of local plasminogen activation has 
been shown by in situ zymography.110 Proteolytic fragments of 
matrix constituents (e.g., laminin) have been associated with 
enhanced excitotoxicity in the CNS in experimental settings.111 
The roles for t-PA, while not overtly upregulated in non-
human primate ischemia,25 have been implicated in neuron 
survival and injury.112

Plasminogen Activators and Neuronal Functions

PAs participate in CNS development.105,113 It is not surpris-
ing that as many cells harbor receptors for PAs, the PA system 
could play distinct roles in CNS development and function. 
u-PA has been shown to participate in (i) forebrain postna-
tal development (along with u-PAR), (ii) neuron and axo-
nal growth in the CNS,113 and (iii) epileptogenesis (along 
with u-PAR).114,115 In experimental systems under normoxia 
t-PA is synthesized by neurons and appears to participate in 
(i) hippocampal neuron function and responses,116 (ii) epi-
leptogenesis,115,117 and (iii) excitotoxic injury of neurons.49 
Microglia appear to require t-PA for proper function in 
phagocytosis.118

Tsirka et al. have demonstrated that deletion of t-PA 
prevents the excitotoxic generation of neuron injury (in the 
hippocampus).49 In contrast, it had been suggested that rt-PA 
(alteplase) promotes neuron injury during ischemic stroke. 
Wang et al. reported that injury volumes were significantly 
smaller in t-PA−/− mice (129/Sv and C57 Bl/6 backgrounds) 
subject to transient ischemia, compared with wild-type 
companions.119 In both strains infusion of human rt-PA at 0.9–
1.0 mg/kg increased infarction volumes.119 High t-PA doses (10 
mg/kg) increase MMP-9 levels in brain.120 The increase in injury 
volume has been attributed directly to neuron injury by the 
ability of rt-PA (alteplase) to potentiate N-methyl-D-aspartate 
(NMDA) receptor signaling,121 evidence of direct proteolytic 
cleavage of the NR1 subunit of that receptor by rt-PA,121 
or t-PA expression in the hippocampus and amygdala.117 
Concerns have been raised that the proteolytic activity could be 
associated with the serum in which cells were grown and/or the 
suprapharmacologic concentrations of human rt-PA used in the 
mouse preparations (e.g., 10 mg/kg). Alternatively, murine cells 
could be more sensitive to the human rt-PA, as species controls 
have not been reported. The role(s) and the mechanisms of PA 
action in individual reports are often difficult to define, in part 
because the methodologies and the settings of experimental 
testing have often not been fully described. In another setting, 
modulation of the NR2B component of the NMDA receptor 
by rt-PA (alteplase, 100 μg/mL) increased ethanol-withdrawal 
seizures in mice (C57 Bl/6 background).117

https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103172s5203lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103172s5203lbl.pdf
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Further technical concerns have appeared. Yi et al. have 
demonstrated that reduction in infarction volume in an middle 
cerebral artery (MCA) occlusion model in the Sprague-Dawley 
rat occurred when rt-PA (alteplase), the S478A mutant of 
t-PA, or denatured rt-PA were given by intracerebroventricular 
injection compared to control.122 It has also been noted that 
low-molecular-weight contaminants (potentially L-arginine) 
in commercial preparations of human rt-PA (alteplase) could 
cause cell toxicity, and similarly contaminants in plasmin 
preparations could stimulate neuron Ca+2 flux.123 Those 
studies suggest that non-fibrinolytic off-target effects may 
be responsible for the increased injury observed with high 
concentrations of human rt-PA in murine model systems. 
How these observations relate to ischemic stroke is uncertain.

Many studies have not taken into account the importance 
of species differences with regard to coagulation system 
activation. Korninger et al. have demonstrated that for 
thrombus lysis, non-human systems require a 10-fold higher 
concentration of human rt-PA than human-relevant thrombus 
lysis systems ex vivo.124 This applies to vascular thrombosis. 
Often, with non-thromboembolic models of MCA occlusion, 
the use of rt-PA has been associated with an increase in 
infarction volume.

In the non-human primate no change in infarction volume 
was observed at several doses of rt-PA (alteplase or duteplase) 
infused intravenously.125 Furthermore, Overgaard et al. had 
demonstrated significant reduction in infarction volume with 
rt-PA at 10 mg/kg following ischemia in rat models of MCA 
occlusion.126-128 Those observations suggest that in rat strains 
thrombus lysis is feasible resulting in reduction in infarction 
volume, while in mouse strains the rt-PA concentrations 
achieved are toxic.

In culture, injury to cells occurs consistently at 
suprapharmacologic concentrations of rt-PA (del Zoppo GJ, 
Gu Y-H, personal observation; and,129-131). Furthermore, there 
is no clear indication that rt-PA results in a worsening of the 
injury territories in human stroke patients, independent of 
hemorrhage, who are treated appropriately.

Therefore, further investigation of the interactions of the 
PA system and its substrates within the neurovascular unit is 
required to understand better the roles of this system. 

Plasminogen Activators and Cerebral Microvessel 
Integrity

A clinically relevant notion proposed is that rt-PA can increase 
cerebral vascular permeability and the risk of hemorrhage by 
increasing the vascular matrix degradation. Work has focused 
on the matrix metalloproteinases (MMPs) and other proteases 
with matrix protein degrading activities.

Loss of the basal lamina matrix28,132-137 and rapid 
reorganization of microvessel endothelial cell and 
astrocyte matrix adhesion receptors occurs during focal 
ischemia.28,135,138-140 Heo et al. first described the acute 
appearance of pro-MMP-2 in ischemic tissue, and the 
association of pro-MMP-9 with hemorrhagic transformation 
in the primate.141 Rosenberg et al. explored the role(s) that 
gelatinases play in permeability barrier loss, neuron injury, and 
the evolution of infarction.142-145 Within the ECM, collagen 
IV, laminin, and fibronectin decrease significantly during focal 
ischemia.28,140

A plausible explanation for the cerebral vascular ECM 
changes seen following MCA occlusion is the acute appearance 
of active matrix-cleaving proteases in the ischemic territory. 
Four families of matrix-altering enzymes acutely increase 
following MCA occlusion in the non-human primate: (i) 
(pro-)MMP-2 and (pro-)MMP-9,141 and the activation system 
for pro-MMP-2,24 (ii) serine proteases, including u-PA and 

thrombin,24,146 (iii) cathepsin-L,135 and (iv) heparanase.28,135 
Their individual involvement in brain injury is now 
certain.135,137,141,143,147-152 However, no study to date has 
shown a clear causal relationship; their involvement has been 
mostly circumstantial.

In the setting of experimental focal ischemia, it is not 
known whether the proteases are released in active form 
and degrade microvessel ECM directly or are activated from 
the inactive precursors released from cellular or matrix 
sources. The inactive gelatinase pro-MMP-2 is released from 
vascular endothelium and pro-MMP-9 is released from PMN 
leukocytes, monocytes, microglia, pericytes, and other cells 
during inflammation. pro-MMP-2 is activated by membrane 
bound MT1- and MT3-MMP, plasmin, and other proteases. 
Considerable experimental work employing focal ischemia 
models has focused on the active gelatinases.120,145,153 In the 
primate MMP-2 antigen is found throughout the ischemic core 
acutely,24 but only the inactive pro-MMP-2 form is observed by 
high-sensitivity zymography.141 Less than 1% of total MMP-2 
in ischemic basal ganglia appears to be active.141

It has been suggested that hemorrhage observed with rt-PA 
use in murine focal cerebral ischemia models is caused by 
the generation of MMP-9 by rt-PA in the ischemic tissue.154 
Data to support this claim have been developed in murine 
models;120,131,155-157 however, recently this notion has been 
countered in another model system.157 This question remains 
unresolved and may depend upon technical issues.11

Technical issues confound confirmation of matrix-cleaving 
activity in tissue derived from ischemia models, including (i) 
retention of plasma from unperfused brain samples, (ii) the 
presence of hemorrhage, (iii) activation of samples during 
protease extraction, (iv) inconsistencies in assigning molecular 
masses to active forms, and (v) the absence of sufficient details 
in the preparation methods to be certain. Species differences 
in protease expression during focal ischemia between primate 
(pro-MMP-2) and mouse strains (pro-MMP-9) accentuate 
this problem.135,149 Gene deletion studies provide only an 
indirect impression of the possible impact of specific matrix 
proteases on evolving ischemic injury,120,149,150,153,158 and are 
subject to significant limitations. These include compensatory 
changes during development, several MMP-9−/− constructs 
with different phenotypes, failure to identify other protease 
families, unknown cell sources, and the appearance of similar 
injury phenotypes with different gene constructs (e.g., within 
the PA family, for instance).159 These concerns argue strongly 
for identifying the exact enzyme pathways and their cell 
sources in the CNS during injury. 

Plasminogen Activators in Experimental Cerebral 
Ischemia

Focal cerebral ischemia rapidly increases the endogenous 
expression of u-PA and PAI-1 within striatal tissue of the pri-
mate.25,141 Endogenous t-PA decreases transiently as it binds 
PAI-1, but otherwise does not change. u-PA is an indirect activa-
tor of pro-MMP-2, which is also generated early following MCA 
occlusion.24 It has been postulated that loss of basal lamina 
integrity contributes to hemorrhagic transformation of the 
evolving infarction.28,140 Whether exogenous PAs contribute to 
the loss in microvessel integrity in this manner is under study.

A limited number of experimental studies have tested the 
ability of PAs to increase arterial recanalization. Improved 
clinical (behavioral and/or neurologic) outcomes have been 
reported in rodent models of focal cerebral ischemia treated 
with PAs (mostly rt-PA) very soon after thromboembolism. 
Early infusion of rt-PA in a rabbit multiple-thromboembolism 
model demonstrated significant improvement in clinical 
outcome in comparison with untreated controls.160 The use 
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of rt-PA with putative inhibitors of PMN leukocyte adhesion 
supports this notion, although differences among rt-PA cohorts 
were observed in various experimental sets. In an rt-PA dose-rate 
study in a nonembolic non-human primate stroke model, no 
significant difference in motor-weighted neurologic outcome 
was observed, compared with controls.125 However, another 
study demonstrated a significant reduction in infarction volume 
after reperfusion of the MCA territory in one model.161 

PLASMINOGEN ACTIVATORS AND RECANALIZATION 
IN ISCHEMIC STROKE

Experimental and clinical studies indicate that timely resto-
ration of blood flow to the ischemic cerebral parenchyma is 
required for improved clinical outcome. The substrate and 
condition requirements of PAs have supported their poten-
tial use in cerebrovascular ischemia. Angiographic studies 
have provided valuable information about the anatomy of the 
vasculature, the magnitude of thrombus burden, and the suc-
cess of recanalization with PAs.3,162-164 u-PA and rt-PA appear 
to contribute to arterial reperfusion as anticipated by their 
known activities (Table 2.3).

Intervention With Plasminogen Activators

The frequency of successful arterial recanalization appears to be 
greater when the PA is administered by the intra-arterial route 
within the brain-supplying arteries to the ischemic territory 
than by intravenous delivery (see Table 2.3). That observation is 
consistent with the notion that enhanced efficacy may be due to 
higher local concentrations of the PA at the thrombus surface. 
However, this has not been shown in the clinical setting.

Only a handful of studies have prospectively compared 
recanalization rates in PA-treated patients with a matched 
control group.4,162,165 In those studies, recanalization 
was significantly greater in patients receiving the PA 
for angiographically proven occlusion of the MCA. In 
a phase II study of recombinant scu-PA (pro-UK), the 
recanalization frequency was significantly improved by 

the co-administration of heparin,162 and was confirmed 
in a follow-on open phase III study.165 Many, but not all, 
subjects in those studies in whom early recanalization 
was documented experienced clinical improvement. Lack 
of clinical improvement despite recanalization may be 
influenced by longer times to reperfusion, poor perfusion, 
and/or poor collateralization although this issue is 
unproven.

Mechanical disruption with either catheter-type devices 
or ultrasonography has been employed to enhance 
recanalization in limited clinical series. High ultrasound 
frequencies have been shown to alter the properties of 
the fibrin network to increase transport of rt-PA into the 
structure, increase thrombus penetration,166 increase rt-PA 
binding to fibrin,167 and to increase flow through fibrin gel 
in in vitro systems. Fibrin disaggregation can also occur. It 
has been postulated that such high frequencies will also 
cause injury to the brain parenchyma and to the vessel wall 
structure. 

Endovascular Interventions

Quite recently, interest has turned to the subpopulations 
(∼25%) of stroke patients with proximal MCA, internal carotid 
artery (ICA), or carotid “T” occlusions with a low likelihood of 
acute recanalization by rt-PA.3 Direct intra-arterial thrombus 
retrieval has been shown to effect recanalization and in some 
cases significant clinical improvement.168-174 Among these 
studies, intravenous thrombolysis has been employed as the 
trial comparator in many,168-175 and/or has been employed as 
an adjunct to the endovascular procedure.168-175 While current 
practice is evolving, the benefit of PAs as adjuncts to endovascu-
lar treatment is not proven at this time. 

PLASMINOGEN ACTIVATORS AND CEREBRAL 
HEMORRHAGE IN ISCHEMIC STROKE

Acute rt-PA administration in ischemic stroke can be com-
plicated by the development of symptomatic parenchymal 

TABLE 2.3  Plasminogen Activators in Acute Ischemic Stroke: Carotid Territory.

Study Year Agent Patients (n) ∆ (T-0)a (hours)

Recanalization 

(%)

Total 

Hemorrhage 

(%)

Symptomatic 

Hemorrhage 

(%)

INTRA-ARTERIAL DELIVERY

del Zoppo et a.l1 1988 SK/u-PA 20 <24 90.0 20.0 0.0

Mori et al.2 1988 u-PA 22 <7 45.5 18.2 9.1

Matsumoto et al.181 1991 u-PA 39 <24 59.0 33.3 —

PROACT162 1997 scu-PA/h

C/h

26

14

<6

<6

57.7

14.3

42.3

7.1

15.4

7.1

Gönner et al.182 1998 u-PA 33 <6 58.0 21.2 6.1

PROACT II165 1999 scu-PA/h

-/h (IV)

121

59

<6

<6

65.7

18.0

35.2

13.0

10.2

1.8

INTRAVENOUS DELIVERY

Yamaguchi183 1991 rt-PA 58 <6 43.1 20.7 —

del Zoppo et al.3 1992 rt-PA 93 (104)b <8 34.4 30.8 9.6

Mori et al.4 1992 rt-PA

C

19

12

<6 47.4

16.7

52.6

41.7

—

—

von Kummer and 

Hacke184

1992 rt-PA 32 <6 53.1 37.5 9.4

Yamaguchi et al.5 1993 rt-PA

C

47 (51)

46 (47)

<6 21.3

4.4

47.1

46.8

7.8

10.6

aTime from symptom onset to treatment.
bIntention to treat.

C, Control or placebo; h, heparin; IV, intravenous; rt-PA, recombinant tissue plasminogen activator; scu-PA, single-chain urokinase plasminogen 

activator; SK, streptokinase; u-PA, urokinase-type plasminogen activator.
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hemorrhage. A number of randomized studies have docu-
mented the increased risk of symptomatic hemorrhagic trans-
formation associated with intravenous infusion of PAs.6-8 
Rates of symptomatic hemorrhage for hemispheric stroke in 
the cerebral artery territory range from 3.3% to 9.6% in this 
setting.3,7-9,162 In addition, the development of symptomatic 
hemorrhage in rt-PA-treated patients contributed to mortality 
in properly controlled trials, including the National Institute 
of Neurological Disorders and Stroke (NINDS) study,6-8 and 
ECASS-3.9 Overall, however, those well-designed trials have 
shown significant neurologic benefit from the use of systemic 
rt-PA.

Clinical features that have been associated with higher 
intracerebral hemorrhage risk in the setting of PA use 
include advancing age and signs of early infarction on initial 
cranial computed tomography. Early signs of infarction may 
reflect otherwise undetectable injury to the matrix of the 
microvascular bed.6-8 Increased time to treatment, low body 
mass (higher relative rt-PA dose), diastolic hypertension, older 
age, early signs of ischemia, and the use of rt-PA are associated 
with the risk of intracerebral hemorrhage.3,176,177 From recent 
perfusion-weighted imaging (PWI) and diffusion-weighted 
imaging (DWI) studies subgroups of patients receiving rt-PA 
have been identified for whom the risk of hemorrhage is 
increased.178,179 This accords with evidence that the depth 
and duration of focal ischemia is a contributor to the ultimate 
cerebral hemorrhage risk during exposure to PAs.180

These latter features of focal ischemia also accord with the 
observation of microvessel matrix degradation in the ischemic 
territories observed in experimental systems.27,135,141 The 
possibility that these processes are augmented by PA exposure 
(e.g., rt-PA) and interactions with the baseline metabolic 
environment of the tissue (e.g., hyperglycemia) have not been 
sufficiently explored.

Both tissue injury and pharmacologic interventions can 
augment the risk of hemorrhage. Despite the higher risk of 
hemorrhage associated with rt-PA, a robust clinical benefit 
results with proper use of this agent.6 The results of two 
randomized trials of intra-arterial recombinant scu-PA are 
consistent with the effect of anticoagulation (heparin) to 
increase the risk of symptomatic cerebral hemorrhage with 
scu-PA.162,165 A significant excess of symptomatic hemorrhages 
and a significant increase in recanalization rate occurred in 
patients receiving the higher heparin dose. Nonetheless, there 
is no firm evidence so far that the increase in hemorrhage 
associated with the use of PAs is related to greater recanalization. 
Early infusion of a PA in selected patients is associated, 
however, with a decrease in the enhanced hemorrhage risk.3 

CONCLUSION

Thrombus development and the processes of endogenous 
thrombus-remodeling and dissolution involve discrete well-
understood biochemical pathways. They require the interac-
tion of the vasculature and its lining, platelet activation, and 
the activation of coagulation. These processes are responsible 
for thrombotic occlusion of brain-supplying arteries that is a 
cause of ischemic stroke.

Antithrombotic agents are derived from naturally occurring 
endogenous factors or agents that interfere with individual 
steps in the pathways of thrombosis.

As an example, the pharmacologic use of PAs is based 
upon the known activities and properties of endogenous PAs, 
and the purification of proteins with PA activity from natural 
sources. The acute use of PAs for dissolution of cerebral arterial 
thrombi and recanalization of the occluded artery during 
ischemic stroke has devolved from an understanding of PAs 
and their actions.

The interactions between PAs and the evolving ischemic 
cerebral tissue are still incompletely understood. However, 
it is clear that (i) dissolution of vascular thrombi in the 
CNS can be achieved acutely with PAs, (ii) rt-PA delivered 
acutely can cause significant clinical improvement, and (iii) 
increased intracerebral hemorrhagic risk accompanies PA 
use in this setting. Vascular injury is a necessary component 
of hemorrhage both with ischemic stroke and the use of 
antithrombotic agents, including PAs. Current unknowns 
regarding the generation of intracerebral hemorrhage include 
(i) whether the PA (e.g., rt-PA) can cause vascular matrix 
dissolution, (ii) whether, where, and how rt-PA can stimulate 
matrix protease generation, (iii) the timing of these events 
in the clinical setting, and (iv) non-vascular contributors. A 
growing understanding of non-vascular PA effects covers brain 
development, individual cerebral cell activities, and neuron 
injury, specifically. Also, work proceeds to understand non-
vascular roles of coagulation factors in the CNS.

The outcomes of these studies require the high-quality 
application of the scientific method, as in the study of the 
thrombus pathways.

The complete reference list is available at 
www.expertconsult.inkling.com.
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