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Preface to the Fourth Edition

It has been another 7 years since the third edition of this textbook was published. In that time, 
application of numerical methods to engineering problems has been substantially expanded. 
This expansion has been supported by increases in computational power and speed as well 
as improvements in available algorithms. Perhaps the largest increase in capability has been 
provided by the advent of multicore processors and recent use of graphics processors as 
computational engines. These improvements have encouraged application of digital simula-
tion methods to solve more complex problems on a much larger scale. More detailed com-
putations of �ows using complex models for realistic con�gurations have evolved where 
advanced turbulence models or, in some cases, direct simulation of turbulence is now within 
the realm of possibility. Multiphase and multi�uid �ow problems are now solved on a rou-
tine basis and include methods for tracking moving boundaries.

The trend of using commercial software for computational �uid dynamics (CFD) applica-
tions has continued. Companies �nd it �nancially more prudent to use commercial codes 
rather than invest in developing new software. This trend will continue with applications 
being the largest share of effort using digital simulation involving CFD. Organizations 
usually have a suite of codes that are considered to be their standard resource base for 
solving certain classes of problems. Engineers are charged with the responsibility of alter-
ing these resource codes to solve new problems and extend their use beyond their original 
range of applicability. There is also a large research effort targeting applications of numeri-
cal techniques to new problems. The goal of the present text is to prepare those working in 
the area of CFD to be able to modify existing codes, write new codes, and interpret results 
produced by digital simulation.

The format of the fourth edition of the text retains the same two-part division of the pre-
vious editions. The �rst four chapters concentrate on introducing fundamental ideas, while 
the last seven chapters are primarily focused on applications. No commercial software is 
employed in the text. Students are expected to write code to solve numerous homework 
problems in order to gain an understanding of how code is written and to interpret results 
produced by that code. This experience will assist in understanding if results are physi-
cally reasonable and also to identify possible errors that are introduced due to inadequacies 
in engineering models or its discrete representation. The numerous homework problems 
included in this text provide the necessary experience to achieve this end. It is essential 
that students spend signi�cant time writing code and interpreting results in order to bet-
ter understand the application of CFD in solving problems. This is a �eld where there is no 
substitute for experience.

Modi�cations to the previous edition have been made in both the fundamental and 
application sections of the text. Chapter 1 has been expanded to include recent develop-
ments in CFD methods. A comprehensive list of recommended references on a variety of 
physical problems encountered in digital simulation in heat transfer and �uid mechan-
ics has been added. Chapter 2 remains as printed in the third edition. Chapter 3 now 
includes introductory material on �nite-element methods. Selection of basis functions and 
error estimates are discussed, and the Galerkin and discontinuous Galerkin methods are 
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presented. Additional details on heat and mass transfer across interfaces when multiple 
materials are encountered have been added to Chapter 4, and applications using �nite-ele-
ment schemes are included. Governing equations are presented in Chapter 5, where addi-
tional material has been included on �ows with real gas chemistry. Basic ideas applied to 
free-surface �ows, front tracking methods, and free convection have been added. Chapters 
6 through 8 remain as presented in the third edition. Chapter 9 now includes expanded 
calculations for several classical problems in �uid mechanics. These include the driven 
cavity, cavity with free convection, and channel �ow. Examples of free-surface �ows 
including the broken dam problem are also included. Additions to Chapter 10 are mainly 
focused on generating higher-order meshing strategies that may contribute to a reduction 
of error in large-scale simulations. Chapter 11 has been added and addresses the impact of 
modern computer architecture on CFD. A review of recent progress in computer hardware 
and evolving computer languages is included. Appendix C from the third edition has 
been retained, while Appendices A and B, tridiagonal algorithms, have been eliminated. 
These packages are readily available as open source programs, or they can be found on the 
website associated with this text at https://www.routledge.com/9780815357124.

Additional material has been included in this edition, but rather little has been elimi-
nated. There are two reasons for retaining the original form and substance of the previous 
edition. As time has progressed, students encountered in CFD courses appear to have a 
weaker foundation in classical �uid mechanics, heat transfer, and aerodynamics. For this 
reason, fundamental material on these areas has been retained. In the area of numeri-
cal methods, classical schemes that reveal the historical development of CFD are used 
as teaching aids in helping students learn code preparation and interpretation of results 
 produced by computer simulations. For this reason, the historically important methods 
and ideas have also been retained.

In this edition, two new authors have been added. Dr. Vijaya Shankar and Dr. Ramakanth 
Munipalli both share the same CFD legacy as the original team. They bring perspectives 
from present-day developments and industrial applications to the material in the text. The 
additions to the present text are consistent with the goals of the previous editions and 
provide students with background in areas that are of current interest. As in the past edi-
tions, it is hoped that the ideas and concepts included in this book are fundamental and 
will continue to form a basic framework for students studying CFD.

This textbook is dedicated to Richard (Dick) Pletcher. Dick passed away unexpectedly 
in 2015 after the publication of the third edition and prior to the start of work on the pres-
ent edition. The remaining original authors, Dale Anderson and John Tannehill, worked 
closely with Dick beginning in the 1970s in creating and teaching a two-semester sequence 
of courses in CFD at Iowa State University. The class notes that resulted from this sequence 
of courses formed the basis for the �rst edition of this textbook published in 1984. During 
his professional career, Dick was a major in�uence in shaping the lives of many of his 
students. He mentored them through advanced degree programs and instilled in them 
his carefully disciplined approach to research and teaching. He was an accomplished 
researcher, teacher, and a proli�c author and lecturer. We remember Dick as our friend 
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and colleague whose presence in the lives of others was always a positive factor. He was 
a kind, creative, hard-working man whose life was an inspiration to all who knew him.

Dale A. Anderson
John C. Tannehill

Ramakanth Munipalli
Vijaya Shankar

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760–2098 USA
Tel: 508–647–7000
Fax: 508–647–7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Preface to the Third Edition

Another 15 years have gone by since the second edition of this text appeared. During this 
period, the rate of development in algorithms has slowed compared to any earlier period, 
but the increase in computational power has been astounding and shows no sign of slow-
ing. Desktop computers can outperform the supercomputers of the early 1990s. The rate of 
improvement of computing power is such that a problem that required a year of comput-
ing time to solve 10 years ago can now be solved overnight. The increase in computing 
power has enabled engineers to solve more complete equations and complex geometries 
for aerodynamic �ows, i.e., use less physical modeling and fewer approximations. It has 
also motivated efforts to compute more complex physical phenomena such as turbulence 
and multiphase �ows.

Another clear trend is the increasing use of commercial software for computational �uid 
dynamics (CFD) applications. In the early days, CFD was mostly a do-it-yourself enterprise. 
It is more likely now that a CFD code is thought of as representing a large investment, and 
companies do not launch into writing a new one without considerable thought. It is more 
likely that CFD engineers will become involved in modifying or extending an existing 
code than in writing a new code from “scratch.” However, even making modi�cations to 
CFD codes requires knowledge of algorithms, general numerical strategies, and program-
ming skills. The text promotes programming skills by explaining algorithm details and 
including homework problems that require programming. Even those engineers that will 
utilize commercial codes and be responsible for interpreting the results will be better pre-
pared as a result of the knowledge and insight gained from developing codes themselves. 
It is very important for engineers to know the limitations of codes and to recognize when 
the results are not plausible. This will not change in the future. The experience gained by 
writing and debugging codes will contribute toward the maturity needed to wisely use 
and interpret results from CFD codes.

It is essential that courses evolve as technology advances and new knowledge comes 
forth. However, not every new twist will have a permanent impact on the discipline. Fads 
die out, and some numerical approaches will become obsolete as computing power relent-
lessly advances. The authors have included a number of new developments in this edition 
while preserving the fundamental elements of the discipline covered in earlier editions. A 
number of ideas and algorithms that are now less frequently utilized due to advances in 
computer hardware or numerical algorithms are retained so that students and instructors 
can gain a historical perspective of the discipline. Such material can be utilized at the dis-
cretion of the instructor. Thirty-four new homework problems have been added bringing 
the total number of homework problems to 376.

We have retained the two-part, ten-chapter format of the text. Additions and clari�ca-
tions have been made in all chapters. Part I, consisting of Chapters 1 through 4, deals with 
the basic concepts and fundamentals of the �nite-difference and �nite-volume methods. 
The historical perspective in Chapter 1 has been expanded. The sections on the �nite-
volume method in Chapter 3 have been revised and expanded. The conjugate gradient 
and generalized minimal residual (GMRES) methods are now discussed in the section on 
Laplace’s equation in Chapter 4. Part II, consisting of Chapters 5 through 10, covers appli-
cations to the equations of �uid mechanics and heat transfer. The governing equations are 
presented in Chapter 5. The equations for magnetohydrodynamic (MHD) �ows and the 
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quasi-one-dimensional form of the Euler equations are now included. Turbulence model-
ing has been updated. The coverage of large-eddy simulation (LES) has been expanded, 
and detached eddy simulation (DES) has been introduced. In Chapter 8, the material on 
the parabolized Navier–Stokes (PNS) equations has been expanded to include methods 
for handling �ow �elds with signi�cant upstream in�uences, including large streamwise 
separated regions. A number of updates and additions are found in Chapter 9. Coverage of 
Runge–Kutta schemes, residual smoothing, and the lower–upper symmetric Gauss–Seidel 
(LU-SGS) scheme has been expanded. Some recent variations in time-accurate implicit 
schemes are also included.

We continue to be grateful for the help received from many colleagues and past students 
while this material was developed and revised. We especially thank Zhaohui Qin for his 
help with several new �gures and with updates to several appendices. Finally, we would 
like to thank our families for their patience and encouragement during the preparation of 
this third edition.

This text continues to be a collective work by the three of us. There is no junior or senior 
author. The order of the authors for the previous two editions was determined by coin 
�ips. Anderson and Tannehill were named the �rst author on the previous two editions, 
and Pletcher is the �rst author on the current work.

Richard H. Pletcher
John C. Tannehill
Dale A. Anderson
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Preface to the Second Edition

Almost 15 years have passed since the �rst edition of this book was written. During the 
intervening years, the literature in computational �uid dynamics (CFD) has expanded 
manyfold. Due, in part, to greatly enhanced computer power, the general understand-
ing of the capabilities and limitations of algorithms has increased. A number of new 
ideas and methods have appeared. We have attempted to include new developments 
in this second edition while preserving those fundamental ideas covered in the �rst 
edition that remain important for mastery of the discipline. Ninety-�ve new homework 
problems have been added. The two-part, ten-chapter format of the book remains the 
same, although a shift in emphasis is evident in some of the chapters. The book is still 
intended to serve as an introductory text for advanced undergraduates and/or �rst-
year graduate students. The major emphasis of the text is on �nite-difference/�nite-
volume methods.

Part I, consisting of Chapters 1 through 4, presents basic concepts and introduces the 
reader to the fundamentals of �nite-difference/�nite-volume methods. Part II, consist-
ing of Chapters 5 through 10, is devoted to applications involving the equations of �uid 
mechanics and heat transfer. Chapter 1 serves as an introduction and gives a historical 
perspective of the discipline. This chapter has been brought up to date by re�ecting the 
many changes that have occurred since the introduction of the �rst edition. Chapter 2 
presents a brief review of those aspects of partial differential equation theory that have 
important implications for numerical solution schemes. This chapter has been revised 
for improved clarity and completeness. Coverage of the basics of discretization methods 
begins in Chapter 3. The second edition provides a more thorough introduction to the 
�nite-volume method in this chapter. Chapter 4 deals with the application of numerical 
methods to selected model equations. Several additions have been made to this chap-
ter. Treatment of methods for solving the wave equation now includes a discussion of 
Runge–Kutta schemes. The Keller box and modi�ed box methods for solving parabolic 
equations are now included in Chapter 4. The method of approximate factorization is 
explained and demonstrated. The material on solution strategies for Laplace’s equation 
has been revised and now contains an introduction to the multigrid method for both 
linear and nonlinear equations. Coloring schemes that can take advantage of vectoriza-
tion are introduced. The material on discretization methods for the inviscid Burgers 
equation has been substantially revised in order to re�ect the many developments, par-
ticularly with regard to upwind methods, that have occurred since the material for the 
�rst edition was drafted. Schemes due to Godunov, Roe, and Engquist and Osher are 
introduced. Higher-order upwind and total variation diminishing (TVD) schemes are 
also discussed in the revised Chapter 4.

The governing equations of �uid mechanics and heat transfer are presented in Chapter 5. 
The coverage has been expanded in several ways. The equations necessary to treat chemi-
cally reacting �ows are discussed. Introductory information on direct and large-eddy 
simulation of turbulent �ows is included. The �ltered equations used in large-eddy 
simulation as well as the Reynolds-averaged equations are presented. The material on 
turbulence modeling has been augmented and now includes more details on one- and 
two-equation and Reynolds stress models as well as an introduction to the subgrid-scale 
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modeling required for large-eddy simulation. A section has been added on the �nite- 
volume formulation, a discretization procedure that proceeds from conservation equa-
tions in integral form.

Chapter 6 on methods for the inviscid �ow equations is probably the most extensively 
revised chapter in the second edition. The revised chapter contains major new sections 
on �ux splitting schemes, �ux difference splitting schemes, the multidimensional case in 
generalized coordinates, and boundary conditions for the Euler equations. The chapter 
includes a discussion on implementing the integral form of conservation statements for 
arbitrarily shaped control volumes, particularly triangular cells, for two-dimensional 
applications.

Chapter 7 on methods for solving the boundary-layer equations includes new example 
applications of the inverse method, new material on the use of generalized coordinates, 
and a useful coordinate transformation for internal �ows. In Chapter 8, methods are pre-
sented for solving simpli�ed forms of the Navier–Stokes equations including the thin-
layer Navier–Stokes (TLNS) equations, the parabolized Navier–Stokes (PNS) equations, the 
reduced Navier–Stokes (RNS) equations, the partially parabolized Navier–Stokes (PPNS) 
equations, the viscous shock layer (VSL) equations, and the conical Navier–Stokes (CNS) 
equations. New material includes recent developments on pressure relaxation, upwind 
methods, coupled methods for solving the partially parabolized equations for subsonic 
�ows, and applications.

Chapter 9 on methods for the “complete” Navier–Stokes equations has undergone sub-
stantial revision. This is appropriate because much of the research and development in 
CFD since the �rst edition appeared has been concentrated on solving these equations. 
Upwind methods that were �rst introduced in the context of model and Euler equations are 
described as they extend to the full Navier–Stokes equations. Methods to ef�ciently solve 
the compressible equations at very low Mach numbers through low Mach number precon-
ditioning are described. New developments in methods based on derived variables, such 
as the dual potential method, are discussed. Modi�cations to the method of arti�cial com-
pressibility required to achieve time accuracy are developed. The use of space- marching 
methods to solve the steady Navier–Stokes equations is described. Recent advances in 
pressure-correction (segregated) schemes for solving the Navier–Stokes equations such as 
the use of nonstaggered grids and the pressure-implicit with splitting of operators (PISO) 
method are included in the revised chapter.

Grid generation, addressed in Chapter 10, is another area in which much activity has 
occurred since the appearance of the �rst edition. The coverage has been broadened to 
include introductory material on both structured and unstructured approaches. Coverage 
now includes algebraic and differential equation methods for constructing structured 
grids and the point insertion and advancing front methods for obtaining unstructured 
grids composed of triangles. Concepts employed in constructing hybrid grids composed 
of both quadrilateral cells (structured) and triangles, solution adaptive grids, and domain 
decomposition schemes are discussed.

We are grateful for the help received from many colleagues, users of the �rst edition, 
and others while this revision was being developed. We especially thank our colleagues 
Ganesh Rajagopalan, Alric Rothmayer, and Ijaz Parpia. We also continue to be indebted to 
our students, both past and present, for their contributions. We would like to acknowledge 
the skillful preparation of several new �gures by Lynn Ekblad. Finally, we would like to 
thank our families for their patience and continued encouragement during the prepara-
tion of this second edition.
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This text continues to be a collective work by the three of us. There is no junior or senior 
author. A coin �ip determined the order of authors for the �rst edition, and a new coin �ip 
has determined the order of authors for this edition.

John C. Tannehill
Dale A. Anderson

Richard H. Pletcher
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Preface to the First Edition

This book is intended to serve as a text for introductory courses in computational 
�uid mechanics and heat transfer (or, synonymously, computational �uid dynamics 
[CFD]) for advanced undergraduates and/or �rst-year graduate students. The text has 
been developed from notes prepared for a two-course sequence taught at Iowa State 
University for more than a decade. No pretense is made that every facet of the subject is 
covered, but it is hoped that this book will serve as an introduction to this �eld for the 
novice. The major emphasis of the text is on �nite-difference methods.

The book has been divided into two parts. Part I, consisting of Chapters 1 through 4, 
presents basic concepts and introduces the reader to the fundamentals of �nite-difference 
methods. Part II, consisting of Chapters 5 through 10, is devoted to applications involving 
the equations of �uid mechanics and heat transfer. Chapter 1 serves as an introduction, 
while a brief review of partial differential equations is given in Chapter 2. Finite-difference 
methods and the notions of stability, accuracy, and convergence are discussed in Chapter 3.

Chapter 4 contains what is perhaps the most important information in the book. 
Numerous �nite-difference methods are applied to linear and nonlinear model partial 
differential equations. This provides a basis for understanding the results produced when 
different numerical methods are applied to the same problem with a known analytic 
solution.

Building on an assumed elementary background in �uid mechanics and heat transfer, 
Chapter 5 reviews the basic equations of these subjects, emphasizing forms most suitable 
for numerical formulations of problems. A section on turbulence modeling is included 
in this chapter. Methods for solving inviscid �ows using both conservative and noncon-
servative forms are presented in Chapter 6. Techniques for solving the boundary-layer 
 equations for both laminar and turbulent �ows are discussed in Chapter 7. Chapter 8 deals 
with equations of a class known as the “parabolized” Navier–Stokes equations, which 
are useful for �ows not adequately modeled by the boundary-layer equations, but not 
requiring the use of the full Navier–Stokes equations. Parabolized schemes for both sub-
sonic and supersonic �ows over external surfaces and in con�ned regions are included in 
this chapter. Chapter 9 is devoted to methods for the complete Navier–Stokes equations, 
including the Reynolds-averaged form. A brief introduction to methods for grid generation 
is  presented in Chapter 10 to complete the text.

At Iowa State University, this material is taught to classes consisting primarily of aero-
space and mechanical engineers, although the classes often include students from other 
branches of engineering and earth sciences. It is our experience that Part I (Chapters 1 
through 4) can be adequately covered in a one-semester, three-credit-hour course. Part II 
contains more information than can be covered in great detail in most one-semester, three-
credit-hour courses. This permits Part II to be used for courses with different  objectives. 
Although we have found that the major thrust of each of Chapters 5 through 10 can be cov-
ered in one semester, it would also be possible to use only parts of this material for more 
specialized courses. Obvious modules would be Chapters 5, 6, and 10 for a course empha-
sizing inviscid �ows or Chapters 5 and 7 through 9 (and perhaps 10) for a course empha-
sizing viscous �ows. Other combinations are clearly possible. If only one course can be 
offered in the subject, choices also exist. Part I of the text can be covered in detail in the 
single course, or, alternatively, only selected material from Chapters 1 through 4 could be 
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covered as well as some material on applications of particular interest from Part II. The 
material in the text is reasonably broad and should be appropriate for courses having a 
variety of objectives.

For background, students should have at least one basic course in �uid dynamics, one 
course in ordinary differential equations, and some familiarity with partial differential 
equations. Of course, some programming experience is also assumed.

The philosophy used throughout the CFD course sequence at Iowa State University and 
embodied in this text is to encourage students to construct their own computer programs. 
For this reason, “canned” programs for speci�c problems do not appear in the text. Use of 
such programs does not enhance basic understanding necessary for algorithm develop-
ment. At the end of each chapter, numerous problems are listed that necessitate numerical 
implementation of the text material. It is assumed that students have access to a high-
speed digital computer.

We wish to acknowledge the contributions of all of our students, both past and present. 
We are deeply indebted to F. Blottner, S. Chakravarthy, G. Christoph, J. Daywitt, T. Hoist, 
M. Hussaini, J. Ievalts, D. Jespersen, O. Kwon, M. Malik, J. Rakich, M. Salas, V. Shankar, 
R. Warming, and many others for helpful suggestions for improving the text. We would 
like to thank Pat Fox and her associates for skillfully preparing the illustrations. A special 
thanks to Shirley Riney for typing and editing the manuscript. Her efforts were a constant 
source of encouragement. To our wives and children, we owe a debt of gratitude for all of 
the hours stolen from them. Their forbearance is greatly appreciated.

Finally, a few words about the order in which the authors’ names appear. This text is a 
collective work by the three of us. There is no junior or senior author. The �nal order was 
determined by a coin �ip. Despite the emphasis of �nite-difference methods in the text, we 
resorted to a “Monte Carlo” method for this determination.

Dale A. Anderson
John C. Tannehill

Richard H. Pletcher
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Introduction

1.1  General Remarks

The development of the high-speed digital computer during the 20th century has had a 
great impact on the way principles from the sciences of �uid mechanics and heat transfer 
are applied to problems of design in modern engineering practice. Problems that would 
have taken years to work out with the computational methods and computers available 
50 years ago can now be solved at very little cost in a few seconds of computer time. This 
does not mean that computer runs today only last a few seconds. Instead, many com-
puter tasks today take days of CPU time as the scope of problems that can be tackled have 
increased immensely. We still need even more computer power to accurately simulate the 
many �ows that require evaluation for the design of modern vehicles, engines, processing 
equipment, etc.

The ready availability of previously unimaginable computing power has stimulated 
many changes. These were �rst noticeable in industry and research laboratories, where 
the need to solve complex problems was the most urgent. More recently, changes brought 
about by the computer have become evident in nearly every facet of our daily lives. In 
particular, we �nd that computers are widely used in the educational process at all levels. 
Many a child has learned to recognize shapes and colors from mom and dad’s computer 
screen before they could walk. To take advantage of the power of the computer, students 
must master certain fundamentals in each discipline that are unique to the simulation 
process. It is hoped that the present textbook will contribute to the organization and dis-
semination of some of this information in the �elds of �uid mechanics and heat transfer.

The steady advances in computer technology over the past half century have resulted in 
the creation of a new methodology for attacking complex problems in �uid mechanics and 
heat transfer. This new methodology has become known as computational �uid dynam-
ics (CFD). In this computational (or numerical) approach, the equations (usually in par-
tial differential or integral form) that govern a process of interest are solved numerically. 
Some of the ideas are very old. First, there must be conservation principles and  physical 
understanding. This goes back to pioneers such as Archimedes (287–312 BC), Newton 
(1643–1727), Bernoulli (1700–1782), Euler (1707–1783), Navier (1785–1836), and Stokes (1819–
1903). Even work on numerical methods goes back at least to the time of Newton. The 
English mathematician Brook Taylor developed the calculus of �nite differences in 1715. 
Work on the development and application of numerical methods, especially �nite-differ-
ence methods for solving ordinary and partial differential equations, intensi�ed starting 
approximately with the beginning of the 20th century. The automatic digital computer was 
invented by Atanasoff in the late 1930s (see Gardner, 1982; Mollenhoff, 1988) and was used 
from nearly the beginning to solve problems in �uid dynamics. Still, these events alone 
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did not revolutionize engineering practice. The explosion in computational activity did 
not begin until a third ingredient, general availability of high-speed digital computers, 
occurred in the 1960s.

Traditionally, both experimental and theoretical methods have been used to develop 
designs for equipment and vehicles involving �uid �ow and heat transfer. With the advent 
of the digital computer, a third method, the numerical approach, has become available. 
Although experimentation continues to be important, especially when the �ows involved 
are very complex, the trend is clearly toward greater reliance on computer-based predic-
tions in design.

This trend can be largely explained by economics (Chapman, 1979). Over the years, com-
puter speed has increased much more rapidly than computer costs. The net effect has been 
a phenomenal decrease in the cost of performing a given calculation. This is illustrated in 
Figure 1.1, where it is seen that the cost of performing a given calculation was reduced by 
approximately a factor of 10 every 8 years up through 1995. (Compare this with the trend 
in the cost of peanut butter in the past 8 years.) This trend in the cost of computations was 
based on the use of the best serial or vector computers available. It is true not every user 
will have easy access to the most recent computers, but increased access to very capa-
ble computers is another trend that started with the introduction of personal computers 
and workstations in the 1980s. The cost of performing a calculation on desktop comput-
ers has dropped by a great deal more than a factor of 10 in the most recent 8-year period 
 (2010–2018). This cost reduction is primarily due to the advent of multicore processors and 
graphics processing units that enable tera�op (1012 FLOPS) performance in personal com-
puters. For example, the intel i9 processor (with 18 cores) is advertised as the �rst tera�op 
chip for desktop use (https://www.popsci.com/intel-tera�op-chip), easily outperforming 
the multimillion dollar Cray machines of the 1990s.

The trend of reduced cost over time continues in the same direction today with an even 
steeper slope. However, the supercomputer architecture based primarily on vector process-
ing that was common up to about 1995 has been replaced by massively parallel computing 
systems utilizing hundreds or thousands of processors. As a result, performance is not 
tied to the speed of a single computer chip. In effect, computational effort is split among 
many processors operating more or less simultaneously. Every year since 1993, a listing 

FIGURE 1.1
Trend of relative computation cost for a given �ow and algorithm. (Based on Chapman, 1979; Kutler et al., 1987; 
Holst et al., 1992; Simon, 1995.)
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of the 500 fastest computer systems has been prepared and is currently made available 
at the website www.top500.org sponsored by Prometeus GmbH, Waibstadt-Daisbach, 
Germany. Performance is measured by the LINPACK Benchmark (Dongarra et al., 2003), 
which requires the solution of a dense system of linear equations. Figure 1.2 illustrates the 
trend of performance with time in terms of �oating point operations per second (FLOPS). 
Data is shown for the top performing computer for the date reported. In November 2019, 
the fastest system in the world was the 148.6 peta�ops “Summit” computer built by IBM. 
For reference, a giga�op (GFlop) is 109 FLOPS, a tera�op (TFlop) is 1012 FLOPS, a peta�op 
(PFlop) is 1015 FLOPS, exa�op is 1018 FLOPS, and zetta�op is 1021. Notice that performance 
in terms of FLOPS has been increasing by a factor of 10 approximately every 3.3 years. This 
means that a computation that would require a full year to complete 10 years ago can now 
be run overnight (although that trend seems to have slowed down in recent years). The 
increase in computing power since the 1950s is almost incomprehensible. It is now possible 
to assign a homework problem in CFD, the solution of which would have represented a 
major breakthrough or could have formed the basis of a PhD dissertation in the 1950s or 
1960s. On the other hand, the costs of performing experiments have been steadily increas-
ing over the same period of time.

The suggestion here is not that computational methods will soon completely replace 
experimental testing as a means to gather information for design purposes. Rather, it is 
believed that computer methods will be used even more extensively in the future. In most 
�uid �ow and heat transfer design situations, it will still be necessary to employ some 
experimental testing. However, computer studies can be used to reduce the range of condi-
tions over which testing is required.

The need for experiments will probably remain for quite some time in applications involv-
ing turbulent �ow, where it is presently not economically feasible to utilize computational 

FIGURE 1.2
Growth of supercomputing power based on data from the TOP500 list (top500.org).
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models that are free of empiricism for most practical con�gurations. This situation is des-
tined to change eventually, since the time-dependent three-dimensional Navier–Stokes 
equations can be solved numerically to provide accurate details of turbulent �ow. Thus, 
as computer hardware and algorithms improve, the frontier will be pushed back continu-
ously allowing �ows of increasing practical interest to be computed by direct numerical 
simulation. The prospects are also bright for the increased use of large eddy simulations, 
where modeling is required for only the smallest scales.

In applications involving multiphase �ows, boiling, or condensation, especially in com-
plex geometries, the experimental method remains the primary source of design infor-
mation. Progress is being made in computational models for these �ows, but the work 
remains in a relatively primitive state compared to the status of predictive methods for 
laminar single-phase �ows over aerodynamic bodies.

1.2  Comparison of Experimental, Theoretical, 

and Computational Approaches

As mentioned in the previous section, there are basically three approaches or methods that 
can be used to solve a problem in �uid mechanics and heat transfer. These methods are

 1. Experimental

 2. Theoretical

 3. Computational (CFD)

The theoretical method is often referred to as an analytical approach, while the terms com-
putational and numerical are used interchangeably. In order to illustrate how these three 
methods would be used to solve a �uid �ow problem, let us consider the classical problem 
of determining the pressure on the front surface of a circular cylinder in a uniform �ow 
of air at a Mach number (M∞) of 4 and a Reynolds number (based on the diameter of the 
cylinder) of 5 × 106.

In the experimental approach, a circular cylinder model would �rst need to be designed 
and constructed. This model must have provisions for measuring the wall pressures, and 
it should be compatible with an existing wind tunnel facility. The wind tunnel facility 
must be capable of producing the required free stream conditions in the test section. The 
problem of matching �ow conditions in a wind tunnel can often prove to be quite trouble-
some, particularly for tests involving scale models of large aircraft and space vehicles. 
Once the model has been completed and a wind tunnel selected, the actual testing can 
proceed. Since high-speed wind tunnels require large amounts of energy for their opera-
tion, the wind tunnel test time must be kept to a minimum. The ef�cient use of wind tun-
nel time has become increasingly important in recent years with the escalation of energy 
costs. After the measurements have been completed, wind tunnel correction factors can 
be applied to the raw data to produce the �nal results. The experimental approach has the 
capability of producing the most realistic answers for many �ow problems; however, the 
costs are becoming greater every day.

In the theoretical approach, simplifying assumptions are used in order to make the prob-
lem tractable. If possible, a closed-form solution is sought. For the present problem, a useful 
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approximation is to assume a Newtonian �ow (see Hayes and Probstein, 1966) of a perfect 
gas. With the Newtonian �ow assumption, the shock layer (region between body and shock) 
is in�nitesimally thin, and the bow shock lies adjacent to the surface of the body, as seen in 
Figure 1.3a. Thus, the normal component of the velocity vector becomes zero after passing 
through the shock wave, since it immediately impinges on the body surface. The normal 
momentum equation across a shock wave (see Chapter 5) can be written as

  1 1 1
2

2 2 2
2

+ ρ = + ρp u p u
 (1.1)

where

p is the pressure

ρ is the density

u is the normal component of velocity.

The subscripts 1 and 2 refer to the conditions immediately upstream and downstream of 
the shock wave, respectively.

For the present problem (see Figure 1.3b), Equation 1.1 becomes
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For a perfect gas, the speed of sound in the free stream is
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where γ is the ratio of speci�c heats. Using the de�nition of Mach number
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a
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 (1.5)

FIGURE 1.3
Theoretical approach. (a) Newtonian �ow approximation. (b) Geometry at shock.
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and the trigonometric identity

 θ = σcos sin  (1.6)

Equation 1.3 can be rewritten as

 ( )= + γ θ∞ ∞  1 coswall
2 2p p M  (1.7)

At the stagnation point, θ = 0°, so that the wall pressure becomes

 = + γ∞ ∞(1 )stag
2p p M  (1.8)

After inserting the stagnation pressure into Equation 1.7, the �nal form of the equation is

 p p p p( )= + − θ∞ ∞    coswall stag
2  (1.9)

The accuracy of this theoretical approach can be greatly improved if, in place of Equation 1.8, 
the stagnation pressure is computed from Rayleigh’s pitot formula (Shapiro, 1953):
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 (1.10)

which assumes an isentropic compression between the shock and body along the stagna-
tion streamline. The use of Equation 1.9 in conjunction with Equation 1.10 is referred to 
as the modi�ed Newtonian theory. The wall pressures predicted by this theory are com-
pared in Figure 1.4 to the results obtained using the experimental approach (Beckwith and 
Gallagher, 1961). Note that the agreement with the experimental results is quite good up 
to about ±35°. The big advantage of the theoretical approach is that “clean,” general infor-
mation can be obtained, in many cases, from a simple formula, as in the present example. 

FIGURE 1.4
Surface pressure on circular cylinder.
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This approach is quite useful in preliminary design work, since reasonable answers can be 
obtained in a minimum amount of time.

In the computational approach, a limited number of assumptions are made, and a high-
speed digital computer is used to solve the resulting governing �uid dynamic equations. 
For the present high Reynolds number problem, inviscid �ow can be assumed, since we 
are only interested in determining wall pressures on the forward portion of the cylin-
der. Hence, the Euler equations are the appropriate governing �uid dynamic equations. 
In order to solve these equations, the region between the bow shock and body must �rst 
be subdivided into a computational grid, as seen in Figure 1.5. The partial derivatives 
appearing in the unsteady Euler equations can be replaced by appropriate �nite differ-
ences at each grid point. The resulting equations are then integrated forward in time until 
a steady-state solution is obtained asymptotically after a suf�cient number of time steps. 
The details of this approach will be discussed in forthcoming chapters. The results of this 
technique (Daywitt and Anderson, 1974) are shown in Figure 1.4. Note the excellent agree-
ment with experiment.

In comparing the methods, we note that a computer simulation is free of some of the 
constraints imposed on the experimental method for obtaining information upon which 
to base a design. This represents a major advantage of the computational method, which 
should be increasingly important in the future. The idea of experimental testing is to 
evaluate the performance of a relatively inexpensive small-scale version of the prototype 
device. In performing such tests, it is not always possible to simulate the true operating 
conditions of the prototype. For example, it is very dif�cult to simulate the large Reynolds 
numbers of aircraft in �ight, atmospheric reentry conditions, or the severe operating con-
ditions of some turbo machines in existing test facilities. This suggests that the computa-
tional method, which has no such restrictions, has the potential of providing information 
not available by other means. On the other hand, computational methods also have limi-
tations; among these are computer storage and speed. Other limitations arise owing to 
our inability to understand and mathematically model certain complex phenomena. None 
of these limitations of the computational method are insurmountable in principle, and 

FIGURE 1.5
Computational grid.
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current trends show reason for optimism about the role of the computational method in 
the future. As seen in Figures 1.1 and 1.2, the relative cost of computing a given �ow �eld 
has decreased by approximately �ve orders of magnitude during the past 20 years, and 
this trend is expected to continue in the near future. As a consequence, wind tunnels have 
begun to play a secondary role to the computer for many aerodynamic problems, much 
in the same manner as ballistic ranges perform secondary roles to computers in trajectory 
mechanics (Chapman, 1975). There are, however, many �ow problems involving complex 
physical processes that still require experimental facilities for their solution.

Some of the advantages and disadvantages of the three approaches are summarized in 
Table 1.1. It should be mentioned that it is sometimes dif�cult to distinguish between the 
different methods. For example, when numerically computing turbulent �ows, the eddy 
viscosity models that are frequently used are obtained from experiments. Likewise, many 
theoretical techniques that employ numerical calculations could be classi�ed as computa-
tional approaches.

1.3  Historical Perspective

As one might expect, the history of CFD is closely tied to the development of the digital 
computer. Most problems were solved using methods that were either analytical or empiri-
cal in nature until the end of World War II. Prior to this time, there were a few pioneers 
using numerical methods to solve problems. Of course, the calculations were performed 
by hand, and a single solution represented a monumental amount of work. Since that time, 
the digital computer has been developed, and the routine calculations required in obtain-
ing a numerical solution are carried out with ease.

The actual beginning of CFD or the development of methods crucial to CFD is a matter 
of conjecture. Most people attribute the �rst de�nitive work of importance to Richardson 
(1910), who introduced point iterative schemes for numerically solving Laplace’s equation 
and the biharmonic equation in an address to the Royal Society of London. He actually 
carried out calculations for the stress distribution in a masonry dam. In addition, he clearly 

TABLE 1.1

Comparison of Approaches

Approach Advantages Disadvantages

Experimental  1. Capable of being most realistic  1. Equipment required
 2. Scaling problems
 3. Tunnel corrections
 4. Measurement dif�culties
 5. Operating costs

Theoretical  1. Clean, general information, which is 
usually in formula form

 1. Restricted to simple geometry and 
physics

 2. Usually restricted to linear problems

Computational  1. No restriction to linearity
 2. Complicated physics can be treated
 3. Time evolution of �ow can be 

obtained 

 1. Truncation errors
 2. Boundary condition problems
 3. Computer costs
 4. Model inadequacies (turbulence, 

chemical kinetics, etc.)
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de�ned the difference between problems that must be solved by a relaxation scheme and 
those that we refer to as marching problems.

Richardson developed a relaxation technique for solving Laplace’s equation. His scheme 
used data available from the previous iteration to update each value of the unknown. 
In 1918, Liebmann presented an improved version of Richardson’s method. Liebmann’s 
method used values of the dependent variable both at the new and old iteration levels in 
each sweep through the computational grid. This simple procedure of updating the depen-
dent variable immediately reduced the convergence times for solving Laplace’s equation. 
Both Richardson’s method and Liebmann’s scheme are usually used in elementary heat 
transfer courses to demonstrate how apparently simple changes in a technique greatly 
improve ef�ciency.

Sometimes the beginning of modern numerical analysis is attributed to a famous paper 
by Courant et al. (1928). The acronym CFL, frequently seen in the literature, stands for 
these three authors. In this paper, uniqueness and existence questions were addressed 
for the numerical solutions of partial differential equations. Testimony to the importance 
of this paper is evidenced in its republication in 1967 in the IBM Journal of Research and 
Development. This paper is the original source for the CFL stability requirement for the 
numerical solution of hyperbolic partial differential equations.

Thom (1933) published the �rst numerical solution for �ow past a cylinder. Kawaguti 
(1953) obtained a similar solution for �ow around a cylinder in 1953 by using a mechani-
cal desk calculator, working 20 hours per week for 18 months. Allen and Southwell (1955) 
published another solution for viscous �ow over a cylinder using the Southwell (1940) 
relaxation scheme. The Southwell relaxation method was extensively used in solving both 
structural and �uid �ow problems. The method was tailored for hand calculations in that 
point residuals were computed, and these were scanned for the largest value, which was 
then relaxed as the next step in the technique. This numerical technique for hand calcula-
tions was generally taught to engineering students in the 1940s, 1950s, and even into the 
1960s until programmable computers became widely available.

During World War II and immediately following, a large amount of research was per-
formed on the use of numerical methods for solving problems in �uid dynamics. It was 
during this time that Professor John von Neumann developed his method for evaluating 
the stability of numerical methods for solving time-marching problems. It is interesting 
that Professor von Neumann did not publish a comprehensive description of his methods. 
However, O’Brien et al. (1950) later presented a detailed description of the von Neumann 
method. This paper is signi�cant because it presents a practical way of evaluating stability 
that can be understood and used reliably by scientists and engineers. The von Newman 
method is the most widely used technique in CFD for determining stability. Another of 
the important contributions appearing at about the same time was due to Lax (1954). Lax 
developed a technique for computing �uid �ows including shock waves that represent 
discontinuities in the �ow variables. No special treatment was required for computing the 
shocks. This special feature developed by Lax was due to the use of the conservation-law 
form of the governing equations and is referred to as shock capturing.

At the same time, progress was being made on the development of methods for both 
elliptic and parabolic problems. Frankel (1950) presented the �rst version of the succes-
sive overrelaxation (SOR) scheme for solving Laplace’s equation. This provided a signi�-
cant improvement in the convergence rate. Peaceman and Rachford (1955) and Douglas 
and Rachford (1956) developed a new family of implicit methods for parabolic and elliptic 
equations in which sweep directions were alternated and the allowed step size was unre-
stricted. These methods are referred to as alternating direction implicit (ADI) schemes and 
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were later extended to the equations of �uid mechanics by Briley and McDonald (1974) and 
Beam and Warming (1976, 1978). This implementation provided fast ef�cient solvers for the 
solution of the Euler and Navier–Stokes equations.

Research in CFD continued at a rapid pace during the 1960s. Early efforts at solving 
�ows with shock waves used either the Lax approach or an arti�cial viscosity scheme 
introduced by von Neumann and Richtmyer (1950). Early work at Los Alamos included the 
development of schemes like the particle-in-cell (PIC), marker-and-cell (MAC),  vorticity–
stream function, and arbitrary Lagrangian–Eulerian (ALE) methods. The early work at the 
Los Alamos National Laboratory has been documented by Johnson (1996).

Lax and Wendroff (1960) introduced a method for computing �ows with shocks that 
was second-order accurate and avoided the excessive smearing of the earlier approaches. 
The MacCormack (1969) version of this technique became one of the most widely used 
numerical schemes. Gary (1962) presented early work demonstrating techniques for �tting 
moving shocks, thus avoiding the smearing associated with the previous shock-capturing 
schemes. Moretti and Abbett (1966) and Moretti and Bleich (1968) applied shock-�tting pro-
cedures to multidimensional supersonic �ow over various con�gurations. Even today, we 
see either shock-capturing or shock-�tting methods used to solve problems with shock 
waves.

Godunov (1959) proposed solving multidimensional compressible �uid dynamics prob-
lems by using a solution to a Riemann problem for �ux calculations at cell faces. This 
approach was not vigorously pursued until van Leer (1974, 1979) showed how higher-order 
schemes could be constructed using the same idea. The intensive computational effort nec-
essary with this approach led Roe (1980) to suggest using an approximate solution to the 
Riemann problem (�ux-difference splitting) in order to improve the ef�ciency. This sub-
stantially reduced the work required to solve multidimensional problems and represents 
the current trend of practical schemes employed on convection-dominated �ows. The con-
cept of �ux splitting was also introduced as a technique for treating convection-dominated 
�ows. Steger and Warming (1979) introduced splitting where �uxes were determined 
using an upwind approach. Van Leer (1982) also proposed a new �ux splitting technique 
to improve on the existing methods. These original ideas are used in many of the modern 
production codes, and improvements continue to be made on the basic concept.

In the 1970s, a group at Imperial College, London, developed a number of algorithms 
for low-speed (essentially incompressible) �ows including parabolic �ows (Patankar and 
Spalding, 1972) and the SIMPLE algorithm (Caretto et al., 1972), which inspired a number 
of related schemes for solving the incompressible Navier–Stokes equations.

As part of the development of modern numerical methods for computing �ows with rapid 
variations such as those occurring through shock waves, the concept of limiters was intro-
duced. Boris and Book (1973) �rst suggested this approach, and it has formed the basis for 
the nonlinear limiting subsequently used in most codes. Harten (1983) introduced the idea 
of total variation diminishing (TVD) schemes. This generalized the limiting concept and 
has led to substantial advances in the way the nonlinear limiting of �uxes is implemented. 
Others that also made substantial contributions to the development of robust methods 
for computing convection-dominated �ows with shocks include Enquist and Osher (1980, 
1981), Osher (1984), Osher and Chakravarthy (1983), Yee (1985a, 1985b), and Yee and Harten 
(1985). While this is not an all-inclusive list, the contributions of these and others have led 
to the addition of nonlinear dissipation with limiting as a major factor in state-of-the-art 
schemes in use today.

Other contributions were made in algorithm development dealing with the ef�ciency of 
the numerical techniques. Both multigrid and preconditioning techniques were introduced 
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to improve the convergence rate of iterative calculations. The multigrid approach was 
�rst applied to elliptic equations by Fedorenko (1962, 1964) and was later extended to the 
equations of �uid mechanics by Brandt (1972, 1977). At the same time, strides in applying 
reduced forms of the Euler and Navier–Stokes equations were being made. Murman and 
Cole (1971) made a major contribution in solving the transonic small-disturbance equa-
tion by applying type-dependent differencing to the subsonic and supersonic portions of 
the �ow �eld. The thin-layer Navier–Stokes equations have been extensively applied to 
many problems of interest, and the paper by Pulliam and Steger (1978) is representative of 
these applications. Also, the parabolized Navier–Stokes (PNS) equations were introduced 
by Rudman and Rubin (1968), and this approximate form of the Navier–Stokes equations 
has been used to solve many supersonic viscous �ow �elds. The correct treatment of the 
streamwise pressure gradient when solving the PNS equations was examined in detail by 
Vigneron et al. (1978a), and a new method of limiting the streamwise pressure gradient in 
subsonic regions was developed and is in prominent use today.

In addition to the changes in treating convection terms, the control-volume or �nite-
volume point of view as opposed to the �nite-difference approach has been applied to the 
construction of difference methods for the �uid dynamic equations. The �nite-volume 
approach provides an easy way to apply numerical techniques to unstructured grids, and 
many codes presently in use are based on unstructured grids. With the development of 
methods that are robust for general problems, large-scale simulations of complete vehicles 
are now a common occurrence. Among the many researchers who have made signi�cant 
contributions in this effort are Jameson and Baker (1983), Shang and Scherr (1985), Jameson 
et al. (1986), Flores et al. (1987), Obayashi et al. (1987), Yu et al. (1987), and Buning et al. 
(1988). Until recently, most of the serious design work in the aircraft industry has been done 
with the aid of full potential/coupled boundary-layer and Euler/coupled boundary-layer 
methods (Johnson et al., 2005). This includes the design of aircraft such as the Boeing 777. 
Recently, Navier–Stokes and thin-layer Navier–Stokes codes have been used, particularly 
for regions of strong viscous interaction and for the analysis of high-speed and high-lift 
con�gurations. “The rapid development of parallel computing hardware and software, as 
well as PC clusters with large numbers of CPUs, have made the use of Navier-Stokes tech-
nology in practical airplane design and analysis a reality” (Johnson et al., 2005).

Finite-Element Methods (FEM) emerged from very different roots in computational 
physics and are extremely popular in �uid mechanics and heat transfer simulations. The 
name “Finite-Element Method” appears to have been coined by R.W. Clough (1960), fol-
lowing several years of research in structural dynamics at Boeing under the supervision 
of M.J. Turner. Indeed, the paper by Turner et al. (1956) is considered to be the pioneering 
publication in the engineering applications of FEM. Mathematical concepts underlying 
FEM date as far back as Leibnitz and Euler (17th and 18th centuries, respectively) in devel-
oping discretized formulations to solve problems in the calculus of variations. In the late 
19th to early 20th centuries, Rayleigh (1877) and Ritz (1909) applied variational methods 
to solve elliptic differential equations and developed formal proofs for existence and con-
vergence of solutions. Galerkin (1915) published a formulation that contains an expansion 
of the unknown quantity in terms of a set of basis functions which can be thought of 
as coordinate directions in a space of functions, where the error in solving a given dif-
ferential equation is driven to zero. This method bears his name and continues to be the 
cornerstone of FEM-related formulations. There are two somewhat related ways by which 
FEM procedures have been derived in the literature. One, the Ritz method (after Walter 
Ritz, 1878–1909), follows a variational approach (Ritz, 1909; Finlayson, 1972), where the 
minimum of a certain functional is sought subject to a given set of constraints. The other, 
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the Galerkin method (after Boris Galerkin, 1871–1945), seeks to derive algebraic equations 
which result in driving the error in a certain integral form of the governing equations to 
zero. These result in the same numerical procedure for several cases but are in general 
not the same. The Galerkin method is more readily generalized and presents several vari-
ants many of which are actively used in research and commercial CFD and heat transfer 
codes. In the appendix to his 1943 paper, Courant (1943) developed a method in which he 
numerically solved a variational problem on a triangular mesh using a piecewise linear 
approximation. This is often considered the origin of the present-day mathematical inter-
pretation of the FEM, though some related ideas were developed earlier by other authors 
(see, e.g., Oden 1990).

Recently, a class of methods named “discontinuous Galerkin” methods [see, e.g., 
Cockburn and Shu, (2001); Hesthaven and Warburton, (2008)] have become extremely suc-
cessful and are well suited to newer computer hardware such as the Grahics Processing 
Units (GPUs)(Klockner et al. 2009). Here, the test and basis functions are local to each 
element and discontinuous at element boundaries. This is in contrast to the conventional 
(continuous) Galerkin method where basis functions are assumed to be continuous. The 
burden of assembling a single large matrix due to the implicit nature of the FEM is relieved 
and replaced by algebraic expressions that connect a given cell with its immediate neigh-
bors, thus improving parallel performance for large problems.

Historically, the discontinuous Galerkin (DG) method was �rst used to solve the steady 
advection equation for neutron transport by Reed and Hill (1973). In the 1990s, DG was 
made popular in CFD-related problems in large parts due to the efforts of Cockburn and 
Shu (2001) and has matured rapidly since then. DG offers all of the �exibility present in 
�nite-volume methods and better performance in convection-dominated problems, par-
ticularly those involving discontinuous solutions such as shock waves.

The progress in CFD over the past 50 years has been enormous. For this reason, it is 
impossible, with the short history given here, to give credit to all who have contributed. 
A number of review and history papers that provide a more precise state of the art may be 
cited and include those by Hall (1981), Krause (1985), Diewert and Green (1986), Jameson 
(1987), Kutler (1993), Rubin and Tannehill (1992), MacCormack (1993), Johnson (1996), and 
Johnson et al. (2005). In addition, the Focus 92 issues of Aerospace America are dedicated to a 
review of the state of the art. The appearance of text materials for the study of CFD should 
also be mentioned in any brief history. The development of any �eld is closely paralleled 
by the appearance of books dealing with the subject. Early texts dealing with CFD include 
books by Roache (1972), Holt (1977), Chung (1978), Chow (1979), Patankar (1980), Baker 
(1983), Peyret and Taylor (1983), and Anderson et al. (1984). More recent books include those 
by Sod (1985), Thompson et al. (1985), Oran and Boris (1987), Hirsch (1988), Fletcher (1988), 
Hoffmann (1989), Anderson (1995), Tannehill et al. (1997), Laney (1998), Roache (1998), 
Ferziger and Peric (1999), Wesseling (2000), Lomax et al. (2001), Date (2005), Hirsch (2007), 
Versteeg and Malalsekera (2007), and Pletcher et al. (2013). The interested reader will also 
note that occasional writings appear in the popular literature that discuss the application 
of digital simulation to engineering problems. These applications include CFD but do not 
usually restrict the range of interest to this single discipline.

The past few decades have seen not only tremendous progress in the science of CFD but 
also a spectacular diversity in the �elds where it is being applied. A few selected references 
from the recent literature are suggested below. These are textbook-style references, provid-
ing detailed and modern presentations of their respective subject areas.

General mathematical foundations of numerical methods used in CFD are dealt with 
extensively in the books by Gustafsson et al. (2013) and Quarteroni (2017). CFD applications 
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of high-order accurate spectral and �nite-element methods have gained much prominence 
in recent years. Relevant textbooks include the works by Canuto et al. (2007), Hesthaven 
and Warburton (2008), and Karniadakis and Sherwin (2005). Recent developments in com-
pressible �ow simulation are covered in the books by Leveque (2002), Toro (2009), Pulliam 
and Zingg (2014), Lomax et al. (2001), Wendt (2009), MacCormack (2014), and Hirsch (2007). 
Incompressible �ows are treated in Ferziger and Peric (2001), Kwak and Kiris (2011), 
Versteeg and Malalasekera (2007), and Gresho and Sani (2000). The Handbook of Numerical 
Methods (Abgrall and Shu 2017) contains important summaries of the mathematical and 
implementation aspects.

Numerical heat transfer methods are well summarized in the Handbook of Numerical 
Heat Transfer (Minkowycz et al. 2006), Reddy and Gartling (2010), Ozisik et al. (2017) and 
the review by Murthy and Mathur (2012). Modeling of multiphase �ows has advanced 
tremendously in the past two decades. The textbooks by Tryggvason et al. (2011) cover 
front tracking and volume of �uid methods, while the texts by Osher and Fedkiw (2003) 
and Sethian (1999) have become standard references for the level set method. Ozisik et al. 
(2017) present an elementary numerical treatment of phase change, while a multi-faceted 
discussion of related physical phenomena can be found in Shyy (2006).

More advanced topics in applied CFD that have gained a great deal of momentum 
in recent times include Large Eddy Simulations [Sagaut (2005)], Combustion [Oran and 
Boris {2005}; Poinsot and Veynante {2012)], micro-�ows [Karniadakis et al. {2005)], weather 
and climate modeling (Warner 2011), computational acoustics [Tam (2012); Wagner et al., 
(2007)], and �ow-structure interaction [Lohner (2008); Bazilevs et al., (2013)]. CFD methods 
are being applied with great success in plasma dynamics and magnetohydrodynamics 
(see the textbooks by Jardin (2010) and Shang (2016)).

Notable successes in all of these �elds have led to the need to stretch the limits of 
computing resources and attempt increasingly larger problems (in turbulent �ows and 
other �ows dominated by multiscale phenomena), thus gaining higher model �delity. 
Methods have been devised to reduce the computational cost in high-�delity simulations 
and gainfully deployed in problems involving acoustics, heat transfer, incompressible 
�ow, and some simple compressible �ow situations. These methods bear promise and, 
when coupled with the achievements in massively parallel high-performance computing, 
can enable large-scale multi-parameter studies which have previously been impractical. 
Recent texts covering these developments include the books by Quarteroni et al. (2016), 
Benner et al. (2017), and the introductory text by Kutz (2013) dealing with data-driven 
models.

A number of interesting review articles covering historical aspects of CFD have been 
 published [Anderson,( 2010); Lax, (2007); Roe, (2005); Shang, (2004); van Leer, (2009)], and 
conferences are being held speci�cally to piece together the many ideas, ideologies, and 
events that have led to the growth of CFD (e.g., “Four decades of CFD”, 2013; “Future 
directions” 2012). The state of the art of some challenging areas in CFD (nearly always 
containing some aspects of turbulent �ow) have periodically been assessed at workshops 
held with the purpose of code veri�cation and validation. In the aerospace industry, 
an important instance of this is the drag prediction workshop [Roy and Tinoco, (2017); 
Tinoco et al., (2017)]. General discussion of aeronautical applications of CFD in recent 
times may be found in the papers by Tinoco et al. (2005), Piomelli (2013), and Spalart and 
Venkatakrishnan (2016). Recently, a study, “CFD Vision 2030,” was initiated by NASA 
where a team of experts from the industry and academia brought forth a roadmap for 
future developments and needs within the �eld (speci�cally for aerospace applications). 
These have been published in the report by Slotnick et al. (2014).
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A testimony to the progress made in CFD has been its widespread use in animated 
motion pictures. The emphasis here is on a realistic animated rendering of �uid �ows for 
cinematic depiction rather than on performing accurate technical predictions. However, 
several innovations introduced here have a general applicability and may grow to involve 
more traditional �uid dynamicists in the coming years. The highly engaging textbooks by 
Stam (2016) and Bridson (2016) summarize the methods used and the current state of prac-
tice in this area. Various such works with a strong CFD component have received academy 
awards (scienti�c and technical) for motion picture animations (e.g., the Industrial Light & 
Magic (ILM) Fluid Simulation System (2007), Autodesk Maya Fluid Effects System (2003, 
2005, and 2008)).
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2
Partial Differential Equations

2.1  Introduction

Many important physical processes in nature are governed by partial differential equa-
tions (PDEs). For this reason, it is important to understand the physical behavior of the 
model represented by the PDE. In addition, knowledge of the mathematical character, 
properties, and solution of the governing equations is required. In this chapter, we will 
discuss the physical signi�cance and the mathematical behavior of the most common 
types of PDEs encountered in �uid mechanics and heat transfer. Examples are included to 
illustrate important properties of the solutions of these equations. In the last sections, we 
extend our discussion to systems of PDEs and present a number of model equations, many 
of which are used in Chapter 4 to demonstrate the application of various discretization 
methods.

2.1.1  Partial Differential Equations

PDEs are distinguished by the fact that they contain derivatives with respect to more than 
one independent variable. On the other hand, ordinary differential equations (ODEs) con-
tain derivatives with respect to just one independent variable. Some examples of PDEs 
include

 φ + φ + φ = 0yx y  (2.1)

 φ + φ + φφ =( ) 02
xx xy yy  (2.2)

 φφ + φφ + φ = 0xxx x y  (2.3)

In these equations, φ is the dependent variable and x and y are the independent 
variables. Differentiation is denoted by using a subscript so that /φ = ∂φ ∂xx  and 

/ / ( )2φ = ∂ φ ∂ ∂ = ∂ ∂ φy x yxy x . The order of a PDE is de�ned by the highest-order derivative 
in the equation. Equation 2.1 is referred to as a �rst-order, linear PDE since the highest 
derivatives are �rst order and is linear because the coef�cients of the derivatives do not 
contain the dependent variable or its derivatives. Equation 2.2 is a second-order, nonlinear 
PDE since the highest derivative is second order and is nonlinear because of the coef-
�cients φxx and φ. Equation 2.3 is also a second-order nonlinear PDE and is often referred 
to as a   second-order quasi-linear PDE since the equation is linear in the highest partial 
 derivative, φxx.
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Problems governed by PDEs fall into one of the three physical categories:

 1. Equilibrium problems

 2. Eigenvalue problems

 3. Marching (propagation) problems

These are discussed in the next section. In addition, PDEs can be classi�ed in a mathemati-
cal sense and can be put into three categories:

 1. Elliptic PDEs

 2. Parabolic PDEs

 3. Hyperbolic PDEs

These mathematical categories are discussed in Section 2.3.

2.2  Physical Classification

2.2.1  Equilibrium Problems

Equilibrium problems are problems in which a solution of a given PDE is desired in a closed 
domain subject to a prescribed set of boundary conditions (see Figure 2.1). Equilibrium prob-
lems are boundary value problems. Examples of such problems include steady-state tempera-
ture distributions, incompressible inviscid �ows, and equilibrium stress distributions in solids.

Sometimes equilibrium problems are referred to as jury problems. This is an apt name, since 
the solution of the PDE at every point in the domain depends upon the prescribed boundary 
condition at every point on B. In this sense, the boundary conditions are certainly the jury for 
the solution in D. Mathematically, equilibrium problems are governed by elliptic PDEs.

Example 2.1

The steady-state temperature distribution in a conducting medium is governed by 
Laplace’s equation. A typical problem requiring the steady-state temperature distribu-
tion in a two-dimensional (2-D) solid with the boundaries held at constant temperatures 
is de�ned by the equation

FIGURE 2.1
Domain for an equilibrium problem.
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The 2-D con�guration is shown in Figure 2.2. 

Solution

One of the standard techniques used to solve a linear PDE is separation of variables 
(Greenspan, 1961). This technique assumes that the unknown temperature can be writ-
ten as the product of a function of x and a function of y, that is,

 ( ) ( )( )=T x y X x Y y,

If a solution of this form can be found that satis�es both the PDE and the boundary con-
ditions, then it can be shown (Weinberger, 1965) that this is the one and only solution to 
the problem. After this form of the temperature is substituted into Laplace’s equation, 
two ODEs are obtained. The resulting equations and homogeneous boundary condi-
tions are

 ( )

( ) ( )

′′ + α = ′′ − α =

=

= =

X X Y Y

X

X Y

0 0

0 0

1 0 1 0

2 2

 (2.5)

The prime denotes differentiation, and the factor α2 arises from the separation process 
and must be determined as part of the solution to the problem. The solutions of the two 
differential equations given in Equation 2.5 may be written as

 = π = π −X x A n x Y y C n y( ) sin( ) ( ) sinh[ ( 1)]

FIGURE 2.2
Unit square with �xed boundary temperatures.
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with the boundary conditions entering the solution in the following way:

 1. T y X

T x Y

= → =

= → =

(0,  )   0 (0)   0

( ,1)   0 (1)   0

These two conditions determine the kinds of functions allowed in the 
expression for T(x, y). The boundary condition T(0, y) = 0 is satis�ed if the 
solution of the separated ODE satis�es X(0) = 0. Since the solution in general 
contains sine and cosine terms, this boundary condition eliminates the cosine 
terms. A similar behavior is observed by satisfying T(x, 1) = 0 through Y(1) = 0 
for the separated equation.

 2. T(1, y) = 0 → X(1) = 0
This condition identi�es the eigenvalues, that is, the particular values of 

α that generate eigenfunctions satisfying this required boundary condition. 
Since the solution of the �rst separated equation, Equation 2.5, was

 ( ) ( )= αX x A xsin  

a nontrivial solution for X(x) exists that satis�es X(1) = 0 only if α = nπ,
where n = 1, 2, ….

 3. T(x, 0) = T0

The prescribed temperature on the x-axis determines the manner in which 
the eigenfunctions are combined to yield the correct solution to the problem.

The solution of the present problem is written as

 ∑( ) ( )( )= π π − 
=

∞

T x y A n x n yn

n

, sin sinh 1
1

 (2.6)

In this case, functions of the form sin(nπx) sinh[nπ(y – 1)] satisfy the PDE and three of 
the boundary conditions. In general, an in�nite series composed of products of trigo-
nometric sines and cosines and hyperbolic sines and cosines is required to satisfy the 
boundary conditions. For this problem, the fourth boundary condition along the lower 
boundary of the domain is given as

 ( ) =T x T, 0 0

We use this to determine the coef�cients An of Equation 2.6. Thus, we �nd 
(see Problem 2.1)

 
( )

( )
=

− −





π
A

T

n n
n

n
2 1 1

sinh π

0

The solution T(x, y) provides the steady temperature distribution in the solid. It is clear 
that the solution at any point interior to the domain of interest depends upon the speci-
�ed conditions at all points on the boundary. This idea is fundamental to all equilib-
rium problems.

Example 2.2

The irrotational �ow of an incompressible inviscid �uid is governed by Laplace’s equa-
tion. Determine the velocity distribution around the 2-D cylinder shown in Figure 2.3 
in an incompressible inviscid �uid �ow. The �ow is governed by
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 ∇ φ = 02

where φ is de�ned as the velocity potential, that is, ∇φ = =V  velocity vector. The bound-
ary condition on the surface of the cylinder is

 ∇∇⋅ =F 0V  (2.7)

where F(r, θ) = 0 is the equation of the surface of the cylinder. In addition, the velocity 
must approach the free stream value as distance from the body becomes large, that is, 
as (x, y) → ∞, 

 ∇∇φ = ∞V  (2.8)

Solution

This problem is solved by combining two elementary solutions of Laplace’s equation 
that satisfy the boundary conditions. This superposition of two elementary solutions 
is an acceptable way of obtaining a third solution only because Laplace’s equation is 
linear. For a linear PDE, any linear combination of solutions is also a solution (Churchill, 
1941). In this case, the �ow around a cylinder can be simulated by adding the velocity 
potential for a uniform �ow to that for a doublet (Karamcheti, 1966). The resulting solu-
tion becomes

 φ = +
θ

+
= +

+
∞ ∞V x

K

x y
V x

Kx

x y

cos
2 2 2 2

 (2.9)

where the �rst term is the uniform oncoming �ow, and the second term is a solution for 
a doublet of strength 2πΚ.

2.2.2  Eigenvalue Problems

An eigenvalue problem can be considered as an extension of an equilibrium problem, the 
difference being that the solution exists only for some discrete value of a parameter λ i, 
called the eigenvalue. Typical examples of eigenvalue problems are the buckling and sta-
bility of structures, resonance in electric circuits, and natural frequencies in vibrations. 
Since eigenvalue problems occur infrequently in �uid mechanics and heat transfer, they 
are not discussed further in this chapter.

FIGURE 2.3
Two-dimensional �ow around a cylinder.
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2.2.3  Marching Problems

Marching or propagation problems are transient or transient-like problems where the 
solution of a PDE is required on an open domain subject to a set of initial conditions and 
a set of boundary conditions. Figure 2.4 illustrates the domain and marching direction 
for this case. Problems in this category are initial value or initial boundary value prob-
lems. The solution must be computed by marching outward from the initial data surface 
while satisfying the boundary conditions. Mathematically, these problems are governed 
by either hyperbolic or parabolic PDEs.

Example 2.3

Determine the transient temperature distribution in a one-dimensional (1-D) solid 
(Figure 2.5) with a thermal diffusivity α if the initial temperature in the solid is 0° and 
if at all subsequent times, the temperature of the left side is held at 0° while the right 

side is held at 0T . 

Solution

The governing differential equation is the 1-D heat equation

 
∂

∂
= α

∂

∂

T

t

T

x

2

2
 (2.10)

FIGURE 2.4
Domain for a marching problem.

FIGURE 2.5
One-dimensional solid.
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with boundary conditions

 = =T t T t T(0, ) 0 (1, ) 0

and initial condition

 =T x( , 0) 0

Again, for this linear equation, separation of variables will lead to a solution. Because 
of the nonhomogeneous boundary conditions in this problem, it is helpful to use the 
principle of superposition to determine the solution as the sum of the solution to the 
steady problem that results as the time becomes very large and a transient solution that 
dies out at large times. Thus, we let T(x, t) = u(x) + v(x, t). Since u is independent of time, 
substituting this decomposition into the governing PDE results in the ODE

 =

d u

dx
0

2

2
 (2.11)

with boundary conditions

 ( ) ( )= =u u T0 0 1 0

The solution for the steady problem is thus u(x) = T0 x. We also �nd that the transient 
solution must satisfy

 
∂

∂
= α

∂

∂

v

t

v

x

2

2
 (2.12)

with associated boundary conditions

 ( ) ( )= =v t v t0, 1, 0

and initial condition

 = −v x T x( , 0) 0

The initial condition for v is required in order that the sum of u and v satisfy the initial 
conditions of the problem. Separation of variables may be used to solve Equation 2.12, 
and the solution is written in the form

 ( ) ( ) ( )=v x t V t X x,

If we denote the separation constant by −β2, it is necessary to solve the ODEs

 ′ + αβ = ′′ + β =V V X X0 02 2

 ( ) ( )= =X X0 1 0

with the initial distribution on v as noted earlier. The general solution for V is readily 
obtained as

 ( ) = −αβV t e t2
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A solution for X that satis�es the boundary conditions is of the form

 ( ) = βX x xsin

where β must equal nπ(n = 1,2, …), so that the boundary conditions on X are met. 
The general solution that satis�es the PDE for v and the boundary conditions is then 
of the form

 , sin
2 2

( ) ( )= π
−α πv x t e n xn t

The orthogonality properties of the trigonometric functions (Weinberger, 1965) are used 
to meet the initial conditions as a Fourier sine series. This leads to the �nal solution for 
T, obtained by adding the solutions for u and v together

 ∑
( )

( )= +
−

π
π

=

∞

− π αT T x
T

n
e n x

n

n

n t2 1
sin0

0

1

2 2
 (2.13)

Example 2.4

Find the displacement y(x, t) of a string of length l stretched between x = 0 and x = l if it 
is displaced initially into position y(x, 0) = sin(πx/l) and released from rest. Assume no 
external forces act on the string.

Solution

In this case, the motion of the string is governed by the wave equation
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where a is a positive constant. The boundary conditions are

 ( )( ) = =y t y l t0, , 0 (2.15)

and initial conditions

 ( ) ( )=
π ∂

∂
==y x

x

l t
y x t t, 0 sin , | 00  (2.16)

The solution for this particular example is

 ( ) = π





π





y x t
x

l
a

t

l
, sin cos  (2.17)

Solutions for problems of this type usually require an in�nite series to correctly approx-
imate the initial data. In this case, only one term of this series survives because the 
initial displacement requirement is exactly satis�ed by one term.

The physical phenomena governed by the heat equation and the wave equation are 
different, but both are classi�ed as marching problems. The behavior of the solutions 
to these equations and methods used to obtain these solutions are also quite different. 
This will become clear as the mathematical character of these equations is studied.

Typical examples of marching problems include unsteady inviscid �ow, steady super-
sonic inviscid �ow, transient heat conduction, and boundary-layer �ow.
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2.3  Mathematical Classification

The classi�cation of PDEs is based on the mathematical concept of characteristics that are 
lines (in two dimensions) or surfaces (in three dimensions) along which certain properties 
remain constant or certain derivatives may be discontinuous. Such characteristic lines or 
surfaces are related to the directions in which “information” can be transmitted in physi-
cal problems governed by PDEs. Equations (single or system) that admit wavelike solu-
tions are known as hyperbolic. If the equations admit solutions that correspond to damped 
waves, they are designated parabolic. If solutions are not wavelike, the equation or system 
is designated as elliptic. Although �rst-order equations or a system of �rst-order equations 
can be classi�ed as indicated previously, it is instructive at this point to develop classi�ca-
tion concepts through consideration of the following general second-order PDE:

 ( )φ + φ + φ + φ + φ + φ = ,a b c d e f g x yxx xy yy x y  (2.18a)

where a, b, c, d, e, and f are functions of (x, y), that is, we consider a linear equation. While 
this restriction is not essential, this form is convenient to use. Frequently, consideration is 
given to quasi-linear equations, which are de�ned as equations that are linear in the high-
est derivative. In terms of Equation 2.18a, this means that a, b, and c could be functions of 
x, y, φ, φx, and φy. For our discussion, however, we assume that Equation 2.18a is linear and 
the coef�cients depend only upon x and y.

We will indicate how equations having the general form of Equation 2.18a can be classi-
�ed as hyperbolic, parabolic, or elliptic and how a standard or canonical form can be iden-
ti�ed for each class by making use of the characteristic curves associated with the PDE. 
This will be discussed for equations with two independent variables, but the concepts can 
be extended to equations involving more independent variables, such as would be encoun-
tered in three-dimensional (3-D) unsteady physical problems.

The classi�cation of a second-order PDE depends only on the second-derivative terms of 
the equation, so we may rearrange Equation 2.18a as

 ( )φ + φ + φ = − φ + φ + φ − =a b c d e f g Hxx xy yy x y  (2.18b)

The characteristics of this equation, if they exist and are real curves within the solution 
domain, represent the locus of points along which the second derivatives may not be con-
tinuous. Along such curves, discontinuities in the solution, such as shock waves in super-
sonic �ow, may appear. To identify such curves, we proceed as follows. For the general 
second-order PDE under consideration, the initial and boundary conditions are speci�ed 
in terms of the function φ and �rst derivatives of φ. Assuming that φ and �rst derivatives 
of φ are continuous, we inquire if there may be any locations where this information would 
not uniquely determine the solution. In other words, are there locations where the second 
derivatives are discontinuous?

Let τ be a parameter that varies along a curve C in the x–y plane. That is, on C, x = x(τ) 
and y = y(τ). The curve C may be on the boundary. For convenience, on C, we de�ne

 

( ) ( )

( ) ( )

( )

φ = τ φ = τ

φ = τ φ = τ

φ = τ

p u

q v

w

x xx

y xy

yy
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We suppose that φ, p, and q are given along C, as they might be given as boundary or 
 initial conditions. With these de�nitions, Equation 2.18b becomes

 ( ) ( ) ( )τ + τ + τ =au bv cw H  (2.18c)

Using the chain rule, we observe that

 
τ

=

τ

+

τ

dp

d
u

dx

d
v

dy

d
 (2.18d)

 
τ

=

τ

+

τ

dq

d
v

dx

d
w

dy

d
 (2.18e)

Equations 2.18c through 2.18e can be considered a system of three equations from which 
the second derivatives (u, v, and w) might be determined from the speci�ed values of φ and 
the �rst derivatives of φ along C. These can be written in matrix form ([A]x = c) as

 
τ τ

τ τ













































= τ

τ























a b c

dx

d

dy

d

dx

d

dy

d

u

v

w

H

dp

d

dq

d

0

0

 

If the determinant of the coef�cient matrix is zero, then there may be no unique solution 
for the second derivatives u, v, and w along C for the given values of φ and its �rst deriva-
tives. By setting the determinant of the coef�cient matrix to zero, we �nd the condition for 
discontinuity (or nonuniqueness) in the highest-order derivatives as

 0
2 2

τ






−
τ





 τ







+
τ







=a
dy

d
b

dx

d

dy

d
c

dx

d
 

or

 0
2 2

( ) ( )− + =a dy b dx dy c dx  (2.19)

Letting h = dy/dx, we can write Equation 2.19 as

 0
2 2 2 2

( ) ( ) ( ) ( )− + =a h dx bh dx c dx  

which, after division by (dx)2, reduces to a quadratic equation in h:

 02
− + =ah bh c  (2.20)

Solving for h = dy/dx gives

 
4

2

2

= =
± −

h
dy

dx

b b ac

a
 (2.21)


