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PREFACEPREFACEPREFACE

Each edition of this book was written to address the gap between the problems of system 
design and much of the excellent theoretical research in experimental psychology and 
human performance. Many human–machine systems do not work as well as they could 
because they impose requirements on the human user that are incompatible with the way 
people attend, perceive, think, remember, decide, and act; that is, the way in which peo-
ple perform or process information. Over the past seven decades, tremendous gains have 
been made in understanding and modeling human information processing and human 
performance. Our goal is to show how these theoretical advances have been, or might be, 
applied to improving human–machine interaction.

Although engineers encountering system design problems may �nd some answers or 
guidelines either implicitly or explicitly stated in this book, it is not intended to be a handbook 
of human factors engineering. Many of the references in the text provide a more compre-
hensive tabulation of such guidelines as well as practical guidelines on how to apply them. 
Instead, we have organized the book directly from the psychological perspective of human 
information processing. �e chapters generally correspond to the �ow of information as it 
is processed by a human being—from the senses, through the brain, to action—rather than 
from the perspective of system components or engineering design concepts, such as displays, 
illumination, controls, computers, and keyboards. Furthermore, although the following pages 
contain recommendations for certain system design principles, many of these are based only 
on laboratory research and theory; they have not been tested in real- world systems.

A solid grasp of theory provides a strong base from which the speci�c principles of 
good human factors can be more readily derived. Our intended audience, therefore, is: 
(1) the student in psychology, who recognizes the real- world relevance of the theoretical 
principles of psychology that he or she may have encountered in other courses; (2) the 
engineering student, who, while learning to design and build systems with which humans 
interact, appreciates not only the nature of human limitations—the essence of human 
factors—but also the theoretical principles of human performance and information pro-
cessing underlying them; and (3) the actual practitioner in engineering psychology, human 
performance, and human factors engineering, who understands the close cooperation that 
should exist between principles and theories of psychology and issues in system design.

�e 13 chapters of the book span a wide range of human performance components. 
�e introduction in Chapter 1 places engineering psychology into the broader framework 
of human factors and system design. Chapter 2, new to this edition, presents informa-
tion on research methods. Chapters 3 through 9 deal with perception, attention, cogni-
tion (both spatial and verbal), memory, learning, and decision making, emphasizing the 
potential applications of these areas of cognitive psychology. Chapters 10 and 11 cover the 
selection and execution of control actions, error, and time- sharing. Chapter 12 covers two 
more integrated concepts: workload and stress. Chapter 13 addresses topics of human–
automation interaction. Finally, an Epilogue is provided that highlights certain critical 
issues that transcend many of the prior chapters.

Although the 13 chapters are interrelated (just as are the components of human 
information processing), we have constructed them in such a way that any chapter may be 
deleted from a course syllabus and still leave a coherent body. �us, for example, a course 
on applied cognitive psychology might include Chapters 1 through 9 and Chapter 11, and 
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another emphasizing engineering applications might include Chapters 1, 2, 3, 5, 6, 10, 11, 
12, 13, and the Epilogue.

NEW TO THIS EDITION

Changes since the Fourth Edition that appear throughout the text:

• A new coauthor: William S. Helton provides expertise in research methods, sustained 
attention, workload, and stress.

• A new chapter on research methods (Chapter 2).
• Revision of all chapters to improve clarity and simplify understanding.
• New sections on interruption management and distracted driving as cogent examples 

of applications of engineering psychology theory to societal problems.
• Greatly increased number of references to pandemics, technostress, misinformation, etc.
• New applications.
• Ampli�ed emphasis on readability and commonsense examples.
• Updated as well as new references throughout the text.

Chapter- by- Chapter Changes

CHAPTER 2

• New chapter on research methods.

CHAPTER 3

• Revised section on signal detection theory.
• New section on vigilance and added material on alternative theories, rest breaks, 

memory load, etc.

CHAPTER 4

• New treatment of selective visual attention with substantial reorganization and new 
examples.

• Revised section on change blindness, with the addition of material on change deafness 
and change numbness.

• New material on distractions.

CHAPTER 5

• New material on video and 3D audio displays.
• Reorganized and simpli�ed graph guidelines.
• New examples of technologies using spatial displays.

CHAPTER 6

• New section on Global Positioning System (GPS) navigation.
• New section on individual di�erences in spatial abilities.
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• New material of distortions in physical properties and visualization of uncertainty.

• Extension of tracking examples.

• New material on augmented reality and head- mounted displays.

CHAPTER 7

• New material on the word- superiority e�ect.

• New examples for medical and health applications.

• New and updated material on instructions and warnings.

• New sections on the communication of health risks and communicating 

misinformation.

CHAPTER 8

• Updated examples of expertise and chunking.

• New section on system- level situational awareness.

• Updated section on planning and problem solving.

• New section on adaptive training.

• New and updated material on knowledge representation.

CHAPTER 9

• New section on complementary approaches of naturalistic and dynamic decision 

making.

• Updated material and examples of diagnosis and situation assessment.

• Updated framing e�ects material and the role of expertise in decision making.

• New sections on risks and nudges.

• New material on debiasing and improving decision making.

CHAPTER 10

• Revised section on the selection of action.

• New practical examples of the role of the selection of action in accidental shootings.

• New information on tactile warnings.

• New sections on operator variables, the speed–accuracy trade- o�, and response types, 

with practical examples.

• New and updated examples of human error in the real world.

CHAPTER 11

• Revised material on computational models of resources.

• New sections on interruption and task management and individual di�erences in 

multitasking.

• Updated materials on distracted driving.

• New section on individual di�erences in multitasking, with a focus on di�erences 

related to abilities, expertise, and aging.
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CHAPTER 12

• Revised to remove materials on individual differences and to downplay neuro-
ergonomics to focus more on workload and stress.

• Updated material on the measurement of workload and stress.
• New section on technostress.

CHAPTER 13

• Updated material on automation trust and dependence.
• New and expanded sections on mitigating human–automation problems.
• Expanded and revised section on automation transparency.
• New section on training and individual di�erences in automation use.

EPILOGUE

• �e epilogue integrates several of the central and recurring themes of the book.

SUPPLEMENTS

Please visit the companion website at [INSERT URL].
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�e �eld of human factors engineering (Salvendy  & Karwalski, 2022), along with the 
closely related disciplines of human–systems integration (Durso & Boehm- Davis, 2014), 
human–computer interaction (Jacko, 2012), cognitive engineering (Lee & Kirlik, 2013), 
Human Factors Engineering (Lee, Wickens, Ng- Boyle, & Liu, 2017) and user- interface 
design (Buxton, 2007), addresses issues of how humans interact with technology. �e 
�eld has developed rapidly since its origin a�er World War II. During World War II, 
experimental psychologists were called in to help understand why pilots were crashing 
perfectly good aircra� (Fitts & Jones, 1947), why vigilance for enemies was sometimes 
wanting (Mackworth, 1948), or how learning theory could be harnessed to better train 
military personnel. Since that time, over the past 80 or so years, the �eld has seen growth 
and expansion into areas such as consumer products, business, highway safety, telecom-
munications, health care, and, most recently, cybersecurity.

1.1 DEFINITIONS

1.1.1 Engineering Psychology

Within the broader �eld of human factors lies the discipline of engineering psychol-

ogy, the focus of this book. Engineering psychology focuses on “human factors from the 
neck up,” in contrast to many applications of human factors to issues “below the neck,” 
such as lower back injuries, fatigue, work physiology, and so forth. Much of this latter 
focus is covered in the general discipline of ergonomics, the study of work, although clas-
sic ergonomics has itself spawned the study of cognitive ergonomics, and/or cognitive 

engineering, both of which naturally focus on human mental work, “above the neck” 
(Vicente, 1999; Jenkins Stanton et al., 2009). An additional contrast with the broader �eld 
of human factors engineering (Lee et al., 2017) is that human factors focuses much more 
heavily upon design (of products, workstations, etc.) and the evaluation of those designs, 
than does engineering psychology. Engineering psychology is, a�er all, a subdiscipline of 
psychology, and not engineering.

Engineering psychology can also be described within the broader discipline of psy-
chology, and within this, the somewhat narrower discipline of applied psychology. In 
the latter, the study of behavior and cognition is focused on the applications of those 
principles and theories of behavior and cognition to areas beyond the laboratory, such 
as industry, schools, counseling, mental illness, and sports. Within this broader set of 
applications then, the focus of engineering psychology tends to be on performance in 
the workplace (expanded to include transportation and some aspects of the home), hence 
characterizing its close linkage back to ergonomics, the study of work, and particularly 
cognitive ergonomics.

INTRODUCTIONINTRODUCTIONINTRODUCTION1
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But to highlight the uniqueness of engineering psychology again, what dis-
tinguishes it from cognitive ergonomics is that the former has the heavy, and some 
would say necessary, basis in theory: the theories of brain, behavior, and cognition 
that are applicable to the workplace. Cognitive ergonomics is certainly not devoid 
of theory, but it also broadens its focus to consider issues of task description and 
analysis, design, and principles of design that may not directly translate to or arise 
from theory.

In distinguishing engineering psychology from many aspects of basic psychology 
(and usually experimental psychology), engineering psychology must be concerned 
with the eventual applications of its theories and principles, whereas experimental 
psychology need not be. �is has three implications for research in the two related 
disciplines. First, experimental psychology is quite concerned with the issues of exper-

imental control. All variables should be held constant except those manipulated in 
the experiment. Second, the concern for statistical signi�cance o�en dominates that 
of practical signi�cance. A statistically signi�cant e�ect measured in the laboratory of 
only 10 milliseconds (msec) can signal an exciting discovery, but such an e�ect may be 
of limited usefulness in the workplace beyond the laboratory. �ird, the task of the par-
ticipant in basic laboratory research is typically that designed by the experimenter for 
theoretical reasons. �e task for the engineering psychologist typically has a mapping 
to some real- world activity.

In engineering psychology, although there is still concern for control in its exper-
imental research, too much control may produce e�ects that, like the 10- msec e�ect 
above, would simply “wash out” when the person performs in the workplace, with its 
many other competing (and hence “noisy”) in�uences on human behavior. �e second 
di�erence is related to the �rst. Although engineering psychologists do pay a lot of 
attention to statistics and statistical signi�cance (see Chapter 2), they also realize that 
without considering practical signi�cance, a particular �nding or principle will sim-
ply not scale up to the workplace, where it may be “handed o� ” to the human factors 
engineer, with the commitment to design. �ird, in designing a task for experimental 
participants, the engineering psychologist must always consider its relevance to tasks 
beyond the laboratory. �e engineering psychologist should know and understand the 
relevant real- world context and tasks, and this knowledge should inspire the design of 
the experimental task.

Of course, in practice, such distinctions are fuzzy rather than crisp. We have 
noted the fuzziness of de�ning what is and is not the “workplace.” For example, high-
way safety is very much within the domain of engineering psychology, but it does not 
matter whether the person is driving a truck for work or a car for pleasure. As another 
example of this fuzziness, sometimes issues below the neck in�uence those above, as 
when we are distracted by the discomfort resulting from a poorly designed physical 
workplace. Furthermore, many issues of design addressed by human factors depend 
on engineering psychology principles (Peacock, 2011), and when designs are evalu-
ated outside the laboratory, their results may lead to further controlled experiments 
to re�ne the principles upon which those designs were based. And in this same way, 
lessons learned and challenges felt by the engineering psychologist should always feed 
back to the basic psychologist to inform where new theory is needed or old theory may 
be wanting. Experimental psychologists o�en are interested in knowing the limitations 
of their models and principles in real- world settings, and by providing such feedback, 
engineering psychologists help to ensure that application is considered even when more 
basic research is conducted.
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1.1.2 Human Performance

�e second part of the title of the book, human performance, also deserves some expla-
nation. Here, our emphasis is on the quality of performance (e.g., better or worse), and 
here we typically think of measures of “the big three”:

Speed (faster is better),
Accuracy (higher is better), and
Attention demands (less is generally better).

�us, we might judge that the perfect principle in engineering psychology is one that, if 
applied to design, will allow the user to perform more rapidly, more accurately, and with 
reduced attentional demand (so that other tasks can be done concurrently).

Of course, as we will see, many times these measures may trade o� in practice. 
And furthermore, engineering psychologists are quite interested in many cognitive phe-
nomena that are not directly re�ected in performance, such as the degree of learning 
or memory of a concept, the quality of a mental model about a piece of equipment, the 
level of situation awareness about a process, the level of overcon�dence in a decision, or 
the strategy of information processing that is invoked to obtain a given level of perfor-
mance (e.g., serial versus parallel processing, speed stress versus accuracy stress, intuition 
versus analysis). Still, all of these cognitive phenomena may ultimately be expressed in 
some measure of performance in the workplace, and so long as they are, such intervening 

variables lie very much at the heart of human performance theory.

1.2 RESEARCH METHODS

Many di�erent research methods can be employed to help discover, formulate, and re�ne 
theory- based principles regarding “what works” to support human performance. �ese 
can be roughly laid out on a continuum, from laboratory experiments, to human- in- the- 
loop simulations, to �eld studies, to actual real- world observations. �e latter may come 
from surveys of users, observational studies, case studies (analyses) of major accidents 
and serious incidents. In some professions, such as health care and aviation, a corpus of 
minor incidents is available to create a large database of human performance issues, such 
as errors, that occur in the workplace. Each method has strengths and weaknesses. �ere 
is no “best” technique, because attributes, such as cost, �delity to the workplace, and so 
forth, trade o� along the continuum, and an e�ective engineering psychologist needs 
to be aware of the di�erent methods, the various studies that have been conducted in a 
particular domain, and be able to interpret their results appropriately. We describe these 
research methods in much more detail in the next chapter.

1.3 A MODEL OF HUMAN INFORMATION PROCESSING

Knowing the di�erent dimensions of performance (e.g., speed and accuracy) that can be 
measured in di�erent research environments (e.g., lab, �eld studies) can assist the human 
factors engineer in understanding how performance is changed by system design or envi-
ronmental di�erences. But such knowledge is not always su�cient for the engineering 
psychologist, who is interested in why performance might be changed. For example, a 
new interface for a car radio control might invite errors for the following reasons:

• �e control cannot be touched without bumping another one.
• �e control is too sensitive.
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• �e driver is confused about which way to adjust the control to increase frequency.
• �e driver cannot understand the icon on the control.

�e distinctions between the di�erent psychological and motor processes a�ected by 
design are of critical importance because, on the one hand, they link to basic psychological 
theory, and on the other hand, they can help identify di�erent sorts of design solutions.

A model of the stages of human information processing (Wickens & Carswell, 
2022), shown in Figure 1.1, provides a useful framework for analyzing the di�erent psy-
chological processes used in interacting with systems, and for carrying out a task analy-
sis, as well as a framework for the organization of the chapters in this book. �e model 
depicts a series of processing stages or mental operations that typically (but not always) 
characterize the �ow of information as a human performs tasks. We use as an example 
the task of driving toward an intersection. On the le� of the �gure, events in the environ-
ment are �rst processed by our senses—eyes, ears, touch, etc.—and may be brie�y held in 
short- term sensory store (STSS) for no more than a second. �us, the driver approach-
ing the intersection will see the tra�c light, the �ow of the environment past the vehicle, 
other cars, and may be hearing the radio and the conversation of a passenger.

But sensation is not perception, and of this large array of sensory information, 
only a smaller amount may be actually perceived, for example perceiving that the light 
has turned yellow. Perception involves determining the meaning of the sensory signal or 
event, and such meaning is, in turn, derived from past experience (a yellow light means 
caution). As we see below, this past experience is stored in our long- term memory of 
facts, word meanings, images, and understanding of how the world works.

A�er perception, our information processing typically follows either (or both) of 
two paths. At the bottom, perceiving (understanding) a situation will o�en trigger an 
immediate response, chosen or selected from a broader array of possible responses. Here 
the driver may choose to depress the accelerator or apply the brake, a decision based on a 
variety of factors, but one that must be made rapidly. �en, following response selection, 
the response is executed in stage 4 of our sequence in a manner that not only involves the 
muscles, but also the brain control of those muscles.

But perception and situation understanding do not always trigger an immedi-
ate response. Following the upper path from perception, the driver may use working 

Long-term

Memory

Working

Memory

Cognition

Perception

System

Environment

(Feedback)

Response

Selection

Response

Execution

Sensory

Processing

STSS

Selection

Attention

Resources

FIGURE 1.1 A model of human information processing stages.



Chapter 1 • Introduction 5

memory, to temporarily retain the state of the light (yellow) while scanning the highway 
and the intersecting road ahead for additional information (e.g., an approaching vehicle, 
a possible police car). In fact, in many cases an overt action does not follow perception at 
all. As you sit in lecture you may hear an interesting fact from the lecturer, but choose not 
to take notes on it (no response selection and execution), but rather to ponder it, rehearse 
it, and learn it. �at is, to use working memory to commit the information to long- term 

memory, for future use on an exam, or in applications outside of the classroom. �us, the 
function of working memory is not just to store information, but also to think about it: 
the process of cognition.

At this point we note that the processes of perception and working memory are not 
as distinct from each other as the separate boxes would suggest. �ere is a fuzzy boundary 
between them, and hence this second stage, a�er sensation, but before response selection, 
can o�en be described as “cognition,” generically describing the interpretation of sensed 
material, sometimes rapidly as the tra�c light, and sometimes more slowly, as the idea 
presented by the lecturer.

To this four- stage + memory model, we add two vital elements, feedback and 
attention. First, in many (but not all) information processing tasks, an executed response 
changes the environment, and hence creates a new and di�erent pattern of information 
to be sensed, as shown by the feedback loop at the bottom. �us, if the driver applies the 
accelerator, this will not only increase the perceived speed of the car, but also may reveal 
new sensory information (the police car is suddenly revealed waiting behind a sign), 
which, in turn, may require a revision of the stop–go response choice.

Second, attention is a vital tool for much of information processing, and here it 
plays two qualitatively di�erent roles (Wickens & McCarley, 2008; Wickens, 2021). First, 
as a �lter of information that is sensed and perceived, it selects certain elements for fur-
ther processing, but blocks others, as represented in Figure  1.1 by the smaller output 
(fewer arrows) coming from perception than input to it. �us, the driver may focus atten-
tion fully on the tra�c light, but “tune out” the conversation of the passenger, or fail to 
see the police car. Second, as a fuel, attention provides mental resources or energy to the 
various stages of information processing, as indicated by the dashed lines �owing from 
the supply of resources at the top. Some stages demand more resources in some tasks 
than others. For example, peering at the tra�c light through mist will require more e�ort  
for perception than seeing it on a dark night. But our supply of attentional resources 
is limited. Hence, the collective resources required for one task may not allow enough 
resources to be supplied to a concurrent one, creating a decrement in multitasking.

While Figure 1.1 provides a useful framework for conceptualizing information pro-
cessing (and the organization of this book), it should not be taken too literally. �us, 
although the primary operations associated with the di�erent stages are somewhat asso-
ciated with di�erent brain structures (see Chapters  11 and 12), the association is not 
crisp; nor must the stages operate in strict sequence. �us, the student in lecture may, 
in parallel, rehearse the lecturer’s words and write them down. And, of course the major 
feedback loop at the bottom means that there is no �xed “start” and “end” to the informa-
tion processing sequence. A�er all, a task might be initiated by an inspiration, thought, 
or intention to do something, originating from long- term memory, �owing to working 
memory and then to response, with no perceptual input whatsoever. Nevertheless, as 
we will see, the stage distinction is quite useful in analyzing tasks, describing principles 
and recommending solutions, and, in many cases, in developing the theories upon which 
engineering psychology is based.

�e model shown in Figure 1.1 also provides a framework for organizing many of 
the chapters in this book. A�er describing research methods in Chapter 2, in Chapter 3 
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we discuss the more basic aspects of perception and the distinctions between detection 
and pattern recognition. In Chapter 4, we consider the attention �lter, the selective aspects  
of attention. Chapters 5, 6, and 7 address the more complex aspects of perception and 
cognition that are relevant to the design of displays for space and spatial operations, 
including manual control (Chapters 5 and 6), and for language in Chapter 7. Chapter 8 
addresses the role of cognition and both working memory and long- term memory and 
their relevance to learning and training. Chapters 9 and 10 address the selection and exe-
cution of action on the right side of Figure 1.1. In Chapter 9, this selection is the deliber-
ative process of decision making, which also heavily involves memory. In Chapter 10, the 
selection represents more rapid actions such as those taken at the tra�c light. Chapter 11 
addresses the issues of multitasking as various combinations of stages and multiple tasks 
need to compete with each other for the limited fuel of attention resources. In Chapter 12, 
we address issues of mental workload and stress, as all stages work in concert to carry out 
tasks. In Chapter 13, we consider issues of human–automation interaction, as arti�cial 
intelligence tools are designed to assist or replace the human with information processing 
and cognition. A �nal short Epilogue summarizes some key themes.

1.4 PEDAGOGY OF THE BOOK

�ere are a few critical features that we would like to highlight to our readers before they 
jump into the chapters that follow.

First, we have tried to cite a large amount of literature to indicate the wealth of 
research that lies behind the concepts, principles, and �ndings that we present. In doing 
so, we have tried to emphasize “take- home messages” from the collective body of research, 
more so than the speci�c methods and �ndings from a single study. As a consequence, 
we may have glossed over details of particular studies, but we think we have been true to 
the studies’ main conclusions. Our extensive reference list will allow the curious reader 
to delve in greater detail for any speci�c topic he or she desires. Many former students 
using previous editions of this text are now engineering psychologists or human factors 
practitioners themselves; a common remark is that the book remains a useful reference 
for their professional career, long a�er they have taken the course.

Second, the reader will detect a rich network of cross- references between chapters. 
We hope that any distraction this may cause will be o�set by a realization of the complex-
ity of human performance, and how interwoven the performance components are in their 
application to the workplace. As just one example, we �nd that the cognitive phenomenon 
of overcon�dence, keeps reappearing in di�erent guises, across di�erent stages and types 
of human performance and cognition (and therefore di�erent chapters).

�ird, the reader will note the distinction between our use of italics and boldface. Bold-
face is meant to highlight new key terms or concepts, which can form the basis of a glossary, 
whereas italics are simply used to emphasize a word or phrase that should already be familiar 
to the reader, either in common language usage, or from boldfacing in a prior chapter.

Finally, as be�ts the distinction between engineering psychology and human fac-
tors, we do tend to emphasize more the general principles that support e�ective human 
performance (Peacock, 2009), rather than the speci�c design examples (although we do 
not entirely neglect the latter). It is hoped that the material in this book provides an e�ec-
tive “hand- o� ” to those truly interested in design applications, who can then follow these 
up in more applied human factors treatments (e.g., Salvendy & Karwalski, 2022; Lee et al., 
2017; Peacock, 2009). We would be delighted if students grabbed a particular principle, 
looked around their environment and explored their experiences to see how the principle 
might have been violated in “the real world”.
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In summary, we hope that our approach provides a distinctive counterpoint to the 
existing literature. �e audience is intended to be upper- division undergraduates or grad-
uate students, with a background in human science (e.g., psychology, cognitive science, 
kinesiology) or applied science (engineering, computer science). �e science student may 
be more interested in how that which is known about information processing and human 
performance can be applied in real- world situations. �e engineering student will likely 
be more interested in knowing more about psychology and its theory and why it matters 
to the design of engineered products and systems. We hope that both classes of students 
�nd the book has an appropriate balance of these qualities.
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2.1  OVERVIEW OF THE ENGINEERING PSYCHOLOGY RESEARCH 

PROCESS

In the profession of human factors, we ask how researchers go about making an inference 
about “what works and how well it works,” in design, training, procedures, and selection 
for real- world tasks (Lee Wickens, Boyle, & Liu, 2018). Figure 2.1 shows a data source at 
the bottom (human factors is an empirical science); we ask questions of those data, o�en 
questions about cause and e�ect, driven by applications, and we assess the reliability of 
those answers, and then use them to improve human–system interaction.

In engineering psychology, we modify and elaborate on this general model some-
what. Our focus is now more tied to the following question: How do we derive theory- 
based psychological principles that we are con�dent will make a di�erence in real- world 
applications? �at is, what principles will generalize to real- world tasks, and, ideally, 
across di�erent applications? For example, what principle regarding the optimum level of 
human- automation authority will apply equally to self- driving cars and to the �ight deck 
of the modern aircra�? To accomplish these goals, we refer to Figures 2.2 and 2.3, which 
provide the framework for the material in this chapter.

Across the top of Figure 2.2 are the three most important elements of engineering 
psychology. Highlighted in the largest font are the PRINCIPLES of design and training 
that should be applicable in the world outside the laboratory and should be grounded 
in the fundamental theories of psychology. �ese theories, in turn, capture the essence 

RESEARCH METHODSRESEARCH METHODSRESEARCH METHODS2

Applications

Reliable

answers

Research

questions

Data source

FIGURE 2.1 Flow of human factors.
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of human performance and cognition. �e feedback loops at the top indicate successful 
application. Successful applications, in turn, provide support for the theory that spawned 
those applications.

�e next row of the �gure is the vital path to validation. We need data, and arrayed 
across the row are the di�erent sources of data. On the le� are experiments, most o�en 
conducted in the laboratory, and well known to any of us who have taken or taught courses 
in experimental design. �eir data serve both theory and principles. �us, an experiment 
may be used to help validate a theory of task switching (Tra�on & Monk, 2007), but also 
to validate a principle of how to train people to more safely multitask in the vehicle or 
airplane (Chapter 11; Loukopoulos, Dismukes, & Barshi, 2009). An experiment may help 
to validate a theory of object perception, but also to validate a principle of designing a dis-
play of two variables to con�gure as a rectangle, rather than two bar graphs (Chapter 5). 
An experiment may help validate a theory of memory interference, but also a principle of 
spacing practice in order to maximize learning (Chapter 8).

A major challenge to the engineering psychology researcher is to achieve the neces-
sary realism of experimental laboratory data sources relative to the ultimate applications 
that they are destined to serve. In order to seek such realism, we move to the right along 
the DATA row, from low- �delity experiments to what we loosely label as simulators. 
Because these simulators are also hosts for experiments, they require the same attention 
to experimental control (see below), but also contain more features that match the real- 
world application to which their results are supposed to generalize. A low- �delity study 
of cell phone distraction in the vehicle can use a basic tracking task to simulate driving 
(Drews, Johnston, & Strayer, 2003), but its results will likely be more valid if carried out in 
a driving simulator (Caird et al., 2018); and even more so if the simulator has the realism 
of a full simulator with 180- degree vision, as compared to a desktop computer.

A close cousin to simulator realism (or �delity) is environmental �delity, or the 
degree of realism of the experimental environment to the application. �us, for example, 
data to support a principle of learning may come from a laboratory experiment, or from 
a controlled intervention in the actual classroom, in which half of the students are given 
one kind of study strategy or quiz schedule, and the other half a di�erent type. A �nal 
element in the EXPERIMENTS box in Figure  2.2 is the microworld. �is is typically 
a small- scale simulation, usually on a desktop or laptop computer, designed to emulate 
a fairly complex dynamic process, like distilling a chemical or managing a production 
(Gonzales, Fakhari, & Busemeyer, 2017). �e emphasis in designing microworlds is to 
accurately capture the perceptual and cognitive processes involved, more so than to create 
perceptual and physical realism of the real system, which is o�en the goal of simulators.

Theory PRINCIPLES

DATA

SECONDAY DATA

Laboratory      Simulators

Questionnaires

Meta-analyses

Models

Incident and

accident analyses

Naturalistic

observation
Realism

Microworlds

EXPERIMENTS

Applications

Utility of theory Validation of principles

FIGURE 2.2 The human factors framework.
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Questionnaires are another source of data that may be administered in experiments 
or simulators, and also, in human factors, to real- world users of a system. �is dual source 
of questionnaire data is re�ected in the �gure by being both inside and outside the EXPER-
IMENTS box. As distinct from most data sources, these questionnaire data are not meas-
ures of performance speed or accuracy, but are typically rated opinions or subjective scales 
of such variables as situation awareness, mental workload, or trust. �ese questionnaires 
could also include open ended questions or other qualitative methods (Ho�man, 2008).

Naturally, designing experiments creates a trade- o� with either simulator or envi-
ronmental realism. Greater realism imposes greater logistics complexity, o�en greater 
expense, and sometimes leads to a loss of experimental control, as we discuss below.

In our journey across data sources, we then make a discrete jump in realism as we 
move to the far right of the DATA row. In the box to the right, two further sources of 
data can be provided from the real- world applications domain itself. �e �rst of these 
are reports of accidents and incidents experienced by operators. �e di�erence between 
accidents and incidents, sometimes formally de�ned in safety- oriented professions like 
aviation, is whether there is injury or fatalities to personnel involved or damage to equip-
ment (accidents) or not (incidents). �e latter case involves an operator report of some-
thing that was “done wrong” but did not produce an accident. Accident reports, such as 
those conducted and written up by the National Transportation and Safety Board, are 
formal and involuntary. In contrast, incident reports, such as those within the Aviation 
Safety Reporting System (ASRS), are generally voluntary and anonymous, a feature incor-
porated in order to encourage operator submission and therefore populate the database, 
without the operator’s fear of recrimination.

Finally, although accident and incident reports provide data to the researcher 
regarding what went wrong, and implicitly or explicitly how to �x it, naturalistic observa-
tions of the professionals at work (including their descriptions of what they are doing) are 
more o�en indicators of “what went right.” Such descriptions, if provided by experts, can 
form an important part of the signatures for expertise in an area.

�ere is clearly no single source of data that is best for forming conclusions about 
applied research on what principles are most e�ective. Ideally, researchers should try to 
tap more than one point along the continuum, and look for common trends across them, 
as, for example, has been done in understanding the appropriate level of automation to 
keep the human su�ciently in the loop, so that she may respond appropriately if there is 
a failure (Onnasch, Wickens, & Manzey, 2014; Kaber & Endsley, 2004).

�ere are also two important trade- o�s between di�erent points along the contin-
uum. First, the more complex simulations to the right involve more realism (good), but 
also more logistics and expense (bad). Second, the greater realism and complexity that 
mimics the real- world system o�en involves fewer participants because of their limited 
availability. �ink of the scarcity of the well- trained transport pilot �ying an advanced 
experimental simulator, compared to the undergraduate participant �ying a desktop sim-
ulation. Fewer participants thereby diminishes the statistical power, an issue we discuss 
in detail in Section 2.5.

In the row below the DATA row, we identify two further sources of input to our 
researcher, which we label “Secondary data.” �ey are secondary, because both rely upon 
raw data, typically from experiments or simulations, but are not themselves the direct 
source of data. �e �rst of these is the meta- analysis; quite literally, this is an analysis 
of analyses, each of the latter typically the output from a single experiment. For exam-
ple, this might be as straightforward as presenting the mean di�erence, from several 
experiments, each of which has established a mean di�erence between an auditory and 
a visual presentation of instructional information. More typically, the meta- analysis is 
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accomplished by aggregating (usually averaging) the statistical e�ect size, the proportion 
of variance accounted for by a particular experimental manipulation (Rosenthal, 1991; 
Borenstein, Hedges, Higgins, & Rothstein, 2009), a concept that we will elaborate below. 
Meta- analyses have the advantage of pooling a lot of data, and hence reaching more stable 
conclusions about the magnitude or direction of an e�ect than any single experiment. But 
the validity of the meta- analysis depends critically on the quality of the studies that went 
into it.

�e second source of secondary data is the computational model, which uses the 
output of a formula or a computer simulation to provide the researcher with an esti-
mate of what the data would say (Pew & Mavor, 1998; Byrne, 2014). For example, the 
researcher could use a computational model called Fitts’ law to provide an estimate for the 
time for an operator to reach and depress a key on a keyboard (Fitts & Posner, 1967; Card, 
Newell, & Moran, 1986), and this model- based answer would be much more e�cient for 
the researcher than having to do an experiment for such a determination. Like the meta- 
analysis, the model is only as good as the data upon which it is based. �e model itself 
needs an empirical foundation, and will bene�t from several empirical validations. We 
discuss models further in Section 2.6.

Models and meta- analyses can o�en work hand- in- hand in applied psychology. 
Because the meta- analyses are typically quite reliable and stable in the quantitative 
estimates of performance that they o�er, those estimates can be imposed in models to 
predict performance that are then well validated. As an example, the conclusions of a 
meta- analysis of the e�ects of sleep deprivation on performance have been incorporated 
into a computational model of that process (Wickens, Hutchins, Laux, & Sebok, 2015).

Figure 2.3 simpli�es and aggregates all of the sources of data in Figure 2.2, but now 
highlights four elements that are vitally important to the ability of one or more of the data 
sources above to contribute to the engineering psychologist researcher’s task of integrat-
ing theory, principle, and application. We describe each brie�y here, but elaborate upon 
them in separate sections below.

Theory PRINCIPLES Applications

DATA

Experimental Design

Performance Measures

Participant Selection

Statistical Analysis

FIGURE 2.3 Critical elements of data in engineering psychology research.

For experiments, experimental design describes the conditions used to establish 
an e�ect or a causal relation between an independent and a dependent variable. Closely 
related, performance measurement describes the dependent variable itself. For example, 
do we measure the speed or accuracy of performance, or both, when we try to draw 
inferences about human information processing in an applications- relevant task? Any 
engineering psychology experiment must involve human participants (or at least workers, 
see Helton, 2009). Who are they? College sophomores ful�lling psychology class require-
ments? Paid volunteers on a signup sheet or on the Internet? Professionals trained in the 
task that may be simulated for the experiment? And how many participants? �is last  
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question leads to the �nal element: statistical analysis. How do we establish the validity of 
the experimental data to generalize (1) to people as a whole (the larger population outside 
of those sampled for the experiment) and (2) to the population of professionals to whom 
we wish our results to generalize (e.g., healthcare professionals, licensed drivers, intelli-
gence analysts). We now elaborate on each of these elements.

2.2 EXPERIMENTAL DESIGN

2.2.1 Two- Condition Designs

Typically, engineering psychology experiments are designed to establish “if there is a dif-
ference” (in a dependent variable) due to some critical independent variable of impor-
tance in the real world, for example, sleep deprivation or display modality. In the simplest 
case, this di�erence is just between two conditions. For example, a “treatment” condition, 
such as an automation support for a task like steering a car, is compared to a “control” 
condition, such as manual steering. O�en, two treatment conditions are compared with 
each other, such as an auditory (voice) versus a visual display of navigational information  
to the driver. �e typical statistical test for the two-level comparison is the t- test (although 
some advocates prefer a con�dence interval of a mean di�erence or a Bayes factor with 
some kind of cuto�, to be discussed below).

Such a two- condition design requires at least one further decision by the researcher: 
Should di�erent people receive the two conditions (between- subjects design) or should 
each participant in the experiment receive both conditions (repeated- measures design). 
Each type has di�erent costs and bene�ts. �e primary bene�t of the repeated- measures 
design is that there is less variability in the e�ect of the treatment because the same person 
is receiving both conditions. Less variability means more statistical power and a greater 
likelihood of �nding a signi�cant di�erence (see Section  2.5). However, the repeated- 
measures design can have an inherent problem. If the same person receives both condi-
tions, then if he receives A before B, the participant may be better practiced at B than A, 
and hence any di�erence favoring B could be due to practice, rather than to its inherent 
superiority to A. We call this a confound. Alternatively, if the experiment is long, sub-
jects could be more fatigued when doing B, and hence do worse as a result. Both fatigue 
and practice confounds can exist in the same experiment, and both will introduce an 
unwanted bias in favor of one condition or the other.

To address the confound problems of a repeated- measures design, it is possible to 
alternate conditions A and B frequently, so that any learning or fatigue e�ects would be 
washed out. Alternatively, a counterbalanced design will divide the subject population in half, 
giving one group the order AB and the other group the order BA. �is also averages out the 
sequential biases when the two groups’ performances are averaged. When participants are 
scarce, the repeated- measures design is preferable because one gets more statistical power 
(higher N) in each condition. Although counterbalancing is useful, it does not remove the 
possibility of asymmetrical carryover e�ects. �e engineering psychologist should give their 
experimental design extensive consideration prior to deploying an experiment.

2.2.2  Details and Qualifiers of the Effect: More Than Two 
Conditions and Factorial Designs

In order to generalize to the real world beyond the experimental environment, a sim-
ple comparison between two conditions rarely makes sense because whether a di�erence 
is found or not may be based on contextual factors or other factors, likely to in�uence 
performance beyond the laboratory or simulator. Consider two di�erent cases of an 
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experiment on vehicle automation. First, it may be the case that the extent to which auto-
mation improves performance above pure manual operation (our control condition) 
depends on how much automation there is. It may provide only a steering assist, or, alter-
natively, both a steering and a speed control. �is produces a three- level design: control, 
steering only, steering and speed. �e statistical t- test is no longer appropriate, because we  
are no longer looking at a single di�erence, but rather we are looking at the net e�ect of 
three di�erences (the pairwise comparison of each of the three conditions). �is then is 
the multilevel design.

Second, we might ask whether automation is more, or less, bene�cial when a driver 
is just driving, or is driving and multitasking. Here we could cross the manipulation of 
automation (present or absent), with the manipulation of dual- task loading (absent or 
present), creating a 2 × 2, four- condition factorial design. �e typical statistical test for 
the multilevel or multifactor design is the analysis of variance, or ANOVA.

Factorial designs provide two great advantages. First, they are e�cient. One can 
examine the e�ects of two independent variables (automation and dual- task loading) at 
once within a single experiment. Second, and more important, they enable the investi-
gator to examine the presence of statistical interactions (Figure 2.4), to ask questions 
such as the following: Is the advantage of automation enhanced, or perhaps diminished, 
under dual- task loading (i.e., when multitasking)? As a result, one can determine the  
generalizability of an e�ect of one independent variable across levels of another. If the 
e�ect is neither enhanced nor diminished, but is constant across levels of the other inde-
pendent variable, we say the two variables are additive in their e�ect. �is would be the 
case if the bene�ts of automation were the same whether multitasking or not. �e general 
questions asked of, and answered by, interactions are of the form: To what extent does the 
e�ect of variable A depend upon the level of variable B? In Figure 2.4, any of four di�erent 
statements might characterize this “e�ect on an e�ect” manner of describing an interac-
tion (depending on more speci�c contrasts between pairs of points):

“Dual task loading harms driver performance only in manual but not automated 
mode”

“Multitasking harms manual more than automated driving”
“Imposing automation only helps in dual task conditions”
“Imposing automation helps more in dual than single task conditions”

Manual

Automation

Task Loading

Driver

Error

Single Dual

FIGURE 2.4 Data from a factorial design showing an interaction.
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�e 2 × 2 design is the simplest factorial design. To increase complexity one might, 
for example, create a 3 × 2 design by crossing the three levels of automation with dual- 
task loading. Furthermore, one could create any number of levels across each of the two 
factors. We may also propose a three- factor design if, for example, we ran our original 2 × 2 
design with both fatigued and well- rested subjects, creating a 2 × 2 × 2 design. And, then 
we could extend this to a 2 × 2 × 3 design, and so forth. �e possibilities are unlimited!

As we discussed with the simple two- level design, we can again here distinguish 
between a repeated- measures design and a within- subjects design. However, there is now 
a third, compromise alternative called a mixed design or split- plot design in which one, or 
some of, the factors are repeated measures and other(s) are between subjects. As an exam-
ple, suppose, because of a desire for higher statistical power, we wanted to vary automa-
tion level within subjects, but we also wanted to examine the e�ects of age on automation 
bene�ts. Older versus younger subjects must, by de�nition, become a between- subjects 
variable.

2.2.3 The Continuous Independent Variable

Whereas ANOVAs are applied to designs with �xed, categorical levels of the independent 
variable (e.g., display modality), researchers will o�en design experiments with interval-  
or ratio- scale levels of the independent variable. For example, this might be an experi-
ment examining the e�ect of degrees of visual separation from the fovea on response time 
to warning lights. Here, the data will be subjected to regression analysis rather than to 
an ANOVA to establish the strength and signi�cance of e�ect. Finally, in some cases we 
cannot control or select the values of either of the variables involved in a two- way rela-
tionship, even if that relationship is part of our experimental question. An example might 
be: How do di�erences in situation awareness relate to di�erences in workload across our 
participants? Here, our design uses the product moment correlation as the analysis tool 
to determine, for example, the extent to which people with higher situation awareness 
also experience higher workload. As the above cases make clear, experimental design and 
statistical analysis are intimately linked.

2.3 PERFORMANCE MEASUREMENT

�e three most important measures of performance in engineering psychology are con-
sidered to be speed (o�en measured by response time, or RT), accuracy (percent correct 
or its converse, error rate), and, to a slightly lesser extent, mental workload or attention 
demand (see Chapter 12). Each of these has an obvious polarity in terms of which is better 
for overall performance.

As seen in Figure  2.2, performance measures are o�en augmented by question-
naires or subjective ratings of key cognitive variables such as workload, situation aware-
ness or trust.

Although all variables need to be addressed statistically (see Section 2.5), it is impor-
tant to keep in mind the practical signi�cance of results. In applied research, an e�ect of 
perhaps 50 msec in response time may not be of great practical interest, even if it is statis-
tically signi�cant: but a 5% increase in error rate (say from 1% to 6%) could be of critical 
applied importance. Practical signi�cance is not the same as statistical signi�cance.

It is also important to keep in mind the possible trade- o�s that result as an inde-
pendent variable is manipulated, particularly the tradeo� between speed and accuracy 
(see Chapter 10). For example, changing modalities of a navigation display from visual to 
auditory may shorten RT but also increase error rate because of the forgetting of auditory 
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information. Another example is an e�ort–performance trade- o�, where participants in 
one condition expend greater e�ort to increase performance than in another condition. 
�e increased subjective e�ort results in increased strain, or stress responses, which may 
have consequences if the experimental results are generalized to actual workers. �e 
manipulation may have increased participant motivation, not performance itself per se, 
or, in other words, the performance improvement is not without an otherwise hidden 
cost. When such trade- o�s appear, they should be clearly articulated. When possible, 
multiple dependent measures are useful, for example, speed, accuracy, and subjective 
“feelings.”

In addition to these three general measures, other performance measures are some-
times of value, o�en derived by combining variables. As we will see in the next chapter 
on signal detection theory, a very important measure is the “bias” or tendency to report 
all signals, which is quite di�erent from the accuracy measure of signal detection which 
re�ects the ability to discriminate those signals from background noise.

2.4 PARTICIPANT SELECTION

For simple laboratory experiments, to the le� of the top row of Figure 2.2, the proto-
typical “college sophomore” is o�en adequate as a participant to generate data. But as 
described in Section 2.1, the tasks here are o�en somewhat simple compared to those of 
the microworld or simulator, and therefore their generalizability to a real- world task may 
be questioned.

As we move to the right along this DATA row of Figure 2.2, particularly to the sim-
ulator, two approaches are typically required. First, we can train participants to acquire 
more of the specialized skills of the professional that must be harnessed to perform the 
simulation. Such a requirement o�en exceeds the number of volunteer hours available 
for academic course credit in a typical university “subject pool.” It hence may require 
paying volunteers. But such payment has the added advantage of allowing some pay- for- 
performance bonuses in order to motivate high attention to the task.

Second, we can solicit actual professionals in the task that we have simulated; for 
example, licensed pilots for the �ight simulator experiments. �ese people already pos-
sess some of the requisite skills, and need less training prior to collection of the experi-
mental data. Such personnel need not be true experts at the task. O�en students within 
the professional training program for the skill in question will be adequate.

One challenge in both of these approaches relates to limited participant availability. 
Applying the �rst approach, people simply may not be able to commit to the several hours 
of experiment time that the extra training will impose. For the second approach, those 
professionals may simply not be accessible, and even if they are, may be reluctant to allo-
cate that time away from their professional careers. �us, in both cases there is the danger 
of reducing the sample size, or N, in the experiment, in a way that reduces the statistical 
power to �nd the real e�ects that may contribute knowledge to improving performance 
in applications. We address this issue further in the next section. However, one solution 
to these challenges is to augment the professional sample size with a larger sample of non- 
professionals, or student trainees. If the pattern of results is roughly equivalent between 
the two groups, they can be combined in the larger sample statistical analysis.

2.5 STATISTICAL ANALYSIS

As Figure 2.3 makes clear, statistical analysis is a nearly essential stage in establishing the 
extent to which experimental results can generalize to and predict performance e�ects in 
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the world beyond the laboratory. We assume that our reader is familiar with traditional 
statistics as it is typically taught in undergraduate psychology and engineering programs; 
that is, statistics based on what is called null hypothesis signi�cance testing (NHST). 
�is typically yields the F- test or t- test to establish the statistical signi�cance of a dif-
ference or e�ect or trend. �is approach has a lot to o�er; however, recently behavioral 
scientists have identi�ed some important �aws (Cumming, 2012; Dienes & McLatchie, 
2018), and these �aws gain in their importance when the statistics are applied to human 
factors science and engineering psychology. In the following section, we lay out these 
problems and propose solutions to overcome them, including a Bayesian approach (Lee & 
Wagenmakers, 2013). �is material is based heavily on the chapter “Commonsense statis-
tics in aviation safety research” (Wickens & McCarley, 2017).

What NHST provides. �e statistics of signi�cance provided by NHST depend criti-
cally upon the statistical power of an experiment, which, in turn, depends on three factors:

1. �e e�ect size, or the di�erence between means that are being compared.
2. �e variability of data, typically assessed by the standard deviation of the observa-

tions around the mean.
3. �e sample size, or N, of the experiment.

To the extent that variability is low and sample size is large, statistical power is high, and 
to the extent that the e�ect size is also large, then the statistical signi�cance of the NHST  
is more likely to emerge. �is signi�cance in a t- test or F- test has o�en been operation-
ally de�ned as a p- value (e.g., p < 0.05). While still conventionally used, there are four 
important problems with this reasoning, and reliance on the p- value to signal the impor-
tance of a �nding, which we describe as follows:

2.5.1 Problem 1: The All- or- None Interpretation of .05

Researchers o�en report that if p is less than .05 (p < .05) they have found an e�ect, and if 
p > .05 “there is nothing there.” In fact, the p- value was never intended by Fisher (1935), 
its developer, to convey such all- or- none, black- and- white thinking, but rather to provide 
a probabilistic indicator of the continuously distributed degree of evidence for an e�ect. 
�us, for example, the gain in evidence from .08 to .06 is just as great as from .06 to .04, 
even as conventional thinking is that the latter is much greater (or much more impor-
tant), because it de�nes greater or less than the “magic .05.” �is faulty thinking �ies in 
the face of evidence- based science.

�ere is of course some rationale for establishing a standard, as .05 has been, but 
the idea that one should treat .06 as “nothing there” can do a major disservice to the 
accumulation of scienti�c wisdom across multiple experiments. We must also keep in 
mind that the high N that is o�en necessary to achieve su�cient statistical power to �nd 
the .05 e�ect is o�en di�cult to obtain, as we discussed above in the context of the val-
uable experiments conducted with highly trained professionals. A .06 e�ect observed in 
establishing the better performance with a new warning system using 10 highly skilled 
professional pilots is of great bene�t for the advancement of aviation safety. �is .06 e�ect 
should not be discussed as “nothing there.”

Besides leading to dismissal of e�ects that don’t meet the .05 criterion, this black- 
and- white thinking also allows a spurious e�ect that sneaks under the p = 0.05 cuto� to 
live on, in the literature and in application, inde�nitely. Having achieved statistical sig-
ni�cance once, the “�nding” is o�en deemed real, and failures to replicate it are o�en 
blamed on poor method or low statistical power. In truth, a p- value in the range of 0.05 
is at best tentative evidence of a replicable e�ect (Cumming, 2012, 2014). An e�ect of  
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p = 0.06 or so should not be dismissed, nor should an e�ect just under p = 0.05 be treated 
as conclusive. Several meta- analyses have revealed the extent to which e�ects of p < .05 
fail to consistently replicate (Wetzels et  al., 2011; Ioannidis, 2005, 2008, Open Science 
Collaboration, 2015).

2.5.2 Problem 2: NHST Is Biased Toward the Status Quo

Table 2.1 presents the standard decision matrix underlying NHST. Across the top is the 
“ground truth” state of the world that the researcher wishes to discover. For example, 
this may be the truth of whether the augmented auditory navigational display in the car 
improves driving safety. We run an experiment to test that possibility, compute statistics, 
and then derive a conclusion based on whether our p- value falls below alpha (α), which is 
typically set at .05. Our potential conclusions are represented in the two rows of the table: 
accept the null hypothesis of “no di�erence” or reject the null hypothesis and assume that 
there is a di�erence. �at is, the e�ect in our experiment is of su�ciently large N and 
the statistical power is su�ciently high that what we found in the laboratory is likely to 
sustain in the world beyond the laboratory. Factorially combining the two states of the 
world by the two potential conclusions, two forms of statistical error are possible. A type 
I statistical error, in the top right cell of the matrix, occurs when we erroneously conclude 
there is an e�ect where in fact there is none. A type II error, in the bottom le� cell, occurs 
when we fail to detect an e�ect that does, in fact, exist.

TABLE 2.1 A conventional table of statistical decisions within NHST

State of the world

New auditory display 

improves safety

New display does 

not improve safety

Experimental 

results

Disconfirm H
0
 (p < .05) Type I error. Strongly 

discouraged.

Fail to disconfirm H
0
 

(p > .05)

Type II error. Consid-

ered more tolerable 

than a type I error.

Convention has established that we keep the type I error rate no higher than 5% 
(p < .05), which is why we are so reluctant to say that a p = .06 e�ect is a “real e�ect.” But in 
doing so, we completely ignore the probability of the type II error, which, unless we have 
high statistical power (resulting from high N and/or low variability) is usually a lot higher 
than .05 (e.g., around 0.20).

�is state of asymmetric concern for type I  over type II errors is a natural out-
growth of concern in basic sciences that false- positive discoveries are more costly than 
false negatives: and obviously, it is counterproductive for researchers in any domain to 
assert e�ects that turn out to be untrue. As the recent “crisis of replication” in psychol-
ogy and other sciences has shown (Pashler & Harris, 2012), non- replicable e�ects under-
mine con�dence in research, and ultimately make it di�cult to convince the government, 
industry, and the public at large that they should support our studies and trust our claims. 
But should the imbalance of concern for type I versus type 2 errors be the same in applied, 
safety- related research as in basic science? As argued below, it should not be, and this is 
the basis of the third problem with NHST.
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2.5.3  Problem 3: Conventional NHST Practice Considers Values 
in Decision Making Bluntly and Inflexibly

As noted above, Fisher argued that alpha should not be in�exible. Fisher (1935) noted 
that, “It is usual and convenient for experimenters to take 5 per cent as a standard level 
of signi�cance,” but acknowledged that the choice is subjective and sensitive to context. 
Neyman and Pearson (1933), the founders of NHST, wrote of type I and type II error: “in 
some cases it will be more important to avoid the �rst, in others [to avoid] the second . . . 
just how the balance should be struck, must be le� to the experimenter.” Modern NHST 
practice, unfortunately, generally ignores this advice to be �exible, and assumes an α of 
.05 almost universally. �is practice does not support adjusting the criterion when type II 
errors (rejecting a true safety enhancement for example) may be very costly.

To illustrate the problem with this approach, Table 2.2 presents a classic decision 
table from expected value theory (see Chapter 9), populated by the speci�c characteristics  
of our display design example. It is similar in some respects to Table 2.1, but distinct in 
others. �e two possible ground- truth states of the world are again shown in the two col-
umns, and the two rows again represent potential decisions. Here, though, these are not the  
researchers’ decisions to reject or accept the null hypothesis, but the research customers’, 
or consumers’, decisions to either implement the new display or reject it. �e consumers’ 
decision is very di�erent from the researchers’. Most importantly, the consumer’s decision 
considers the context- speci�c costs and bene�ts of di�erent outcomes, particularly for the 
two types of decision errors. Rather than simply assuming that type I errors are worse than 
type II errors, as conventional NHST practice does, it attaches precise payo�s to various 
decision outcomes, including the costs of developing and marketing and the costs of acci-
dents that might be avoided with the new display. With these explicit payo�s in mind, 
accompanied by some estimate of the e�ect size under study, the decision- makers can 
select an α- level appropriate to the context given the statistical power of the experiment, 
trading o� the costs and bene�ts of type I and type II errors in order to maximize the 
expected value of their decision.

TABLE 2.2 The classic expected value decision matrix

State of the world

New display 

improves safety 

[p(H)]

New display does 

not improve safety 

[1 − p(H)]

Consumer’s 

decision

Adopt the display Value of collisions 

avoided minus cost of 

adoption

Cost of adoption

Do not adopt the 

display

Cost of avoidable 

collision

No cost

2.5.4  Problem 4: NHST Does Not Consider the Prior Probabilities 
of the Null and Alternative Hypotheses in Decision Making

In the real world of research, there may be occasions when one has a strong a priori 
belief that a particular e�ect will come out in one direction rather than the other. Indeed, 
this is what is typically expressed in the hypotheses of an experimental write up, placed 
just before the methods are introduced. Such an a priori belief is o�en based on prior 



Chapter 2 • Research Methods 19

experiments that have demonstrated the e�ect in question; for example, that an auditory 
navigation display will be safer, in the visually dominant driving environment, than a 
visual display. �e NHST approach does not allow for such an a priori biasing to permit 
less evidence to con�rm the predicted direction (auditory better than visual) than the 
unpredicted one.

�is incorporation of prior probabilities or beliefs in interpreting e�ects is a hall-
mark of what is called Bayesian reasoning, to be described in more detail in Chapter 9 
(Berger, 1985). Bayesian reasoning has found a home in Bayesian statistics (Lee & Wagen-
makers, 2013; Dienes, 2011, 2016), and in particular what is called the Bayes factor, as an 
alternative to the more traditional p- value (Wetzels et al., 2011). �is approach essentially 
allows a symmetric test of evidence for the null versus the alternative hypothesis, not the 
asymmetry bias of the NHST, and then establishes, along a continuum de�ning the Bayes 
factor, the degree of evidence for one, the other, or neither. �is latter alternative allows 
the investigator to say: “we just don’t have enough evidence yet to either accept or reject 
the null hypothesis: more data are needed.” �e one key element required by Bayesian 
statistics is an explicit statement of the size of the alternative hypothesis e�ect, and the 
distribution of that e�ect. We will see in Chapter 3 the distinct similarity of this approach 
to that in signal detection theory.

In summary, there are two general points to be made here. First, the consumer of 
the research, who ultimately decides whether to implement potentially safety- critical pro-
cedures, needs more information from the researcher than simply the “reject/don’t reject 
the null hypothesis” output of a statistical decision rule, an output that implicitly removes 
this responsibility from the consumer of the research making policy or design decisions. 
Second, the application of a binary decision rule without adequate statistical power or 
consideration of payo�s and prior probabilities produces an inherent bias against adopt-
ing procedures or equipment that might improve safety.

2.5.4.1 WHAT IS TO BE DONE? Below, we outline two general categories of remedies 
for this state of a�airs: (1) changes to how the researcher should approach experimental 
design and analysis and (2) changes to the way data are presented in written reports and 
articles. �ese are elaborated by Wickens and McCarley (2017; Wickens, 1998).

2.5.4.2 DESIGN AND ANALYSIS

Increase statistical power. As noted above, by running more subjects or eliminating 
sources of unwanted variance, we reduce statistical noise and increase statistical 
power. �e higher power will allow us to reduce the probability of a type II error 
without a corresponding increase in type I error (which, by de�nition, is what hap-
pens when we simply raise the α- level for signi�cance; e.g., to 0.10). Of course, as 
we have noted, in some high- �delity simulations increasing power by increasing N 
is simply impossible.

Careful framing of experimental questions. When statistical power cannot be increased 
by increasing N, the experimenter may bene�t in power by carefully framing the 
most important research question before an experiment is conducted. In particular, 
a one- tailed t- test can be employed in comparing two conditions; for example, a 
currently used display and one designed to improve safety or otherwise enhance 
performance. Your prior hypothesis is that you will �nd better performance 
(shorter RT and/or higher accuracy) with the new display. You do not care if it 
shows equivalent or worse performance. �is allows you to use a one- tailed test for 
signi�cance, which greatly increases statistical power. With ANOVAs, if you plan 
your comparisons in advance to determine whether a particular e�ect is signi�cant  
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in a particular direction it allows for more statistical power than a post hoc test to 
see whether any di�erences are signi�cant. However, you are limited in the number 
of independent planned comparisons you can propose (Hayes, 1994).

Formulate an alternative hypothesis. A  third approach, inherent in the Bayes fac-
tor discussed above, is to formulate a speci�c alternative hypothesis (to the null 
hypothesis of no e�ect) that speci�es the size of the e�ect that you would consider 
important, or that you would allow you to conclude that your innovation (e.g., the 
new display) would actually improve performance beyond the laboratory (e.g., 
by decreasing the vehicle navigation error rate by at least 10% or improving lane- 
keeping performance by at least 20%). �is would allow you to conclude, a�er your 
results are analyzed, the extent to which they support the null hypothesis or the 
speci�c alternative hypothesis, and not just whether to support or reject the null 
hypothesis. It also gives you an option of deciding, formally, that the results are 
inconclusive and that perhaps more data need to be collected.

Replace null- hypothesis tests with parameter estimates, e�ect size estimates, or model 
comparisons. A more ambitious solution to the problems inherent in p- values and 
alphas is to forego NHST in favor of alternative analytic techniques. �e New Sta-
tistics movement (Cumming, 2012, 2014) recommends that scientists abandon 
hypothesis tests and replace them with con�dence interval and e�ect size esti-
mates. Other reformers (e.g., Kruschke, 2010) advocate use of Bayesian parameter 
estimates and credible intervals in place of hypothesis tests. Parameter and e�ect 
size estimates shi� the focus of analysis from the question, “Are the means di�er-
ent?” to the question, “How di�erent are the means?” A con�dence or credible 
interval can tell the researcher whether an e�ect size is plausibly di�erent from 
zero, but just as important, whether it is plausibly big enough to be of practical 
importance. E�ect size and parameter estimates also allow easier accumulation of 
information for a meta- analysis (see below) than do dichotomous “signi�cant/n.s.” 
decisions.

2.5.4.3 PRESENTATION OF EXPERIMENTAL RESULTS

Show the data. It is worth highlighting the importance of presenting more, rather than 
less, raw data to research customers. By raw data, we do not mean the data points 
from individual participants (though those may sometimes be appropriate), but 
rather graphs, con�dence intervals, e�ect size measures, and statistical test outputs 
other than those of the magical “p < .05” type). �e added importance of this last 
bit of guidance to meta- analyses will be described below.

Choose language carefully. We should be very careful that the language we use does 
not convey the impression that e�ects that might be important for safety improve-
ment but fail to reach the magic .05 levels should be disregarded. Potential o�enses 
here, ranked from bad to worse, might be to describe an e�ect of, say, p = .07, with 
the phrases “not signi�cantly di�erent,” “not di�erent”, or “equivalent.” Even if we 
report the p- values for such e�ects, readers who have the time and attention span 
only for our Abstract, Discussion, or “key points” may overlook them. More advisa-
ble phrasing would be to label such an e�ect as “approaching conventional levels of 
statistical signi�cance” or as a “nonsigni�cant trend.” Equally important when such 
e�ects are in evidence is to describe in the text (not in just tables and graphs) their 
raw magnitudes, in terms such as “a 4- second savings in response time” or “a 30% 
gain in accuracy.” �is allows the human factors readers and research customers 
to assess the practical importance of the e�ect, and not just its degree of statistical 
signi�cance.
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Accumulate evidence over experiments. Earlier, we referred to “prior probabilities” for 
assuming that an e�ect might actually exist in the world, before we have seen the 
data from our current experiment. And previous research is the best source of such 
prior beliefs. Literature reviews can qualitatively summarize that research, but the 
ideal tool for accumulating evidence over studies is the meta- analysis (Borenstein 
et al., 2009; Rosenthal, 1991; Cumming, 2014). Meta- analytic approaches provide 
quantitative estimates of the “collective wisdom” of that prior research, which may 
enable us to not only know that an e�ect is likely to be there (or not), but also to 
provide a point estimate of how large it is likely to be; that is, an explicit alternative 
hypothesis as discussed above. Recognizing the importance of meta- analysis has 
two implications for us. First, in our own literature reviews, we can use the meta- 
analysis to estimate e�ect sizes. Second, in reports of our data, we can include the 
statistical details of our e�ects including both signi�cant and, importantly, non-
signi�cant e�ects, with e�ect sizes given for both. �is will help other researchers 
produce unbiased e�ect size estimates in the meta- analyses that they may wish to 
conduct.

2.6 COMPUTATIONAL MODELING

A computational model of human performance will compute, via computer simulation, 
some key performance outcome, such as the time or accuracy to perform a particular 
task (Byrne, 2014; Pew & Mavor, 1998). Such models are generally of two forms: analytic 
equations and discrete event simulations.

2.6.1 Analytic Equations

Analytic equation models are relatively simple to develop and understand, o�en involving 
linear algebra. �e terms of such models usually come directly from regression weights 
derived from empirical data. A simple example is the serial self- terminating visual search 
model (Sternberg, 1966). �is model will predict how long it will take to �nd a target 
amongst a cluttered set of non- targets, such as a �nding a name in a non- alphabetized list. 
Each item must be examined in turn before determining whether or not it is the desired 
target; and once the target is found, the search is stopped. If several trials are conducted, 
with the target name sometimes present anywhere in the list and sometimes absent, and 
the time to �nd the target (when present) is recorded, then a regression analysis of these 
times against the total number of items in the list (N) will be well �t with a linear equation 
indicating: Search time (ST) = a + NT/2 when the target is present.

In this equation a is a constant representing the time to decide that the single tar-
get is present, and T is the average time required to examine each non- target item and 
establish that it is not a target before moving on to the next item. �e division by 2 results 
because the target is randomly placed in the list, sometimes early, sometimes late, but, on 
the average, halfway through. We discuss this model in more detail in Chapter 4.

Similar equation models have been derived to predict the human detection of auto-
mation errors as a function of automation reliability (Wickens & Dixon, 2007) or to pre-
dict task performance as a function of sleep deprivation and circadian cycle (Wickens 
et al., 2015). Useful models need not capture only a monotonic linear relationship. In fact, 
one of the most enduring models of human performance, predicting the time required to 
move a cursor to a target known as Fitts’ law (Fitts & Posner, 1967), is based on a logarith-
mic relation between the distance or amplitude of the movement, and the target width: 
MT= a + log[2A/W].
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Stevens’s law of psychophysics describes the relation between the subjective inten-
sity of a stimulus and its physical intensity as SI = PI(nth) where the exponent, n, can 
be greater than 1 or less than 1, depending on the sensory magnitude. Simple models of 
memory postulate an exponential decay of the quality of that memory as a function of 
time of the form: memory strength = T(nth): N < 1.

2.6.2 Discrete Event Simulation Models

�e discrete event simulation (DES) model runs in real time to simulate a process 
inferred to operate within the brain. An example is a visual scanning or eye movement 
model called salience e�ort expectancy value (SEEV; Wickens, 2015), to be discussed in 
Chapter 4. SEEV consists of four terms that determine at any moment in time the attrac-
tiveness of any area of interest (e.g., a display) in the visual workspace, an attractiveness 
that determines the relative likelihood of moving the eye there. �e eye then moves to 
the next location, and the relative attractiveness of all areas is computed again and the 
process repeats.

�e main advantage of the discrete event simulation model is that it can impose 
the variability on the process that is an inherent feature of human performance. �us, 
the SEEV model predicts that the eye will not always rigidly follow the same scan pattern 
(Wickens, Sebok, Gacy, & Li, 2015). When the model user speci�es a variability term for 
the model, this will then produce a distribution of outputs, with a standard deviation just 
like those of the actual human performance data. While the data of the DES model may 
be like that of human performance, the DES model may require less than a second of 
computer time to generate the full distribution. Human performance data, in contrast, 
may take hours to obtain with human- in- the- loop experiments.

One particular advantage of the distributions provided by DES models is that they 
allow determination of worst- case predictions. For example, if a model is developed to 
predict the response time of a driver to react to an unexpected stop of the vehicle in front 
and apply the brake and stop, the distribution may predict the minimum headway sepa-
ration that will allow 95% of rear- end collisions to be avoided. Such information can be 
quite valuable as a basis for safety recommendations.

A further advantage of computational models of human performance is that they 
can be coupled with models of non- human system performance to predict performance 
of the aggregate human–system. In the above example, our braking response model will 
be coupled with a model of vehicle dynamics and road- surface conditions to predict the 
actual collision likelihood.

Like the meta- analysis, a model is only as good as the data that went into it, and 
models must be validated to be useful (Wickens & Sebok, 2014; Wickens, Vincow, Shop-
per, & Lincoln, 1997). A typical model validation will “run” the model through several 
di�erent conditions to predict performance, and then “run” human participants through 
the same conditions, with a su�ciently high sample size to ensure reliable data. A rela-
tively high product moment correlation between predictions and data (e.g., above 0.60 
to 0.70) will then validate the model and ensure the user that, for future applications, 
model outputs can substitute for more expensive and time- consuming human- in- the- 
loop simulations.

2.7 CONCLUSION

In conclusion, a variety of research methods and factors are available to the engineer-
ing psychologist to ensure that the conclusions they draw in formulating principles of 
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human performance and human interaction with systems are valid and useful. Such 
validity can grow as more di�erent methods converge on the same answer. For example, 
an experiment provides results to validate a principle, which then, in application, reduces 
the accident rate. Although no single researcher is likely to produce all such data, ample 
familiarity with the published literature can easily substitute. We trust that the chapters 
that follow will provide access to much of that literature.
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