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PREFACE

In the 21st century, students need the ability to solve problems; innovation depends on citizens who can

think critically. The fifth edition of Functions Modeling Change: A Preparation for Calculus reaffirms our

effort to refocus the teaching of mathematics in a balanced blend of concepts and procedures. Our approach

encourages students to develop their problem-solving skills while acquiring the mathematical background

needed to learn calculus or pursue their careers.

Fifth Edition: Focus

This edition of Precalculus continues to stress conceptual understanding and the connections among mathe-

matical ideas. Understanding exponential change, for example, means being able to relate the size of a percent

growth to the shape of a function’s graph, as well as assessing the reasonability of a model.

Functions are the foundation of much of mathematics. Our approach encourages a robust understanding

of functions in traditional and novel contexts. Skills are introduced and reinforced throughout the book. This

balance of skills and understanding promotes students’ critical thinking.

Fifth Edition: Flexibility

Precalculus courses are taken by a wide range of students and are taught in a wide variety of styles. As

instructors ourselves, we know that the balance we choose depends on the students we have: sometimes a

focus on conceptual understanding is best; sometimes more skill-building is needed.

To enable instructors to select the balance appropriate for their students, the fifth edition expands the op-

tions available for customizing material. For example, we have integrated examples involving linear inequal-

ities in our treatment of linear equations, and offered more examples on rates of change in several chapters.

The sections involving limit notation and phase shift have been restructured so that these topics can be easily

skipped. Transformations of functions are now introduced in Chapter 2, while the full treatment remains in

Chapter 6, providing instructors with more freedom about when to introduce them and how deeply to cover

this topic.

Origin of Text: The Calculus Consortium for Higher Education

This book is the work of faculty at a diverse consortium of institutions, and was originally generously sup-

ported by the National Science Foundation. It represents the first consensus among such a diverse group of

faculty to have shaped a mainstream precalculus text. Bringing together the results of research and experience

with the views of many users, this text is designed to be used in a wide range of institutions.

Guiding Principles: Varied Problems and the Rule of Four

Conceptual understanding is enhanced when students engage in non-procedural problem-solving. Problems

classified into clear-cut types tend to develop proficiency at finding answers, but not necessarily a robust

conceptual understanding. Strong problem-solvers feel capable of making progress on problems they have

not seen before, not just those of known type. Consequently, we are guided by the following principles:

• Problems are varied and often challenging. Many of our problems cannot be answered by following a

template in the text.

• Text examples are diverse and represent the natural integration of skills and concepts.

• The Rule of Four: each concept and function is represented symbolically, numerically, graphically, and

verbally. This principle, originally introduced by the Consortium, promotes multiple representations.

v
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• We provide students and instructors quick means of assessing comprehension before moving on by using

the true-false Strengthen Your Understanding problems at the end of each chapter.

• Our central theme, functions as models of change, links the components of our precalculus curriculum.

Algebra is integrated where appropriate.

• Topics are fewer in number than it is customary so they can be treated in greater depth. The topics are

those essential to the study of calculus.

• Problems involving real data give students practice with modeling.

• We include both classic and current applications to prepare students to model with mathematics in a

variety of contexts.

• Our problems allow students to become proficient in the use of technology, including symbolic manipu-

lators, computers, tablets, and online software, as appropriate.

• Our precalculus materials allow for a broad range of teaching styles. They are flexible enough for use in

large lecture halls, small classes, or in group or lab settings.

Changes in the Fifth Edition

The fifth edition reflects the many helpful suggestions from users while preserving the focus and guiding

principles of previous editions. We have made the following changes:

• Many examples and problems are new or have been rewritten. Data has been updated and new data

introduced.

• The three chapters on trigonometry have been reorganized and rewritten:

− Trigonometric functions on the circle are introduced both in radians and degrees in Chapter 7,

highlighting the natural relationship between radians and the unit circle as soon as periodic functions

are introduced.

− Sinusoidal functions modeling periodic phenomena and simple trigonometric equations are also

introduced in Chapter 7, while more involved trigonometric models and equations requiring relation-

ships such as double-angle identities are treated in Chapter 9.

− Phase shift has been made an optional topic in Chapter 7.

− Triangle trigonometry is discussed separately in Chapter 8, after trigonometric and sinusoidal func-

tions are treated in Chapter 7.

• A brief exploration of linear inequalities has been integrated with the material on solving linear equations

in Chapter 1.

• Vertical and horizontal shifts are introduced in Chapter 2, and referenced in Chapter 3 when introducing

the vertex form of a quadratic equation. Shifts are reviewed at the beginning of Chapter 6 and considered

in combination with other transformations.

• Odd and even functions are introduced by looking at invariance of certain functions under reflections,

and thus better integrated with the transformation focus of Chapter 6.

• The effect of changing the order of transformations, the last section in Chapter 6 in the fourth edition,

has been shortened and included in the previous section.

• The section on power functions in Chapter 11 has been rewritten to increase the focus on graphical

behavior and proportionality.

• Examples on average rate of change have been added throughout the book, such as for exponential

functions (in Chapter 5) and periodic functions (in Chapters 7 and 9).

• WileyPLUS, the primary online resource suite paired with the textbook, has been updated with improved

problems and hints, including many new problems from the fifth edition.
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What Student Background is Expected?

Students using this book should have successfully completed a course in intermediate algebra or high school

algebra II. The book is thought-provoking for well-prepared students while still accessible to students with

weaker backgrounds. Providing numerical, graphical, and algebraic approaches builds on different student

strengths and provides students with a variety of ways to master the material. Multiple representations give

students tools to persist, lowering failure rates.

Our Experiences

The first four editions of this book were used at hundreds of schools around the country in a wide variety of

settings. It has been used successfully in both semester and quarter systems, in large lectures and small classes

as well as in full-year courses in secondary schools. It has also been used in computer labs and small groups,

often with the integration of a number of different technologies.

Content

The central theme of this book is functions as models of change. We emphasize that functions can be grouped

into families and that functions can be used as models. We explore how function characteristics connect to

difference quotients and rates of change, naturally previewing key calculus ideas.

Because linear, quadratic, exponential, power, and periodic functions are most frequently used to model

physical phenomena, they are introduced before polynomial and rational functions. Once introduced, a family

of functions is compared and contrasted with other families of functions.

A large number of the examples that students see in this precalculus course are real-world problems. By

the end of the course, we hope that students will use functions to help them understand the world in which

they live. We include non-routine problems to emphasize that such problems are not only part of mathematics,

but in some sense are the reason for doing mathematics.

Technology

The book does not require any specific software or technology. Instructors have used the material with graph-

ing calculators, graphing software, or scientific calculators.

Chapter 1: Linear Functions and Change

This chapter introduces the concept of a function as well as graphical, tabular, symbolic, and verbal represen-

tations of functions, discussing the advantages and disadvantages of each representation. It introduces rates of

change and uses them to characterize linear functions. Examples on modeling with linear functions, including

interpreting linear inequalities, are discussed. A section on fitting a linear function to data is included.

The Skills Refresher section for Chapter 1 reviews linear equations, linear inequalities, and the coordi-

nate plane.

Chapter 2: Functions

This chapter studies functions in more detail. It introduces domain, range, previews function shifts and the

concepts of composite and inverse functions, and investigates the idea of concavity using rates of change. A

section on piecewise functions is included.

Chapter 3: Quadratic Functions

This chapter introduces the standard, factored, and vertex forms of a quadratic function and explores their

relationship to graphs, including shifts. The family of quadratic functions provides an opportunity to see the

effect of parameters on functional behavior.

The Skills Refresher section for Chapter 3 reviews factoring, completing the square, and quadratic equa-

tions.
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Chapter 4: Exponential Functions

This chapter introduces the family of exponential functions and the number �. It compares exponential and

linear functions, solves exponential equations graphically, and gives applications to compound interest.

The Skills Refresher section for Chapter 4 reviews the properties of exponents.

Chapter 5: Logarithmic Functions

This chapter introduces logarithmic functions with base 10 and base �, both in order to solve exponential equa-

tions and as inverses of exponential functions. After discussing manipulations with logarithms, the chapter

focuses on modeling with exponential functions and logarithms. Logarithmic scales and a section on lineariz-

ing data conclude the chapter.

The Skills Refresher section for Chapter 5 reviews the properties of logarithms.

Chapter 6: Transformations of Functions and Their Graphs

This chapter investigates transformations. It revisits shifts, introduces reflections and stretches, and explores

even and odd symmetry using transformations. The effect of ordering when combining transformations is

explored.

Chapter 7: Trigonometry and Periodic Functions

This chapter introduces trigonometric functions in both radians and degrees as models for periodic motion.

After exploring graphs and formulas of sine, cosine, and tangent, general sinusoidal functions are introduced.

This chapter introduces the inverse trigonometric functions to solve trigonometric equations.

The Skills Refresher section for Chapter 7 reviews sine and cosine values of special angles measured in

both radians and degrees.

Chapter 8: Triangle Trigonometry and Polar Coordinates

This chapter develops right-triangle trigonometry, and introduces the Law of Sines and the Law of Cosines. It

also defines polar coordinates, explores their relationship to Cartesian coordinates, and considers the graphs

of polar inequalities.

Note: Chapter 8 can be skipped by instructors who prefer not to emphasize triangle trigonometry.

Chapter 9: Trigonometric Identities, Models and Complex Numbers

This chapter opens with a discussion of trigonometric equations, and then explores trigonometric identities

and their role in trigonometric models, such as damped oscillations and acoustic beats. The chapter closes

with complex numbers, including Euler’s Formula and de Moivre’s theorem.

Chapter 10: Compositions, Inverses, and Combinations of Functions

This chapter discusses combinations of functions. It investigates composite and inverse functions, which were

introduced in Chapter 2, in more detail.

Chapter 11: Polynomial and Rational Functions

This chapter discusses power functions, polynomials, and rational functions. The chapter explores dominance

and long-run behavior and concludes by comparing polynomial and exponential functions, and by fitting

functions to data.

The Skills Refresher section for Chapter 11 reviews algebraic fractions.

Chapter 12: Vectors

This chapter contains material on vectors and operations involving vectors. An introduction to matrices is

included in the last section.
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Chapter 13: Sequences and Series

This chapter introduces arithmetic and geometric sequences and series and their applications.

Chapter 14: Parametric Equations and Conic Sections

The concluding chapter looks at parametric equations, implicit functions, hyperbolic functions, and conic

sections: circles, ellipses, and hyperbolas. The chapter includes a section on the geometrical properties of the

conic sections and their applications to orbits.

Note: Chapter 14 is available online only.

Supplementary Materials

The following supplementary materials are available for the fifth edition:

• The Instructor’s Manual contains teaching tips, lesson plans, syllabi, and worksheets. It has been

expanded and revised to include worksheets, identification of technology-oriented problems, and new

syllabi. (ISBN 978-1-119-01383-9)

• The Printed Test Bank contains test questions arranged by section.

• The Instructor’s Solution Manual has complete solutions to all problems. (ISBN 978-1-118-94162-1)

• The Student Solution Manual has complete solutions to half of the odd-numbered problems. (ISBN

978-1-118-94163-8)

• The Computerized Test Bank, available in both PC and Macintosh formats, allows instructors to create,

customize, and print a test containing any combinations of questions from a large bank of questions.

Instructors can also customize the questions or create their own.

• Classroom Activities are posted at the book companion website. These activities were developed to

facilitate in-class group work as well as to introduce new concepts and to practice skills. In addition to

the blank copies for each activity that can be handed out to the students, a copy of the activity with fully

worked out solutions is also available.

• The Book Companion Site at www.wiley.com/college/connally contains all instructor supplements.

• WileyPLUS is a powerful online suite of teaching and learning resources tightly integrated with the text.

WileyPLUS enables instructors to assign, deliver and grade individually customized homework assign-

ments using exercises and problems from the text. Students receive immediate feedback on their home-

work and access to full solutions to assigned problems electronically. Students may also access hints to

the problems. In addition to online homework, WileyPLUS provides student tutorials, an instructor grade-

book, integrated links to the electronic version of the text, and all of the text’s supplemental materials.

For more information, visit www.wiley.com/college/wileyplus or contact your local Wiley representative

for more details.

• Mini-lecture Videos linked with examples in the WileyPLUS student version of the text provide greater

detail to the solution of examples in each section of the text. These may assist students in reading the text

prior to class or in reviewing material after class.

• The Faculty Network is a peer-to-peer network of academic faculty dedicated to the effective use of

technology in the classroom. This group can help you apply innovative classroom techniques, implement

specific software packages, and tailor the technology experience to the specific needs of each individual

class. Visit www.wherefacultyconnect.com or ask your Wiley representative for details.

ConcepTests

ConcepTests, modeled on the pioneering work of Harvard physicist Eric Mazur, are questions designed to

promote active learning during class, particularly (but not exclusively) in large lectures. Our evaluation data

show students taught with ConcepTests outperformed students taught by traditional lecture methods 73% ver-

sus 17% on conceptual questions, and 63% versus 54% on computational problems. ConcepTests arranged by

http://www.wiley.com/college/connally
http://www.wiley.com/college/wileyplus
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section are available in PowerPoint and Classroom Response System-ready formats from your Wiley repre-

sentative. (ISBN 978-1-118-94161-4)
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To Students: How to Learn from this Book

• This book may be different from other math textbooks that you have used, so it may be helpful to know about

some of the differences in advance. At every stage, this book emphasizes the meaning (in practical, graphical

or numerical terms) of the symbols you are using. There is much less emphasis on “plug-and-chug” and using

formulas, and much more emphasis on the interpretation of these formulas than you may expect. You will often

be asked to explain your ideas in words or to explain an answer using graphs.

• The book contains the main ideas of precalculus in plain English. Success in using this book will depend on

reading, questioning, and thinking hard about the ideas presented. It will be helpful to read the text in detail,

not just the worked examples.

• There are few examples in the text that are exactly like the homework problems, so homework problems can’t

be done by searching for similar-looking “worked out” examples. Success with the homework will come by

grappling with the ideas of precalculus.

• Many of the problems in the book are open-ended. This means that there is more than one correct approach

and more than one correct solution. Sometimes, solving a problem relies on common-sense ideas that are not

stated in the problem explicitly but which you know from everyday life.

• This book assumes that you have access to a calculator or computer that can graph functions and find (approx-

imate) roots of equations. There are many situations where you may not be able to find an exact solution to a

problem, but can use a calculator or computer to get a reasonable approximation. An answer obtained this way

can be as useful as an exact one. However, the problem does not always state that a calculator is required, so

use your own judgment.

• This book attempts to give equal weight to four methods for describing functions: graphical (a picture), numer-

ical (a table of values), algebraic (a formula) and verbal (words). Sometimes it’s easier to translate a problem

given in one form into another. For example, you might replace the graph of a parabola with its equation, or

plot a table of values to see its behavior. It is important to be flexible about your approach: if one way of looking

at a problem doesn’t work, try another.

• Students using this book have found discussing these problems in small groups helpful. There are a great many

problems that are not cut-and-dried; it can help to attack them with the other perspectives your colleagues

can provide. If group work is not feasible, see if your instructor can organize a discussion session in which

additional problems can be worked on.

• You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort, you will

get a real understanding of functions as well as a real sense of how mathematics is used in the age of technology.
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2 Chapter One LINEAR FUNCTIONS AND CHANGE

1.1 FUNCTIONS AND FUNCTION NOTATION

In everyday language, the word function expresses the notion of dependence. For example, a person

might say that election results are a function of the economy, meaning that the winner of an election

is determined by how the economy is doing. Someone else might claim that car sales are a function

of the weather, meaning that the number of cars sold on a given day is affected by the weather.

In mathematics, the meaning of the word function is more precise, but the basic idea is the

same. A function is a relationship between two quantities. If the value of the first quantity determines

exactly one value of the second quantity, we say the second quantity is a function of the first. We

make the following definition:

A function is a rule that takes certain numbers as inputs and assigns to each input number

exactly one output number. The output is a function of the input.

The inputs and outputs are also called variables.

Representing Functions: Words, Tables, Graphs, and Formulas
A function can be described using words, data in a table, points on a graph, or a formula.

Example 1 It is a surprising biological fact that most crickets chirp at a rate that increases as the temperature

increases. For the snowy tree cricket (Oecanthus fultoni), the relationship between temperature and

chirp rate is so reliable that this type of cricket is called the thermometer cricket. We can estimate

the temperature (in degrees Fahrenheit) by counting the number of times a snowy tree cricket chirps

in 15 seconds and adding 40. For instance, if we count 20 chirps in 15 seconds, then a good estimate

of the temperature is 20 + 40 = 60◦F.1

The rule used to find the temperature � (in ◦F) from the chirp rate� (in chirps per minute) is an

example of a function. The input is chirp rate and the output is temperature. Describe this function

using words, a table, a graph, and a formula.

Solution • Words: To estimate the temperature, we count the number of chirps in fifteen seconds and add

forty. Alternatively, we can count � chirps per minute, divide � by four and add forty. This is

because there are one-fourth as many chirps in fifteen seconds as there are in sixty seconds.

For instance, 80 chirps per minute works out to
1

4
⋅ 80 = 20 chirps every 15 seconds, giving an

estimated temperature of 20 + 40 = 60◦F.

• Table: Table 1.1 gives the estimated temperature, � , as a function of �, the number of chirps

per minute. Notice the pattern in Table 1.1: each time the chirp rate, �, goes up by 20 chirps per

minute, the temperature, � , goes up by 5◦F.

Table 1.1 Chirp rate and temperature

�, chirp rate � , predicted

(chirps/minute) temperature (◦F)

20 45

40 50

60 55

80 60

100 65

120 70

140 75

160 80

40 80 120 160

10

20

30

40

50

60

70

80

90

100

� = (80, 60)

�, chirp rate

(chirps/min)

� (◦F)

Figure 1.1: Chirp rate and temperature

1This relationship is often called Dolbear’s Law, as it was first proposed in Amos Dolbear, "The Cricket as a Thermometer,"
in The American Naturalist, 31(1897), pp. 970–971.
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• Graph: The data from Table 1.1 are plotted in Figure 1.1. For instance, the pair of values� = 80,

� = 60 is plotted as the point � , which is 80 units along the horizontal axis and 60 units up

the vertical axis. Data represented in this way are said to be plotted on the Cartesian plane. The

precise position of � is shown by its coordinates, written � = (80, 60).

• Formula: A formula is an equation giving � in terms of �. Dividing the chirp rate by four and

adding forty gives the estimated temperature, so:

Estimated temperature (in ◦F)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

=
1

4
⋅ Chirp rate (in chirps/min)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

+ 40.

Rewriting this using the variables � and � gives the formula:

� =
1

4
� + 40.

Let’s check the formula. Substituting � = 80, we have

� =
1

4
⋅ 80 + 40 = 60,

which agrees with point � = (80, 60) in Figure 1.1. The formula � = 1

4
�+ 40 also tells us that

if � = 0, then � = 40. Thus, the dashed line in Figure 1.1 crosses (or intersects) the � -axis at

� = 40; we say the � -intercept is 40.

All the descriptions given in Example 1 provide the same information, but each description has

a different emphasis. A relationship between variables is often given in words, as at the beginning

of Example 1. Table 1.1 is useful because it shows the predicted temperature for various chirp rates.

Figure 1.1 is more suggestive of a trend than the table, although it is harder to read exact values of

the function. For example, you might have noticed that every point in Figure 1.1 falls on a straight

line that slopes up from left to right. In general, a graph can reveal a pattern that might otherwise

go unnoticed. Finally, the formula has the advantage of being both compact and precise. However,

this compactness can also be a disadvantage since it may be harder to gain as much insight from a

formula as from a table or a graph.

Mathematical Models

When we use a function to describe an actual situation, the function is referred to as a mathematical

model. The formula � =
1

4
�+40 is a mathematical model of the relationship between the temper-

ature and the cricket’s chirp rate. Such models can be powerful tools for understanding phenomena

and making predictions. For example, this model predicts that when the chirp rate is 80 chirps per

minute, the temperature is 60◦F. In addition, since � = 40 when � = 0, the model predicts that the

chirp rate is 0 at 40◦F. Whether the model’s predictions are accurate for chirp rates down to 0 and

temperatures as low as 40◦F is a question that mathematics alone cannot answer; an understanding

of the biology of crickets is needed. However, we can safely say that the model does not apply for

temperatures below 40◦F, because the chirp rate would then be negative. For the range of chirp rates

and temperatures in Table 1.1, the model is remarkably accurate.

In everyday language, saying that � is a function of � suggests that making the cricket chirp

faster would somehow make the temperature change. Clearly, the cricket’s chirping does not cause

the temperature to be what it is. In mathematics, saying that the temperature “depends” on the chirp

rate means only that knowing the chirp rate is sufficient to tell us the temperature.
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Function Notation
To indicate that a quantity 
 is a function of a quantity �, we abbreviate


 is a function of � to 
 equals “� of �”

and, using function notation, to


 = � (�).

Thus, applying the rule � to the input value, �, gives the output value, � (�), which is a value of 
.

Here 
 is called the dependent variable and � is called the independent variable. In other words,

Output = � (Input)

or

Dependent = � (Independent).

We could have used any letter, not just � , to represent the rule.

The expressions “
 depends on �” or “
 is a function of �” do not imply a cause-and-effect

relationship, as the snowy tree cricket example illustrates.

Example 2 Example 1 gives the following formula for estimating air temperature, � , based on the chirp rate, �,

of the snowy tree cricket:

� =
1

4
� + 40.

In this formula, � depends on �. Writing � = � (�) indicates that the relationship is a function.

Example 3 The number of gallons of paint needed to paint a house depends on the size of the house. A gallon

of paint typically covers 250 square feet. Thus, the number of gallons of paint, 
, is a function of the

area to be painted, � ft2. We write 
 = � (�).

(a) Find a formula for � .

(b) Explain in words what the statement � (10,000) = 40 tells us about painting houses.

Solution (a) If � = 250, the house requires one gallon of paint. If � = 500, it requires 500∕250 = 2 gallons

of paint, if � = 750 it requires 750∕250 = 3 gallons of paint, and so on. We see that a house of

area � requires �∕250 gallons of paint, so 
 and � are related by the formula


 = � (�) =
�

250
.

(b) The input of the function 
 = � (�) is an area and the output is an amount of paint. The statement

� (10,000) = 40 tells us that an area of � = 10,000 ft2 requires 
 = 40 gallons of paint.

Functions Don’t Have to Be Defined by Formulas
People sometimes think that functions are always represented by formulas. However, other repre-

sentations, such as tables or graphs, can be useful.

Example 4 The average monthly rainfall, �, at Chicago’s O’Hare airport is given in Table 1.2, where time, �, is

in months and � = 1 is January, � = 2 is February, and so on. The rainfall is a function of the month,

so we write � = � (�). However, there is no formula that gives � when � is known. Evaluate � (1)

and � (11). Explain what your answers mean.

Table 1.2 Average monthly rainfall at Chicago’s O’Hare airport

Month, � 1 2 3 4 5 6 7 8 9 10 11 12

Rainfall, � (inches) 1.8 1.8 2.7 3.1 3.5 3.7 3.5 3.4 3.2 2.5 2.4 2.1

Solution The value of � (1) is the average rainfall in inches at Chicago’s O’Hare airport in a typical January.

From the table, � (1) = 1.8 inches. Similarly, � (11) = 2.4 means that in a typical November, there

are 2.4 inches of rain at O’Hare.
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When Is a Relationship Not a Function?

It is possible for two quantities to be related and yet for neither quantity to be a function of the other.

Example 5 A national park contains foxes that prey on rabbits. Table 1.3 gives the two populations, � and �,

over a 12-month period, where � = 0 means January 1, � = 1 means February 1, and so on.

Table 1.3 Number of foxes and rabbits in a national park, by month

�, month 0 1 2 3 4 5 6 7 8 9 10 11

�, rabbits 1000 750 567 500 567 750 1000 1250 1433 1500 1433 1250

� , foxes 150 143 125 100 75 57 50 57 75 100 125 143

(a) Is � a function of �? Is � a function of �?

(b) Is � a function of �? Is � a function of � ?

Solution (a) Remember that for a relationship to be a function, an input can only give a single output. Both

� and � are functions of �. For each value of �, there is exactly one value of � and exactly one

value of �. For example, Table 1.3 shows that if � = 5, then � = 750 and � = 57. This means

that on June 1 there are 750 rabbits and 57 foxes in the park. If we write � = � (�) and � = �(�),

then � (5) = 750 and �(5) = 57.

(b) No, � is not a function of �. For example, suppose � = 750, meaning there are 750 rabbits.

This happens both at � = 1 (February 1) and at � = 5 (June 1). In the first instance, there are 143

foxes; in the second instance, there are 57 foxes. Since there are �-values which correspond to

more than one � -value, � is not a function of �.

Similarly, � is not a function of � . At time � = 5, we have � = 750 when � = 57, while

at time � = 7, we have � = 1250 when � = 57 again. Thus, the value of � does not uniquely

determine the value of �.

How to Tell if a Graph Represents a Function: Vertical Line Test

What does it mean graphically for � to be a function of �? Look at a graph of � against �, with � on

the vertical axis and � on the horizontal axis. For a function, each �-value corresponds to exactly

one �-value. This means that the graph intersects any vertical line at most once (either once or not at

all). If a vertical line cuts the graph twice, the graph contains two points with different �-values but

the same �-value; this violates the definition of a function. Thus, we have the following criterion:

Vertical Line Test: If there is a vertical line that intersects a graph in more than one point,

then the graph does not represent a function.

Example 6 In which of the graphs in Figures 1.2 and 1.3 could � be a function of �?

6 12

50

100

150

�

�

Figure 1.2: Since no vertical line intersects this curve at

more than one point, � could be a function of �

50 100 150

50

100

150

(100, 50)

(100, 150)

�

�

Figure 1.3: Since one vertical line intersects this curve

at more than one point, � is not a function of �
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Solution The graph in Figure 1.2 could represent � as a function of � because no vertical line intersects this

curve in more than one point. The graph in Figure 1.3 does not represent a function because the

vertical line shown intersects the curve at two points.

A graph fails the vertical line test if at least one vertical line cuts the graph more than once, as

in Figure 1.3. However, if a graph represents a function, then every vertical line must intersect the

graph at no more than one point.

Exercises and Problems for Section 1.1

Skill Refresher

In Exercises S1–S4, simplify each expression.

S1. � +
1

2
� S2. � + 0.07� + 0.02�

S3. 2��2 + 2�� ⋅ 2� S4.
12� − 2�

6�

In Exercises S5–S8, find the value of the expressions for the

given value of � and �.

S5. � − 5� for � =
1

2
, � = −5.

S6. 1 − 12� + �2 for � = 3.

S7.
3

2 − �3
for � = −1.

S8.
4

1 + 1∕�
for � = − 3

4
.

The figures in Exercises S9–S10 are parallelograms. Find the

coordinates of the point �.

S9.

7

� (5, 8)

�

� S10.

1

15

�

(3, 7)

�

�

Exercises

In Exercises 1–2, write the relationship using function notation

(that is, � is a function of � is written � = � (�)).

1. Number of molecules, �, in a gas, is a function of the

volume of the gas, �.

2. Weight, �, is a function of caloric intake, �.

In Exercises 3–6, label the axes for a sketch to illustrate the

given statement.

3. “Over the past century we have seen changes in the pop-

ulation, � (in millions), of the city. . .”

4. “Sketch a graph of the cost of manufacturing � items. . .”

5. “Graph the pressure, �, of a gas as a function of its vol-

ume, �, where � is in pounds per square inch and � is in

cubic inches.”

6. “Graph � in terms of �. . .”

7. Figure 1.4 gives the depth of the water at Montauk Point,

New York, for a day in November.

(a) How many high tides took place on this day?

(b) How many low tides took place on this day?

(c) How much time elapsed in between high tides?

4 8 12 16 20 24
time (hours)

depth of water (feet)

Figure 1.4

8. Using Table 1.4, graph 
 = � (�), the number of gallons

of paint needed to cover walls of area �. Identify the in-

dependent and dependent variables.

Table 1.4

� 0 250 500 750 1000 1250 1500


 0 1 2 3 4 5 6
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9. Use Figure 1.5 to fill in the missing values:

(a) � (0) =? (b) � (?) = 0

1 2 3

20

40
� (�)

�

Figure 1.5

10. Use Table 1.5 to fill in the missing values. (There may be

more than one answer.)

(a) � (0) =? (b) � (?) = 0

(c) � (1) =? (d) � (?) = 1

Table 1.5

� 0 1 2 3 4

� (�) 4 2 1 0 1

Exercises 11–14 use Figure 1.6.

2.2 6.15.2 6.94 8

2.9

4.9

�

�

�

�

Figure 1.6

11. Find � (6.9).

12. Give the coordinates of two points on the graph of �.

13. Solve � (�) = 0 for �.

14. Solve � (�) = �(�) for �.

15. (a) You are going to graph � = � (�). Which variable

goes on the horizontal axis?

(b) If 10 = � (−4), give the coordinates of a point on the

graph of � .

(c) If 6 is a solution of the equation � (�) = 1, give a

point on the graph of � .

In Exercises 16–19 a relationship is given between two quan-

tities. Are both quantities functions of the other one, or is one

or neither a function of the other? Explain.

16. 7�2 + 5 = �2 17. � = �4 − 1 18. � =
√

�

19. The number of gallons of gas, �, at $3 per gallon and the

number of pounds of coffee, �, at $10 per pound that can

be bought for a total of $100.

In Exercises 20–25, could the graph represent � as a function

of �?

20.

�

� 21.

�

�

22.

�

� 23.

�

�

24.

�

� 25.

�

�

Problems

26. At the end of a semester, students’ math grades are listed

in a table which gives each student’s ID number in the left

column and the student’s grade in the right column. Let

� represent the ID number and � represent the grade.

Which quantity, � or �, must necessarily be a function

of the other?

27. A person’s blood sugar level at a particular time of the

day is partially determined by the time of the most recent

meal. After a meal, blood sugar level increases rapidly,

then slowly comes back down to a normal level. Sketch a

person’s blood sugar level as a function of time over the

course of a day. Label the axes to indicate normal blood

sugar level and the time of each meal.

28. When a parachutist jumps out of a plane, the speed of her

fall increases until she opens her parachute, at which time

her falling speed suddenly decreases and stays constant

until she reaches the ground. Sketch a possible graph of

the height � of the parachutist as a function of time �,

from the time when she jumps from the plane to the time

when she reaches the ground.

29. A buzzard is circling high overhead when it spies some

road kill. It swoops down, lands, and eats. Later it takes
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off sluggishly, and resumes circling overhead, but at a

lower altitude. Sketch a possible graph of the height of

the buzzard as a function of time.

30. Table 1.6 gives the ranking � for three different names—

Hannah, Alexis, and Madison. Of the three names, which

was most popular and which was least popular in

(a) 1995? (b) 2004?

Table 1.6 Ranking of names—Hannah (�ℎ), Alexis (�!), and Madison

(��)—for girls born between 1995 (� = 0) and 2004 (� = 9)2

� 0 1 2 3 4 5 6 7 8 9

�ℎ 7 7 5 2 2 2 3 3 4 5

�! 14 8 8 6 3 6 5 5 7 11

�� 29 15 10 9 7 3 2 2 3 3

31. Table 1.6 gives information about the popularity of the

names Hannah, Madison, and Alexis. Describe in words

what your answers to parts (a)–(c) tell you about these

names.

(a) Evaluate ��(0) − �ℎ(0).

(b) Evaluate ��(9) − �ℎ(9).

(c) Solve ��(�) < �!(�).

32. Figure 1.7 shows the fuel consumption (in miles per gal-

lon, mpg) of a car traveling at various speeds (in mph).

(a) How much gas is used on a 300-mile trip at 40 mph?

(b) How much gas is saved by traveling 60 mph instead

of 70 mph on a 200-mile trip?

(c) According to this graph, what is the most fuel-

efficient speed to travel? Explain.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

speed (mph)

fuel consumption
(mpg)

Figure 1.7

33. Match each story about a bike ride to one of the graphs

(i)–(v), where " represents distance from home and � is

time in hours since the start of the ride. (A graph may be

used more than once.)

(a) Starts 5 miles from home and rides 5 miles per hour

away from home.

(b) Starts 5 miles from home and rides 10 miles per hour

away from home.

(c) Starts 10 miles from home and arrives home one hour

later.

(d) Starts 10 miles from home and is halfway home after

one hour.

(e) Starts 5 miles from home and is 10 miles from home

after one hour.

21

5

10

15

�

"(i)

21

5

10

15

�

"(ii)

21

5

10

15

�

"(iii)

21

5

10

15

�

"(iv)

21

5

10

15

�

"(v)

34. Figure 1.8 shows the mass of water in air, in grams of

water per kilogram of air, as a function of air temperature

in ◦C, for two different levels of relative humidity.

(a) Find the mass of water in 1 kg of air at 30◦C if the

relative humidity is

(a) 100% (b) 50% (c) 75%

(b) How much water is in a room containing 300 kg of

air if the relative humidity is 50% and the tempera-

ture is 20◦C?

(c) The density of air is approximately 1.2 kg/m3. If the

relative humidity in your classroom is 50% and the

temperature is 20◦C, estimate the amount of water in

the air.

−20 −10 10 20 30 40 50

20

40

60

80

50% rel. humidity

100% rel. humidity

temperature in ◦C

amount of water (in g) in 1 kg of air

Figure 1.8

2Data from the SSA website at www.ssa.gov, accessed January 12, 2006.
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35. Let � (�) be the number of people, in millions, who own

cell phones � years after 1990. Explain the meaning of the

following statements.

(a) � (10) = 100.3 (b) � (!) = 20

(c) � (20) = # (d) 
 = � (�)

36. (a) Ten inches of snow is equivalent to about one inch

of rain.3 Write an equation for the amount of precip-

itation, measured in inches of rain, � = � ($), as a

function of the number of inches of snow, $.

(b) Evaluate and interpret � (5).

(c) Find $ such that � ($) = 5 and interpret your result.

37. An 8-foot-tall cylindrical water tank has a base of diam-

eter 6 feet.

(a) How much water can the tank hold?

(b) How much water is in the tank if the water is 5 feet

deep?

(c) Write a formula for the volume of water as a function

of its depth in the tank.

38. Table 1.7 gives � = � ("), the amount of money in bills

of denomination " circulating in US currency in 2013.4

For example, there were $74.5 billion worth of $50 bills

in circulation.

(a) Find � (100). What does this tell you about money?

(b) Are there more $1 bills or $5 bills in circulation?

Table 1.7

Denomination ($) 1 2 5 10 20 50 100

Circulation ($bn) 10.6 2.1 12.7 18.5 155.0 74.5 924.7

39. Table 1.8 shows the daily low temperature for a one-week

period in New York City during July.

(a) What was the low temperature on July 19?

(b) When was the low temperature 73◦F?

(c) Is the daily low temperature a function of the date?

(d) Is the date a function of the daily low temperature?

Table 1.8

Date 17 18 19 20 21 22 23

Low temp (◦F) 73 77 69 73 75 75 70

40. Use the data from Table 1.3 on page 5.

(a) Plot � on the vertical axis and � on the horizontal

axis. Use this graph to explain why you believe that

� is a function of �.

(b) Plot � on the vertical axis and � on the horizontal

axis. Use this graph to explain why you believe that

� is a function of �.

(c) Plot � on the vertical axis and � on the horizontal

axis. From this graph show that � is not a function

of �.

(d) Plot � on the vertical axis and � on the horizontal

axis. From this graph show that � is not a function

of � .

41. Since Roger Bannister broke the 4-minute mile on May

6, 1954, the record has been lowered by over sixteen sec-

onds. Table 1.9 shows the year and times (as min:sec) of

new world records for the one-mile run.5 (Official records

for the mile ended in 1999.)

(a) Is the time a function of the year? Explain.

(b) Is the year a function of the time? Explain.

(c) Let �(�) be the year in which the world record, �, was

set. Explain what is meant by the statement

�(3∶47.33) = 1981.

(d) Evaluate and interpret �(3∶51.1).

Table 1.9

Year Time Year Time Year Time

1954 3:59.4 1966 3:51.3 1981 3:48.53

1954 3:58.0 1967 3:51.1 1981 3:48.40

1957 3:57.2 1975 3:51.0 1981 3:47.33

1958 3:54.5 1975 3:49.4 1985 3:46.32

1962 3:54.4 1979 3:49.0 1993 3:44.39

1964 3:54.1 1980 3:48.8 1999 3:43.13

1965 3:53.6

42. The sales tax on an item is 6%. Express the total cost, % ,

in terms of the price of the item, � .

43. A price increases 5% due to inflation and is then reduced

10% for a sale. Express the final price as a function of the

original price, � .

44. Write a formula for the area of a circle as a function of

its radius and determine the percent increase in the area

if the radius is increased by 10%.

45. There are � male job-applicants at a certain company and

� female applicants. Suppose that 15% of the men are ac-

cepted and 18% of the women are accepted. Write an ex-

pression in terms of � and � representing each of the fol-

lowing quantities:

(a) The total number of applicants to the company.

(b) The total number of applicants accepted.

(c) The percentage of all applicants accepted.

3http://mo.water.usgs.gov/outreach/rain, accessed May 7, 2006.
4http://www.federalreserve.gov/paymentsystems/coin_currcircvalue.htm, accessed February 16, 2014.
5www.infoplease.com/ipsa/A0112924.html, accessed January 15, 2006.
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46. A chemical company spends $2 million to buy machin-

ery before it starts producing chemicals. Then it spends

$0.5 million on raw materials for each million liters of

chemical produced.

(a) The number of liters produced ranges from 0 to 5

million. Make a table showing the relationship be-

tween the number of million liters produced, &, and

the total cost, % , in millions of dollars, to produce

that number of million liters.

(b) Find a formula that expresses % as a function of &.

47. A person leaves home and walks due west for a time and

then walks due north.

(a) The person walks 10 miles in total. If � represents

the (variable) distance west she walks, and � repre-

sents her (variable) distance from home at the end of

her walk, is � a function of �? Why or why not?

(b) Suppose now that � is the distance that she walks in

total. Is � a function of �? Why or why not?

1.2 RATE OF CHANGE

The worldwide annual sales of smartphones have increased each year from when they were first

introduced. To measure how fast sales increase, we calculate a rate of change in number of units

sold
Change in units sold

Change in time
.

Due to the rising popularity of smartphones, annual sales of regular cell phones, or feature phones,

have been declining. See Table 1.10.

Let us calculate the rate of change of smartphone and feature phone sales between 2010 and

2013. Table 1.10 gives

Average rate of change of

smartphone sales from 2010 to 2013
=

Change in sales

Change in time
=

968 − 301

2013 − 2010
≈ 222.3

mn /

year.

Thus, the number of smartphones sold has increased on average by 222.3 million units per year

between 2010 and 2013. See Figure 1.9. Similarly, Table 1.10 gives

Average rate of change of feature phone

sales from 2010 to 2013
=

Change in sales

Change in time
=

838 − 1079

2013 − 2010
≈ −80.3

mn/

year.

Thus, the number of feature phones sold has decreased on average by 80.3 million units per year

between 2010 and 2013. See Figure 1.10.

Table 1.10 Worldwide annual sales of smartphones and feature phones6

Year 2010 2011 2012 2013

Smartphone sales (millions of units) 301 480 661 968

Feature phone sales (millions of units) 1079 1075 914 838

2010 2011 2012 2013

968

301

�

�

Change in sales
= 968 − 301

year

�� Change in time
= 2013 − 2010

smartphone sales
(millions)

Figure 1.9: Smartphone sales

2010 2011 2012 2013

838

1079
�
�

Change in sales
= 838 − 1079

year

feature phone sales
(millions)

�� Change in time
= 2013 − 2010

Figure 1.10: Feature phone sales

6Accessed Feb. 14 2014, www.fiercewireless.com/europe/story/gartner-smartphones-outsell-feature-phones-2013/2014-

02-13 and www.fiercewireless.com/europe/special-reports/analyzing-worlds-14-biggest-handset-makers-q2-2013
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Rate of Change of a Function

The rate of change of sales is an example of the rate of change of a function. In general, if 
 = � (�),

we write Δ
 for a change in 
 and Δ� for a change in �. We define:7

The average rate of change, or rate of change, of 
 with respect to � over an interval is

Average rate of change

over an interval
=

Change in 


Change in �
=

Δ


Δ�
.

The average rate of change of the function 
 = � (�) over an interval tells us how much 


changes, on average, for each unit change in � within that interval. On some parts of the interval, 


may be changing rapidly, while on other parts
 may be changing slowly. The average rate of change

evens out these variations.

Increasing and Decreasing Functions

In the previous example, the average rate of change of smartphone sales is positive on the interval

from 2010 to 2013 since the number of smartphones sold increased over this interval. Similarly, the

average rate of change of feature phone sales is negative on the same interval since the number of

feature phones sold decreased over this interval. The annual sales of smartphones is an example of

an increasing function and the annual sales of feature phones is an example of a decreasing function.

In general we say the following:

If 
 = � (�) for � in the interval ! ≤ � ≤ #,

• � is an increasing function if the values of � increase as � increases in this interval.

• � is a decreasing function if the values of � decrease as � increases in this interval.

Looking at smartphone sales, we see that an increasing function has a positive rate of change.

From the feature phone sales, we see that a decreasing function has a negative rate of change. In

general:

If 
 = � (�),

• If � is an increasing function, then the average rate of change of 
 with respect to � is

positive on every interval.

• If � is a decreasing function, then the average rate of change of 
 with respect to � is

negative on every interval.

Example 1 The function � = �(�) = ��2 gives the area, �, of a circle as a function of its radius, �. Graph �.

Explain how the fact that � is an increasing function can be seen on the graph.

Solution The area increases as the radius increases, so � = �(�) is an increasing function. We can see this in

Figure 1.11 because the graph climbs as we move from left to right and the average rate of change,

Δ�∕Δ�, is positive on every interval.

7The Greek letter Δ, delta, is often used in mathematics to represent change. In this book, we use rate of change to mean

average rate of change across an interval. In calculus, rate of change means something called instantaneous rate of change.
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1 2 3 4 5

10

20

30

40

50

60

70

80 �(�) = ��2

�

Lower value
of � results in

lower value
of�

�

Higher value
of � results in
higher value

of�

�

�

Δ�

Δ�

�, radius

�, area

Figure 1.11: The graph of an increasing function, � = �(�), rises when read from left to right

Example 2 Carbon-14 is a radioactive element that exists naturally in the atmosphere and is absorbed by living

organisms. When an organism dies, the carbon-14 present at death begins to decay. Let' = �(�) rep-

resent the quantity of carbon-14 (in micrograms, (g) in a tree � years after its death. See Table 1.11.

Explain why we expect � to be a decreasing function of � and how the graph displays this.

Table 1.11 Quantity of carbon-14 as a function of time

�, time (years) 0 1000 2000 3000 4000 5000

', quantity of carbon-14 ((g) 200 177 157 139 123 109

Solution Since the amount of carbon-14 is decaying over time, � is a decreasing function. In Figure 1.12, the

graph falls as we move from left to right and the average rate of change in the level of carbon-14

with respect to time, Δ'∕Δ�, is negative on every interval.

5000

50

100

150

200
�

Lower value of � results
in higher value of'

� Higher value of � results
in lower value of'

��
�

Δ�
Increase in �

�Δ'
Decrease in'

�, time (years)

', carbon-14 ((g)

Figure 1.12: The graph of a decreasing function, ' = �(�), falls when read from left to right

In general, we can identify an increasing or decreasing function from its graph as follows:

• The graph of an increasing function rises when read from left to right.

• The graph of a decreasing function falls when read from left to right.

Many functions have some intervals on which they are increasing and other intervals on which

they are decreasing. These intervals can often be identified from the graph.

Example 3 On what intervals is the function graphed in Figure 1.13 increasing? Decreasing?
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−3 −2

−1

1 2 3

−1

1

2

� (�)

�

Figure 1.13: Graph of a function that is increasing on some intervals and decreasing on others

Solution The function appears to be increasing for values of � between −3 and −2, for � between 0 and 1,

and for � between 2 and 3. The function appears to be decreasing for � between −2 and 0 and for �

between 1 and 2. Using inequalities, we say that � is increasing for −3 < � < −2, for 0 < � < 1,

and for 2 < � < 3. Similarly, � is decreasing for −2 < � < 0 and 1 < � < 2.

Function Notation for the Average Rate of Change

Suppose we want to find the average rate of change of a function
 = � (�) over the interval ! ≤ � ≤ #.

On this interval, the change in � is given by

Δ� = # − !.

At � = !, the value of 
 is � (!), and at � = #, the value of 
 is � (#). Therefore, the change in 
 is

given by

Δ
 = � (#) − � (!).

Using function notation, we express the average rate of change as follows:

Average rate of change of 
 = � (�)

over the interval ! ≤ � ≤ #
=

Change in 


Change in �
=

Δ


Δ�
=
� (#) − � (!)

# − !
.

In Figure 1.14, notice that the average rate of change is given by the ratio of the rise, � (#)−� (!),

to the run, # − !. This ratio is also called the slope of the dashed line segment.8

In the future, we may drop the word “average” and talk about the rate of change over an interval.

! #

� (!)

� (#)


 = � (�)

�

Rise = � (#) − � (!)

�Run
# − !

�

Average rate of change = Slope

�




Figure 1.14: The average rate of change is the ratio Rise/Run

8See Section 1.3 for further discussion of slope.
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In previous examples we calculated the average rate of change from data. We now calculate

average rates of change for functions given by formulas.

Example 4 Calculate the average rates of change of the function � (�) = �2 between � = 1 and � = 3 and

between � = −2 and � = 1. Show your results on a graph.

Solution Between � = 1 and � = 3, we have

Average rate of change of � (�)

over the interval 1 ≤ � ≤ 3
=

Change in � (�)

Change in �
=
� (3) − � (1)

3 − 1

=
32 − 12

3 − 1
=

9 − 1

2
= 4.

Between � = −2 and � = 1, we have

Average rate of change of � (�)

over the interval −2 ≤ � ≤ 1
=

Change in � (�)

Change in �
=
� (1) − � (−2)

1 − (−2)

=
12 − (−2)2

1 − (−2)
=

1 − 4

3
= −1.

The average rate of change between � = 1 and � = 3 is positive because � (�) is increasing on

this interval. See Figure 1.15. However, on the interval from � = −2 and � = 1, the function is partly

decreasing and partly increasing. The average rate of change on this interval is negative because the

decrease on the interval is larger than the increase.

(−2, 4)

(1, 1)

(3, 9)

� (�) = �2

�
Slope = −1

� Slope = 4

�

Figure 1.15: Average rate of change of � (�) on an interval is the slope of the dashed line on that interval

Exercises and Problems for Section 1.2

Skill Refresher

In Exercises S1–S10, simplify each expression.

S1.
4 − 6

3 − 2
S2.

1 − 3

22 − (−3)2

S3.
−3 − (−9)

−1 − 2
S4.

(1 − 32) − (1 − 42)

3 − 4

S5.

1

2
− (−4)2 −

(

1

2
− (52)

)

−4 − 5

S6. 2(� + !) − 3(� − #)

S7. �2 − (2� + !)2

S8. 4�2 − (� − #)2

S9.

�2 −
3

4
−
(

�2 −
3

4

)

� − �

S10.
2(� + ℎ)2 − 2�2

(� + ℎ) − �
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Exercises

In Exercises 1–4, on what intervals is the function increasing?

Decreasing?

1.

�

� 2.

1 2
�

�

3.

1

−1
�

� 4.

�

�

5. Table 1.10 on page 10 gives the annual sales (in millions)

of smartphones and feature phones. What was the average

rate of change of annual sales of each of them between

(a) 2010 and 2012? (b) 2012 and 2013?

(c) Interpret these results in terms of sales.

6. Table 1.10 on page 10 shows that feature phone sales are

a function of smartphone sales. Is this function increasing

or decreasing?

7. In 2007, you have 40 songs in your favorite iTunes

playlist. In 2010, you have 120 songs. In 2014, you have

40. What is the average rate of change per year in the num-

ber of songs in your favorite iTunes playlist between

(a) 2007 and 2010? (b) 2010 and 2014?

(c) 2007 and 2014?

8. Table 1.12 gives the populations of two cities (in thou-

sands) over a 17-year period.

(a) Find the average rate of change of each population

on the following intervals:

(i) 1996 to 2006 (ii) 1996 to 2013

(iii) 2001 to 2013

(b) What do you notice about the average rate of change

of each population? Explain what the average rate of

change tells you about each population.

Table 1.12

Year 1996 1998 2001 2006 2013

�1 42 46 52 62 76

�2 82 80 77 72 65

9. Figure 1.16 shows distance traveled as a function of time.

(a) Find Δ� and Δ� between:

(i) � = 2 and � = 5 (ii) � = 0.5 and � = 2.5

(iii) � = 1.5 and � = 3

(b) Compute the rate of change, Δ�∕Δ�, over each of

the intervals in part (a), and interpret its meaning.

1 2 3 4 5

15

30

45

60

75

90

105

120

135

150

� (hours)

� (miles)

Figure 1.16

Exercises 10–14 use Figure 1.17.

2.2 6.15.2 6.94 8

2.9

4.9

�

�

�

�

Figure 1.17

10. Find the average rate of change of � for 2.2 ≤ � ≤ 6.1.

11. Give two different intervals on which Δ� (�)∕Δ� = 0.

12. What is the average rate of change of � between � = 2.2

and � = 6.1?

13. What is the relation between the average rate of change

of � and the average rate of change of � between � = 2.2

and � = 6.1?

14. Is the rate of change of � positive or negative on the fol-

lowing intervals?

(a) 2.2 ≤ � ≤ 4 (b) 5 ≤ � ≤ 6

15. If � is a decreasing function, what can you say about

� (−2) compared to � (2)?

16. If � is an increasing function, what can you say about

�(3) − �(−1)?
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Problems

17. Figure 1.18 shows the percent of the side of the moon to-

ward the earth illuminated by the sun at different times

during the year 2008. Use the figure to answer the fol-

lowing questions.

(a) Give the coordinates of the points �, ), % , �, *.

(b) Plot the point � = (15, 60) and � = (60, 15). Which

point is on the graph?

(c) During which time intervals is the function increas-

ing?

(d) During which time intervals is the function decreas-

ing?

10 30 50 70 90

10

20

30

40

50

60

70

80

90

100

�

)

%

� *

day of the
year (2008)

% of face of moon
toward earth illuminated

Figure 1.18: Moon phases

18. Figure 1.19 gives the population of two different towns

over a 50-year period of time.

(a) Which town starts (in year � = 0) with the most peo-

ple?

(b) Which town is growing faster over these 50 years?

10 20 30 40 50

5

10

15

20

25 Town A

Town B

�, time (years)

� , population (in 1000s)

Figure 1.19

19. (a) What is the average rate of change of �(�) = 2� − 3

between the points (−2,−7) and (3, 3)?

(b) The function � is either increasing or decreasing ev-

erywhere. Explain how your answer to part (a) tells

you which.

(c) Graph the function.

20. (a) Let � (�) = 16 − �2. Compute each of the following

expressions, and interpret each as an average rate of

change.

(i)
� (2) − � (0)

2 − 0
(ii)

� (4) − � (2)

4 − 2

(iii)
� (4) − � (0)

4 − 0

(b) Graph � (�). Illustrate each ratio in part (a) by sketch-

ing the line segment with the given slope. Over

which interval is the average rate of decrease the

greatest?

21. Imagine you constructed a list of the world record times

for a particular event—such as the mile footrace, or the

100-meter freestyle swimming race—in terms of when

they were established. Is the world record time a function

of the date when it was established? If so, is this function

increasing or decreasing? Explain. Could a world record

be established twice in the same year? Is the world record

time a function of the year it was established?

22. The function � = � (�) gives the population of a town,

in thousands, after � years. A graph of � is given in Fig-

ure 1.20.

(a) Find the average rate of change of the population of

the town during the first 10 years.

(b) Does the population of the town grow more between

� = 5 and � = 10 years, or between � = 15 and � = 30

years? Explain.

(c) Does the population of the town grow faster between

� = 5 and � = 10 years, or between � = 15 and � = 30

years? Explain.

10 20 30

10

20

�

�

Figure 1.20
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23. The most freakish change in temperature ever recorded

was from −4◦F to 45◦F between 7:30 am and 7:32 am on

January 22, 1943 at Spearfish, South Dakota.9 What was

the average rate of change of the temperature for this time

period?

24. You have zero dollars now and the average rate of change

in your net worth is $5000 per year. How much money

will you have in forty years?

25. The surface of the sun has dark areas known as sunspots,

that are cooler than the rest of the sun’s surface. The num-

ber of sunspots10 fluctuates with time, as shown in Fig-

ure 1.21.

(a) Explain how you know the number of sunspots, $, in

year � is a function of �.

(b) Approximate the time intervals on which $ is an in-

creasing function of �.

1960 1970 1980 1990 2000 2010

40

80

120

160

� (year)

$ (number of sunspots)

Figure 1.21

26. Table 1.13 shows the number of calories used per minute

as a function of body weight for three sports.11

(a) Determine the number of calories that a 200-lb per-

son uses in one half-hour of walking.

(b) Who uses more calories, a 120-lb person swimming

for one hour or a 220-lb person bicycling for a half-

hour?

(c) Does the number of calories used by a person walk-

ing increase or decrease as weight increases?

Table 1.13

Activity 100 lb 120 lb 150 lb 170 lb 200 lb 220 lb

Walking 2.7 3.2 4.0 4.6 5.4 5.9

Bicycling 5.4 6.5 8.1 9.2 10.8 11.9

Swimming 5.8 6.9 8.7 9.8 11.6 12.7

27. Because scientists know how much carbon-14 a living or-

ganism should have in its tissues, they can measure the

amount of carbon-14 present in the tissue of a fossil and

then calculate how long it took for the original amount

to decay to the current level, thus determining the time

of the organism’s death. A tree fossil is found to contain

130 (g of carbon-14, and scientists determine from the

size of the tree that it would have contained 200 (g of

carbon-14 at the time of its death. Using Table 1.11 on

page 12, approximately how long ago did the tree die?

28. Figure 1.22 shows the graph of the function �(�).

(a) Estimate
�(4) − �(0)

4 − 0
.

(b) The ratio in part (a) is the slope of a line segment

joining two points on the graph. Sketch this line seg-

ment on the graph.

(c) Estimate
�(#) − �(!)

# − !
for ! = −9 and # = −1.

(d) On the graph, sketch the line segment whose slope is

given by the ratio in part (c).

−9 −6 −3 3 6 9

−3

−2

−1

1

2

3

�

�(�)

Figure 1.22

29. Find the average rate of change of � (�) = 3�2+1 between

the points

(a) (1, 4) and (2, 13) (b) (+, -) and (�, 
)

(c) (�, � (�)) and (�+ℎ, � (�+ℎ))

30. A water company employee measured the water level (in

centimeters) in a reservoir during March and computed

the average rates of change in Table 1.14.

(a) What are the units of the average rates of change in

Table 1.14?

(b) Interpret the average rates of change in context.

(c) For each time interval, what was the total change in

water level?

(d) Draw a possible graph of the water level as a function

of time.

Table 1.14

Interval (days) 1 ≤ � < 11 11 ≤ � < 16 16 ≤ � < 31

Average rate of change 7 5 3

9The Guinness Book of Records. 1995.
10ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SUNSPOT NUMBERS/YEARLY.PLT, accessed November 30, 2009.
11From 1993 World Almanac.
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31. Table 1.15 gives the amount of garbage, �, in millions of

tons, produced12 in the US in year �.

(a) What is the value of Δ� for consecutive entries in this

table?

(b) Calculate the value of Δ� for each pair of consecu-

tive entries in this table.

(c) Are all the values of Δ� you found in part (b) the

same? What does this tell you?

(d) The function � changed from increasing to decreas-

ing between 2005 and 2010. To what might this be

attributed?

Table 1.15

� 1960 1970 1980 1990 2000 2005 2010

� 88.1 121.1 151.6 208.3 242.5 252.7 249.9

32. Table 1.16 shows the times, �, in sec, achieved every 10

meters by Carl Lewis in the 100-meter final of the World

Championship in Rome in 1987.13 Distance, ", is in me-

ters.

(a) For each successive time interval, calculate the av-

erage rate of change of distance. What is a common

name for the average rate of change of distance?

(b) Where did Carl Lewis attain his maximum speed dur-

ing this race? Some runners are running their fastest

as they cross the finish line. Does that seem to be true

in this case?

Table 1.16

� 0.00 1.94 2.96 3.91 4.78 5.64

" 0 10 20 30 40 50

� 6.50 7.36 8.22 9.07 9.93

" 60 70 80 90 100

1.3 LINEAR FUNCTIONS

Constant Rate of Change

In the previous section, we introduced the average rate of change of a function on an interval. For

many functions, the average rate of change is different on different intervals. For the remainder of

this chapter, we consider functions that have the same average rate of change on every interval. Such

a function has a graph that is a line and is called linear.

Population Growth

Mathematical models of population growth are used by city planners to project the growth of towns

and states. Biologists model the growth of animal populations and physicians model the spread of

an infection in the bloodstream. One possible model, a linear model, assumes that the population

changes at the same average rate on every time interval.

Example 1 A town of 30,000 people grows by 2000 people every year. Since the population, � , is growing at

the constant rate of 2000 people per year, � is a linear function of time, �, in years.

(a) What is the average rate of change of � over every time interval?

(b) Make a table that gives the town’s population every five years over a 20-year period. Graph the

population.

(c) Find a formula for � as a function of �.

Solution (a) The average rate of change of population with respect to time is 2000 people per year.

(b) The initial population in year � = 0 is � = 30,000 people. Since the town grows by 2000 people

every year, after five years it has grown by

2000 people

year
⋅ 5 years = 10,000 people.

Thus, in year � = 5 the population is given by

� = Initial population + New population = 30,000 + 10,000 = 40,000.

12http://http://www.epa.gov/osw/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf, accessed January, 2013.
13W. G. Pritchard, “Mathematical Models of Running”, SIAM Review. 35, 1993, pp. 359–379.
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In year � = 10 the population is given by

� = 30,000 + 2000 people/year ⋅ 10 years
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

20,000 new people

= 50,000.

Similar calculations for year � = 15 and year � = 20 give the values in Table 1.17. See Fig-

ure 1.23; the dashed line shows the trend in the data.

Table 1.17 Population over 20 years

�, years � , population

0 30,000

5 40,000

10 50,000

15 60,000

20 70,000 5 10 15 20

� = 30,000 + 2000�

10,000
20,000
30,000
40,000

50,000
60,000
70,000

�, time (years)

� , population

Figure 1.23: Town’s population over 20 years

(c) From part (b), we see that the size of the population is given by

� = Initial population+ Number of new people

= 30,000 + 2000 people/year ⋅ Number of years,

so a formula for � in terms of � is

� = 30,000 + 2000�.

The graph of the population data in Figure 1.23 is a straight line. The average rate of change

of the population over every interval is the same, namely 2000 people per year. Any linear function

has the same average rate of change over every interval. Thus, we talk about the rate of change of a

linear function. In general:

• A linear function has a constant rate of change.

• The graph of any linear function is a straight line.

Financial Models

Economists and accountants use linear functions for straight-line depreciation. For tax purposes,

the value of certain equipment is considered to decrease, or depreciate, over time. For example,

computer equipment may be state-of-the-art today, but after several years it is outdated. Straight-line

depreciation assumes that the rate of change of value with respect to time is constant.

Example 2 A small business spends $20,000 on new computer equipment and, for tax purposes, chooses to

depreciate it to $0 at a constant rate over a five-year period.

(a) Make a table and a graph showing the value of the equipment over the five-year period.

(b) Give a formula for value as a function of time.

Solution (a) After five years, the equipment is valued at $0. If / is the value in dollars and � is the number

of years, we see that

Rate of change of value

from � = 0 to � = 5
=

Change in value

Change in time
=

Δ/

Δ�
=

−$20,000

5 years
= −$4000 per year.
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Thus, the value drops at the constant rate of $4000 per year. (Notice that Δ/ is negative

because the value of the equipment decreases.) See Table 1.18 and Figure 1.24. Since / changes

at a constant rate, / = � (�) is a linear function and its graph is a straight line. The rate of change,

−$4000 per year, is negative because the function is decreasing and the graph slopes down.

Table 1.18 Value of equipment

depreciated over a 5-year period

�, year / , value ($)

0 20,000

1 16,000

2 12,000

3 8000

4 4000

5 0

1 2 3 4 5

4

8

12

16

20

�, time (years)

/ , value ($1000s)

Figure 1.24: Value of equipment depreciated over a 5-year period

(b) After � years have elapsed,

Decrease in value of equipment = $4000 ⋅ Number of years = $4000�.

The initial value of the equipment is $20,000, so at time �,

/ = 20,000 − 4000�.

A General Formula for the Family of Linear Functions

Example 1 involved a town whose population is growing at a constant rate with formula

Current
population =

Initial
population
⏟⏞⏞⏟⏞⏞⏟
30,000 people

+
Growth

rate
⏟⏟⏟

2000 people per year

×
Number of

years
⏟⏞⏞⏟⏞⏞⏟

�

so

� = 30,000 + 2000�.

In Example 2, the value, / , as a function of � is given by

Total
cost =

Initial
value
⏟⏟⏟
$20,000

+
Change per

year
⏟⏞⏞⏞⏟⏞⏞⏞⏟
−$4000 per year

×
Number of

years
⏟⏞⏞⏟⏞⏞⏟

�

so

/ = 20,000 + (−4000)�.

Using the symbols �, �, #, �, we see formulas for both of these linear functions follow the same

pattern:

Output
⏟⏟⏟

�

= Initial value
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

#

+Rate of change
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�

× Input
⏟⏟⏟

�

.
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Summarizing, we get the following results:

If � = � (�) is a linear function, then for some constants # and �:

� = # + ��.

• � is called the slope, and gives the rate of change of � with respect to �. Thus,

� =
Δ�

Δ�
.

If (�0, �0) and (�1, �1) are any two distinct points on the graph of � , then

� =
Δ�

Δ�
=
�1 − �0

�1 − �0
.

• # is called the vertical intercept, or �-intercept, and gives the value of � for � = 0. In

mathematical models, # typically represents an initial, or starting, value of the output.

Every linear function can be written in the form � = # + ��. Different linear functions have

different values for � and #. These constants are known as parameters; the set of all linear functions

is called a family.

Example 3 In Example 1, the population function, � = 30,000 + 2000�, has slope � = 2000 and vertical

intercept # = 30,000. In Example 2, the value of the computer equipment, / = 20,000− 4000�, has

slope � = −4000 and vertical intercept # = 20,000.

Tables for Linear Functions

A table of values could represent a linear function if the rate of change is constant, for all pairs of

points in the table; that is,

Rate of change of linear function =
Change in output

Change in input
= Constant.

Thus, if the value of � goes up by equal steps in a table for a linear function, then the value of �

goes up (or down) by equal steps as well. We say that changes in the value of � are proportional to

changes in the value of �.

Example 4 Table 1.19 gives values of two functions, � and �. Could either of these functions be linear?

Table 1.19 Values of two functions � and �

� 50 55 60 65 70

�(�) 0.10 0.11 0.12 0.13 0.14

�(�) 0.01 0.03 0.06 0.14 0.15

Solution The value of � goes up by equal steps of Δ� = 5. The value of �(�) also goes up by equal steps of

Δ� = 0.01, so Δ�∕Δ� is a constant. See Table 1.20. Thus, � could be a linear function.
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Table 1.20 Values of Δ�∕Δ�

� �(�) Δ� Δ�∕Δ�

50 0.10

0.01 0.002

55 0.11

0.01 0.002

60 0.12

0.01 0.002

65 0.13

0.01 0.002

70 0.14

Table 1.21 Values of Δ�∕Δ�

� �(�) Δ� Δ�∕Δ�

50 0.01

0.02 0.004

55 0.03

0.03 0.006

60 0.06

0.08 0.016

65 0.14

0.01 0.002

70 0.15

In contrast, the value of �(�) does not go up by equal steps. The value climbs by 0.02, then by

0.03, and so on. See Table 1.21. This means that Δ�∕Δ� is not constant. Thus, � could not be a linear

function.

It is possible to have data from a linear function in which neither the �-values nor the �-values

go up by equal steps. However the rate of change must be constant, as in the following example.

Example 5 The former Republic of Yugoslavia exported cars called Yugos to the US between 1985 and 1989.

The car is now a collector’s item.14 Table 1.22 gives the quantity of Yugos sold, 
, and the price, �,

for each year from 1985 to 1988.

(a) Using Table 1.22, explain why 
 could be a linear function of �.

(b) What does the rate of change of this function tell you about Yugos?

Table 1.22 Price and sales of Yugos in the US

Year Price in $, � Number sold, 


1985 3990 49,000

1986 4110 43,000

1987 4200 38,500

1988 4330 32,000

Solution (a) We are interested in
 as a function of �, so we plot
 on the vertical axis and � on the horizontal

axis. The data points in Figure 1.25 appear to lie on a straight line, suggesting a linear function.

4000 4100 4200 4300 4400

30,000

35,000

40,000

45,000

50,000

�, price ($)


, number sold

Figure 1.25: Since the data from Table 1.22 falls on a straight

line, the table could represent a linear function

14www.inet.hr/˜pauric/epov.htm, accessed January 16, 2006.
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To provide further evidence that 
 is a linear function, we check that the rate of change of


 with respect to � is constant for the points given. When the price of a Yugo rose from $3990

to $4110, sales fell from 49,000 to 43,000. Thus,

Δ� = 4110 − 3990 = 120,

Δ
 = 43,000 − 49,000 = −6000.

Since the number of Yugos sold decreased, Δ
 is negative. Thus, as the price increased from

$3990 to $4110,

Rate of change of quantity as price increases =
Δ


Δ�
=

−6000

120
= −50 cars per dollar.

Next, we calculate the rate of change as the price increased from $4110 to $4200 to see if

the rate remains constant:

Rate of change =
Δ


Δ�
=

38,500 − 43,000

4200 − 4110
=

−4500

90
= −50 cars per dollar,

and as the price increased from $4200 to $4330:

Rate of change =
Δ


Δ�
=

32,000 − 38,500

4330 − 4200
=

−6500

130
= −50 cars per dollar.

Since the rate of change,−50, is constant,
 could be a linear function of �. Given additional

data,Δ
∕Δ�might not remain constant. However, based on the table, it appears that the function

is linear.

(b) Since Δ
 is the change in the number of cars sold and Δ� is the change in price, the rate of

change is −50 cars per dollar. Thus the number of Yugos sold decreased by 50 each time the

price increased by $1.

Warning: Not All Graphs That Look Like Lines Represent Linear Functions

The graph of any linear function is a line. However, a function’s graph can look like a line without

actually being one. Consider the following example.

Example 6 The function � = 100(1.02)� approximates the population of Mexico in the early 2000s. Here �

is the population (in millions) and � is the number of years since 2000. Table 1.23 and Figure 1.26

show values of � over a 5-year period. Is � a linear function of �?

Table 1.23 Population of

Mexico � years after 2000

� (years) � (millions)

0 100

1 102

2 104.04

3 106.12

4 108.24

5 110.41

1 2 3 4 5

20

40

60

80

100

120

140

	

This looks like a
straight line (but isn’t)

�, time (years
since 2000)

� , population (millions)

Figure 1.26: Graph of � = 100(1.02)� over 5-year

period: Looks linear (but is not)
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Solution The formula � = 100(1.02)� cannot be written in the form � = #+��, so � is not a linear function of

�. However, the graph of � in Figure 1.26 appears to be a straight line. We check � ’s rate of change

in Table 1.23. When � = 0, � = 100 and when � = 1, � = 102. Thus, between 2000 and 2001,

Rate of change of population =
Δ�

Δ�
=

102 − 100

1 − 0
= 2.

For the interval from 2001 to 2002, we have

Rate of change =
Δ�

Δ�
=

104.04 − 102

2 − 1
= 2.04,

and for the interval from 2004 to 2005, we have

Rate of change =
Δ�

Δ�
=

110.41 − 108.24

5 − 4
= 2.17.

Thus, � ’s rate of change is not constant. In fact, � appears to be increasing at a faster and faster rate.

Table 1.24 and Figure 1.27 show values of � over a longer (60-year) period. On this scale, these

points do not appear to fall on a straight line. However, the graph of � curves upward so gradually

at first that over the short interval shown in Figure 1.26, it barely curves at all. The graphs of many

nonlinear functions, when viewed on a small scale, appear to be linear.

Table 1.24 Population over 60 years

� (years since 2000) � (millions)

0 100

10 121.90

20 148.59

30 181.14

40 220.80

50 269.16

60 328.10

5 10 20 30 40 50 60

50

100

150

200

250

300

� This region of the graph
appears in the previous figure

�, time (years
since 2000)

� , population (millions)

Figure 1.27: Graph of � = 100(1.02)� over 60 years: Not linear

Exercises and Problems for Section 1.3

Skill Refresher

In Exercises S1–S2, find � (0) and � (3).

S1. � (�) =
2

3
� + 5 S2. � (�) = 17 − 4�

In Exercises S3–S4, find � (2) − � (0).

S3.
� 0 1 2 3

� (�) −2 0 3 4

S4.
� −1 0 1 2

� (�) 0 2 7 −1

In Exercises S5–S6, find the coordinates of the � and � inter-

cepts.

S5. � = −4� + 3 S6. 5� − 2� = 4

For each of the linear expressions in � in Exercises S7–S10,

give the constant term and the coefficient of �.

S7. 3 − 2� +
1

2

S8. 4 − 3(� + 2) + 6(2� − 1)

S9. !� − !# − 3� + ! + 3

S10. 5(� − 1) + 3
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Exercises

In Exercises 1–3, which line has the greater

(a) Slope? (b) �-intercept?

1. � = −1 + 2�; � = −2 + 3�

2. � = 3 + 4�; � = 5 − 2�

3. � =
1

4
�; � = 1 − 6�

In Exercises 4–9, could the data represent a linear function? If

so, give the rate of change.

4.
� 0 5 10 15

� (�) 10 20 30 40

5.
� 0 10 20 30

ℎ(�) 20 40 50 55

6.
� 0 100 300 600

�(�) 50 100 150 200

7.
� 1 2 3 4 5

�(�) 5 4 5 4 5

8.
� −3 −1 0 3

+(�) 5 1 −1 −7

9.
0 9 8 7 6 5

�(0) 42 52 62 72 82

In Exercises 10–13, identify the vertical intercept and the

slope, and explain their meanings in practical terms.

10. The population of a town can be represented by the for-

mula � (�) = 54.25 −
2

7
�, where � (�) represents the pop-

ulation, in thousands, and � represents the time, in years,

since 1970.

11. A stalactite grows according to the formula '(�) =

17.75+
1

250
�, where '(�) represents the length of the sta-

lactite, in inches, and � represents the time, in years, since

the stalactite was first measured.

12. The profit, in dollars, of selling 
 items is given by � (
) =

0.98
 − 3000.

13. A phone company charges according to the formula

%(
) = 29.99+0.05
, where 
 is the number of minutes,

and %(
) is the monthly phone charge, in dollars.

Problems

14. Table 1.25 shows the cost % , in dollars, of selling � cups

of coffee per day from a cart.

(a) Using the table, show that the relationship appears to

be linear.

(b) Plot the data in the table.

(c) Find the slope of the line. Explain what this means

in the context of the given situation.

(d) Why should it cost $50 to serve zero cups of coffee?

Table 1.25

� 0 5 10 50 100 200

% 50.00 51.25 52.50 62.50 75.00 100.00

15. Table 1.26 gives the proposed fine � = � (�) to be imposed

on a motorist for speeding, where � is the motorist’s speed

and 55 mph is the speed limit.

(a) Decide whether � appears to be linear.

(b) What would the rate of change represent in practical

terms for the motorist?

(c) Plot the data points.

Table 1.26

� (mph) 60 65 70 75 80 85

� (dollars) 75 100 125 150 175 200

16. In 2003, the number, � , of cases of SARS (Severe Acute

Respiratory Syndrome) reported in Hong Kong15 was ini-

tially approximated by � = 78.9 + 30.1�, where � is the

number of days since March 17. Interpret the constants

78.9 and 30.1.

17. A new Toyota RAV4 costs $23,500. The car’s value de-

preciates linearly to $18,823 in three years time.16 Write a

formula which expresses its value, / , in terms of its age,

�, in years.

18. In 2012, the population of a town was 21,510 and growing

by 63 people per year. Find a formula for � , the town’s

population, in terms of �, the number of years since 2012.

19. A flight costs $10,000 to operate, regardless of the num-

ber of passengers. Each ticket costs $127. Express profit,

�, as a linear function of the number of passengers, 
, on

the flight.

15World Health Organization, www.who.int/csr/sars/country/en, accessed September, 2005
16http://www.motortrend.com/used_cars/11/toyota/rav4/pricing/, accessed January 2013
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20. Owners of an inactive quarry in Australia have decided

to resume production. They estimate that it will cost them

$10,000 per month to maintain and insure their equipment

and that monthly salaries will be $30,000. It costs $800

to mine a ton of rocks. Write a formula that expresses the

total cost each month, �, as a function of �, the number of

tons of rock mined per month.

21. In each case, graph a linear function with the given rate

of change. Label and put scales on the axes.

(a) Increasing at 2.1 inches/day

(b) Decreasing at 1.3 gallons/mile

22. A small café sells coffee for $3.50 per cup. On average, it

costs the café $0.50 to make a cup of coffee (for grounds,

hot water, filters). The café also has a fixed daily cost of

$450 (for rent, wages, utilities).

(a) Let �, % , and � be the café’s daily revenue, costs,

and profit, respectively, for selling � cups of coffee

in a day. Find formulas for �, % , and � as functions

of �. [Hint: The revenue, �, is the total amount of

money that the café brings in. The cost, % , includes

the fixed daily cost as well as the cost for all � cups

of coffee sold. � is the café’s profit after costs have

been accounted for.]

(b) Plot � against �. For what �-values is the graph of �

below the �-axis? Above the �-axis? Interpret your

results.

(c) Interpret the slope and both intercepts of your graph

in practical terms.

23. Table 1.27 gives the area and perimeter of a square as a

function of the length of its side.

(a) From the table, decide if either area or perimeter

could be a linear function of side length.

(b) From the data make two graphs, one showing area as

a function of side length, the other showing perime-

ter as a function of side length. Connect the points.

(c) If you find a linear relationship, give its correspond-

ing rate of change and interpret its significance.

Table 1.27

Length of side 0 1 2 3 4 5 6

Area of square 0 1 4 9 16 25 36

Perimeter of square 0 4 8 12 16 20 24

24. Make two tables, one comparing the radius of a circle to

its area, the other comparing the radius of a circle to its

circumference. Repeat parts (a), (b), and (c) from Prob-

lem 23, this time comparing radius with circumference,

and radius with area.

25. Sri Lanka is an island that experienced approximately lin-

ear population growth from 1950 to 2000. On the other

hand, Afghanistan was torn by warfare in the 1980s and

did not experience linear or near-linear growth.17

(a) Table 1.28 gives the population of these two coun-

tries, in millions. Which of these two countries is A

and which is B? Explain.

(b) What is the approximate rate of change of the linear

function? What does the rate of change represent in

practical terms?

(c) Estimate the population of Sri Lanka in 1988.

Table 1.28

Year 1950 1960 1970 1980 1990 2000

Population of country A 8.2 9.8 12.4 15.1 14.7 23.9

Population of country B 7.5 9.9 12.5 14.9 17.2 19.2

26. Table 1.29 gives the average temperature, � , at a depth ",

in a borehole in Belleterre, Quebec.18 Evaluate Δ� ∕Δ"

on the following intervals, and explain what your answers

tell you about borehole temperature.

(a) 25 ≤ " ≤ 150

(b) 25 ≤ " ≤ 75

(c) 100 ≤ " ≤ 200

Table 1.29

", depth (m) 25 50 75 100

� , temp (◦C) 5.50 5.20 5.10 5.10

", depth (m) 125 150 175 200

� , temp (◦C) 5.30 5.50 5.75 6.00

", depth (m) 225 250 275 300

� , temp (◦C) 6.25 6.50 6.75 7.00

27. Table ?? gives the temperature-depth profile, � = � ("),

in a borehole in Belleterre, Quebec, where � is the aver-

age temperature at a depth ".

(a) Could � be linear?

(b) Graph � . What do you notice about the graph for

" ≥ 150?

(c) What can you say about the average rate of change

of � for " ≥ 150?

17www.census.gov/ipc/www/idbsusum.html, accessed January 12, 2006.
18Hugo Beltrami of St. Francis Xavier University and David Chapman of the University of Utah posted this data at

http://geophysics.stfx.ca/public/borehole/borehole.html, accessed November 10, 2005.
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28. A company finds that there is a linear relationship be-

tween the amount of money that it spends on advertising

and the number of units it sells. If it spends no money on

advertising, it sells 300 units. For each additional $5000

spent, an additional 20 units are sold.

(a) If � is the amount of money that the company spends

on advertising, find a formula for �, the number of

units sold as a function of �.

(b) How many units does the firm sell if it spends

$25,000 on advertising? $50,000?

(c) How much advertising money must be spent to sell

700 units?

(d) What is the slope of the line you found in part (a)?

Give an interpretation of the slope that relates units

sold and advertising costs.

29. Tuition cost � (in dollars) for part-time students at

Stonewall College is given by � = 300 +200% , where %

represents the number of credits taken.

(a) Find the tuition cost for eight credits.

(b) How many credits were taken if the tuition was

$1700?

(c) Make a table showing costs for taking from one to

twelve credits. For each value of % , give both the tu-

ition cost, � , and the cost per credit, � ∕% . Round to

the nearest dollar.

(d) Which of these values of % has the smallest cost per

credit?

(e) What does the 300 represent in the formula for � ?

(f) What does the 200 represent in the formula for � ?

30. The summit of Africa’s largest peak, Mt. Kilimanjaro,

consists of the northern and southern ice fields and the

Furtwangler glacier. An article in the Proceedings of the

National Academy of Sciences19 indicates that in 2000

(� = 0) the area of the ice cover at the peak of Mt. Kili-

manjaro was approximately 1951 m2. By 2007, the area

had shrunk to approximately 1555 m2.

(a) If this decline is modeled by a linear function, find

� = � (�), the equation of the ice-cover area as a func-

tion of time. Explain what the slope and �-intercept

mean in terms of the ice cover.

(b) Evaluate � (11).

(c) If this model is correct, when would you expect the

ice cover to disappear?

31. When each of the following equations are written in the

form � = # + ��, the result is � = 5 + 4�. Find the con-

stants �, $, -, + in these equations.

(a) � = 2� + �
√

$

(b) � =
1

-
− (+ − 1)�.

32. Graph the following function in the window −10 ≤ � ≤

10,−10 ≤ � ≤ 10. Is this graph a line? Explain.

� = −�
(

� − 1000

900

)

33. Graph � = 2� + 400 using the window −10 ≤ � ≤

10,−10 ≤ � ≤ 10. Describe what happens, and how you

can fix it by using a better window.

34. Graph � = 200� + 4 using the window −10 ≤ � ≤

10,−10 ≤ � ≤ 10. Describe what happens and how you

can fix it by using a better window.

35. Figure 1.28 shows the graph of � = �2∕1000 + 5 in the

window −10 ≤ � ≤ 10,−10 ≤ � ≤ 10. Discuss whether

this is a linear function.

Figure 1.28

36. The cost of a cab ride is given by the function % =

2.50 + 2", where " is the number of miles traveled and

% is in dollars. Choose an appropriate window and graph

the cost of a ride for a cab that travels no farther than a

10-mile radius from the center of the city.

1.4 FORMULAS FOR LINEAR FUNCTIONS

To find a formula for a linear function we find values for the slope, �, and the vertical intercept, #,

in the formula � = # + ��.

Finding a Formula for a Linear Function from a Table of Data

If a table of data represents a linear function, we first calculate � and then determine #.

19http://www.pnas.org/content/early/2009/10/30/0906029106.full.pdf+html, accessed November 27, 2009.
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Example 1 A grapefruit is thrown into the air. Its velocity, �, is a linear function of �, the time since it was

thrown. A positive velocity indicates the grapefruit is rising and a negative velocity indicates it is

falling. Check that the data in Table 1.30 corresponds to a linear function. Find a formula for � in

terms of �.

Table 1.30 Velocity of a grapefruit � seconds after being

thrown into the air

�, time (sec) 1 2 3 4

�, velocity (ft/sec) 48 16 −16 −48

Solution Figure 1.29 shows the data in Table 1.30. The points appear to fall on a line. To check that the velocity

function is linear, calculate the rates of change of � and see that they are constant. From time � = 1

to � = 2, we have

Average rate of change of velocity with time =
Δ�

Δ�
=

16 − 48

2 − 1
= −32.

For the next second, from � = 2 to � = 3, we have

Average rate of change =
Δ�

Δ�
=

−16 − 16

3 − 2
= −32.

You can check that the rate of change from � = 3 to � = 4 is also −32.

1 2 3 4

−40

−20

20

40

�, time (sec)

�, velocity (ft/sec)

Figure 1.29: Velocity of a grapefruit is a linear function of time

A formula for � is of the form � = # + ��. Since � is the rate of change, we have � = −32 so

� = #− 32�. The initial velocity (at � = 0) is represented by #. We are not given the value of � when

� = 0, but we can use any data point to calculate #. For example, � = 48 when � = 1, so

48 = # − 32 ⋅ 1,

which gives

# = 80.

Thus, a formula for the velocity is � = 80 − 32�.

What does the rate of change, �, in Example 1 tell us about the grapefruit? Think about the

units:

� =
Δ�

Δ�
=

Change in velocity

Change in time
=

−32 ft/sec

1 sec
= −32 ft/sec per second.

The value of �, −32 ft/sec per second, tells us that the grapefruit’s velocity is decreasing by 32

ft/sec for every second that goes by. We say the grapefruit is accelerating at −32 ft/sec per second.

(The units ft/sec per second are often written ft/sec2. Negative acceleration is also called decelera-

tion.20)

20The notation ft/sec2 is shorthand for ft/sec per second; it does not mean a “square second” in the same way that areas are
measured in square feet or square meters.
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Finding a Formula for a Linear Function from a Graph

We can calculate the slope, �, of a linear function using two points on its graph. Having found �,

we can use either of the points to calculate #, the vertical intercept.

Example 2 Figure 1.30 shows oxygen consumption as a function of heart rate (that is, pulse) for two people.

(a) Assuming linearity, find formulas for these two functions.

(b) Interpret the slope of each graph in terms of oxygen consumption.

(100, 1)

(100, 0.6)

(160, 1.6)

(160, 1)

40 80 120 160 200

1

2 Person �

Person )

�, heart rate
(beats/min)

�, oxygen consumption
(liters/minute)

Figure 1.30: Oxygen consumption of two people running on treadmills

Solution (a) Let � be heart rate and let � be oxygen consumption. Since we are assuming linearity, � = #+��.

The two points on person �’s line, (100, 1) and (160, 1.6), give

Slope of A’s line = � =
Δ�

Δ�
=

1.6 − 1

160 − 100
= 0.01.

Thus � = # + 0.01�. To find #, use the fact that � = 1 when � = 100:

1 = # + 0.01(100)

1 = # + 1

# = 0,

so � = 0.01�. Alternatively, # can be found using the fact that � = 160 if � = 1.6.

For person ), we again begin with the formula � = # + ��. In Figure 1.30, two points on

B’s line are (100, 0.6) and (160, 1), so

Slope of B’s line = � =
Δ�

Δ�
=

1 − 0.6

160 − 100
=

0.4

60
≈ 0.0067.

To find #, use the fact that � = 1 when � = 160:

1 = # + (0.4∕60) ⋅ 160

1 = # + 1.067

# = −0.067.

Thus, for person ), we have � = −0.067 + 0.0067�.

(b) The slope for person � is � = 0.01, so

� =
Change in oxygen consumption

Change in heart rate
=

Change in liters/min

Change in beats/min
= 0.01

liters

heartbeat
.

Every additional heartbeat (per minute) for person � translates to an additional 0.01 liters (per

minute) of oxygen consumed.
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The slope for person ) is � = 0.0067. Thus, for every additional beat (per minute), person

) consumes an additional 0.0067 liter of oxygen (per minute). Since the slope for person ) is

smaller than for person�, person) consumes less additional oxygen than person� for the same

increase in pulse.

What do the �-intercepts of the functions in Example 2 say about oxygen consumption? Often

the �-intercept of a function is a starting value. In this case, the �-intercept would be the oxygen

consumption of a person whose pulse is zero (i.e. � = 0). Since a person running on a treadmill

must have a pulse, in this case it makes no sense to interpret the �-intercept this way. The formula

for oxygen consumption is useful only for realistic values of the pulse.

Finding a Formula for a Linear Function from a Verbal Description

Sometimes the verbal description of a linear function is less straightforward than those we saw in

Section 1.3. Consider the following example.

Example 3 We have $48 to spend on soda and chips for a party. A six-pack of soda costs $6 and a bag of chips

costs $4. The number of six-packs we can afford, �, is a function of the number of bags of chips we

decide to buy, �.

(a) Find an equation relating � and �.

(b) Graph the equation. Interpret the intercepts and the slope in the context of the party.

Solution (a) If we spend all $48 on soda and chips, then we have the following equation:

Amount spent on chips + Amount spent on soda = $48.

If we buy � bags of chips at $4 per bag, then the amount spent on chips is $4�. Similarly, if we

buy � six-packs of soda at $6 per six-pack, then the amount spent on soda is $6�. Thus,

4� + 6� = 48.

We can solve for �, giving

6� = 48 − 4�

� = 8 −
2

3
�.

This is a linear function with slope � = −2∕3 and �-intercept # = 8.

(b) The graph of this function is a discrete set of points, since the number of bags of chips and the

number of six-packs of soda must be (nonnegative) integers.

To find the �-intercept, we set � = 0, giving

4 ⋅ 0 + 6� = 48.

So 6� = 48, giving � = 8.

Substituting � = 0 gives the �-intercept,

4� + 6 ⋅ 0 = 48.

So 4� = 48, giving � = 12. Thus the points (0, 8) and (12, 0) are on the graph.

The point (0, 8) indicates that we can buy 8 six-packs of soda if we buy no chips. The point

(12, 0) indicates that we can buy 12 bags of chips if we buy no soda. The other points on the line

describe affordable options between these two extremes. For example, the point (6, 4) is on the

line, because

4 ⋅ 6 + 6 ⋅ 4 = 48.

This means that if we buy 6 bags of chips, we can afford 4 six-packs of soda.
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6 12

4

8

�, chips (bags)

�, soda (six-packs)
� All soda and

no chips

� Some soda and
some chips

�

All chips
and no soda

Figure 1.31: Relation between the number of six-packs, �, and the number of bags of chips, �

The points marked in Figure 1.31 represent affordable options. All affordable options lie on

or below the line 4� + 6� = 48. Not all points on the line are affordable options. For example,

suppose we purchase one six-pack of soda for $6. That leaves $42 to spend on chips, meaning

we would have to buy 10.5 bags of chips, which is not possible. Therefore, the point (10.5, 1) is

not an option, although it is a point on the line 4� + 6� = 48.

To interpret the slope, notice that

� =
Δ�

Δ�
=

Change in number of six-packs

Change in number of bags of chips
,

so the units of � are six-packs of soda per bags of chips. The fact that � = −2∕3 means that

for each additional 3 bags of chips purchased, we can purchase 2 fewer six-packs of soda. This

occurs because 2 six-packs cost $12, the same as 3 bags of chips. Thus, � = −2∕3 is the rate at

which the amount of soda we can buy decreases as we buy more chips.

Alternative Forms for the Equation of a Line
In Example 3, the equation 2� + 3� = 24 represents a linear relationship between � and � even

though the equation is not in the form � = # + ��. The following equations represent lines.

• The slope-intercept form is

� = # + �� where � is the slope and # is the �-intercept.

• The point-slope form is

� − �0 = �(� − �0) where � is the slope and (�0, �0) is a point on the line.

• The standard form is

�� + )� + % = 0 where �, ), and % are constants.

If we know the slope of a line and the coordinates of a point on the line, it is often convenient

to use the point-slope form of the equation.

Example 4 Use the point-slope form to find the equation of the line for the oxygen consumption of person � in

Example 2.

Solution In Example 2, we found the slope of person �’s line to be � = 0.01. Since the point (100, 1) lies on

the line, the point-slope form gives the equation

� − 1 = 0.01(�− 100).

To check that this gives the same equation we got in Example 2, we multiply out and simplify:

� − 1 = 0.01�− 1

� = 0.01�.

Alternatively, we could have used the point (160, 1.6) instead of (100, 1), giving

� − 1.6 = 0.01(�− 160).

Multiplying out again gives � = 0.01�.
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Equations of Horizontal and Vertical Lines

The slope � of a line � = # + �� gives the rate of change of � with respect to �. What about a line

with slope� = 0? If the rate of change of a quantity is zero, then the quantity does not change. Thus,

if the slope of a line is zero, the value of � must be constant. Such a line is horizontal.

Example 5 Explain why the equation � = 4 represents a horizontal line and the equation � = 4 represents a

vertical line.

Solution The equation � = 4 represents a linear function with slope � = 0. To see this, notice that this

equation can be rewritten as � = 4 + 0 ⋅ �. Thus, the value of � is 4 no matter what the value of �

is. See Figure 1.32. Similarly, the equation � = 4 means that � is 4 no matter what the value of � is.

Every point on the line in Figure 1.33 has � equal to 4, so this line is the graph of � = 4.

−2 −1 1 2

1

2

3

5

6
7

8

(−2, 4) (−1, 4) (1, 4) (2, 4)

�

�

�

Value of � is 4
no matter what
the value of � is

� �

Figure 1.32: The horizontal line � = 4 has slope 0

1 2 3 4 5 6 7 8

1

2

3

�

�

(4, 3) � Value of � is 4
no matter what
the value of � is

(4, 1) 


�

(4,−1)

Figure 1.33: The vertical line � = 4 has an undefined slope

What is the slope of a vertical line? Figure 1.33 shows three points, (4,−1), (4, 1), and (4, 3) on

a vertical line. Calculating the slope, gives

� =
Δ�

Δ�
=

3 − 1

4 − 4
=

2

0
.

The slope is undefined because the denominator,Δ�, is 0. The slope of every vertical line is undefined

for the same reason. All the �-values on such a line are equal, so Δ� is 0, and the denominator of the

expression for the slope is 0. A vertical line is not the graph of a function, since it fails the vertical

line test. It does not have an equation of the form � = # + ��.

In summary,

For any constant -:

• The graph of the equation � = - is a horizontal line and its slope is zero.

• The graph of the equation � = - is a vertical line and its slope is undefined.

Slopes of Parallel and Perpendicular Lines

Figure 1.34 shows two parallel lines. These lines are parallel because they have equal slopes.

&1
&2

Figure 1.34: Parallel lines:

&1 and &2 have equal slopes

&1

&2

Figure 1.35: Perpendicular lines: Slopes of &1 and &2 are

negative reciprocals of each other
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What about perpendicular lines? Two perpendicular lines are graphed in Figure 1.35. We can

see that if one line has a positive slope, then any perpendicular line must have a negative slope. In

fact, we show that if &1 and &2 are two perpendicular lines with slopes, �1 and �2, then �1 is the

negative reciprocal of �2. If �1 and �2 are not zero, we have the following result:

Let &1 and &2 be two lines having slopes �1 and �2, respectively. Then:

• These lines are parallel if and only if �1 = �2.

• These lines are perpendicular if and only if �1 = −
1

�2

.

In addition, any two horizontal lines are parallel and �1 = �2 = 0. Any two vertical lines

are parallel and �1 and �2 are undefined. A horizontal line is perpendicular to a vertical line. See

Figures 1.36–1.38.

&1 ∶ � = 5

&2 ∶ � = −3

�

�

Figure 1.36: Any two horizontal lines

are parallel

&3 ∶ � = −3 &4 ∶ � = 2

�

�

Figure 1.37: Any two vertical lines

are parallel

&5 ∶ � = −2

&6 ∶ � = 4

�

�

Figure 1.38: A horizontal line and a

vertical line are perpendicular

Justification of Formula for Slopes of Perpendicular Lines

Figure 1.39 shows &1 and &2, two perpendicular lines with slopes�1 and�2. Neither line is horizontal

or vertical, so �1 and �2 are both defined and nonzero. We will show that

�2 = −
1

�1

.

Using right triangle Δ�
� with side lengths ! and #, we see that

�1 =
#

!
.

Rotating Δ�
� by 90◦ about the point � produces triangle Δ�1� . Using Δ�1� , we see that

�2 = −
!

#
= −

1

#∕!
= −

1

�1

.

�




�

1

�

&1: slope�1&2: slope�2

!

#

!

#

Figure 1.39: Perpendicular lines
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Exercises and Problems for Section 1.4

Skill Refresher

Solve the equations in Exercises S1–S5.

S1. � − 5 = 21

S2. 2� − 5 = 13

S3. 2� − 5 = 4� − 9

S4. 17 − 28� = 13� + 24

S5.
5

3
(� + 2) =

1

2
− �

In Exercises S6–S10, solve for the indicated variable.

S6. 2 = ���, for � .

S7. % =
5

9
(� − 32), for � .

S8. % = 2��, for �.

S9. !# + !� = � − !�, for �.

S10. #� − " = !� + �, for �.

Exercises

Find formulas for the linear functions in Exercises 1–8.

1. Slope −4 and �-intercept 7

2. Slope 3 and �-intercept 8

3. Passes through the points (−1, 5) and (2,−1)

4. Slope 2∕3 and passes through the point (5, 7)

5. Has �-intercept 3 and �-intercept −5

6. Slope 0.1, passes through (−0.1, 0.02)

7. Function � has � (0.3) = 0.8 and � (0.8) = −0.4

8. Function � has � (−2) = 7 and � (3) = −3

Exercises 9–15 give data from a linear function. Find a formula

for the function.

9.
Year, � 0 1 2

Value of computer, $/ = � (�) 2000 1500 1000

10.
Price per bottle, � ($) 0.50 0.75 1.00

Number of bottles sold, � = � (�) 1500 1000 500

11.
Temperature, � = � (�) (◦C) 0 5 20

Temperature, � (◦F) 32 41 68

12.
Temperature, � = � (�), (◦R) 459.7 469.7 489.7

Temperature, � (◦F) 0 10 30

13.

5 10 20

150000
175000

225000

ℎ, height of
apartment (m)

�, price of apartment ($)

14.

60 120144

5

10

12


, number of different
medicines stocked

3, meters of shelf space used

15.

4 12 17

0.5

3

7

�, cups of tea drunk

$, hours of sleep obtained

In Exercises 16–24, if possible rewrite the equation in slope-

intercept form, � = # + ��.

16. 5(� + �) = 4 17. 3� + 5� = 20

18. 0.1� + � = 18 19. 5� − 3� + 2 = 0

20. � − 0.7 = 5(� − 0.2) 21. � = 5

22. 3� + 2� + 40 = � − � 23. � = 4

24.
� + �

7
= 3

In Exercises 25–30, is the function linear? If so, rewrite it in

slope-intercept form.

25. �(�) = −
1 − 12�

3
26. � (� ) = 13 −

2−1

4
�

27. +($) = 3$−1 + 7 28. %(�) = 2��

29. ℎ(�) = 3� + 12 30. � (�) = �2� + 
2
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In Exercises 31–36, are the lines perpendicular? Parallel? Nei-

ther?

31. � = 5� − 7; � = 5� + 8

32. � = 4� + 3; � = 13 −
1

4
�

33. � = 2� + 3; � = 2� − 7

34. � = 4� + 7; � = 1

4
� − 2

35. � (�) = 12� + 7; �(�) =
1

12
� + 96

36. 2� = 16 − �; 4� = −8 − 2�

Problems

Find formulas for the linear functions in Problems 37–40.

37. The graph of � contains (−3,−8) and (5,−20).

38. �(100) = 2000 and �(400) = 3800

39. � = ℎ(�) gives the size of a population that begins with

12,000 members and grows by 225 members each year.

40. The graph of ℎ intersects the graph of � = �2 at � = −2

and � = 3.

41. (a) By hand, graph � = 3 and � = 3.

(b) Can the equations in part (a) be written in slope-

intercept form?

42. Find the equation of the line parallel to 3� + 5� = 6 and

passing through the point (0, 6).

43. Find the equation of the line passing through the point

(2, 1) and perpendicular to the line � = 5� − 3.

44. Find the equations of the lines parallel to and perpendic-

ular to the line � + 4� = 7, and through the point (1, 5).

45. In Table 1.31, data for two functions � and � are given.

One of the functions is linear, and the other is not.

(a) Which of the two functions is linear? Explain how

you know.

(b) Find the equation of the linear function. Write your

answer in slope-intercept form.

Table 1.31

� 1 1.5 2 2.5 3

� (�) −1.22 −0.64 −0.06 0.52 1.10

�(�) 9.71 4.86 2.43 1.22 0.61

46. Line & is given by � = 3−
2

3
� and point � has coordinates

(6, 5).

(a) Find the equation of the line containing � and paral-

lel to &.

(b) Find the equation of the line containing � and per-

pendicular to &.

(c) Graph the equations in parts (a) and (b).

47. An empty champagne bottle is tossed from a hot-air bal-

loon. Its upward velocity is measured every second and

recorded in Table 1.32.

(a) Describe the motion of the bottle in words. What do

negative values of � represent?

(b) Find a formula for � in terms of �.

(c) Explain the physical significance of the slope of your

formula.

(d) Explain the physical significance of the �-axis and �-

axis intercepts.

Table 1.32

� (sec) 0 1 2 3 4 5

� (ft/sec) 40 8 −24 −56 −88 −120

Table 1.33 gives the cost, %(
), of producing a certain good as

a linear function of 
, the number of units produced. Use the

table to answer Problems 48–50.

Table 1.33


 (units) 100 125 150 175

%(
) (dollars) 11000 11125 11250 11375

48. Evaluate the following expressions. Give economic inter-

pretations for each.

(a) %(175) (b) %(175) − %(150)

(c)
%(175) − %(150)

175 − 150

49. Estimate %(0). What is the economic significance of this

value?

50. The fixed cost of production is the cost incurred before

any goods are produced. The unit cost is the cost of pro-

ducing an additional unit. Find a formula for%(
) in terms

of 
, given that

Total cost = Fixed cost + Unit cost ⋅ Number of units

51. John wants to buy a dozen rolls. The local bakery sells

sesame and poppy-seed rolls for the same price.

(a) Make a table of all the possible combinations of rolls

if he buys a dozen, where $ is the number of sesame

seed rolls and � is the number of poppy-seed rolls.

(b) Find a formula for � as a function of $.

(c) Graph this function.
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52. In a college meal plan you pay a membership fee; then all

your meals are at a fixed price per meal.

(a) If 90 meals cost $1005 and 140 meals cost $1205,

write a linear function that describes the cost of a

meal plan, % , in terms of the number of meals, 
.

(b) What is the cost per meal and what is the member-

ship fee?

(c) Find the cost for 120 meals.

(d) Find 
 in terms of % .

(e) Use part (d) to determine the maximum number of

meals you can buy on a budget of $1285.

53. The solid waste generated each year in the cities of the

US is increasing.21 The solid waste generated, in millions

of tons, was 88.1 in 1960 and 249.9 in 2010. The trend

appears linear during this time.

(a) Construct a formula for the amount of municipal

solid waste generated in the US by finding the equa-

tion of the line through these two points.

(b) Use this formula to predict the amount of municipal

solid waste generated in the US, in millions of tons,

in the year 2020.

54. The demand for gasoline can be modeled as a linear func-

tion of price. If the price of gasoline is � = $3.10 per gal-

lon, the quantity demanded in a fixed period is � = 65

gallons. If the price rises to $3.50 per gallon, the quantity

demanded falls to 45 gallons in that period.

(a) Find a formula for � in terms of �.

(b) Explain the economic significance of the slope of

your formula.

(c) Explain the economic significance of the �-axis and

�-axis intercepts.

55. Find a formula for the linear function ℎ(�) whose graph

intersects the graph of +(�) = 30(0.2)� at � = −2 and � = 1.

56. Find the equation of line & in Figure 1.40.

2

8

�

�

&
� = �2 + 1

�




Figure 1.40

57. Find the equation of the line &, shown in Figure 1.41, if

its slope is � = 4.

2

�

&

� = �2

�

�

Figure 1.41

58. Find an equation for the line & in Figure 1.42 in terms of

the constant � and values of the function � .

�

&

(�, � (�))

� = � (�)

�

�

Figure 1.42

59. A dose-response function can be used to describe the in-

crease in risk associated with the increase in exposure to

various hazards. For example, the risk of contracting lung

cancer depends, among other things, on the number of

cigarettes a person smokes per day. This risk can be de-

scribed by a linear dose-response function. For example,

it is known that smoking 10 cigarettes per day increases a

person’s probability of contracting lung cancer by a fac-

tor of 25, while smoking 20 cigarettes a day increases the

probability by a factor of 50.

(a) Find a formula for 4(�), the increase in the probability

of contracting lung cancer for a person who smokes

� cigarettes per day as compared to a non-smoker.

(b) Evaluate 4(0).

(c) Interpret the slope of the function 4.

60. Wire is sold by gauge size, where the diameter of the wire

is a decreasing linear function of gauge. Gauge 2 wire has

a diameter of 0.2656 inches and gauge 8 wire has a diame-

ter of 0.1719 inches. Find the diameter for wires of gauge

12.5 and gauge 0. What values of the gauge do not make

sense in this model?

21http://http://www.epa.gov/osw/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf, accessed January, 2013.
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61. You can type four pages in 50 minutes and nine pages in

an hour and forty minutes.

(a) Find a linear function for the number of pages typed,

�, as a function of time, �. If time is measured in min-

utes, what values of � make sense in this example?

(b) How many pages can be typed in two hours?

(c) Interpret the slope of the function in practical terms.

(d) Use the result in part (a) to solve for time as a func-

tion of the number of pages typed.

(e) How long does it take to type a 15-page paper?

(f) Write a short paragraph explaining why it is useful

to know both of the formulas obtained in part (a) and

part (d).

In Problems 62–63, write the functions in slope-intercept

form. Identify the values of # and �.

62. �($) = ��2 − 3�� − 4�$ − $
√

�

63. �(�) = ��2 − 3�� − 4�$ − $
√

�

64. The development time, �, of an organism is the number

of days required for the organism to mature, and the de-

velopment rate is defined as � = 1∕�. In cold-blooded or-

ganisms such as insects, the development rate depends on

temperature: the colder it is, the longer the organism takes

to develop. For such organisms, the degree-day model22

assumes that the development rate � is a linear function

of temperature � (in ◦C):

� = # + -�.

(a) According to the degree-day model, there is a min-

imum temperature �min below which an organism

never matures. Find a formula for �min in terms of

the constants # and -.

(b) Define 1 as 1 = (� −�min)�, where 1 is the num-

ber of degree-days. That is, 1 is the number of days

� times the number of degrees between � and �min.

Use the formula for � to show that 1 is a constant.

In other words, find a formula for 1 that does not

involve � . Your formula will involve -.

(c) A certain organism requires � = 25 days to develop

at a constant temperature of � = 20◦C and has

�min = 15◦C. Using the fact that 1 is a constant,

how many days does it take for this organism to de-

velop at a temperature of 25◦C?

(d) In part (c) we assumed that the temperature � is

constant throughout development. If the temperature

varies from day to day, the number of degree-days

can be accumulated until they total 1, at which point

the organism completes development. For instance,

suppose on the first day the temperature is� = 20◦C

and that on the next day it is � = 22◦C. Then for

these first two days

Total number of degree days

= (20 − 15) ⋅ 1 + (22 − 15) ⋅ 1 = 12.

Based on Table 1.34, on what day does the organism

reach maturity?

Table 1.34

Day 1 2 3 4 5 6 7 8 9 10 11 12

� (◦C) 20 22 27 28 27 31 29 30 28 25 24 26

65. (Continuation of Problem 64.) Table 1.35 gives the de-

velopment time � (in days) for an insect as a function of

temperature � (in ◦C).

(a) Find a linear formula for �, the development rate, in

terms of � .

(b) Find the value of 1, the number of degree-days re-

quired for the organism to mature.

Table 1.35

� , ◦C 20 22 24 26 28 30

�, days 14.3 12.5 11.1 10.0 9.1 8.3

1.5 MODELING WITH LINEAR FUNCTIONS

Interpreting the Parameters of a Linear Function

The slope-intercept form for a linear function is � = # + ��, where # is the �-intercept and � is the

slope. The parameters # and � can be used to compare linear functions.

22Information drawn from a web site created by Dr. Alexei A. Sharov at the Virginia Polytechnic Institute,

http://www.ento.vt.edu/ sharov/PopEcol/popecol.html, accessed September 2002.
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Example 1 With time, �, in years, the populations of four towns, ��, �) , �% and ��, are given by the following

formulas:

�� = 20,000 + 1600�, �) = 50,000 − 300�, �% = 650�+ 45,000, �� = 15,000(1.07)�.

(a) Which populations are represented by linear functions?

(b) Describe in words what each linear model tells you about that town’s population. Of the towns

that grow linearly, which town starts out with the most people? Which is growing fastest?

Solution (a) The populations of towns �, ), and % are represented by linear functions because they are

written in the form � = # + ��. Town �’s population does not grow linearly since its formula,

�� = 15,000(1.07)�, cannot be expressed in the form �� = # + ��.

(b) For town �, we have

�� = 20,000
⏟⏟⏟

#

+ 1600
⏟⏟⏟

�

⋅�,

so # = 20,000 and � = 1600. This means that in year � = 0, town � has 20,000 people. It grows

by 1600 people per year.

For town ), we have

�) = 50,000
⏟⏟⏟

#

+ (−300)
⏟⏟⏟

�

⋅�,

so # = 50,000 and � = −300. This means that town ) starts with 50,000 people. The negative

slope indicates that the population is decreasing at the rate of 300 people per year.

For town % , we have

�% = 45,000
⏟⏟⏟

#

+ 650
⏟⏟⏟

�

⋅�,

so # = 45,000 and � = 650. This means that town % begins with 45,000 people and grows by

650 people per year.

Town ) starts out with the most people, 50,000, but town �, with a rate of change of 1600

people per year, grows the fastest of the three towns that grow linearly.

The Effect of the Parameters on the Graph of a Linear Function

The graph of a linear function is a line. Changing the values of # and � gives different members of

the family of linear functions. In summary:

Let � = # + ��. Then the graph of � against � is a line.

• The �-intercept, #, tells us where the line crosses the �-axis.

• If the slope, �, is positive, the line climbs from left to right. If the slope, �, is negative,

the line falls from left to right.

• The slope, �, tells us how fast the line is climbing or falling.

• The larger the magnitude of � (either positive or negative), the steeper the graph of � .
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Example 2 (a) Graph the three linear functions��, �) , �% from Example 1 and show how to identify the values

of # and � from the graph.

(b) Graph �� from Example 1 and explain how the graph shows �� is not a linear function.

Solution (a) Figure 1.43 gives graphs of the three functions:

�� = 20,000 + 1600�, �) = 50,000 − 300�, and �% = 45,000 + 650�.

The values of # identified in Example 1 tell us the vertical intercepts. Figure 1.43 shows that the

graph of �� crosses the � -axis at � = 20,000, the graph of �) crosses at � = 50,000, and the

graph of �% crosses at � = 45,000.

5 10 15 20

10,000

20,000

30,000

40,000

50,000

60,000 }

Graph of�� (� = 1600)
climbs faster than the
graph of�% (� = 650)

��

�)

�%

	
Graph of�) (� = −300)
falls

�, time (years)

� , population

Figure 1.43: Graphs of three linear functions, ��, �) , and �% ,

showing starting values and rates of climb
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�� = 15,000(1.07)�
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Figure 1.44: Graph of �� = 15,000(1.07)� is not a line

Notice that the graphs of �� and �% are both climbing and that �� climbs faster than �% .

This corresponds to the fact that the slopes of these two functions are positive (� = 1600 for ��
and � = 650 for �% ) and the slope of �� is larger than the slope of �% .

The graph of �) falls when read from left to right, indicating that population decreases over

time. This corresponds to the fact that the slope of �% is negative (� = −300).

(b) Figure 1.44 gives a graph of ��. Since it is not a line, �� is not a linear function.

Intersection of Two Lines

The point (�, �) at which two lines intersect satisfies the equations for both lines. Thus, to find this

point, we solve the equations simultaneously.23 When modeling real phenomena, the point of inter-

section often has a practical meaning.

Example 3 The cost, in dollars, of renting a car for a day from three different rental agencies and driving it "

miles is given by the following functions:

%1 = 0.50", %2 = 30 + 0.20", %3 = 50 + 0.10".

(a) For each agency, describe the rental agreement in words and graph the cost function. Use one

set of axes for all three functions.

(b) For what driving distance does Agency 1 cost the same as Agency 2? If you drive 50 miles or

less, which agency is cheapest?

(c) How do you determine which agency provides the cheapest car rental for any given driving

distance?

23The algebra in this section is reviewed in the Skills Refresher on page 62.


