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Preface

This book is intended to help undergraduate engineering students learn the fundamentals of fl uid 

mechanics. It was developed for use in a fi rst course on fl uid mechanics, either one or two semesters/

terms. While the principles of this course have been well-established for many years, fl uid  mechanics 

education has evolved and improved.

 With this eighth edition, a new team of authors is working to continue the distinguished tradi-

tion of this text. As it has throughout the past seven editions, the original core prepared by Munson, 

Young, and Okiishi remains. We have sought to augment this fi ne text, drawing on our many years 

of teaching experience. Based on our experience and suggestions from colleagues and students, 

we have made a number of changes to this edition. The changes (listed below, and indicated by the 

word New in descriptions in this preface) are made to clarify, update, and expand certain ideas and 

concepts.

New to This Edition

In addition to the continual eff ort of updating the scope of the material presented and improving the 

presentation of all of the material, the following items are new to this edition.

Self-Contained: Material that had been removed from the text and provided only on-line has been 

brought back into the text. Most notable are Section 5.4 on the second law of thermodynamics and 

useful energy loss and Appendix E containing units conversion factors.

Compressible Flow: Chapter 11 on compressible fl ow has been extensively reorganized and a lim-

ited amount of new material added. There are ten new example problems; some of them replace 

previous examples. All have special emphasis on engineering applications of the material. Example 

solutions employ tabulated compressible fl ow functions as well as graphs.

Appendices: Appendix A has been expanded. Compressible fl ow function tables have been added 

to Appendix D. A new extensive set of units conversion factors in a useful and compact format 

appears in Appendix E.

Computational Fluid Dynamics (CFD): A still unsettled issue in introductory fl uid mechanics 

texts is what to do about computational fl uid dynamics. A complete development of the subject is 

well beyond the scope of an introductory text; nevertheless, highly complex, highly capable CFD 

codes are being employed for engineering design and analysis in a continually expanding number 

of industries. We have chosen to provide a description of many of the challenges and practices that 

characterize widely used CFD codes. Our aim is twofold: to show how reasonably complex fl ows 

can be computed and to foster a healthy skepticism in the nonspecialist. This material is presented 

in an expanded Appendix A.

Problems and Examples: Many new examples and problems emphasize engineering applica-

tions. Approximately 30% new homework problems have been added for this edition, and there are 

 additional problems in WileyPLUS.

Value: Nearly everyone is concerned about the upward spiral of textbook prices (yes, even authors 

and publishers!). We have taken a few modest steps to keep the price of this book reasonable. Most 

of these steps involve the removal of “bells and whistles.” For example, the thumbnail photos that 

accompanied the video icons in the 7th edition have been dropped. Wiley has also developed a num-

ber of diff erent products to meet diff ering student needs and budgets.
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Key Features

Illustrations, Photographs, and Videos

Fluid mechanics has always been a “visual” subject—much can be learned by viewing various char-

acteristics of fl uid fl ow. Fortunately this visual component is becoming easier to incorporate into 

the learning environment, for both access and delivery, and is an important help in learning fl uid 

mechanics. Thus, many photographs and illustrations have been included in the book. Some of these 

are within the text material; some are used to enhance the example problems; and some are included 

as margin fi gures of the type shown in the left margin to more clearly illustrate various points dis-

cussed in the text. Numerous video segments illustrate many interesting and practical applications 

of real-world fl uid phenomena. Each video segment is identifi ed at the appropriate location in the 

text material by a video icon of the type shown in the left margin. Each video segment has a separate 

associated text description of what is shown in the video. There are many homework problems that 

are directly related to the topics in the videos.

Examples

One of our aims is to represent fl uid mechanics as it really is—an exciting and useful discipline. To 

this end, we include analyses of numerous everyday examples of fl uid-fl ow phenomena to which 

students and faculty can easily relate. In this edition there are numerous examples that provide de-

tailed solutions to a variety of problems. Many of the examples illustrate engineering applications of 

fl uid mechanics, as is appropriate in an engineering textbook. Several illustrate what happens if one 

or more of the parameters is changed. This gives the student a better feel for some of the basic prin-

ciples involved. In addition, many of the examples contain photographs of the actual device or item 

involved in the example. Also, all of the examples are outlined and carried out with the problem 

solving methodology of “Given, Find, Solution, and Comment” as discussed in the “Note to User” 

before Example 1.1.

The Wide World of Fluids

The set of approximately 60 short “The Wide World of Fluids” stories refl ect some important, and 

novel, ways that fl uid mechanics aff ects our lives. Many of these stories have homework problems 

associated with them. The title of this feature has been changed from the 7th edition’s “Fluids in the 

News” because the stories cover more than just the latest developments in fl uid mechanics.

Homework Problems

A wide variety of homework problems (approximately 30% new to this edition) stresses the practical 

application of principles. The problems are grouped and identifi ed according to topic. The following 

types of problems are included:

1) “standard” problems,

2) computer problems,

3) discussion problems,

4) supply-your-own-data problems,

5) problems based on “The Wide World of Fluids” topics,

6) problems based on the videos,

7) “Lifelong learning” problems,

8) problems that require the user to obtain a photograph/image of a given flow situation and write 

a brief paragraph to describe it,

E

Fr = 1

Fr < 1

Fr > 1

y

 (© Photograph courtesy 

of Pend Oreille Public 

Utility District.)

V1.9 Floating 
razor bladeVIDEO
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Computer Problems—Several problems are designated as computer problems. Depending on the 

preference of the instructor or student, any of the problems with numerical data may be solved with 

the aid of a personal computer, a programmable calculator, or even a smartphone.

Lifelong Learning Problems—Each chapter has lifelong learning problems that involve obtaining 

additional information about various fl uid mechanics topics and writing a brief report about this 

material.

Well-Paced Concept and Problem-Solving Development

Since this is an introductory text, we have designed the presentation of material to allow for the grad-

ual development of student confi dence in fl uid mechanics problem solving. Each important concept 

or notion is considered in terms of simple and easy-to-understand circumstances before more com-

plicated features are introduced. Many pages contain a brief summary (a highlight) sentence in the 

margin that serves to prepare or remind the reader about an important concept discussed on that page.

 Several brief elements have been included in each chapter to help the student see the “big 

 picture” and recognize the central points developed in the chapter. A brief Learning Objectives sec-

tion is provided at the beginning of each chapter. It is helpful to read through this list prior to reading 

the chapter to gain a preview of the main concepts presented. Upon completion of the chapter, it is 

benefi cial to look back at the original learning objectives. Additional reinforcement of these learn-

ing objectives is provided in the form of a Chapter Summary and Study Guide at the end of each 

chapter. In this section a brief summary of the key concepts and principles introduced in the chapter 

is included along with a listing of important terms with which the student should be familiar. These 

terms are highlighted in the text. All items in the Learning Objectives and the Study Guide are 

 “action items” stating something that the student should be able to do. A list of the main equations 

in the chapter is included in the chapter summary.

System of Units

Three systems of units are used throughout the text: the International System of Units (newtons, 

kilograms, meters, and seconds), the British Gravitational System (pounds, slugs, feet, and seconds), 

and the English Engineering System, sometimes called the U.S. Customary System (pounds (or 

pounds force), pounds mass, feet, and seconds). Distribution of the examples and homework prob-

lems between the three sets of units is about 50%, 40%, 10%.

Prerequisites and Topical Organization

A fi rst course in Fluid Mechanics typically appears in the junior year of a traditional engineering 

curriculum. Students should have studied statics and dynamics, and mechanics of materials should 

be at least a co-requisite. Prior mathematics should include calculus, with at least the rudiments of 

vector calculus, and diff erential equations.

 In the fi rst four chapters of this text the student is made aware of some fundamental aspects 

of fl uid mechanics, including important fl uid properties, fl ow regimes, pressure variation in fl uids 

at rest and in motion, fl uid kinematics, and methods of fl ow description and analysis. The Bernoulli 

equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting eff ects 

and applications of the relationship between fl uid motion and pressure in a fl ow fi eld. We believe 

that this early consideration of elementary fl uid dynamics increases student enthusiasm for the more 

complicated material that follows. In Chapter 4 we convey the essential elements of fl ow  kinematics, 

including Eulerian and Lagrangian descriptions of fl ow fi elds, and indicate the vital relationship 

between the two views. For instructors who wish to consider kinematics in detail before the material 

on elementary fl uid dynamics, Chapters 3 and 4 can be interchanged without loss of continuity.

 Chapters 5, 6, and 7 expand on the basic methods generally used to solve or to begin solving 

fl uid mechanics problems. Emphasis is placed on understanding how fl ow phenomena are described 

mathematically and on when and how to use infi nitesimal or fi nite control volumes. The eff ects 

of fl uid friction on pressure and velocity are also considered in some detail. Although Chapter 5 
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considers fl uid energy and energy dissipation, a formal course in thermodynamics is not a neces-

sary prerequisite. Chapter 7 features the advantages of using dimensional analysis and similitude for 

organizing data and for planning experiments and the basic techniques involved.

 Owing to the growing importance of computational fl uid dynamics (CFD) in engineering de-

sign and analysis, material on this subject is included in Appendix A. This material may be omitted 

without any loss of continuity to the rest of the text.

 Chapters 8 through 12 off er students opportunities for the further application of the principles 

learned earlier in the text. Also, where appropriate, additional important notions such as boundary 

layers, transition from laminar to turbulent fl ow, turbulence modeling, and fl ow separation are intro-

duced. Practical concerns such as pipe fl ow, open-channel fl ow, fl ow measurement, drag and lift, the 

eff ects of compressibility, and the fundamental fl uid mechanics of turbomachinery are included.

 Students who study this text and solve a representative set of the problems will have acquired 

a useful knowledge of the fundamentals of fl uid mechanics. Faculty who use this text are provided 

with numerous topics to select from in order to meet the objectives of their own courses. More 

material is included than can be reasonably covered in one term. There is suffi  cient material for a 

second course, most likely titled “Applied Fluid Mechanics.” All are reminded of the fi ne collection 

of supplementary material. We have cited throughout the text various articles and books that are 

available for enrichment.

Instructor Resources

WileyPLUS provides instructor resources, such as the Instructor Solutions Manual, containing com-

plete, detailed solutions to all of the problems in the text, and fi gures from the text appropriate for 

use in lecture slides. Sign up for access at www.wileyplus.com.

Student Resources:

Through a registration process, WileyPLUS also provides access to students for appropriate  resources 

such as fl uids videos and additional problems, among others.

Harnessing the full power of WileyPLUS:

If an educator chooses to require WileyPLUS for their course, the educator will set up the WileyPLUS 

course in advance and request students to register and use it. Students obtain access via a registration 

code that may be added to a print edition or purchased for online-only access.

WileyPLUS builds students’ confi dence because it takes the guesswork out of studying by provid-

ing students with a clear roadmap: what to do, how to do it, if they did it right. This interactive 

approach focuses on:

CONFIDENCE: Research shows that students experience a great deal of anxiety over studying. 

That’s why we provide a structured learning environment that helps students focus on what to do, 

along with the support of immediate resources.

MOTIVATION: To increase and sustain motivation throughout the semester, WileyPLUS helps 

students learn how to do it at a pace that’s right for them. Our integrated resources—available 

24/7—function like a personal tutor, directly addressing each student’s demonstrated needs with 

specifi c problem-solving techniques.

SUCCESS: WileyPLUS helps to assure that each study session has a positive outcome by putting 

students in control. Through instant feedback and study objective reports, students know if they did 

it right, and where to focus next, so they achieve the strongest results.

With WileyPLUS, our effi  cacy research shows that students improve their outcomes by as much as 

one letter grade. WileyPLUS helps students take more initiative, so you’ll have greater impact on 

their achievement in the classroom and beyond.

http://www.wileyplus.com
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What do students receive with WileyPLUS?

■ The complete digital textbook, saving students up to 60% off the cost of a printed text.

■ Question assistance, including links to relevant sections in the online digital textbook.

■ Immediate feedback and proof of progress, 24/7.

■ Integrated, multimedia resources—including fluids phenomena videos, problem-solving videos, 

What An Engineer Sees animations, practice reading questions, and much more—that provide 

multiple study paths and encourage more active learning.

What do instructors receive with WileyPLUS?

■ Reliable resources that reinforce course goals inside and outside of the classroom.

■ The ability to easily identify those students who are falling behind.

■ Media-rich course materials and assessment content including Instructor Solutions Manual, fig-

ures from the text appropriate for use in lecture slides, Fluids Phenomena Videos, autogradable 

Reading Questions that can be used in Pre-Lecture Quizzes, autogradable concept questions, 

autogradable Homework Problems, and much more.

Sign up for access at www.wileyplus.com.
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Fluid mechanics is the discipline within the broad field of applied mechanics that is concerned with 
the behavior of liquids and gases at rest or in motion. It covers a vast array of phenomena that occur 
in nature (with or without human intervention), in biology, and in numerous engineered, invented, 
or manufactured situations. There are few aspects of our lives that do not involve fluids, either 
directly or indirectly.
 The immense range of different flow conditions is mind-boggling and strongly dependent on 
the value of the numerous parameters that describe fluid flow. Among the long list of parameters 
involved are (1) the physical size of the flow, ℓ; (2) the speed of the flow, V; and (3) the pressure, 
p, as indicated in the figure in the margin for a light aircraft parachute recovery system. These are 
just three of the important parameters that, along with many others, are discussed in detail in  various 
sections of this book. To get an inkling of the range of some of the parameter values involved and 
the flow situations generated, consider the following.

■ Size, ℓ
 Every flow has a characteristic (or typical) length associated with it. For example, for flow 

of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows include the 
flow of water in the pipes in our homes, the blood flow in our arteries and veins, and the 
airflow in our bronchial tree. They also involve pipe sizes that are not within our  everyday 
experiences. Such examples include the flow of oil across Alaska through a 4-foot-diameter, 
799-mile-long pipe and, at the other end of the size scale, the new area of interest involving 
flow in nano scale pipes whose diameters are on the order of 10−8 m. Each of these pipe 
flows has important characteristics that are not found in the others.

Characteristic lengths of some other flows are shown in Fig. 1.1a.
■ Speed, V
 As we note from The Weather Channel, on a given day the wind speed may cover what we 

think of as a wide range, from a gentle 5-mph breeze to a 100-mph hurricane or a 250-mph 

 (Photograph courtesy 
of CIRRUS Design 
Corporation.)

�

p

V

After completing this chapter, you should be able to:
■ list the dimensions and units of physical quantities.
■ identify the key fluid properties used in the analysis of fluid behavior.
■ calculate values for common fluid properties given appropriate information.
■ explain effects of fluid compressibility.
■ use the concepts of viscosity, vapor pressure, and surface tension.

Learning Objectives

Introduction



2       Chapter 1  ■  ■  Introduction

tornado. However, this speed range is small compared to that of the almost imperceptible 
flow of the fluid-like magma below the Earth’s surface that drives the continental drift 
motion of the tectonic plates at a speed of about 2 × 10−8 m/s or the hypersonic airflow 
around a meteor as it streaks through the atmosphere at 3 × 104 m/s.

Characteristic speeds of some other flows are shown in Fig. 1.1b.
■ Pressure, p
 The pressure within fluids covers an extremely wide range of values. We are accustomed 

to the 35 psi (lb/in.2) pressure within our car’s tires, the “120 over 70” typical blood pres-
sure reading, or the standard 14.7 psi atmospheric pressure. However, the large 10,000 psi 
pressure in the hydraulic ram of an earth mover or the tiny 2 × 10−6 psi pressure of a sound 
wave generated at ordinary talking levels are not easy to comprehend.

Characteristic pressures of some other flows are shown in Fig. 1.1c.

 The list of fluid mechanics applications goes on and on. But you get the point. Fluid 
mechanics is a very important, practical subject that encompasses a wide variety of situations. It 
is very likely that during your career as an engineer you will be involved in the analysis and 
design of systems that require a good understanding of fluid mechanics. Although it is not pos-
sible to adequately cover all of the important areas of fluid mechanics within one book, it is 
hoped that this introductory text will provide a sound foundation of the fundamental aspects of 
fluid mechanics.
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■ Figure 1.1 Characteristic values of some fluid flow parameters for a variety of flows: (a) object size, (b) fluid 

speed, (c) fluid pressure.
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1.1 Some Characteristics of Fluids

One of the first questions we need to explore is––what is a fluid? Or we might ask–what is the 
 difference between a solid and a fluid? We have a general, vague idea of the difference. A solid is 
“hard” and not easily deformed, whereas a fluid is “soft” and is easily deformed (we can readily 
move through air). Although quite descriptive, these casual observations of the differences between 
solids and fluids are not very satisfactory from a scientific or engineering point of view. A closer 
look at the molecular structure of materials reveals that matter that we commonly think of as a solid 
(steel, concrete, etc.) has densely spaced molecules with large intermolecular cohesive forces that 
allow the solid to maintain its shape, and to not be easily deformed. However, for matter that we 
normally think of as a liquid (water, oil, etc.), the molecules are spaced farther apart, the intermo-
lecular forces are smaller than for solids, and the molecules have more freedom of movement. Thus, 
liquids can be easily deformed (but not easily compressed) and can be poured into containers or 
forced through a tube. Gases (air, oxygen, etc.) have even greater molecular spacing and freedom 
of motion with negligible cohesive intermolecular forces, and as a consequence are easily deformed 
(and compressed) and will completely fill the volume of any container in which they are placed. 
Both liquids and gases are fluids.

Will what works in air work in water? For the past few years 

a San Francisco company has been working on small, maneuver-

able submarines designed to travel through water using wings, 

controls, and thrusters that are similar to those on jet airplanes. 

After all, water (for submarines) and air (for airplanes) are both 

fluids, so it is expected that many of the principles governing the 

flight of airplanes should carry over to the “flight” of winged 

 submarines. Of course, there are differences. For example, the 

submarine must be designed to withstand external pressures of 

nearly 700 pounds per square inch greater than that inside the 

vehicle. On the other hand, at high altitude where commercial 

jets fly, the exterior pressure is 3.5 psi rather than standard sea-

level pressure of 14.7 psi, so the vehicle must be pressurized 

internally for passenger comfort. In both cases, however, the 

design of the craft for minimal drag, maximum lift, and efficient 

thrust is governed by the same fluid dynamic concepts.

THE WIDE WORLD OF FLUIDS

 Although the differences between solids and fluids can be explained qualitatively on the basis 
of molecular structure, a more specific distinction is based on how they deform under the action of 
an external load. Specifically, a fluid is defined as a substance that deforms continuously when 

acted on by a shearing stress of any magnitude. A shearing stress (force per unit area) is created 
whenever a tangential force acts on a surface as shown by the figure in the margin. When common 
solids such as steel or other metals are acted on by a shearing stress, they will initially deform 
 (usually a very small deformation), but they will not continuously deform (flow). However, com-
mon fluids such as water, oil, and air satisfy the definition of a fluid—that is, they will flow when 
acted on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste, and so on, are 
not easily classified since they will behave as a solid if the applied shearing stress is small, but if 
the stress exceeds some critical value, the substance will flow. The study of such materials is called 
rheology and does not fall within the province of classical fluid mechanics. Thus, all the fluids we 
will be concerned with in this text will conform to the definition of a fluid.
 Although the molecular structure of fluids is important in distinguishing one fluid from 
another, it is not yet practical to study the behavior of individual molecules when trying to describe 
the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering the 
average, or macroscopic, value of the quantity of interest, where the average is evaluated over a 
small volume containing a large number of molecules. Thus, when we say that the velocity at a 
certain point in a fluid is so much, we are really indicating the average velocity of the molecules in 
a small volume surrounding the point. The volume is small compared with the physical dimensions 
of the system of interest, but large compared with the average distance between molecules. Is this 
a reasonable way to describe the behavior of a fluid? The answer is generally yes, since the spacing 
between molecules is typically very small. For gases at normal pressures and temperatures, the 
spacing is on the order of 10−6 mm, and for liquids it is on the order of 10−7 mm. The number of 

Both liquids and 

gases are fluids.

F

Surface
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molecules per cubic millimeter is on the order of 10 18 for gases and 10 21 for liquids. It is thus clear 
that the number of molecules in a very tiny volume is huge and the idea of using average values 
taken over this volume is certainly reasonable. We thus assume that all the fluid characteristics we 
are interested in (pressure, velocity, etc.) vary continuously throughout the fluid—that is, we treat 
the fluid as a continuum and we refer to the very small volume as a point in the flow. This concept 
will certainly be valid for all the circumstances considered in this text. One area of fluid mechanics 
for which the continuum concept breaks down is in the study of rarefied gases such as would be 
encountered at very high altitudes. In this case the spacing between air molecules can become large 
and the continuum concept is no longer acceptable.

1.2 Dimensions, Dimensional Homogeneity, and Units

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics, it 
is necessary to develop a system for describing these characteristics both qualitatively and quan-

titatively. The qualitative aspect serves to identify the nature, or type, of the characteristics (such 
as length, time, stress, and velocity), whereas the quantitative aspect provides a numerical mea-
sure of the characteristics. The quantitative description requires both a number and a standard by 
which various quantities can be compared. A standard for length might be a meter or foot, for 
time an hour or second, and for mass a slug or kilogram. Such standards are called units, and 
several systems of units are in common use as described in the following section. The qualitative 
description is conveniently given in terms of certain primary quantities, such as length, L, time, 
T, mass, M, and temperature, ϴ. These primary quantities can then be used to provide a qualita-
tive description of any other secondary quantity: for example, area ≐ L 2, velocity ≐ LT 

−1, 
density ≐ ML−3, and so on, where the symbol ≐ is used to indicate the dimensions of the 
 secondary quantity in terms of the primary quantities. Thus, to describe qualitatively a velocity, 
V, we would write

V ≐ LT 
−1

and say that “the dimensions of a velocity equal length divided by time.” The primary quantities are 
also referred to as basic dimensions.

 For a wide variety of problems involving fluid mechanics, only the three basic dimensions, L, 
T, and M are required. Alternatively, L, T, and F could be used, where F is the basic dimensions of 
force. Since Newton’s law states that force is equal to mass times acceleration, it follows that 
F ≐ MLT 

−2 or M ≐ FL−1 T 
2. Thus, secondary quantities expressed in terms of M can be expressed 

in terms of F through the relationship above. For example, stress, σ, is a force per unit area, so that 
σ ≐ FL−2, but an equivalent dimensional equation is σ ≐ ML−1T 

−2. Table 1.1 provides a list of 
dimensions for a number of common physical quantities.
 All theoretically derived equations are dimensionally homogeneous—that is, the dimensions 
of the left side of the equation must be the same as those on the right side, and all additive separate 
terms must have the same dimensions. We accept as a fundamental premise that all equations 
describing physical phenomena must be dimensionally homogeneous. If this were not true, we 
would be attempting to equate or add unlike physical quantities, which would not make sense. For 
example, the equation for the velocity, V, of a uniformly accelerated body is

 V = V0 + at (1.1)

where V0 is the initial velocity, a the acceleration, and t the time interval. In terms of dimensions 
the equation is

LT 
−1 ≐ LT 

−1 + LT 
−2T

and thus Eq. 1.1 is dimensionally homogeneous.
 Some equations that are known to be valid contain constants having dimensions. The equation 
for the distance, d, traveled by a freely falling body can be written as

 d = 16.1t 
2 (1.2)

Fluid characteris-

tics can be 

described 

qualitatively in 

terms of certain 

basic quantities 

such as length, 

time, and mass.
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and a check of the dimensions reveals that the constant must have the dimensions of LT
 

−2 if the 
equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of the well-known 
equation from physics for freely falling bodies,

 d =
gt 

2

2
 (1.3)

in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and valid in 
any system of units. For g = 32.2 ft�s2 the equation reduces to Eq. 1.2 and thus Eq. 1.2 is valid 
only for the system of units using feet and seconds. Equations that are restricted to a particular 
system of units can be denoted as restricted homogeneous equations, as opposed to equations valid 
in any system of units, which are general homogeneous equations. The preceding discussion indi-
cates one rather elementary, but important, use of the concept of dimensions: the determination of 
one aspect of the generality of a given equation simply based on a consideration of the dimensions 
of the various terms in the equation. The concept of dimensions also forms the basis for the powerful 
tool of dimensional analysis, which is considered in detail in Chapter 7.
 Note to the users of this text. All of the examples in the text use a consistent problem-
solving methodology, which is similar to that in other engineering courses such as statics. Each 
example highlights the key elements of analysis: Given, Find, Solution, and Comment.

 The Given and Find are steps that ensure the user understands what is being asked in the 
problem and explicitly list the items provided to help solve the problem.
 The Solution step is where the equations needed to solve the problem are formulated and the 
problem is actually solved. In this step, there are typically several other tasks that help to set up the 
solution and are required to solve the problem. The first is a drawing of the problem; where appro-
priate, it is always helpful to draw a sketch of the problem. Here the relevant geometry and coordi-
nate system to be used as well as features such as control volumes, forces and pressures, velocities, 
and mass flow rates are included. This helps in gaining an understanding of the problem. Making 
appropriate assumptions to solve the problem is the second task. In a realistic engineering problem-
solving environment, the necessary assumptions are developed as an integral part of the solution 
process. Assumptions can provide appropriate simplifications or offer useful constraints, both of 

General homoge-

neous equations 

are valid in any 

system of units.

■ Table 1.1

Dimensions Associated with Common Physical Quantities

 FLT  MLT
 System System

Acceleration LT 
−2 LT 

−2

Angle F 
0L0T 

0 M 
0L0T 

0

Angular acceleration T 
−2 T 

−2

Angular velocity T 
−1 T 

−1

Area L2 L2

Density FL−4T 
2 ML−3

Energy FL ML2T 
−2

Force F MLT 
−2

Frequency T 
−1 T 

−1

Heat FL ML2T 
−2

Length L L

Mass FL−1T 
2 M

Modulus of elasticity FL−2 ML−1T 
−2

Moment of a force FL ML2T 
−2

Moment of inertia (area) L4 L4

Moment of inertia (mass) FLT 
2 ML2

Momentum FT MLT 
−1

 FLT  MLT
 System System

Power FLT 
−1 ML2T 

−3

Pressure FL−2 ML−1T 
−2

Specifi c heat L2T 
−2ϴ−1 L2T 

−2ϴ−1

Specifi c weight FL−3 ML−2 T 
−2

Strain F 
0L0 T  

0 M 
0L0 T  

0

Stress FL−2 ML−1T 
−2

Surface tension FL−1 MT 
−2

Temperature ϴ ϴ

Time T T

Torque FL ML2T 
−2

Velocity LT 
−1 LT 

−1

Viscosity (dynamic) FL−2 T  ML−1T 
−1

Viscosity (kinematic) L2
 T 

−1 L2T 
−1

Volume L3 L3

Work FL ML2T −2
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which can help in solving the problem. Throughout the examples in this text, the necessary assump-
tions are embedded within the Solution step, as they are in solving a real-world problem. This 
provides a realistic problem-solving experience.
 The final element in the methodology is the Comment. For the examples in the text, this 
 section is used to provide further insight into the problem or the solution. It can also be a point in 
the analysis at which certain questions are posed. For example: Is the answer reasonable, and does 
it make physical sense? Are the final units correct? If a certain parameter were changed, how would 
the answer change? Adopting this type of methodology will aid in the development of problem-
solving skills for fluid mechanics, as well as other engineering disciplines.

EXAMPLE 1.1 Restricted and General Homogeneous Equations

GIVEN A liquid flows through an orifice located in the side of 
a tank as shown in Fig. E1.1. A commonly used equation for 
determining the volume rate of flow, Q, through the orifice is

Q = 0.61 A√2gh

where A is the area of the orifice, g is the acceleration of gravity, 
and h is the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this formula.

SOLUTION

The dimensions of the various terms in the equation are Q = 
volume/time ≐ L3T −1, A = area ≐ L2, g = acceleration of gravity ≐ 
LT −2, and  h = height ≐ L.

These terms, when substituted into the equation, yield the dimen-
sional form:

(L3T 
−1) ≐ (0.61)(L2) ( √2 ) (LT 

−2)1� 2(L)1� 2

or

(L3T 
−1) ≐ [0.61√2](L3T 

−1)

It is clear from this result that the equation is dimensionally 
homogeneous (both sides of the formula have the same dimen-
sions of L3T 

−1), and the number 0.61 √2 is dimensionless.
 If we were going to use this relationship repeatedly, we might 
be tempted to simplify it by replacing g with its standard value of 
32.2 ft �s2 and rewriting the formula as

 Q = 4.90 A√h (1)

A quick check of the dimensions reveals that

L3T 
−1 ≐ (4.90)(L5� 2)

and, therefore, the equation expressed as Eq. 1 can only be 
dimensionally correct if the number 4.90 has the dimensions 
of L1� 2T 

−1. Whenever a number appearing in an equation or 
formula has dimensions, it means that the specific value of the 
number will depend on the system of units used. Thus, for the case 
being considered with feet and seconds used as units, the num-
ber 4.90 has units of ft1� 2�s. Equation 1 will only give the 
correct value for Q (in ft3�s)  when A is expressed in square 
feet and h in feet. Thus, Eq. 1 is a restricted homogeneous 
equation, whereas the original equation is a general homoge-
neous equation that would be valid for any consistent system 
of units.

COMMENT A quick check of the dimensions of the various 
terms in an equation is a useful practice and will often be 
helpful in eliminating errors—that is, as noted previously, all 
physically meaningful equations must be dimensionally homo-
geneous. We have briefly alluded to units in this example, and 
this important topic will be considered in more detail in the 
next section.

■ Figure E1.1

(a)

Q

h

A

(b)

1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally neces-
sary to have a quantitative measure of any given quantity. For example, if we measure the width of 
this page in the book and say that it is 10 units wide, the statement has no meaning until the unit of 
length is defined. If we indicate that the unit of length is a meter, and define the meter as some 
standard length, a unit system for length has been established (and a numerical value can be given 
to the page width). In addition to length, a unit must be established for each of the remaining basic 
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quantities (force, mass, time, and temperature). There are several systems of units in use, and we 
shall consider three systems that are commonly used in engineering.
 International System (SI). In 1960 the Eleventh General Conference on Weights and 
Measures, the international organization responsible for maintaining precise uniform standards of 
measurements, formally adopted the International System of Units as the international standard. 
This system, commonly termed SI, has been widely adopted worldwide and is widely used 
(although certainly not exclusively) in the United States. It is expected that the long-term trend will 
be for all countries to accept SI as the accepted standard and it is imperative that engineering stu-
dents become familiar with this system. In SI the unit of length is the meter (m), the time unit is the 
second (s), the mass unit is the kilogram (kg), and the temperature unit is the kelvin (K). Note that 
there is no degree symbol used when expressing a temperature in kelvin units. The kelvin tempera-
ture scale is an absolute scale and is related to the Celsius (centigrade) scale (°C) through the 
relationship

K = °C + 273.15

Although the Celsius scale is not in itself part of SI, it is common practice to specify temperatures 
in degrees Celsius when using SI units.
 The force unit, called the newton (N), is defined from Newton’s second law as

1 N = (1 kg)(1 m �s2)

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 m�s2. Standard 
gravity in SI is 9.807 m�s2 (commonly approximated as 9.81 m�s2) so that a 1-kg mass weighs 9.81 N 
under standard gravity. Note that weight and mass are different, both qualitatively and quantita-
tively! The unit of work in SI is the joule (J), which is the work done when the point of application 
of a 1-N force is displaced through a 1-m distance in the direction of a force. Thus,

1 J = 1 N ∙ m

The unit of power is the watt (W) defined as a joule per second. Thus,

1 W = 1 J�s = 1 N ∙ m�s

 Prefixes for forming multiples and fractions of SI units are given in Table 1.2. For example, 
the notation kN would be read as “kilonewtons” and stands for 103 N. Similarly, mm would be read 
as “millimeters” and stands for 10−3 m. The centimeter is not an accepted unit of length in the SI 
system, so for most problems in fluid mechanics in which SI units are used, lengths will be 
expressed in millimeters or meters.

 British Gravitational (BG) System. In the BG system the unit of length is the foot (ft), the 
time unit is the second (s), the force unit is the pound (lb), and the temperature unit is the degree 
Fahrenheit (°F) or the absolute temperature unit is the degree Rankine (°R), where

°R = °F + 459.67

In mechanics it is 

very important to 

distinguish between 

weight and mass.

■ Table 1.2

Prefi xes for SI Units

Factor by Which Unit
Is Multiplied Prefi x Symbol

 1015 peta P
 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10 deka da
 10−1 deci d

Factor by Which Unit
Is Multiplied Prefi x Symbol

 10−2 centi c
 10−3 milli m
 10−6 micro μ

 10−9 nano n
 10−12 pico p
 10−15 femto f
 10−18 atto a
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The mass unit, called the slug, is defined from Newton’s second law (force = mass × acceleration) 
as

1 lb = (1 slug)(1 ft �s2)

This relationship indicates that a 1-lb force acting on a mass of 1 slug will give the mass an accel-
eration of 1 ft�s2.
 The weight, � (which is the force due to gravity, g), of a mass, m, is given by the equation

� = mg

and in BG units

�(lb) = m (slugs) g(ft�s2)

Since Earth’s standard gravity is taken as g = 32.174 ft�s2 (commonly approximated as 32.2 ft�s2), 
it follows that a mass of 1 slug weighs 32.2 lb under standard gravity.

How long is a foot? Today, in the United States, the common 

length unit is the foot, but throughout antiquity the unit used 

to measure length has quite a history. The first length units 

were based on the lengths of various body parts. One of the 

earliest units was the Egyptian cubit, first used around 3000 B.C. 

and defined as the length of the arm from elbow to extended 

fingertips. Other measures followed, with the foot simply taken 

as the length of a man’s foot. Since this length obviously varies 

from person to person it was often “standardized” by using the 

length of the current reigning royalty’s foot. In 1791 a special 

French commission proposed that a new universal length unit 

called a meter (metre) be defined as the distance of one-

quarter of the Earth’s meridian (north pole to the equator) 

divided by 10 million. Although controversial, the meter was 

accepted in 1799 as the standard. With the development of 

advanced technology, the length of a meter was redefined in 

1983 as the distance traveled by light in a vacuum during the 

time interval of 1/299,792,458 s. The foot is now defined as 

0.3048 meter. Our simple rulers and yardsticks indeed have an 

intriguing history.

THE WIDE WORLD OF FLUIDS

 English Engineering (EE) System. In the EE system, units for force and mass are defined 
independently; thus special care must be exercised when using this system in conjunction with 
Newton’s second law. The basic unit of mass is the pound mass (lbm), and the unit of force is the 
pound (lb).1 The unit of length is the foot (ft), the unit of time is the second (s), and the absolute 
temperature scale is the degree Rankine (°R). To make the equation expressing Newton’s second 
law dimensionally homogeneous we write it as

 F =
ma
gc

 (1.4)

where gc is a constant of proportionality, which allows us to define units for both force and mass. 
For the BG system, only the force unit was prescribed and the mass unit defined in a consistent 
manner such that gc = 1. Similarly, for SI the mass unit was prescribed and the force unit defined 
in a consistent manner such that gc = 1. For the EE system, a 1-lb force is defined as that force 
which gives a 1 lbm a standard acceleration of gravity, which is taken as 32.174 ft�s2. Thus, for 
Eq. 1.4 to be both numerically and dimensionally correct

1 lb =
(1 lbm)(32.174 ft�s2)

gc

so that

gc =
(1 lbm)(32.174 ft�s2)

(1 lb)

Two systems of units 

that are widely 

used in engineering 

are the British 

Gravitational 

(BG) System and 

the International 

System (SI).

1It is also common practice to use the notation, lbf, to indicate pound force.
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 With the EE system, weight and mass are related through the equation

� =
mg

gc

where g is the local acceleration of gravity. Under conditions of standard gravity (g = gc) the 

weight in pounds and the mass in pound mass are numerically equal. Also, since a 1-lb force gives 

a mass of 1 lbm an acceleration of 32.174 ft �s2 and a mass of 1 slug an acceleration of 1 ft �s2, it 

follows that

1 slug = 32.174 lbm

 We cannot overemphasize the importance of paying close attention to units when solving 

problems. It is very easy to introduce huge errors into problem solutions through the use of incor-

rect units. Get in the habit of using a consistent system of units throughout a given solution. It 

really makes no difference which system you use as long as you are consistent; for example, don’t 

mix slugs and newtons. If problem data are specified in SI units, then use SI units throughout the 

solution. If the data are specified in BG units, then use BG units throughout the solution. The rela-

tive sizes of the SI, BG, and EE units of length, mass, and force are shown in Fig. 1.2.

 Extensive tables of conversion factors between unit systems, and within unit systems, are 

provided in Appendix E. For your convenience, abbreviated tables of conversion factors for 

some quantities commonly encountered in fluid mechanics are presented in Tables 1.3 and 1.4 

on the inside back cover (using a slightly different format than Appendix E). Note that numbers 

in these tables are presented in computer exponential notation. For example, the number 5.154 E+2 

is the number 5.154×102 in scientific notation. You should note that each conversion factor 

can be thought of as a fraction in which the numerator and denominator are equivalent. For 

example, an entry for “Length” from Table 1.4 instructs the user “To convert from … m … to 

… ft … Multiply by 3.281.” Therefore 1 m is the same length as 3.281 ft. Therefore a fraction 

formed with a numerator of 1 m and a denominator of 3.281 ft is the very definition of a fraction 

with a value of one, as is its reciprocal. This may seem obvious when the units of the denomina-

tor and numerator are of the same dimension. It is equally true for the more complicated conver-

sion factors that include multiple dimensions and therefore a greater number of units. You 

already know that you can multiply any quantity by one without changing its value. Likewise, 

you can multiply (or divide) any quantity by any conversion factor in the tables, provided you 

use both the number and the units. The result will not be incorrect, even if it does not yield the 

result you hoped for.

When solving 

problems it is 

important to use a 

consistent system 

of units, e.g., don’t 

mix BG and SI 

units.

1.0

0.5

m

0 0

1

2

ft

3

Length

1.0

0.5

N

0

Force

0.06

0.04

slug

0

1

lbm

2

0.02

1.0

0.5

kg

0

Mass

0

0.1

lb

0.2

■ Figure 1.2 Comparison of SI, BG, 

and EE units.
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Units and space travel A NASA spacecraft, the Mars Climate 

Orbiter, was launched in December 1998 to study the Martian 

geography and weather patterns. The spacecraft was slated to 

begin orbiting Mars on September 23, 1999. However, NASA offi-

cials lost communication with the spacecraft early that day and 

it is believed that the spacecraft broke apart or overheated 

because it came too close to the surface of Mars. Errors in the 

maneuvering commands sent from earth caused the Orbiter to 

sweep within 37 miles of the surface rather than the intended 

93 miles. The subsequent investigation revealed that the errors 

were due to a simple mix-up in units. One team controlling the 

Orbiter used SI units, whereas another team used BG units. This 

costly experience illustrates the importance of using a consis-

tent system of units.

THE WIDE WORLD OF FLUIDS

EXAMPLE 1.2 BG and SI Units

GIVEN A tank of liquid having a total mass of 36 kg rests on 
a support in the equipment bay of the Space Shuttle.

FIND Determine the force (in newtons) that the tank exerts on 
the support shortly after lift off when the shuttle is accelerating 
upward as shown in Fig. E1.2a at 15 ft �s2.

SOLUTION

A free-body diagram of the tank is shown in Fig. E1.2b, where 
� is the weight of the tank and liquid, and Ff  is the reaction of 
the floor on the tank. Application of Newton’s second law of 
motion to this body gives

∑ F = m a

or

 Ff − � = ma (1)

where we have taken upward as the positive direction. Since 
� = mg, Eq. 1 can be written as

 Ff = m (g + a) (2)

Before substituting any number into Eq. 2, we must decide on a 
system of units, and then be sure all of the data are expressed in these 
units. Since we want Ff  in newtons, we will use SI units so that

 Ff = 36 kg [9.81 m �s2 + (15 ft �s2) (0.3048 m �ft)]
 = 518 kg ∙ m �s2

Since 1 N = 1 kg ∙ m �s2, it follows that

 Ff = 518 N  (downward on floor) (Ans)

The direction is downward since the force shown on the free-
body diagram is the force of the support on the tank so that the 
force the tank exerts on the support is equal in magnitude but 
opposite in direction.

COMMENT As you work through a large variety of problems 
in this text, you will find that units play an essential role in 
arriving at a numerical answer. Be careful! It is easy to mix units 
and cause large errors. If in the above example the acceleration 
had been left as 15 ft�s2 with m and g expressed in SI units, we 
would have calculated the force as 893 N and the answer would 
have been 72% too large!

■ Figure E1.2a (Photograph courtesy of NASA.)

�

Ff

a

■ Figure E1.2b



1.4   Measures of Fluid Mass and Weight          11

1.3 Analysis of Fluid Behavior

The study of fluid mechanics involves the same fundamental laws you have encountered in physics 
and other mechanics courses. These laws include Newton’s laws of motion, conservation of mass, 
and the first and second laws of thermodynamics. Thus, there are strong similarities between the 
general approach to fluid mechanics and to rigid-body and deformable-body solid mechanics. This 
is indeed helpful since many of the concepts and techniques of analysis used in fluid mechanics will 
be ones you have encountered before in other courses.
 The broad subject of fluid mechanics can be generally subdivided into fluid statics, in which 
the fluid is at rest, and fluid dynamics, in which the fluid is moving. In the following chapters we 
will consider both of these areas in detail. Before we can proceed, however, it will be necessary to 
define and discuss certain fluid properties that are intimately related to fluid behavior. It is obvious 
that different fluids can have grossly different characteristics. For example, gases are light and 
compressible, whereas liquids are heavy (by comparison) and relatively incompressible. A syrup 
flows slowly from a container, but water flows rapidly when poured from the same container. To 
quantify these differences, certain fluid properties are used. In the following several sections, prop-
erties that play an important role in the analysis of fluid behavior are considered.

1.4 Measures of Fluid Mass and Weight

1.4.1 Density

The density of a fluid, designated by the Greek symbol ρ (rho), is defined as its mass per unit 
 volume. Density is typically used to characterize the mass of a fluid system. In the BG system, ρ 
has units of slugs�ft3 and in SI the units are kg�m3.
 The value of density can vary widely between different fluids, but for liquids, variations in 
pressure and temperature generally have only a small effect on the value of ρ. The small change in 
the density of water with large variations in temperature is illustrated in Fig. 1.3. Tables 1.5 and 1.6 
list values of density for several common liquids. The density of water at 60 °F is 1.94 slugs�ft3 or 
999 kg�m3. The large numerical difference between those two values illustrates the importance of 
paying attention to units! Unlike liquids, the density of a gas is strongly influenced by both pressure 
and temperature, and this difference will be discussed in the next section.
 The specific volume, υ, is the volume per unit mass and is therefore the reciprocal of the 
 density—that is,

 υ =
1
ρ

 (1.5)

This property is not commonly used in fluid mechanics but is used in thermodynamics.

The density of a 

fluid is defined as 

its mass per unit 

volume.

@ 4°C     = 1000 kg/m3
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■ Figure 1.3 Density of water as a function of temperature.
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1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol γ (gamma), is defined as its weight 
per unit volume. Thus, specific weight is related to density through the equation

 γ = ρg (1.6)

where g is the local acceleration of gravity. Just as density is used to characterize the mass of a 
fluid system, the specific weight is used to characterize the weight of the system. In the BG 
system, γ has units of lb�ft3 and in SI the units are N�m3. Under conditions of standard gravity 
(g = 32.174 ft�s2 = 9.807 m�s2), water at 60 °F has a specific weight of 62.4 lb�ft3 and 
9.80 kN�m3. Tables 1.5 and 1.6 list values of specific weight for several common liquids (based 
on standard gravity). More complete tables for water can be found in Appendix B (Tables B.1 
and B.2).

1.4.3 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of the fluid 
to the density of water at some specified temperature. Usually the specified temperature is taken as 
4 °C (39.2 °F), and at this temperature the density of water is 1.94 slugs�ft3 or 1000 kg�m3. In 
equation form, specific gravity is expressed as

 SG =
ρ

ρH2O@4 °C
 (1.7)

and since it is the ratio of densities, the value of SG does not depend on the system of units used. 
For example, the specific gravity of mercury at 20 °C is 13.55. This is illustrated by the figure in 
the margin. Thus, the density of mercury can be readily calculated in either BG or SI units through 
the use of Eq. 1.7 as

ρHg = (13.55)(1.94 slugs�ft3) = 26.3 slugs�ft3

or

ρHg = (13.55)(1000 kg�m3) = 13.6 × 103 kg�m3

 It is clear that density, specific weight, and specific gravity are all interrelated, and from a 
knowledge of any one of the three the others can be calculated.

1.5 Ideal Gas Law

Gases are highly compressible in comparison to liquids, with changes in gas density directly related 
to changes in pressure and temperature through the equation

ρ =
p

RT

or, in the more standard form,

 p = ρRT, (1.8)

where p is the absolute pressure, ρ the density, T the absolute temperature,2 and R is a gas constant. 
Equation 1.8 is commonly termed the ideal or perfect gas law, or the equation of state for an ideal 
gas. It is known to closely approximate the behavior of real gases under typical conditions when the 
gases are not approaching liquefaction.
 Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plane 
 surface (real or imaginary) immersed in a fluid and is created by the bombardment of the surface 
with the fluid molecules. From the definition, pressure has the dimension of FL−2 and in BG units 

Specific weight 

is weight per unit 

volume; specific 

gravity is the ratio 

of fluid density 

to the density of 

water at a certain 

temperature.

13.55

1

Water

Mercury

In the ideal gas 

law, absolute 

pressures and 

temperatures must 

be used.

2We will use T to represent temperature in thermodynamic relationships although T is also used to denote the basic dimension of time.
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is expressed as lb�ft2 (psf) or lb�in.2 (psi) and in SI units as N�m2. In SI, 1 N�m2 defined as a 
pascal, abbreviated as Pa, and pressures are commonly specified in pascals. The pressure in the 
ideal gas law must be expressed as an absolute pressure, denoted (abs), which means that it is 
measured relative to absolute zero pressure (a pressure that would only occur in a perfect vacuum). 
Standard sea-level atmospheric pressure (by international agreement) is 14.696 psi (abs) or 101.33 
kPa (abs). For most calculations these pressures can be rounded to 14.7 psi and 101 kPa, respec-
tively. In engineering it is common practice to measure pressure relative to the local atmospheric 
pressure, and when measured in this fashion it is called gage pressure. Thus, the absolute pressure 
can be obtained from the gage pressure by adding the value of the atmospheric pressure. For 
example, as shown by the figure in the margin, a pressure of 30 psi (gage) in a tire is equal to 
44.7 psi (abs) at standard atmospheric pressure. Pressure is a particularly important fluid character-
istic and it will be discussed more fully in the next chapter.

44.7

14.7 0

–14.70

30

(abs) (gage)

p, psi

EXAMPLE 1.3 Ideal Gas Law

GIVEN The compressed air tank shown in Fig. E1.3a has a 
volume of 0.84 ft3. The temperature is 70 °F and the atmospheric 
pressure is 14.7 psi (abs).

FIND When the tank is filled with air at a gage pressure of 50 psi, 
determine the density of the air and the weight of air in the tank.

SOLUTION

The air density can be obtained from the ideal gas law (Eq. 1.8)

ρ =
p

RT

so that

ρ =
(50 lb�in.2 + 14.7 lb�in.2) (144 in.2�ft2)
(1716 ft ∙ lb�slug ∙ °R)[(70 + 460)°R]

  = 0.0102 slugs/ft3  (Ans)

Note that both the pressure and temperature were changed to 
absolute values.
 The weight, �, of the air is equal to

 � = ρg × (volume)
 = (0.0102 slug�ft3) (32.2 ft�s2) (0.84 ft3)
 = 0.276 slug ∙ ft/s2

so that since 1 lb = 1 slug ∙ ft �s2

 � = 0.276 lb (Ans)

COMMENT By repeating the calculations for various values 
of the pressure, p, the results shown in Fig. E1.3b are obtained. 
Note that doubling the gage pressure does not double the amount 
of air in the tank, but doubling the absolute pressure does. Thus, 
a scuba diving tank at a gage pressure of 100 psi does not contain 
twice the amount of air as when the gage reads 50 psi.

■ Figure E1.3a (Photograph courtesy of Jenny 
Products, Inc.)
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 The gas constant, R, which appears in Eq. 1.8, depends on the particular gas and is related to 
the molecular weight of the gas. Values of the gas constant for several common gases are listed in 
Tables 1.7 and 1.8. Also in these tables the gas density and specific weight are given for standard 
atmospheric pressure and gravity and for the temperature listed. More complete tables for air at 
standard atmospheric pressure can be found in Appendix B (Tables B.3 and B.4).

1.6 Viscosity

The properties of density and specific weight are measures of the “heaviness” of a fluid. It is clear, how-
ever, that these properties are not sufficient to uniquely characterize how fluids behave since two fluids 
(such as water and oil) can have approximately the same value of density but behave quite differently 
when flowing. Apparently, some additional property is needed to describe the “fluidity” of the fluid.
 To determine this additional property, consider a hypothetical experiment in which a mate-
rial is placed between two very wide parallel plates as shown in Fig. 1.4a. The bottom plate is 
rigidly fixed, but the upper plate is free to move. If a solid, such as steel, were placed between the 
two plates and loaded with the force P as shown, the top plate would be displaced through some 
small distance, δa (assuming the solid was mechanically attached to the plates). The vertical line 
AB would be rotated through the small angle, δβ, to the new position AB′. We note that to resist 
the applied force, P, a shearing stress, τ, would be developed at the plate–material interface, and for 
equilibrium to occur, P = τA where A is the effective upper plate area (Fig. 1.4b). It is well known 
that for elastic solids, such as steel, the small angular displacement, δβ (called the shearing strain), 
is proportional to the shearing stress, τ, that is developed in the material.
 What happens if the solid is replaced with a fluid such as water? We would immediately notice 
a major difference. When the force P is applied to the upper plate, it will move continuously with a 
velocity, U (after the initial transient motion has died out) as illustrated in Fig. 1.5. This behavior is 
consistent with the definition of a fluid—that is, if a shearing stress is applied to a fluid it will deform 
continuously. A closer inspection of the fluid motion between the two plates would reveal that the 
fluid in contact with the upper plate moves with the plate velocity, U, and the fluid in contact with 
the bottom fixed plate has a zero velocity. The fluid between the two plates moves with velocity 
u = u (y) that would be found to vary linearly, u = Uy�b, as illustrated in Fig. 1.5. Thus, a velocity 

gradient, du�dy, is developed in the fluid between the plates. In this particular case the velocity 
gradient is a constant since du�dy = U�b, but in more complex flow situations, such as that shown 
by the photograph in the margin, this is not true. The experimental observation that the fluid “sticks” 
to the solid boundaries is a very important one in fluid mechanics and is usually referred to as the 

no-slip condition. All fluids, both liquids and gases, satisfy this condition for typical flows.

V1.3 Viscous 
fluidsVIDEO

V1.4 No-slip 
conditionVIDEO

Real fluids, even 

though they may 

be moving, always 

“stick” to the solid 

boundaries that 

contain them.
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■ Figure 1.4 (a) Deformation of material 
placed between two parallel plates. (b) Forces 
acting on upper plate.
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■ Figure 1.5 Behavior of a fluid placed between two 
parallel plates.
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 In a small time increment, δt, an imaginary vertical line AB in the fluid would rotate through 
an angle, δβ, so that

δβ ≈ tan δβ =
δa

b

Since δa = U δt, it follows that

δβ =
U δt

b

We note that in this case, δβ is a function not only of the force P (which governs U) but also of 
time. Thus, it is not reasonable to attempt to relate the shearing stress, τ, to δβ as is done for 
solids. Rather, we consider the rate at which δβ is changing and define the rate of shearing 

strain, γ̇, as

γ̇ = lim
δt→0

 
δβ

δt

which in this instance is equal to

γ̇ =
U

b
=

du

dy

 A continuation of this experiment would reveal that as the shearing stress, τ, is increased by 
increasing P (recall that τ = P/A), the rate of shearing strain is increased in direct proportion—
that is,

τ ∝ γ̇

or

τ ∝  
du

dy

This result indicates that for common fluids such as water, oil, gasoline, and air the shearing stress 
and rate of shearing strain (velocity gradient) can be related with a relationship of the form

 τ = μ 
du

dy
 (1.9)

where the constant of proportionality is designated by the Greek symbol μ (mu) and is called the 
absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance with 
Eq. 1.9, plots of τ versus du�dy should be linear with the slope equal to the viscosity as illustrated 
in Fig. 1.6. The actual value of the viscosity depends on the particular fluid, and for a particular 
fluid the viscosity is also highly dependent on temperature as illustrated in Fig. 1.6 with the two 
curves for water. Fluids for which the shearing stress is linearly related to the rate of shearing strain 
(also referred to as the rate of angular deformation) are designated as Newtonian fluids after Isaac 
Newton (1642–1727). Fortunately, most common fluids, both liquids and gases, are Newtonian. A 
more general formulation of Eq. 1.9 which applies to more complex flows of Newtonian fluids is 
given in Section 6.8.1.

An extremely viscous fluid Pitch is a derivative of tar once 

used for waterproofing boats. At elevated temperatures it 

flows quite readily. At room temperature it feels like a solid—it 

can even be shattered with a blow from a hammer. However, 

it is a liquid. In 1927 Professor Parnell heated some pitch and 

poured it into a funnel. Since that time it has been allowed to 

flow freely (or rather, drip slowly) from the funnel. The  flowrate 

is quite small. In fact, to date only seven drops have fallen 

from the end of the funnel, although the eighth drop is 

poised ready to fall “soon.” While nobody has actually seen a 

drop fall from the end of the funnel, a beaker below the 

 funnel holds the previous drops that fell over the years. It is 

estimated that the pitch is about 100 billion times more 

 viscous than water.

THE WIDE WORLD OF FLUIDS

u = u(y)

u = 0 on surface

Solid body

y

V1.5 
Capillary tube 
viscometer

VIDEO

Dynamic viscosity 

is the fluid property 

that relates 

shearing stress and 

fluid motion.
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 Fluids for which the shearing stress is not linearly related to the rate of shearing strain are 
designated as non-Newtonian fluids. Although there is a variety of types of non-Newtonian fluids, 
the simplest and most common are shown in Fig. 1.7. The slope of the shearing stress versus rate 
of shearing strain graph is denoted as the apparent viscosity, μap. For Newtonian fluids the apparent 
viscosity is the same as the viscosity and is independent of shear rate.
 For shear thinning fluids the apparent viscosity decreases with increasing shear rate—the 
harder the fluid is sheared, the less viscous it becomes. Many colloidal suspensions and polymer 
solutions are shear thinning. For example, latex paint does not drip from the brush because the 
shear rate is small and the apparent viscosity is large. However, it flows smoothly onto the wall 
because the thin layer of paint between the wall and the brush causes a large shear rate and a small 
apparent viscosity.
 For shear thickening fluids the apparent viscosity increases with increasing shear rate—the 
harder the fluid is sheared, the more viscous it becomes. Common examples of this type of fluid 
include water–corn starch mixture and water–sand mixture (“quicksand”). Thus, the difficulty in 
removing an object from quicksand increases dramatically as the speed of removal increases.
 The other type of behavior indicated in Fig. 1.7 is that of a Bingham plastic, which is neither 
a fluid nor a solid. Such material can withstand a finite, nonzero shear stress, τyield, the yield stress, 
without motion (therefore, it is not a fluid), but once the yield stress is exceeded it flows like a fluid 
(hence, it is not a solid). Toothpaste and mayonnaise are common examples of Bingham plastic 

For non-Newtonian 

fluids, the apparent 

viscosity is a 

function of the 

shear rate.

The various types 

of non-Newtonian 

fluids are 

distinguished by 

how their apparent 

viscosity changes 

with shear rate.
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materials. As indicated in the figure in the margin, mayonnaise can sit in a pile on a slice of bread 
(the shear stress less than the yield stress), but it flows smoothly into a thin layer when the knife 
increases the stress above the yield stress.
 From Eq. 1.9 it can be readily deduced that the dimensions of viscosity are FTL−2. Thus, in 
BG units viscosity is given as lb ∙ s�ft2 and in SI units as N ∙ s�m2. Values of viscosity for  several 
common liquids and gases are listed in Tables 1.5 through 1.8. A quick glance at these tables 
reveals the wide variation in viscosity among fluids. Viscosity is only mildly dependent on pres-
sure and the effect of pressure is usually neglected. However, as previously mentioned, and as 
illustrated in Fig. 1.8, viscosity is very sensitive to temperature. For example, as the temperature 
of water changes from 60 to 100 °F the density decreases by less than 1%, but the viscosity 
decreases by about 40%. It is thus clear that particular attention must be given to temperature when 
determining viscosity.
 Figure 1.8 shows in more detail how the viscosity varies from fluid to fluid and how for a given 
fluid it varies with temperature. It is to be noted from this figure that the viscosity of liquids decreas-
es with an increase in temperature, whereas for gases an increase in temperature causes an increase 
in viscosity. This difference in the effect of temperature on the viscosity of liquids and gases can 
again be traced back to the difference in molecular structure. The liquid molecules are closely spaced, 
with strong cohesive forces between molecules, and the resistance to relative motion between adja-
cent layers of fluid is related to these intermolecular forces. As the temperature increases, these 
cohesive forces are reduced with a corresponding reduction in resistance to motion. Since viscosity 
is an index of this resistance, it follows that the viscosity is reduced by an increase in temperature. 
In gases, however, the molecules are widely spaced and intermolecular forces negligible. In this case, 
resistance to relative motion arises due to the exchange of momentum of gas molecules between 
adjacent layers. As molecules are transported by random motion from a region of low bulk velocity 
to mix with molecules in a region of higher bulk velocity (and vice versa), there is an effective 
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τ τ

τ τ
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momentum exchange that resists the relative motion between the layers. As the temperature of the 

gas increases, the random molecular activity increases with a corresponding increase in viscosity.

 The effect of temperature on viscosity can be closely approximated using two empirical 

 formulas. For gases the Sutherland equation can be expressed as

 μ =
CT 

3� 2

T + S
 (1.10)

where C and S are empirical constants, and T is absolute temperature. Thus, if the viscosity is 

known at two temperatures, C and S can be determined. Or, if more than two viscosities are known, 

the data can be correlated with Eq. 1.10 by using some type of curve-fitting scheme.

 For liquids an empirical equation that has been used is

 μ = DeB�T (1.11)

where D and B are constants and T is absolute temperature. This equation is often referred to as 

Andrade’s equation. As was the case for gases, the viscosity must be known at least for two 

 temperatures so the two constants can be determined. A more detailed discussion of the effect of 

temperature on fluids can be found in Ref. 1.

Viscosity is 

very sensitive to 

temperature.

EXAMPLE 1.4 Viscosity and Dimensionless Quantities

GIVEN A dimensionless combination of variables that is 

important in the study of viscous flow through pipes is called the 

Reynolds number, Re, defined as ρVD�μ where, as indicated in 

Fig. E1.4, ρ is the fluid density, V the mean fluid velocity, D the 

pipe diameter, and μ the fluid viscosity. A Newtonian fluid 

having a viscosity of 0.38 N ∙ s�m2 and a specific gravity of 0.91 

flows through a 25-mm-diameter pipe with a velocity of 2.6 m�s.

FIND Determine the value of the Reynolds number using 

(a) SI units and (b) BG units.

SOLUTION

(a) The fluid density is calculated from the specific gravity as

 ρ = SG ρH2O@4 °C = 0.91 (1000 kg�m3) = 910 kg/m3

and from the definition of the Reynolds number

 Re =
ρVD

μ
=

(910 kg�m3) (2.6 m�s)(25 mm)(10−3 m�mm)

0.38 N ∙ s�m2

 = 156 (kg ∙ m�s2)�N

However, since 1 N = 1 kg ∙ m�s2 it follows that the Reynolds 

number is unitless—that is,

 Re = 156 (Ans)

The value of any dimensionless quantity does not depend on the 

system of units used if all variables that make up the quantity are 

expressed in a consistent set of units. To check this, we will 

 calculate the Reynolds number using BG. units.

(b) We first convert all the SI values of the variables appearing 

in the Reynolds number to BG values. Thus,

 ρ = (910 kg�m3) (1.940 × 10−3) = 1.77 slugs�ft3

 V = (2.6 m�s)(3.281) = 8.53 ft�s

 D = (0.025 m)(3.281) = 8.20 × 10−2 ft

 μ = (0.38 N ∙ s�m2) (2.089 × 10−2) = 7.94 × 10−3 lb ∙ s/ft2

and the value of the Reynolds number is

  Re =
(1.77 slugs�ft3) (8.53 ft�s)(8.20 × 10−2 ft)

7.94 × 10−3 lb ∙ s�ft2
 

  = 156 (slug ∙ ft�s2)�lb = 156  (Ans)

since 1 lb = 1 slug ∙ ft�s2.

COMMENTS The values from part (a) and part (b) are the 

same, as expected. Dimensionless quantities play an important 

role in fluid mechanics, and the significance of the Reynolds 

number as well as other important dimensionless combinations 

will be discussed in detail in Chapter 7. It should be noted that 

in the Reynolds number it is actually the ratio μ�ρ that is 

important, and this is the property that is defined as the kine-

matic viscosity.

■ Figure E1.4
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EXAMPLE 1.5 Newtonian Fluid Shear Stress

GIVEN The velocity distribution for the flow of a Newtonian 

fluid between two fixed wide, parallel plates (see Fig. E1.5a) is 

given by the equation

u =
3V

2
 [1 −(

y

h)
2

]

you explain the change of sign? [Hint: Sketch a sheared fluid 

particle adjacent to the top plate.]

SOLUTION

For this type of parallel flow the shearing stress is obtained from 

Eq. 1.9,

 τ = μ 
du

dy
 (1)

Thus, if the velocity distribution u = u(y) is known, the shearing 

stress can be determined at all points by evaluating the velocity 

gradient, du�dy. For the distribution given

 
du

dy
= −

3Vy

h2
 (2)

(a) Along the bottom wall y = −h so that (from Eq. 2)

du

dy
=

3V

h

and therefore the shearing stress is

τbottom
wall

 = μ (3V

h ) =
(0.04 lb ∙ s�ft2) (3)(2 ft�s)

(0.2 in.) (1 ft�12 in.)

  = 14.4 lb�ft2 (in direction of flow)  (Ans)

A positive shear stress seems intuitively satisfying. To check your 

intuition, sketch a sheared fluid particle adjacent to the bottom plate 

(Fig. E1.5b). The fluid motion seems to be trying to drag the plate in 

the flow direction. Reference to the section in which the concept of 

viscosity was introduced, and Fig. 1.4 in particular, makes clear that 

the shear stress on the fluid at the wall is indeed positive. A review 

of Eq. 2 and the answers to parts a and b of this example makes it 

clear that the shear stress varies linearly across the flow field.

(b) Along the midplane where y = 0 it follows from Eq. 2 that

du

dy
= 0

and thus the shearing stress is

 τmidplane = 0 (Ans)

COMMENT Equation 2 has been evaluated at the bottom 

plate and mid-plane to provide the answers to parts a and b of this 

example. If you use it to compute the shear stress at the top plate, 

you will notice that it produces a shear stress of the same magni-

tude as at the bottom plate, but of opposite sign. A plot of τ versus 

y between the plates, Fig. E1.5b, confirms both the difference in 

sign and the earlier observation of the linear relationship. Can 

where V is the mean velocity. The fluid has a viscosity of 

0.04 lb ∙ s�ft2. Also, V = 2 ft�s and h = 0.2 in.

FIND Determine: (a) the shearing stress acting on the bottom 

wall, and (b) the shearing stress acting on a plane parallel to the 

walls and passing through the centerline (midplane).

■ Figure E1.5a
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 Quite often viscosity appears in fluid flow problems combined with the density in the form

ν =
μ

ρ

This ratio is called the kinematic viscosity and is denoted with the Greek symbol ν (nu). The dimensions 

of kinematic viscosity are L2�T, and the BG units are ft2�s and SI units are m2�s. Values of kine-

matic viscosity for some common liquids and gases are given in Tables 1.5 through 1.8. More extensive 

tables giving both the dynamic and kinematic viscosities for water and air can be found in Appendix B 

(Tables B.1 through B.4), and graphs showing the variation in both dynamic and kinematic viscosity 

with temperature for a variety of fluids are also provided in Appendix B (Figs. B.1 and B.2).

 Although in this text we are primarily using BG and SI units, dynamic viscosity is often 

expressed in the metric CGS (centimeter-gram-second) system with units of dyne ∙ s�cm2. This 

combination is called a poise, abbreviated P. In the CGS system, kinematic viscosity has units of 

cm2�s, and this combination is called a stoke, abbreviated St.

1.7 Compressibility of Fluids

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid is how easily 

can the volume (and thus the density) of a given mass of the fluid be changed when there is a change 

in pressure? That is, how compressible is the fluid? A property that is commonly used to  characterize 

compressibility is the bulk modulus, Eυ, defined as

 Eυ = −
dp

dV�V
 (1.12)

where dp is the differential change in pressure needed to create a differential change in volume, dV, 

of a volume V. This is illustrated by the figure in the margin. The negative sign is included since an 

increase in pressure will cause a decrease in volume. Since a decrease in volume of a given mass, 

m = ρV, will result in an increase in density, Eq. 1.12 can also be expressed as

 Eυ =
dp

dρ�ρ
 (1.13)

The bulk modulus (also referred to as the bulk modulus of elasticity) has dimensions of pressure, 

FL−2. In BG units, values for Eυ are usually given as lb�in.2 (psi) and in SI units as N�m2 (Pa). 

Large values for the bulk modulus indicate that the fluid is relatively incompressible—that is, it 

takes a large pressure change to create a small change in volume. As expected, values of Eυ for 

common liquids are large (see Tables 1.5 and 1.6). For example, at atmospheric pressure and a 

temperature of 60 °F it would require a pressure of 3120 psi to compress a unit volume of water 1%. 

This result is representative of the compressibility of liquids. Since such large pressures are required 

to effect a change in volume, we conclude that liquids can be considered as incompressible for most 

practical engineering applications. As liquids are compressed the bulk modulus increases, but the 

bulk modulus near atmospheric pressure is usually the one of interest. The use of bulk modulus as 

a property describing compressibility is most prevalent when dealing with liquids, although the 

bulk modulus can also be determined for gases.

This water jet is a blast Usually liquids can be treated as 

incompressible fluids. However, in some applications the com-

pressibility of a liquid can play a key role in the operation of a 

device. For example, a water pulse generator using compressed 

water has been developed for use in mining operations. It can 

fracture rock by producing an effect comparable to a conven-

tional explosive such as gunpowder. The device uses the energy 

stored in a water-filled accumulator to generate an ultrahigh-

pressure water pulse ejected through a 10- to 25-mm-diameter 

discharge valve. At the ultrahigh pressures used (300 to 400 MPa, 

or 3000 to 4000 atmospheres), the water is compressed (i.e., the 

volume reduced) by about 10 to 15%. When a fast-opening valve 

within the pressure vessel is opened, the water expands and 

produces a jet of water that upon impact with the target material 

produces an effect similar to the explosive force from conven-

tional explosives. Mining with the water jet can eliminate various 

hazards that arise with the use of conventional chemical explo-

sives, such as those associated with the storage and use of 

explosives and the generation of toxic gas by-products that 

require extensive ventilation. (See Problem 1.110.)

THE WIDE WORLD OF FLUIDS

Kinematic viscosity 

is defined as 

the ratio of the 

absolute viscosity 

to the fluid density.

p

V

p + dp

V – dV
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1.7.2 Compression and Expansion of Gases

When gases are compressed (or expanded), the relationship between pressure and density depends 

on the nature of the process. If the compression or expansion takes place under constant temperature 

conditions (isothermal process), then from Eq. 1.8

 
p

ρ
= constant (1.14)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings 

(isentropic process), then

 
p

ρk
= constant (1.15)

where k is the ratio of the specific heat at constant pressure, cp, to the specific heat at constant 

volume, cυ (i.e., k = cp�cυ). The two specific heats are related to the gas constant, R, through the 

equation R = cp − cυ. As was the case for the ideal gas law, the pressure in both Eqs. 1.14 and 1.15 

must be expressed as an absolute pressure. Values of k for some common gases are given in Tables 

1.7 and 1.8 and for air over a range of temperatures, in Appendix B (Tables B.3 and B.4). The 

 pressure–density variations for isothermal and isentropic conditions are illustrated in the margin figure.

 With explicit equations relating pressure and density, the bulk modulus for gases can be deter-

mined by obtaining the derivative dp�dρ from Eq. 1.14 or 1.15 and substituting the results into 

Eq. 1.13. It follows that for an isothermal process

 Eυ = p (1.16)

and for an isentropic process,

 Eυ = kp (1.17)

Note that in both cases the bulk modulus varies directly with pressure. For air under standard atmo-

spheric conditions with p = 14.7 psi (abs) and k = 1.40, the isentropic bulk modulus is 20.6 psi. 

A comparison of this figure with that for water under the same conditions (Eυ = 312,000 psi) 

shows that air is approximately 15,000 times as compressible as water. It is thus clear that in dealing 

with gases, greater attention will need to be given to the effect of compressibility on fluid behavior. 

However, as will be discussed further in later sections, gas flows can often be treated as incompress-

ible flows if the changes in pressure are small.

p

Isothermal

Isentropic

(k = 1.4)

ρ

The value of the 

bulk modulus 

depends on the type 

of process involved.

EXAMPLE 1.6 Isentropic Compression of a Gas

GIVEN A cubic foot of air at an absolute pressure of 14.7 psi 

is compressed isentropically to 
1

2 ft3 by the tire pump shown in 

Fig. E1.6a.

FIND What is the final pressure?

SOLUTION

For an isentropic compression

pi

ρk
i

=
pf

ρk
f

where the subscripts i and f refer to initial and final states, respec-

tively. Since we are interested in the final pressure, pf, it follows 

that

pf =(
ρf

ρi
)

k

pi ■ Figure E1.6a
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1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced at 
some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in a pipe and 
a valve at the outlet is suddenly closed (thereby creating a localized disturbance), the effect of the 
valve closure is not felt instantaneously upstream. It takes a finite time for the increased pressure 
created by the valve closure to propagate to an upstream location. Similarly, a loudspeaker dia-
phragm causes a localized disturbance as it vibrates, and the small change in pressure created by 
the motion of the diaphragm is propagated through the air with a finite velocity. The velocity at 
which these small disturbances propagate is called the acoustic velocity or the speed of sound, c. It 
will be shown in Chapter 11 that the speed of sound is related to changes in pressure and density of 
the fluid medium through the equation

 c = B
dp

dρ
 (1.18)

or in terms of the bulk modulus defined by Eq. 1.13

 c = B
Eυ

ρ
 (1.19)

Since the disturbance is small, there is negligible heat transfer and the process is assumed to be 
isentropic. Thus, the pressure–density relationship used in Eq. 1.18 is that for an isentropic process.
 For gases undergoing an isentropic process, Eυ = kp (Eq. 1.17) so that

c = B
kp

ρ

and making use of the ideal gas law, it follows that

 c = √kRT  (1.20)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute tempera-
ture. For example, for air at 60 °F with k = 1.40 and R = 1716 ft ∙ lb�slug ∙ °R, it follows that 
c = 1117 ft�s. The speed of sound in air at various temperatures can be found in Appendix B 
(Tables B.3 and B.4). Equation 1.19 is also valid for liquids, and values of Eυ can be used to deter-
mine the speed of sound in liquids. For water at 20 °C, Eυ = 2.19 GN�m2 and ρ = 998.2 kg�m3 
so that c = 1481 m�s or 4860 ft�s. As shown by the figure in the margin, the speed of sound is 
much higher in water than in air. If a fluid were truly incompressible (Eυ = ∞) the speed of sound 

The velocity 

at which small 

disturbances 

propagate in a 

fluid is called the 

speed of sound.
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As the volume, V. is reduced by one-half, the density must dou-
ble, since the mass, m = ρ V. of the gas remains constant. Thus, 
with k = 1.40 for air

 pf = (2)1.40(14.7 psi) = 38.8 psi (abs) (Ans)

COMMENT By repeating the calculations for various values 
of the ratio of the final volume to the initial volume, Vf�Vi, the 
results shown in Fig. E1.6b are obtained. Note that even though 
air is often considered to be easily compressed (at least com-
pared to liquids), it takes considerable pressure to significantly 
reduce a given volume of air as is done in an automobile engine 
where the compression ratio is on the order of Vf �Vi = 1/8 = 

0.125.
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would be infinite. The speed of sound in water for various temperatures can be found in Appendix B 
(Tables B.1 and B.2).

EXAMPLE 1.7 Speed of Sound and Mach Number

GIVEN A jet aircraft flies at a speed of 550 mph at an altitude 
of 35,000 ft, where the temperature is −66 °F and the specific 
heat ratio is k = 1.4.

SOLUTION

From Eq. 1.20 the speed of sound can be calculated as

 c = √kRT

 = √(1.40)(1716 ft lb/slug °R)(−66 + 460)  °R
 = 973 ft /s

Since the air speed is

V =
(550 mi/  hr)(5280 ft/mi)

(3600 s /  hr)
= 807 ft /s

the ratio is

 
V

c
=

807 ft /s
973 ft /s

= 0.829 (Ans)

COMMENT This ratio is called the Mach number, Ma. If 
Ma < 1.0 the aircraft is flying at subsonic speeds, whereas for 
Ma > 1.0 it is flying at supersonic speeds. The Mach number is 
an important dimensionless parameter used in the study of the 
flow of gases at high speeds and will be further discussed in 
Chapters 7 and 11.
 By repeating the calculations for different temperatures, the 
results shown in Fig. E1.7 are obtained. Because the speed of 

FIND Determine the ratio of the speed of the aircraft, V, to that 
of the speed of sound, c, at the specified altitude.

sound increases with increasing temperature, for a constant 
 airplane speed, the Mach number decreases as the temperature 
increases.

■ Figure E1.7
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1.8 Vapor Pressure

It is a common observation that liquids such as water and gasoline will evaporate if they are simply 
placed in a container open to the atmosphere. Evaporation takes place because some liquid mole-
cules at the surface have sufficient momentum to overcome the intermolecular cohesive forces and 
escape into the atmosphere. If the container is closed with a small air space left above the surface, 
and this space evacuated to form a vacuum, a pressure will develop in the space as a result of the 
vapor that is formed by the escaping molecules. When an equilibrium condition is reached so that 
the number of molecules leaving the surface is equal to the number entering, the vapor is said to be 
saturated and the pressure that the vapor exerts on the liquid surface is termed the vapor pressure, 
pv. Similarly, if the end of a completely liquid-filled container is moved as shown in the figure in 
the margin without letting any air into the container, the space between the liquid and the end 
becomes filled with vapor at a pressure equal to the vapor pressure.
 Since the development of a vapor pressure is closely associated with molecular activity, the 
value of vapor pressure for a particular liquid depends on temperature. Values of vapor pressure for 
water at various temperatures can be found in Appendix B (Tables B.1 and B.2), and the values of 
vapor pressure for several common liquids at room temperatures are given in Tables 1.5 and 1.6.
 Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when the 
absolute pressure in the fluid reaches the vapor pressure. As commonly observed in the kitchen, 
water at standard atmospheric pressure will boil when the temperature reaches 212 °F (100 °C)—

Liquid

Liquid

Vapor, pυ

A liquid boils 

when the pressure 

is reduced to the 

vapor pressure.
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that is, the vapor pressure of water at 212 °F is 14.7 psi (abs). However, if we attempt to boil 
water at a higher elevation, say 30,000 ft above sea level (the approximate elevation of 
Mt. Everest), where the atmospheric pressure is 4.37 psi (abs), we find that boiling will start 
when the temperature is about 157 °F. At this temperature the vapor pressure of water is 4.37 
psi (abs). For the U.S. Standard Atmosphere (see Section 2.4), the boiling temperature is a 
function of altitude as shown in the figure in the margin. Thus, boiling can be induced at a 
given pressure acting on the fluid by raising the temperature, or at a given fluid temperature 
by lowering the pressure.
 An important reason for our interest in vapor pressure and boiling lies in the common 
observation that in flowing fluids it is possible to develop very low pressure due to the fluid 
motion, and if the pressure is lowered to the vapor pressure, boiling will occur. For example, this 
phenomenon may occur in flow through the irregular, narrowed passages of a valve or pump. 
When vapor bubbles are formed in a flowing fluid, they are swept along into regions of higher 
 pressure where they suddenly collapse with sufficient intensity to actually cause structural damage. 
The formation and subsequent collapse of vapor bubbles in a flowing fluid, called cavitation, is an 
important fluid flow phenomenon to be given further attention in Chapters 3 and 7.

1.9 Surface Tension

At the interface between a liquid and a gas, or between two immiscible liquids, forces develop in 
the liquid surface that cause the surface to behave as if it were a “skin” or “membrane” stretched 
over the fluid mass. Although such a skin is not actually present, this conceptual analogy allows us 
to explain several commonly observed phenomena. For example, a steel needle or a razor blade will 
float on water if placed gently on the surface because the tension developed in the hypothetical skin 
supports it. Small droplets of mercury will form into spheres when placed on a smooth surface 
because the cohesive forces in the surface of the mercury tend to hold all the molecules together in 
a compact shape. Similarly, discrete bubbles will form in a liquid. (See the photograph at the begin-
ning of Chapter 1.)
 These various types of surface phenomena are due to the unbalanced cohesive forces acting 
on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass are sur-
rounded by molecules that are attracted to each other equally. However, molecules along the surface 
are subjected to a net force toward the interior. The apparent physical consequence of this unbal-
anced force along the surface is to create the hypothetical skin or membrane. A tensile force may 
be considered to be acting in the plane of the surface along any line in the surface. The intensity of 
the molecular attraction per unit length along any line in the surface is called the surface tension 
and is designated by the Greek symbol σ (sigma). For a given liquid the surface tension depends on 
temperature as well as the other fluid it is in contact with at the interface. The dimensions of surface 
tension are FL−1 with BG units of lb�ft and SI units of N�m. Values of surface tension for some 
common liquids (in contact with air) are given in Appendix B (Tables B.1 and B.2) for water at 
various temperatures. As indicated by the figure in the margin, the value of the surface tension 
decreases as the temperature increases.

Walking on water Water striders are insects commonly found 

on ponds, rivers, and lakes that appear to “walk” on water. A 

typical length of a water strider is about 0.4 in., and they can 

cover 100 body lengths in one second. It has long been recog-

nized that it is surface tension that keeps the water strider from 

sinking below the surface. What has been puzzling is how they 

propel themselves at such a high speed. They can’t pierce the 

water surface or they would sink. A team of mathematicians and 

engineers from the Massachusetts Institute of Technology (MIT) 

applied conventional flow visualization techniques and high-

speed video to examine in detail the movement of the water 

striders. They found that each stroke of the insect’s legs creates 

dimples on the surface with underwater swirling vortices suffi-

cient to propel it forward. It is the rearward motion of the vortices 

that propels the water strider forward. To further substantiate 

their explanation, the MIT team built a working model of a water 

strider, called Robostrider, which creates surface ripples and 

underwater vortices as it moves across a water surface. 

Waterborne creatures, such as the water strider, provide an inter-

esting world dominated by surface tension. (See Problem 1.131.)

THE WIDE WORLD OF FLUIDS
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 The pressure inside a drop of fluid can be calculated using the free-body diagram in Fig. 1.9. 
If the spherical drop is cut in half (as shown), the force developed around the edge due to surface 
tension is 2πRσ. This force must be balanced by the pressure difference, ∆p, between the internal 
pressure, pi, and the external pressure, pe, acting over the circular area, πR2. Thus,

2πRσ = ∆p πR2

or

 ∆p = pi − pe =
2σ

R
 (1.21)

It is apparent from this result that the pressure inside the drop is greater than the pressure surround-
ing the drop. (Would the pressure on the inside of a bubble of water be the same as that on the inside 
of a drop of water of the same diameter and at the same temperature?)
 Among common phenomena associated with surface tension is the rise (or fall) of a liquid in 
a capillary tube. If a small open tube is inserted into water, the water level in the tube will rise above 
the water level outside the tube, as is illustrated in Fig. 1.10a. In this situation we have a liquid–gas–
solid interface. For the case illustrated there is an attraction (adhesion) between the wall of the tube 
and liquid molecules which is strong enough to overcome the mutual attraction (cohesion) of the 
molecules and pull them up the wall. Hence, the liquid is said to wet the solid surface.
 The height, h, is governed by the value of the surface tension, σ, the tube radius, R, the spe-
cific weight of the liquid, γ, and the angle of contact, θ, between the fluid and tube. From the free-
body diagram of Fig. 1.10b we see that the vertical force due to the surface tension is equal to 
2πRσ cos θ and the weight is γπR2h, and these two forces must balance for equilibrium. Thus,

γπR2h = 2πRσ cos θ

so that the height is given by the relationship

 h =
2σ cos θ

γR
 (1.22)

The angle of contact is a function of both the liquid and the surface. For water in contact with clean 
glass θ ≈ 0°. It is clear from Eq. 1.22 that the height is inversely proportional to the tube radius, 
and therefore, as indicated by the figure in the margin, the rise of a liquid in a tube as a result of 
capillary action becomes increasingly pronounced as the tube radius is decreased.
 If adhesion of molecules to the solid surface is weak compared to the cohesion between mol-
ecules, the liquid will not wet the surface and the level in a tube placed in a nonwetting liquid will 
actually be depressed, as shown in Fig. 1.10c. Mercury is a good example of a nonwetting liquid 
when it is in contact with a glass tube. For nonwetting liquids the angle of contact is greater than 
90°, and for mercury in contact with clean glass θ ≈ 130°.

V1.10 
Capillary riseVIDEO
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Capillary action in 

small tubes, which 

involves a liquid–

gas–solid interface, 

is caused by 

surface tension.
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tubes. (a) Rise of column for a liquid that wets the 
tube. (b) Free-body diagram for calculating column 
height. (c) Depression of column for a nonwetting 
liquid.
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 Surface tension effects play a role in many fluid mechanics problems, including the move-
ment of liquids through soil and other porous media, flow of thin films, formation of drops and 
bubbles, and the breakup of liquid jets. For example, surface tension is a main factor in the 
formation of drops from a leaking faucet, as shown in the photograph in the margin. Surface 
phenomena associated with liquid–gas, liquid–liquid, and liquid–gas–solid interfaces are 
exceedingly complex, and a more detailed and rigorous discussion of them is beyond the scope 
of this text. Fortunately, in many fluid mechanics problems, surface phenomena, as  characterized 
by surface tension, are not important, since inertial, gravitational, and viscous forces are much 
more dominant.

Spreading of oil spills With the large traffic in oil tankers there 

is great interest in the prevention of and response to oil spills. 

As evidenced by the famous Exxon Valdez oil spill in Prince 

William Sound in 1989, oil spills can create disastrous environ-

mental problems. A more recent example of this type of catas-

trophe is the oil spill that occurred in the Gulf of Mexico in 2010. 

It is not surprising that much attention is given to the rate at 

which an oil spill spreads. When spilled, most oils tend to spread 

horizontally into a smooth and slippery surface, called a slick. 

There are many factors that influence the ability of an oil slick to 

spread, including the size of the spill, wind speed and direction, 

and the physical properties of the oil. These properties include 

surface tension, specific gravity, and viscosity. The higher the sur-

face tension the more likely a spill will remain in place. Since the 

specific gravity of oil is less than one, it floats on top of the 

water, but the specific gravity of an oil can increase if the lighter 

substances within the oil evaporate. The higher the viscosity of 

the oil, the greater the tendency to stay in one place.

THE WIDE WORLD OF FLUIDS

 (Photograph copyright 
2007 by Andrew 
Davidhazy, Rochester 
Institute of Technology.)

EXAMPLE 1.8 Capillary Rise in a Tube

GIVEN Pressures are sometimes determined by measuring the 
height of a column of liquid in a vertical tube.

SOLUTION

From Eq. 1.22

h =
2σ cos θ

γR

so that

R =
2σ cos θ

γh

For water at 20 °C (from Table B.2), σ = 0.0728 N�m and 
γ = 9.789 kN�m3. Since θ ≈ 0° it follows that for h = 1.0 mm,

R =
2(0.0728 N�m)(1)

(9.789 × 103 N�m3) (1.0 mm)(10−3 m�mm)
 = 0.0149 m

and the minimum required tube diameter, D, is

 D = 2R = 0.0298 m = 29.8 mm (Ans)

COMMENT By repeating the calculations for various values 
of the capillary rise, h, the results shown in Fig. E1.8 are 

FIND What diameter of clean glass tubing is required so that 
the rise of water at 20 °C in a tube due to capillary action (as 
opposed to pressure in the tube) is less than h = 1.0 mm?

obtained. Note that as the allowable capillary rise is decreased, 
the diameter of the tube must be significantly increased. There is 
always some capillarity effect, but it can be minimized by using 
a large enough diameter tube.

■ Figure E1.8
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1.10 A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to consider 
the history of this important engineering science. As is true of all basic scientific and engineering 
disciplines, their actual beginnings are only faintly visible through the haze of early antiquity. But 
we know that interest in fluid behavior dates back to the ancient civilizations. Through necessity 
there was a practical concern about the manner in which spears and arrows could be propelled 
through the air, in the development of water supply and irrigation systems, and in the design of 
boats and ships. These developments were, of course, based on trial-and-error procedures. However, 
it was the accumulation of such empirical knowledge that formed the basis for further development 
during the emergence of the ancient Greek civilization and the subsequent rise of the Roman 
Empire. Some of the earliest writings that pertain to modern fluid mechanics are those of 
Archimedes (287–212 B.C.), a Greek mathematician and inventor who first expressed the principles 
of hydrostatics and flotation. Elaborate water supply systems were built by the Romans during the 
period from the fourth century B.C. through the early Christian period, and Sextus Julius Frontinus 
(A.D. 40–103), a Roman engineer, described these systems in detail. However, for the next 1000 
years during the Middle Ages (also referred to as the Dark Ages), there appears to have been little 
added to further understanding of fluid behavior.
 As shown in Fig. 1.11, beginning with the Renaissance period (about the fifteenth century) a 
rather continuous series of contributions began that forms the basis of what we consider to be the sci-
ence of fluid mechanics. Leonardo da Vinci (1452–1519) described through sketches and writings 
many different types of flow phenomena. The work of Galileo Galilei (1564–1642) marked the begin-
ning of experimental mechanics. Following the early Renaissance period and during the seventeenth 
and eighteenth centuries, numerous significant contributions were made. These include theoretical 
and mathematical advances associated with the famous names of Newton, Bernoulli, Euler, and 
d’Alembert. Experimental aspects of fluid mechanics were also advanced during this period, but 
unfortunately the two different approaches, theoretical and experimental, developed along separate 
paths. Hydrodynamics was the term associated with the theoretical or mathematical study of idealized, 
frictionless fluid behavior, with the term hydraulics being used to describe the applied or experimen-
tal aspects of real fluid behavior, particularly the behavior of water. Further contributions and refine-
ments were made to both theoretical hydrodynamics and experimental hydraulics during the nine-
teenth century, with the general differential equations describing fluid motions that are used in modern 
fluid mechanics being developed in this period. Experimental hydraulics became more of a science, 
and many of the results of experiments performed during the nineteenth century are still used today.
 At the beginning of the twentieth century, both the fields of theoretical hydrodynamics and 
experimental hydraulics were highly developed, and attempts were being made to unify the two. In 
1904 a classic paper was presented by a German professor, Ludwig Prandtl (1875–1953), who intro-
duced the concept of a “fluid boundary layer,” which laid the foundation for the unification of the 
theoretical and experimental aspects of fluid mechanics. Prandtl’s idea was that for flow next to a 

Some of the earliest 

writings that 

pertain to modern 

fluid mechanics 

can be traced back 

to the ancient 

Greek civilization 

and subsequent 

Roman Empire.
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■ Figure 1.11 Time line of some contributors to the science of fluid mechanics.
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solid boundary a thin fluid layer (boundary layer) develops in which friction (viscous force) is impor-
tant, but outside this layer the fluid behaves very much like a frictionless fluid. This relatively simple 
concept provided the necessary impetus for the resolution of the conflict between the hydrodynami-
cists and the hydraulicists. Prandtl is generally accepted as the founder of modern fluid mechanics.
 Also, during the first decade of the twentieth century, powered flight was first successfully 
demonstrated with the subsequent vastly increased interest in aerodynamics. Because the design of 
aircraft required an understanding of fluid flow and an ability to make accurate predictions of the 
effect of airflow on bodies, the field of aerodynamics provided a great stimulus for the many rapid 
developments in fluid mechanics that took place during the twentieth century.
 As we proceed with our study of the fundamentals of fluid mechanics, we will continue to 
note the contributions of many of the pioneers in the field. Table 1.9 provides a chronological  listing 

The rich history 

of fluid mechanics 

is fascinating, 

and many of the 

contributions of 

the pioneers in 

the field are noted 

in the succeeding 

chapters.

■ Table 1.9

Chronological Listing of Some Contributors to the Science of Fluid Mechanics Noted in the Texta

ARCHIMEDES (287– 212 B.C.)
Established elementary principles of buoyancy and 
fl otation.

SEXTUS JULIUS FRONTINUS (A.D. 40–103)
Wrote treatise on Roman methods of water 
 distribution.

LEONARDO da VINCI (1452–1519)
Expressed elementary principle of continuity; 
observed and sketched many basic fl ow phenomena; 
suggested designs for hydraulic machinery.

GALILEO GALILEI (1564–1642)
Indirectly stimulated experimental hydraulics; 
 revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI (1608–1647)
Related barometric height to weight of atmosphere, 
and form of liquid jet to trajectory of free fall.

BLAISE PASCAL (1623–1662)
Finally clarifi ed principles of barometer, hydraulic 
press, and pressure transmissibility.

ISAAC NEWTON (1642–1727)
Explored various aspects of fl uid resistance— 
inertial, viscous, and wave; discovered jet 
 contraction.

HENRI de PITOT (1695–1771)
Constructed double-tube device to indicate water 
velocity through diff erential head.

DANIEL BERNOULLI (1700–1782)
Experimented and wrote on many phases of fl uid 
motion, coining name “hydrodynamics”; devised 
manometry technique and adapted primitive energy 
principle to explain velocity-head indication; 
 proposed jet propulsion.

LEONHARD EULER (1707–1783)
First explained role of pressure in fl uid fl ow; 
 formulated basic equations of motion and so-called 
Bernoulli theorem; introduced concept of cavitation 
and principle of centrifugal machinery.

JEAN le ROND d’ALEMBERT (1717–1783)
Originated notion of velocity and acceleration 
components, diff erential expression of continuity, 
and paradox of zero resistance to steady nonuniform 
motion.

ANTOINE CHEZY (1718–1798)
Formulated similarity parameter for predicting fl ow 
characteristics of one channel from measurements on 
another.
GIOVANNI BATTISTA VENTURI (1746–1822)
Performed tests on various forms of mouthpieces—
in particular, conical contractions and expansions.
LOUIS MARIE HENRI NAVIER (1785–1836)
Extended equations of motion to include  “molecular” 
forces.
AUGUSTIN LOUIS de CAUCHY (1789–1857)
Contributed to the general fi eld of theoretical 
 hydrodynamics and to the study of wave motion.
GOTTHILF HEINRICH LUDWIG HAGEN 
(1797–1884)
Conducted original studies of resistance in and 
 transition between laminar and turbulent fl ow.
JEAN LOUIS POISEUILLE (1799–1869)
Performed meticulous tests on resistance of fl ow 
through capillary tubes.
HENRI PHILIBERT GASPARD DARCY 
(1803–1858)
Performed extensive tests on fi ltration and pipe 
resistance; initiated open-channel studies carried out 
by Bazin.
JULIUS WEISBACH (1806–1871)
Incorporated hydraulics in treatise on engineering 
mechanics, based on original experiments; 
 noteworthy for fl ow patterns, nondimensional 
coeffi  cients, weir, and resistance equations.
WILLIAM FROUDE (1810–1879)
Developed many towing-tank techniques, in 
particular the conversion of wave and boundary 
layer resistance from model to prototype scale.
ROBERT MANNING (1816–1897)
Proposed several formulas for open-channel resistance.
GEORGE GABRIEL STOKES (1819–1903)
Derived analytically various fl ow relationships 
ranging from wave mechanics to viscous resistance—
particularly that for the settling of spheres.
ERNST MACH (1838–1916)
One of the pioneers in the fi eld of supersonic 
 aerodynamics.

Leonardo da Vinci

Isaac Newton

Daniel Bernoulli

Ernst Mach
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of some of these contributors and reveals the long journey that makes up the history of fluid 
mechanics. This list is certainly not comprehensive with regard to all past contributors but includes 
those who are mentioned in this text. As mention is made in succeeding chapters of the various 
individuals listed in Table 1.9, a quick glance at this table will reveal where they fit into the his-
torical chain.
 It is, of course, impossible to summarize the rich history of fluid mechanics in a few para-
graphs. Only a brief glimpse is provided, and we hope it will stir your interest. References 2 to 5 
are good starting points for further study, and in particular Ref. 2 provides an excellent, broad,  easily 
read history. Try it—you might even enjoy it!

1.11 Chapter Summary and Study Guide

This introductory chapter discussed several fundamental aspects of fluid mechanics. Methods for 
describing fluid characteristics both quantitatively and qualitatively are considered. For a quantita-
tive description, units are required. The concept of dimensions is introduced in which basic dimen-
sions such as length, L, time, T, and mass, M, are used to provide a description of various quantities 
of interest. The use of dimensions is helpful in checking the generality of equations, as well as 
serving as the basis for the powerful tool of dimensional analysis discussed in detail in Chapter 7.
 Various important fluid properties are defined, including fluid density, specific weight, spe-
cific gravity, viscosity, bulk modulus, speed of sound, vapor pressure, and surface tension. The ideal 
gas law is introduced to relate pressure, temperature, and density in common gases, along with a 
brief discussion of the compression and expansion of gases. The distinction between absolute and 
gage pressure is introduced. This important idea is explored more fully in Chapter 2.
 The following checklist provides a study guide for this chapter. When your study of the entire 
chapter and end-of-chapter exercises has been completed you should be able to

■ write out meanings of the terms listed here in the margin and understand each of the related 
concepts. These terms are particularly important and are set in italic, bold, and color type 
in the text.

■ determine the dimensions of common physical quantities.
■ determine whether an equation is a general or restricted homogeneous equation.

■ Table 1.9 (continued)

OSBORNE REYNOLDS (1842–1912)
Described original experiments in many fi elds— 
cavitation, river model similarity, pipe resistance—
and devised two parameters for viscous fl ow; adapted 
equations of motion of a viscous fl uid to mean 
 conditions of turbulent fl ow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH 
(1842–1919)
Investigated hydrodynamics of bubble collapse, wave 
motion, jet instability, laminar fl ow analogies, and 
dynamic similarity.

VINCENZ STROUHAL (1850–1922)
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM (1867–1940)
Stimulated interest in the United States in the use of 
dimensional analysis.

MORITZ WEBER (1871–1951)
Emphasized the use of the principles of similitude 
in fl uid fl ow studies and formulated a capillarity 
similarity parameter.

LUDWIG PRANDTL (1875–1953)
Introduced concept of the boundary layer and is 
generally considered to be the father of present-day 
fl uid mechanics.

LEWIS FERRY MOODY (1880–1953)
Provided many innovations in the fi eld of hydraulic 
machinery. Proposed a method of correlating pipe 
resistance data that is widely used.

THEODOR VON KÁRMÁN (1881–1963)
One of the recognized leaders of twentieth century 
fl uid mechanics. Provided major contributions to our 
understanding of surface resistance, turbulence, and 
wake phenomena.

PAUL RICHARD HEINRICH  BLASIUS 
(1883–1970)
One of Prandtl’s students who provided an  analytical 
solution to the boundary layer equations. Also 
demonstrated that pipe resistance was related to the 
Reynolds number.

aUsed by permission of IIHR—Hydroscience & Engineering, The University of Iowa.

Osborne Reynolds

Ludwig Prandtl
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■ correctly use units and systems of units in your analyses and calculations.
■ calculate the density, specific weight, or specific gravity of a fluid from a knowledge of any 

two of the three.
■ calculate the density, pressure, or temperature of an ideal gas (with a given gas constant) 

from a knowledge of any two of the three.
■ relate the pressure and density of a gas as it is compressed or expanded using Eqs. 1.14 

and 1.15.
■ use the concept of viscosity to calculate the shearing stress in simple fluid flows.
■ calculate the speed of sound in fluids using Eq. 1.19 for liquids and Eq. 1.20 for gases.
■ determine whether boiling or cavitation will occur in a liquid using the concept of vapor 

pressure.
■ use the concept of surface tension to solve simple problems involving liquid–gas or liquid– 

solid–gas interfaces.

Some of the important equations in this chapter are:

fluid 

units 

basic dimensions 

dimensionally 

homogeneous 

density 

specific weight 

specific gravity 

ideal gas law 

absolute pressure 

gage pressure

no-slip condition

rate of shearing 

strain 

absolute viscosity

Newtonian fluid 

non-Newtonian 

fluid 

kinematic viscosity 

bulk modulus 

speed of sound 

vapor pressure 

surface tension

Specifi c weight  γ = ρg  (1.6)

Specifi c gravity  SG =
ρ

ρH2O@4 °C
 (1.7)

Ideal gas law  p = ρRT  (1.8)

Newtonian fl uid shear stress  τ = μ 
du

dy
 (1.9)

Bulk modulus  Eυ = −
dp

d V�V
 (1.12)

Speed of sound in an ideal gas  c = √kRT  (1.20)

Capillary rise in a tube  h =
2σ cos θ

γR
 (1.22)
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Problem is related to a chapter video available in WileyPLUS.

Problem to be solved with aid of programmable calculator or computer.
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Problems

Note: Unless specific values of required fluid properties are 
given in the problem statement, use the values found in the 
tables on the inside of the front cover.

Section 1.2 Dimensions, Dimensional Homogeneity, and Units

1.1  The force, F, of the wind blowing against a building is given 
by F = CD ρV 

2 A/2, where V is the wind speed, ρ the density of 
the air, A the cross-sectional area of the building, and CD is a con-
stant termed the drag coefficient. Determine the dimensions of the 
drag coefficient.

1.2  The Mach number is a dimensionless ratio of the velocity 
of an object in a fluid to the speed of sound in the fluid. For an 
airplane flying at velocity V in air at absolute temperature T, the 
Mach number Ma is

Ma =
V

√kRT
 ,

 where k is a dimensionless constant and R is the specific gas con-
stant for air. Show that Ma is dimensionless.

1.3  Verify the dimensions, in both the FLT and MLT systems, of the 
following quantities which appear in Table 1.1: (a) volume, (b) accel-
eration, (c) mass, (d) moment of inertia (area), and (e) work.

1.4  Verify the dimensions, in both the FLT and MLT systems, of 
the following quantities which appear in Table 1.1: (a) angular 
velocity, (b) energy, (c) moment of inertia (area), (d) power, and 
(e) pressure.

1.5  Verify the dimensions, in both the FLT system and the MLT 
system, of the following quantities which appear in Table 1.1: 
(a) frequency, (b) stress, (c) strain, (d) torque, and (e) work.

1.6  If u is a velocity, x a length, and t a time, what are the 
dimensions (in the MLT system) of (a) ∂u�∂t, (b) ∂2u�∂x∂t, and 
(c) ʃ(∂u/∂t) dx?

1.7  Verify the dimensions, in both the FLT system and the MLT 
system, of the following quantities which appear in Table 1.1: 
(a) acceleration, (b) stress, (c) moment of a force, (d) volume, and 
(e) work.

1.8  If p is a pressure,V a velocity, and ρ a fluid density, what 
are the dimensions (in the MLT system) of (a) p/ρ, (b) pVρ, and 
(c) p/ρV2?

1.9  If P is a force and x a length, what are the dimensions (in the 
FLT system) of (a) dP/dx, (b) d3P/dx3, and (c) ʃP dx?

1.10  If V is a velocity, ℓ a length, and ν a fluid property (the 
kinematic viscosity) having dimensions of L2T  

−1, which of the 
following combinations are dimensionless: (a) Vℓν, (b) Vℓ�ν, 
(c) V 

2ν, (d) V�ℓν?

1.11  The momentum flux (discussed in Chapter 5) is given by the 
product ṁV, where ṁ is mass flow rate and V is velocity. If mass 

flow rate is given in units of mass per unit time, show that the 
momentum flux can be expressed in units of force.

1.12  An equation for the frictional pressure loss ∆ p (inches H2O) 
in a circular duct of inside diameter d (in.) and length L (ft) for air 
flowing with velocity V (ft/min) is

∆p = 0.027( L

d 
1.22)( V

V0)
1.82

,

 where V0 is a reference velocity equal to 1000 ft/min. Find the units 
of the “constant” 0.027.

1.13  The volume rate of flow, Q, through a pipe containing a 
slowly moving liquid is given by the equation

Q =
πR4∆p

8μℓ

 where R is the pipe radius, ∆p the pressure drop along the pipe, μ 
a fluid property called viscosity (FL−2T), and ℓ the length of pipe. 
What are the dimensions of the constant π/8? Would you classify 
this equation as a general homogeneous equation? Explain.

1.14  Show that each term in the following equation has units of 
lb/ft3. Consider u a velocity, y a length, x a length, p a pressure, 
and μ an absolute viscosity.

0 = −
∂p

∂x
+ μ

∂2u

∂y2 .

1.15  The pressure difference, ∆p, across a partial blockage in an 
artery (called a stenosis) is approximated by the equation

∆p = Kυ 
μV

D
+ Ku (

A0

A1
− 1)

2

ρV 
2

 where V is the blood velocity, μ the blood viscosity (FL−2T ), ρ 
the blood density (ML−3), D the artery diameter, A0 the area of 
the unobstructed artery, and A1 the area of the stenosis. Determine 
the dimensions of the constants Kυ and Ku. Would this equation be 
valid in any system of units?

1.16  Assume that the speed of sound, c, in a fluid depends on an 
elastic modulus, Eυ, with dimensions FL−2, and the fluid density, 
ρ, in the form c = (Eυ)a(ρ)b. If this is to be a dimensionally 
homogeneous equation, what are the values for a and b? Is your 
result consistent with the standard formula for the speed of sound? 
(See Eq. 1.19.)

1.17  A formula to estimate the volume rate of flow, Q, flowing 
over a dam of length, B, is given by the equation

Q = 3.09 BH3/2

 where H is the depth of the water above the top of the dam (called 
the head). This formula gives Q in ft3/s when B and H are in feet. 
Is the constant, 3.09, dimensionless? Would this equation be valid 
if units other than feet and seconds were used?
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1.18  A commercial advertisement shows a pearl falling in a bottle 
of shampoo. If the diameter D of the pearl is quite small and the 
shampoo sufficiently viscous, the drag � on the pearl is given by 
Stokes’s law,

� = 3πμVD,

 where V is the speed of the pearl and μ is the fluid viscosity. Show 
that the term on the right side of Stokes’s law has units of force.

 †1.19  Cite an example of a restricted homogeneous equation con-
tained in a technical article found in an engineering journal in your 
field of interest. Define all terms in the equation, explain why it is 
a restricted equation, and provide a complete journal citation (title, 
date, etc.).

1.20  Express the following quantities in SI units: (a) 10.2 in.�min, 
(b) 4.81 slugs, (c) 3.02 lb, (d) 73.1 ft�s2, (e) 0.0234 lb ∙ s�ft2.

1.21  Express the following quantities in BG units: (a) 14.2 km, 
(b) 8.14 N�m3, (c) 1.61 kg�m3, (d) 0.0320 N ∙ m�s, (e) 5.67 mm�hr.

1.22  Express the following quantities in SI units: (a) 160 acres, 
(b) 15 gallons (U.S.), (c) 240 miles, (d) 79.1 hp, (e) 60.3 °F.

1.23  Water flows from a large drainage pipe at a rate of 
1200 gal�min. What is this volume rate of flow in (a) m3�s, 
(b) liters�min, and (c) ft3�s?

1.24  The universal gas constant R0 is equal to 49,700 ft2�(s2 ∙ °R), 
or 8310 m2/(s2 ∙ K). Show that these two magnitudes are equal.

1.25  Dimensionless combinations of quantities (commonly 
called dimensionless parameters) play an important role in fluid 
me chanics. Make up five possible dimensionless parameters by 
using combinations of some of the quantities listed in Table 1.1.

1.26  An important dimensionless parameter in certain types of 
fluid flow problems is the Froude number defined as V�√gℓ, 
where V is a velocity, g the acceleration of gravity, and ℓ a length. 
Determine the value of the Froude number for V = 10 ft�s, 
g = 32.2 ft�s2, and ℓ = 2 ft. Recalculate the Froude number using 
SI units for V, g, and ℓ. Explain the significance of the results of 
these calculations.

Section 1.4 Measures of Fluid Mass and Weight

1.27  Obtain a photograph/image of a situation in which the den-
sity or specific weight of a fluid is important. Print this photo and 
write a brief paragraph that describes the situation involved.

1.28  A tank contains 500 kg of a liquid whose specific gravity is 
2. Determine the volume of the liquid in the tank.

1.29  A stick of butter at 35 °F measures 1.25 in. × 1.25 in. × 
4.65 in. and weighs 4 ounces. Find its specific weight.

1.30  Clouds can weigh thousands of pounds due to their liquid 
water content. Often this content is measured in grams per cubic 
meter (g/m3). Assume that a cumulus cloud occupies a volume 
of one cubic kilometer, and its liquid water content is 0.2 g/m3. 
(a) What is the volume of this cloud in cubic miles? (b) How much 
does the water in the cloud weigh in pounds?

1.31  A tank of oil has a mass of 25 slugs. (a) Determine its weight 
in pounds and in newtons at the Earth’s surface. (b) What would 
be its mass (in slugs) and its weight (in pounds) if located on the 
moon’s surface where the gravitational attraction is approximately 
one-sixth that at the Earth’s surface?

1.32  A certain object weighs 300 N at the Earth’s surface. 
Determine the mass of the object (in kilograms) and its weight (in 

newtons) when located on a planet with an acceleration of gravity 
equal to 4.0 ft�s2.

1.33  The density of a certain type of jet fuel is 775 kg/m3. 
Determine its specific gravity and specific weight.

1.34  At 4 °C a mixture of automobile antifreeze (50% water and 
50% ethylene glycol by volume) has a density of 1064 kg/m3. If the 
water density is 1000 kg/m3, find the density of the ethylene glycol.

1.35  A hydrometer is used to measure the specific gravity of liq-
uids. (See Video V2.8.) For a certain liquid, a hydrometer reading 
indicates a specific gravity of 1.15.What is the liquid’s density and 
specific weight?Express your answer in SI units.

1.36  An open, rigid-walled, cylindrical tank contains 4 ft3 of 
water at 40 °F. Over a 24-hour period of time the water tempera-
ture varies from 40 to 90 °F. Make use of the data in Appendix B 
to determine how much the volume of water will change. For a tank 
diameter of 2 ft, would the corresponding change in water depth be 
very noticeable? Explain.

 †1.37  Estimate the number of pounds of mercury it would take to 
fill your bathtub. List all assumptions and show all calculations.

1.38  A mountain climber’s oxygen tank contains 1 lb of oxygen 
when he begins his trip at sea level where the acceleration of grav-
ity is 32.174 ft/s2. What is the weight of the oxygen in the tank 
when he reaches the top of Mt. Everest where the acceleration of 
gravity is 32.082 ft/s2? Assume that no oxygen has been removed 
from the tank; it will be used on the descent portion of the climb.

1.39  The information on a can of pop indicates that the can contains 
355 mL. The mass of a full can of pop is 0.369 kg, while an empty 
can weighs 0.153 N. Determine the specific weight, density, and 
specific gravity of the pop and compare your results with the corre-
sponding values for water at 20 °C. Express your results in SI units.

 *1.40  The variation in the density of water, ρ, with temperature, T, 
in the range 20 °C ≤ T ≤ 50 °C, is given in the following table.

Density (kg�m3) 998.2 997.1 995.7 994.1 992.2 990.2 988.1

Temperature (°C) 20 25 30 35 40 45 50

 Use these data to determine an empirical equation of the form 
ρ = c1 + c2T + c3T 

2 which can be used to predict the density over 
the range indicated. Compare the predicted values with the data 
given. What is the density of water at 42.1 °C?

1.41  If 1 cup of cream having a density of 1005 kg/m3 is turned 
into 3 cups of whipped cream, determine the specific gravity and 
specific weight of the whipped cream.

1.42  With the exception of the 410 bore, the gauge of a shotgun 
barrel indicates the number of round lead balls, each having the 
bore diameter of the barrel, that together weigh 1 lb. For example, a 
shotgun is called a 12-gauge shotgun if a 1

12-lb lead ball fits the bore 
of the barrel. Find the diameter of a 12-gauge shotgun in inches and 
millimeters. Lead has a specific weight of 0.411 lb/in3.

 †1.43  The presence of raindrops in the air during a heavy rainstorm 
increases the average density of the air–water mixture. Estimate by 
what percent the average air–water density is greater than that of 
just still air. State all assumptions and show calculations.

Section 1.5 Ideal Gas Law 

1.44  A regulation basketball is initially flat and is then inflated 
to a pressure of approximately 24 lb/in2 absolute. Consider the air 
temperature to be constant at 70 °F. Find the mass of air required 
to inflate the basketball. The basketball’s inside radius is 4.67 in.
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1.45  Nitrogen is compressed to a density of 4 kg/m3 under 
an absolute pressure of 400 kPa. Determine the temperature in 
degrees Celsius.

1.46  The temperature and pressure at the surface of Mars during 
a Martian spring day were determined to be −50 °C and 900 Pa, 
respectively. (a) Determine the density of the Martian atmo-
sphere for these conditions if the gas constant for the Martian 
atmosphere is assumed to be equivalent to that of carbon dioxide. 
(b) Compare the answer from part (a) with the density of the 
Earth’s atmosphere during a spring day when the temperature is 
18 °C and the pressure 101.6 kPa (abs).

1.47  A closed tank having a volume of 2 ft3 is filled with 0.30 lb 
of a gas. A pressure gage attached to the tank reads 12 psi when 
the gas temperature is 80 °F. There is some question as to whether 
the gas in the tank is oxygen or helium. Which do you think it is? 
Explain how you arrived at your answer.

1.48  Assume that the air volume in a small automobile tire 
is constant and equal to the volume between two concentric 
cylinders 13 cm high with diameters of 33 cm and 52 cm. The 
air in the tire is initially at 25 °C and 202 kPa. Immediately 
after air is pumped into the tire, the temperature is 30 °C and 
the pressure is 303 kPa. What mass of air was added to the 
tire? What would be the air pressure after the air has cooled to 
a temperature of 0 °C?

1.49  A compressed air tank contains 5 kg of air at a temperature 
of 80 °C. A gage on the tank reads 300 kPa. Determine the volume 
of the tank.

1.50  A rigid tank contains air at a pressure of 90 psia and a tem-
perature of 60 °F. By how much will the pressure increase as the 
temperature is increased to 110 °F?

1.51  The density of oxygen contained in a tank is 2.0 kg/m3 when 
the temperature is 25 °C. Determine the gage pressure of the gas if 
the atmospheric pressure is 97 kPa.

1.52  The helium-filled blimp shown in Fig. P1.52 is used at 
various athletic events. Determine the number of pounds of helium 
within it if its volume is 68,000 ft3 and the temperature and pres-
sure are 80 °F and 14.2 psia, respectively.

■ Figure P1.52

 *1.53  Develop a computer program for calculating the density 
of an ideal gas when the gas pressure in pascals (abs), the tem-
perature in degrees Celsius, and the gas constant in J�kg ∙ K 
are specified. Plot the density of helium as a function of tem-
perature from 0 °C to 200 °C and pressures of 50, 100, 150, and 
200 kPa (abs).

Section 1.6 Viscosity (also see Lab Problems 1.1LP and 1.2LP)

1.54  Obtain a photograph/image of a situation in which the vis-
cosity of a fluid is important. Print this photo and write a brief 
paragraph that describes the situation involved.

1.55  For flowing water, what is the magnitude of the velocity 
gradient needed to produce a shear stress of 1.0 N/m2?

1.56  Make use of the data in Appendix B to determine the 
dynamic viscosity of glycerin at 85 °F. Express your answer in 
both SI and BG units.

1.57   One type of capillary-tube viscometer is shown in Video 
V1.5 and in Fig. P1.57. For this device the liquid to be tested is 
drawn into the tube to a level above the top etched line. The time is 
then obtained for the liquid to drain to the bottom etched line.The 
kinematic viscosity, ν, in m2/s is then obtained from the equation 
ν = KR4t where K is a constant, R is the radius of the capillary 
tube in mm, and t is the drain time in seconds. When glycerin at 
20 °C is used as a calibration fluid in a particular viscometer, the 
drain time is 1430 s. When a liquid having a density of 970 kg/m3 
is tested in the same viscometer the drain time is 900 s. What is the 
dynamic viscosity of this liquid?

Etched lines

Glass

strengthening

bridge

Capillary

tube

■ Figure P1.57

1.58   The viscosity of a soft drink was determined by using a 
capillary tube viscometer similar to that shown in Fig. P1.58 and 
Video V1.5. For this device the kinematic viscosity, ν, is directly 
proportional to the time, t, that it takes for a given amount of 
 liquid to flow through a small capillary tube. That is, ν = Kt. The 
following data were obtained from regular pop and diet pop. The 
corresponding measured specific gravities are also given. Based on 
these data, by what percent is the absolute viscosity, μ, of regular 
pop greater than that of diet pop?
 Regular pop Diet pop

t(s) 377.8 300.3

SG 1.044 1.003

1.59  The viscosity of a certain fluid is 5 × 10−4 poise. Determine 
its viscosity in both SI and BG units.

1.60  The kinematic viscosity and specific gravity of a liquid are 
3.5 × 10−4 m2/s and 0.79, respectively. What is the dynamic vis-
cosity of the liquid in SI units?

1.61  A liquid has a specific weight of 59 lb/ft3 and a dynamic 
viscosity of 2.75 lb ∙ s/ft2. Determine its kinematic viscosity.

1.62  The kinematic viscosity of oxygen at 20 °C and a pressure of 
150 kPa (abs) is 0.104 stokes. Determine the dynamic viscosity of 
oxygen at this temperature and pressure.
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Calculate the value of the viscosity at 50 °C and compare with the 
value given in Table B.2. (Hint: Rewrite the equation in the form

ln μ = (B) 
1
T

+ ln D

 and plot ln μ versus 1�T. From the slope and intercept of this 
curve, B and D can be obtained. If a nonlinear curve-fitting pro-
gram is available, the constants can be obtained directly from 
Eq. 1.11 without rewriting the equation.)

1.71  For a certain liquid μ = 7.1 × 10−5 lb ∙ s/ft2 at 40 °F and μ = 
1.9 × 10−5 lb ∙ s/ft2 at 150 °F. Make use of these data to determine 
the constants D and B which appear in Andrade’s equation 
(Eq. 1.11). What would be the viscosity at 80 °F?

1.72  For a parallel plate arrangement of the type shown in Fig. 1.5 
it is found that when the distance between plates is 2 mm, a shear-
ing stress of 150 Pa develops at the upper plate when it is pulled at 
a velocity of 1 m/s. Determine the viscosity of the fluid between 
the plates. Express your answer in SI units.

1.73  Two flat plates are oriented parallel above a fixed lower plate 
as shown in Fig. P1.73. The top plate, located a distance b above 
the fixed plate, is pulled along with speed V. The other thin plate is 
located a distance cb, where 0 < c < 1, above the fixed plate. This 
plate moves with speed V1, which is determined by the viscous 
shear forces imposed on it by the fluids on its top and bottom. The 
fluid on the top is twice as viscous as that on the bottom. Plot the 
ratio V1/V as a function of c for 0 < c < 1.

b

cb

2μ

μ

V

V1

■ Figure P1.73

1.74  Three large plates are separated by thin layers of ethylene 
glycol and water, as shown in Fig. P1.74. The top plate moves to 
the right at 2 m/s. At what speed and in what direction must the 
bottom plate be moved to hold the center plate stationary?

Copper plate

Steel plate Ethylene glycol (20°C)

Water (20°C)

Plastic

plate

2m/s

0.1 cm

0.2 cm

■ Figure P1.74

1.75   There are many fluids that exhibit non-Newtonian 
behavior (see, for example, Video V1.6). For a given fluid the 
distinction between Newtonian and non-Newtonian behavior is 
usually based on measurements of shear stress and rate of shear-
ing strain. Assume that the viscosity of blood is to be determined 
by measurements of shear stress, τ, and rate of shearing strain, 
du/dy, obtained from a small blood sample tested in a suitable 
viscometer. Based on the data given below, determine if the blood 

 *1.63   Fluids for which the shearing stress, τ, is not linearly 
related to the rate of shearing strain, γ̇, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit 
unusual behavior, as shown in Video V1.6. Some experimental 
data obtained for a particular non-Newtonian fluid at 80 °F are 
shown below.

τ (lb/ft2) 0 2.11 7.82 18.5 31.7
γ̇ (s−1) 0 50 100 150 200

 Plot these data and fit a second-order polynomial to the data 
using a suitable graphing program. What is the apparent viscos-
ity of this fluid when the rate of shearing strain is 70 s−1? Is this 
apparent viscosity larger or smaller than that for water at the same 
temperature?

1.64   Water flows near a flat surface and some measurements 
of the water velocity, u, parallel to the surface, at different heights, 
y, above the surface are obtained. At the surface y = 0. After an 
analysis of the data, the lab technician reports that the velocity 
distribution in the range 0 < y < 0.1 ft is given by the equation

u = 0.81 + 9.2y + 4.1 × 103y3

 with u in ft/s when y is in ft. (a) Do you think that this equation 
would be valid in any system of units? Explain. (b) Do you think 
this equation is correct? Explain. You may want to look at Video 
1.4 to help you arrive at your answer.

1.65  Calculate the Reynolds numbers for the flow of water and for 
air through a 4-mm-diameter tube, if the mean velocity is 3 m�s and 
the temperature is 30 °C in both cases (see Example 1.4). Assume 
the air is at standard atmospheric pressure.

1.66  SAE 30 oil at 60 °F flows through a 2-in.-diameter pipe with 
a mean velocity of 5 ft/s. Determine the value of the Reynolds 
number (see Example 1.4).

1.67  For air at standard atmospheric pressure the values of the 
constants that appear in the Sutherland equation (Eq. 1.10) are 
C = 1.458 × 10−6 kg�(m ∙ s ∙ K1�2) and S = 110.4 K. Use these 
values to predict the viscosity of air at 10 °C and 90 °C and com-
pare with values given in Table B.4 in Appendix B.

 *1.68  Use the values of viscosity of air given in Table B.4 at tem-
peratures of 0, 20, 40, 60, 80, and 100 °C to determine the con-
stants C and S which appear in the Sutherland equation (Eq. 1.10). 
Compare your results with the values given in Problem 1.67. (Hint: 
Rewrite the equation in the form

T 
3� 2

μ
= ( 1

C)T +
S

C

 and plot T 3� 2�μ versus T. From the slope and intercept of this 
curve, C and S can be obtained.)

1.69   The viscosity of a fluid plays a very important role in 
determining how a fluid flows. (See Video V1.3.) The value of the 
viscosity depends not only on the specific fluid but also on the fluid 
temperature. Some experiments show that when a liquid, under the 
action of a constant driving pressure, is forced with a low veloc-
ity, V, through a small horizontal tube, the velocity is given by the 
equation V = K/μ. In this equation K is a constant for a given tube 
and pressure, and μ is the dynamic viscosity. For a particular liquid 
of interest, the viscosity is given by Andrade’s equation (Eq. 1.11) 
with D = 5 × 10−7 lb ∙ s/ft2 and B = 4000 °R. By what percent-
age will the velocity increase as the liquid temperature is increased 
from 40 °F to 100 °F? Assume all other factors remain constant.

 *1.70  Use the value of the viscosity of water given in Table B.2 
at temperatures of 0, 20, 40, 60, 80, and 100 °C to determine the 
constants D and B which appear in Andrade’s equation (Eq. 1.11). 
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V
0.1 mm gap

20°

■ Figure P1.80

1.81  A layer of water flows down an inclined fixed surface with 
the velocity profile shown in Fig. P1.81. Determine the magnitude 
and direction of the shearing stress that the water exerts on the 
fixed surface for U = 2 m/s and h = 0.1 m.

u__
U

y__
h

y2__
h22 –=

U
h

y u

■ Figure P1.81

1.82  Oil (absolute viscosity = 0.0003 lb ∙ s /ft2, density = 50 
lbm/ft3) flows in the boundary layer, as shown in Fig. P1.82. The 
plate is 1 ft wide perpendicular to the paper. Calculate the shear 
stress at the plate surface.

y

u = 1500 y – 5 × 106 × y3 ft/sec

Plate

Edge of boundary layer

0.01 ft

u

■ Figure P1.82

 *1.83  Standard air flows past a flat surface, and velocity measure-
ments near the surface indicate the following distribution:

y (ft) 0.005 0.01 0.02 0.04 0.06 0.08

u (ft�s) 0.74 1.51 3.03 6.37 10.21 14.43

 The coordinate y is measured normal to the surface and u is the 
velocity parallel to the surface. (a) Assume the velocity distribu-
tion is of the form

u = C1y + C2y
3

 and use a standard curve-fitting technique to determine the con-
stants C1 and C2. (b) Make use of the results of part (a) to deter-
mine the magnitude of the shearing stress at the wall (y = 0) and 
at y = 0.05 ft.

1.84  A new computer drive is proposed to have a disc, as shown 
in Fig. P1.84. The disc is to rotate at 10,000 rpm, and the reader 
head is to be positioned 0.0005 in. above the surface of the disc. 

is a Newtonian or non-Newtonian fluid. Explain how you arrived 
at your answer.

τ(N/m2) 0.04 0.06 0.12 0.18 0.30 0.52 1.12 2.10

du/dy (s−1) 2.25 4.50 11.25 22.5 45.0 90.0 225 450

1.76  The sled shown in Fig. P1.76 slides along on a thin horizontal 
layer of water between the ice and the runners. The horizontal force 
that the water puts on the runners is equal to 1.2 lb when the sled’s 
speed is 50 ft/s. The total area of both runners in contact with the water 
is 0.08 ft2, and the viscosity of the water is 3.5 × 10−5 lb ∙  s/ft2. 
Determine the thickness of the water layer under the runners. Assume 
a linear velocity distribution in the water layer.

■ Figure P1.76

1.77  A 25-mm-diameter shaft is pulled through a cylindrical bear-
ing as shown in Fig. P1.77. The lubricant that fills the 0.3-mm gap 
between the shaft and bearing is an oil having a kinematic viscosity 
of 8.0 × 10−4 m2/s and a specific gravity of 0.91. Determine the 
force P required to pull the shaft at a velocity of 3 m/s. Assume the 
velocity distribution in the gap is linear.

0.5 m

LubricantBearing

Shaft
P

■ Figure P1.77

1.78  A hydraulic lift in a service station has a 32.50-cm-diameter 
ram that slides in a 32.52-cm-diameter cylinder. The annular space 
is filled with SAE 10 oil at 20 °C. The ram is traveling upward at 
the rate of 0.10 m/s. Find the frictional force when 3.0 m of the ram 
is engaged in the cylinder.

1.79  A piston having a diameter of 5.48 in. and a length of 9.50 
in. slides downward with a velocity V through a vertical pipe. The 
downward motion is resisted by an oil film between the piston 
and the pipe wall. The film thickness is 0.002 in., and the cylinder 
weighs 0.5 lb. Estimate V if the oil viscosity is 0.016 lb ∙ s/ft2. 
Assume the velocity distribution in the gap is linear.

1.80  A 10-kg block slides down a smooth inclined surface as 
shown in Fig. P1.80. Determine the terminal velocity of the block 
if the 0.1-mm gap between the block and the surface contains SAE 
30 oil at 60 °F. Assume the velocity distribution in the gap is linear, 
and the area of the block in contact with the oil is 0.1 m2.


