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As we have prepared an updated edition our first prionties
are to preserve. and to enhance, the gualities that have made
previous editions so successful. In particular, we adopt the
viewpoint of an applied mathematician with diverse interests
in differential equations, ranging from gquite theoretical to
intensely practical-and usually a combimation of both. Three
pillars of our presentation of the material are methods
of solution, analysis of solutions. and approximations of
solutions. Regardless of the specific viewpoint adopted, we
have sought to ensure the exposition is simultaneously correct
and complete, but not needlessly abstract.

The intended audience is undergraduate STEM students
whose degree program includes an introductory course in
differential equations during the first two years. The essential
prerequisite 1s a working knowledge of calculus, typically a
two- or three-semester course sequence or an equivalent. While
a basic familiarity with matrices is helpful, Sections 7.2 and 7.3
provide an overview of the essential linear algebra ideas needed
for the parts of the book that deal with systems of differential
equations (the remainder of Chapter 7, Section 8.5, and
Chapter 9).

A strength of this book is ils appropriateness in a
wide variety of instructional settings. In particular, it allows
imstructors flexibility in the selection of and the ordering of
topics and in the use of technology. The essential core matenal
15 Chapter 1, Sections 2.1 through 2.5, and Sections 3.1 through
3.5. After completing these sections, the selection of additional
topics, and the order and depth of coverage are generally at
the discretion of the instructor. Chapters 4 through 11 are
essentially independent of each other, except that Chapter 7
should precede Chapter 9, and Chapter 10 should precede
Chapter 11.

A particularly appealing aspect of ditferential equations
is that even the simplest differential equations have a direct
comespondence to realistic physical phenomena: exponential
growth and decay, spring-mass systems, electrical circuits,
competitive species, and wave propagation. More complex
natural processes can often be understood by combining and
building upon simpler and more basic models. A thorough
knowledge of these basic models, the differential equations
that describe them, and their solutions —either explicit solutions
or gualitative properties of the solution-is the first and
indispensable step toward analyzing the solutions of more
complex and realistic problems. The modeling process is
detailed in Chapter 1 and Section 2.3. Careful constructions
of models appear also in Sections 2.5, 3.7, 94, 105, and
10.7 {and the appendices to Chapter 10}). Various problem sets
throughout the book include problems that involve modeling
to formulate an appropriate differential equation, and then
to solve it or to determine some gualitative properties of its
solution. The primary purposes of these applied problems are
to provide students with hands-on experience in the derivation
of differential equations, and to convince them that differential
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equations arise naturally in a wide variety of real-world
applications.

Another important concept emphasized repeatedly
throughout the book is the transportability of mathematical
knowledge. While a specific solution method applies to only a
particular class of differential equations, it can be used in any
application in which that particular type of differential equation
arises. Once this point is made in a convincing manner, we
believe that it is unnecessary to provide specific applications of
every method of solution or type of equation that we consider.
This decision helps to keep this book to a reasonable size, and
allows us to keep the primary emphasis on the development
of more solution methods for additional types of differential
equations.

From a student’s point of view, the problems that are
assigned as homework and that appear on examinations define
the course. We believe that the most outstanding feature of
this book is the number, and above all the variety and range,
of the problems that it contains. Many problems are entirely
straightforward. but many others are more challenging, and
some are fairly open-ended and can even serve as the basis
for independent student projects. The observant reader will
notice that there are fewer problems in this edition than in
previous editions; many of these problems remain available
to instructors via the WileyPlus course. The remaining 1600
problems are still far more problems than any instructor can
use in any given course, and this provides instructors with a
multitude of choices in tailoring their course to meet their own
goals and the needs of their students. The answers to almost all
of these problems can be found in the pages at the back of the
book: full solutions are in either the Student’s Solution Manual
or the Instructor’s Solution Manual.

While we make numerous references to the use of
technology, we do so without limiting instructor freedom to
use as much, or as little, technology as they desire. Appropriate
technologies include advanced graphing calculators (TI
Nspire), a spreadsheet (Excel), web-based resources (applets),
computer algebra systems, (Maple, Mathematica, Sage),
scientific computation systems (MATLAB), or traditional
programming (FORTRAN, Javascript, Python). Problems
marked with a @ are ones we believe are best approached with
a graphical tool; those marked with a @ are best solved with the
use of a numerical tool. Instructors should consider setting their
own policies, consistent with their interests and intents about
student use of technology when completing assigned problems.

Many problems in this book are best solved through
a combination of analytic, graphic, and numenc methods.
Pencil-and-paper methods are used to develop a model that
is best solved {or analyzed) using a symbolic or graphic
tool. The guantitative results and graphs. frequently produced
using computer-based resources, serve to illustrate and to
clarify conclusions that might not be readily apparent from
a complicated explicit solution formula. Conversely, the
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implementation of an efficient numerical method to obtain
an approximate solution typically requires a good deal of
preliminary analysis—to determine qualitative features of the
solution as a guide to computation, to investigate limiting
or special cases, or to discover ranges of the variables or
parameters that require an appropriate combination of both
analytic and numeric computation. Good judgment may well
be required to determine the best choice of solution methods
in each particular case. Within this context we point out that
problems that request a “sketch™ are generally intended to
be completed without the use of any technology (except your
writing device).

We believe that it 1s important for students to understand
that (except perhaps in courses on differential equations) the
goal of solving a differential equation is seldom simply to
obtain the solution. Rather. we seek the solution in order to
obtain insight into the behavior of the process that the equation
purports to model. In other words, the solution is not an end
in itself. Thus, we have included in the text a great many
problems, as well as some examples, that call for conclusions
to be drawn about the solution. Sometimes this takes the form
of finding the value of the independent variable at which the
solution has a certain property, or determining the long-term
behavior of the solution. Other problems ask for the effect of
variations in a parameter, or for the determination of all values
of a parameter at which the solution experiences a substantial
change. Such problems are typical of those that anse in the
applications of differential equations. and, depending on the
goals of the course, an instructor has the option of assigning as
few or as many of these problems as desired.

Readers familiar with the preceding edition will observe
that the general structure of the book is unchanged. The
minor revisions that we have made in this edition are in
many cases the result of suggestions from users of earlier
editions. The goals are to improve the clanty and readabality of
our presentation of basic material about differential equations
and their applications. More specifically, the most important
revisions include the following:

1. Chapter | has been rewritten. Instead of a separate section
on the History of Differential Equations, this material
appears in three installments in the remaining three
section.

]

. Additional words of explanation and/or more explicit
detaills in the steps in a denvation have been added
throughout each chapier. These are too numerous and
widespread to mention individually, but collectively they
should help to make the book more readable for many
students.

3. There are about forty new or revised problems scattered
throughout the book. The total number of problems has
been reduced by about 400 problems. which are still
available through WileyPlus, leaving about 1600 problems
in print.

4. There are new examples in Sections 2.1, 3.8, and 7.5.

The majority (is this correct?) of the figures have been
redrawn, mainly by the use full color to allow for easier
identification of critical properties of the solution. In
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addition, numerous captions have been expanded to clanfy
the purpose of the figure without requiring a search of the
surrounding text.

6. There are several new references. and some others have
been updated.

The authors have found differential equations to be a
never-ending source of interesting, and sometimes surprising,
results and phenomena. We hope that users of this book, both
students and instructors, will share our enthusiasm for the
subject.

William E. Boyce and Douglas B. Meade

Watervliet, New York and Columbia, SC
29 August 2016
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CHAPTER 1
S,

Introduction

In this first chapter we provide a foundation for your study of differential equations in several
different ways. First. we use two problems to illustrate some of the basic ideas that we
will return to, and elaborate upon, frequently throughout the remainder of the book. Later,
to provide organizational structure for the book, we indicate several ways of classifying
differential equations.

The study of differential equations has attracted the attention of many of the world's
greatest mathematicians during the past three centuries. On the other hand. it is important
to recognize that differential equations remains a dynamic field of inquiry today, with many
interesting open guestions. We outline some of the major trends in the historical development
of the subject and mention a few of the outstanding mathematicians who have contributed to
it. Additional biographical information about some of these contributors will be highlighted
at appropriate imes in later chapters.

11 Some Basic Mathematical Models;
Direction Fields

Before embarking on a serious study of differential equations (for example, by reading this
book or major portions of it), you should have some idea of the possible benefits to be gained by
doing so. For some students the intrinsic interest of the subject itself is enough motivation, but
for most it is the likelihood of important applications to other fields that makes the undertaking
worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world
are statements or relations involving rates at which things happen. When expressed in
mathematical terms, the relations are equations and the rates are denvatives. Equations
containing denvatives are differential equations. Therefore, to understand and to investigate
preblems involving the motion of fluids, the flow of current in electric circuits, the dissipation
of heat in solid objects, the propagation and detection of seismic waves, or the increase
or decrease of populations, among many others, it is necessary to know something about
differential equations.

A differential equation that describes some physical process is often called a
mathematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to solve. It
is noteworthy that even the simplest differential equations provide useful models of important
physical processes.

| EXAMPLE 1 | AFalling Object

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential equation
that describes the motion.
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CHAPTER 1 Introduction

Solution:

We begin by introducing letters to represent various quantities that may be of interest in this problem.
The motion akes place during a certain tme interval, so let us wse ¢ o denote uime. Also. let
us use v o represent the velocity of the falling object. The velocity will presumably change with
time. s0 we think of v as a function of f; in other words, ¢ is the independent variable and v is the
dependent variable. The choice of unitz of measurement is somewhat arbitrary, and there is nothing
in the statement of the problem o suggest appropriate unils, so we are free (o make any choice that
seems reasonable. To be specific, let us measure time ¢ in seconds and velocity v in meters/second.
Further, we will assume that v is positive in the downward direction—that is, when the object is
falling.

The physical law that governs the motion of objects is Newton's second law, which states that
the mass of the object umes ils acceleration is equal to the net force on the object. In mathematical
terms this law is expressed by the equation

F =ma. (L

where m is the mass of the object, a 15 11s acceleration, and F is the net force exerted on the object. To
keep our units consistent, we will measure m in kilograms. a in meters/second®, and F in newtons.
Of course. a is related to v by a = dv /dr, s0 we can rewrite equation (1) in the form

dv
F=m—, 2
i (2)

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to
the weight of the object, or mg, where p is the acceleration due o gravity. In the units we
have chosen, g has been determined expenmentally o be approximately equal 1w 9.8 m/fs’ near
the earth’s surface.

There is also a force due to air resistance, or drag, that is more difficult 1o model. This i not
the place for an extended discussion of the drag force; suffice it to say that it is often assumed that
the drag is proportional w the velocity, and we will make that assumption here. Thus the drag force
has the magnitude v, where + is a constant called the drag coeffhicient. The numerical value of the
drag coefficient varies widely from one object to another: smooth streamlined objects have much
smaller drag coefficients than rough blunt ones. The physical units for v are massfiime. or kgfs for
this problem: if these units seem peculiar, remember that vv must have the umits of force, namely,
kg-mis”.

In writing an expression for the net force F, we need to remember that gravity always acts in
the downward (positive) direction, whereas, for a falling object, drag acts in the upward (negative)
direction, as shown in Figure 1.1.1. Thus

F=mg~—"v (3
and equation {2) then becomes
dv
md—: = Mg — YTV. (4]

Differential equation (4) is a mathematical model for the velocity v of an object falling in the
atmosphere near sea level. Note that the model contains the three constants m. g. and . The constants
m and v depend very much on the particular object that is falling, and they are usually different for
different objects. It is common Lo refer o them as parameters, since they may take on a range of
values during the course of an experiment. On the other hand. g 15 a physical constant, whose value
15 the same for all objects.

}'1‘.!
om

mg

L

Free-body diagram of the forces on a falling object.
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To solve equation (4), we need to find a function v = v(t) that satisfies the equation. It

15 not hard to do this, and we will show you how in the next section. For the present, however,
let us see what we can learn about solutions without actually finding any of them. Our task
1s simplified slightly if we assign numerical values to m and ~ ., but the procedure is the same
regardless of which values we choose. So, let us suppose that m = 10 kg and v+ = 2 kg/s.
Then equation (4) can be rewritten as

— =98— - (3)

EXAMPLE 2 | AFalling Object (continued)

Investigate the behavior of solutions of equation (5) without solving the differential equation.

Solution:

First let us consider what information can be obtained directly from the differential equation itsell.
Suppose that the velocity v has a certain given value. Then, by evaluating the righi-hand side of
differential equation (5). we can find the corresponding value of dv /dr. For instance, if v = 40, then
dv/di = 1.8. This means that the slope of a solution v = v(r) has the value |8 at any point where
v = 40 We can display this information graphically in the tv-plane by drawing short line segments
with slope 1.8 at several points on the line v = 40. (See Figure 1.1.2{a)). Similarly, when v = 50,
then dv/dt = <0.2, and when v = 60, then dv /df = 2.2 so we draw line segments with slope
=0).2 at several points on the line v = 50 {see Figure 1.1.2(8)) and line segments with slope —2.2 at
several points on the line v = 60 (see Figure 1.1.2{(c)). Proceeding in the same way with other values
of v we create what is called a direction field, or a slope field. The direction field for differential
equation (5) is shown in Figure 1.1.3.

Remember that a solution of equation (3) is a function v = v(r) whose graph is a curve in
the tv-plane. The mportance of Figure 1.1.3 is that each line segment is a tangent line o one
of these solution curves. Thus, even though we have not found any solutions. and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about the
behavior of solutions. For instance, if v is less than a certain critical value, then all the line segments
have positive slopes, and the speed of the falling object increases as it falls. On the other hand, if v
15 greater than the crtical value, then the line segments have negative slopes, and the falling object
slows down as it falls. What 1s this eritical value of v that separates objects whose speed is increasing
from those whose speed is decreasing? Referring again to equation (5), we ask what value of v will
cause dv /dif to be zero. The answer 15 v = (5)1(9.8) = 49 m/s.

In fact, the constant function v(r) = 49 is a solution of equation (5). To venify this statement,
substitute v{f) = 49 into equation (5) and observe that each side of the equation 15 zero. Because
it does not change with time. the solution vit) = 49 is called an equilibriom solution. It is
the solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3 we show
the equilibnum solution vi{t) = 49 superimposed on the direction field. From this figure we can
draw another conclusion, namely, that all other solutions seem (o be converging o the equilibrium
solution as ¢ increases. Thus, in this context. the equilibrium solution 15 often called the terminal
velocity.

Al slopes 1.8 &l slopes -0.2 &l slopes 2.3
u u u 4
&l [S0) o [T LR T SR T T TR w m
56 | S5 F 51
1] Bl = o o e e o - - o1 W ———— -
L 45k a5
Bl - o o o e o s a4 e g B0 s o sy s g o o s . MO g e g o g e f e
2 4 [ a8 10d 2 d [ ] 10 2 i [ # 10
Lol bl fer)

Assembling a direction field for equation (5): dv/dt = 9.8 — v /5. (a) when v = 40,
dv/dit = 1.8, (b) when v =50, dv /dr = —=0.2_ and (c) when v = 60, dv /dt = =2.2.
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The approach illustrated in Example 2 can be applied equally well to the more general
differential equation (4), where the parameters m and < are unspecified positive numbers. The
results are essentially identical to those of Example 2. The equilibrium solution of equation (4)
15 the constant solution v( 1) = mg/~. Solutions below the equilibrium solution increase with
time, and those above it decrease with time. As aresult, we conclude that all solutions approach
the equilibrium solution as ¢ becomes large.

Direction Fields. Direction fields are valuable tools in studying the solutions of differential
equations of the form

dy
_— = V. [
1 flr.y) (6)

where f is a given function of the two variables r and vy, sometimes referred to as the rate
function. A direction field for equations of the form (6) can be constructed by evaluating f
at each point of a rectangular grid. At each point of the gnd, a short line segment is drawn
whose slope is the value of f at that point. Thus each line segment is tangent to the graph
of the solution passing through that point. A direction field drawn on a fairly fine grid gives
a good picture of the overall behavior of solutions of a differential equation. Usually a grid
consisting of a few hundred points is sufficient. The construction of a direction field is often
a useful first step in the investigation of a differential equation.

Two observations are worth particular mention. First, in constructing a direction field, we
do not have to solve equation (6); we just have to evaluate the given function f(r, v} many
times. Thus direction fields can be readily constructed even for equations that may be quite
difficult to solve. Second. repeated evaluation of a given function and drawing a direction field
are tasks for which a computer or other computational or graphical aid are well suited. All the
direction fields shown in this book. such as the one in Figures 1.1.2 and 1.1.3, were computer
generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider a
population of field mice that inhabit a certain rural area. In the absence of predators we assume
that the mouse population increases at a rate proportional to the current population. This
assumption is not a well-established physical law (as Newton's law of motion is in Example 1),
but it is a common initial hypothesis' in a study of population growth. If we denote time by 1
and the mouse population at time ¢ by p(r). then the assumption about population growth can
be expressed by the equation
dp

rp, T
P P {
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where the proportionality factor r is called the rate constant or growth rate. To be specific,
suppose that time 15 measured in months and that the rate constant r has the value 0.5/month.
Then the two terms in equation (7) have the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information into
the model, we must add another term to the differential equation (7), so that it becomes

d
P _ P _ s, (8)

di 2

Observe that the predation term 15 —450 rather than — 15 because time is measured in months,
50 the monthly predation rate is needed.

EXAMPLE 3

Investigate the solutions of differential equation (8) graphically.

Solution:

A direction field for equation (8) 15 shown in Figure 1.1.4. For sufficiently large values of p il can
be seen from the figure, or directly from equation (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small. then dp/dr 15 negative and solutions decrease. Again
the critical value of p that separates solutions that increase from those that decrease is the value of
p for which dp/dt is zero. By setting dp/dr equal w0 zero in equation (8) and then solving for p,
we find the equilibrium solution pi{r) = 900, for which the growth term and the predation lerm in
equation (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.
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EEILEEEY] Dircction field (red) and equilibrium solution (blue) for
equation (8): dp/dt = p/2 - 450.

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution separates
increasing from decreasing solutions. In Example 2 other solutions converge to, or are attracted
by, the equilibrium solution, so that after the object falls long enough, an observer will see
it moving at very nearly the equilibrium velocity. On the other hand, in Example 3 other
solutions diverge from, or are repelled by, the equilibnum selution. Solutions behave very
differently depending on whether they start above or below the equilibrium solution. As
time passes, an observer might see populations either much larger or much smaller than the
equilibrium population, but the equilibrium solution itself will not, in practice, be observed.
In both problems, however, the equilibrium solution is very important in understanding how
solutions of the given differential equation behave.

A more general version of equation (8) is

dp

= — k. 9
di P )
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where the growth rate r and the predation rate k are positive constants that are otherwise
unspecified. Solutions of this more general equation are very similar to those of equation (B).
The equilibrium solution of equation (9) is pit) = k/r. Solutions above the equilibrium
solution increase, while those below it decrease.

You should keep in mind that both of the models discussed in this section have their
limitations. The model (5) of the falling object is valid only as long as the object is falling
freely, without encountering any obstacles. If the velocity is large enough, the assumption
that the frictional resistance is linearly proportional to the velocity has to be replaced with
a nonlinear approximation (see Problem 21). The population model (8) eventually predicts
negative numbers of mice (if p < 900) or enormously large numbers (if p = 900). Both of

these predictions are unrealistic, so this model becomes unacceptable after a fairly short time
interval.

Constructing Mathematical Models. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to formulate the appropriate
differential equation that describes, or models, the problem being investigated. In this section
we have looked at two examples of this modeling process, one drawn from physics and
the other from ecology. In constructing future mathematical models yourself, you should
recognize that each problem is different, and that successful modeling cannot be reduced to the
observance of a set of prescribed rules. Indeed, constructing a satisfactory model is sometimes
the most difficult part of the problem. Nevertheless, it may be helpful to list some steps that
are often part of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent vanable is time.

2. Choose the units of measurement for each vanable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we

chose to measure time in seconds for the falling-object problem and in months for the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton's law of motion, or it
may be a more speculative assumption that may be based on your own experience or
observations. In any case, this step is likely not to be a purely mathematical one, but will
require you to be familiar with the field in which the problem originates.

4. Express the principle or law in step 3 in terms of the varables you chose in step 1.
This may be easier said than done. It may require the introduction of physical constants
or parameters (such as the drag coefficient in Example 1) and the determination of
appropriate values for them. Or it may involve the use of auxiliary or intermediate
variables that must then be related to the primary variables.

:JI

If the units agree, then your equation at least is dimensionally consistent, although it may
have other shortcomings that this test does not reveal.

6. In the problems considered here, the result of step 4 is a single differential equation,
which constitutes the desired mathematical model. Keep in mind, though, that in more
complex problems the resulting mathematical model may be much more complicated.
perhaps involving a system of several differential equations, for example.

Historical Background, Part |I: Newton, Leibniz, and the Bernoullis. Without knowing
something about differential equations and methods of solving them, it 1s difficult to appreciate
the history of this important branch of mathematics. Further, the development of differential
equations is intimately interwoven with the general development of mathematics and cannot
be separated from it. Nevertheless, to provide some historical perspective, we indicate here
some of the major trends in the history of the subject and identify the most prominent early
contributors. The rest of the historical background in this section focuses on the earliest
contributors from the seventeenth century. The story continues at the end of Section 1.2 with
an overview of the contributions of Euler and other eighteenth-century {and early-nineteenth-
century) mathematicians. More recent advances, including the use of computers and other
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technologies, are summarized at the end of Section 1.3. Additional historical information is
contained in footnotes scattered throughout the book and in the references listed at the end of
the chapter.

The subject of differential equations onginated in the study of calculus by [saac Newton
(1643~1727) and Gottfried Wilhelm Leibniz { 1646-1716) in the seventeenth century. Newton
grew up in the English countryside, was educated at Trinity College, Cambridge, and became
Lucasian Professor of Mathematics there in 1669. His epochal discoveries of calculus and of
the fundamental laws of mechanics date to 1665. They were circulated privately among his
friends. but Newton was extremely sensitive to criticism and did not begin to publish his results
until 1687 with the appearance of his most famous book Philosophiae Natralis Principia
Mathemaiica. Although Newton did relatively little work in differential equations as such, his
development of the calculus and elucidation of the basic principles of mechanics provided a
basis for their applications in the eighteenth century, most notably by Euler (see Historical
Background, Part Il in Section 1.2). Newton identified three forms of first-order differential
equations: dv/dx = f(x), dv/dx = f(y).and dv/dx = f{x, v). For the latter equation
he developed a method of solution using infinite senes when f{x, ¥) is a polynomial in x and
v. Mewton's active research in mathematics ended in the early 1690s, except for the solution
of occasional “challenge problems™ and the revision and publication of results obtained much
earlier. He was appointed Warden of the British Mint in 1696 and resigned his professorship a
few years later. He was knighted in 1705 and. upon his death in 1727, became the first scientist
buried in Westminster Abbey.

Leibniz was born in Leipzig, Germany, and completed his doctorate in philosophy at the
age of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since his interest in this
subject developed when he was in his twenties. Leibniz arrived at the fundamental results of
calculus independently, although a little later than Newton, but was the first to publish them,
in 1684, Leibniz was very conscious of the power of good mathematical notation and was
responsible for the notation o'y /dx for the derivative and for the integral sign. He discovered
the method of separation of variables (Section 2.2) in 1691, the reduction of homogeneous
equations to separable ones (Section 2.2, Problem 30) in 1691, and the procedure for solving
first-order linear equations (Section 2.1) in 1694, He spent his life as ambassador and adviser
to several German royal families, which permitted him to travel widely and to carry on an
extensive correspondence with other mathematicians, especially the Bernoulli brothers. In the
course of this correspondence many problems in differential equations were solved during the
latter part of the seventeenth century.

The Bemnoulli brothers, Jakob (1654-1705) and Johann (1667-1748), of Basel.
Switzerland did much to develop methods of solving differential equations and to extend
the range of their applications. Jakob became professor of mathematics at Basel in 1687,
and Johann was appointed to the same position upon his brother's death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with each
other. Nevertheless, both also made significant contributions to several areas of mathematics.
With the aid of calculus. they solved a number of problems in mechanics by formulating
them as differential equations. For example, Jakob Bernoulli solved the differential equation
Vi=(a'/(BFy—a’)) "% (see Problem 9 in Section 2.2) in 1690 and, in the same paper, first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able to solve the
equation dy /dx = v/({ax) (see Problem 10 in Section 2.2). One problem that both brothers
solved, and that led to much friction between them. was the brachistochrone problem (see
Problem 24 in Section 2.3). The brachistochrone problem was also solved by Leibniz, Newton,
and the Marquis de I'Hopital. It is said, perhaps apocryphally, that Newton learned of the
problem late in the afternoon of a tiring day at the Mint and solved it that evening after dinner.
He published the solution anonymously, but upon seeing it, Johann Bernoulli exclaimed, “ Ah,
| know the lion by his paw.”

Daniel Bernoulli (17001782}, son of Johann, migrated to St. Petersburg, Russia, as a
young man to join the newly established St. Petersburg Academy, but returned to Basel in
1733 as professor of botany and. later, of physics. His interests were primarily in partial
differential equations and their applications. For instance, it is his name that is associated with
the Bemoulli equation in fluid mechanics. He was also the first to encounter the functions that
a century later became known as Bessel functions (Section 5.7).

T
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17. A pond initially contains 1,000,000 gal of water and an unknown
amount of an undesirable chemical. Water containing 0.01 grams of
this chemical per gallon flows into the pond at a rate of 300 gal/h. The
mixture flows out al the same rate, s0 the amount of water in the pond
remains constant. Assume that the chemical is uniformly disinbuted
throughout the pond.

A. Wrte a differential equation for the amount of chemical in

the pond at any time.

b. How much of the chemical will be in the pond afier a very

long time? Does this imiting amount depend on the amount that

was present initially?

. Wrnte a differential equation for the concentration of the

chemical in the pond at time . Hint: The concentration is

c=alv =a{”,-‘1'|]6.
18. A spherical raindrop evaporates at a rate proportional o its
surface area. Wnte a differential equation for the volume of the
raindrop as a function of ime.
19. Newion's law of cooling states that the temperaure of an
object changes al a rate proportional o the difference between the
temperature of the object itself and the temperature of its surroundings
(the ambient air lemperature in most cases). Suppose that the ambient
temperature 15 70°F and that the rate constant 1= 0.05 {min)~'. Write a
differential equation for the temperature of the object at any tme. Note
that the differential equation 15 the same whether the temperature of
the object 1s above or below the ambient temperature.

1.2 Solutions of Some Difterantial Equations 9

20. A certain drug is being administered intravenously to a hospital
patient. Fluid containing 5 mgicm” of the drug enters the patient’s
bloodstream at a rate of 100 cm’/Mh. The drug is absorbed by body
tissues or otherwise leaves the bloodstream at a rate proporional to
the amount present, with a rate constant of (4/h.
a. Assuming that the drug is always uniformly distributed
throughout the bloodstream, wrte a differential equation for the
amount of the drug that s present in the bloodstream at any time.
b. How much of the drug is present in the bloodstream after a
long time?
’m 21. For small. slowly falling objects, the assumplion made in
the text that the drag force is proportional (o the velocity is a good ane.
For larger. more rapidly falling objects. it is more accurate 1o assume
that the drag force is proportional to the square of the velocity
a. Wrile a differential equation for the velocity of a falling
object of mass m if the magnitude of the drag force is
proportional to the square of the velocity and its direction is
opposite to that of the velocity.
b. Determine the limiting velocity after a long time.
c. Ifm = 10 kg, find the drag coefficient so that the limiling
velocity is 49 mis.
O d. Using the data in part c_ draw a direction field and compare
it with Figure 1.1.3.
In each of Problems 22 through 25, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of v as 1 = oo If this behavior depends on the initial valoe
af v at t = 0, describe this dependency. Note that the right-hand sides
of these equations depend on r as well as y; therefore, their solutions
can exhibit more complicated behavior than those in the text.

B 22 vV==241=v

B 2 V=4
B 24 v =3sinr+14v¢
4y
25, o= -
6] 3 -

I8e¢ Lyle M. Long and Howard Weiss, “The Velocity Dependence of
Avrodynamic Drag: A Primer for Mathematicians,” American Mathemanical
Montidy 106 (1999), 2, pp. 127-135.

12 Solutions of Some Differential Equations

In the preceding section we derived the differential equations

dv
mE:mg—jr
and
dp
— =rp—k.
dt 4

(1)

(2)

Equation { 1) models a falling object, and equation (2} models a population of field mice preyed

on by owls. Both of these equations are of the general form
dy
el SR iy
dr 7

(3)

where a and b are given constants. We were able to draw some imporiant gualitative
conclusions about the behavior of solutions of equations (1) and (2) by considering the
assoclated direction fields. To answer questions of a quantitative nature, however, we need
to find the solutions themselves, and we now investigate how to do that,
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where ¢ = 4¢" is also an arbitrary (nonzero) constant. Note that the constant funct
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where C is an arbitrary constant of mtegration. Therefore, by taking the exponential of both sides of

equation (8], we find that
also a solution of equation (5) and that it is contained in the expression (11) if we allow ¢ 1o ake the

By the chain rule the lefi-hand side of equation (6) 15 the denvative of In | p — 900| with respect to ¢,
value #ero. Graphs of equation (11) for several values of ¢ are shown in Figure 1.2.1.

s0 we have
Then, by integrating both sides of equation (7)., we oblain

EXAMPLE 1
Consider the equation
To solve eq
or. if p £ 900,

which des
it 1 an
and Mnally

Solution

5

T ey

-

10 CHAPTER 1 Introduction

Graphs of p = 900 + c¢'/? for several values of ¢. Each blue

curve is a solution of dp/dt = 0.5p — 450.
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Note that they have the character inferred from the direction Geld in Figure 1.1 4. For instance,
solutions lying on either side of the equilibrium solution p = 900 tend to diverge from that
solution.

In Example | we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values that the arbitrary constant ¢ in equation (11) might
have. This is typical of what happens when you solve a differential equation. The solution
process involves an integration, which brings with it an arbitrary constant, whose possible
values generate an infinite family of solutions.

Frequently, we want to focus our attention on a single member of the infinite family of
solutions by specifying the value of the arbitrary constant. Most often, we do this indirectly by
specifying instead a point that must lie on the graph of the solution. For example, to determine
the constant ¢ in equation {11}, we could require that the population have a given value at a
certain time, such as the value 850 at time ¢+ = 0. In other words, the graph of the solution
must pass through the point (), 850). Symbolically, we can express this condition as

p(0) = 850. {12y

Then, substituting { = 0 and p = 850 into eguation {11}, we obtain

850 = 900 4 ¢.
Hence ¢ = —5{), and by inserting this value into equation (11 ), we obtain the desired solution,
namely,
p =900 — 50¢'/2. (13)

The additional condition (12) that we used to determine ¢ 15 an example of an initial
condition. The differential equation (4) together with the initial condition (12) forms an initial

value problem.
Now consider the more general problem consisting of the differential equation (3)
dy
= ay —b
and the initial condition
¥(0) = yo, (14)

where v is an arbitrary initial value. We can solve this problem by the same method as in
Example 1. If a # 0 and vy # b/a, then we can rewrite equation (3) as

dv/d
}'Ilr;zr]- (15)
y—2&

By integrating both sides, we find that

In

b
yi) — —‘ =at+C, (16)
[

where ' is an arbitrary constant. Then, taking the exponential of both sides of equation {16)
and solving for v, we obtain

b
vir) = : + ce™, (17}

where ¢ = +¢% is also an arbitrary constant. Observe that ¢ = 0 corresponds to the equilibrium
solution v(t) = b/a. Finally, the initial condition (14) requires that ¢ = vy — (b/a), so the
solution of the initial value problem (3). (14) is

b by
yiy)=—+|yp—— Je". (18)
a i

For a # 0 the expression (17) contains all possible solutions of equation (3) and is called
the general solution.” The geometric representation of the general solution (17) is an infinite
family of curves called integral carves. Each integral curve is associated with a particular

im this case.

11
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value of ¢ and is the graph of the solution corresponding to that value of ¢. Satisfying an initial
condition amounts to identifying the integral curve that passes through the given initial point.

To relate the solution {18} to equation (2}, which models the field mouse population, we
need only replace a by the growth rate r and replace b by the predation rate & we assume that
r > Oand k > 0. Then the solution ( 18) becomes

k k
pm:;+(pn—;)e”, (19)

where py is the imitial population of field mice. The solution (19) confirms the conclusions
reached on the basis of the direction field and Example 1. If py = k/ . then from equation ( 19)
it follows that p{r) = k/r for all r; this is the constani, or equilibrium, solution. If py #
k/ r. then the behavior of the solution depends on the sign of the coefficient py — &/ r of the
exponential term in equation (19). If p, > k/r. then p grows exponentially with time r; if
po < k/r, then p decreases and becomes zero (at a finite time), corresponding to extinction
of the field mouse population. Negative values of p, while possible for the expression (19),
make no sense in the context of this particular problem.

To put the falling-object equation (1) in the form (3), we must identify @ with —~ /m and
b with —g. Observe that assuming v > 0 and m > 0 implies that a < O and & < 0. Making
these substitutions in the solution (18), we obtain

=

where vy Is the initial velocity. Again, this solution confirms the conclusions reached in
Section 1.1 on the basis of a direction field. There is an equlibrium, or constant, solution
vir) = mg /. and all other solutions tend to approach this equilibrium solution. The speed
of convergence to the equilibrium solution is determined by the exponent —= / m. Thus, for
a given mass m. the velocity approaches the equilibrium value more rapidly as the drag
coefficient + increases.

EXAMPLE 2 | AFalling Object (continued)

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass m = 10 kg and
drag coefficient 4 = 2 kg/s. Then the equation of motion (1) becomes

i T (21)

Suppose this object is dropped from a height of 300 m. Find its velocity at any time . How long will
it take to fall to the ground. and how fast will it be moving at the time of impact?
Solution:

The first step is (0 state an appropriate initial condition for equation (21 ). The word “dropped”™ in the
statement of the problem suggesis that the object starts from rest, that 1. s initial velocity is zero,
s0 we will use the mitial condition

vid) = 0. (22)

The solution of equation (21) can be found by substituting the values of the coefficients into the
solution (207, but we will proceed instead to solve equation (21) directly. First, rewrite the equation as

dv /dt |

= 23
v —49 5 S
By integrating both sides, we obtain
i
In|vit) — 49| = -5 +C. (24)
and then the general solution of equation (21) 1s
V(I) =49 4 g3, (25)

where the constant ¢ is arbitrary. To determine the particular value of ¢ that corresponds to the mitial
condition {22}, we substitute ¢ = Jand v = 0 into equation {25), with the result that ¢ = =49, Then
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W the solution of the initial value problem (21), (22) is
w(l) = 49[I - e"-"5}. (26)

Equation (26) gives the velocity of the falling object at any positive time after being dropped —until
it hits the ground, of course.

Graphs of the solution (25) for several values of ¢ are shown in Figure 1.2.2, with the solution
(26) shown by the green curve. It is evident that, regardless of the initial velocity of the object. all
salutions tend o approach the equilibrivm solution vir) = 49. This confirms the conclusions we
reached in Section 1.1 on the basis of the direction fields in Figures 1.1.2 and 1.1.3.

100

—

40
(10.51, 43.01)
20 v=49 (1 - gt
| | | | |
2 4 b b 10 12 ¢

Graphs of the solution (25), v = 49 + ce~"'%, for several values
of ¢. The green curve comesponds o the initial conditton v{0) = (. The point
( 10.51, 43.01) shows the velocity when the object hits the ground.

To find the velocity of the object when it hits the ground, we need to know the ume at which
impact occurs. In other words, we need 1o determine how long it takes the object 1o fall 300 m. To
do this, we note that the distance x the object has fallen is related 1o its velocity v by the differential
equation v = dx /di. or

dx ;
— =49(1 — 7). 27
— = A ) 27

Consequently, by integrating both sides of equation (27) with respect to ¢, we have
T =49 4+ 24573 4k, (28)

where & is an arbitrary constant of integration. The object starts to fall when r = (), so we know that
x = 0when r = (. From equation (28) it follows that k = <245, so the distance the object has fallen
al time f is given by

x = 49; 4 245.74% _ 245, (29)

Let T be the time at which the object hits the ground; then © = 300 when 1 = T. By substituting
these values in equation (29), we obtain the equation

49T + 245.7T/5 _ 245 = 300. (307

The value of T satisfying equation (30) can be approximated by a numerical process® using
a calculator or other computational tool, with the result that T = 1051 5. At this time, the
corresponding  velocity vr is found from equation (26) o be vy = 43.01mfs. The point
(10.51.43.01) is also shown in Figure 1.2.2

cquations.
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Further Remarks on Mathematical Modeling. Up to this point we have related our
discussion of differential equations to mathematical models of a falling object and of a
hypothetical relation between field mice and owls. The derivation of these models may have
been plausible, and possibly even convincing, but you should remember that the ulimate test
of any mathematical model is whether its predictions agree with observations or experimental
results. We have no actual observations or experimental results to use for comparison purposes
here, but there are several sources of possible discrepancies.

In the case of the falling object, the underlying physical principle (Newton's laws of
motion) is well established and widely applicable. However, the assumption that the drag
force is proportional to the velocity is less certain. Even if this assumption is correct, the
determination of the drag coefficient 4 by direct measurement presents difficulties. Indeed,
sometimes one finds the drag coefficient indirectly —for example, by measuring the time of
fall from a given height and then calculating the value of + that predicts this observed time.

The model of the field mouse population is subject to various uncertainties. The
determination of the growth rate r and the predation rate & depends on observations of actual
populations, which may be subject to considerable vanation. The assumption that r and k are
constants may also be questionable. For example. a constant predation rate becomes harder
to sustain as the field mouse population becomes smaller. Further, the model predicts that a
population above the equilibrium value will grow exponentially larger and larger. This seems
at variance with the behavior of actual populations: see the further discussion of population
dynamics in Section 2.5.

If the differences between actual observations and a mathematical model’s predictions are
too great, then you need to consider refining the model, making more careful observations,
or perhaps both. There is almost always a tradeoff between accuracy and simplicity. Both are
desirable, but a gain in one usually involves a loss in the other. However, even if a mathematical
model is incomplete or somewhat inaccurate, it may nevertheless be useful in explaining
qualitative features of the problem under investigation. It may also give satisfactory results
under some circumstances but not others. Thus you should always use good judgment and
common sense in constructing mathematical models and in using their predictions.
Historical Background, Part |I: Euler, Lagrange, and Laplace. The greatest mathe-
matician of the eighteenth century, Leonhard Euler (1707-1783), grew up near Basel,
Switzerland and was a student of Johann Bernoulli. He followed his friend Daniel Bernoulli to
St. Petersburg in 1727. For the remainder of his life he was associated with the St. Petersburg
Academy (1727-1741 and 1766~1783) and the Berlin Academy (1741-1766). Losing sight
in his right eye in 1738, and in his left eye in 1766, did not stop Euler from being one of the
most prolific mathematicians of all ime. In addition to publishing more than 500 books and
papers during his life, an additional 400 have appeared posthumously.

Of particular interest here is Euler's formulation of problems in mechanics in
mathematical language and his development of methods of solving these mathematical
problems. Lagrange said of Enler’s work in mechanics, “The first great work in which analysis
15 applied to the science of movement.” Among other things, Euler identified the condition
for exactness of first-order differential equations {Section 2.6) in 1734-1735, developed the
theory of integrating factors (Section 2.6) in the same paper, and gave the general solution of
homogeneous linear differential equations with constant coefficients {Sections 3.1, 3.3, 3.4,
and 4.2) in 1743. He extended the latter results to nonhomogeneous differential equations in
1750-1751. Beginning about 1750, Euler made frequent use of power series (Chapter 5) in
solving differential equations. He also proposed a numerical procedure (Sections 2.7 and 8.1)
in 1 768=1769, made important contributions in partial differential equations, and gave the first
systematic treatment of the calculus of vanations.

Joseph-Louis Lagrange (1736-1813) became professor of mathematics in his native
Turin, Italy, at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in 1766 and moved on to the Panis Academy in 1787. He is most famous for his
monumental work Mécanigue analvrigue, published in 1788, an elegant and comprehensive
treatise of Newtonian mechanics. With respect to elementary differential equations, Lagrange
showed in 176217635 that the general solution of a homogeneous nth order linear differential
equation is a linear combination of n independent solutions (Sections 3.2 and 4.1). Later, in
1774-1775, he offered a complete development of the method of varation of parameters
(Sections 3.6 and 4.4). Lagrange is also known for fundamental work in partial differential
equations and the calculus of vanations.
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Pierre-5imon de Laplace {1749-1827) lived in Normandy, France, as a boy but arrived in
Paris in 1768 and quickly made his mark in scientific circles, winning election to the Académie
des Sciences in 1773, He was preeminent in the field of celestial mechanics; his greatest work,
Traité de mécanigue céleste, was published in five volumes between 1799 and 1825, Laplace’s
equation is fundamental in many branches of mathematical physics, and Laplace studied it
extensively in connection with gravitational attraction. The Laplace transform (Chapter &)
15 also named for him, although its vsefulness in solving differential equations was not
recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned more
toward the investigation of theoretical questions of existence and uniqueness and to the
development of less elementary methods such as those based on power series expansions (see
Chapter 5). These methods find their natural setting in the complex plane. Consequently, they
benefitted from, and to some extent stimulated, the more or less simultaneous development of
the theory of complex analytic functions. Partial differential equations also began to be studied
intensively. as their crucial role in mathematical physics became clear. In this connection a
number of functions, arising as solutions of certain ordinary differential equations, occurred
repeatedly and were studied exhaustively. Known collectively as higher transcendental

functions, many of them are associated with the names of mathematicians, including Bessel
(Section 5.7), Legendre (Section 5_3). Hermite (Section 5.2). Chebyshev (Section 5.3), Hankel,

and many others.

Problems

0 1. Solveeach of the following initial value problems and plot
the solutions for several values of y,. Then describe in a few words
how the solutions resemble, and differ from. each other.

a. dy/di ==y +5, ¥(0) =y
b. dy/dt = <2y 45, v(0) =
C. dyfdl = =2y + 10, y(0)=1w

@ 2 Follow the instructions for Problem | for the following
inmitial-value problems:
a. dyfdi=y-=5, y(0l=1mx
b dy/dt =2y =5, y(0)=mwn
C. dyfdt =2y =10, ¥0) =1
3. Consider the differential equation
dy/dt = —ay+ b,
where both a and b are posilive numbers.
d. Find the general solution of the differential equation.
B b. Sketch the solution for several different initial conditions.
€. Describe how the solutions change under each of the
following conditions:
1. @ INCreases.
. b increases.
ii. Both a and b increase, but the ratio b /a remains the same.

4. Consider the differential equation dv /dt = ay = b.
d. Find the equilibium solution y,.
b. Let ¥(t) = vy = v thus ¥ir) is the deviation from the
equilibrium solution. Find the differential equation satisfied by
¥ir).
5. Undetermined Coelficients. Here is an alternative way 1o solve
the equation

22 = ay—b. 3l
di o =4

a. Solve the simpler equation

dv
d'_: = ay. (32}

Call the solution vi(#).
b. Observe that the only difference between equations (31 ) and
(32) 1s the constanl b in equation (31). Therefore, it may seem
reasonable 1o assume that the solutions of these two eguations
also differ only by a constant. Test this assumplion by Irying
o find a constant & such that ¥ = w(#) + &k 18 a solowon of
equation (31).
¢. Compare your solution from part b with the solution given in
the text in equation (17).
Note: This method can also be used in some cases in which the
constant b i1z replaced by a function g f). It depends on whether you
can guess the general form that the solution is likely to ke, Ths
method is described in detail in Section 3.5 in connection with second-
arder equations.
6. Use the method of Problem 5 1o solve the equation
j—': = =gy +h.

7. The feld mouse population in Example | satisfies the
differential equation

dy p
— = — — 450
di 2
a. Find the time at which the population becomes extinet if

pl0y = B50.
b. Find the time of extinction if p(0) = py, where 0 < py <
SO0,
@ c. Find the initial population pg if the population is to
become extinet in | year.
8. The falling object in Example 2 satisfies the inital value
problem
dv v
s =08= 3
a. Find the time that must elapse for the object o reach 98% of
ils limiting velocity.
b. How far does the object fall in the time found in part a?

vi() =10.
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9. Consider the falling object of mass 10 kg in Example 2. but
assume now that the drag force is proportional o the square of the
velocity,

a. If the limiting velocity is 49 my's (the same as in Example 2),
show that the equation of motion can be wrillen as
dv 1 2
dr 245
Alzo see Problem 21 of Section 1. 1.
b. Ifv(0) = 0, find an expression for vif) al any time.
¢. Plot your solution from part b and the solution (26) from
Example 2 on the same axes.
d. Based on your plots in part ¢, compare the effect of a
quadratic drag force with that of a linear drag force.
€. Find the distance x{r) that the object falls in time ¢.
0 f. Find the time T it takes the object to fall 300 m.

1. A radicactive material, such as the isotope thorium-234,
disintegrates at a rate proportional to the amount cumrently present.
If (r}) is the amount present at time £, then d 0 /dr = —r (0, where
r = [ 1s the decay rate.
a. If 100 mg of thorium-234 decays 0 82.04 mg in | week,
determine the decay rate r.
b. Find an expression for the amount of thorium-234 present at
any time .
c. Find the time required for the thorium-234 (o decay o one-
half its original amount.

11. The half-life of a radicactive material is the lime required for an
amount of this material 1o decay to one-hall i1s original value. Show
that for any radioactive material that decays according to the equation
" = —rQ. the half-life = and the decay rate r satisfy the equation
rr=In2

12. According o Newion's law of cooling (see Problem 19 of
Section 1_1). the iemperature u( ¢) of an object satisfies the differential
equation

ol i A =
e =gl = 1),

where T is the constant ambient temperature and & is a positive
constant. Suppose that the mitial temperature of the object is
) = uy.
a. Find the emperature of the object at any ime.
b. Let T be the time at which the initial temperature difference
uy = T has been reduced by half. Find the relation between k
and 1.

13. Consider an electric circuil containing a capacitor, resistor, and

battery; see Figure 1 2.3, The charge (N t) on the capacitor satisfes
the equation®
d
P L

L 1]
dr T C

where R is the resistance, C is the capacitance, and V' is the constant
voltage supplied by the battery.
a. o0y =0, iind Qr) at any tme ¢, and sketch the graph
of () versus 1.
b. Find the limiting value @ that (1) approaches afier a long
lime.
G- Suppose that (1) = @, and thal at time r = r, the
battery 15 removed and the crcuit is closed again. Find Q) for
§ = 1y and sketch its graph.

R
Ay

¢ )
s

c

m The electric circuit of Problem 13.

O 14. A pond containing 1,000,000 gal of water is initially free
of a certain undesirable chemical (see Problem 17 of Section 1.1).
Water containing (.01 g/gal of the chemical flows into the pond at
a rate of 300 galh, and water also flows out of the pond at the same
rate. Assume that the chemical is uniformly distributed throughout the
pond

a. Let @(r) be the amount of the chemical in the pond at ime
t. Write down an imitial value problem for Q(f).

b. Solve the problem in part a for @0¢). How much chemical is
in the pond after | year?

€. Althe end of 1 year the source of the chemical in the pond
is removed; thereafier pure water flows into the pond, and the
mixture flows oul al the same rate as before. Write down the
initial value problem that describes this new siluation.

d. Solve the initial value problem in part c. How much chemical
remains in the pond after | additional year (2 years from the
beginning of the problem)?

€. How long does it take for Q1) to be reduced to 10 g?

B . Plot O(r) versus r for 3 years.

*This equation results from Kirchhoff's laws, which are discussed in Section
3.7.

13 Classification of Differential Equations

The main purposes of this book are to discuss some of the properties of solutions of differential
equations and to present some of the methods that have proved effective in finding solutions
or, in some cases, in approximating them. To provide a framework for our presentation,
we describe here several useful ways of classifying differential equations. Mastery of this
vocabulary is essential to selecting appropriate solution methods and to describing properties
of solutions of differential equations that you encounter later in this book —and in the real

wiorld.

Ordinary and Partial Differential Equations.

One important classification is based on

whether the unknown function depends on a single independent variable or on several
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independent vaniables. In the first case, only ordinary denivatives appear in the differential

equation, and it is said to be an ordinary differential equation. In the second case, the

derivatives are partial derivatives, and the equation is called a partial differential equation.
All the differential equations discussed in the preceding two sections are ordinary

differential equations. Another example of an ordinary differential equation is

d*0() | dQ(n) |

1 +RT+EQ{I}=E{”, (1

for the charge (2( 1) on a capacitor in a circuit with capacitance C, resistance R, and inductance
L: this equation is derived in Section 3.7. Typical examples of partial differential equations
are the heat conduction equation

L

HEHIH{I.” _ du(x,1)
axz

(2)

and the wave eguation
:HIH{I,IJ B Ol x, 1)
Yo T ar
Here. o® and a® are certain physical constants. Note that in both equations (2) and (3) the
dependent vanable u depends on the two independent vanables x and r. The heat conduction
equation describes the conduction of heat in a solid body, and the wave equation arises in a
variety of problems involving wave motion in solids or fluids.

(3)

Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single function
to be determined, then one differential equation is sufficient. However, if there are two or
more unknown functions, then a system of differential equations is required. For example, the
Lotka-Volterra, or predator-prey, equations are important in ecological modeling. They have

the form
dx
— = ax — aXxy
dt '
<y + )
— = —c¥ + Xy,
dt ’ 5

where x(¢) and v(r) are the respective populations of the prey and predator species. The
positive constants a, o, ¢, and ~ are based on empincal observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7 and 9;
in particular, the Lotka-Volterra equations are examined in Section 9.5. In some areas of
application it is not unusual to encounter very large systems containing hundreds, or even
many thousands, of differential equations.

Order. Theorder of a differential equation is the order of the highest derivative that appears
in the equation. The equations in the preceding sections are all first-order equations, whereas
equation {1} is a second-order equation. Equations (2) and (3) are also second-order partial
differential equations. More generally. the equation

F(:,u{:},u'{:}, ,u["'(n):ﬂ (5)

is an ordinary differential equation of the n'® order. Equation (5) expresses a relation between
the independent variable t+ and the values of the function u and its first n derivatives

u',u”, .., u'™ . Itis convenient and customary in differential equations to write v for u(r),
with v, ¥", ... , ¥'" standing for u'(¢), u”(r). ... . u'"™ (7). Thus equation (5) is written as
F(r. A P ,,r"") =0. )

For example,
VI 2 oy =1 (7

15 a third-order differential equation for v = u{t). Occasionally, other letters will be used
instead of r and vy for the independent and dependent variables; the meaning should be clear
from the context.

1r
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We assume that it is always possible to solve a given ordinary differential equation for
the highest derivative, obtaining

v = f (L AL }.ln—l:-)_ (8)

This is mainly to avoid the ambiguity that may arise because a single equation of the form (6)
may correspond to several equations of the form (8). For example, the equation

(¥ +1y +4y=0 (9

leads to the two equations

e | it — 16y . =t =1t — 16y
¥ o= 1 5 }ur}': '1'- (1)

Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F(F- Wi }""’) =0
is said to be linear if F is a linear function of the variables v, v/, ... ., ¥'"'; a similar definition

applies to partial differential equations. Thus the general linear ordinary differential equation
of order n is

ag(D Y™ + a0y 4+ Fau(ny = gln). (1

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, equation (1) 15 a linear ordinary differential equation
and equations (2) and (3) are linear partial differential equations. An equation that is not of the
form (11) 1s a nonlinear equation. Equation (7) is nonlinear because of the term yv'. Similarly,
each equation in the system (4) is nonlinear because of the terms that involve the product of
the two unknown functions xy.

A simple physical problem that leads to a nonlinear differential equation is the oscillating
pendulum. The angle # = &(r) that an oscillating pendulum of length L makes with the
vertical direction (see Figure 1.3.1) satisfies the equation

ij +% sinfl =10, {12)
whose derivation is outlined in Problems 22 through 24. The presence of the term involving
sin & makes equation ( 12) nonlinear.

mg

-
I
An oscillating pendulum.

The mathematical theory and methods for solving linear equations are highly developed.
In contrast, for nonlinear equations the theory is more complicated, and methods of solution
are less satisfactory. In view of this, it 1s fortunate that many significant problems lead to linear
ordinary differential equations or can be approximated by linear equations. For example, for
the pendulum, if the angle # is small, then sin# = # and equation (12) can be approximated
by the linear equation
dd g
P + i 0. (13
This process of approximating a nonlinear equation by a linear one is called linearization; it
15 an extremely valuable way to deal with nonlinear equations. Nevertheless, there are many
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physical phenomena that simply cannot be represented adeguately by linear equations. To
study these phenomena, it 15 essential to deal with nonlinear equations.

In an elementary text it is natural to emphasize the simpler and more straightforward
paris of the subject. Therefore, the greater part of this book is devoted to linear equations and
various methods for solving them. However, Chapters 8 and 9, as well as parts of Chapter 2, are
concerned with nonlinear equations. Whenever it i1s appropriate. we point out why nonlinear
equations are, in general. more difficult and why many of the techniques that are useful in
solving linear equations cannot be applied to nonlinear equations.

Solutions. A solution of the n'* order ordinary differential equation (%) on the interval
a < 1 < [ is a function ¢ such that @', @, ... . ¢'" exist and satisfy

6™ = f(rom. o', ....6" ") (14)

for every f in @ < ¢ < [3. Unless stated otherwise, we assume that the function f of
equation (%) is a real-valued function, and we are interested in obtaining real-valued solutions
y=aolr1).

Recall that in Section 1.2 we found solutions of certain equations by a process of direct
integration. For instance, we found that the equation

d
el R T (15)
dr 2
has the solution
pl1) = 900 + ce''2, (16)

where ¢ 1s an arbitrary constani.

It is often not so easy to find solutions of differential equations. However, if you find
a function that you think may be a solution of a given equation, it i1s usually relatively easy
to determine whether the function is actually a solution: just substitute the function into the
equation.

For example, in this way it is easy to show that the function v;{f) = cos is a solution of

.'ril + :I-" — ﬂ {J.FI'J

for all r. To confirm this, observe that y (1) = —sinf and y/(f) = —cosr; then it follows that
_';'[“{.r,'l + wi(1) = 0. In the same way you can easily show that y-(r) = sint is also a solution
of equation (17).

Of course, this does not constitute a satisfactory way to solve most differential equations,
because there are far too many possible functions for you to have a good chance of finding the
correct one by a random choice. Nevertheless, you should realize that you can verify whether
any proposed solution is correct by substituting it into the differential equation. This can be a
very useful check: it is one that you should make a habit of considering.

Some Important Questions. Although for the differential equations (15) and (17) we are
able to verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an equation of
the form (8) always have a solution? The answer is “No."” Merely writing down an equation
of the form (8) does not necessarily mean that there is a function v = &(r) that satisfies it.
So, how can we tell whether some particular equation has a solution? This is the question of
existence of a solution, and it is answered by theorems stating that under certain restrictions
on the function f in equation (&), the equation always has solutions. This 15 not a purely
theoretical concern for at least two reasons. If a problem has no solution, we would prefer to
know that fact before investing time and effort in a vain attempt to solve the problem. Further,
if a sensible physical problem is modeled mathematically as a differential equation, then the
equation should have a solution. If it does not, then presumably there is something wrong with
the formulation. In this sense an engineer or scientist has some check on the validity of the
mathematical model.

If we assume that a given differential equation has at least one solution, then we may
need to consider how many solutions it has, and what additional conditions must be specified
to single out a particular solution. This is the question of unigueness. In general, solutions
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20 CHAPTER 1 Introduction

of differential equations contain one or more arbitrary constants of integration, as does the
solution (16) of equation (15). Equation (16) represents an infinity of functions corresponding
to the infinity of possible choices of the constant ¢. As we saw in Section 1.2, if p is specified
at some time 1, this condition will determine a specific value for ¢; even so, we have not vet
ruled out the possibility that there may be other solutions of equation (15) that also have the
prescribed value of p at the prescribed time 7. As in the gquestion of existence of solutions,
the issue of uniqueness has practical as well as theoretical implications. If we are fortunate
enough to find a solution of a given problem, and if we know that the problem has a unigue
solution, then we can be sure that we have completely solved the problem. If there may be
other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can we actually
determine a solution, and if so, how? Note that if we find a solution of the given equation, we
have at the same time answered the question of the existence of a solution. However, without
knowledge of existence theory we might, for example. use a computer to find a numerical
approximation to a “solution” that does not exist. On the other hand, even though we may
know that a solution exists, it may be that the solution is not expressible in terms of the usual
elementary functions— polynomial, trigonometric, exponential, logarithmic. and hyperbolic
functions. Unfortunately, this is the situation for most differential equations. Thus, we discuss
both elementary methods that can be used to obtain exact solutions of certain relatively simple
problems, and also methods of a more general nature that can be used to find approximations
to solutions of more difficult problems.

Technology Use in Differential Equations. Technology provides many extremely
valuable tools for the study of differential equations. For many years computers have been
used to execute numerical algorithms, such as those described in Chapter 8. to construct
numerical approximations to solutions of differential equations. These algonthms have been
refined to an extremely high level of generality and efficiency. A few lines of computer code,
written in a high-level programming language and executed (often within a few seconds)
on a relatively inexpensive computer, suffice to approximate to a high degree of accuracy
the solutions of a wide range of differential equations. More sophisticated routines are also
readily available. These routines combine the ability to handle very large and complicated
systems with numerous diagnostic features that alert the user to possible problems as they are
encountered.

The usual output from a numerical algonthm is a table of numbers, listing selected values
of the independent variable and the corresponding values of the dependent variable. With
appropriate software it is easy to display the solution of a differential equation graphically,
whether the solution has been obtained numerically or as the result of an analytical procedure
of some kind. Such a graphical display is often much more illuminating and helpful in
understanding and interpreting the solution of a differential equation than a table of numbers or
a complicated analytical formula. There are on the market several well-crafted and relatively
inexpensive special-purpose software packages for the graphical investigation of differential
equations. The increased power and sophistication of modern smartphones, tablets, and other

mobile devices have brought powerful computational and graphical capability within the reach
of individual students. You should consider, in the light of your own circumstances, how best
to take advantage of the available computing resources. You will surely find it enlightening to
do so.

Another aspect of computer use that 1s very relevant to the study of differential equations is

the availability of extremely powerful and general software packages that can perform a wide
variety of mathematical operations. Among these are Maple, Mathematica, and MATLAB,
each of which can be used on various kinds of personal computers or workstations. All
three of these packages can execute extensive numerical computations and have versatile
graphical facilities. Maple and Mathematica also have very extensive analytical capabilities.
For example, they can perform the analytical steps involved in solving many differential
equations, often in response to a single command. Anyone who expects to deal with differential
equations in more than a superficial way should become familiar with at least one of these
products and explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should study
differential equations. To become confident in using differential equations, it is essential to
understand how the solution methods work, and this understanding i1s achieved, in part. by
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working out a sufficient number of examples in detail. However, eventually you should plan
to wtilize appropriate computational tools to complete as many as possible of the routine
(often repetitive) details, while you focus on the proper formulation of the problem and on
the interpretation of the solution. Our viewpoint is that you should always try to use the
best methods and tools available for each task. In particular, you should strive to combine
numerical, graphical, and analytical methods so as to attain maximum understanding of the
behavior of the solution and of the underlying process that the problem models. You should
also remember that some tasks can best be done with pencil and paper, while others require
the use of some sort of computational technology. Good judgment is often needed in selecting
an effective combination.

Historical Background, Part lll: Recent and Ongoing Advances. The numerous
differential equations that resisted solution by analytical means led to the investigation of
methods of numerical approximation (see Chapter 8). By 1900 fairly effective numerical
integration methods had been devised, but their implementation was severely resiricted by the
need to execute the computations by hand or with very primitive computing equipment. Since
World War II the development of increasingly powerful and versatile computers has vastly
enlarged the range of problems that can be investigated effectively by numerical methods.
Extremely refined and robust numerical integrators were developed during the same period and
now are readily available, even on smartphones and other mobile devices. These technological
advances have brought the ability to solve a great many significant problems within the reach
of individual sdents.

Another charactenstic of modern differential equations is the creation of geometric or
topological methods, especially for nonlinear equations. The goal is to understand at least the
qualitative behavior of solutions from a geometrical, as well as from an analytical, point of
view. If more detailed information is needed, it can usoally be obtained by using numerical
approximations. An introduction to geometric methods appears in Chapter 9. We conclude
this brief historical review with two examples that illustrate how computational and real-world
experiences have motivated important analytical and theoretical discoveries.

In 1834 John Scott Russell (15808-1882), a Scottish civil engineer, was conducting
experiments to determine the most efficient design for canal boats when he noticed that
“when the boat suddenly stopped” the water being pushed by the boat “accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it [the boat]
behind, [the water] rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water."® Many mathematicians did
not believe that the solitary traveling waves reported by Russell existed. These objections
were silenced when the doctoral dissertation of Dutch mathematician Gustav de Vries
(1866=1934) included a nonlinear partial differential equation model for water waves in a
shallow canal. Today these eguations are known as the Korteweg-de Vries (KdV) equations.
Diedenk Johannes Korteweg (1848-1941) was de Vries's thesis advisor. Unknown to either
Korteweg or de Vries, their Korteweg-de Vries model appeared as a footnote ten years
earlier in French mathematician Joseph Valentin Boussinesqg's (1842~ 1929} 680-page treatise
Essai sur la théorie des eaux couwrantes. The work of Boussinesq and of Korteweg and
deVries remained largely unnoticed until two Americans, physicist Norman J. Zabusky
(1929-) and mathematician Martin David Kruskal {1925-2006), used computer simulations
to discover, in 1965, that all solutions of the KdV equations eventually consist of a finite
set of localized traveling waves. Today, nearly 200 years after Russell’s observations and 50
years after the computational experiments of Zabusky and Kruskal. the study of “solitons™
remains an active area of differential equations research. Other early contributors to nonlinear
wave propagation include David Hilbert {German, 1862-1943), Richard Courant {German-
American, 1888-1972), and John von Neumann (Hungaran-American, 1903-1957); we will
encounter some of these ideas again in Chapter 9.

Computational results were also an essential element in the discovery of “chaos theory.”
In 1961, Edward Lorenz (1917-2008), an American mathematician and meteorologist at the
Massachusetts Institute of Technology, was developing weather prediction models when he
observed different results upon restarting a simulation in the middle of the time period using

Science, 1B45, pp. 311-390, plus plates 47-57. hitpeffoww macs hw ac ok ~chris/Scoti-Russell/SR44. pdf.
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Problems

In each of Problems | through 4, determine the order of the given
differential equation; also state whether the equation is linear or

previously computed results. (Lorenz restarted the computation with three-digit approximate
solutions, not the six-digit approximations that were stored in the computer.) In 1976 the
Australian mathematician Sir Robert M. May (1938-) introduced and analyzed the logistic
map, showing that there are special values of the problem’s parameter where the solutions
undergo drastic changes. The common trait that small changes in the problem produce large
changes in the solution is one of the defining charactenstics of chaos. May's logistic map is
discussed in more detail in Section 2.9. Other classical examples of what we now recognize as
“chaos" include the work by French mathematician Henri Poincaré (1854-1912) on planetary
motion and the studies of turbulent fluid flow by Soviet mathematician Andrey Nikolaevich
Kolmogorov (1903-1987), American mathematician Mitchell Feigenbaum (1944-), and
many others. In addition to these and other classical examples of chaos, new examples continue
to be found.

Solitons and chaos are just two of many examples where computers, and especially
computer graphics, have given a new impetus to the study of systems of nonlinear differential
equations. Other unexpected phenomena (Section 9.8), such as strange attractors (David
Ruelle, Belgium, 1935-) and fractals (Benoit Mandelbrot, Poland, 1924-2010), have been
discovered, are being intensively studied, and are leading to important new insights mn a
variety of applications. Although it is an old subject about which much is known, the study
of differential equations in the twenty-first century remains a fertile source of fascinating and
important unsolved problems.

In each of Problems 16 through 18, determine the order of the given
partial differential equation; also state whether the equation is linear
or nonlinear. Partial derivatives are denoted by subscripis.

16. w, +u,, + w; =10

1?' “'II.H'AI {'Eul.'i.l.'l +u'|_'|"|lu =n

18. a4 uuy = | 4 wy,

In each of Problems 19 through 21, verify that each given function is
a solution of the given partial differential equation.

iyl x. v) = cos xcosh y,

uxx, ¥) = In{x? 4+ %)

milinear,
- '
1. .rz—}+l'—+11 = gin |
[ 1
; dv
T R ol il N
3. Ty by &yody
Codrt +a’:3 T T trs 19, we +uy,, =0
i dy f .
. dr1+mnr+”_mm

In each of Problems 5 through 10, verify that each given function is a
solution of the differential equation.

' —y=0 wit)=¢. pit)=coshs

6. y"4+27 -3y=0; n(n) =, pnuin=~¢

7 ¥ =3 + 1t

B. y"+4y"+Iy=1; n() =t/3 wii)=e"+1t/3
0

Y 45 44y =0, 1> 0

i
Iy —-y=1

i) =172, wit) =1 In¢

I
0. y¥=2iy=1; y= e f e ds 4 e
o

In each of Problems |1 through |3, determine the values of r for which
the given differential equation has solutions of the form y = .

1. ¥ +2y=0

12, y" 4y =6yr=0

13. ¥ =3y"4+2y' =0

In each of Problems 4 and 15, determine the values of r for which the
given differential equation has solutions of the form v = # fors > 0.
14, A" +4tv' +2y =0

15. A" —4v +4v =10

1 B
. o uye=ur; wylx.f) =e ™ "sinr.

wx f) = e TginAx. A areal constant

21. atu,, = m,:  wplx. ) = sinf Ax) sin Aar),
ualx f) = sin{x —at), A areal constant

221. Follow the steps indicated here 1o derive the equation of motion
of a pendulum, equation (12) in the text. Assume that the rod is rigid
and weightless, that the mass 15 a point mass, and that there is no
friction or drag anywhere in the system.
a. Assume that the mass is in an arbitrary displaced position,
indicated by the angle #. Draw a free-body diagram showing the
forces acting on the mass.
b. Apply Newton's law of motion in the direction tangential 1o
the circular arc on which the mass moves. Then the tensile force
in the rod does not enter the equation. Observe that you need 1o
find the component of the gravitational force in the angential
direction. Observe also that the linear acceleration, as opposed (o
the angular acceleration, is Ld™8 /dr”, where L is the length of
the rod.
c. Simplify the result from part b to oblain equation (12) in the
XL



23,  Another way o derive the pendulum equation (12) is based on
the principle of conservation of energy.
d. Show that the kinetic energy T of the pendulum in motion is

T=lmf_l E .
2 '

b. Show that the potential energy V of the pendulum, relative to
118 rest position, is

V=mgl{l —cosd).

c. By the principle of conservation of energy. the total energy
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24. A third derivation of the pendulum equation depends on the
principle of angular momentum: The rate of change of angular
momentum about any point 15 equal to the net external moment about
the same poinl.
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b. Set dM/dr equal to the moment of the gravitational force,

and show that the resulting equation reduces 1o equation (12).

Note that positive moments are counterclockwise.

A useful historical appendix on the early development of

differential equations appears in

Ince, E. L., Ordinary Differential Equations (London: Longmans,
Green, 1927; New York: Dover. 1956).

Encyclopedic sources of information about the lives and

achievements of mathematicians of the past are

Gillespie, C. C.. ed., Dictionary of Scientific Biography (15 vols.)
{New York: Scribner’s, 1971).

Koertge, N, ed.. New Dictionary of Scientific Biography (8 vols.)
(New York: Scribner’s, 2007).

Koertge, N, ed., Complete Dictionary of Scientific Biography
(New York: Scribner’s, 2007 [e-book]).

Much historical information can be found on the Internet. One

excellent site is the MacTutor History of Mathematics archive

hitp:/fwww-history. mes.st-and.ac.uk/history/
created by O'Connor, J. J.. and Robertson, E. F., Department

of Mathematics and Statistics, University of 5t Andrews,
Scotland.



CHAPTER 2
S,

First-Order Differential
Equations

This chapter deals with differential equations of first order

j%;ftt.—:r}- (n
where f is a given function of two vanables. Any differentiable function y = &(¢) that
satisfies this equation for all ¢ in some interval is called a solution, and our objective is
to determine whether such functions exist and, if so, to develop methods for finding them.
Unfortunately, for an arbitrary function f, there is no general method for solving the equation
in terms of elementary functions. Instead, we will describe several methods, each of which is
applicable to a certain subclass of first-order equations.

The most important of these are linear equations (Section 2.1), separable equations
(Section 2.2), and exact equations (Section 2.6). Other sections of this chapter describe
some of the important applications of first-order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical gquestions
related to the existence and uniqueness of solutions. The final section includes an example of
chaotic solutions in the context of first-order difference equations, which have some important

points of similarity with differential equations and are simpler to investigate.

21 | inear Differential Equations; Method
of Integrating Factors

If the function f in equation (1) depends linearly on the dependent variable v, then equation (1)
15 a first-order linear differential equation. In Sections 1.1 and 1.2 we discussed a restricted
type of first-order linear differential equation in which the coefficients are constants. A typical
example is

dy :

o =l + b, (21
where a and b are given constants. Recall that an equation of this form describes the motion
of an object falling in the atmosphere.

MNow we want to consider the most general first-order linear differential equation, which

15 obtained by replacing the coefficients a and b in equation (2) by arbitrary functions of 1. We
will usually write the general first-order linear differential equation in the standard form

iy

E”' +piny = g(n). @

where p and g are given functions of the independent variable /. Sometimes it is more
convenient to write the equation in the form

dl
P{r}d—':+Q{.']|_1:=GU}, )

where P, 0, and & are given. Of course, as long as P(r) # 0. you can convert equation (4)
to equation (3} by dividing both sides of equation (4) by P(¢).
In some cases it is possible to solve a first-order linear differential equation immediately

by integrating the equation, as in the next example.
24
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EXAMPLE 1

Solve the differential equation

d g
(44 xl}d—: + 2ty = 4r. (5)

Solution:

The left-hand side of equation (5) is a linear combination of dy /dt and v, a combination that alse
appears in the rule from calculus for differentiating a produect. In fact,

dy d
4417 — + v = — ({4 +)¥);
(44— 421 dr{{+ )¥)
il follows that equation (5) can be rewntien as
d 3
—((4+ )y} =41, (6)
= v)

Thus, even though v is unknown, we can integrate both sides of equation (6) with respect to ¢, thereby
oblaining
(44 )y =274 ¢, (7)
where ¢ is an arbitrary constant of integration. Solving for v, we find that
: 2? r
Y= 3+ +4+I1'

(&)

This is the general solution of equation (5).

Unfortunately, most first-order linear differential equations cannot be solved as illustrated
in Example | because their left-hand sides are not the derivative of the product of y and some
other function. However, Leibniz discovered that if the differential equation is multiplied by
a certain function j(r), then the equation is converted into one that is immediately integrable
by using the product rule for derivatives, just as in Example 1. The function (1) is called an
integrating factor and our main task in this section is to determine how to find it for a given
equation. We will show how this method works first for an example and then for the general
first-order linear differential equation in the standard form (3).

EXAMPLE 2

Find the general solution of the differential equation

dy | |

4y =3, 9)
dr 20 2 l
Draw some representative integral curves; that is, plot solutions corresponding to several values of
the arbitrary constant . Also find the particular solution whose graph comtains the point (0. 1).
Solution:
The first step is to multiply equation (9) by a function gp( ). as yet undetermined; thus

dy 1 l M
#{Hd—': +3p(ny = su(ne’. (10}

The question now 15 whether we can choose p(f) so that the lefi-hand side of equation (10) is the
derivative of the product jo(#) v. For any differentiable function uir) we have

dplt)
't

Thus the lefi-hand side of equation (10) and the nght-hand side of equation (11) are identical.
provided that we chooase u{ ) (o satisfy

d Hv) = r}d'\‘ ; 11
E{JI[ hy) = pi E+ ¥. (1)

du(t) |
T Splt). (1)
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26 CHAPTER 2 First-Order Differential Equations

A 4 Our search for an integrating factor will be successiul if we can find a solution of equation (12).
Perhaps you can readily identify a function that satisfies equation (12): What well-known function
from calculus has a derivative that is equal to one-hall times the onginal function? More
systematically, rewrite equation {12) as

I duir) B |
ity a2
which is equivalent o
d 1
—In = —, 13
—lnju(n)] = 3 (13)
Then it follows that
1
Injuit)| = EJ‘ + C,
or

iy = pe'l?, (14)
The functon () given by equation (14) 15 an mtegrating factor for equation (9). Since we do
not need the most general integrating factor, we will choose ¢ o be 1 in equation (14) and use
() =2
Now we return 1o equation (9), multiply it by the integrating factor «'/ %, and oblain
¥ I it/ 1 St
St e  fieds
ar 2 TR
By the choice we have made of the integrating factor, the left-hand side of eguation (15) is the
derivative of &'/ y, o that equation (15) becomes
d

(15)

—[e‘ y) = e5’-"‘*. (16)
By integrating both sides of equation (16), we obtain
in 3 §
o = Eei" L S (17

where ¢ is an arbitrary constant. Finally. on solving equation (17) for v, we have the general solution
of equation (9), namely,

3, :
y= Ee’-'s + ce™2, (18)

To find the solution passing through the point (0, 1), we set ¢+ = 0 and ¥ = 1 in equation (18),
obtaining 1 = 3/5 4 c. Thus c = 2/5, and the desired solution is
C, 2
y= _g'ld 4 —g2, 19
3 5 (19)
Figure 2.1.1 includes the graphs of equation (18) for several values of ¢ with a direction field
in the background. The solution satsfying v(0) = 1 s shown by the green curve.
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Direction field and integral curves of v' + %_v = %e’j: the
green curve passes through the point (0, 1).
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Let us now extend the method of integrating factors to equations of the form
D ay=g(n) @)
— 4 ay = "
pr Y} =8

where a is a given constant and g( 1) 1s a given function. Proceeding as in Example 2, we find

that the integrating factor j{ ) must satisfy
dyi
= 21
R o (21

rather than equation (12). Thus the integrating factor is u (1) = ™. Multiplying equation {20}
by i(#). we obtain

dv
E‘"ﬁ +ae™ vy =" g(1).
or
2 (ey) = e"g(n). 22)
dit ™ °
By integrating both sides of equation (22), we find that

ey = f-e"‘g{.*} dr + c. (23)

where ¢ is an arbitrary constant. For many simple functions g{7), we can evaluate the integral
in equation (23) and express the solution y in terms of elementary functions, as in Example 2.
However, for more complicated functions g(r), it is necessary to leave the solution in integral
form. In this case

d
¥ :f‘“’f e p(s) ds +ce™™. 24)
iy

Note that in equation {24) we have used s to denote the integration variable to distinguish it
from the independent vanable ¢, and we have chosen some convenient value 7 as the lower
limit of integration. (See Theorem 2.4.1.) The choice of 1, determines the specific value of the
constant ¢ but does not change the solution. For example, plugging r = 1y into the solution
formula (24) shows that ¢ = v( 1) ™.

EXAMPLE 3

Find the general solution of the differential equation

d’.
ﬁ—ir:#—r (25

and plot the graphs of several solutions. Discuss the behavior of solutions as r = o0,

Solution:

Equation (25) is of the form (20) with @ = =2: therefore, the integrating factor is p(f) = it
Multiplying the differential equation {25) by (1), we obtain

_lrj% . —lr:r =4E—!r = “_—lr‘
or
d = -%
EE: }'} =4 =", (26

Then, by integrating both sides of this equation, we have

2 1 1
-2 _ - E”—zr & EE_—L B

where we have used integration by parts on the last term in equation (26). Thus the general solution
of equatian (25) is
T

g ey S 2
¥y = 4+lf+r.e : 27

T
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L J Figure 2.1.2 shows the direction [eld and graphs of the solution (27) for several values of c. The
behavior of the solution for large values of 1 13 determined by the term ce” . I ¢ # 0, then the solution
grows exponentially large in magnitude, with the same sign as ¢ itself. Thos the solutions diverge
as I becomes large. The boundary between solutions that ulimately grow positively and those that
ultimately grow negatively occurs when o = (1. If we substitute ¢ = 0 into equation (27) and then set
t = (1 we find that ¥y = =7/4 is the separation point on the y-axis. Note that for this initial value,

7 1
the solution 18 ¥y = —— <4 —I il grows positively, but linearly rather than exponentially.

4 2
. 0.5 1 15 2
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Direction field and integral curves of ' = 2y =4 — .

MNow we return to the general first-order linear differential equation (3)

dy

i + pit)y = gl1),

where p and g are given functions. To determine an appropriate integrating factor, we multiply
equation (3) by an as yet undetermined function p(r), obtaining

dy
,u{-'ilﬁ+p{-','l'.ul[r‘1y=;1{”3{1‘}. (28)

Following the same line of development as in Example 2, we see that the left-hand side of
equation {28) is the denivative of the product p:(7) v, provided that j( r) satisfies the equation
d (1)
';,‘, = plryu(r). (29)
If we assume temporarily that ji(r) is positive, then we have

1 duir
pit) T

plr) dt

and consequently

In|p(r)] = fp{.r}d.*—lr.i:_

By choosing the arbitrary constant & to be zero, we obtain the simplest possible function for
fi, namely,

e =E;xpfp{i'} dr. (30)

Note that (1) is positive for all 1, as we assumed. Returning to equation (28), we have
d
= 1)yl = i i). 31
dei{ hyvh = plt)glt) (31)

Hence

plt)y = /,u{!}g(r} di + ¢, (32)
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where ¢ is an arbitrary constant. Sometimes the integral in equation (32) can be evaluated in
terms of elementary functions. However, in general this is not possible, so the general solution

of equation (3) is
I i
}-:m(j:”p{s}g{s}dj-!-r), (33

where again f; is some convenient lower limit of integration. Observe that equation {33)
involves two integrations, one to obtain p(¢) from equation (30)) and the other to determine y
from equation {33).

EXAMPLE 4

Solve the initial value problem
1y + 2y = 41, (34)
¥(1) = 2. (35)

Solution:
In order to determine p(t) and g{1) comrectly, we must first rewrite equation (34) mn the standard
form (3). Thus we have
2
¥ o=y =4 (36)
f

so p(t) =2/t and g(¢) = 4. To solve equation (36), we first compute the integrating factor u(f):

"
i 1) =exp(ffdr) = okl — g2

Om multiplying equation (36) by u(r) = r*, we obtain

Py 4 2ty = (1fy) = 47,
and therefore

ty =f4¢3dl =rt4c,

where ¢ is an arbitrary constant. It follows that, for ¢ = 0,
y =14 i‘ 37
r_
15 the general solution of equation (34). Integral curves of equation (34) for several values of ¢ are
shown in Figure 2.1.3.
To satisfy imtial condition (35), sett = | and v = 2 in equation (37): 2 = 1 4 ¢, so ¢ = |; thus
1

3t

P

y =i <+ # >0 (38)

t
is the solution of the nitial value problem (24), (25). This solution is shown by the green curve in
Figure 2.1.3. Note that it becomes unbounded and is asymptotic to the positive y-axis as ¢ — 0
from the right. This is the effect of the infinite discontinuity in the coefficient pit) at the origin. It
15 important to note that while the function y = 4 1,-‘:2 for ¢ < 0is part of the general solution of
equation (34}, it is not part of the solution of this initial value problem.

This is the first example in which the solution fails to exist for some values of 1. Again, this
5 due to the infinite discontinuity in p(t) at ¢ = 0, which resiricis the solution to the interval
0< ¢t < oo

Looking again at Figure 2.1.3, we see that some solutions (those for which e > ) are asympiotic
to the positive y-axis as f —= [ from the rght, while other solutions (Tor which c < () are asymplotic
to the negative y-axis. If we generalize the initial condition (35) to

v 1) = g, (39)
then © = v, = | and the solution (38) becomes

a =1

y=1+4— t =0 4
[

Mole that when vy = 1, s0 ¢ = 0, the solution is v = 1%, which remains bounded and differentiable
even at f = (. (This is the red curve in Figure 2.1.3.)

29
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¥ Asin Example 3. this is another instance where there is a critical initial value, namely, vy = 1. that

separates solutions that behave i one way from others that behave quite differently.

=] =

m Integral curves of the differential equation ty' + 2y = 47,
the green curve is the particular solution with (1) = 2. The red corve is the
particular solution with y(1) = 1.

EXAMPLES

Solve the imtial value problem
2y -ty = 2, (41)
W) = 1. 42

Solution:

To convert the differential equation (41) 1o the sundard form (3), we must divide equation (41) by
2. oblmining

b
2
Thus p(r) = /2. and the integrating factor is () = exp(r*/4). Then multiply equation (43) by
gl 1), so that

Yy +-y=L (43)

EIE.-'.J-JI:' + %Eil'-‘-}r —_ i.ﬁz.'.li_ {44:'

The lefi-hand side of equation (44) is the dervative of r‘z""'_r, s0 by integrating both sides of
equation (44). we obtain

£ty = f & 4o, (45)

The integral on the right-hand side of equation (45) cannot be evaluated in terms of the vsoal
elementary functions, sowe leave the integral unevaluated. By choosing the lower limit of integration
as the initial point 1 = 0, we can replace equation (45) by

I
&y = f & s e, (46)
i
where ¢ is an arbitrary constant. It then follows that the general solution v of equation (41) 15 given by
F
y= e_’_"'tf RELP T + L) 47
]

To determing the particular solution that satisfies the imtial condition (42), set f = 0and v = | in
equation (47):

a
5
| = e""'/ e iy 4 o
(1]

= 0%

a0 e = L.
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The main purpose of this example is to illustrate that sometimes the solution must be left in terms
of anintegral. This 15 usually at most a slight inconvenience, rather than a serious obstacle. Fora given
value of 1. the integral in equation (47) 18 a definite integral and can be approximated to any desired
degree of accuracy by using readily available numerical integrators. By repeating this process for
many values of ¢ and plotting the results, you can obtain a graph of a solution. Altermatively, you can
use a numerncal approximation method, such as those discussed in Chapter 8. that proceed directly
from the differential equation and need no expression for the solution. Software packages such as
Maple, Mathematica, MATLAB and Sage readily execute such procedures and produce graphs of

salutions of differential equations.

Figure 2.1 4 displays graphs of the solution (47) for several values of . The particular solution
satisfying the initial condition v(0) = 1 is shown in black. From the figure it may be plausible o
conjecture that all solutions approach a limit as r —= o0, The limit can also be found analytically {see

Problem 22).

Integral curves of 2y 4 ry = 2; the green curve is the particular

solution satisfying the mital condition v(0) = L.

Problems

In each of Problems | through 8:

8.

e B LB S

B a. Draw a direction field for the given differential equation.
b. Based on an inspection of the direction field, describe how
solutions behave for large 1.

€. Find the general solution of the given differential equation,
and uvse it o determine how solutions behave as ¢ —» oo,
Vady=r4e™

Vo= 2y =Y

Y4y=te"+1
1
¥ + N Jeos(2r), >0

¥=2y=13
=t >0
v 4 y = Ssin{2t)

2y 4 y =3

Iy —y=t

In each of Problems 9 through 12, find the solution of the given initial
value problem.

9.
10.

11.
12.

Y =y =2 y(0) =1

Yy 42y = e w(1)=0

o CoOs
}'+r—_\‘= it

¥y =10, r>10Q

v +{t+Ny=t D=1 >0

In each of Problems 13 and 14

13.
14.

@ a. Draw a direction field for the given differential equation.
How do solutions appear to behave as ¢ becomes large? Does the
behavior depend on the choice of the initial value a? Let ay be
the value of a for which the transition from one type of behavior
o another occurs. Estimate the value of ap,.

b. Solve the initial value problem and find the critical value ap
exactly.

€. Describe the behavior of the solution comesponding to the
initial value ag.

P

|
y - E}*:Etﬂﬁf, yvill} = a

3y =2y = g ™/2

vil) =a
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In each of Problems 15 and 16:
a. Draw a direction field for the given differential equation.
How do solutions appear to behave as ¢ — 07 Does the behavior
depend on the choice of the initial valoe a? Let ag be the crtical
value of a. that is, the initial value such that the solutions for
a < ay and the solutions for a > ap have different behaviors as
t =+ oo, Estimate the value of ap.
b. Solve the initial value problem and find the critical value a,
exactly.
€. Describe the behavior of the solution corresponding to the
initial value ag.
15. o' 4 (1 4 )y =21e",
16, (sinf)y' +{cost)y=¢", y(ly=a, OD<t<w
@ 17. Consider the initial value problem

(1} =a, ¢t >0

1
! -y =2 il
_\-I:-lg. i

Find the coordinates of the first local maximum point of the solution
forr = 0.

D 18. Consider the initial value problem

goca :
YaTy=l-50 50 =

y{) = =1.

Find the value of vy for which the solution touches, but does nol cross.
the [-axis.

19, Consider the initial value problem

o

¥ o+ ‘?1.' =34 2cos( 2y, () =10.
a. Find the solution of this imitial value problem and describe its
behavior for large 1.
O b. Determine the value of ¢ for which the solution first
intersects the line v = 12,

20. Find the value of v, for which the solution of the initial value

problem

yo=y=143snr, ¥(0) =
remains finie a5 f == oo,
21. Consider the initial value problem
3
y - E_\- =% +2. D) = w.

Find the value of vy that separates solutions that grow positively as
t == o0 from those that grow negatively. How does the solution that
corresponds 1o this critical value of vy behave as ¢ — 007

22, Show that all solutions of 2v" 4 ty = 2 [equation (41) of the
text] approach a limit as ¢ — o0, and find the Limiting valoe.

Hint: Consider the general sodution, equation (47). Show that the first

term in the solution (47) is indeterminate with form 0 - o0, Then, use
I"Hipital's rule to compute the limit as f = oo.

23. Show that if a and A are positive constants, and b is any real
number, then every solution of the equation

¥ +dy = be M

has the property that v — 0 as f — oo

Hine: Consider the cases a = A and a £ A separately.

In each of Problems 24 through 27, construct a fhirst-order linear
differential equation whose solutions have the required behavior as
i = o0, Then solve your equation and confirm that the solutions do
indeed have the specified property.

24. Al solutions have the limit 3 as r — oo,

25, All solutions are asymplotic to the line vy =3 = a5 1 — oo,
26.  All solutions are asympiotic 1o the line v = 2t = Sast — oo
27.  All solutions approach the curve v = 4 = 1% as 1 — o,

28. Variation of Parameters. Consider the following method of
solving the general inear equation of first order:

¥+ p(r)y = g(r). (48)

a. If g(t) = 0 for all ¢, show that the solution is

}--_—Ae-:;:r(—fpu:ld:), 49)

where A is a constanl.
b. If git) is not everywhere zero, assume that the solution of
equation (48) is of the form

y = Ai_:}txp(—/p{f}d.r), (50

where A is now a function of t. By substituting for v in the given
differential equation. show that A(#) must satisfy the condition

A'(N -_-_g{r]e':l.p(fp{ndr)- (51)

€. Find A(t) from equation (31). Then substitute for A(t) in
equation (50) and determine v. Verify that the solution obtained
in this manner agrees with that of equation (33) in the text. This
lechnique 18 known as the method of variation of parameters;
il is discussed in detail in Section 3.6 in connection with secand-
order linear equations.

In each of Problems 29 and 30, use the method of Problem 28 o solve

the given differential equation.

29. ' =2y =l

|
M. v+ T cos(2t), >0



22 Separable Differential Equations

In Section 1.2 we used a process of direct integration to solve first-order linear differential
equations of the form

j—': =ay +b, (1)
where a and b are constants. We will now show that this process 15 actually applicable to a
much larger class of nonlinear differential equations.

We will use x, rather than ¢, to denote the independent variable in this section for two
reasons. In the first place, different letters are frequently used for the variables in a differential
equation, and you should not become too accustomed to using a single pair. In particular, x
often occurs as the independent vanable. Further, we want to reserve r for another purpose
later in the section.

The general first-order differential equation is

dy
E = f{x,¥y). (2)

Linear differential equations were considered in the preceding section, but if equation (2} is
nonlinear, then there is no universally applicable method for solving the equation. Here, we

consider a subclass of first-order equations that can be solved by direct integration.
To identify this class of equations, we first rewrite equation (2) in the form

dy
M(x,v)+Nx,y)— =0 (3]
dx

It is always possible to do this by setting Mi{x, ¥y) = —f(x, ¥) and N{x, v) = L, but there
may be other ways as well. When M is a function of x only and V is a function of y only, then
equation (3) becomes

dy
M(x)+ N(y)—=0. i4)
dx
Such an equation is said to be separable, because if it is written in the differential form
M(x)dx +N(y)dy =0, (5)

then, if you wish, terms involving each vanable may be placed on opposite sides of the
equation. The differential form (5) is also more symmetric and tends to suppress the distinction
between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We illustrate
the process by an example and then discuss it in general for equation (4).

EXAMPLE 1

Show that the equation

it (6)
is separable. and then find an equation for its integral curves.

Solution:

Il we wrile equation (6) as
) 2, dy
—x" 4 (1l =) — =0, (7
dx

then it has the form (4) and is therefore separable. Recall from calculus that if v is a function of x,
then by the chain rule,

dy

dx’

o o dy ,
Eﬂ.\'l = d_y'“ﬂ e Fiy)

2.2 Separable Differential Eguations
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Y Forexample, if f(y) = v — ' /3, then

o ¥ i 5 d¥
oy (LA e Eel e

Thus the second term in equation (7) is the derivative with respect to x of ¥ = v'/3, and the first
term is the derivative of —x* /3. Thus equation (7) can be wrillen as

df Y df ¥\_,
e oyl St el Bt

Therefore, by integrating (and multiplying the result by 3), we oblain
—x 43y -yi=e (8)

where ¢ 15 an arbitrary constant.

Equation (8) is an equation for the integral curves of equation (6). A direction field and
several integral curves are shown in Figure 2.2.1. Any difféerentiable function v = &(x) that
satisfies equation (B) 18 a solution of equation (6). An equation of the integral curve passing through
a particular point (xp, vo) can be found by substituting x; and vy for x and v, respectively, in
equation () and determining the corresponding value of c.

¥

- e T | e T L Y
T P . e e o e e —— T, Ty T R MW
" e T Tl
b T
I ;A T
X X G T
LA l\\
1| ||
| | i | |
| 41
4 ‘[ '[4:
| | [ |
[ 4 I |
by Ve W
§ & , O
LI % 4
, T BN N
NN A
b T
ey

Direction field and integral curves of v = /(1 = v).

Essentially the same procedure can be followed for any separable equation. Returning to
equation (4), let H, and H- be any antidenivatives of M and N, respectively. Thus

Hi(x) = M(x), Hj(y) = N(y). ()
and equation (4) becomes
+ P d}'
Hi(x) + Hx(y)— =0. (10
dx
If v is regarded as a function of x, then according to the chain rule,
B L= ey o=y 1
lt"}d.r_d}' 20 dy  dx 2(¥)- un

Consequently, we can write equation (10) as

d
H{Hlm + Ha(y)) = 0. (12)



By integrating equation (12} with respect to x. we obtain
Hi(x) + Ha(y) = ¢, (13)

where ¢ 1s an arbitrary constant. Any differentiable function v = ¢&(x) that satisfies
equation (13) is a solution of equation (4): in other words, equation (13) defines the solution
implicitly rather than explicitly. In practice, equation (13) is usually obtained from equation (5)
by integrating the first term with respect to x and the second term with respect to y. The
Jusiification for this is the argument that we have just given.

The differential equation (4), together with an initial condition

¥ixg) = Yo. (14)
forms an initial value problem. To solve this initial value problem, we must determine the

appropriate value for the constant ¢ in equation {13). We do this by setting x = xgand v = wy
in equation {13} with the result that

¢ = Hy(x) + Hal yo). (15)
Substituting this value of ¢ in equation (13} and noting that

Hy(x) — Hy(xo) =f M(s)ds, Ha(y) — Ha(¥o) =f N(s)ds,

we obtain

f M[s}dj-l-f Nis)yds = 0. (16)

Equation (16} is an implicit representation of the solution of the differential equation (4) that
also satisfies the initial condition (14). Bear in mind that to determine an explicit formula for
the solution, you need to solve equation ( 16) for v as a function of x. Unfortunately, it is often
impossible to do this analytically: in such cases you can resort to numerical methods to find
approximate values of y for given values of x.

EXAMPLE 2

Solve the initial value problem

dy Iyl 4 42

E = Hy=1) .""{u] = =], {ITJ

and determmne the interval in which the solution exisis,

Solution:
The differential equation can be wrillen as
2y~ Ddy = (32" + 4x + Ddx.
Integrating the lefi-hand side with respect to v and the right-hand side with respect o x gives
W=y =3 4+ 20  + 2x e, (18)

where ¢ 12 an arbitrary constant. To determine the solution satisfying the prescribed imtial condition,
we substitute x = Dand vy = =1 in equation (18), obtaining ¢ = 3. Hence the solution of the initial
value problem 15 given implicitly by

y =2y =x 4 2x? 4+ 2xr 4 3. (19)

To obtain the solution explicitly. we must solve equation (19) for v in terms of x. That is a simple
muatter in this case, since equation (19) is quadratic in v, and we obtain

y=14 /0 +2x2 4+ 2r + 4. (20

Equation (20) gives two solutions of the differential equation, only one of which, however, satisfies
the given initial condition. This is the solution cormesponding o the minus sign in equation (20). so
we fnally obtan

y=g(x) =1— /27 + 202 4+ 2x 4+ 4 (21)

2.2 Separable Differential Eguations
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W as the solution of the initial value problem (15). Note that if we choose the plus sign by mistake in

equation (20), then we obtain the solution of the same differential equation that satisfies the initial
condition v(0) = 3. Finally. to determine the interval in which the solution (21) 15 valid, we must find
the interval in which the quantity under the radical is positive. The only real zero of this expression
i5 x = =2 s0 the desired interval is x > —2. Some integral curves of the differential equation are
shown in Figure 222, The green curve passes through the point (0, —=1) and thus is the solution of
the mitial value problem (15). Observe that the boundary of the interval of validity of the solution
(21} is determined by the point (=2, 1) at which the tangent line is vertical.

(‘i”\ (
N\

m Integral curves of ¥ = (3x% 4 4x +2)/ (v — 1) the solution
satisfying v(0) = = 1 is shown in green and is valid for x > = 2.

EXAMPLE 3

Solve the separable differential equation

dy 4r —1°

s B

dx 4-|:-_1|r':I

(22)

and draw graphs of several integral curves. Also find the solution passing through the point (0, 1)
and determine its interval of validity.

Solution:
Rewriting equation {22) as
(4 + ¥ )dy = (4x = xN)dx,
integrating each side. multiplying by 4. and rearranging the terms, we obtain
416y +at — Bt = (23)

where ¢ 18 an arbitrary constant. Any differentiable function y = ¢ (x) that satishes equation (23) 18
a solution of the differential equation (22). Graphs of equation (23) for several values of ¢ are shown
in Figure 2.2 3.

To find the particular solution passing through (0. 1), we set x = 0 and v = | in equation (23)
with the result that ¢ = 17. Thus the solution in question is given implicitly by

¥ 4 16y + 2 -8t =17 (24)

It is shown by the green curve in Figure 2.2.3. The interval of validity of this solution extends on
either side of the initial point as long as the function remains differentiable. From the figure we see
that the interval ends when we reach points where the tangent line is vertical. It follows from the
differential equation (22) that these are points where 4 4 v* = 0,or y = (=4)'/? = —1 5874 From
equation (24) the corresponding values of x are x = 43 3488, These points are marked on the graph
in Figure 2.2.3.



m Integral curves of ' = (4x —x%) /(44 y"). The solution passing
through (0. 1) is shown by the green curve.

Note I: Sometimes a differential equation of the form {2):

dy .
E—I{LH

has a constant solution ¥ = ¥y Such a solution is usually easy to find because if f{x, v,) =0
for some value v, and for all x, then the constant function ¥ = v is a solution of the ditfferential
equation (2). For example, the equation

dy k= J)cosx

dr 1427
has the constant solution ¥y = 3. Other solutions of this equation can be found by separating
the variables and integrating.

Note 2: The investigation of a first-order nonlinear differential equation can sometimes
be facilitated by regarding both x and y as functions of a third variable r. Then

(25)

dy dy/d
dy _ dyfdt (26)
dx dx/dr

If the differential equation is
dy  Fix,y
e O @)
dx  Gl(x.v)

then, by comparing numerators and denominators in equations (26) and (27), we obtain the
system
dx dy

sy =0{x,y), E = Fix, y)- 28)

At first sight it may seem unlikely that a problem will be simplified by replacing a single
equation by a pair of equations, but in fact, the system (28) may well be more amenable to
investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems of the
form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for v as a function of x.
However, this situation is exceptional, and often it will be better to leave the solution in
implicit form, as in Examples | and 3. Thus, in the problems below and in other sections
where nonlinear equations appear, the words “solve the following differential equation™ mean
to find the solution explicitly if it is convenient to do so, but otherwise to find an equation
defining the solution implicitly.

2.2 Separable Differential Equations
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Problems

In each of Problems | through 8, solve the given differential equation.
)
1. '!-'r = L
v
2. ¥4+ yisinx =0
J ¥ = cﬂﬁl{.r} cos’( 2y)

4 xv'=(1-= I'|.‘l]-1"'2

- d¥ T
5 —— =
ax ¥ == &3
g Yo ¥
dx 1 4 42
v ¥
7. — ==
ox x
g 2=
dx ¥

In each of Problems 9 through 16:
a. Find the solution of the given initial value problem in explicit
form.
b. Plot the graph of the solution.
c. Determine (at least approximately) the interval in which the
solution is defined.

9 yvV={(1- lr]-}'l, vi0) = =1/6
0. v =(l=2x)/v, w(l)==2
11, xdx+yetdy=0, y(0)=1
12. drjdf =r2/8, ril) =2
13. ¥=xv'(1 4+ w0 =1
4. y¥=2x/(14+2y), ¥(2)=0

15, y'=(3x-e")/(2y-5), »(0) =1

16. sin{2x)dx +eos{3y)dy =0, y(z/2)==/3

Some of the results requested in Problems 17 through 22 can be
obtained either by solving the given equations analyvtically or by
plotting numerically generated approximations (o the solutions. Try
to form an opinion about the advantages and disadvantages of each
approach.

0 17. Solve the initial value problem

14+ 3z2

= — =1
3y? — by Ho

I.L-

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

© 18. Solve the initial value problem

-

. 3x-

¥ = 3
R T

vily =0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the
integral curve has a vertical tangent.

O 19.

Solve the initial value problem

Y¥=2" 41", w0)=1

and determine where the solution altadns its minimuoam valoe.
B 20. Solve the initial value problem
=g

342y

¥y =

y0y =0

and determine where the solution aituns 1ls macimuom valee.
0 21. Consider the initial value problem
s tyld =¥
.1' e 3 ]
a. Determine how the behavior of the solution as ¢ increases
depends on the initial value yg.
b. Suppose that vy = 0.5. Find the time T at which the solution
hirst reaches the value 3.98.

B 22. Consider the initial value problem

v} = .

4 Ay(4—y)
¥ = ?
d. Determine how the solution behaves as ¢ = oo,
b. If vy = 2, find the time T at which the solution first reaches
the value 3.99.
c. Find the range of initial values for which the solution lies in
the interval 3.99 < y < 4.01 by the ime t = 2.

23, Solve the equation

vid) =¥ > 0.

dy av+b
dx - cv4+d’

where a, b, c, and d are constants.

24,  Use separation of variables 1o solve the differential equation

d
d—? = r(a + b0),
where a, b, r, and @y are constanis. Determiing how the solution

behaves ag ¢ — o0

0 = Oy,

Homogeneous Equations. 1T the rght-hand side of the equation
dy/dr = f(x,y) can be expressed as a function of the ratio v/x
only, then the equation is said to be homogeneous.! Such equations
can always be transformed into separable equations by a change of
the dependent vanable. Problem 235 illustrates how to solve first-order
homogeneous equations.

IThe word “homogencous”™ has different meanings in different mathematical
comexts. The homogencous equations considered here have nothing to do with
the homogeneous equations that will ocour in Chapier 3 and elsewhere.



B 25. Consider the equation
dy y—=4x

— . 29
dx =% (29)
a. Show that equation (29) can be rewritlen as
dy viz)—4
B e (300

dr 1={y/x)’
thus equation (29) is homogeneous.
b. Introduce a new dependent variable v so that v = y/x, or
vy = xv(x). Express dv/dx in terms of x, v, and dv/ dx.
¢. Replace v and dv/dx in equation (30) by the expressions
from part b that involve v and dv/dx. Show that the resulting
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through the origin, although the slope changes from one line to
another. Therefore, the direction field and the integral curves are
symmetric with respect o the origin. Is this symmetry property
evident from vour plot?

The method outlned in Problem 25 can be uwied for any
homogeneous equation. That is, the substtution y = xv{x) transforms
a homogeneous équation inlo a separable equation. The latter equation
can be solved by direct integration, and then replacing v by v/x
rives the solution to the original equation. In each of Problems 26
through 31:

d. Show that the given equation 15 homogeneous.

b. Solve the differential equation.

@ c. Draw a direction field and some integral curves. Are they

differential equation 15 symmetric with respect to the origin?
dv _v—4 dy x*4ay+y?
A TI uitl J ¥ A e Al
adis dr 1=v’ e dx x2
or gy B _ X +3y
y 2_4 dx 2xy
v - -
r— = ) 31 dy 4y = 3x
s l=w ) R T o
Observe that equation (31) 15 separable. dy d4x + Iy
d. Solve equation (31), obtaining v implicitly in terms of x. 29. dx Freoen P
£. Find the solution of equation (29) by replacing v by v/ x in 1 ¥
: e dy X =3y
the solution in part d. o, —=__ -
f. Draw a direction field and some integral curves for dx 2xy
equation (29). Recall that the right-hand side of equation (29) 31 dy Iy —x?

actually depends only on the ratio v/ x_ This means that integral dx 2xy
curves have the same slope at all points on any given straight line

23 Modeling with First-Order Differential
Equations

Differential equations are of interest to nonmathematicians primanly because of the possibility
of using them to investigate a wide variety of problems in the physical, biological, and social
sciences. One reason for this is that mathematical models and their solutions lead to equations
relating the variables and parameters in the problem. These equations often enable you to make
predictions about how the natural process will behave in various circumstances. It is often easy
to vary parameters in the mathematical model over wide ranges, whereas this may be very
time-consuming or expensive, if not impossible, in an expenimental setting. Nevertheless,
mathematical modeling and experiment or observation are both critically important and
have somewhat complementary roles in scientific investigations. Mathematical models are
validated by comparison of their predictions with experimental results. On the other hand,
mathematical analyses may suggest the most promising directions to explore experimentally,
and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models.
We begin by recapitulating and expanding on some of the conclusions reached in those
sections. Regardless of the specific field of application, there are three identifiable steps that
are always present in the process of mathematical modeling.

Step 1: Construction of the Model. In this step the physical situation is translated into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical
at this stage is to state clearly the physical principle(s) that are believed to govern the process.
For example, it has been observed that in some circumstances heat passes from a warmer to
a cooler body at a rate proportional to the temperature difference, that objects move about
in accordance with Newton's laws of motion, and that isolated insect populations grow at
a rate proportional to the current population. Each of these statements involves a rate of
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change (derivative)} and consequently. when expressed mathematically, leads to a differential
equation. The differential equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only
an approximate description of the actual process. For example, bodies moving at speeds
comparable to the speed of light are not governed by Newton's laws, insect populations do
not grow indefinitely as stated because of eventual lack of food or space, and heat transfer is
affected by factors other than the temperature difference. Thus you should always be aware of
the limitations of the model so that you will use it only when it is reasonable to believe that
it is accurate. Alternatively, you can adopt the point of view that the mathematical equations
exactly describe the operation of a simplified physical model, which has been constructed (or
conceived of) so as to embody the most important features of the actual process. Sometimes,
the process of mathematical modeling involves the conceptual replacement of a discrete
process by a continuous one. For instance, the number of members in an insect population
changes by discrete amounts; however, if the population is large, it seems reasonable to
consider it as a continuous variable and even to speak of its derivative.

Step 2: Analysis of the Model. Once the problem has been formulated mathematically,
you are often faced with the problem of solving one or more differential equations or, failing
that, of finding out as much as possible about the properties of the solution. It may happen
that this mathematical problem is quite difficult, and if so. further approximations may be
indicated at this stage to make the problem mathematically tractable. For example. a nonlinear
equation may be approximated by a linear one, or a slowly varying coefficient may be replaced
by a constant. Naturally, any such approximations must also be examined from the physical
point of view to make sure that the simplified mathematical problem still reflects the essential
features of the physical process under investigation. At the same time, an intimate knowledge
of the physics of the problem may suggest reasonable mathematical approximations that will
make the mathematical problem more amenable to analysis. This interplay of understanding
of physical phenomena and knowledge of mathematical techniques and their limitations
15 characteristic of applied mathematics at its best, and it is indispensable in successfully
constructing useful mathematical models of intricate physical processes.

Step 3: Comparison with Experiment or Observation. Finally, having obtained the
solution (or at least some information about it), you must interpret this information in
the context in which the problem arose. In particular, you should always check that the
mathematical solution appears physically reasonable. If possible, calculate the values of the
solution at selected points and compare them with expenimentally observed values. Or ask
whether the behavior of the solution after a long time is consistent with observations. Or
examine the solutions corresponding to certain special values of parameters in the problem. Of
course, the fact that the mathematical solution appears to be reasonable does not guarantee that
it is correct. However, if the predictions of the mathematical model are senously inconsistent
with observations of the physical system it purports to describe. this suggests that errors have
been made in solving the mathematical problem. that the mathematical model itself needs
refinement, or that observations must be made with greater care.

The examples in this section are typical of applications in which first-order differential
equations arise.

EXAMPLE1 | Mixing

Al time ¢ = a tank contains @y Ib of salt dissolved in 100 gal of water: see Figure 2.3.1. Assume

1
that waler containing 1 Ib of salt per gallon is entering the tank at a rate of r gal/min and that the

well-stirred mixture is draining from the tank at the same rate. Set up the initial value problem that
describes this flow process. Find the amount of salt Q1) in the 1ank at any ume, and also find the
limiting amount (77 that is present after a very long time. If r = 3 and @, = 20, . find the time T
after which the salt level is within 2% of Q. Also find the flow rate that is required ifl the valoe of
T is not w exceed 45 min.
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Y Saolution:

rgal/min, 7 bigal

rgal/min

m The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore, variations in the
amount of salt are due solely to the flows in and out of the tank. More precisely, the rate of change
of salt in the tank, d @ /dr, 15 equal to the rate at which salt is flowing in minus the rate at which it is
flowing out. In symbaols,

E=rul.r: in = rale oul. (1}

d't
The rate at which salt enters the tank is the concentration % Ibfzal imes the Mow rate r gal/min, or
r/4 Ibfmin. To find the rate at which salt leaves the tank, we need o multiply the concentration of
salt in the tank by the rate of outflow, r galfmin. Since the mtes of flow in and owt are equal. the
volume of water in the tank remains constant at 100 gal. and since the mixiure is “well-stirred.” the
concentration throughout the tank is the same, namely, G(r) / 100 Ib/gal. Therefore, the rate at which
salt leaves the ank is r Q1) / 100 Ib'min. Thus the differential equation governing this process is

0 _r_r0 %
dr 4 10d)
The initial condition is
0(0) = Q. (3)

Upon thinking about the problem physically. we might anticipate that eventually the mixure
originally in the tank will be essentially replaced by the mixture flowing in, whose concentration is

1
3 Ib/gal. Consequently, we might expect that ultimately the amount of salt in the tank would be very

close o 25 Ih. We can also find the limiting amount @y = 25 by setting 40 /dr equal 1o zero in
equation (2) and solving the resulting algebraic equation for 2.

To solve the mitial value problem (2), (3) analytically, note that equation (2) is linear. (It is
also separable, see Problem 24 in Section 2.2, ) Rewriting the differential squation (2) in the standard
form for a linear differential equation, we have

d@ @ r
ol L PO 4
dr ¥ 1 4 2l
Thus the integrating factor is /'™ und the general solution is
O(1) = 25 4 g™/ 100 (3

where ¢ is an arbitrary constant. To satisfy the initial condition (3), we must choose ¢ = 0y = 25,
Therefore. the solution of the imtial value problem (2), (3) 15

O(1) =25 4 ( Qg = 25)e "1™, (6)

1) = 25(1 — ™"/ 100y L Dpemrt/ 100 N

From either form of the solution, (6) or (7), you can see that (1) —= 25 (Ib) as ¢ —= n0, 5o the
limiting valee @y is 25. confirming our physical intuition.




