

TABLE	OF	CONTENTS
COVER
TITLE
COPYRIGHT
PREFACE
DEDICATION
INTRODUCTION
CHAPTER	1:	STARTING	WITH	MATLAB

1.1	STARTING	MATLAB,	MATLAB	WINDOWS
1.2	WORKING	IN	THE	COMMAND	WINDOW
1.3	ARITHMETIC	OPERATIONS	WITH	SCALARS
1.4	DISPLAY	FORMATS
1.5	ELEMENTARY	MATH	BUILT-IN	FUNCTIONS
1.6	DEFINING	SCALAR	VARIABLES
1.7	USEFUL	COMMANDS	FOR	MANAGING	VARIABLES
1.8	SCRIPT	FILES
1.9	EXAMPLES	OF	MATLAB	APPLICATIONS
1.10	PROBLEMS

CHAPTER	2:	CREATING	ARRAYS
2.1	CREATING	A	ONE-DIMENSIONAL	ARRAY	(VECTOR)
2.2	CREATING	A	TWO-DIMENSIONAL	ARRAY	(MATRIX)
2.3	NOTES	ABOUT	VARIABLES	IN	MATLAB
2.4	THE	TRANSPOSE	OPERATOR
2.5	ARRAY	ADDRESSING
2.6	USING	A	COLON	:	IN	ADDRESSING	ARRAYS
2.7	ADDING	ELEMENTS	TO	EXISTING	VARIABLES
2.8	DELETING	ELEMENTS
2.9	BUILT-IN	FUNCTIONS	FOR	HANDLING	ARRAYS
2.10	STRINGS	AND	STRINGS	AS	VARIABLES
2.11	PROBLEMS

CHAPTER	3:	MATHEMATICAL	OPERATIONS	WITH	ARRAYS
3.1	ADDITION	AND	SUBTRACTION
3.2	ARRAY	MULTIPLICATION
3.3	ARRAY	DIVISION
3.4	ELEMENT-BY-ELEMENT	OPERATIONS

3.5	USING	ARRAYS	IN	MATLAB	BUILT-IN	MATH	FUNCTIONS
3.6	BUILT-IN	FUNCTIONS	FOR	ANALYZING	ARRAYS
3.7	GENERATION	OF	RANDOM	NUMBERS
3.8	EXAMPLES	OF	MATLAB	APPLICATIONS
3.9	PROBLEMS

CHAPTER	4:	USING	SCRIPT	FILES	AND	MANAGING	DATA
4.1	THE	MATLAB	WORKSPACE	AND	THE	WORKSPACE	WINDOW
4.2	INPUT	TO	A	SCRIPT	FILE
4.3	OUTPUT	COMMANDS
4.4	THE	save	AND	load	COMMANDS
4.5	IMPORTING	AND	EXPORTING	DATA
4.6	EXAMPLES	OF	MATLAB	APPLICATIONS
4.7	PROBLEMS

CHAPTER	5:	TWO-DIMENSIONAL	PLOTS
5.1	THE	plot	COMMAND
5.2	THE	fplot	COMMAND
5.3	PLOTTING	MULTIPLE	GRAPHS	IN	THE	SAME	PLOT
5.4	FORMATTING	A	PLOT
5.5	PLOTS	WITH	LOGARITHMIC	AXES
5.6	PLOTS	WITH	ERROR	BARS
5.7	PLOTS	WITH	SPECIAL	GRAPHICS
5.8	HISTOGRAMS
5.9	POLAR	PLOTS
5.10	PUTTING	MULTIPLE	PLOTS	ON	THE	SAME	PAGE
5.11	MULTIPLE	FIGURE	WINDOWS
5.12	PLOTTING	USING	THE	PLOTS	TOOLSTRIP
5.13	EXAMPLES	OF	MATLAB	APPLICATIONS
5.14	PROBLEMS

CHAPTER	6:	PROGRAMMING	IN	MATLAB
6.1	RELATIONAL	AND	LOGICAL	OPERATORS
6.2	CONDITIONAL	STATEMENTS
6.3	THE	switch-case	STATEMENT
6.4	LOOPS
6.5	NESTED	LOOPS	AND	NESTED	CONDITIONAL	STATEMENTS
6.6	THE	break	AND	continue	COMMANDS
6.7	EXAMPLES	OF	MATLAB	APPLICATIONS
6.8	PROBLEMS

CHAPTER	7:	USER-DEFINED	FUNCTIONS	AND	FUNCTION	FILES
7.1	CREATING	A	FUNCTION	FILE
7.2	STRUCTURE	OF	A	FUNCTION	FILE
7.3	LOCAL	AND	GLOBAL	VARIABLES
7.4	SAVING	A	FUNCTION	FILE
7.5	USING	A	USER-DEFINED	FUNCTION
7.6	EXAMPLES	OF	SIMPLE	USER-DEFINED	FUNCTIONS
7.7	COMPARISON	BETWEEN	SCRIPT	FILES	AND	FUNCTION	FILES
7.8	ANONYMOUS	FUNCTIONS
7.9	FUNCTION	FUNCTIONS
7.10	SUBFUNCTIONS
7.11	NESTED	FUNCTIONS
7.12	EXAMPLES	OF	MATLAB	APPLICATIONS
7.13	PROBLEMS

CHAPTER	8:	POLYNOMIALS,	CURVE	FITTING,	AND	INTERPOLATION
8.1	POLYNOMIALS
8.2	CURVE	FITTING
8.3	INTERPOLATION
8.4	THE	BASIC	FITTING	INTERFACE
8.5	EXAMPLES	OF	MATLAB	APPLICATIONS
8.6	PROBLEMS

CHAPTER	9:	APPLICATIONS	IN	NUMERICAL	ANALYSIS
9.1	SOLVING	AN	EQUATION	WITH	ONE	VARIABLE
9.2	FINDING	A	MINIMUM	OR	A	MAXIMUM	OF	A	FUNCTION
9.3	NUMERICAL	INTEGRATION
9.4	ORDINARY	DIFFERENTIAL	EQUATIONS
9.5	EXAMPLES	OF	MATLAB	APPLICATIONS
9.6	PROBLEMS

CHAPTER	10:	THREE-DIMENSIONAL	PLOTS
10.1	LINE	PLOTS
10.2	MESH	AND	SURFACE	PLOTS
10.3	PLOTS	WITH	SPECIAL	GRAPHICS
10.4	THE	view	COMMAND
10.5	EXAMPLES	OF	MATLAB	APPLICATIONS
10.6	PROBLEMS

CHAPTER	11:	SYMBOLIC	MATH
11.1	SYMBOLIC	OBJECTS	AND	SYMBOLIC	EXPRESSIONS

11.2	CHANGING	THE	FORM	OF	AN	EXISTING	SYMBOLIC	EXPRESSION
11.3	SOLVING	ALGEBRAIC	EQUATIONS
11.4	DIFFERENTIATION
11.5	INTEGRATION
11.6	SOLVING	AN	ORDINARY	DIFFERENTIAL	EQUATION
11.7	PLOTTING	SYMBOLIC	EXPRESSIONS
11.8	NUMERICAL	CALCULATIONS	WITH	SYMBOLIC	EXPRESSIONS
11.9	EXAMPLES	OF	MATLAB	APPLICATIONS
11.10	PROBLEMS

APPENDIX:	SUMMARY	OF	CHARACTERS,	COMMANDS,	AND	FUNCTIONS
INDEX
End	User	License	Agreement

List	of	Illustrations
CHAPTER	1:	STARTING	WITH	MATLAB

Figure	1-1:	The	default	view	of	MATLAB	desktop.

Figure	1-2:	Example	of	a	Figure	Window.

Figure	1-3:	Example	of	an	Editor	Window.

Figure	1-4:	The	Help	Window.

Figure	1-5:	The	Command	Window.

Figure	1-6:	The	Editor/Debugger	Window.

Figure	1-7:	A	program	typed	in	the	Editor/Debugger	Window.

Figure	1-8:	The	Current	folder	field	in	the	Command	Window.

Figure	1-9:	Changing	the	current	directory.

Figure	1-10:	The	Current	Folder	Window.

CHAPTER	2:	CREATING	ARRAYS

Figure	2-1:	Position	of	a	point.

CHAPTER	4:	USING	SCRIPT	FILES	AND	MANAGING	DATA

Figure	4-1:	The	Workspace	Window.

Figure	4-2:	The	Variable	Editor	Window.

Figure	4-3:	The	VmphtoVkm.txt	file	opened	in	Word.

Figure	4-4:	The	FlbtoFN.txt	file	opened	in	Word.

Figure	4-5:	Data	saved	in	ASCII	format.

Figure	4-6:	Data	saved	as	.txt	file.

Figure	4-7:	Excel	spreadsheet	with	data.

Figure	4-8:	Numerical	ASCII	data.

Figure	4-9:	Import	Wizard,	first	display.

Figure	4-10:	Import	Wizard,	second	display.

CHAPTER	5:	TWO-DIMENSIONAL	PLOTS

Figure	5-1:	Example	of	a	formatted	two-dimensional	plot.

Figure	5-2:	The	Figure	Window	with	a	simple	plot.

Figure	5-3:	The	Figure	Window	with	a	plot	of	the	sales	data.

Figure	5-4:	The	Figure	Window	with	a	plot	of	the	function	y	=	3.5–0.5x	cos(6x)

Figure	5-5:	A	plot	of	the	function	y	=	3.5–0.5x	cos(6x)	with	large	spacing.)

Figure	5-6:	A	plot	of	the	function	y	=	x2	+	4sin(2x)	−	1.

Figure	5-7:	A	plot	of	the	function	y	=	3x3	–	26x	+	10	and	its	first	and	second	derivatives.

Figure	5-8:	Formatting	a	plot	using	the	Plot	Editor.

Figure	5-9:	Plots	of	y=2(−0.2x+10)	with	linear,	semilog,	and	log-log	scales.

Figure	5-10:	A	plot	with	error	bars.

Figure	5-11:	Histogram	of	temperature	data.

Figure	5-12:	Two	open	Figure	Windows.

Figure	5-13:	Using	the	PLOTS	Toolstrip.

Figure	5-14:	Using	the	PLOTS	Toolstrip.

Figure	5-15:	Position,	velocity,	and	acceleration	of	the	piston	vs.	time.

CHAPTER	6:	PROGRAMMING	IN	MATLAB

Figure	6-1:	The	structure	of	the	if-end	conditional	statement.

Figure	6-2:	The	structure	of	the	if-else-end	conditional	statement.

Figure	6-3:	The	structure	of	the	if-elseif-else-end	conditional	statement.

Figure	6-4:	The	structure	of	a	switch-case	statement.

Figure	6-5:	The	structure	of	a	for-end	loop.

Figure	6-6:	The	structure	of	a	while-end	loop.

Figure	6-7:	Structure	of	nested	loops.

CHAPTER	7:	USER-DEFINED	FUNCTIONS	AND	FUNCTION	FILES

Figure	7-1:	The	Editor/Debugger	Window.

Figure	7-2:	Structure	of	a	typical	function	file.

Figure	7-3:	A	plot	of	the	function	f(x)	=	e−0.17xx3	−	2x2	+	0.8x	−	3.

CHAPTER	8:	POLYNOMIALS,	CURVE	FITTING,	AND	INTERPOLATION

Figure	8-1:	Least	squares	fitting	of	first-degree	polynomial	to	four	points.

Figure	8-2:	Fitting	data	with	polynomials	of	different	order.

Figure	8-3:	The	Basic	Fitting	Window.

Figure	8-4:	A	Figure	Window	modified	by	the	Basic	Fitting	Interface.

CHAPTER	10:	THREE-DIMENSIONAL	PLOTS

Figure	10-1:	A	plot	of	the	function	 	for	0	≤	t	≤	6π.

Figure	10-2:	A	grid	in	the	x	y	plane	for	the	domain	–1	≤	x	≤	3	and	1	≤	y	≤	4	with	spacing
of	1.

Figure	10-3:	Azimuth	and	elevation	angles.

Figure	10-4:	A	surface	plot	of	the	function	 	with	viewing
angles	of	az	=	20°	and	el	=	35°.

Figure	10-5:	A	top	view	plot	of	the	function	 	for	0	≤	t	≤
6π.

Figure	10-6:	Projections	onto	the	x	z	plane	of	the	function.

Figure	10-7:	Projections	onto	the	y-z	plane	of	the	function.

List	of	Tables
CHAPTER	1:	STARTING	WITH	MATLAB

Table	1-1:	MATLAB	windows

Table	1-2:	Display	formats

Table	1-3:	Elementary	math	functions

Table	1-4:	Trigonometric	math	functions

Table	1-5:	Rounding	functions

CHAPTER	2:	CREATING	ARRAYS

Table	2-1:	Population	data

Table	2-2:	Built-in	functions	for	handling	arrays

CHAPTER	3:	MATHEMATICAL	OPERATIONS	WITH	ARRAYS

Table	3-1:	Built-in	array	functions

Table	3-2:	The	rand	command

Table	3-3:	The	randi	command

CHAPTER	9:	APPLICATIONS	IN	NUMERICAL	ANALYSIS

Table	9-1:	MATLAB	ODE	Solvers

CHAPTER	10:	THREE-DIMENSIONAL	PLOTS

Table	10-1:	Mesh	and	surface	plots

Table	10-2:	Specialized	3-D	plots

CHAPTER	11:	SYMBOLIC	MATH

Table	11-1:	Plots	with	the	ezplot	command

MATLAB®	An	Introduction	with	Applications
Sixth	Edition

Amos	Gilat
Department	of	Mechanical	and	Aerospace	Engineering
The	Ohio	State	University

PUBLISHER Laurie	Rosatone
EDITORIAL	DIRECTOR Don	Fowley
DEVELOPMENTAL	EDITOR Chris	Nelson
EXECUTIVE	MARKETING	MANAGER Dan	Sayre
PRODUCTION	EDITOR Ashley	Patterson
EDITORIAL	ASSISTANT Courtney	Jordan
COVER	DESIGN Harry	Nolan
COVER	IMAGE Amos	Gilat

This	book	was	set	in	Times	New	Roman	MT	Std.	by	Amos	Gilat	and	printed	and	bound	by	Lightning	Source,	Inc.
Founded	in	1807,	John	Wiley	&	Sons,	Inc.	has	been	a	valued	source	of	knowledge	and	understanding	for	more	than	200	years,
helping	people	around	the	world	meet	their	needs	and	fulfill	their	aspirations.	Our	company	is	built	on	a	foundation	of	principles
that	include	responsibility	to	the	communities	we	serve	and	where	we	live	and	work.	In	2008,	we	launched	a	Corporate
Citizenship	Initiative,	a	global	effort	to	address	the	environmental,	social,	economic,	and	ethical	challenges	we	face	in	our
business.	Among	the	issues	we	are	addressing	are	carbon	impact,	paper	specifications	and	procurement,	ethical	conduct	within
our	business	and	among	our	vendors,	and	community	and	charitable	support.	For	more	information,	please	visit	our	website:
www.wiley.com/go/citizenship.

Copyright	©	2017,	2014,	2011	John	Wiley	&	Sons,	Inc.	All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	stored	in
a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or
otherwise,	except	as	permitted	under	Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written
permission	of	the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,
Inc.	222	Rosewood	Drive,	Danvers,	MA	01923	(website	www.copyright.com).	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030-5774,	(201)748-6011,
fax	(201)748-6008,	or	online	at:	www.wiley.com/go/permissions.
Evaluation	copies	are	provided	to	qualified	academics	and	professionals	for	review	purposes	only,	for	use	in	their	courses	during
the	next	academic	year.	These	copies	are	licensed	and	may	not	be	sold	or	transferred	to	a	third	party.	Upon	completion	of	the
review	period,	please	return	the	evaluation	copy	to	Wiley.	Return	instructions	and	a	free	of	charge	return	mailing	label	are
available	at	www.wiley.com/go/returnlabel.	If	you	have	chosen	to	adopt	this	textbook	for	use	in	your	course,	please	accept	this
book	as	your	complimentary	desk	copy.	Outside	of	the	United	States,	please	contact	your	local	sales	representative.

ISBN:	978-1-119-25683-0	(PBK)
ISBN	978-1-119-29931-8	(EVAL)

Library	of	Congress	Cataloging-in-Publication	Data:
Names:	Gilat,	Amos,	author.

Title:	MATLAB	:	an	introduction	with	applications	/	Amos	Gilat,	Department	of	Mechanical	and	Aerospace	Engineering,	The	Ohio
State	University.
Description:	Sixth	edition.	|	Hoboken,	NJ	:	John	Wiley	&	Sons,	Inc.,	[2017]	|

Includes	index.
Identifiers:	LCCN	2016029050	(print)	|	LCCN	2016030206	(ebook)	|	ISBN	9781119256830	(paper)	|	ISBN	9781119299547	(pdf)	|
ISBN	9781119299257	(epub)

Subjects:	LCSH:	MATLAB.
Classification:	LCC	QA297	.G48	2017	(print)	|	LCC	QA297	(ebook)	|	DDC	518.0285/53--dc23

LC	record	available	at	https://lccn.loc.gov/2016029050
The	inside	back	cover	will	contain	printing	identification	and	country	of	origin	if	omitted	from	this	page.	In	addition,	if	the	ISBN	on
the	back	cover	differs	from	the	ISBN	on	this	page,	the	one	on	the	back	cover	is	correct

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel
https://lccn.loc.gov/2016029050

PREFACE

MATLAB®	is	a	very	popular	language	for	technical	computing	used	by	students,	engineers,	and
scientists	in	universities,	research	institutes,	and	industries	all	over	the	world.	The	software	is
popular	because	it	is	powerful	and	easy	to	use.	For	university	freshmen	it	can	be	thought	of	as
the	next	tool	to	use	after	the	graphic	calculator	in	high	school.

This	book	was	written	following	several	years	of	teaching	the	software	to	freshmen	in	an
introductory	engineering	course.	The	objective	was	to	write	a	book	that	teaches	the	software	in
a	friendly,	non-intimidating	fashion.	Therefore,	the	book	is	written	in	simple	and	direct	language.
In	many	places	bullets,	rather	than	lengthy	text,	are	used	to	list	facts	and	details	that	are
related	to	a	specific	topic.	The	book	includes	numerous	sample	problems	in	mathematics,
science,	and	engineering	that	are	similar	to	problems	encountered	by	new	users	of	MATLAB.

This	sixth	edition	of	the	book	is	updated	to	MATLAB	Release	2016a.	In	addition,	the	end	of
chapter	problems	have	been	revised.	In	Chapters	1	through	8	close	to	70%	of	the	problems	are
new	or	different	than	in	previous	editions.

I	would	like	to	thank	several	of	my	colleagues	at	The	Ohio	State	University.	Professor	Richard
Freuler	for	his	comments,	and	Dr.	Mike	Parke	for	reviewing	sections	of	the	book	and	suggested
modifications.	I	also	appreciate	the	involvement	and	support	of	Professors	Robert	Gustafson,
John	Demel	and	Dr.	John	Merrill	from	the	Engineering	Education	Innovation	Center	at	The	Ohio
State	University.	Special	thanks	go	to	Professor	Mike	Lichtensteiger	(OSU),	and	my	daughter
Tal	Gilat	(Marquette	University),	who	carefully	reviewed	the	first	edition	of	the	book	and
provided	valuable	comments	and	criticisms.	Professor	Brian	Harper	(OSU)	has	made	a
significant	contribution	to	the	new	end	of	chapter	problems	in	the	present	edition.

I	would	like	to	express	my	appreciation	to	all	those	who	have	reviewed	earlier	editions	of	the
text	at	its	various	stages	of	development,	including	Betty	Barr,	University	of	Houston;	Andrei	G.
Chakhovskoi,	University	of	California,	Davis;	Roger	King,	University	of	Toledo;	Richard	Kwor,
University	of	Colorado	at	Colorado	Springs;	Larry	Lagerstrom,	University	of	California,	Davis;
Yueh-Jaw	Lin,	University	of	Akron;	H.	David	Sheets,	Canisius	College;	Geb	Thomas,	University
of	Iowa;	Brian	Vick,	Virginia	Polytechnic	Institute	and	State	University;	Jay	Weitzen,	University
of	Massachusetts,	Lowell;	and	Jane	Patterson	Fife,	The	Ohio	State	University.	In	addition,	I
would	like	to	acknowledge	Chris	Nelson	who	supported	the	production	of	the	sixth	edition.

I	hope	that	the	book	will	be	useful	and	will	help	the	users	of	MATLAB	to	enjoy	the	software.

Amos	Gilat
Columbus,	Ohio
May,	2016
gilat.1@osu.edu

mailto:gilat.1@osu.edu

To	my	parents	Schoschana	and	Haim	Gelbwacks

INTRODUCTION

MATLAB	is	a	powerful	language	for	technical	computing.	The	name	MATLAB	stands	for	MATrix
LABoratory,	because	its	basic	data	element	is	a	matrix	(array).	MATLAB	can	be	used	for	math
computations,	modeling	and	simulations,	data	analysis	and	processing,	visualization	and
graphics,	and	algorithm	development.

MATLAB	is	widely	used	in	universities	and	colleges	in	introductory	and	advanced	courses	in
mathematics,	science,	and	especially	engineering.	In	industry	the	software	is	used	in	research,
development,	and	design.	The	standard	MATLAB	program	has	tools	(functions)	that	can	be
used	to	solve	common	problems.	In	addition,	MATLAB	has	optional	toolboxes	that	are
collections	of	specialized	programs	designed	to	solve	specific	types	of	problems.	Examples
include	toolboxes	for	signal	processing,	symbolic	calculations,	and	control	systems.

Until	recently,	most	of	the	users	of	MATLAB	have	been	people	with	previous	knowledge	of
programming	languages	such	as	FORTRAN	and	C	who	switched	to	MATLAB	as	the	software
became	popular.	Consequently,	the	majority	of	the	literature	that	has	been	written	about
MATLAB	assumes	that	the	reader	has	knowledge	of	computer	programming.	Books	about
MATLAB	often	address	advanced	topics	or	applications	that	are	specialized	to	a	particular
field.	Today,	however,	MATLAB	is	being	introduced	to	college	students	as	the	first	(and	often
the	only)	computer	program	they	will	learn.	For	these	students	there	is	a	need	for	a	book	that
teaches	MATLAB	assuming	no	prior	experience	in	computer	programming.

The	Purpose	of	This	Book

MATLAB:	An	Introduction	with	Applications	is	intended	for	students	who	are	using	MATLAB	for
the	first	time	and	have	little	or	no	experience	in	computer	programming.	It	can	be	used	as	a
textbook	in	freshmen	engineering	courses	or	in	workshops	where	MATLAB	is	being	taught.	The
book	can	also	serve	as	a	reference	in	more	advanced	science	and	engineering	courses	where
MATLAB	is	used	as	a	tool	for	solving	problems.	It	also	can	be	used	for	self-study	of	MATLAB
by	students	and	practicing	engineers.	In	addition,	the	book	can	be	a	supplement	or	a	secondary
book	in	courses	where	MATLAB	is	used	but	the	instructor	does	not	have	the	time	to	cover	it
extensively.

Topics	Covered

MATLAB	is	a	huge	program,	and	therefore	it	is	impossible	to	cover	all	of	it	in	one	book.	This
book	focuses	primarily	on	the	foundations	of	MATLAB.	The	assumption	is	that	once	these
foundations	are	well	understood,	the	student	will	be	able	to	learn	advanced	topics	easily	by
using	the	information	in	the	Help	menu.

The	order	in	which	the	topics	are	presented	in	this	book	was	chosen	carefully,	based	on	several
years	of	experience	in	teaching	MATLAB	in	an	introductory	engineering	course.	The	topics	are
presented	in	an	order	that	allows	the	student	to	follow	the	book	chapter	after	chapter.	Every
topic	is	presented	completely	in	one	place	and	then	used	in	the	following	chapters.

The	first	chapter	describes	the	basic	structure	and	features	of	MATLAB	and	how	to	use	the

program	for	simple	arithmetic	operations	with	scalars	as	with	a	calculator.	Script	files	are
introduced	at	the	end	of	the	chapter.	They	allow	the	student	to	write,	save,	and	execute	simple
MATLAB	programs.	The	next	two	chapters	are	devoted	to	the	topic	of	arrays.	MATLAB’s	basic
data	element	is	an	array	that	does	not	require	dimensioning.	This	concept,	which	makes
MATLAB	a	very	powerful	program,	can	be	a	little	difficult	to	grasp	for	students	who	have	only
limited	knowledge	of	and	experience	with	linear	algebra	and	vector	analysis.	The	concept	of
arrays	is	introduced	gradually	and	then	explained	in	extensive	detail.	Chapter	2	describes	how
to	create	arrays,	and	Chapter	3	covers	mathematical	operations	with	arrays.

Following	the	basics,	more	advanced	topics	that	are	related	to	script	files	and	input	and	output
of	data	are	presented	in	Chapter	4.	This	is	followed	by	coverage	of	two-dimensional	plotting	in
Chapter	5.	Programming	with	MATLAB	is	introduced	in	Chapter	6.	This	includes	flow	control
with	conditional	statements	and	loops.	User-defined	functions,	anonymous	functions,	and
function	functions	are	covered	next	in	Chapter	7.	The	coverage	of	function	files	(user-defined
functions)	is	intentionally	separated	from	the	subject	of	script	files.	This	has	proven	to	be	easier
to	understand	by	students	who	are	not	familiar	with	similar	concepts	from	other	computer
programs.

The	next	three	chapters	cover	more	advanced	topics.	Chapter	8	describes	how	MATLAB	can
be	used	for	carrying	out	calculations	with	polynomials,	and	how	to	use	MATLAB	for	curve	fitting
and	interpolation.	Chapter	9	covers	applications	of	MATLAB	in	numerical	analysis.	It	includes
solving	nonlinear	equations,	finding	minimum	or	a	maximum	of	a	function,	numerical	integration,
and	solution	of	first-order	ordinary	differential	equations.	Chapter	10	describes	how	to	produce
three-dimensional	plots,	an	extension	of	the	chapter	on	two-dimensional	plots.	Chapter	11
covers	in	great	detail	how	to	use	MATLAB	in	symbolic	operations.

The	Framework	of	a	Typical	Chapter

In	every	chapter	the	topics	are	introduced	gradually	in	an	order	that	makes	the	concepts	easy
to	understand.	The	use	of	MATLAB	is	demonstrated	extensively	within	the	text	and	by
examples.	Some	of	the	longer	examples	in	Chapters	1–3	are	titled	as	tutorials.	Every	use	of
MATLAB	is	printed	with	a	different	font	and	with	a	gray	background.	Additional	explanations
appear	in	boxed	text	with	a	white	background.	The	idea	is	that	the	reader	will	execute	these
demonstrations	and	tutorials	in	order	to	gain	experience	in	using	MATLAB.	In	addition,	every
chapter	includes	formal	sample	problems	that	are	examples	of	applications	of	MATLAB	for
solving	problems	in	math,	science,	and	engineering.	Each	example	includes	a	problem
statement	and	a	detailed	solution.	Some	sample	problems	are	presented	in	the	middle	of	the
chapter.	All	of	the	chapters	(except	Chapter	2)	have	a	section	at	the	end	with	several	sample
problems	of	applications.	It	should	be	pointed	out	that	problems	with	MATLAB	can	be	solved	in
many	different	ways.	The	solutions	of	the	sample	problems	are	written	such	that	they	are	easy
to	follow.	This	means	that	in	many	cases	the	problem	can	be	solved	by	writing	a	shorter,	or
sometimes	“trickier,”	program.	The	students	are	encouraged	to	try	to	write	their	own	solutions
and	compare	the	end	results.	At	the	end	of	each	chapter	there	is	a	set	of	homework	problems.
They	include	general	problems	from	math	and	science	and	problems	from	different	disciplines
of	engineering.

Symbolic	Calculations

MATLAB	is	essentially	a	software	for	numerical	calculations.	Symbolic	math	operations,
however,	can	be	executed	if	the	Symbolic	Math	toolbox	is	installed.	The	Symbolic	Math	toolbox
is	included	in	the	student	version	of	the	software	and	can	be	added	to	the	standard	program.

Software	and	Hardware

The	MATLAB	program,	like	most	other	software,	is	continually	being	developed	and	new
versions	are	released	frequently.	This	book	covers	MATLAB	Version	9.0.0.341360,	Release
2016a.	It	should	be	emphasized,	however,	that	the	book	covers	the	basics	of	MATLAB,	which
do	not	change	much	from	version	to	version.	The	book	covers	the	use	of	MATLAB	on
computers	that	use	the	Windows	operating	system.	Everything	is	essentially	the	same	when
MATLAB	is	used	on	other	machines.	The	user	is	referred	to	the	documentation	of	MATLAB	for
details	on	using	MATLAB	on	other	operating	systems.	It	is	assumed	that	the	software	is
installed	on	the	computer,	and	the	user	has	basic	knowledge	of	operating	the	computer.

The	Order	of	Topics	in	the	Book

It	is	probably	impossible	to	write	a	textbook	where	all	the	subjects	are	presented	in	an	order
that	is	suitable	for	everyone.	The	order	of	topics	in	this	book	is	such	that	the	fundamentals	of
MATLAB	are	covered	first	(arrays	and	array	operations),	and,	as	mentioned	before,	every	topic
is	covered	completely	in	one	location,	which	makes	the	book	easy	to	use	as	a	reference.	The
order	of	the	topics	in	this	sixth	edition	is	the	same	as	in	the	previous	edition.	Programming	is
introduced	before	user-defined	functions.	This	allows	using	programming	in	user-defined
functions.	Also,	applications	of	MATLAB	in	numerical	analysis	follow	Chapter	8	which	covers
polynomials,	curve	fitting,	and	interpolation.

CHAPTER	1
STARTING	WITH	MATLAB

This	chapter	begins	by	describing	the	characteristics	and	purpose	of	the	different	windows	in
MATLAB.	Next,	the	Command	Window	is	introduced	in	detail.	The	chapter	shows	how	to	use
MATLAB	for	arithmetic	operations	with	scalars	in	much	to	the	way	that	a	calculator	is	used.
This	includes	the	use	of	elementary	math	functions	with	scalars.	The	chapter	then	shows	how
to	define	scalar	variables	(the	assignment	operator)	and	how	to	use	these	variables	in
arithmetic	calculations.	The	last	section	in	the	chapter	introduces	script	files.	It	shows	how	to
write,	save,	and	execute	simple	MATLAB	programs.

1.1	STARTING	MATLAB,	MATLAB	WINDOWS
It	is	assumed	that	the	software	is	installed	on	the	computer,	and	that	the	user	can	start	the
program.	Once	the	program	starts,	the	MATLAB	desktop	window	opens	with	the	default	layout,
Figure	1-1.	The	layout	has	a	Toolstrip	at	the	top,	the	Current	Folder	Toolbar	below	it,	and	four
windows	underneath.	At	the	top	of	the	Toolstrip	there	are	three	tabs:	HOME,	PLOTS,	and
APPS.	Clicking	on	the	tabs	changes	the	icons	in	the	Toolstrip.	Commonly,	MATLAB	is	used	with
the	HOME	tab	selected.	The	associated	icons	are	used	for	executing	various	commands,	as
explained	later	in	this	chapter.	The	PLOTS	tab	can	be	used	to	create	plots,	as	explained	in
Chapter	5	(Section	5.12),	and	the	APPS	tab	can	be	used	for	opening	additional	applications
and	Toolboxes	of	MATLAB.

The	default	layout

The	default	layout	(Figure	1-1)	consists	of	the	following	four	windows	that	are	displayed	under
the	Toolstrip:	the	Command	Window	(the	larger	window),	the	Current	Folder	Window	(on	the
top	left),	the	Details	Window	and	the	Workspace	Window	(on	the	bottom	lest).	A	list	of	several
MATLAB	windows	and	their	purposes	is	given	in	Table	1-1.

Four	of	the	windows—the	Command	Window,	the	Figure	Window,	the	Editor	Window,	and	the
Help	Window—are	used	extensively	throughout	the	book	and	are	briefly	described	on	the
following	pages.	More	detailed	descriptions	are	included	in	the	chapters	where	they	are	used.
The	Command	History	Window,	Current	Folder	Window,	and	the	Workspace	Window	are
described	in	Sections	1.2,	1.8.4,	and	4.1,	respectively.

Figure	1-1:	The	default	view	of	MATLAB	desktop.
Command	Window:	The	Command	Window	is	MATLAB’s	main	window	and	opens	when
MATLAB	is	started.	It	is	convenient	to	have	the	Command	Window	as	the	only	visible	window.
This	can	be	done	either	by	closing	all	the	other	windows,	or	by	selecting	Command	Window
Only	in	the	menu	that	opens	when	the	Layout	icon	on	the	Toolstrip	is	selected.	To	close	a
window,	click	on	the	pull-down	menu	at	the	top	right-hand	side	of	the	window	and	then	select
Close.	Working	in	the	Command	Window	is	described	in	detail	in	Section	1.2.

TABLE	1-1:

MATLAB	windows
Window Purpose
Command	Window Main	window,	enters	variables,	runs	programs.
Figure	Window Contains	output	from	graphic	commands.
Editor	Window Creates	and	debugs	script	and	function	files.
Help	Window Provides	help	information.
Command	History	Window Logs	commands	entered	in	the	Command	Window.
Workspace	Window Provides	information	about	the	variables	that	are	stored.
Current	Folder	Window Shows	the	files	in	the	current	folder.

Figure	Window:	The	Figure	Window	opens	automatically	when	graphics	commands	are
executed,	and	contains	graphs	created	by	these	commands.	An	example	of	a	Figure	Window	is
shown	in	Figure	1-2.	A	more	detailed	description	of	this	window	is	given	in	Chapter	5.

Figure	1-2:	Example	of	a	Figure	Window.
Editor	Window:	The	Editor	Window	is	used	for	writing	and	editing	programs.	This	window	is
opened	by	clicking	on	the	New	Script	icon	in	the	Toolstrip,	or	by	clicking	on	the	New	icon	and
then	selecting	Script	from	the	menu	that	opens.	An	example	of	an	Editor	Window	is	shown	in
Figure	1-3.	More	details	on	the	Editor	Window	are	given	in	Section	1.8.2,	where	it	is	used	for
writing	script	files,	and	in	Chapter	7,	where	it	is	used	to	write	function	files.

Help	Window:	The	Help	Window	contains	help	information.	This	window	can	be	opened	from
the	Help	icon	in	the	Toolstrip	of	the	Command	Window	or	the	toolbar	of	any	MATLAB	window.
The	Help	Window	is	interactive	and	can	be	used	to	obtain	information	on	any	feature	of
MATLAB.	Figure	1-4	shows	an	open	Help	Window.

When	MATLAB	is	started	for	the	first	time,	the	screen	looks	like	that	shown	in	Figure	1-1.	For
most	beginners	it	is	probably	more	convenient	to	close	all	the	windows	except	the	Command
Window.	The	closed	windows	can	be	reopened	by	selecting	them	from	the	layout	icon	in	the
Toolstrip.	The	windows	shown	in	Figure	1-1	can	be	displayed	by	clicking	on	the	layout	icon	and
selecting	Default	in	the	menu	that	opens.	The	various	windows	in	Figure	1-1	are	docked	to	the
desktop.	A	window	can	be	undocked	(become	a	separate,	independent	window)	by	dragging	it
out.	An	independent	window	can	be	redocked	by	clicking	on	the	pull-down	menu	at	the	top
right-hand	side	of	the	window	and	then	selecting	Dock.

Figure	1-3:	Example	of	an	Editor	Window.

Figure	1-4:	The	Help	Window.

1.2	WORKING	IN	THE	COMMAND	WINDOW
The	Command	Window	is	MATLAB’s	main	window	and	can	be	used	for	executing	commands,
opening	other	windows,	running	programs	written	by	the	user,	and	managing	the	software.	An
example	of	the	Command	Window,	with	several	simple	commands	that	will	be	explained	later	in
this	chapter,	is	shown	in	Figure	1-5.

Figure	1-5:	The	Command	Window.

Notes	for	working	in	the	Command	Window:

To	type	a	command,	the	cursor	must	be	placed	next	to	the	command	prompt	(>>).

Once	a	command	is	typed	and	the	Enter	key	is	pressed,	the	command	is	executed.
However,	only	the	last	command	is	executed.	Everything	executed	previously	(that	might	be
still	displayed)	is	unchanged.

Several	commands	can	be	typed	in	the	same	line.	This	is	done	by	typing	a	comma	between
the	commands.	When	the	Enter	key	is	pressed,	the	commands	are	executed	in	order	from
left	to	right.

It	is	not	possible	to	go	back	to	a	previous	line	that	is	displayed	in	the	Command	Window,
make	a	correction,	and	then	re-execute	the	command.

A	previously	typed	command	can	be	recalled	to	the	command	prompt	with	the	up-arrow	key
.	When	the	command	is	displayed	at	the	command	prompt,	it	can	be	modified	if	needed

and	then	executed.	The	down-arrow	key	 	can	be	used	to	move	down	the	list	of
previously	typed	commands.

If	a	command	is	too	long	to	fit	in	one	line,	it	can	be	continued	to	the	next	line	by	typing	three
periods	…	(called	an	ellipsis)	and	pressing	the	Enter	key.	The	continuation	of	the	command
is	then	typed	in	the	new	line.	The	command	can	continue	line	after	line	up	to	a	total	of	4,096
characters.

The	semicolon	(;):

When	a	command	is	typed	in	the	Command	Window	and	the	Enter	key	is	pressed,	the
command	is	executed.	Any	output	that	the	command	generates	is	displayed	in	the	Command
Window.	If	a	semicolon	(;)	is	typed	at	the	end	of	a	command,	the	output	of	the	command	is
not	displayed.	Typing	a	semicolon	is	useful	when	the	result	is	obvious	or	known,	or	when	the
output	is	very	large.

If	several	commands	are	typed	in	the	same	line,	the	output	from	any	of	the	commands	will	not
be	displayed	if	a	semicolon	instead	of	a	comma	is	typed	between	the	commands.

Typing	%:

When	the	symbol	%	(percent)	is	typed	at	the	beginning	of	a	line,	the	line	is	designated	as	a
comment.	This	means	that	when	the	Enter	key	is	pressed	the	line	is	not	executed.	The	%
character	followed	by	text	(comment)	can	also	be	typed	after	a	command	(in	the	same	line).
This	has	no	effect	on	the	execution	of	the	command.

Usually	there	is	no	need	for	comments	in	the	Command	Window.	Comments,	however,	are
frequently	used	in	a	program	to	add	descriptions	or	to	explain	the	program	(see	Chapters	4	and
6).

The	clc	command:

The	clc	command	(type	clc	and	press	Enter)	clears	the	Command	Window.	After	typing	in	the

Command	Window	for	a	while,	the	display	may	become	very	long.	Once	the	clc	command	is
executed,	a	clear	window	is	displayed.	The	command	does	not	change	anything	that	was	done
before.	For	example,	if	some	variables	were	defined	previously	(see	Section	1.6),	they	still
exist	and	can	be	used.	The	up-arrow	key	can	also	be	used	to	recall	commands	that	were	typed
before.

The	Command	History	Window:

The	Command	History	Window	lists	the	commands	that	have	been	entered	in	the	Command
Window.	This	includes	commands	from	previous	sessions.	A	command	in	the	Command	History
Window	can	be	used	again	in	the	Command	Window.	By	double-clicking	on	the	command,	the
command	is	reentered	in	the	Command	Window	and	executed.	It	is	also	possible	to	drag	the
command	to	the	Command	Window,	make	changes	if	needed,	and	then	execute	it.	The	list	in
the	Command	History	Window	can	be	cleared	by	selecting	the	lines	to	be	deleted	and	then
right-clicking	the	mouse	and	selecting	Delete	Selection.	The	whole	history	can	be	deleted	by
right-clicking	the	mouse	and	selecting	choose	Clear	Command	History	in	the	menu	that	opens.

1.3	ARITHMETIC	OPERATIONS	WITH	SCALARS
In	this	chapter	we	discuss	only	arithmetic	operations	with	scalars,	which	are	numbers.	As	will
be	explained	later	in	the	chapter,	numbers	can	be	used	in	arithmetic	calculations	directly	(as
with	a	calculator)	or	they	can	be	assigned	to	variables,	which	can	subsequently	be	used	in
calculations.	The	symbols	of	arithmetic	operations	are:

Operation Symbol Example
Addition + 5	+	3
Subtraction – 5	–	3
Multiplication * 5	*	3
Right	division / 5	/	3
Left	division \ 5	\	3	=	3	/	5

Exponentiation ^ 5	 	̂3	(means	53	=	125)

It	should	be	pointed	out	here	that	all	the	symbols	except	the	left	division	are	the	same	as	in
most	calculators.	For	scalars,	the	left	division	is	the	inverse	of	the	right	division.	The	left
division,	however,	is	mostly	used	for	operations	with	arrays,	which	are	discussed	in	Chapter	3.

1.3.1	Order	of	Precedence
MATLAB	executes	the	calculations	according	to	the	order	of	precedence	displayed	below.	This
order	is	the	same	as	used	in	most	calculators.

Precedence Mathematical	Operation
First Parentheses.	For	nested	parentheses,	the	innermost	are	executed	first.
Second Exponentiation.
Third Multiplication,	division	(equal	precedence).
Fourth Addition	and	subtraction.

In	an	expression	that	has	several	operations,	higher-precedence	operations	are	executed
before	lower-precedence	operations.	If	two	or	more	operations	have	the	same	precedence,	the
expression	is	executed	from	left	to	right.	As	illustrated	in	the	next	section,	parentheses	can	be
used	to	change	the	order	of	calculations.

1.3.2	Using	MATLAB	as	a	Calculator
The	simplest	way	to	use	MATLAB	is	as	a	calculator.	This	is	done	in	the	Command	Window	by
typing	a	mathematical	expression	and	pressing	the	Enter	key.	MATLAB	calculates	the
expression	and	responds	by	displaying	ans	=	followed	by	the	numerical	result	of	the	expression
in	the	next	line.	This	is	demonstrated	in	Tutorial	1-1.

Tutorial	1-1:	Using	MATLAB	as	a	calculator.

1.4	DISPLAY	FORMATS
The	user	can	control	the	format	in	which	MATLAB	displays	output	on	the	screen.	In	Tutorial	1-1,
the	output	format	is	fixed-point	with	four	decimal	digits	(called	short),	which	is	the	default
format	for	numerical	values.	The	format	can	be	changed	with	the	format	command.	Once	the
format	command	is	entered,	all	the	output	that	follows	is	displayed	in	the	specified	format.
Several	of	the	available	formats	are	listed	and	described	in	Table	1-2.

MATLAB	has	several	other	formats	for	displaying	numbers.	Details	of	these	formats	can	be
obtained	by	typing	help	format	in	the	Command	Window.	The	format	in	which	numbers	are
displayed	does	not	affect	how	MATLAB	computes	and	saves	numbers.

TABLE	1-2:

Display	formats

1.5	ELEMENTARY	MATH	BUILT-IN	FUNCTIONS
In	addition	to	basic	arithmetic	operations,	expressions	in	MATLAB	can	include	functions.
MATLAB	has	a	very	large	library	of	built-in	functions.	A	function	has	a	name	and	an	argument	in
parentheses.	For	example,	the	function	that	calculates	the	square	root	of	a	number	is	sqrt(x).
Its	name	is	sqrt,	and	the	argument	is	x.	When	the	function	is	used,	the	argument	can	be	a
number,	a	variable	that	has	been	assigned	a	numerical	value	(explained	in	Section	1.6),	or	a
computable	expression	that	can	be	made	up	of	numbers	and/or	variables.	Functions	can	also
be	included	in	arguments,	as	well	as	in	expressions.	Tutorial	1-2	shows	examples	of	using	the
function	sqrt(x)	when	MATLAB	is	used	as	a	calculator	with	scalars.

Tutorial	1-2:	Using	the	sqrt	built-in	function.

Some	commonly	used	elementary	MATLAB	mathematical	built-in	functions	are	given	in	Tables
1-3	through	1-5.	A	complete	list	of	functions	organized	by	category	can	be	found	in	the	Help
Window.

TABLE	1-3:

Elementary	math	functions

TABLE	1-4:

Trigonometric	math	functions

The	inverse	trigonometric	functions	are	asin(x),	acos(x),	atan(x),	acot(x)	for	the	angle	in
radians;	and	asind(x),	acosd(x),	atand(x),	acotd(x)	for	the	angle	in	degrees.	The	hyperbolic
trigonometric	functions	are	sinh(x),	cosh(x),	tanh(x),	and	coth(x).	Table	1-4	uses	pi,	which
is	equal	to	π	(see	Section	1.6.3).

TABLE	1-5:

Rounding	functions

1.6	DEFINING	SCALAR	VARIABLES
A	variable	is	a	name	made	of	a	letter	or	a	combination	of	several	letters	(and	digits)	that	is
assigned	a	numerical	value.	Once	a	variable	is	assigned	a	numerical	value,	it	can	be	used	in
mathematical	expressions,	in	functions,	and	in	any	MATLAB	statements	and	commands.	A
variable	is	actually	a	name	of	a	memory	location.	When	a	new	variable	is	defined,	MATLAB
allocates	an	appropriate	memory	space	where	the	variable’s	assignment	is	stored.	When	the
variable	is	used	the	stored	data	is	used.	If	the	variable	is	assigned	a	new	value	the	content	of
the	memory	location	is	replaced.	(In	Chapter	1	we	consider	only	variables	that	are	assigned
numerical	values	that	are	scalars.	Assigning	and	addressing	variables	that	are	arrays	is
discussed	in	Chapter	2.)

1.6.1	The	Assignment	Operator
In	MATLAB	the	=	sign	is	called	the	assignment	operator.	The	assignment	operator	assigns	a
value	to	a	variable.

The	left-hand	side	of	the	assignment	operator	can	include	only	one	variable	name.	The	right-
hand	side	can	be	a	number,	or	a	computable	expression	that	can	include	numbers	and/or
variables	that	were	previously	assigned	numerical	values.	When	the	Enter	key	is	pressed
the	numerical	value	of	the	right-hand	side	is	assigned	to	the	variable,	and	MATLAB	displays

the	variable	and	its	assigned	value	in	the	next	two	lines.

The	following	shows	how	the	assignment	operator	works.

The	last	statement	(x	=	3x	–	12)	illustrates	the	difference	between	the	assignment	operator	and
the	equal	sign.	If	in	this	statement	the	=	sign	meant	equal,	the	value	of	x	would	be	6	(solving	the
equation	for	x).

The	use	of	previously	defined	variables	to	define	a	new	variable	is	demonstrated	next.

If	a	semicolon	is	typed	at	the	end	of	the	command,	then	when	the	Enter	key	is	pressed,
MATLAB	does	not	display	the	variable	with	its	assigned	value	(the	variable	still	exists	and	is
stored	in	memory).

If	a	variable	already	exists,	typing	the	variable’s	name	and	pressing	the	Enter	key	will
display	the	variable	and	its	value	in	the	next	two	lines.

As	an	example,	the	last	demonstration	is	repeated	below	using	semicolons.

Several	assignments	can	be	typed	in	the	same	line.	The	assignments	must	be	separated
with	a	comma	(spaces	can	be	added	after	the	comma).	When	the	Enter	key	is	pressed,	the
assignments	are	executed	from	left	to	right	and	the	variables	and	their	assignments	are
displayed.	A	variable	is	not	displayed	if	a	semicolon	is	typed	instead	of	a	comma.	For
example,	the	assignments	of	the	variables	a,	B,	and	C	above	can	all	be	done	in	the	same

line.

A	variable	that	already	exists	can	be	reassigned	a	new	value.	For	example:

Once	a	variable	is	defined	it	can	be	used	as	an	argument	in	functions.	For	example:

1.6.2	Rules	About	Variable	Names
A	variable	can	be	named	according	to	the	following	rules:

Must	begin	with	a	letter.

Can	be	up	to	63	characters	long.

Can	contain	letters,	digits,	and	the	underscore	character.

Cannot	contain	punctuation	characters	(e.g.,	period,	comma,	semicolon).

MATLAB	is	case-sensitive:	it	distinguishes	between	uppercase	and	lowercase	letters.	For
example,	AA,	Aa,	aA,	and	aa	are	the	names	of	four	different	variables.

No	spaces	are	allowed	between	characters	(use	the	underscore	where	a	space	is	desired).

Avoid	using	the	name	of	a	built-in	function	for	a	variable	(i.e.,	avoid	using	cos,	sin,	exp,
sqrt,	etc.).	Once	a	function	name	is	used	to	for	a	variable	name,	the	function	cannot	be
used.

1.6.3	Predefined	Variables	and	Keywords
There	are	20	words,	called	keywords,	that	are	reserved	by	MATLAB	for	various	purposes	and
cannot	be	used	as	variable	names.	These	words	are:
break	case	catch	classdef	continue	else	elseif	end	for	function	global	if	otherwise
parfor	persistent	return	spmd	switch	try	while

When	typed,	these	words	appear	in	blue.	An	error	message	is	displayed	if	the	user	tries	to	use
a	keyword	as	a	variable	name.	(The	keywords	can	be	displayed	by	typing	the	command
iskeyword.)

A	number	of	frequently	used	variables	are	already	defined	when	MATLAB	is	started.	Some	of
the	predefined	variables	are:

ans A	variable	that	has	the	value	of	the	last	expression	that	was	not	assigned	to	a	specific
variable	(see	Tutorial	1-1).	If	the	user	does	not	assign	the	value	of	an	expression	to	a
variable,	MATLAB	automatically	stores	the	result	in	ans.

pi The	number	π.
eps The	smallest	difference	between	two	numbers.	Equal	to	2 (̂–52),	which	is	approximately

2.2204e–016.
inf  Used	for	infinity.
i  Defined	as	 ,	which	is:	0	+	1.0000i.

j Same	as	i.
NaN Stands	for	Not-a-Number.	Used	when	MATLAB	cannot	determine	a	valid	numeric	value.

Example:	0/0.

The	predefined	variables	can	be	redefined	to	have	any	other	value.	The	variables	pi,	eps,	and
inf,	are	usually	not	redefined	since	they	are	frequently	used	in	many	applications.	Other
predefined	variables,	such	as	i	and	j,	are	sometime	redefined	(commonly	in	association	with
loops)	when	complex	numbers	are	not	involved	in	the	application.

1.7	USEFUL	COMMANDS	FOR	MANAGING	VARIABLES
The	following	are	commands	that	can	be	used	to	eliminate	variables	or	to	obtain	information
about	variables	that	have	been	created.	When	these	commands	are	typed	in	the	Command
Window	and	the	Enter	key	is	pressed,	either	they	provide	information,	or	they	perform	a	task
as	specified	below.

Command Outcome
clear Removes	all	variables	from	the	memory.
clear	x	y
z

Removes	only	variables	x,	y,	and	z	from	the	memory.

who Displays	a	list	of	the	variables	currently	in	the	memory.
whos Displays	a	list	of	the	variables	currently	in	the	memory	and	their	sizes	together	with

information	about	their	bytes	and	class	(see	Section	4.1).

1.8	SCRIPT	FILES
So	far	all	the	commands	were	typed	in	the	Command	Window	and	were	executed	when	the
Enter	key	was	pressed.	Although	every	MATLAB	command	can	be	executed	in	this	way,	using
the	Command	Window	to	execute	a	series	of	commands—especially	if	they	are	related	to	each

other	(a	program)—is	not	convenient	and	may	be	difficult	or	even	impossible.	The	commands	in
the	Command	Window	cannot	be	saved	and	executed	again.	In	addition,	the	Command	Window
is	not	interactive.	This	means	that	every	time	the	Enter	key	is	pressed	only	the	last	command	is
executed,	and	everything	executed	before	is	unchanged.	If	a	change	or	a	correction	is	needed
in	a	command	that	was	previously	executed	and	the	result	of	this	command	is	used	in
commands	that	follow,	all	the	commands	have	to	be	entered	and	executed	again.

A	different	(better)	way	of	executing	commands	with	MATLAB	is	first	to	create	a	file	with	a	list
of	commands	(program),	save	it,	and	then	run	(execute)	the	file.	When	the	file	runs,	the
commands	it	contains	are	executed	in	the	order	that	they	are	listed.	If	needed,	the	commands
in	the	file	can	be	corrected	or	changed	and	the	file	can	be	saved	and	run	again.	Files	that	are
used	for	this	purpose	are	called	script	files.

IMPORTANT	NOTE:	This	section	covers	only	the	minimum	required	in	order	to	run
simple	programs.	This	will	allow	the	student	to	use	script	files	when	practicing	the
material	that	is	presented	in	this	and	the	next	two	chapters	(instead	of	typing	repeatedly
in	the	Command	Window).	Script	files	are	considered	again	in	Chapter	4,	where	many
additional	topics	that	are	essential	for	understanding	MATLAB	and	writing	programs	in
script	file	are	covered.

1.8.1	Notes	About	Script	Files
A	script	file	is	a	sequence	of	MATLAB	commands,	also	called	a	program.

When	a	script	file	runs	(is	executed),	MATLAB	executes	the	commands	in	the	order	they	are
written,	just	as	if	they	were	typed	in	the	Command	Window.

When	a	script	file	has	a	command	that	generates	an	output	(e.g.,	assignment	of	a	value	to	a
variable	without	a	semicolon	at	the	end),	the	output	is	displayed	in	the	Command	Window.

Using	a	script	file	is	convenient	because	it	can	be	edited	(corrected	or	otherwise	changed)
and	executed	many	times.

Script	files	can	be	typed	and	edited	in	any	text	editor	and	then	pasted	into	the	MATLAB
editor.

Script	files	are	also	called	M-files	because	the	extension	.m	is	used	when	they	are	saved.

1.8.2	Creating	and	Saving	a	Script	File
In	MATLAB	script	files	are	created	and	edited	in	the	Editor/Debugger	Window.	This	window	is
opened	from	the	Command	Window	by	clicking	on	the	New	Script	icon	in	the	Toolstrip,	or	by
clicking	New	in	the	Toolstrip	and	then	selecting	Script	from	the	menu	that	open.	An	open
Editor/Debugger	Window	is	shown	in	Figure	1-6.

Figure	1-6:	The	Editor/Debugger	Window.
The	Editor/Debugger	Window	has	a	Toolstrip	at	the	top	and	three	tabs	EDITOR,	PUBLISH,	and
VIEW	above	it.	Clicking	on	the	tabs	changes	the	icons	in	the	Toolstrip.	Commonly,	MATLAB	is
used	with	the	HOME	tab	selected.	The	associated	icons	are	used	for	executing	various
commands,	as	explained	later	in	the	Chapter.	Once	the	window	is	open,	the	commands	of	the
script	file	are	typed	line	by	line.	MATLAB	automatically	numbers	a	new	line	every	time	the
Enter	key	is	pressed.	The	commands	can	also	be	typed	in	any	text	editor	or	word	processor
program	and	then	copied	and	pasted	in	the	Editor/	Debugger	Window.	An	example	of	a	short
program	typed	in	the	Editor/Debugger	Window	is	shown	in	Figure	1-7.	The	first	few	lines	in	a
script	file	are	typically	comments	(which	are	not	executed,	since	the	first	character	in	the	line	is
%)	that	describe	the	program	written	in	the	script	file.

Figure	1-7:	A	program	typed	in	the	Editor/Debugger	Window.
Before	a	script	file	can	be	executed	it	has	to	be	saved.	This	is	done	by	clicking	Save	in	the
Toolstrip	and	selecting	Save	As...	from	the	menu	that	opens.	When	saved,	MATLAB	adds	the
extension	.m	to	the	name.	The	rules	for	naming	a	script	file	follow	the	rules	of	naming	a	variable
(must	begin	with	a	letter,	can	include	digits	and	underscore,	no	spaces,	and	up	to	63
characters	long).	The	names	of	user-defined	variables,	predefined	variables,	and	MATLAB
commands	or	functions	should	not	be	used	as	names	of	script	files.

1.8.3	Running	(Executing)	a	Script	File

A	script	file	can	be	executed	either	directly	from	the	Editor	Window	by	clicking	on	the	Run	icon
(see	Figure	1-7)	or	by	typing	the	file	name	in	the	Command	Window	and	then	pressing	the
Enter	key.	For	a	file	to	be	executed,	MATLAB	needs	to	know	where	the	file	is	saved.	The	file
will	be	executed	if	the	folder	where	the	file	is	saved	is	the	current	folder	of	MATLAB	or	if	the
folder	is	listed	in	the	search	path,	as	explained	next.

1.8.4	Current	Folder
The	current	folder	is	shown	in	the	“Current	Folder”	field	in	the	desktop	toolbar	of	the	Command
Window,	as	shown	in	Figure	1-8.	If	an	attempt	is	made	to	execute	a	script	file	by	clicking	on	the
Run	icon	(in	the	Editor	Window)	when	the	current	folder	is	not	the	folder	where	the	script	file	is
saved,	then	the	prompt	shown	in	Figure	1-9	opens.	The	user	can	then	change	the	current	folder
to	the	folder	where	the	script	file	is	saved,	or	add	it	to	the	search	path.	Once	two	or	more
different	current	folders	are	used	in	a	session,	it	is	possible	to	switch	from	one	to	another	in	the
Current	Folder	field	in	the	Command	Window.	The	current	folder	can	also	be	changed	in	the
Current	Folder	Window,	shown	in	Figure	1-10,	which	can	be	opened	from	the	Desktop	menu.
The	Current	Folder	can	be	changed	by	choosing	the	drive	and	folder	where	the	file	is	saved.

Figure	1-8:	The	Current	folder	field	in	the	Command	Window.

Figure	1-9:	Changing	the	current	directory.

Figure	1-10:	The	Current	Folder	Window.
An	alternative	simple	way	to	change	the	current	folder	is	to	use	the	cd	command	in	the
Command	Window.	To	change	the	current	folder	to	a	different	drive,	type	cd,	space,	and	then
the	name	of	the	directory	followed	by	a	colon	:	and	press	the	Enter	key.	For	example,	to
change	the	current	folder	to	drive	E	(e.g.,	the	flash	drive)	type	cd	E:.	If	the	script	file	is	saved
in	a	folder	within	a	drive,	the	path	to	that	folder	has	to	be	specified.	This	is	done	by	typing	the
path	as	a	string	in	the	cd	command.	For	example,	cd('E:\Chapter	1')	sets	the	path	to	the
folder	Chapter	1	in	drive	F.	The	following	example	shows	how	the	current	folder	is	changed	to
be	drive	E.	Then	the	script	file	from	Figure	1-7,	which	was	saved	in	drive	E	as
ProgramExample.m,	is	executed	by	typing	the	name	of	the	file	and	pressing	the	Enter	key.

1.9	EXAMPLES	OF	MATLAB	APPLICATIONS

Sample	Problem	1-1:	Trigonometric	identity

A	trigonometric	identity	is	given	by:

Verify	that	the	identity	is	correct	by	calculating	each	side	of	the	equation,	substituting	
.

Solution
The	problem	is	solved	by	typing	the	following	commands	in	the	Command	Window.

Sample	Problem	1-2:	Geometry	and	trigonometry
Four	circles	are	placed	as	shown	in	the	figure.	At	each	point	where	two	circles	are	in
contact,	they	are	tangent	to	each	other.	Determine	the	distance	between	the	centers	C2
and	C4.

The	radii	of	the	circles	are:

R1	=	16	mm,	R2	=	6.5	mm,	R3	=	12	mm,	and	R4	=	9.5	mm.

Solution

Error	parsing	MathML:	error	on	line	1	at	column	169:	Namespace	prefix	m	on	mspace	is	not	defined

The	lines	that	connect	the	centers	of	the	circles	create	four	triangles.	In	two	of	the
triangles,	ΔC1C2C3	and	ΔC1C3C4,	the	lengths	of	all	the	sides	are	known.	This	information
is	used	to	calculate	the	angles	γ1	and	γ2	in	these	triangles	by	using	the	law	of	cosines.	For
example,	γ1	is	calculated	from:

Next,	the	length	of	the	side	C2C4	is	calculated	by	considering	the	triangle	ΔC1C2C4.	This	is
done,	again,	by	using	the	law	of	cosines	(the	lengths	C1C2	and	C1C4	are	known	and	the
angle	γ3	is	the	sum	of	the	angles	γ1	and	γ2).

The	problem	is	solved	by	writing	the	following	program	in	a	script	file:

When	the	script	file	is	executed,	the	following	(the	value	of	the	variable	C2C4)	is	displayed
in	the	Command	Window:

Error	parsing	MathML:	error	on	line	1	at	column	761:	Namespace	prefix	m	on	mspace	is	not	defined

(1)

Sample	Problem	1-3:	Heat	transfer
An	object	with	an	initial	temperature	T0	of	that	is	placed	at	time	t	=	0	inside	a	chamber	that
has	a	constant	temperature	of	Ts	will	experience	a	temperature	change	according	to	the
equation

where	T	is	the	temperature	of	the	object	at	time	t,	and	k	is	a	constant.	A	soda	can	at	a
temperature	of	120°	F	(after	being	left	in	the	car)	is	placed	inside	a	refrigerator	where	the
temperature	is	38°	F.	Determine,	to	the	nearest	degree,	the	temperature	of	the	can	after
three	hours.	Assume	k	=	0.45.	First	define	all	of	the	variables	and	then	calculate	the
temperature	using	one	MATLAB	command.

Solution
The	problem	is	solved	by	typing	the	following	commands	in	the	Command	Window.

Sample	Problem	1-4:	Compounded	interest
The	balance	B	of	a	savings	account	after	t	years	when	a	principal	P	is	invested	at	an
annual	interest	rate	r	and	the	interest	is	compounded	n	times	a	year	is	given	by:

If	the	interest	is	compounded	yearly,	the	balance	is	given	by:

(2)

Suppose	$5,000	is	invested	for	17	years	in	one	account	for	which	the	interest	is
compounded	yearly.	In	addition,	$5,000	is	invested	in	a	second	account	in	which	the
interest	is	compounded	monthly.	In	both	accounts	the	interest	rate	is	8.5%.	Use	MATLAB
to	determine	how	long	(in	years	and	months)	it	would	take	for	the	balance	in	the	second
account	to	be	the	same	as	the	balance	of	the	first	account	after	17	years.

Solution
Follow	these	steps:

(a)	Calculate	B	for	$5,000	invested	in	a	yearly	compounded	interest	account	after	17
years	using	Equation	(2).

(b)	Calculate	t	for	the	B	calculated	in	part	(a),	from	the	monthly	compounded	interest
formula,	Equation	(1).

(c)	Determine	the	number	of	years	and	months	that	correspond	to	t.

The	problem	is	solved	by	writing	the	following	program	in	a	script	file:

When	the	script	file	is	executed,	the	following	(the	values	of	the	variables	B,	t,	years,	and
months)	is	displayed	in	the	Command	Window:

1.10	PROBLEMS
The	following	problems	can	be	solved	by	writing	commands	in	the	Command	Window	or	by
writing	a	program	in	a	script	file	and	then	executing	the	file.

1.	Calculate:

(a)	  	

(b)	  	

2.	Calculate:

(a)	 	

(b)	 	

3.	Calculate:

(a)	 	

(b)	 	

4.	Calculate:

(a)	 	

(b)	  	

5.	Calculate:

(a)	  	

(b)	 	

6.	Define	the	variable	z	as	z	=	4.5;	then	evaluate:

(a)	 	

(b)	 	

7.	Define	the	variable	t	as	t	=	3.2;	then	evaluate:

(a)	 	

(b)	 	

8.	Define	the	variables	x	and	y	as	x	=	6.5	and	y	=	3.8;	then	evaluate:

(a)	 	

(b)	 	

9.	Define	the	variables	a,	b,	c,	and	d	as:

c	=	4.6,	d	=	1.7,	a	=	cd2,	and	 	 	then	evaluate:

(a)
	

(b)	 	

10.	Two	trigonometric	identities	are	given	by:

(a)	 	

(b)	 	

For	each	part,	verify	that	the	identity	is	correct	by	calculating	the	values	of	the	left	and
right	sides	of	the	equation,	substituting	x	=	π	/	10.

11.	Two	trigonometric	identities	are	given	by:

(a)	 	

(b)	 	

For	each	part,	verify	that	the	identity	is	correct	by	calculating	the	values	of	the	left	and
right	sides	of	the	equation,	substituting	x	=	20°.

12.	Define	two	variables:	alpha	=	π/8,	and	beta	=	π/6.	Using	these	variables,	show	that	the
following	trigonometric	identity	is	correct	by	calculating	the	values	of	the	left	and	right	sides
of	the	equation.

Error	parsing	MathML:	error	on	line	1	at	column	37:	Namespace	prefix	m	on	mrow	is	not	defined

13.	Given:	 .	Use

MATLAB	to	calculate	the	following	definite	integral:	 	 .

14.	A	rectangular	box	has	the	dimensions	shown.

(a)	Determine	the	angle	BAC	to	the	nearest	degree.

(b)	Determine	the	area	of	the	triangle	ABC	to	the	nearest	tenth	of	a	centimeter.

Law	of	cosines:	c2	=	a2	+	b2	–	2ab	cos	γ

Heron’s	formula	for	triangular	area:

	where	
.

15.	The	arc	length	of	a	segment	of	a	parabola	ABC	is	given	by:

Determine	LABC	if	a=8	in.	and	h=13	in.

16.	The	three	shown	circles,	with	radius	15	in.,	10.5	in.,	and	4.5	in.,	are	tangent	to	each
other.

(a)	Calculate	the	angle	γ	(in	degrees)	by	using	the	law	of	cosines.

(Law	of	cosines:	c2	=	a2	+	b2	–	2ab	cos	γ)

(b)	Calculate	the	angles	γ	and	α	(in	degrees)	using	the	law	of	sines.

(c)	Check	that	the	sum	of	the	angles	is	180º.

17.	A	frustum	of	cone	is	filled	with	ice	cream	such	that	the	portion	above	the	cone	is	a
hemisphere.	Define	the	variables	di=1.25	in.,	d0=2.25	in.,	h=2	in.,	and	determine	the	volume
of	the	ice	cream.

18.	In	the	triangle	shown	a	=	27	in.,	b	=	43	in.,	and	c	=	57	in.	Define	a,	b,	and	c	as
variables,	and	then:

(a)	Calculate	the	angles	α,	β,	and	γ	by	substituting	the	variables	in	the	law	of	cosines.

(Law	of	cosines:	c2	=	a2	+	b2	–	2ab	cos	γ)

(b)	Verify	the	law	of	tangents	by	substituting	the	results	into	the	right	and	left	sides	of:

19.	For	the	triangle	shown,	α	=	72°,	β	=	43°,	and	its	perimeter	is	p	=	114	mm.	Define	α,	β,
and	p,	as	variables,	and	then:

(a)	Calculate	the	triangle	sides	(Use	the	law	of	sines).

(b)	Calculate	the	radius	r	of	the	circle	inscribed	in	the	triangle	using	the	formula:

where	s	=	(a	+	b	+	c)	/	2.

20.	The	distance	d	from	a	point	P	(xp,	yp	,zp)	to	the	line	that	passes	through	the	two	points
A	(xA,	yA,	zA)	and	B	(xB,	yB,	zB)	can	be	calculated	by	d	=	2S	/	r	where	r	is	the	distance

between	the	points	A	and	B,	given	by	

	and	S	is	the	area	of	the	triangle	defined	by	the	three	points

calculated	by	 	where	

.	Determine	the	distance	of	point	P	(2,	6,	–1)	from	the
line	that	passes	through	point	A(–2,	–1.5,	–3)	and	point	B(–2.5,	6,4).	First	define	the
variables	xP,	yP,	zP,	xA,	yA,	zA,	xB,	yB,	and	zB,	and	then	use	the	variable	to	calculate	s1,	s2,
s3,	and	r.	Finally	calculate	S	and	d.

21.	The	perimeter	of	an	ellipse	can	be	approximated	by:

Calculate	the	perimeter	of	an	ellipse	with	a	=	18	in.	and	b	=	7	in.

22.	A	total	of	4217	eggs	have	to	be	packed	in	boxes	that	can	hold	36	eggs	each.	By	typing
one	line	(command)	in	the	Command	Window,	calculate	how	many	eggs	will	remain

unpacked	if	every	box	that	is	used	has	to	be	full.	(Hint:	Use	MATLAB	built-in	function	fix.)

23.	A	total	of	777	people	have	to	be	transported	using	buses	that	have	46	seats	and	vans
that	have	12	seats.	Calculate	how	many	buses	are	needed	if	all	the	buses	have	to	be	full,
and	how	many	seats	will	remain	empty	in	the	vans	if	enough	vans	are	used	to	transport	all
the	people	that	did	not	fit	into	the	buses.	(Hint:	Use	MATLAB	built-in	functions	fix	and	ceil.)

24.	Change	the	display	to	format	long	g.	Assign	the	number	7E8/13	to	a	variable,	and	then
use	the	variable	in	a	mathematical	expression	to	calculate	the	following	by	typing	one
command:

(a)	Round	the	number	to	the	nearest	tenth.

(b)	Round	the	number	to	the	nearest	million.

25.	The	voltage	difference	Vab	between	points	a	and	b	in	the	Wheatstone	bridge	circuit	is
given	by:

where	c	=	R2	/	R1	and	d	=	R3	/	R4.	Calculate	the	Vab	if	V	=	15	V,	R1	=	119.8	Ω,	R2	=	120.5
Ω,	R3	=	121.2	Ω,	and	R4	=	119.3	Ω

26.	The	current	in	a	series	RCL	circuit	is	given	by:

where	ω	=	2πf.	Calculate	I	for	the	circuit	shown	if	the	supply	voltage	is	80	V,	f	=	50	Hz,	R	=
6	Ω,	L	=	400	×10–3	H,	and	C	=	40	×	10–6	F.

27.	The	monthly	payment	M	of	a	mortgage	P	for	n	years	with	a	fixed	annual	interest	rate	r
can	be	calculated	by	the	formula:

Determine	the	monthly	payment	of	a	30-year	$450,000	mortgage	with	interest	rate	of	4.2%
(r	=	0.042).	Define	the	variables	P,	r,	and	n	and	then	use	them	in	the	formula	to	calculate	M.

28.	The	number	of	permutations	nPr	of	taking	r	objects	out	of	n	objects	without	repetition	is
given	by:

(a)	Determine	how	many	six-letter	passwords	can	be	formed	from	the	26	letters	in	the
English	alphabet	if	a	letter	can	only	be	used	once.

(b)	How	many	passwords	can	be	formed	if	the	digits	0,	1,	2,	...,	9	can	be	used	in
addition	to	the	letters.

29.	The	number	of	combinations	Cn,r	of	taking	r	objects	out	of	n	objects	is	given	by:

In	the	Powerball	lottery	game	the	player	chooses	five	numbers	from	1	through	59,	and	then
the	Powerball	number	from	1	through	35.

Determine	how	many	combinations	are	possible	by	calculating	C59,5	C35,1.	(Use	the	built-in
function	factorial.)

30.	The	equivalent	resistance	of	two	resistors	R1	and	R2	connected	in	parallel	is	given	by	

.	The	equivalent	resistance	of	two	resistors	R1	and	R2	connected	in
series	is	given	by	Req	=	R1	+	R2.	Determine	the	equivalent	resistance	of	the	four	resistors	in
the	circuit	shown	in	the	figure.

31.	The	output	voltage	Vout	in	the	circuit	shown	is	given	by	(Millman’s	theorem):

Calculate	Vout	given	V1	=	36,	V,	V2	=	28	V,	V3	=	24	V,	R1	=	400	Ω,	R2	=	200	Ω,	R3	=	600	Ω.

32.	Radioactive	decay	of	carbon-14	is	used	for	estimating	the	age	of	organic	material.	The
decay	is	modeled	with	the	exponential	function	     ,	where	t	is

time,	f(0)	is	the	amount	of	material	at	t	=	0,	f(t)	is	the	amount	of	material	at	time	t,	and	k	is	a
constant.	Carbon-14	has	a	half-life	of	approximately	5,730	years.	A	sample	taken	from	the
ancient	footprints	of	Acahualinca	in	Nicaragua	shows	that	77.45%	of	the	initial	(t	=	0)
carbon-14	is	present.	Determine	the	estimated	age	of	the	footprint.	Solve	the	problem	by
writing	a	program	in	a	script	file.	The	program	first	determines	the	constant	k,	then
calculates	t	for	f(t)	=	0.7745	f(0),	and	finally	rounds	the	answer	to	the	nearest	year.

33.	The	greatest	common	divisor	is	the	largest	positive	integer	that	divides	the	numbers
without	a	remainder.	For	example,	the	greatest	common	divisor	of	8	and	12	is	4.	Use	the
MATLAB	Help	Window	to	find	a	MATLAB	built-in	function	that	determines	the	greatest
common	divisor	of	two	numbers.	Then	use	the	function	to	show	that	the	greatest	common
divisor	of:

(a)	91	and	147	is	7.

(b)	555	and	962	is	37.

34.	The	amount	of	energy	E	(in	joules)	that	is	released	by	an	earthquake	is	given	by:

where	M	is	the	magnitude	of	the	earthquake	on	the	Richter	scale.

(a)	Determine	the	energy	that	was	released	from	the	Anchorage	earthquake	(1964,
Alaska,	USA),	magnitude	9.2.

(b)	The	energy	released	in	Lisbon	earthquake	(Portugal)	in	1755	was	onehalf	the	energy
released	in	the	Anchorage	earthquake.	Determine	the	magnitude	of	the	earthquake	in
Lisbon	on	the	Richter	scale.

35.	According	to	the	Doppler	effect	of	light,	the	perceived	wavelength	λp	of	a	light	source
with	a	wavelength	of	λs	of	is	given	by:

where	c	is	the	speed	of	light	(about	300	×106	m/s)	and	v	is	the	speed	the	observer	moves
toward	the	light	source.	Calculate	the	speed	the	observer	has	to	move	in	order	to	see	a	red
light	as	green.	Green	wavelength	is	530	nm	and	red	wavelength	is	630	nm.

36.	Newton’s	law	of	cooling	gives	the	temperature	T(t)	of	an	object	at	time	t	in	terms	of	T0,
its	temperature	at	t	=	0	,	and	Ts,	the	temperature	of	the	surroundings.

A	police	officer	arrives	at	a	crime	scene	in	a	hotel	room	at	9:18	PM,	where	he	finds	a	dead
body.	He	immediately	measures	the	body’s	temperature	and	finds	it	to	be	79.5ºF.	Exactly
one	hour	later	he	measures	the	temperature	again	and	finds	it	to	be	78.0ºF.	Determine	the
time	of	death,	assuming	that	victim	body	temperature	was	normal	(98.6ºF)	prior	to	death
and	that	the	room	temperature	was	constant	at	69ºF.

37.	The	velocity	v	and	the	falling	distance	d	as	a	function	of	time	of	a	skydiver	that
experience	the	air	resistance	can	be	approximated	by:

where	k	=	0.24	kg/m	is	a	constant,	m	is	the	skydiver	mass,	g	=	9.81	m/s2	is	the
acceleration	due	to	gravity,	and	t	is	the	time	in	seconds	since	the	skydiver	starts	falling.
Determine	the	velocity	and	the	falling	distance	at	t	=	8	s	for	a	95-kg	skydiver

38.	Use	the	Help	Window	to	find	a	display	format	that	displays	the	output	as	a	ratio	of
integers.	For	example,	the	number	3.125	will	be	displayed	as	25/8.	Change	the	display	to
this	format	and	execute	the	following	operations:

(a)	

(b)	

39.	Gosper’s	approximation	for	factorials	is	given	by:

Use	the	formula	for	calculating	19!.	Compare	the	result	with	the	true	value	obtained	with
MATLAB’s	built-in	function	factorial	by	calculating	the	error	(Error=(TrueVal-
ApproxVal)/TrueVal).

40.	According	to	Newton’s	law	of	universal	gravitation,	the	attraction	force	between	two
bodies	is	given	by:

where	m1	and	m2	are	the	masses	of	the	bodies,	r	is	the	distance	between	the	bodies,	and
G	=	6.67	×10–11	N-m2/kg2	is	the	universal	gravitational	constant.	Determine	how	many	times
the	attraction	force	between	the	sun	and	the	Earth	is	larger	than	the	attraction	force
between	the	Earth	and	the	moon.	The	distance	between	the	sun	and	Earth	is	149	×109	m,
the	distance	between	the	moon	and	Earth	is	384.4	×106	m,	mEarth	=	5.98	×	1028	kg,	msun	=
2.0	×	1030	kg,	and	mmoon	=	7.36	×	1022	kg.

CHAPTER	2
CREATING	ARRAYS
The	array	is	a	fundamental	form	that	MATLAB	uses	to	store	and	manipulate	data.	An	array	is	a
list	of	numbers	arranged	in	rows	and/or	columns.	The	simplest	array	(one-dimensional)	is	a	row
or	a	column	of	numbers.	A	more	complex	array	(two-dimensional)	is	a	collection	of	numbers
arranged	in	rows	and	columns.	One	use	of	arrays	is	to	store	information	and	data,	as	in	a
table.	In	science	and	engineering,	one-dimensional	arrays	frequently	represent	vectors,	and
two-dimensional	arrays	often	represent	matrices.	This	chapter	shows	how	to	create	and
address	arrays,	and	Chapter	3	shows	how	to	use	arrays	in	mathematical	operations.	In
addition	to	arrays	made	of	numbers,	arrays	in	MATLAB	can	also	be	a	list	of	characters,	which
are	called	strings.	Strings	are	discussed	in	Section	2.10.

2.1	CREATING	A	ONE-DIMENSIONAL	ARRAY	(VECTOR)
A	one-dimensional	array	is	a	list	of	numbers	arranged	in	a	row	or	a	column.	One	example	is	the
representation	of	the	position	of	a	point	in	space	in	a	three-dimensional	Cartesian	coordinate
system.	As	shown	in	Figure	2-1,	the	position	of	point	A	is	defined	by	a	list	of	the	three	numbers
2,	4,	and	5,	which	are	the	coordinates	of	the	point.

The	position	of	point	A	can	be	expressed	in	terms	of	a	position	vector:

where	i,	j,	and	k	are	unit	vectors	in	the	direction	of	the	x,	y,	and	z	axes,	respectively.	The
numbers	2,	4,	and	5	can	be	used	to	define	a	row	or	a	column	vector.

Any	list	of	numbers	can	be	set	up	as	a	vector.	For	example,	Table	2-1	contains	population
growth	data	that	can	be	used	to	create	two	lists	of	numbers—one	of	the	years	and	the	other	of
the	population	values.	Each	list	can	be	entered	as	elements	in	a	vector	with	the	numbers	placed
in	a	row	or	in	a	column.

Figure	2-1:	Position	of	a	point.

TABLE	2-1:

Population	data
Year 1984 1986 1988 1990 1992 1994 1996
Population	(millions) 127 130 136 145 158 178 211

In	MATLAB,	a	vector	is	created	by	assigning	the	elements	of	the	vector	to	a	variable.	This	can
be	done	in	several	ways	depending	on	the	source	of	the	information	that	is	used	for	the
elements	of	the	vector.	When	a	vector	contains	specific	numbers	that	are	known	(like	the
coordinates	of	point	A),	the	value	of	each	element	is	entered	directly.	Each	element	can	also	be
a	mathematical	expression	that	can	include	predefined	variables,	numbers,	and	functions.
Often,	the	elements	of	a	row	vector	are	a	series	of	numbers	with	constant	spacing.	In	such
cases	the	vector	can	be	created	with	MATLAB	commands.	A	vector	can	also	be	created	as	the
result	of	mathematical	operations	as	explained	in	Chapter	3.

Creating	a	vector	from	a	known	list	of	numbers:

The	vector	is	created	by	typing	the	elements	(numbers)	inside	square	brackets	[].

Row	vector:	To	create	a	row	vector	type	the	elements	with	a	space	or	a	comma	between	the
elements	inside	the	square	brackets.

Column	vector:	To	create	a	column	vector	type	the	left	square	bracket	[and	then	enter	the
elements	with	a	semicolon	between	them,	or	press	the	Enter	key	after	each	element.	Type	the
right	square	bracket]	after	the	last	element.

Tutorial	2-1	shows	how	the	data	from	Table	2-1	and	the	coordinates	of	point	A	are	used	to
create	row	and	column	vectors.

Tutorial	2-1:	Creating	vectors	from	given	data.

Creating	a	vector	with	constant	spacing	by	specifying	the	first	term,	the	spacing,	and	the	last
term:

In	a	vector	with	constant	spacing,	the	difference	between	the	elements	is	the	same.	For
example,	in	the	vector	v	=	2	4	6	8	10,	the	spacing	between	the	elements	is	2.	A	vector	in	which
the	first	term	is	m,	the	spacing	is	q,	and	the	last	term	is	n	is	created	by	typing:

Some	examples	are:

	If	the	numbers	m,	q,	and	n	are	such	that	the	value	of	n	cannot	be	obtained	by	adding	q’s	to
m,	then	(for	positive	n)	the	last	element	in	the	vector	will	be	the	last	number	that	does	not
exceed	n.

If	only	two	numbers	(the	first	and	the	last	terms)	are	typed	(the	spacing	is	omitted),	then	the
default	for	the	spacing	is	1.

Creating	a	vector	with	linear	(equal)	spacing	by	specifying	the	first	and	last	terms,	and	the
number	of	terms:

A	vector	with	n	elements	that	are	linearly	(equally)	spaced	in	which	the	first	element	is	xi	and
the	last	element	is	xf	can	be	created	by	typing	the	linspace	command	(MATLAB	determines
the	correct	spacing):

When	the	number	of	elements	is	omitted,	the	default	is	100.	Some	examples	are:

2.2	CREATING	A	TWO-DIMENSIONAL	ARRAY	(MATRIX)
A	two-dimensional	array,	also	called	a	matrix,	has	numbers	in	rows	and	columns.	Matrices	can
be	used	to	store	information	like	the	arrangement	in	a	table.	Matrices	play	an	important	role	in
linear	algebra	and	are	used	in	science	and	engineering	to	describe	many	physical	quantities.

In	a	square	matrix	the	number	of	rows	and	the	number	of	columns	is	equal.	For	example,	the
matrix

is	square,	with	three	rows	and	three	columns.	In	general,	the	number	of	rows	and	columns	can
be	different.	For	example,	the	matrix:

has	four	rows	and	six	columns.	A	m	×	n	matrix	has	m	rows	and	n	columns,	and	m	by	n	is	called
the	size	of	the	matrix.

A	matrix	is	created	by	assigning	the	elements	of	the	matrix	to	a	variable.	This	is	done	by	typing
the	elements,	row	by	row,	inside	square	brackets	[].	First	type	the	left	bracket	[then	type	the
first	row,	separating	the	elements	with	spaces	or	commas.	To	type	the	next	row	type	a
semicolon	or	press	Enter.	Type	the	right	bracket]	at	the	end	of	the	last	row.

The	elements	that	are	entered	can	be	numbers	or	mathematical	expressions	that	may	include
numbers,	predefined	variables,	and	functions.	All	the	rows	must	have	the	same	number	of
elements.	If	an	element	is	zero,	it	has	to	be	entered	as	such.	MATLAB	displays	an	error
message	if	an	attempt	is	made	to	define	an	incomplete	matrix.	Examples	of	matrices	defined	in
different	ways	are	shown	in	Tutorial	2-2.

Tutorial	2-2:	Creating	matrices.

