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PREFACE

The 11th edition of Biostatistics: A Foundation for the Analysis in the Health Sciences was

prepared to meet the needs of students who may be using the book as a text in a course, and

for professionals who may need a handy desk reference for basic, but widely used, statistical

procedures in their applied work. For undergraduates, several chapters in this edition introduce

concepts to students who are taking a �rst, generally junior-level or senior-level, course in statis-

tics as part of their pre professional, nursing, or public health education. For beginning graduate

students, both introductory chapters and more advanced topics in the text are suitable for master’s

students in health professions.

The breadth of coverage in the text is much more than may be generally covered in a

one-semester course. This coverage, along with hundreds of practical and speci�c subject-matter

exercises, allows instructors extensive �exibility in designing a course at various levels. We have

developed some ideas on appropriate topical coverage based on our own use of this text in the

classroom, and we present a matrix below in that regard.

As with previous editions of this book, the 11th edition requires little mathematical knowledge

beyond college algebra. However, as many instructors will attest, it is not uncommon for students

to lack solid pro�ciency in algebra prior to taking a statistics course. Our experience suggests

that spending some time showing basic, algebraic manipulations of the formulas in the book goes

a long way in quelling fears with mathematics that may easily undermine a statistics course.

We have attempted to maintain an emphasis on practical and intuitive understanding of principles

rather than on abstract concepts, andwe thereforemaintain a reliance on problem-solving utilizing

examples and practice problems that are drawn largely from the health sciences literature instead

of contrived problems, which makes the text more practical and less abstract. We believe that

this makes the text more interesting for students, and more useful for health professionals who

reference the text while performing their work duties.

There is no doubt that technological sophistication has changed how we teach and how we

apply statistics professionally. The use of hand calculations can be a useful way to develop an

understanding of how formulas work, and they also lead to an appreciation of underlying assump-

tions that need to be considered. However, once basic skills are learned, it is often useful to

explore computer programs for dealing with large and/or real-world problem sets. Additionally,

the reliance on statistical tables, once necessary for �nding areas under curves, estimates of prob-

ability, and so on, has largely been replaced by ef�cient computer algorithms readily available

to students and practitioners. To that end, you will �nd example outputs from MINITAB, SAS,

SPSS, R, JASP, EXCEL, and others in the text. We do not endorse the use of any particular pro-

gram, but simply note that many are available and both students and professionals will need to

have some facility using the program of their choice. Additionally, we generally only provide out-

puts and explanation regarding programs, not instruction on their use, as there are many books

dedicated to providing stepwise user guides for various programs.

Changes and Updates to This Edition

Many changes and updates have been made to this edition. We have attempted to incorporate

corrections and clari�cations that enhance the material presented in hopes of making the text

vii
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more readable and accessible to the audience. We thank the reviewers of the many editions of

this text for making useful comments and suggestions that have found their way into the new

edition. Of course, there are always ways to improve and enhance, and we welcome comments

and suggestions.

Speci�c changes to this edition include: (1) a newly rewritten introduction to the scienti�c

method in Chapter 1; (2) a rearranged and rewritten Chapter 2 that now includes a section on data

visualization and graphing; (3) an introduction to hypothesis testing and controversies surround-

ing p values in Chapter 7; (4) a brief introduction to Poisson regression in Chapter 11; (5) testing

or dependent proportions using McNemar’s Test in Chapter 12; and (6) the use of randomization

procedures, including permutation-based p values and bootstrap con�dence intervals, has been

integrated throughout the text.

Other changes have occurred as well. Numerous changes to writing and phrasing have occurred

to enhance clarity throughout the text. Also, by popular demand, we have integrated some R

scripting ideas throughout many chapters for those using that particular software. Finally, for

the bene�t of instructors, we have provided some “Instructor-only” problems that will be made

available to adopters of the text to use in their courses. Finally, the statistical tables are readily

available through your instructor. Inasmuch as some professionals and professors still use tables,

we believe it is important to retain access to them, andwe continue to provide examples of their use

in the current edition; however, we also show alternatives to tabled probabilities using computer

programs.

Coverage Ideas

In the table below, we provide some suggestions for topical coverage in a variety of contexts, with

“X” indicating those chapters we believe are most relevant for a variety of courses for which we

believe this text is appropriate. As mentioned above, the text is designed to be �exible in order to

accommodate various teaching styles and course presentations. Although the text is designed with

progressive presentation of concepts in mind, certain topics may be skipped or brie�y reviewed

so that instructors may focus on concepts most useful for their courses.

Chapters (X: Suggested coverage;

O: Optional coverage)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Undergraduate course for health

sciences students

X X X X X X X X X O O X O O O

Graduate course for beginning

health sciences master’s students

X X X X X X X X X X O X X X O

Graduate course for graduate health

sciences students who have

completed an introductory

statistics course

X O O O O X X X X X X X X X X

Supplements

Several supplements are available for the text on the instructor’s website at www.wiley.com/go/

Daniel/Biostatistics11e. These include:

• Instructor’s Solution Manual, available only to instructors who have adopted the text.
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• Data Sets, over 200 data sets are available to be downloaded in CSV format for ready import-

ing into any basic statistics program.
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1
Introduction to Biostatistics

CHAPTER OVERVIEW

This chapter is intended to provide an overview of the basic statistical concepts and
definitions used throughout the textbook. A course in statistics requires the student to
learn new and specific terminology. Therefore, this chapter lays the foundation neces-
sary for understanding basic statistical terms and concepts and the role that statisticians
play in promoting scientific discovery.

TOPICS

1.1 Introduction

1.2 Basic Concepts and De�nitions

1.3 Measurement andMeasurement Scales

1.4 Sampling and Statistical Inference

1.5 �e Scienti�c Method

1.6 Computers and Technology

1.7 Summary

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the basic concepts and terminology of biostatistics, including types of
variables, measurement, and measurement scales.

2. be able to select a simple random sample and other scientific samples from a
population of subjects.

3. understand the processes involved in the scientific method.

4. appreciate the advantages of using computers in the statistical analysis of data
generated by studies and experiments conducted by researchers in the health
sciences.

1



2 INTRODUCTION TO BIOSTATISTICS

1.1 Introduction
We are frequently reminded of the fact that we are living in the information age. Appropri-

ately, then, this book is about information—how it is obtained, how it is analyzed, and how it is

interpreted. The information about which we are concerned we call data, and the data are available

to us in the form of numbers or in other non numerical forms that can be analyzed.

The objectives of this book are twofold: (1) to teach the student to organize and summarize

data and (2) to teach the student how to reach decisions about a large body of data by examin-

ing only a small part of it. The concepts and methods necessary for achieving the �rst objective

are presented under the heading of descriptive statistics, and the second objective is reached

through the study of what is called inferential statistics. This chapter discusses descriptive statis-

tics. Chapters 2 through 5 discuss topics that form the foundation of statistical inference, and most

of the remainder of the book deals with inferential statistics.

Because this volume is designed for persons preparing for or already pursuing a career in the

health �eld, the illustrative material and exercises re�ect the problems and activities that these

persons are likely to encounter in the performance of their duties.

1.2 Basic Concepts and De�nitions
Like all �elds of learning, statistics has its own vocabulary. Some of the words and phrases

encountered in the study of statistics will be new to those not previously exposed to the subject.

Other terms, though appearing to be familiar, may have specialized meanings that are differ-

ent from the meanings that we are accustomed to associating with these terms. The following are

some common terms that we will use extensively in this book; others will be added as we progress

through the material.

Data

The raw material of statistics is data. For our purposes, we may de�ne data as numbers. The two

kinds of numbers that we use in statistics are numbers that result from the taking—in the usual

sense of the term—of a measurement, and those that result from the process of counting. For

example, when a nurse weighs a patient or takes a patient’s temperature, a measurement, con-

sisting of a number such as 150 pounds or 100 degrees Fahrenheit, is obtained. Quite a different

type of number is obtained when a hospital administrator counts the number of patients—perhaps

20—discharged from the hospital on a given day. Each of the three numbers is a datum, and the

three taken together are data. Data can also be understood to be non numerical, and may include

things such as text or other qualitative items. However, we will focus our interests in this text

largely on numerical data and their associated analyses.

Statistics

The meaning of statistics is implicit in the previous section. More concretely, however, we may

say that statistics is a �eld of study concerned with (1) the collection, organization, summariza-

tion, and analysis of data and (2) the drawing of inferences about a body of data when only a

part of the data is observed.

The person who performs these statistical activities must be prepared to interpret and to com-

municate the results to someone else as the situation demands. Simply put, we may say that

data are numbers, numbers contain information, and the purpose of statistics is to investigate and

evaluate the nature and meaning of this information.



1.2 Basic Concepts and De�nitions 3

Sources of Data

The performance of statistical activities is motivated by the need to answer a question. For

example, clinicians may want answers to questions regarding the relative merits of competing

treatment procedures. Administrators may want answers to questions regarding such areas of

concern as employee morale or facility utilization. When we determine that the appropriate

approach to seeking an answer to a question will require the use of statistics, we begin to search

for suitable data to serve as the raw material for our investigation. Such data are usually available

from one or more of the following sources:

1. Routinely kept records. It is dif�cult to imagine any type of organization that does

not keep records of day-to-day transactions of its activities. Hospital medical records, for

example, contain immense amounts of information on patients, while hospital accounting

records contain a wealth of data on the facility’s business activities. When the need for data

arises, we should look for them �rst among routinely kept records.

2. Surveys. If the data needed to answer a question are not available from routinely kept

records, the logical source may be a survey. Suppose, for example, that the administrator of

a clinic wishes to obtain information regarding the mode of transportation used by patients

to visit the clinic. If admission forms do not contain a question on mode of transportation,

we may conduct a survey among patients to obtain this information.

3. Experiments. Frequently, the data needed to answer a question are available only as

the result of an experiment. A nurse may wish to know which of several strategies is best

for maximizing patient compliance. The nurse might conduct an experiment in which the

different strategies of motivating compliance are tried with different patients. Subsequent

evaluation of the responses to the different strategies might enable the nurse to decide which

is most effective.

4. External sources. The data needed to answer a question may already exist in the form

of published reports, commercially available data banks, or the research literature. In other

words, we may �nd that someone else has already asked the same question, and the answer

obtained may be applicable to our present situation.

Biostatistics

The tools of statistics are employed in many �elds—business, education, psychology, agriculture,

and economics, to mention only a few. When the data analyzed are derived from the biological

sciences and medicine, we use the term biostatistics to distinguish this particular application of

statistical tools and concepts. This area of application is the concern of this book.

Variable

If, as we observe a characteristic, we �nd that it takes on different values in different persons,

places, or things, we label the characteristic a variable. We do this for the simple reason that the

characteristic is not the same when observed in different possessors of it. Some examples of

variables include diastolic blood pressure, heart rate, the heights of adult males, the weights

of preschool children, and the ages of patients seen in a dental clinic.

Quantitative Variables

A quantitative variable is one that can bemeasured in the usual sense.We can, for example, obtain

measurements on the heights of adult males, the weights of preschool children, and the ages of
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patients seen in a dental clinic. These are examples of quantitative variables. Measurements made

on quantitative variables convey information regarding amount.

Qualitative Variables

Some characteristics are not capable of being measured in the sense that height, weight, and age

are measured. Many characteristics can be categorized only, as, for example, when an ill person

is given a medical diagnosis, a person is designated as belonging to an ethnic group, or a person,

place, or object is said to possess or not to possess some characteristic of interest. In such cases,

measuring consists of categorizing. We refer to variables of this kind as qualitative variables.

Measurements made on qualitative variables convey information regarding an attribute.

Although, in the case of qualitative variables, measurement in the usual sense of the word is not

achieved, we can count the number of persons, places, or things belonging to various categories.

A hospital administrator, for example, can count the number of patients admitted during a day

under each of the various admitting diagnoses. These counts, or frequencies as they are called,

are the numbers that we manipulate when our analysis involves qualitative variables.

Random Variable

Whenever we determine the height, weight, or age of an individual, the result is frequently referred

to as a value of the respective variable.When the values obtained arise as a result of chance factors,

so that they cannot be exactly predicted in advance, the variable is called a random variable. An

example of a random variable is adult height. When a child is born, we cannot predict exactly his

or her height at maturity. Attained adult height is the result of numerous genetic and environmental

factors. Values resulting from measurement procedures are often referred to as observations or

measurements.

Discrete Random Variable

Variables may be characterized further as to whether they are discrete or continuous. Since math-

ematically rigorous de�nitions of discrete and continuous variables are beyond the level of this

book, we offer, instead, nonrigorous de�nitions and give an example of each.

A discrete variable is characterized by gaps or interruptions in the values that it can assume.

These gaps or interruptions indicate the absence of values between particular values that the vari-

able can assume. Some examples illustrate the point. The number of daily admissions to a general

hospital is a discrete random variable since the number of admissions each day must be repre-

sented by a whole number, such as 0, 1, 2, or 3. The number of admissions on a given day cannot

be a number such as 1.5, 2.997, or 3.333. The number of decayed, missing, or �lled teeth per

child in an elementary school is another example of a discrete variable.

Continuous Random Variable

A continuous random variable does not possess the gaps or interruptions characteristic of a dis-

crete random variable. A continuous random variable can assume any value within a speci�ed

relevant interval of values assumed by the variable. Examples of continuous variables include the

various measurements that can be made on individuals such as height, weight, and skull circum-

ference. No matter how close together the observed heights of two people, for example, we can,

theoretically, �nd another person whose height falls somewhere in between.
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Because of the limitations of available measuring instruments, however, observations on vari-

ables that are inherently continuous are recorded as if they were discrete. Height, for example,

is usually recorded to the nearest one-quarter, one-half, or whole inch, whereas, with a perfect

measuring device, such a measurement could be made as precise as desired. Therefore, in a non-

technical sense, continuity is limited only by our ability to precisely measure it.

Population

The average person thinks of a population as a collection of entities, usually people. A population

or collection of entities may, however, consist of animals, machines, places, or cells. For our

purposes, we de�ne a population of entities as the largest collection of entities for which we have

an interest at a particular time. If we take a measurement of some variable on each of the entities

in a population, we generate a population of values of that variable. We may, therefore, de�ne a

population of values as the largest collection of values of a random variable for which we have

an interest at a particular time. If, for example, we are interested in the weights of all the children

enrolled in a certain county elementary school system, our population consists of all theseweights.

If our interest lies only in the weights of �rst-grade students in the system, we have a different

population—weights of �rst-grade students enrolled in the school system. Hence, populations

are determined or de�ned by our sphere of interest. Populations may be �nite or in�nite. If a

population of values consists of a �xed number of these values, the population is said to be �nite.

If, on the other hand, a population consists of an endless succession of values, the population is

an in�nite one. An exact value calculated from a population is referred to as a parameter.

Sample

A sample may be de�ned simply as a part of a population. Suppose our population consists of

the weights of all the elementary school children enrolled in a certain county school system. If

we collect for analysis the weights of only a fraction of these children, we have only a part of our

population of weights, that is, we have a sample. An estimated value calculated from a sample is

referred to as a statistic.

1.3 Measurement andMeasurement Scales
In the preceding discussion, we used the word measurement several times in its usual sense,

and presumably the reader clearly understood the intended meaning. The word measurement,

however, may be given a more scienti�c de�nition. In fact, there is a whole body of scienti�c

literature devoted to the subject of measurement. Part of this literature is concerned also with the

nature of the numbers that result from measurements. Authorities on the subject of measurement

speak of measurement scales that result in the categorization of measurements according to their

nature. In this section, we de�ne measurement and the four resulting measurement scales. A more

detailed discussion of the subject is to be found in the writings of Stevens (1,2).

Measurement

This may be de�ned as the assignment of numbers to objects or events according to a set of rules.

The various measurement scales result from the fact that measurement may be carried out under

different sets of rules.
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�eNominal Scale

The lowest measurement scale is the nominal scale. As the name implies it consists of

“naming” observations or classifying them into various mutually exclusive and collectively

exhaustive categories. The practice of using numbers to distinguish among the various medical

diagnoses constitutes measurement on a nominal scale. Other examples include such dichotomies

as positive–negative, well–sick, under 65 years of age–65 and over, child–adult, and married–not

married.

�eOrdinal Scale

Whenever observations are not only different from category to category but can be ranked accord-

ing to some criterion, they are said to be measured on an ordinal scale. Convalescing patients

may be characterized as unimproved, improved, and much improved. Individuals may be clas-

si�ed according to socioeconomic status as low, medium, or high. The intelligence of children

may be above average, average, or below average. In each of these examples, the members of

any one category are all considered equal, but the members of one category are considered lower,

worse, or smaller than those in another category, which in turn bears a similar relationship to

another category. For example, a much improved patient is in better health than one classi�ed as

improved, while a patient who has improved is in better condition than one who has not improved.

It is usually impossible to infer that the difference between members of one category and the next

adjacent category is equal to the difference between members of that category and the members of

the next category adjacent to it. The degree of improvement between unimproved and improved is

probably not the same as that between improved and much improved. The implication is that if a

�ner breakdown were made resulting in more categories, these, too, could be ordered in a similar

manner. The function of numbers assigned to ordinal data is to order (or rank) the observations

from lowest to highest and, hence, the term ordinal.

�e Interval Scale

The interval scale is a more sophisticated scale than the nominal or ordinal in that with this scale

not only is it possible to order measurements, but also the distance between any twomeasurements

is known. We know, say, that the difference between a measurement of 20 and a measurement of

30 is equal to the difference between measurements of 30 and 40. The ability to do this implies

the use of a unit distance and a zero point, both of which are arbitrary. The selected zero point

is not necessarily a true zero in that it does not have to indicate a total absence of the quantity

being measured. Perhaps the best example of an interval scale is provided by the way in which

temperature is usually measured (degrees Fahrenheit or Celsius). The unit of measurement is

the degree, and the point of comparison is the arbitrarily chosen “zero degrees,” which does

not indicate a lack of heat. The interval scale unlike the nominal and ordinal scales is a truly

quantitative scale.

�eRatio Scale

The highest level of measurement is the ratio scale. This scale is characterized by the fact that

equality of ratios as well as equality of intervals may be determined. Fundamental to the ratio

scale is a true zero point. The measurement of such familiar traits as height, weight, and length

makes use of the ratio scale.
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1.4 Sampling and Statistical Inference
As noted earlier, one of the purposes of this book is to teach the concepts of statistical inference,

which we may de�ne as follows:

DEFINITION

Statistical inference is the procedure by which we reach a conclusion about a population on the

basis of the information contained in a sample that has been drawn from that population.

There are many kinds of samples that may be drawn from a population. Not every kind of

sample, however, can be used as a basis for making valid inferences about a population. In gen-

eral, in order to make a valid inference about a population, we need a scienti�c sample from the

population. There are also many kinds of scienti�c samples that may be drawn from a population.

The simplest of these is the simple random sample. In this section, we de�ne a simple random

sample and show you how to draw one from a population.

If we use the letter N to designate the size of a �nite population and the letter n to designate

the size of a sample, we may de�ne a simple random sample as follows:

DEFINITION

If a sample of size n is drawn from a population of sizeN in such a way that every possible sample

of size n has the same chance of being selected, the sample is called a simple random sample.

The mechanics of drawing a sample to satisfy the de�nition of a simple random sample is

called simple random sampling.

We will demonstrate the procedure of simple random sampling shortly, but �rst let us consider

the problem of whether to sample with replacement or without replacement. When sampling

with replacement is employed, every member of the population is available at each draw. For

example, suppose that we are drawing a sample from a population of former hospital patients

as part of a study of length of stay. Let us assume that the sampling involves selecting from the

electronic health records a sample of charts of discharged patients. In sampling with replacement

we would proceed as follows: select a chart to be in the sample, record the length of stay, and

close the electronic chart. The chart is back in the “population” and may be selected again on

some subsequent draw, in which case the length of stay will again be recorded. In sampling

without replacement, we would not record a length of stay for a patient whose chart was already

selected from the database. Following this procedure, a given chart could appear in the sample

only once. In practice, sampling is almost always done without replacement. The signi�cance

and consequences of this will be explained later, but �rst let us see how one goes about selecting

a simple random sample. To ensure true randomness of selection, we will need to follow some

objective procedure. We certainly will want to avoid using our own judgment to decide which

members of the population constitute a random sample. The following example illustrates one

method of selecting a simple random sample from a population.

EXAMPLE 1.4.1

Gold et al. (A-1) studied the effectiveness on smoking cessation of bupropion SR, a nicotine

patch, or both, when co administered with cognitive behavioral therapy. Consecutive consenting

patients assigned themselves to one of the three conditions. For illustrative purposes, let us
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consider all these subjects to be a population of size N = 189. We wish to select a simple random

sample of size 10 from this population whose ages are shown in Table 1.4.1.

Table 1.4.1 Ages of 189 Subjects Who Participated in a Study on Smoking

Cessation

Subject No. Age Subject No. Age Subject No. Age Subject No. Age

1 48 49 38 97 51 145 52

2 35 50 44 98 50 146 53

3 46 51 43 99 50 147 61

4 44 52 47 100 55 148 60

5 43 53 46 101 63 149 53

6 42 54 57 102 50 150 53

7 39 55 52 103 59 151 50

8 44 56 54 104 54 152 53

9 49 57 56 105 60 153 54

10 49 58 53 106 50 154 61

11 44 59 64 107 56 155 61

12 39 60 53 108 68 156 61

13 38 61 58 109 66 157 64

14 49 62 54 110 71 158 53

15 49 63 59 111 82 159 53

16 53 64 56 112 68 160 54

17 56 65 62 113 78 161 61

18 57 66 50 114 66 162 60

19 51 67 64 115 70 163 51

20 61 68 53 116 66 164 50

21 53 69 61 117 78 165 53

22 66 70 53 118 69 166 64

23 71 71 62 119 71 167 64

24 75 72 57 120 69 168 53

25 72 73 52 121 78 169 60

26 65 74 54 122 66 170 54

27 67 75 61 123 68 171 55

28 38 76 59 124 71 172 58

29 37 77 57 125 69 173 62

30 46 78 52 126 77 174 62

31 44 79 54 127 76 175 54

32 44 80 53 128 71 176 53

33 48 81 62 129 43 177 61

34 49 82 52 130 47 178 54

35 30 83 62 131 48 179 51

36 45 84 57 132 37 180 62
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Table 1.4.1 (Continued)

Subject No. Age Subject No. Age Subject No. Age Subject No. Age

37 47 85 59 133 40 181 57

38 45 86 59 134 42 182 50

39 48 87 56 135 38 183 64

40 47 88 57 136 49 184 63

41 47 89 53 137 43 185 65

42 44 90 59 138 46 186 71

43 48 91 61 139 34 187 71

44 43 92 55 140 46 188 73

45 45 93 61 141 46 189 66

46 40 94 56 142 48

47 48 95 52 143 47

48 49 96 54 144 43

Source: Data provided courtesy of Paul B. Gold, Ph.D.

SOLUTION: One way of selecting a simple random sample is to use a table of random num-

bers, which was very commonly done historically, or to use an online random number generator.

However, most statistical computer packages provide a way to select a sample of given size. For

example, using program R, we can create a sequence of numbers from 1 to 189, and call them

“subject” and then use the sample() function to randomly select 10 of them. One such output is

shown in Figure 1.4.1, with the output summarized in Table 1.4.2.

> subject <- seq(1,189,1)

> sample(subject,10)

[1] 151 106  61 119  44  88  75  68  20  94

FIGURE 1.4.1 Simple R program for selecting a sample of size 10 from 189 subjects.

Table 1.4.2 Sample of 10 Ages Drawn from the Ages in

Table 1.4.1

Random Number Sample Subject Number Age

151 1 50

106 2 50

61 3 58

119 4 71

44 5 79

88 6 57

75 7 61

68 8 53

20 9 61

94 10 56
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Thus we have drawn a simple random sample of size 10 from a population of size 189. In future

discussions, whenever the term simple random sample is used, it will be understood that the

sample has been drawn in this or an equivalent manner.

The preceding discussion of random sampling is presented because of the important role that

the sampling process plays in designing research studies and experiments. The methodology and

concepts employed in sampling processes will be described in more detail in Section 1.5.

DEFINITION

A research study is a scienti�c study of a phenomenon of interest. Research studies involve design-

ing sampling protocols, collecting and analyzing data, and providing valid conclusions based on

the results of the analyses.

DEFINITION

Experiments are a special type of research study in which observations are made after speci�c

manipulations of conditions have been carried out; they provide the foundation for scienti�c

research.

Despite the tremendous importance of random sampling in the design of research studies and

experiments, there are some occasions when random sampling may not be the most appropriate

method to use. Consequently, other sampling methods must be considered. The intention here is

not to provide a comprehensive review of sampling methods, but rather to acquaint the student

with two additional sampling methods that are often employed in the health sciences, systematic

sampling and strati�ed random sampling. Interested readers are referred to the books by Thomp-

son (3) and Levy and Lemeshow (4) for detailed overviews of various sampling methods and

explanations of how sample statistics are calculated when these methods are applied in research

studies and experiments.

Systematic Sampling

A sampling method that is widely used in health-care research is the systematic sample. Medical

records, which contain raw data used in health-care research, are generally stored in a �le system

or on a computer and hence are easy to select in a systematic way. Using systematic sampling

methodology, a researcher calculates the total number of records needed for the study or experi-

ment at hand. A random number is then chosen to use as a starting point for initiating sampling.

The record located at this starting point is called record x. A second number, determined by the

number of records desired, is selected to de�ne the sampling interval (call this interval k). Conse-

quently, the data set would consist of records x, x + k, x + 2k, x + 3k, and so on, until the necessary

number of records are obtained.

EXAMPLE 1.4.2

Continuing with the study of Gold et al. (A-1) illustrated in the previous example, imagine that we

wanted a systematic sample of 10 subjects from those listed in Table 1.4.1.
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SOLUTION: To obtain a starting point, we can employ the strategy from above using R and

simply select only one subject. Let us assume that the sample() function returned subject number

4, which will serve as our starting point, x. Since we are starting at subject 4, this leaves 185

remaining subjects (i.e., 189 − 4) from which to choose. Since we wish to select 10 subjects, one

method to define the sample interval, k, would be to take 185∕10 = 18.5. To ensure that there

will be enough subjects, it is customary to round this quotient down, and hence we will round the

result to 18. In this scenario, the samples would be 4, 4 + 18 = 22, 4 + 18(2) = 40, 4 + 18(3) = 58,

and so on. The resulting sample is shown in Table 1.4.3.

Table 1.4.3 Sample of 10 Ages Selected Using a

Systematic Sample from the Ages in Table 1.4.1

Systematically Selected Subject Number Age

4 44

22 66

40 47

58 53

76 59

94 56

112 68

130 47

148 60

166 64

Strati�ed Random Sampling

A common situation that may be encountered in a population under study is one in which the

sample units occur together in a grouped fashion. On occasion, when the sample units are not

inherently grouped, it may be possible and desirable to group them for sampling purposes. In

other words, it may be desirable to partition a population of interest into groups, or strata, in

which the sample units within a particular stratum are more similar to each other than they are to

the sample units that compose the other strata. After the population is strati�ed, it is customary to

take a random sample independently from each stratum. This technique is called strati�ed random

sampling. The resulting sample is called a strati�ed random sample. Although the bene�ts of

strati�ed random sampling may not be readily observable, it is most often the case that random

samples taken within a stratum will have much less variability than a random sample taken across

all strata. This is true because sample units within each stratum tend to have characteristics that

are similar.

EXAMPLE 1.4.3

Hospital trauma centers are given ratings depending on their capabilities to treat various traumas.

In this system, a level 1 trauma center is the highest level of available trauma care and a level

4 trauma center is the lowest level of available trauma care. Imagine that we are interested in

estimating the survival rate of trauma victims treated at hospitals within a large metropolitan

area. Suppose that the metropolitan area has a level 1, a level 2, and a level 3 trauma center. We
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wish to take samples of patients from these trauma centers in such a way that the total sample

size is 30.

SOLUTION: We assume that the survival rates of patients may depend quite significantly on

the trauma that they experienced and therefore on the level of care that they receive. As a result,

a simple random sample of all trauma patients, without regard to the center at which they were

treated, may not represent true survival rates, since patients receive different care at the various

trauma centers. One way to better estimate the survival rate is to treat each trauma center as a

stratum and then randomly select 10 patient files from each of the three centers. This procedure

is based on the fact that we suspect that the survival rates within the trauma centers are less

variable than the survival rates across trauma centers. Therefore, we believe that the stratified

random sample provides a better representation of survival than would a sample taken without

regard to differences within strata.

It should be noted that two slight modi�cations of the strati�ed sampling technique are fre-

quently employed. To illustrate, consider again the trauma center example. In the �rst place, a

systematic sample of patient �les could have been selected from each trauma center (stratum).

Such a sample is called a strati�ed systematic sample.

The second modi�cation of strati�ed sampling involves selecting the sample from a given

stratum in such a way that the number of sample units selected from that stratum is proportional

to the size of the population of that stratum. Suppose, in our trauma center example that the level

1 trauma center treated 100 patients and the level 2 and level 3 trauma centers treated only 10

each. In that case, selecting a random sample of 10 from each trauma center overrepresents the

trauma centers with smaller patient loads. To avoid this problem, we adjust the size of the sample

taken from a stratum so that it is proportional to the size of the stratum’s population. This type

of sampling is called strati�ed sampling proportional to size. The within-stratum samples can be

either random or systematic as described above.

Exercises

1.4.1 Using a table of random numbers or a computer program, select a new simple random

sample of size 10 from the data in Table 1.4.1. Record the ages of the subjects in this new

sample. Save your data for future use. What is the variable of interest in this exercise?

What measurement scale was used to obtain the measurements?

1.4.2 Select another simple random sample of size 10 from the population represented in

Table 1.4.1. Compare the subjects in this sample with those in the sample drawn in

Exercise 1.4.1. Are there any subjects who showed up in both samples? How many?

Compare the ages of the subjects in the two samples. How many ages in the �rst sample

were duplicated in the second sample?

1.4.3 Using a table of random numbers or a computer program, select a random sample and

a systematic sample, each of size 15, from the data in Table 1.4.1. Visually compare the

distributions of the two samples. Do they appear similar? Which appears to be the best

representation of the data?

1.4.4 Construct an example where it would be appropriate to use strati�ed sampling. Discuss

how you would use strati�ed random sampling and strati�ed sampling proportional to

size with this example. Which do you think would best represent the population that you

described in your example? Why?
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1.5 �e Scienti�c Method
Data analyses using a broad range of statistical methods play a signi�cant role in scienti�c studies.

The previous section highlighted the importance of obtaining samples in a scienti�c manner.

Appropriate sampling techniques enhance the likelihood that the results of statistical analyses of

a data set will provide valid and scienti�cally defensible results. Because of the importance of the

proper collection of data to support scienti�c discovery, it is necessary to consider the foundation

of such discovery—the scienti�c method—and to explore the role of statistics in the context of

this method.

DEFINITION

The scienti�c method is a process by which scienti�c information is collected, analyzed, and

reported in order to produce unbiased and replicable results in an effort to provide an accurate

representation of observable phenomena.

The scienti�c method is recognized universally as the only truly acceptable way to produce

new scienti�c understanding of the world around us. It is based on an empirical approach, in that

decisions and outcomes are based on data. There are several key elements associated with the

scienti�c method, and the concepts and techniques of statistics play a prominent role in all these

elements. The Scienti�c Method is illustrated in Figure 1.5.1.

Observations and Question Formation

First, an observation is made of a phenomenon or a group of phenomena. This observation leads to

the formulation of questions or uncertainties that can be answered in a scienti�cally rigorous way.

For example, it is readily observable that regular exercise reduces body weight in many people.

It is also readily observable that changing diet may have a similar effect. In this case, there are

two observable phenomena, regular exercise and diet change, that have the same endpoint. The

nature of this endpoint can be determined by use of the scienti�c method.

Observations &

Question

Formation

Formulating

Hypotheses 

Experiment &

Data Collection
Analysis

Results &

Conclusions 

FIGURE 1.5.1 An illustration of the

Scienti�c Method.
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Formulating Hypotheses

In the second step of the scienti�c method, a hypothesis is formulated to explain the observa-

tion and to make quantitative predictions of new observations. Often hypotheses are generated

as a result of extensive background research and literature reviews. The objective is to produce

hypotheses that are scienti�cally sound. Hypotheses may be stated as either research hypotheses

or statistical hypotheses. Explicit de�nitions of these terms are given in Chapter 7, which dis-

cusses the science of testing hypotheses. Suf�ce it to say for now that a research hypothesis from

the weight-loss example would be a statement such as “Exercise appears to reduce body weight.”

There is certainly nothing incorrect about this conjecture, but it lacks a truly quantitative basis

for testing. A statistical hypothesis may be stated using quantitative terminology as follows: “The

average (mean) loss of body weight of people who exercise is greater than the average (mean)

loss of body weight of people who do not exercise.” In this statement a quantitative measure, the

“average” or “mean” value, is hypothesized to be greater in the sample of patients who exercise.

The role of the statistician in this step of the scienti�c method is to state the hypothesis in a way

that valid conclusions may be drawn and to interpret correctly the results of such conclusions.

Experiment and Data Collection

The third step of the scienti�c method involves designing an experiment that will yield the data

necessary to validly test an appropriate statistical hypothesis. This step of the scienti�c method,

like that of data analysis, requires the expertise of a statistician. Improperly designed experiments

are the leading cause of invalid results and unjusti�ed conclusions. Further, most studies that are

challenged by experts are challenged on the basis of the appropriateness or inappropriateness of

the study’s research design, which can lead to a nonreproducible result.

Those who properly design research experiments make every effort to ensure that the measure-

ment of the phenomenon of interest is both accurate and precise.Accuracy refers to the correctness

of a measurement. Precision, on the other hand, refers to the consistency of a measurement. It

should be noted that in the social sciences, the term validity is sometimes used to mean accu-

racy and that reliability is sometimes used to mean precision. In the context of the weight-loss

example given earlier, the scale used to measure the weight of study participants would be accu-

rate if the measurement is validated using a scale that is properly calibrated. If, however, the scale

is off by +3 pounds, then each participant’s weight would be 3 pounds heavier; the measurements

would be precise in that each would be wrong by +3 pounds, but the measurements would not be

accurate. Measurements that are inaccurate or imprecise may invalidate research �ndings.

The design of an experiment depends on the type of data that need to be collected to test a

speci�c hypothesis. As discussed in Section 1.2, data may be collected or made available through

a variety of means. For much scienti�c research, however, the standard for data collection is

experimentation. A true experimental design is one in which study subjects are randomly assigned

to an experimental group (or treatment group) and a control group that is not directly exposed to

a treatment. Continuing the weight-loss example, a sample of 100 participants could be randomly

assigned to two conditions using the methods of Section 1.4. A sample of 50 of the participants

would be assigned to a speci�c exercise program and the remaining 50 would be monitored, but

asked not to exercise for a speci�c period of time. At the end of this experiment, the average

(mean) weight losses of the two groups could be compared. The reason that experimental designs

are desirable is that if all other potential factors are controlled, a cause–effect relationship may

be tested; that is, all else being equal, we would be able to conclude or fail to conclude that the

experimental group lost weight as a result of exercising.

The potential complexity of research designs requires statistical expertise, and Chapter 8 high-

lights some commonly used experimental designs. For a more in-depth discussion of research
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designs, the interested reader may wish to refer to texts by Kuehl (5), Keppel and Wickens (6),

and Tabachnick and Fidell (7).

Analysis

Assuming that an appropriate experimental design is employed and data are correctly collected

through a validated sampling protocol, these resulting data can be analyzed. Often descriptive

statistics, as we will learn in Chapter 2, are used to understand characteristics of the data that

have been collected. Additionally, based on the hypotheses that were developed, a researcher

may have one or more analyses to complete using inferential statistics, as covered starting in

Chapter 7, in order to make predictions or infer conclusions from the data.

Results and Conclusions

In the execution of a research study or experiment, one would hope to have collected the data

necessary to draw conclusions, with some degree of con�dence, about the hypotheses that were

posed as part of the design. It is often the case that hypotheses need to be modi�ed and retested

with new data and a different design. Whatever the conclusions of the scienti�c process, however,

results are rarely considered to be conclusive. That is, results need to be replicated, often a large

number of times, before scienti�c credence is granted them.

Exercises

1.5.1 Using the example of weight loss as an endpoint, discuss how you would use the scienti�c

method to test the observation that change in diet is related to weight loss. Include all of

the steps, including the hypothesis to be tested and the design of your experiment.

1.5.2 Continuing with Exercise 1.5.1, consider how you would use the scienti�c method to test

the observation that both exercise and change in diet are related to weight loss. Include

all of the steps, paying particular attention to how you might design the experiment and

which hypotheses would be testable given your design.

1.6 Computers and Technology
The widespread use of computers and related technology has had a tremendous impact on health

sciences research in general and biostatistical analysis in particular. The necessity to perform

long and tedious arithmetic computations as part of the statistical analysis of data lives only in

the memory of those researchers and practitioners whose careers antedate the so-called computer

revolution. Likewise, the use of statistical tables for �nding standard comparative (i.e., critical)

values in hypothesis testing largely has been replaced with statistical algorithms. Computers can

perform more calculations faster and far more accurately than can human technicians. The use

of computers makes it possible for investigators to devote more time to the improvement of the

quality of raw data and the interpretation of the results.

The current prevalence of microcomputers and the abundance of available statistical software

programs have further revolutionized statistical computing. The reader in search of a statisti-

cal software package may wish to consult The American Statistician, a quarterly publication of
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the American Statistical Association. Statistical software packages are regularly reviewed and

advertised in the periodical.

As was illustrated in a previous example, an alternative to using printed tables of random num-

bers, investigators may use computers to generate the random numbers they need. Actually, the

“random” numbers generated by most computers are in reality pseudorandom numbers because

they are the result of a deterministic formula. However, as Fishman (8) points out, the numbers

appear to serve satisfactorily for many practical purposes.

The usefulness of the computer in the health sciences is not limited to statistical analysis. The

reader interested in learning more about the use of computers in the health sciences will �nd the

books by Hersh (9), Johns (10), Miller et al. (11), and Saba and McCormick (12) helpful; though

some of these are now dated, the perspectives discussed in these volumes is still relevant. Those

who wish to derive maximum bene�t from the Internet may wish to consult the books Physicians’

Guide to the Internet (13) and Computers in Nursing’s Nurses’ Guide to the Internet (14). Cur-

rent developments in the use of computers in biology, medicine, and related �elds are reported in

several periodicals devoted to the subject. A few such periodicals are Computers in Biology and

Medicine, Computers and Biomedical Research, International Journal of Bio-Medical Comput-

ing,ComputerMethods and Programs in Biomedicine,Computer Applications in the Biosciences,

and Computers in Nursing.

As the reader makes their way through this text, it will be apparent just how important com-

puters and technology have become to our current use of statistics for applied problems. We will

generally forgo lengthy hand calculations and tabled values in favor of a more contemporary view

of statistical science. In that regard, Computer printouts are used throughout this book to illustrate

the use of computers in biostatistical analysis. The MINITAB, SPSS, R, JASP, and SAS
®
statis-

tical software packages for the personal computer have been used for this purpose. Additionally,

we will sometimes present some useful Microsoft Excel™ outputs as well.

1 . 7 S UMMARY

In this chapter, we introduced the reader to the basic concepts of

statistics. We de�ned statistics as an area of study concerned with

collecting and describing data and with making statistical infer-

ences. We de�ned statistical inference as the procedure by which

we reach a conclusion about a population on the basis of infor-

mation contained in a sample drawn from that population. We

learned that a basic type of sample that will allow us to make valid

inferences is the simple random sample. We learned how to use a

table of random numbers to draw a simple random sample from a

population.

The reader is provided with the de�nitions of some basic terms,

such as variable and sample, that are used in the study of statistics.

We also discussed measurement and de�ned four measurement

scales—nominal, ordinal, interval, and ratio. The reader is also

introduced to the scienti�c method and the role of statistics and

the statistician in this process.

Finally, we discussed the importance of computers in the per-

formance of the activities involved in statistics.

REV I EW QUE ST I ON S AND EXERC I S E S

1. Explain what is meant by descriptive statistics.

2. Explain what is meant by inferential statistics.

3. De�ne:

(a) Statistics

(b) Biostatistics

(c) Variable

(d) Quantitative variable

(e) Qualitative variable

( f) Random variable

(g) Population

(h) Finite population

(i) In�nite population
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(j) Sample

(k) Discrete variable

(l) Continuous variable

(m) Simple random sample

(n) Sampling with replacement

(o) Sampling without replacement

4. De�ne the word measurement.

5. List, describe, and compare the four measurement scales.

6. For each of the following variables, indicate whether it is

quantitative or qualitative and specify the measurement scale

that is employed when taking measurements on each:

(a) Class standing of the members of this class relative to

each other

(b) Admitting diagnosis of patients admitted to a mental

health clinic

(c) Weights of babies born in a hospital during a year

(d) Gender of babies born in a hospital during a year

(e) Range of motion of elbow joint of students enrolled in a

university health sciences curriculum

( f) Under-arm temperature of day-old infants born in a

hospital

7. For each of the following situations, answer questions a

through e:

(a) What is the sample in the study?

(b) What is the population?

(c) What is the variable of interest?

(d) How many measurements were used in calculating the

reported results?

(e) What measurement scale was used?

Situation A. A study of 300 households in a small south-

ern town revealed that 20 percent had at least one school-age

child present.

Situation B. A study of 250 patients admitted to a hospital

during the past year revealed that, on the average, the patients

lived 15 miles from the hospital.

8. Consider the two situations given in Exercise 7. For Situa-

tionA, describe how youwould use a strati�ed random sample

to collect the data. For Situation B, describe how you would

use systematic sampling of patient records to collect the data.
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2
Descriptive Statistics

CHAPTER OVERVIEW

This chapter introduces a set of basic procedures and statistical measures for describing
data. Data generally consist of an extensive number of measurements or observations
that are too numerous or complicated to be understood through simple observation.
Therefore, this chapter introduces several techniques including the construction of
tables, graphical displays, and basic statistical computations that provide ways to
condense and organize information into a set of descriptive measures and visual
devices that enhance the understanding of complex data.

TOPICS

2.1 Introduction

2.2 �eOrdered Array

2.3 Frequency Tables

2.4 Measures of Central Tendency

2.5 Measures of Dispersion

2.6 Visualizing Data

2.7 Summary

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand how data can be appropriately organized and displayed.

2. understand how to reduce data sets into a few useful, descriptive measures.

3. be able to calculate and interpret measures of central tendency, such as the
mean, median, and mode.

4. be able to calculate and interpret measures of dispersion, such as the range,
variance, and standard deviation.

18
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2.1 Introduction
In Chapter 1, we stated that the taking of a measurement and the process of counting yield num-

bers that contain information. The objective of the person applying the tools of statistics to these

numbers is to determine the underlying nature of this information. This task is made much eas-

ier if the numbers are organized and summarized. When measurements of a random variable

are taken on the entities of a population or sample, the resulting values are made available to the

researcher or statistician as a mass of unordered data. Measurements that have not been organized,

summarized, or otherwise manipulated are called raw data. Unless the number of observations is

extremely small, it will be unlikely that these raw data will impart much information until they

have been organized in some way.

In this chapter, we learn several techniques for organizing and summarizing data so that we

may more easily determine what information they contain. The ultimate in summarization of data

is the calculation of a single number that in some way conveys important information about the

data from which it was calculated. Such single numbers that are used to describe data are called

descriptive measures. After studying this chapter, you will be able to compute several descriptive

measures for both populations and samples of data.

The purpose of this chapter is to equip you with skills that will enable you to manipulate the

information—in the form of numbers—that you encounter as a health sciences professional.

The better able you are to manipulate such information, the better understanding you will have

of the environment and forces that generate the information.

2.2 �eOrdered Array
An easy �rst step in organizing data is simply to order, or rank, the data. An ordered array is a

listing of the values of a collection (either population or sample) in order of magnitude from the

smallest value to the largest value.

An ordered array enables one to determine quickly the value of the smallest measurement,

the value of the largest measurement, and other facts about the arrayed data that might be

immediately useful. We illustrate the construction of an ordered array with the data discussed in

Example 1.4.1.

EXAMPLE 2.2.1

Table 1.4.1 contains a list of the ages of subjects who participated in the study on smoking ces-

sation discussed in Example 1.4.1. As can be seen, this unordered table requires considerable

searching for us to ascertain such elementary information as the age of the youngest and oldest

subjects.

SOLUTION: Table 2.2.1 presents the data of Table 1.4.1 in the form of an ordered array. By

referring to Table 2.2.1 we are able to determine quickly the age of the youngest subject (30) and

the age of the oldest subject (82). We also readily note that about one-third of the subjects are

50 years of age or younger.
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Table 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1

30 34 35 37 37 38 38 38 38 39 39 40 40 42 42

43 43 43 43 43 43 44 44 44 44 44 44 44 45 45

45 46 46 46 46 46 46 47 47 47 47 47 47 48 48

48 48 48 48 48 49 49 49 49 49 49 49 50 50 50

50 50 50 50 50 51 51 51 51 52 52 52 52 52 52

53 53 53 53 53 53 53 53 53 53 53 53 53 53 53

53 53 54 54 54 54 54 54 54 54 54 54 54 55 55

55 56 56 56 56 56 56 57 57 57 57 57 57 57 58

58 59 59 59 59 59 59 60 60 60 60 61 61 61 61

61 61 61 61 61 61 61 62 62 62 62 62 62 62 63

63 64 64 64 64 64 64 65 65 66 66 66 66 66 66

67 68 68 68 69 69 69 70 71 71 71 71 71 71 71

72 73 75 76 77 78 78 78 82

Computer Analysis

If additional computations and organization of a data set have to be done by hand, the work may

be facilitated by working from an ordered array. If the data are to be analyzed by a computer,

it may be undesirable to prepare an ordered array, unless one is needed for reference purposes

or for some other use. A computer does not need for its user to �rst construct an ordered array

before entering data for the construction of frequency distributions and the performance of other

analyses. However, almost all computer statistical packages and spreadsheet programs contain a

routine for sorting data in either an ascending or descending order. See Figure 2.2.1, for example.

Dialog box:

Data

Session  command:

MTB > Sort;

SUBC>   By 'age';

SUBC>   After.

Sort

FIGURE 2.2.1 MINITAB dialog box for Example 2.2.1.
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2.3 Frequency Tables
Although a set of observations can be made more comprehensible and meaningful by means of

an ordered array, further useful summarization may be achieved by grouping the data. Before

the days of computers one of the main objectives in grouping large data sets was to facilitate the

calculation of various descriptive measures such as percentages and averages. Because computers

can perform these calculations on large data sets without �rst grouping the data, the main purpose

in grouping data now is summarization, and all statistical packages provide some basic set of

algorithms for developing group summaries and visualizations. One must bear in mind that data

contain information and that summarization is a way of making it easier to determine the nature

of this information. One must also be aware that reducing a large quantity of information in order

to summarize the data succinctly carries with it the potential to inadvertently lose some amount

of speci�city with regard to the underlying data set. Therefore, it is important to group the data

suf�ciently such that the vast amounts of information are reduced into understandable summaries.

At the same time data should be summarized only to the extent that useful intricacies in the data

are not obfuscated.

To group a set of observations, we select a set of contiguous, nonoverlapping intervals such

that each value in the set of observations can be placed in one, and only one, of the intervals.

These intervals are usually referred to as class intervals.

One of the �rst considerations when data are to be grouped is how many intervals to include.

Too few intervals are undesirable because of the resulting loss of information. On the other hand,

if too many intervals are used, the objective of summarization will not be met. The best guide

to this, as well as to other decisions to be made in grouping data, is your knowledge of the data.

It may be that class intervals have been determined by precedent, as in the case of annual tab-

ulations, when the class intervals of previous years are maintained for comparative purposes.

A commonly followed rule of thumb states that there should be no fewer than 5 intervals and no

more than 15. If there are fewer than �ve intervals, the data have been summarized too much and

the information they contain has been lost. If there are more than 15 intervals, the data have not

been summarized enough.

Those who need more speci�c guidance in the matter of deciding how many class intervals

to employ may use a formula given by Sturges (1). This formula gives k = 1 + 3.322(log10n),

where k stands for the number of class intervals and n is the number of values in the data set

under consideration. The answer obtained by applying Sturges’s rule should not be regarded as

�nal, but should be considered as a guide only. The number of class intervals speci�ed by the

rule should be increased or decreased for convenience and clear presentation. This rule is one

among many, and the literature is replete with various algorithms. We provide Sturges’s rule here

as an historic example and note that computer programs use various algorithms for determining

the number of classes.

Suppose, for example, that we have a sample of 275 observations that we want to

group. The logarithm to the base 10 of 275 is 2.4393. Applying Sturges’s formula gives

k = 1 + 3.322(2.4393) ≃ 9. In practice, other considerations might cause us to use eight or fewer

or perhaps 10 or more class intervals.

Another question that must be decided regards the width of the class intervals. Class intervals

generally should be of the same width, although this is sometimes impossible to accomplish. This

width may be determined by dividing the range by k, the number of class intervals. Symbolically,

the class interval width is given by

w =
R

k
(2.3.1)

where R (the range; see Section 2.5) is the difference between the smallest and the largest obser-

vation in the data set, and k is de�ned as above. As a rule this procedure yields a width that is
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inconvenient for use. Again, we may exercise our good judgment and select a width (usually close

to one given by Equation 2.3.1) that is more convenient.

There are other rules of thumb that are helpful in setting up useful class intervals. When the

nature of the data makes them appropriate, class interval widths of 5 units, 10 units, and widths

that are multiples of 10 tend to make the summarization more comprehensible. When these

widths are employed, it is generally good practice to have the lower limit of each interval end in

a 0 or 5. Usually class intervals are ordered from smallest to largest; that is, the �rst class interval

contains the smaller measurements and the last class interval contains the larger measurements.

When this is the case, the lower limit of the �rst class interval should be equal to or smaller than

the smallest measurement in the data set, and the upper limit of the last class interval should be

equal to or greater than the largest measurement.

Most statistical packages allow users to interactively change the number of class intervals

and/or the class widths, so that several visualizations of the data can be obtained quickly. This

feature allows users to exercise their judgment in deciding which data display is most appropriate

for a given purpose. Let us use the 189 ages shown in Table 1.4.1 and arrayed in Table 2.2.1 to

illustrate the construction of a frequency distribution.

EXAMPLE 2.3.1

We wish to know how many class intervals to have in the frequency distribution of the data. We

also want to know how wide the intervals should be.

SOLUTION: To get an idea as to the number of class intervals to use, we can apply Sturges’s

rule to obtain

k = 1 + 3.322(log 189)

= 1 + 3.322(2.2764618)

≈ 9

Now let us divide the range by 9 to get some idea about the class interval width. We have

R

k
=

82 − 30
9

=
52
9

= 5.778

It is apparent that a class interval width of 5 or 10 will be more convenient to use, as well as

more meaningful to the reader. Suppose we decide on 10. We may now construct our intervals.

Since the smallest value in Table 2.2.1 is 30 and the largest value is 82, we may begin our intervals

with 30 and end with 89. This gives the following intervals:

30–39

40–49

50–59

60–69

70–79

80–89

We see that there are six of these intervals, three fewer than the number suggested by

Sturges’s rule.
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It is sometimes useful to refer to the center, called themidpoint, of a class interval. Themidpoint

of a class interval is determined by obtaining the sum of the upper and lower limits of the class

interval and dividing by 2. Thus, for example, the midpoint of the class interval 30–39 is found to

be (30 + 39)∕2 = 34.5.

When we group data manually, determining the number of values falling into each class inter-

val is merely a matter of looking at the ordered array and counting the number of observations

falling in the various intervals. When we do this for our example, we have Table 2.3.1.

A table such as Table 2.3.1 is called a frequency distribution. This table shows the way in

which the values of the variable are distributed among the speci�ed class intervals. By consulting

it, we can determine the frequency of occurrence of values within any one of the class intervals

shown.

Relative Frequencies

It may be useful at times to know the proportion, rather than the number, of values falling within

a particular class interval. We obtain this information by dividing the number of values in the

particular class interval by the total number of values. If, in our example, we wish to know the

proportion of values between 50 and 59, inclusive, we divide 70 by 189, obtaining .3704. Thus we

say that 70 out of 189, or 70/189ths, or .3704, of the values are between 50 and 59. Multiplying

.3704 by 100 gives us the percentage of values between 50 and 59. We can say, then, that 37.04%

of the subjects are between 50 and 59 years of age. We may refer to the proportion of values

falling within a class interval as the relative frequency of occurrence of values in that interval. In

Section 3.2, we shall see that a relative frequency may be interpreted also as the probability of

occurrence within the given interval. This probability of occurrence is also called the experimental

probability or the empirical probability.

In determining the frequency of values falling within two or more class intervals, we obtain

the sum of the number of values falling within the class intervals of interest. Similarly, if we

want to know the relative frequency of occurrence of values falling within two or more class

intervals, we add the respective relative frequencies. We may sum, or cumulate, the frequencies

and relative frequencies to facilitate obtaining information regarding the frequency or relative

frequency of values within two or more contiguous class intervals. Table 2.3.2 shows the data

of Table 2.3.1 along with the cumulative frequencies, the relative frequencies, and cumulative

relative frequencies.

Table 2.3.1 Frequency Distribution of

Ages of 189 Subjects Shown in Tables 1.4.1

and 2.2.1

Class Interval Frequency

30–39 11

40–49 46

50–59 70

60–69 45

70–79 16

80–89 1

Total 189
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Table 2.3.2 Frequency, Cumulative Frequency, Relative Frequency, and Cumulative Relative

Frequency Distributions of the Ages of Subjects Described in Example 1.4.1

Class Interval Frequency Cumulative Frequency Relative Frequency Cumulative Relative Frequency

30–39 11 11 (11/189 =) .0582 (11/189 =) .0582

40–49 46 (11 + 46 =) 57 (46/189 =) .2434 (57/189 = .0582 + .2434 =) .3016

50–59 70 (57 + 70 =) 127 (70/189 =) .3704 (127/189 = .3016 + .3704 =) .6720

60–69 45 (127 + 45 =) 172 (45/189 =) .2381 (172/189 = .6720 + .2381 =) .9101

70–79 16 (172 + 16 =) 188 (16/189 =) .0847 (188/189 = .9101 + .0847 =) .9948

80–89 1 (188 + 1 =) 189 (1/189 =) .0053 (189/189 ≈ .9948 + .0053 ≈) 1.0001

Total 189 1.0001

Note: Frequencies do not add to 1.0000 exactly because of rounding.

Suppose that we are interested in the relative frequency of values between 50 and 79. We use

the cumulative relative frequency column of Table 2.3.2 and subtract .3016 from .9948, obtaining

.6932.

We may use a statistical package to obtain a table similar to that shown in Table 2.3.2. Tables

obtained from both MINITAB and SPSS software are shown in Figure 2.3.1. Additionally, we

may plot our tabled values into various types of graphical displays as shown in Section 2.6.

Session command:Dialog box:

Stat Tables Tally Individual Variables MTB > Tally C2;

SUBC> Counts;

Type C2 in Variables. Check Counts, Percents,

Cumulative counts, and Cumulative percents in

Display. Click OK.

SUBC> CumCounts;

SUBC> Percents;

SUBC> CumPercents;

Output:

Tally for Discrete Variables: C2

SPSS OutputMINITAB Output

C2 Count CumCnt Percent CumPct

5.82 5.8211

57 24.34 30.16

127 37.04 67.20

172 23.81 91.01

188 8.47 99.47

0 11

1 46

2 70

3 45

4 16

5 1 189 0.53 100.00

N= 189

Valid

Percent

Cumulative

PercentFrequency Percent

Valid 30-39 11 5.8 5.8 5.8

40-49 46 24.3 24.3 30.2

50-59 70 37.0 37.0 67.2

60-69 45 23.8 23.8 91.0

70-79 16 8.5 8.5 99.5

80-89 1 .5 .5 100.0

Total 189 100.0 100.0

FIGURE 2.3.1 Frequency, cumulative frequencies, percent, and cumulative percent distribution of the ages of subjects

described in Example 1.4.1 as constructed by MINITAB and SPSS.



Exercises 25

Exercises

2.3.1 In a study of the oral home care practice and reasons for seeking dental care among indi-

viduals on renal dialysis, Atassi (A-1) studied 90 subjects on renal dialysis. The oral

hygiene status of all subjects was examined using a plaque index with a range of 0 to

3 (0 = no soft plaque deposits, 3 = an abundance of soft plaque deposits). The following

table shows the plaque index scores for all 90 subjects.

1.17 2.50 2.00 2.33 1.67 1.33

1.17 2.17 2.17 1.33 2.17 2.00

2.17 1.17 2.50 2.00 1.50 1.50

1.00 2.17 2.17 1.67 2.00 2.00

1.33 2.17 2.83 1.50 2.50 2.33

0.33 2.17 1.83 2.00 2.17 2.00

1.00 2.17 2.17 1.33 2.17 2.50

0.83 1.17 2.17 2.50 2.00 2.50

0.50 1.50 2.00 2.00 2.00 2.00

1.17 1.33 1.67 2.17 1.50 2.00

1.67 0.33 1.50 2.17 2.33 2.33

1.17 0.00 1.50 2.33 1.83 2.67

0.83 1.17 1.50 2.17 2.67 1.50

2.00 2.17 1.33 2.00 2.33 2.00

2.17 2.17 2.00 2.17 2.00 2.17

Source: Data provided courtesy of Farhad Atassi, DDS, MSc, FICOI.

(a) Use these data to prepare

A frequency distribution

A relative frequency distribution

A cumulative frequency distribution

A cumulative relative frequency distribution

(b) What percentage of the measurements are less than 2.00?

(c) What proportion of the subjects have measurements greater than or equal to 1.50?

(d) What percentage of the measurements are between 1.50 and 1.99 inclusive?

(e) How many of the measurements are greater than 2.49?

( f) What proportion of the measurements are either less than 1.0 or greater than 2.49?

(g) Someone picks a measurement at random from this data set and asks you to guess

the value. What would be your answer? Why?

2.3.2 Janardhan et al. (A-2) conducted a study in which they measured incidental intracranial

aneurysms (IIAs) in 125 patients. The researchers examined postprocedural complications

and concluded that IIAs can be safely treated without causing mortality and with a lower

complications rate than previously reported. The following are the sizes (in millimeters)

of the 159 IIAs in the sample:
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8.1 10.0 5.0 7.0 10.0 3.0

20.0 4.0 4.0 6.0 6.0 7.0

10.0 4.0 3.0 5.0 6.0 6.0

6.0 6.0 6.0 5.0 4.0 5.0

6.0 25.0 10.0 14.0 6.0 6.0

4.0 15.0 5.0 5.0 8.0 19.0

21.0 8.3 7.0 8.0 5.0 8.0

5.0 7.5 7.0 10.0 15.0 8.0

10.0 3.0 15.0 6.0 10.0 8.0

7.0 5.0 10.0 3.0 7.0 3.3

15.0 5.0 5.0 3.0 7.0 8.0

3.0 6.0 6.0 10.0 15.0 6.0

3.0 3.0 7.0 5.0 4.0 9.2

16.0 7.0 8.0 5.0 10.0 10.0

9.0 5.0 5.0 4.0 8.0 4.0

3.0 4.0 5.0 8.0 30.0 14.0

15.0 2.0 8.0 7.0 12.0 4.0

3.8 10.0 25.0 8.0 9.0 14.0

30.0 2.0 10.0 5.0 5.0 10.0

22.0 5.0 5.0 3.0 4.0 8.0

7.5 5.0 8.0 3.0 5.0 7.0

8.0 5.0 9.0 11.0 2.0 10.0

6.0 5.0 5.0 12.0 9.0 8.0

15.0 18.0 10.0 9.0 5.0 6.0

6.0 8.0 12.0 10.0 5.0

5.0 16.0 8.0 5.0 8.0

4.0 16.0 3.0 7.0 13.0

Source: Data provided courtesy of Vallabh Janardhan, M.D.

(a) Use these data to prepare:

A frequency distribution

A relative frequency distribution

A cumulative frequency distribution

A cumulative relative frequency distribution

(b) What percentage of the measurements are between 10 and 14.9 inclusive?

(c) How many observations are less than 20?

(d) What proportion of the measurements are greater than or equal to 25?

(e) What percentage of the measurements are either less than 10.0 or greater than 19.95?

2.3.3 Hoekema et al. (A-3) studied the craniofacial morphology of patients diagnosed with

obstructive sleep apnea syndrome (OSAS) in healthy male subjects. One of the demo-

graphic variables the researchers collected for all subjects was the Body Mass Index
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(calculated by dividing weight in kg by the square of the patient’s height in cm). The

following are the BMI values of 29 OSAS subjects.

33.57 27.78 40.81

38.34 29.01 47.78

26.86 54.33 28.99

25.21 30.49 27.38

36.42 41.50 29.39

24.54 41.75 44.68

24.49 33.23 47.09

29.07 28.21 42.10

26.54 27.74 33.48

31.44 30.08

Source: Data provided courtesy of A. Hoekema, D.D.S.

(a) Use these data to construct:

A frequency distribution

A relative frequency distribution

A cumulative frequency distribution

A cumulative relative frequency distribution

(b) What percentage of the measurements are less than 30?

(c) What percentage of the measurements are between 40.0 and 49.99 inclusive?

(d) What percentage of the measurements are greater than 34.99?

(e) How many of the measurements are less than 40?

2.3.4 David Holben (A-4) studied selenium levels in beef raised in a low selenium region of the

United States. The goal of the study was to compare selenium levels in the region-raised

beef to selenium levels in cooked venison, squirrel, and beef from other regions of the

United States. The data below are the selenium levels calculated on a dry weight basis in

�g∕100 g for a sample of 53 region-raised cattle:

11.23 15.82

29.63 27.74

20.42 22.35

10.12 34.78

39.91 35.09

32.66 32.60

38.38 37.03

36.21 27.00

16.39 44.20

27.44 13.09

17.29 33.03

56.20 9.69

28.94 32.45
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20.11 37.38

25.35 34.91

21.77 27.99

31.62 22.36

32.63 22.68

30.31 26.52

46.16 46.01

56.61 38.04

24.47 30.88

29.39 30.04

40.71 25.91

18.52 18.54

27.80 25.51

19.49

Source: Data provided courtesy of David Holben, Ph.D.

(a) Use these data to construct:

A frequency distribution

A relative frequency distribution

A cumulative frequency distribution

A cumulative relative frequency distribution

(b) How many of the measurements are greater than 40?

(c) What percentage of the measurements are less than 25?

2.3.5 The following table shows the number of hours 45 hospital patients slept following the

administration of a certain anesthetic:

7 10 12 4 8 7 3 8 5

12 11 3 8 1 1 13 10 4

4 5 5 8 7 7 3 2 3

8 13 1 7 17 3 4 5 5

3 1 17 10 4 7 7 11 8

From these data construct:

A frequency distribution

A relative frequency distribution

2.3.6 The following are the number of babies born during a year in 60 community hospitals:

30 55 27 45 56 48 45 49 32 57 47 56

37 55 52 34 54 42 32 59 35 46 24 57

32 26 40 28 53 54 29 42 42 54 53 59

39 56 59 58 49 53 30 53 21 34 28 50

52 57 43 46 54 31 22 31 24 24 57 29
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From these data construct:

A frequency distribution

A relative frequency distribution

2.3.7 In a study of physical endurance levels of male college freshman, the following composite

endurance scores based on several exercise routines were collected:

254 281 192 260 212 179 225 179 181 149

182 210 235 239 258 166 159 223 186 190

180 188 135 233 220 204 219 211 245 151

198 190 151 157 204 238 205 229 191 200

222 187 134 193 264 312 214 227 190 212

165 194 206 193 218 198 241 149 164 225

265 222 264 249 175 205 252 210 178 159

220 201 203 172 234 198 173 187 189 237

272 195 227 230 168 232 217 249 196 223

232 191 175 236 152 258 155 215 197 210

214 278 252 283 205 184 172 228 193 130

218 213 172 159 203 212 117 197 206 198

169 187 204 180 261 236 217 205 212 218

191 124 199 235 139 231 116 182 243 217

251 206 173 236 215 228 183 204 186 134

188 195 240 163 208

From these data construct:

A frequency distribution

A relative frequency distribution

2.4 Measures of Central Tendency
Although frequency distributions serve useful purposes, there are many situations that require

other types of data summarization. What we need in many instances is the ability to summarize

the data by means of a single number called a descriptive measure. Descriptive measures may be

computed from the data of a sample or the data of a population. To distinguish between them, we

have the following de�nitions:

DEFINITIONS

1. A descriptive measure computed from the data of a sample is called a statistic. Most often

statistics are shown using the standard alphabet (e.g., x or s).

2. A descriptive measure computed from the data of a population is called a parameter. Most

often parameters are shown using the Greek alphabet (e.g., � or �).
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Several types of descriptive measures can be computed from a set of data. In this chapter, how-

ever, we limit discussion to measures of central tendency and measures of dispersion. We consider

measures of central tendency in this section and measures of dispersion in the following one.

In each of the measures of central tendency, of which we discuss three, we have a single value

that is considered to be typical of the set of data as a whole. Measures of central tendency convey

information regarding the average value of a set of values. As we will see, the word average can

be de�ned in different ways.

The three most commonly used measures of central tendency are the mean, the median, and

the mode.

Arithmetic Mean

The most familiar measure of central tendency is the arithmetic mean. It is the descriptive measure

most people have in mind when they speak of the “average.” The adjective arithmetic distin-

guishes this mean from other means that can be computed. Since we are not covering these other

means in this book, we shall refer to the arithmetic mean simply as the mean. The mean is obtained

by adding all the values in a population or sample and dividing by the number of values that

are added.

EXAMPLE 2.4.1

We wish to obtain the mean age of the population of 189 subjects represented in Table 1.4.1.

SOLUTION: We proceed as follows:

mean age =
48 + 35 + 46 + · · · + 73 + 66

189
= 55.032

The three dots in the numerator represent the values we did not show in order to save space.

General Formula for the Mean

It will be convenient if we can generalize the procedure for obtaining the mean and, also, repre-

sent the procedure in a more compact notational form. Let us begin by designating the random

variable of interest by the capital letter X. In our present illustration we let X represent the random

variable, age. Speci�c values of a random variable will be designated by the lowercase letter x.

To distinguish one value from another, we attach a subscript to the x and let the subscript refer to

the �rst, the second, the third value, and so on. For example, from Table 1.4.1 we have

x1 = 48, x2 = 35, … , x189 = 66

In general, a typical value of a random variable will be designated by xi and the �nal value, in

a �nite population of values, by xN , where N is the number of values in the population. Finally,

we will use the Greek letter � to stand for the population mean. We may now write the general

formula for a �nite population mean as follows:

� =

N
∑

i=1

xi

N
(2.4.1)
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The symbol
∑N

i=1 instructs us to add all values of the variable from the �rst to the last. This

symbol
∑

, called the summation sign, will be used extensively in this book. When from the

context it is obvious which values are to be added, the symbols above and below
∑

will

be omitted.

�e Sample Mean

When we compute the mean for a sample of values, the procedure just outlined is followed with

some modi�cations in notation. We use x to designate the sample mean and n to indicate the

number of values in the sample. The sample mean then is expressed as

x =

n
∑

i=1

xi

n
(2.4.2)

EXAMPLE 2.4.2

The Centers for Disease Control and Prevention collect influenza vaccination records for

health-care workers. According to their 2016–2017 reports, the percentage of vaccinated

health-care workers for select western states were: AZ (88.9), CO (97.1), NV (79.0), ID (92.0), CA

(83.9), OR (81.2), NM (86.2) and WA (89.8). We wish to calculate the sample mean percentage

of vaccinated health-care workers in this region.

SOLUTION: We label our data points as x1 = 88.9, x2 = 97.1, … , x7 = 89.8 and apply

Formula 2.4.2.

x =

n
∑

i=1

xi

n
=

88.9 + 97.1 + · · · + 89.8
8

= 87.3%

Properties of the Mean

The arithmetic mean possesses certain properties, some desirable and some not so desirable.

These properties include the following:

1. Uniqueness. For a given set of data, there is one and only one arithmetic mean.

2. Simplicity. The arithmetic mean is easily understood and easy to compute.

3. Since each and every value in a set of data enters into the computation of the mean, it is

affected by each value. Extreme values, therefore, have an in�uence on the mean and, in

some cases, can so distort it that it becomes undesirable as a measure of central tendency.

As an example of how extreme values may affect the mean, consider the following situation.

Suppose the �ve physicians who practice in an area are surveyed to determine their charges

for a certain procedure. Assume that they report these charges: $75, $75, $80, $80, and

$280. The mean charge for the �ve physicians is found to be $118, a value that is not very

representative of the set of data as a whole. The single atypical value had the effect of in�ating

the mean.
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Median

The median of a �nite set of values is that value which divides the set into two equal parts such

that the number of values equal to or greater than the median is equal to the number of values

equal to or less than the median. If the number of values is odd, the median will be the middle

value when all values have been arranged in order of magnitude. When the number of values

is even, there is no single middle value. Instead there are two middle values. In this case, the

median is taken to be the mean of these two middle values, when all values have been arranged

in the order of their magnitudes. In other words, the median observation of a data set is the

(n + 1)∕2th one when the observation has been ordered. If, for example, we have 11 observa-

tions, the median is the (11 + 1)∕2 = 6th ordered observation. If we have 12 observations, the

median is the (12 + 1)∕2 = 6.5th ordered observation and is a value halfway between the 6th and

7th ordered observations.

EXAMPLE 2.4.3

Let us illustrate by finding the median of the data in Table 2.2.1.

SOLUTION: The values are already ordered so we need only to find the two middle val-

ues. The middle value is the (n + 1)∕2 = (189 + 1)∕2 = 190∕2 = 95th one. Counting from the

smallest up to the 95th value, we see that it is 54. Thus the median age of the 189 subjects is

54 years.

EXAMPLE 2.4.4

We wish to find the median age of the subjects represented in the sample described in

Example 2.4.2.

SOLUTION: Arraying the 8 states in order of magnitude from smallest to largest gives

79.0, 81.2, 83.9, 86.2, 88.9, 89.8, 92.0, 97.1. Since we have an even number of states, there

is no middle value. The two middle values, however, are 86.2 and 88.9. The median, then, is

(86.2 + 88.9)∕2 = 87.6.

Properties of the Median

Properties of the median include the following:

1. Uniqueness. As is true with the mean, there is only one median for a given set of data.

2. Simplicity. The median is easy to calculate.

3. It is not as drastically affected by extreme values as is the mean.

�eMode

The mode of a set of values is that value which occurs most frequently. If all the values are

different, there is no mode; on the other hand, a set of values may have more than one mode.
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EXAMPLE 2.4.5

Find the modal age of the subjects whose ages are given in Table 2.2.1.

SOLUTION: A count of the ages in Table 2.2.1 reveals that the age 53 occurs most frequently

(17 times). The mode for this population of ages is 53.

For an example of a set of values that has more than one mode, let us consider a laboratory

with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27, and 27. We could say that

these data have two modes, 20 and 27. The sample consisting of the values 10, 21, 33, 53, and 54

has no mode since all the values are different.

The mode may be used also for describing qualitative data. For example, suppose the patients

seen in a mental health clinic during a given year received one of the following diagnoses: mental

retardation, organic brain syndrome, psychosis, neurosis, and personality disorder. The diagnosis

occurring most frequently in the group of patients would be called the modal diagnosis.

An attractive property of a data distribution occurs when the mean, median, and mode are

all equal. The well-known “bell-shaped curve” is a graphical representation of a distribution for

which the mean, median, and mode are all equal. Much statistical inference is based on this

distribution, the most common of which is the normal distribution. The normal distribution is

introduced in Section 4.6 and discussed further in subsequent chapters. Another common distri-

bution of this type is the t-distribution, which is introduced in Section 6.3.

Skewness

Data distributions may be classi�ed on the basis of whether they are symmetric or asymmetric.

If a distribution is symmetric, the left half of its graph (see Section 2.6 for graphing details) will be

a mirror image of its right half. When the left half and right half of the graph of a distribution are

not mirror images of each other, the distribution is asymmetric. Skewness can also be visualized

by examining frequency tables as described in Section 2.3.

DEFINITION

If the graph (histogram or frequency polygon) of a distribution is asymmetric, the distribution is

said to be skewed. If a distribution is not symmetric because its graph extends further to the right

than to the left, that is, if it has a long tail to the right, we say that the distribution is skewed to the

right or is positively skewed. If a distribution is not symmetric because its graph extends further

to the left than to the right, that is, if it has a long tail to the left, we say that the distribution is

skewed to the left or is negatively skewed.

A distribution will be skewed to the right, or positively skewed, if its mean is greater than its

mode. A distribution will be skewed to the left, or negatively skewed, if its mean is less than its

mode. Skewness can be expressed as follows:

Skewness =

√

n

n
∑

i=1

(xi − x)3

(

n
∑

i=1

(xi − x)2

)3∕2
=

√

n

n
∑

i=1

(xi − x)3

(n − 1)
√

n − 1s3
(2.4.3)
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FIGURE 2.4.1 �ree histograms illustrating skewness.

In Equation 2.4.3, s is the standard deviation of a sample as de�ned in Equation 2.5.4. Most

computer statistical packages include this statistic as part of a standard printout. A value of skew-

ness > 0 indicates positive skewness and a value of skewness < 0 indicates negative skewness.

An illustration of skewness is shown in Figure 2.4.1.

EXAMPLE 2.4.6

Consider the three distributions shown in Figure 2.4.1. These were produced using a statistical

package and are further described in Section 2.6. For example, observation of the “No Skew”

distribution would yield the following data: 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10,

10, 11, 11. Values can be obtained from the skewed distributions in a similar fashion. Using SPSS

software, the following descriptive statistics were obtained for these three distributions:

No Skew Right Skew Left Skew

Mean 8.0000 6.6667 8.3333

Median 8.0000 6.0000 9.0000

Mode 8.00 5.00 10.00

Skewness .000 .627 −.627

2.5 Measures of Dispersion
The dispersion of a set of observations refers to the variety that they exhibit. A measure of dis-

persion conveys information regarding the amount of variability present in a set of data. If all

the values are the same, there is no dispersion; if they are not all the same, dispersion is present

in the data. The amount of dispersion may be small when the values, though different, are close

together. Figure 2.5.1 shows the frequency polygons for two populations that have equal means

but different amounts of variability. Population B, which is more variable than population A, is

more spread out. If the values are widely scattered, the dispersion is greater. Other terms used

synonymously with dispersion include variation, spread, and scatter.


