

 C-3

Class Declaration

public class BankAccount

{

 private double balance;

 private int transactions;

 public BankAccount(double initialBalance)

 {

 balance = initialBalance;

 transactions = 1;

 }

 public void deposit(double amount)

 {

 balance = balance + amount;

 transactions++;

 }
 . . .

}

Method

Instance variables

do

{

 System.out.print("Enter a positive integer: ");

 input = in.nextInt();

}

while (input <= 0);

for (double value : values)

{

 sum = sum + value;

}

An array or collection

Executed for each element

Loop body executed
at least once

Set to a new element in each iteration

Executed while
condition is true

Condition

Initialization Condition Update

Loop Statements

while (balance < TARGET)

{

 year++;

 balance = balance * (1 + rate / 100);

}

for (int i = 0; i < 10; i++)

{

 System.out.println(i);

}

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[] Array element access
++ -- ! Increment, decrement, Boolean not
* / % Multiplication, division, remainder
+ - Addition, subtraction
< <= > >= Comparisons
== != Equal, not equal
&& Boolean and
|| Boolean or
= Assignment

String Operations

String s = "Hello";
int n = s.length(); // 5
char ch = s.charAt(1); // 'e'
String t = s.substring(1, 4); // "ell"
String u = s.toUpperCase(); // "HELLO"
if (u.equals("HELLO")) ... // Use equals, not ==
for (int i = 0; i < s.length(); i++)
{
 char ch = s.charAt(i);
 Process ch
}

Mathematical Operations

Math.pow(x, y) Raising to a power xy

Math.sqrt(x) Square root x

Math.log10(x) Decimal log log10(x)

Math.abs(x) Absolute value |x|

Math.sin(x)

Math.cos(x) Sine, cosine, tangent of x (x in radians)

Math.tan(x)

Variable and Constant Declarations

int cansPerPack = 6;

final double CAN_VOLUME = 0.335;

Type Name Initial value

Parameter
type and name

Exits method and
returns result.

Return typeModi�ers

Method Declaration

public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Conditional Statement

if (floor >= 13)
{
 actualFloor = floor - 1;
}
else if (floor >= 0)
{
 actualFloor = floor;
}
else
{
 System.out.println("Floor negative");
}

Condition

Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Constructor

Big Java
 2/e

Late Objects

Cay Horstmann
San Jose State University

PUBLISHER Laurie Rosatone
EDITORIAL DIRECTOR Don Fowley
DEVELOPMENTAL EDITOR Cindy Johnson
ASSISTANT DEVELOPMENT EDITOR Ryann Dannelly
EXECUTIVE MARKETING MANAGER Dan Sayre
SENIOR PRODUCTION EDITOR Laura Abrams
SENIOR CONTENT MANAGER Valerie Zaborski
EDITORIAL ASSISTANT Anna Pham
SENIOR DESIGNER Tom Nery
SENIOR PHOTO EDITOR Billy Ray
PRODUCTION MANAGEMENT Cindy Johnson
COVER IMAGES (elephant) bluefem © Getty Images/iStock Collection; (tiger)

© Aprison Photography/Getty Images, Inc.; (bird) © Nen-
gloveyou/Shutterstock; (monkey) © Ehlers/iStockphoto.

This book was set in Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad/
Graphics, Versailles. The cover was printed by Quad/Graphics, Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

Copyright © 2017, 2013 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local representative.

ISBN 13: 978-1-119-32107-1

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

PREFACE

iii

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed. Here are the key features of this book:

Present fundamentals first.

The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed.

Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples and Video Examples are available
online.

Problem solving strategies are made explicit.

Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:

• Algorithm Design (with pseudocode)

• Tracing Objects

• First Do It By Hand (doing sample calculations by hand)

• Flowcharts

• Selecting Test Cases

• Hand-Tracing

• Storyboards

• Solve a Simpler Problem First

• Adapting Algorithms

• Discovering Algorithms by Manipulating Physical Objects

• Patterns for Object Data

• Estimating the Running Time of an Algorithm

Practice makes perfect.

Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”

iv Preface

pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including code completion questions and skill-oriented multiple-choice
questions, are available online.

A visual approach motivates the reader and eases navigation.

Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.

An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.
You will not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.

A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The focus is on test-driven development,
encouraging students to test their programs systematically.

Engage with optional science and business exercises.

End-of-chapter exercises are enhanced with problems from scientific and business
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields.

New to This Edition

Updated for Java 8
Java 8 introduces many exciting features, and this edition has been updated to take
advantage of them. Interfaces can now have default and static methods, and lambda
expressions make it easy to provide instances of interfaces with a single method.
The sections on interfaces and sorting have been updated to make these innovations
optionally available. A new chapter covers the Java 8 stream library and its applica-
tions for “big data” processing.

In addition, Java 7 features such as the try-with-resources statement are now inte-
grated into the text. Chapter 20 covers the utilities provided by the Paths and Files
classes.

Optional JavaFX Coverage
For those who prefer to use JavaFX instead of Swing, there is a new online resource
that covers graphical user-interface programming with JavaFX.

Visual features help the reader

with navigation.

©
 T

e
rr

a
x
p

lo
re

r/
iS

to
ck

p
h

o
to

.

Preface v

Interactive Learning
Additional interactive content is available that integrates with this text and immerses
students in activities designed to foster in-depth learning. Students don’t just watch
animations and code traces, they work on generating them. The activities provide
instant feedback to show students what they did right and where they need to study
more. To find out more about how to make this content available in your course, visit
http://wiley.com/go/bjlo2interactivities.

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.

 A Tour of the Book

This book is intended for a two-semester introduction to programming that may also
include algorithms, data structures, and/or applications.

Part A: Fundamentals (Chapters 1–7)
The first seven chapters follow a traditional approach to basic programming con-
cepts. Students learn about control structures, stepwise refinement, and arrays.

vi Preface

Objects are used only for input/output and string processing. Input/output is cov-
ered in Chapter 7, but Sections 7.1 and 7.2 can be covered with Chapter 4; in that way,
students can practice writing loops that process text files. Chapter 4 also provides an
optional introduction to programming drawings that consist of lines, rectangles, and
ovals, with an emphasis on reinforcing loops.

Figure 1 Chapter Dependencies

20. Advanced
Input/Output

9. Inheritance
and Interfaces

21.
Multithreading

12. Object-
Oriented Design

23. Relational
Databases

13. Recursion

14. Sorting
and Searching

15. The Java
Collections
Framework

16. Basic
Data Structures

18. Generic
Classes

22. Internet
Networking

24. XML

25. Web
Applications

6. Iteration

8. Objects and
Classes

17. Tree
Structures

Fundamentals

Object-Oriented Design

Graphical User Interfaces

Data Structures & Algorithms

Applied Topics

Online Chapters

10. Graphical
User Interfaces

1. Introduction

2. Fundamental
Data Types

3. Decisions

4. Loops

5. Methods

6. Arrays
and Array Lists

7. Input/Output
and Exception

Handling

11. Advanced
User Interfaces

A gentle
introduction to recursion

is optional.

Sections 7.1 and 7.2
(text �le processing) can be

covered with Chapter 4.

19. Stream
Processing

Preface vii

Part B: Object-Oriented Design and Graphics (Chapters 8–12)
After students have gained a solid foundation, they are ready to tackle the implemen-
tation of classes in Chapter 8. Chapter 9 covers inheritance and interfaces. A simple
methodology for object-oriented design is presented in Chapter 12. Object-oriented
design may also be covered immediately after Chapter 9 by omitting the GUI ver-
sions of the sample programs. By the end of these chapters, students will be able to
implement programs with multiple interacting classes.

Graphical user interfaces are presented in Chapters 10 and 11. The first of these
chapters enables students to write programs with buttons, text components, and
simple drawings. If you want to go deeper, you will find layout management and
additional user-interface components in the second chapter. Online versions of these
chapters cover JavaFX instead of Swing.

Part C: Data Structures and Algorithms (Chapters 13–19)
Chapters 13–19 cover algorithms and data structures at a level suitable for beginning
students. Recursion, in Chapter 13, starts with simple examples and progresses to
meaningful applications that would be difficult to implement iteratively. Chapter 14
covers quadratic sorting algorithms as well as merge sort, with an informal introduc-
tion to big-Oh notation. In Chapter 15, the Java Collections Framework is presented
from the perspective of a library user, without revealing the implementations of lists
and maps. You can cover this chapter anytime after Chapter 8. In Chapters 16 and 17,
students learn how to implement linear and tree-based data structures, and how to
analyze the efficiency of operations on these data structures. Chapter 18 covers pro-
gramming with Java generics. Chapter 19 presents the Java 8 stream library.

Part D: Applied Topics (Chapters 20–25)
Chapters 20–25 feature applied topics: binary input/output, concurrent program-
ming, networking, database programming, XML processing, and the development of
web applications. Chapters 21–25 are available in electronic form on the Web.

Any subset of these chapters can be incorporated into a custom print version of
this text; ask your Wiley sales representative for details.

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified. Appen-
dices F–J are available on the Web.

A. The Basic Latin and Latin-1 Subsets of Unicode

B. Java Operator Summary

C. Java Reserved Word Summary

D. The Java Library

E. Java Language Coding Guidelines

F. Tool Summary

G. Number Systems

H. UML Summary

I. Java Syntax Summary

J. HTML Summary

viii Preface

Custom Book and eBook Options
Big Java may be ordered in both custom print and eBook formats. You can order a
custom print version that includes your choice of chapters—including those from
other Horstmann titles. Visit customselect.wiley.com to create your custom order.

Big Java is also available in an electronic eBook format with three key advantages:

• The price is signi�cantly lower than for the printed book.

• The eBook contains all material in the printed book plus the web chapters and
worked examples in one easy-to-browse format.

• You can customize the eBook to include your choice of chapters.

The interactive edition of Big Java adds even more value by integrating a wealth of
interactive exercises into the eBook. See http://wiley.com/go/bjlo2interactivities to
find out more about this new format.

Please contact your Wiley sales rep for more information about any of these
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• Source code for all example programs in the book and its Worked Examples and
Video Examples, plus additional example programs.

• Worked Examples that apply the problem-solving steps in the book to other
realistic examples.

• Video Examples in which the author explains the steps he is taking and shows his
work as he solves a programming problem.

• Lecture presentation slides (for instructors only).

• Solutions to all review and programming exercises (for instructors only).

• A test bank that focuses on skills, not just terminology (for instructors only). This
extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

• “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback.
Instructors can assign exercises that have already been prepared, or easily add
their own. Visit http://codecheck.it to learn more.

WORKED EXAMPLE 4.1 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. Go to wiley.com/go/bjlo2examples and download
Worked Example 4.1.

VIDEO EXAMPLE 1.1 Compiling and Running a Program

See a demonstration of how to compile and run a simple Java pro-
gram. Go to wiley.com/go/bjlo2videos to view Video Example 1.1.

FULL CODE EXA

Go to wiley.com/go/
bjlo2code to download
a program that dem-
onstrates variables
and assignments.

MPLE

Pointers in the book
describe what students
will �nd on the Web.

Walkthrough ix

A Walkthrough of the Learning Aids

The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to download
a program that
uses common loop
algorithms.

Additional full code examples
provides complete programs for
students to run and modify.

150 Chapter 4 Loops

4.3 The for Loop

It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{

 System.out.println(counter);

 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2).

for (int counter = 1; counter <= 10; counter++)

{

 System.out.println(counter);

}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance reaches
the target. Another commonly used term for a
count-controlled loop is definite. You know from
the outset that the loop body will be executed a
definite number of times; ten times in our example.
In contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

You can visualize the for loop as

an orderly sequence of steps.

Syntax 4.2 for Statement

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer

program, a parking space has

an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

for (int i = 5; i <= 10; i++)

{

 sum = sum + i;

}
This loop executes 6 times.
 See Programming Tip 4.3.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i
is de�ned only in this

for loop.

These three
expressions should be related.

 See Programming Tip 4.1.

for (initialization; condition; update)
{
 statements
}

Syntax

x Walkthrough

A recipe for a fruit pie may say to use any kind of fruit.

Here, “fruit” is an example of a parameter variable.

Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 277

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Next, we swap the coins in positions 1 and 5:

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:

• purchase price1 and fuel ef�ciency1 , the price and fuel efficiency (in mpg) of the first car

• purchase price2 and fuel ef�ciency2, the price and fuel efficiency of the second car

We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of
15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Table 1 Variable Declarations in Java

tnemmoCemaN elbairaV

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a constant. (Of course, cans and bottles
must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.1.4.

int bottles = "10"; Error: You cannot initialize a number with a string.

int bottles; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 37.

int cans, bottles; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

Memorable photos reinforce
analogies and help students
remember the concepts.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples and
Video Examples apply the
steps in the How To to a
di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Walkthrough xi

•

Figure 3 Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;

return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the
method is called. 1

• The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

• The method computes the expression sideLength * sideLength * sideLength, which
has the value 8. That value is stored in the variable volume. 3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller
puts the return value in the result1 variable. 4

11. Write the for loop of the InvestmentTable.java program as a while loop.

12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)

{

System.out.println(n);

}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).

14. Write a for loop that computes the sum of the integers from 1 to n.

15. How would you modify the for loop of the InvestmentTable.java program to
print all balances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.7, R4.13, E4.8, E4.16.

S E L F C H E C K

Figure 3

Execution of
a for Loop

for (int counter = 1; counter <= 10; counter++)

{

 System.out.println(counter);

}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)

{

 System.out.println(counter);

}

Check condition2

for (int counter = 1; counter <= 10; counter++)

{

System.out.println(counter);

}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)

{

 System.out.println(counter);

}

Update counter4

for (int counter = 1; counter <= 10; counter++)

{

 System.out.println(counter);

}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

sec01/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7 {
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double
16
17 while (balance < TARGET)
18 {
19 year++;
20 double interest = balance * RATE / 100;
21 balance = balance + interest;
22 }
23
24 System.out.println("The investment doubled after "
25 + year + " years.");
26 }
27 }

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Optional science and business
exercises engage students with
realistic applications of Java.

•• Science P6.13 Sounds can be represented by an array of “sample
val ues” that describe the intensity of the sound at a
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a
method process for processing the sample values, and
saves the sound file. Your task is to implement the
process method by introducing an echo. For each
sound value, add the value from 0.2 seconds ago.
Scale the result so that no value is larger than 32767. •• Business P9.6 Implement a superclass Appointment and sub-

classes Onetime, Daily, and Monthly. An appoint-
ment has a description (for example, “see the
dentist”) and a date and time. Write a method
occursOn(int year, int month, int day) that checks
whether the appointment occurs on that date.
For example, for a monthly appointment, you
must check whether the day of the month
matches. Then fill an array of Appointment objects
with a mixture of appointments. Have the user enter a date and print out all appoint-
ments that occur on that date.

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
o� by a subtle outline.

xii Walkthrough

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 6.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds

of errors that students often make,

with an explanation of why the errors

occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the getTax method with the data
from the program run above.

When the TaxReturn object is constructed, the income
instance variable is set to 80,000 and status is set to MARRIED. Then the getTax method is called.
In lines 31 and 32 of TaxReturn.java, tax1 and tax2 are initialized to 0.

29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Programming Tip 3.5

Hand-tracing helps you

understand whether a

program works correctly.

income status tax1 tax2

 80000 MARRIED 0 0

Because status is not SINGLE, we move to the else
 branch of the outer if statement (line 46).

34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();

Scanner in = null;

if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)

{

File selectedFile = chooser.getSelectedFile();

in = new Scanner(selectedFile);

. . .

}

Special Topic 7.2

A JFileChooser Dialog Box

Button is “Save” when

showSaveDialog method
is called

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Special Topics present optional
topics and provide additional
explanation of others.

Lambda Expressions

In the preceding section, you saw how to use interfaces for specifying variations in behavior.
The average method needs to measure each object, and it does so by calling the measure method
of the supplied Measurer object.

Unfortunately, the caller of the average method has to do a fair amount of work; namely,
to de�ne a class that implements the Measurer interface and to construct an object of that class.
Java 8 has a convenient shortcut for these steps, provided that the interface has a single abstract
method. Such an interface is called a functional interface because its purpose is to de�ne a
single function. The Measurer interface is an example of a functional interface.

To specify that single function, you can use a lambda expression, an expression that de�nes
the parameters and return value of a method in a compact notation. Here is an example:

(Object obj) -> ((BankAccount) obj).getBalance()

This expression de�nes a function that, given an object, casts it to a BankAccount and returns the
balance.

(The term “lambda expression” comes from a mathematical notation that uses the Greek
letter lambda (λ) instead of the -> symbol. In other programming languages, such an expres-
sion is called a function expression.)

A lambda expression cannot stand alone. It needs to be assigned to a variable whose type is
a functional interface:

Measurer accountMeas = (Object obj) -> ((BankAccount) obj).getBalance();

Java 8 Note 9.3

When computers

were first invented

in the 1940s, a computer filled an

entire room. The photo below shows

the ENIAC (electronic numerical inte-

grator and computer), completed in

1946 at the University of Pennsylvania.

The ENIAC was used by the military

to compute the trajectories of projec-

tiles. Nowadays, computing facilities

of search engines, Internet shops, and

social networks fill huge buildings

called data centers. At the other end of

the spectrum, computers are all around

us. Your cell phone has a computer

inside, as do many credit cards and fare

cards for public transit. A modern car

has several computers––to control the

engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-

tous computing changed

many aspects of our

lives. Factories used

to employ people to

do repetitive assembly

tasks that are today car-

ried out by computer-

controlled robots, oper-

ated by a few people

who know how to work

with those computers.

Books, music, and mov-

ies are nowadays often

consumed on com-

puters, and comput-

ers are almost always

involved in their production. The

book that you are reading right now

could not have been written without

computers.

Computing & Society 1.1 Computers Are Everywhere

Computing & Society presents social
and historical topics on computing—for
interest and to ful�ll the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Java 8 Notes provide detail
about new features in Java 8.

Acknowledgments xiii

Acknowledgments

Many thanks to Don Fowley, Graig Donini, Brad Franklin, Dan Sayre, Anna Pham,
Laura Abrams, and Billy Ray at John Wiley & Sons for their help with this project.
An especially deep acknowledgment and thanks goes to Cindy Johnson for her hard
work, sound judgment, and amazing attention to detail.

I am grateful to Jose Cordova, University of Louisiana at Monroe, Suzanne
Dietrich, Arizona State University, West Campus, Byron Hoy, Stockton University,
Brent Wilson, George Fox University, and David Woolbright, Columbus State
University, for their contributions to the supplemental material.

Every new edition builds on the suggestions and experiences of new and prior
reviewers, contributors, and users. Many thanks to the individuals who provided
feedback, reviewed the manuscript, made valuable suggestions and contributions,
and brought errors and omissions to my attention. They include:

Lynn Aaron, SUNY Rockland
Community College

Karen Arlien, Bismarck State
College

Jay Asundi, University of Texas,
Dallas

Eugene Backlin, DePaul University
William C. Barge, Trine University
Bruce J. Barton, Suffolk County

Community College
Sanjiv K. Bhatia, University of

Missouri, St. Louis
Anna Bieszczad, California State

University, Channel Islands
Jackie Bird, Northwestern

University
Eric Bishop, Northland Pioneer

College
Paul Bladek, Edmonds Community

College
Paul Logasa Bogen II, Texas A&M

University
Irene Bruno, George Mason

University
Paolo Bucci, Ohio State University
Joe Burgin, College of Southern

Maryland
Robert P. Burton, Brigham Young

University
Leonello Calabresi, University of

Maryland University College
Martine Ceberio, University of

Texas, El Paso
Uday Chakraborty, University of

Missouri, St. Louis
Suchindran Chatterjee, Arizona

State University

Xuemin Chen, Texas Southern
University

Haiyan Cheng, Willamette
University

Chakib Chraibi, Barry University
Ta-Tao Chuang, Gonzaga University
Vincent Cicirello, Richard Stockton

College
Mark Clement, Brigham Young

University
Gerald Cohen, St. Joseph’s College
Ralph Conrad, San Antonio College
Dave Cook, Stephen F. Austin State

University
Rebecca Crellin, Community

College of Allegheny County
Leslie Damon, Vermont Technical

College
Geoffrey D. Decker, Northern

Illinois University
Khaled Deeb, Barry University,

School of Adult and Continuing
Education

Akshaye Dhawan, Ursinus College
Julius Dichter, University of

Bridgeport
Mike Domaratzki, University of

Manitoba
Philip Dorin, Loyola Marymount

University
Anthony J. Dos Reis, SUNY New

Paltz
Elizabeth Drake, Santa Fe College
Tom Duffy, Norwalk Community

College
Michael Eckmann, Skidmore College

Sander Eller, California State
Polytechnic University, Pomona

Amita Engineer, Valencia
Community College

Dave Evans, Pasadena Community
College

James Factor, Alverno College
Chris Fietkiewicz, Case Western

Reserve University
Terrell Foty, Portland Community

College
Valerie Frear, Daytona State College
Zhenguang Gao, Framingham State

University
Ryan Garlick, University of North

Texas
Aaron Garrett, Jacksonville State

University
Stephen Gilbert, Orange Coast

College
Rick Giles, Acadia University
Peter van der Goes, Rose State

College
Billie Goldstein, Temple University
Michael Gourley, University of

Central Oklahoma
Grigoriy Grinberg, Montgomery

College
Linwu Gu, Indiana University
Sylvain Guinepain, University of

Oklahoma, Norman
Bruce Haft, Glendale Community

College
Nancy Harris, James Madison

University
Allan M. Hart, Minnesota State

University, Mankato

xiv Acknowledgments

Ric Heishman, George Mason
University

Guy Helmer, Iowa State University
Katherin Herbert, Montclair State

University
Rodney Hoffman, Occidental

College
May Hou, Norfolk State University
John Houlihan, Loyola University
Andree Jacobson, University of New

Mexico
Eric Jiang, University of San Diego
Christopher M. Johnson, Guilford

College
Jonathan Kapleau, New Jersey

Institute of Technology
Amitava Karmaker, University of

Wisconsin, Stout
Rajkumar Kempaiah, College of

Mount Saint Vincent
Mugdha Khaladkar, New Jersey

Institute of Technology
Richard Kick, Newbury Park High

School
Julie King, Sullivan University,

Lexington
Samuel Kohn, Touro College
April Kontostathis, Ursinus College
Ron Krawitz, DeVry University
Nat Kumaresan, Georgia Perimeter

College
Debbie Lamprecht, Texas Tech

University
Jian Lin, Eastern Connecticut State

University
Hunter Lloyd, Montana State

University
Cheng Luo, Coppin State University
Kelvin Lwin, University of

California, Merced
Frank Malinowski, Dalton College
John S. Mallozzi, Iona College
Khaled Mansour, Washtenaw

Community College
Kenneth Martin, University of North

Florida
Deborah Mathews, J. Sargeant

Reynolds Community College
Louis Mazzucco, State University of

New York at Cobleskill and
Excelsior College

Drew McDermott, Yale University
Patricia McDermott-Wells, Florida

International University

Hugh McGuire, Grand Valley State
University

Michael L. Mick, Purdue University,
Calumet

Jeanne Milostan, University of
California, Merced

Sandeep Mitra, SUNY Brockport
Michel Mitri, James Madison

University
Kenrick Mock, University of Alaska

Anchorage
Namdar Mogharreban, Southern

Illinois University
Jose-Arturo Mora-Soto, University

of Madrid
Shamsi Moussavi, Massbay

Community College
Nannette Napier, Georgia Gwinnett

College
Tony Tuan Nguyen, De Anza

College
Michael Ondrasek, Wright State

University
K. Palaniappan, University of

Missouri
James Papademas, Oakton

Community College
Gary Parker, Connecticut College
Jody Paul, Metropolitan State

College of Denver
Mark Pendergast, Florida Gulf Coast

University
James T. Pepe, Bentley University
Jeff Pittges, Radford University
Tom Plunkett, Virginia Tech
Linda L. Preece, Southern Illinois

University
Vijay Ramachandran, Colgate

University
Craig Reinhart, California Lutheran

University
Jonathan Robinson, Touro College
Chaman Lal Sabharwal, Missouri

University of Science &
Technology

Katherine Salch, Illinois Central
College

Namita Sarawagi, Rhode Island
College

Ben Schafer, University of Northern
Iowa

Walter Schilling, Milwaukee School
of Engineering

Jeffrey Paul Scott, Blackhawk
Technical College

Amon Seagull, NOVA Southeastern
University

Brent Seales, University of Kentucky
Linda Seiter, John Carroll University
Kevin Seppi, Brigham Young

University
Ricky J. Sethi, UCLA, USC ISI, and

DeVry University
Narasimha Shashidhar, Sam Houston

State University
Ali Shaykhian, Florida Institute of

Technology
Lal Shimpi, Saint Augustine’s

College
Victor Shtern, Boston University
Rahul Simha, George Washington

University
Jeff Six, University of Delaware
Donald W. Smith, Columbia College
Derek Snow, University of Southern

Alabama
Peter Spoerri, Fairfield University
David R. Stampf, Suffolk County

Community College
Peter Stanchev, Kettering University
Ryan Stansifer, Florida Institute of

Technology
Stu Steiner, Eastern Washington

University
Robert Strader, Stephen F. Austin

State University
David Stucki, Otterbein University
Ashok Subramanian, University of

Missouri, St Louis
Jeremy Suing, University of

Nebraska, Lincoln
Dave Sullivan, Boston University
Vaidy Sunderam, Emory University
Hong Sung, University of Central

Oklahoma
Monica Sweat, Georgia Tech

University
Joseph Szurek, University of

Pittsburgh, Greensburg
Jack Tan, University of Wisconsin
Cynthia Tanner, West Virginia

University
Russell Tessier, University of

Massachusetts, Amherst
Krishnaprasad Thirunarayan,

Wright State University

Acknowledgments xv

Mark Thomas, University of
Cincinnati Blue Ash

Megan Thomas, California State
University, Stanislaus

Timothy Urness, Drake University
Eliana Valenzuela-Andrade,

University of Puerto Rico at
Arecibo

Tammy VanDeGrift, University of
Portland

Philip Ventura, Broward College
David R. Vineyard, Kettering

University

Qi Wang, Northwest Vista College
Jonathan Weissman, Finger Lakes

Community College
Reginald White, Black Hawk

Community College
Ying Xie, Kennesaw State University
Arthur Yanushka, Christian Brothers

University
Chen Ye, University of Illinois,

Chicago
Wook-Sung Yoo, Fairfield

University

Steve Zale, Middlesex County
College

Bahram Zartoshty, California State
University, Northridge

Frank Zeng, Indiana Wesleyan
University

Hairong Zhao, Purdue University
Calumet

Stephen Zilora, Rochester Institute
of Technology

And a special thank you to our class testers:

Eugene Backlin and the students of DePaul University, Loop

Debra M. Duke and the students of J. Sargeant Reynolds Community College

Gerald Gordon and the students of DePaul University, Loop

Mike Gourley and the students of the University of Central Oklahoma

Mohammad Morovati and the students of the College of DuPage

Mutsumi Nakamura and the students of Arizona State University

George Novacky and the students of the University of Pittsburgh

Darrin Rothe and the students of the Milwaukee School of Engineering

Paige Rutner and the students of Georgia Southern University

Narasimha Shashidhar and the students of Sam Houston State University

Mark Sherriff and the students of the University of Virginia

Frank Zeng and the students of Indiana Wesleyan University

CONTENTS

xvi

PREFACE iii

SPECIAL FEATURES xxiv

INTRODUCTION 1

1.1 Computer Programs 2

1.2 The Anatomy of a Computer 3

1.3 The Java Programming Language 6

1.4 Becoming Familiar with Your

Programming Environment 7

VE 1 Compiling and Running a Program

1.5 Analyzing Your First Program 11

1.6 Errors 14

1.7 PROBLEM SOLVING Algorithm Design 15

The Algorithm Concept 16

An Algorithm for Solving an Investment
Problem 17

Pseudocode 18

From Algorithms to Programs 18

HT 1 Describing an Algorithm with

Pseudocode 19

WE 1 Writing an Algorithm for Tiling a Floor 21

VE 2 Dividing Household Expenses

FUNDAMENTAL DATA
TYPES 31

2.1 Variables 32

Variable Declarations 32

Number Types 34

Variable Names 35

The Assignment Statement 36

Constants 37

Comments 37

ST 1 Numeric Types in Java 41

ST 2 Big Numbers 42

2.2 Arithmetic 43

Arithmetic Operators 43

Increment and Decrement 43

Integer Division and Remainder 44

Powers and Roots 45

Converting Floating-Point Numbers
to Integers 46

J8 1 Avoiding Negative Remainders 49

ST 3 Combining Assignment and Arithmetic 49

VE 1 Using Integer Division

2.3 Input and Output 50

Reading Input 50

Formatted Output 52

HT 1 Carrying Out Computations 56

WE 1 Computing the Cost of Stamps

2.4 PROBLEM SOLVING First Do it By Hand 59

WE 2 Computing Travel Time

2.5 Strings 61

The String Type 61

Concatenation 61

String Input 62

Escape Sequences 62

Strings and Characters 63

Substrings 63

ST 4 Instance Methods and Static Methods 66

ST 5 Using Dialog Boxes for Input and Output 67

VE 2 Computing Distances on Earth

DECISIONS 83

3.1 The if Statement 84

ST 1 The Conditional Operator 89

3.2 Comparing Numbers and Strings 90

ST 2 Lexicographic Ordering of Strings 94

HT 1 Implementing an if Statement 95

WE 1 Extracting the Middle

3.3 Multiple Alternatives 98

ST 3 The switch Statement 101

3.4 Nested Branches 102

ST 4 Enumeration Types 107

VE 1 Computing the Plural of an English Word

3.5 PROBLEM SOLVING Flowcharts 107

3.6 PROBLEM SOLVING Test Cases 110

ST 5 Logging 112

3.7 Boolean Variables and Operators 113

1

2

3

Contents xvii

ST 6 Short-Circuit Evaluation of Boolean

Operators 116

ST 7 De Morgan’s Law 117

3.8 APPLICATION Input Validation 118

VE 2 The Genetic Code

LOOPS 142

4.1 The while Loop 142

4.2 PROBLEM SOLVING Hand-Tracing 149

4.3 The for Loop 152

4.4 The do Loop 158

4.5 APPLICATION Processing Sentinel

Values 160

ST 1 The “Loop and a Half” Problem and the

break Statement 162

ST 2 Redirection of Input and Output 163

VE 1 Evaluating a Cell Phone Plan

4.6 PROBLEM SOLVING Storyboards 164

4.7 Common Loop Algorithms 167

Sum and Average Value 167

Counting Matches 167

Finding the First Match 168

Prompting Until a Match is Found 169

Maximum and Minimum 169

Comparing Adjacent Values 170

HT 1 Writing a Loop 171

WE 1 Credit Card Processing

4.8 Nested Loops 174

WE 2 Manipulating the Pixels in an Image

4.9 PROBLEM SOLVING Solve a Simpler

Problem First 178

4.10 APPLICATION Random Numbers and

Simulations 182

Generating Random Numbers 182

Simulating Die Tosses 183

The Monte Carlo Method 184

ST 3 Drawing Graphical Shapes 186

VE 1 Drawing a Spiral

METHODS 211

5.1 Methods as Black Boxes 212

5.2 Implementing Methods 214

5.3 Parameter Passing 217

5.4 Return Values 220

HT 1 Implementing a Method 222

WE 1 Generating Random Passwords

5.5 Methods Without Return Values 224

5.6 PROBLEM SOLVING Reusable Methods 225

5.7 PROBLEM SOLVING Stepwise

Re�nement 229

WE 2 Calculating a Course Grade

5.8 Variable Scope 236

VE 1 Debugging

5.9 Recursive Methods (Optional) 240

HT 2 Thinking Recursively 243

VE 2 Fully Justified Text

ARRAYS AND ARRAY
LISTS 261

6.1 Arrays 262

Declaring and Using Arrays 262

Array References 265

Partially Filled Arrays 266

6.2 The Enhanced for Loop 269

6.3 Common Array Algorithms 270

Filling 270

Sum and Average Value 271

Maximum and Minimum 271

Element Separators 271

Linear Search 272

Removing an Element 272

Inserting an Element 273

Swapping Elements 274

Copying Arrays 275

Reading Input 276

ST 1 Sorting with the Java Library 279

ST 2 Binary Search 279

6.4 Using Arrays with Methods 280

ST 3 Methods with a Variable Number of

Parameters 284

6.5 PROBLEM SOLVING Adapting

Algorithms 284

HT 1 Working with Arrays 287

WE 1 Rolling the Dice

4

5

6

xviii Contents

6.6 PROBLEM SOLVING Discovering Algorithms by

Manipulating Physical Objects 291

VE 1 Removing Duplicates from an Array

6.7 Two-Dimensional Arrays 294

Declaring Two-Dimensional Arrays 295

Accessing Elements 295

Locating Neighboring Elements 296

Computing Row and Column Totals 297

Two-Dimensional Array Parameters 298

WE 2 A World Population Table

ST 4 Two-Dimensional Arrays with Variable

Row Lengths 300

ST 5 Multidimensional Arrays 301

6.8 Array Lists 301

Declaring and Using Array Lists 302

Using the Enhanced for Loop with
Array Lists 304

Copying Array Lists 305

Array Lists and Methods 305

Wrappers and Auto-boxing 305

Using Array Algorithms with Array Lists 307

Storing Input Values in an Array List 307

Removing Matches 307

Choosing Between Array Lists and Arrays 308

ST 6 The Diamond Syntax 311

VE 2 Game of Life

INPUT/OUTPUT AND
EXCEPTION HANDLING 331

7.1 Reading and Writing Text Files 332

ST 1 Reading Web Pages 335

ST 2 File Dialog Boxes 335

ST 3 Reading and Writing Binary Data 336

7.2 Text Input and Output 337

Reading Words 337

Reading Characters 338

Classifying Characters 338

Reading Lines 339

Scanning a String 340

Converting Strings to Numbers 340

Avoiding Errors When Reading Numbers 340

Mixing Number, Word, and Line Input 341

Formatting Output 342

ST 4 Regular Expressions 344

ST 5 Reading an Entire File 344

VE 1 Computing a Document’s Readability

7.3 Command Line Arguments 345

HT 1 Processing Text Files 348

WE 1 Analyzing Baby Names

7.4 Exception Handling 352

Throwing Exceptions 352

Catching Exceptions 354

Checked Exceptions 355

Closing Resources 357

ST 6 Assertions 360

ST 7 The try/finally Statement 360

7.5 APPLICATION Handling Input Errors 361

VE 2 Detecting Accounting Fraud

OBJECTS AND CLASSES 375

8.1 Object-Oriented Programming 376

8.2 Implementing a Simple Class 378

8.3 Specifying the Public Interface of

a Class 381

ST 1 The javadoc Utility 384

8.4 Designing the Data Representation 385

8.5 Implementing Instance Methods 386

8.6 Constructors 389

ST 2 Overloading 393

8.7 Testing a Class 393

HT 1 Implementing a Class 395

WE 1 Implementing a Menu Class

VE 1 Paying Off a Loan

8.8 Problem Solving: Tracing Objects 399

8.9 Object References 403

Shared References 403

The null Reference 405

The this Reference 405

ST 3 Calling One Constructor from Another 408

8.10 Static Variables and Methods 408

8.11 PROBLEM SOLVING Patterns for

Object Data 410

Keeping a Total 411

Counting Events 411

Collecting Values 412

Managing Properties of an Object 413

Modeling Objects with Distinct States 413

Describing the Position of an Object 414

VE 2 Modeling a Robot Escaping from a Maze

7

8

Contents xix

8.12 Packages 417

Organizing Related Classes into Pack ages 417

Importing Packages 418

Package Names 419

Packages and Source Files 419

ST 4 Package Access 421

HT 2 Programming with Packages 421

INHERITANCE AND
INTERFACES 437

9.1 Inheritance Hierarchies 438

9.2 Implementing Subclasses 442

9.3 Overriding Methods 446

ST 1 Calling the Superclass Constructor 451

9.4 Polymorphism 452

ST 2 Dynamic Method Lookup and the Implicit

Parameter 455

ST 3 Abstract Classes 456

ST 4 Final Methods and Classes 457

ST 5 Protected Access 458

HT 1 Developing an Inheritance Hierarchy 458

WE 1 Implementing an Employee Hierarchy for

Payroll Processing

VE 1 Building a Discussion Board

9.5 Object: The Cosmic Superclass 463

Overriding the toString Method 464

The equals Method 465

The instanceof Operator 466

ST 6 Inheritance and the toString Method 468

ST 7 Inheritance and the equals Method 469

9.6 Interface Types 470

Defining an Interface 470

Implementing an Interface 472

The Comparable Interface 474

ST 8 Constants in Interfaces 476

ST 9 Generic Interface Types 476

J8 1 Static Methods in Interfaces 477

J8 2 Default Methods 477

ST 10 Function Objects 478

J8 3 Lambda Expressions 479

WE 2 Investigating Number Sequences

VE 2 Drawing Geometric Shapes

GRAPHICAL USER
INTERFACES 493

10.1 Frame Windows 494

Displaying a Frame 494

Adding User-Interface Components to
a Frame 495

Using Inheritance to Customize Frames 497

ST 1 Adding the main Method to the

Frame Class 498

10.2 Events and Event Handling 498

Listening to Events 499

Using Inner Classes for Listeners 501

APPLICATION Showing Growth of an
Investment 503

ST 2 Local Inner Classes 507

ST 3 Anonymous Inner Classes 508

J8 1 Lambda Expressions for Event Handling 509

10.3 Processing Text Input 509

Text Fields 509

Text Areas 511

10.4 Creating Drawings 515

Drawing on a Component 515

Ovals, Lines, Text, and Color 517

APPLICATION Visualizing the Growth of an
Investment 520

HT 1 Drawing Graphical Shapes 525

WE 1 Coding a Bar Chart Creator

VE 1 Solving Crossword Puzzles

ADVANCED USER
INTERFACES 535

11.1 Layout Management 536

11.2 Choices 538

Radio Buttons 538

Check Boxes 540

Combo Boxes 540

HT 1 Laying Out a User Interface 546

WE 1 Programming a Working Calculator

11.3 Menus 549

11.4 Exploring the Swing Documentation 556

11.5 Using Timer Events for Animations 561

9

10

11

xx Contents

11.6 Mouse Events 564

ST 1 Keyboard Events 567

ST 2 Event Adapters 568

WE 2 Adding Mouse and Keyboard Support to the

Bar Chart Creator

VE 1 Designing a Baby Naming Program

OBJECT-ORIENTED
DESIGN 577

12.1 Classes and Their Responsibilities 578

Discovering Classes 578

The CRC Card Method 580

Cohesion 581

12.2 Relationships Between Classes 582

Dependency 582

Aggregation 583

Inheritance 584

HT 1 Using CRC Cards and UML Diagrams in

Program Design 586

ST 1 Attributes and Methods in UML

Diagrams 586

ST 2 Multiplicities 587

ST 3 Aggregation, Association, and

Composition 587

12.3 APPLICATION Printing an Invoice 589

Requirements 589

CRC Cards 590

UML Diagrams 592

Method Documentation 593

Implementation 595

WE 1 Simulating an Automatic Teller Machine

RECURSION 607

13.1 Triangle Numbers 608

HT 1 Thinking Recursively 613

WE 1 Finding Files

13.2 Recursive Helper Methods 616

13.3 The E�ciency of Recursion 618

13.4 Permutations 623

13.5 Mutual Recursion 628

13.6 Backtracking 634

WE 2 Towers of Hanoi

SORTING AND
SEARCHING 649

14.1 Selection Sort 650

14.2 Pro�ling the Selection Sort

Algorithm 653

14.3 Analyzing the Performance of the

Selection Sort Algorithm 656

ST 1 Oh, Omega, and Theta 658

ST 2 Insertion Sort 659

14.4 Merge Sort 661

14.5 Analyzing the Merge Sort Algorithm 664

ST 3 The Quicksort Algorithm 666

14.6 Searching 668

Linear Search 668

Binary Search 669

14.7 PROBLEM SOLVING Estimating the Running

Time of an Algorithm 673

Linear Time 673

Quadratic Time 674

The Triangle Pattern 675

Logarithmic Time 676

14.8 Sorting and Searching in the Java

Library 678

Sorting 678

Binary Search 678

Comparing Objects 679

ST 4 The Comparator Interface 680

J8 1 Comparators with Lambda Expressions 681

WE 1 Enhancing the Insertion Sort Algorithm

THE JAVA COLLECTIONS
FRAMEWORK 691

15.1 An Overview of the Collections

Framework 692

15.2 Linked Lists 695

The Structure of Linked Lists 695

The LinkedList Class of the Java
Collections Framework 696

List Iterators 697

15.3 Sets 701

Choosing a Set Implementation 701

Working with Sets 702

12

13

14

15

Contents xxi

15.4 Maps 706

J8 1 Updating Map Entries 708

HT 1 Choosing a Collection 708

WE 1 Word Frequency

ST 1 Hash Functions 710

15.5 Stacks, Queues, and Priority Queues 712

Stacks 712

Queues 713

Priority Queues 713

15.6 Stack and Queue Applications 715

Balancing Parentheses 715

Evaluating Reverse Polish Expressions 716

Evaluating Algebraic Expressions 717

Backtracking 720

WE 2 Simulating a Queue of Waiting

Customers

VE 1 Building a Table of Contents

ST 2 Reverse Polish Notation 723

BASIC DATA
STRUCTURES 735

16.1 Implementing Linked Lists 736

The Node Class 736

Adding and Removing the First Element 737

The Iterator Class 738

Advancing an Iterator 739

Removing an Element 740

Adding an Element 742

Setting an Element to a Different Value 743

Efficiency of Linked List Operations 743

ST 1 Static Classes 750

WE 1 Implementing a Doubly-Linked List

16.2 Implementing Array Lists 751

Getting and Setting Elements 751

Removing or Adding Elements 752

Growing the Internal Array 753

16.3 Implementing Stacks and Queues 755

Stacks as Linked Lists 755

Stacks as Arrays 757

Queues as Linked Lists 757

Queues as Circular Arrays 758

16.4 Implementing a Hash Table 761

Hash Codes 761

Hash Tables 761

Finding an Element 763

Adding and Removing Elements 763

Iterating over a Hash Table 764

ST 2 Open Addressing 769

TREE STRUCTURES 779

17.1 Basic Tree Concepts 780

17.2 Binary Trees 784

Binary Tree Examples 784

Balanced Trees 786

A Binary Tree Implementation 787

WE 1 Building a Huffman Tree

17.3 Binary Search Trees 789

The Binary Search Property 789

Insertion 790

Removal 792

Efficiency of the Operations 794

17.4 Tree Traversal 798

Inorder Traversal 798

Preorder and Postorder Traversals 799

The Visitor Pattern 800

Depth-First and Breadth-First Search 801

Tree Iterators 803

17.5 Red-Black Trees 804

Basic Properties of Red-Black Trees 804

Insertion 806

Removal 807

WE 2 Implementing a Red-Black Tree

17.6 Heaps 811

17.7 The Heapsort Algorithm 822

GENERIC CLASSES 837

18.1 Generic Classes and Type

Parameters 838

18.2 Implementing Generic Types 839

18.3 Generic Methods 843

18.4 Constraining Type Parameters 845

ST 1 Wildcard Types 848

18.5 Type Erasure 849

ST 2 Reflection 852

WE 1 Making a Generic Binary Search

Tree Class

16

17

18

xxii Contents

STREAM PROCESSING 859

19.1 The Stream Concept 860

19.2 Producing Streams 862

19.3 Collecting Results 864

ST 1 Infinite Streams 865

19.4 Transforming Streams 866

19.5 Lambda Expressions 869

ST 2 Method and Constructor References 871

ST 3 Higher-Order Functions 872

ST 4 Higher-Order Functions and

Comparators 873

19.6 The Optional Type 873

19.7 Other Terminal Operations 876

19.8 Primitive-Type Streams 877

Creating Primitive-Type Streams 878

Mapping a Primitive-Type Stream 878

Processing Primitive-Type Streams 878

19.9 Grouping Results 880

19.10 Common Algorithms Revisited 882

Filling 882

Sum, Average, Maximum, and Minimum 883

Counting Matches 883

Element Separators 883

Linear Search 884

Comparing Adjacent Values 884

HT 1 Working with Streams 885

WE 1 Word Properties

WE 2 A Movie Database

ADVANCED INPUT/
OUTPUT 897

20.1 Readers, Writers, and Input/Output

Streams 898

20.2 Binary Input and Output 899

20.3 Random Access 903

20.4 Object Input and Output Streams 908

HT 1 Choosing a File Format 912

20.5 File and Directory Operations 913

Paths 913

Creating and Deleting Files and Directories 914

Useful File Operations 915

Visiting Directories 915

MULTITHREADING
(WEB ONLY)

21.1 Running Threads

ST 1 Thread Pools

21.2 Terminating Threads

21.3 Race Conditions

21.4 Synchronizing Object Access

21.5 Avoiding Deadlocks

ST 2 Object Locks and Synchronized Methods

ST 3 The Java Memory Model

21.6 APPLICATION Algorithm Animation

INTERNET NETWORKING
(WEB ONLY)

22.1 The Internet Protocol

22.2 Application Level Protocols

22.3 A Client Program

22.4 A Server Program

HT 1 Designing Client/Server Programs

22.5 URL Connections

RELATIONAL DATABASES
(WEB ONLY)

23.1 Organizing Database Information

Database Tables

Linking Tables

Implementing Multi-Valued Relation ships

ST 1 Primary Keys and Indexes

23.2 Queries

Simple Queries

Selecting Columns

Selecting Subsets

Calculations

Joins

Updating and Deleting Data

23.3 Installing a Database

23.4 Database Programming in Java

Connecting to the Database

Executing SQL Statements

Analyzing Query Results

Result Set Metadata

19

20

21

22

23

Contents xxiii

23.5 APPLICATION Entering an Invoice

ST 2 Transactions

ST 3 Object-Relational Mapping

WE 1 Programming a Bank Database

XML (WEB ONLY)

24.1 XML Tags and Documents

Advantages of XML

Differences Between XML and HTML

The Structure of an XML Document

HT 1 Designing an XML Document Format

24.2 Parsing XML Documents

24.3 Creating XML Documents

HT 2 Writing an XML Document

ST 1 Grammars, Parsers, and Compilers

24.4 Validating XML Documents

Document Type Definitions

Specifying a DTD in an XML Document

Parsing and Validation

HT 3 Writing a DTD

ST 2 Schema Languages

ST 3 Other XML Technologies

WEB APPLICATIONS
(WEB ONLY)

25.1 The Architecture of a Web Application

25.2 The Architecture of a JSF Application

JSF Pages

Managed Beans

Separation of Presentation and Business Logic

Deploying a JSF Application

ST 1 Session State and Cookies

25.3 JavaBeans Components

25.4 Navigation Between Pages

HT 1 Designing a Managed Bean

25.5 JSF Components

25.6 APPLICATION A Three-Tier Application

ST 2 AJAX

APPENDIX A THE BASIC LATIN AND LATIN-1 SUBSETS
OF UNICODE A-1

APPENDIX B JAVA OPERATOR SUMMARY A-5

APPENDIX C JAVA RESERVED WORD SUMMARY A-7

APPENDIX D THE JAVA LIBRARY A-9

APPENDIX E JAVA LANGUAGE CODING
GUIDELINES A-38

APPENDIX F TOOL SUMMARY

APPENDIX G NUMBER SYSTEMS

APPENDIX H UML SUMMARY

APPENDIX I JAVA SYNTAX SUMMARY

APPENDIX J HTML SUMMARY

GLOSSARY G-1

INDEX I-1

CREDITS C-1

ALPHABETICAL LIST OF SYNTAX BOXES
Arrays 263

Array Lists 302

Assignment 36

Cast 46

Catching Exceptions 354

Comparisons 91

Constant Declaration 37

Constructor with Superclass Initializer 452

Constructors 390

Declaring a Generic Class 840

Declaring a Generic Method 844

for Statement 154

if Statement 86

Input Statement 51

Instance Methods 387

Instance Variable Declaration 379

Interface Types 471

Java Program 12

Lambda Expressions 869

Package Speci�cation 419

Static Method Declaration 215

Subclass Declaration 444

The Enhanced for Loop 270

The instanceof Operator 467

The throws Clause 357

The try-with-resources Statement 357

Throwing an Exception 352

Two-Dimensional Array Declaration 295

Variable Declaration 33

while Statement 142

24

25

xxiv Special Features

 Available online at www.wiley.com/college/horstmann.

CHAPTER
Common
Errors

How Tos
 and

Worked Examples

1 Introduction Omitting Semicolons 13

Misspelling Words 15

Compiling and Running

a Program Video

Describing an Algorithm

with Pseudocode 19

Writing an Algorithm for

Tiling a Floor

Dividing Household Expenses Video

2 Fundamental

Data Types

Using Undeclared or

Uninitialized Variables 39

Over�ow 40

Roundo� Errors 40

Unintended Integer Division 48

Unbalanced Parentheses 48

Using Integer Division Video

Carrying out Computations 56

Computing the Cost

of Stamps

Computing Travel Time

Computing Distances on Earth Video

3 Decisions A Semicolon After the

if Condition 88

Exact Comparison of

Floating-Point Numbers 93

Using == to Compare Strings 94

The Dangling else Problem 106

Combining Multiple

Relational Operators 115

Confusing && and ||

Conditions 116

Implementing an

if Statement 95

Extracting the Middle

Computing the Plural of

an English Word Video

The Genetic Code Video

4 Loops Don’t Think “Are We

There Yet?” 146

In�nite Loops 147

O�-by-One Errors 147

Evaluating a Cell Phone Plan Video

Writing a Loop 171

Credit Card Processing

Manipulating the Pixels

in an Image

Drawing a Spiral Video

5 Methods Trying to Modify Arguments 219

Missing Return Value 222

Implementing a Method 222

Generating Random

Passwords

Calculating a Course Grade

Debugging Video

Thinking Recursively 243

Fully Justi�ed Text Video

Special Features xxv

 Available online at www.wiley.com/college/horstmann.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Backup Copies 10

Computers Are Everywhere 5

Choose Descriptive Variable

Names 40

Do Not Use Magic Numbers 41

Spaces in Expressions 49

Use the API Documentation 55

Numeric Types in Java 41

Big Numbers 42

Avoiding Negative Remainders 49

Combining Assignment

and Arithmetic 49

Instance Methods and

Static Methods 66

Using Dialog Boxes for Input

and Output 67

The Pentium

Floating-Point Bug 50

International Alphabets

and Unicode 68

Brace Layout 88

Always Use Braces 88

Tabs 89

Avoid Duplication in Branches 90

Hand-Tracing 105

Make a Schedule and Make

Time for Unexpected

Problems 111

The Conditional Operator 89

Lexicographic Ordering

of Strings 94

The switch Statement 101

Enumeration Types 107

Logging 112

Short-Circuit Evaluation

of Boolean Operators 116

De Morgan’s Law 117

The Denver Airport

Luggage System 97

Arti�cial Intelligence 121

Use for Loops for Their

Intended Purpose Only 157

Choose Loop Bounds That

Match Your Task 157

Count Iterations 158

Flowcharts for Loops 159

The Loop-and-a-Half Problem

and the break Statement 162

Redirection of Input

and Output 163

Drawing Graphical Shapes 186

The First Bug 148

Digital Piracy 188

Method Comments 217

Do Not Modify Parameter

Variables 219

Keep Methods Short 234

Tracing Methods 234

Stubs 235

Using a Debugger 239

Personal Computing 228

xxvi Special Features

 Available online at www.wiley.com/college/horstmann.

CHAPTER
Common
Errors

How Tos
 and

Worked Examples

6 Arrays and Array Lists Bounds Errors 267

Uninitialized Arrays 267

Underestimating the Size

of a Data Set 279

Length and Size 311

Working with Arrays 287

Rolling the Dice

Removing Duplicates from

an Array Video

A World Population Table

Game of Life Video

7 Input/Output and
Exception Handling

Backslashes in File Names 335

Constructing a Scanner with

a String 335

Computing a Document’s

Readability Video

Processing Text Files 348

Analyzing Baby Names

Detecting Accounting Fraud Video

8 Objects and Classes Trying to Call a Constructor 392

Declaring a Constructor

as void 393

Forgetting to Initialize

Object References

in a Constructor 407

Confusing Dots 420

Implementing a Class 395

Implementing a Menu Class

Paying O� a Loan Video

Modeling a Robot Escaping

from a Maze Video

Programming with Packages 421

9 Inheritance and

Interfaces

Replicating Instance Variables

from the Superclass 445

Confusing Super- and

Subclasses 446

Accidental Overloading 450

Forgetting to Use super

When Invoking a

Superclass Method 451

Don’t Use Type Tests 468

Forgetting to Declare Implementing

Methods as Public 475

Developing an

Inheritance Hierarchy 458

Implementing an

Employee Hierarchy for

Payroll Processing

Building a Discussion Board Video

Investigating Number Sequences

Drawing Geometric Shapes Video

Special Features xxvii

 Available online at www.wiley.com/college/horstmann.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use Arrays for Sequences

of Related Items 268

Reading Exception Reports 286

Sorting with the Java Library 279

Binary Search 279

Methods with a Variable

Number of Parameters 284

Two-Dimensional Arrays with

Variable Row Lengths 300

Multidimensional Arrays 301

The Diamond Syntax 311

Computer Viruses 268

Throw Early, Catch Late 359

Do Not Squelch Exceptions 359

Do Throw Speci�c Exceptions 360

Reading Web Pages 335

File Dialog Boxes 335

Reading and Writing

Binary Data 336

Regular Expressions 344

Reading an Entire File 344

Assertions 360

The try/finally Statement 360

Encryption Algorithms 351

The Ariane Rocket Incident 361

All Instance Variables Should

Be Private; Most Methods

Should Be Public 388

The javadoc Utility 384

Overloading 393

Calling One Constructor

from Another 408

Package Access 421

Open Source and

Free Software 402

Electronic Voting Machines 416

Use a Single Class for Variation

in Values, Inheritance for

Variation in Behavior 442

Comparing Integers and

Floating-Point Numbers 475

Calling the Superclass

Constructor 451

Dynamic Method Lookup and

the Implicit Parameter 455

Abstract Classes 456

Final Methods and Classes 457

Protected Access 458

Inheritance and the

toString Method 468

Inheritance and the

equals Method 469

Constants in Interfaces 476

Generic Interface Types 476

Static Methods in Interfaces 477

Default Methods 477

Function Objects 478

Lambda Expressions 479

Who Controls the Internet? 481

xxviii Special Features

 Available online at www.wiley.com/college/horstmann.

CHAPTER
Common
Errors

How Tos
 and

Worked Examples

10 Graphical User

Interfaces

Modifying Parameter Types

in the Implementing Method 506

Forgetting to Attach a Listener 506

Forgetting to Repaint 524

By Default, Components Have

Zero Width and Height 525

Drawing Graphical Shapes 525

Coding a Bar Chart Creator

Solving Crossword Puzzles Video

11 Advanced User

Interfaces

Laying Out a User Interface 546

Programming a Working

Calculator

Adding Mouse and

Keyboard Support to the

Bar Chart Creator

Designing a Baby

Naming Program Video

12 Object-Oriented Design Using CRC Cards and

UML Diagrams in

Program Design 586

Simulating an Automatic

Teller Machine

13 Recursion In�nite Recursion 612

Tracing Through Recursive

Methods 612

Thinking Recursively 613

Finding Files

Towers of Hanoi

14 Sorting and Searching The compareTo Method Can

Return Any Integer,

Not Just –1, 0, and 1 680

Enhancing the Insertion

Sort Algorithm

15 The Java Collections

Framework

Choosing a Collection 708

Word Frequency

Simulating a Queue of

Waiting Customers

Building a Table of Contents Video

Special Features xxix

 Available online at www.wiley.com/college/horstmann.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Don’t Use a Frame as a Listener 506 Adding the main Method to

the Frame Class 498

Local Inner Classes 507

Anonymous Inner Classes 508

Lambda Expressions

for Event Handling 509

Use a GUI Builder 548 Keyboard Events 567

Event Adapters 568

Make Parallel Arrays into

Arrays of Objects 588

Attributes and Methods in

UML Diagrams 586

Multiplicities 587

Aggregation, Association,

and Composition 587

Databases and Privacy 600

The Limits of Computation 626

Oh, Omega, and Theta 658

Insertion Sort 659

The Quicksort Algorithm 666

The Comparator Interface 680

Comparators with

Lambda Expressions 681

The First Programmer 672

Use Interface References to

Manipulate Data Structures 705
Updating Map Entries 708

Hash Functions 710

Reverse Polish Notation 723

Standardization 700

xxx Special Features

 Available online at www.wiley.com/college/horstmann.

CHAPTER
Common
Errors

How Tos
 and

Worked Examples

16 Basic Data Structures Implementing a Doubly-

Linked List

17 Tree Structures Building a Hu�man Tree

Implementing a Red-Black Tree

18 Generic Classes Genericity and Inheritance 847

The Array Store Exception 847

Using Generic Types in a

Static Context 852

Making a Generic Binary

Search Tree Class

19 Stream Processing Don’t Use a Terminated Stream 868

Optional Results Without Values 875

Don’t Apply Mutations in

Parallel Stream Operations 877

Working with Streams 885

Word Properties

A Movie Database

20 Advanced

Input/Output

Negative byte Values 903 Choosing a File Format 912

21 Multithreading

(WEB ONLY)

Calling await Without

Calling signalAll

Calling signalAll Without

Locking the Object

22 Internet Networking

(WEB ONLY)

Designing Client/Server

Programs

23 Relational Databases

(WEB ONLY)

Joining Tables Without Specifying

a Link Condition

Constructing Queries from

Arbitrary Strings

Programming a

Bank Database

24 XML

(WEB ONLY)

XML Elements Describe Objects,

Not Classes

Designing an XML

Document Format

Writing an XML Document

Writing a DTD

25 Web Applications

(WEB ONLY)

Designing a Managed Bean

Special Features xxxi

 Available online at www.wiley.com/college/horstmann.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Static Classes 750

Open Addressing 769

Wildcard Types 848

Re�ection 852

One Stream Operation Per Line 865

Keep Lambda Expressions Short 870

In�nite Streams 865

Method and Constructor

References 871

Higher-Order Functions 872

Higher-Order Functions

and Comparators 873

Use the Runnable Interface

Check for Thread Interruptions

in the run Method of a Thread

Thread Pools

Object Locks and

Synchronized Methods

The Java Memory Model

Use High-Level Libraries

Stick with the Standard

Avoid Unnecessary Data

Replication

Don’t Replicate Columns

in a Table

Don’t Hardwire Database

Connection Parameters

into Your Program

Let the Database Do the Work

Primary Keys and Indexes

Transactions

Object-Relational Mapping

Prefer XML Elements

over Attributes

Avoid Children with Mixed

Elements and Text

Grammars, Parsers,

and Compilers

Schema Languages

Other XML Technologies

Session State and Cookies

AJAX

1C H A P T E R

1

INTRODUCTION

To learn about computers

and programming

To compile and run your first Java program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

CHAPTER GOALS

CHAPTER CONTENTS

1.1 COMPUTER PROGRAMS 2

1.2 THE ANATOMY OF A COMPUTER 3

C&S Computers Are Everywhere 5

1.3 THE JAVA PROGRAMMING

LANGUAGE 6

1.4 BECOMING FAMILIAR WITH YOUR

PROGRAMMING ENVIRONMENT 7

PT 1 Backup Copies 10

VE 1 Compiling and Running a Program

1.5 ANALYZING YOUR FIRST

PROGRAM 11

SYN Java Program 12

CE 1 Omitting Semicolons 13

1.6 ERRORS 14

CE 2 Misspelling Words 15

1.7 PROBLEM SOLVING:

ALGORITHM DESIGN 15

HT 1 Describing an Algorithm with

Pseudocode 19

WE 1 Writing an Algorithm for Tiling

a Floor 21

VE 2 Dividing Household Expenses

© JanPietruszka/iStockphoto.

2

Just as you gather tools, study a project, and make a plan for

tackling it, in this chapter you will gather up the basics you

need to start learning to program. After a brief introduction

to computer hardware, software, and programming in

general, you will learn how to write and run your first

Java program. You will also learn how to diagnose and

fix programming errors, and how to use pseudocode to

describe an algorithm—a step-by-step description of how

to solve a problem—as you plan your computer programs.

1.1 Computer Programs

You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much nar rower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and periph eral devices are collectively
called the hardware. The programs the computer executes are called the soft ware.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

• Put a red dot at a given screen position.

• Add up two numbers.

• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophis ticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in sim ple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

1.2 The Anatomy of a Computer 3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1. What is required to play music on a computer?

2. Why is a CD player less flexible than a computer?

3. What does a computer user need to know about programming in order to play a
video game?

1.2 The Anatomy of a Computer

To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 1). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and
data processing. That is, the CPU locates and
executes the program instructions; it carries out
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data
from external memory or devices and places
processed data into storage.

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)

S E L F C H E C K

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 2 A Hard Disk

©
 A

m
o

rp
h

is
/i

S
to

ck
p

h
o

to
.

P
h

o
to

D
is

c,
 I

n
c.

/G
e
tt

y
 I

m
a
g
e
s,

 I
n

c.

4 Chapter 1 Introduction

or a solid-state drive, provides slower and less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are coated with a mag netic
material. A solid-state drive uses electronic components that can retain information
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instruc tions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Figure 3 Schematic Design of a Personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

1.2 The Anatomy of a Computer 5

4. Where is a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as addition
and multiplication?

6. A modern smartphone is a computer, comparable to a desktop computer. Which
components of a smartphone correspond to those shown in Figure 3?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.

Computing & Society 1.1 Computers Are Everywhere

S E L F C H E C K

When computers

were first invented

in the 1940s, a computer filled an

entire room. The photo below shows

the ENIAC (electronic numerical inte-

grator and computer), completed in

1946 at the University of Pennsylvania.

The ENIAC was used by the military to

compute the trajectories of projectiles.

Nowadays, computing facilities of

search engines, Internet shops, and

social networks fill huge buildings

called data centers. At the other end of

the spectrum, computers are all around

us. Your cell phone has a computer

inside, as do many credit cards and fare

cards for public transit. A modern car

has several computers––to control the

engine, brakes, lights, and the radio.

The advent of ubiqui-

tous computing changed

many aspects of our

lives. Factories used

to employ people to

do repetitive assembly

tasks that are today

carried out by computer-

controlled robots, oper-

ated by a few people

who know how to work

with those computers.

Books, music, and mov-

ies nowadays are often

consumed on comput-

ers, and computers are

almost always involved

in their production. The book that you

are reading right now could not have

been written without computers.

Knowing about computers and

how to program them has become

an essential skill in many careers.

Engineers design computer-controlled

cars and medical equipment that

preserve lives. Computer scientists

develop programs that help people

come together to support social

causes. For example, activists used

social networks to share videos

showing abuse by repressive regimes,

and this information was instrumental

in changing public opinion.

As computers, large and small,

become ever more embedded in our

everyday lives, it is increasingly impor-

tant for everyone to understand how

they work, and how to work with them.

As you use this book to learn how to

program a computer, you will develop

a good understanding of computing

fundamentals that will make you a

more informed citizen and, perhaps,

a computing professional.

This transit card contains a computer.

The ENIAC

©
 M

a
u

ri
ce

 S
a
v
a
g
e
/A

la
m

y
 L

im
it

e
d

.

©
 U

P
P

A
/P

h
o

to
sh

o
t.

6 Chapter 1 Introduction

1.3 The Java Programming Language

In order to write a computer program, you need to provide a sequence of instructions
that the CPU can execute. A computer program consists of a large number of simple
CPU instructions, and it is tedious and error-prone to specify them one by one. For
that reason, high-level programming languages have been created. In a high-level
language, you specify the actions that your program should carry out. A compiler
translates the high-level instructions into the more detailed instructions (called
machine code)required by the CPU. Many different programming languages have
been designed for different purposes.

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems
designed a programming language, code-named “Green”, for use in consumer
devices, such as intelligent television “set-top” boxes. The language was designed to
be simple, secure, and usable for many dif ferent processor types. No customer was
ever found for this technology.

Gosling recounts that in 1994 the team realized,
“We could write a really cool browser. It was one
of the few things in the client/server main stream
that needed some of the weird things we’d done:
architecture neu tral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at
the SunWorld exhibition in 1995, together with a
browser that ran applets—Java code that can be
located anywhere on the Internet. The figure at
right shows a typical example of an applet.

Since then, Java has grown at a phenomenal rate.
Programmers have embraced the language because
it is easier to use than its closest rival, C++. In addition, Java has a rich library that
makes it possible to write portable programs that can bypass proprietary operating
systems—a feature that was eagerly sought by those who wanted to be independent
of those proprietary systems and was bitterly fought by their ven dors. A “micro edi-
tion” and an “enterprise edition” of the Java library allow Java programmers to target
hardware ranging from smart cards to the largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

Table 1 Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 5 2004 Generic classes, enhanced for loop,
auto-boxing, enumerations,

annotations

1.2 1998 Swing, Collections framework 6 2006 Library improvements

1.3 2000 Performance enhancements 7 2011 Small language changes and library
improvements

1.4 2002 Assertions, XML support 8 2014 Function expressions, streams, new
date/time library

James Gosling

An Applet for Visualizing Molecules

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Ja
m

e
s

S
u

ll
iv

a
n

/G
e
tt

y
 I

m
a
g
e
s.

1.4 Becoming Familiar with Your Programming Environment 7

Java was designed so that anyone can execute programs in their browser without
fear. The safety features of the Java language ensure that a program is terminated if it
tries to do something unsafe. Having a safe environment is also helpful for anyone
learning Java. When you make an error that results in unsafe behavior, your program
is terminated and you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,
a program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn
how to program in Java, there will be times when you will be asked to be satisfied with
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 7 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are pack ages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

7. What are the two most important benefits of the Java language?

8. How long does it take to learn the entire Java library?

Practice It Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

S E L F C H E C K

Set aside time to
become familiar with
the programming
environment that
you will use for your
class work.

8 Chapter 1 Introduction

Step 1

Figure 4
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

Java program

Program output

Click to compile and run

Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter

{

 public static void main(String[] args)

 {

 System.out.println("Hello, World!");

 }

}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it HelloPrinter.java, using the steps that are appropriate

for your environ ment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

An editor is a
program for entering
and modifying
text, such as a Java
program.

1.4 Becoming Familiar with Your Programming Environment 9

Figure 5
Running the HelloPrinter
Program in a Console Window

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems—see Common Error 1.2 on page 15.

Step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
In order to run your program, the Java compiler translates your source files (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your source code into
virtual machine instructions, the virtual machine executes them. During execution,
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the
program’s output. Figure 6 summarizes the process of creating and running a Java
program. In some programming environments, the compiler and virtual machine are
essentially invisible to the programmer—they are automatically executed whenever
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly.

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

The Java compiler
translates source
code into class
files that contain
instructions for the
Java virtual machine.

Figure 6
From Source Code
to Running Program

CompilerEditor
Virtual

Machine

Running

ProgramSource File

Class �les

Library �les

10 Chapter 1 Introduction

files as well as other folders, which themselves can contain more files and folders (see
Figure 7). This hierarchy can be quite large, and you need not be concerned with all of
its branches. However, you should create folders for organizing your work. It is a
good idea to make a separate folder for your programming coursework. Inside that
folder, make a separate folder for each program.

Some programming environments place your programs into a default location if
you don’t specify a folder yourself. In that case, you need to find out where those files
are located.

Be sure that you understand where your files are located in the folder hierarchy.
This information is essential when you submit files for grading, and for making
backup copies (see Programming Tip 1.1).

9. Where is the HelloPrinter.java file stored on your computer?

10. What do you do to protect yourself from data loss when you work on program-
ming projects?

Practice It Now you can try this exercise at the end of the chapter: R1.6.

Backup Copies

You will spend many hours creating and improving Java programs. It is
easy to delete a file by accident, and occasionally files are lost because
of a computer malfunction. Retyping the contents of lost files is frus-
trating and time-consuming. It is therefore crucially impor tant that
you learn how to safeguard files and get in the habit of doing so before
disaster strikes. Backing up files on a memory stick is an easy and convenient storage method
for many people. Another increasingly popular form of backup is Internet file storage. Here
are a few pointers to keep in mind:

• Back up often. Backing up a file takes only a few seconds, and
you will hate yourself if you have to spend many hours
recreating work that you could have saved easily. I rec ommend
that you back up your work once every thirty minutes.

• Rotate backups. Use more than one directory for backups, and rotate them. That is, first
back up onto the first directory. Then back up onto the second directory. Then use the
third, and then go back to the first. That way you always have three recent backups. If
your recent changes made matters worse, you can then go back to the older version.

• Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to
the backup location. If you do it the wrong way, you will overwrite a newer file with an
older version.

• Check your backups once in a while. Double-check that your backups are where you think
they are. There is nothing more frustrating than to find out that the backups are not there
when you need them.

• Relax, then restore. When you lose a file and need to restore it from a backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user to
wipe out the last backup when trying to restore a damaged file.

Figure 7
A Folder Hierarchy

S E L F C H E C K

Programming Tip 1.1

Develop a strategy for
keeping backup copies
of your work before
disaster strikes.

©
 T

a
ti

a
n

a
 P

o
p

o
v
a
/i

S
to

ck
p

h
o

to
.

1.5 Analyzing Your First Program 11

1.5 Analyzing Your First Program

In this section, we will analyze the first Java program in detail. Here again is the
source code:

sec04/HelloPrinter.java

1 public class HelloPrinter
2 {
3 public static void main(String[] args)
4 {
5 // Display a greeting in the console window
6
7 System.out.println("Hello, World!");
8 }
9 }

The line

public class HelloPrinter

indicates the declaration of a class called HelloPrinter.
Every Java program consists of one or more classes. Classes are the fundamental

building blocks of Java programs. You will have to wait until Chapter 8 for a full
explanation of classes.

The word public denotes that the class is usable by the “public”. You will later
encounter private fea tures.

In Java, every source file can contain at most one public class, and the name of the
public class must match the name of the file containing the class. For example, the
class HelloPrinter must be contained in a file named HelloPrinter.java.

The construction

public static void main(String[] args)

{

 . . .

}

declares a method called main. A method contains a collection of programming
instructions that describe how to carry out a particular task. Every Java application
must have a main method. Most Java programs contain other methods besides main,
and you will see in Chapter 5 how to write other methods.

The term static is explained in more detail in Chapter 8, and the meaning of
String[] args is covered in Chapter 7. At this time, simply consider

public class ClassName
{

 public static void main(String[] args)

 {

 . . .

 }

}

VIDEO EXAMPLE 1.1 Compiling and Running a Program

See a demonstration of how to compile and run a simple Java pro-
gram. Go to wiley.com/go/bjlo2videos to view Video Example 1.1.

Classes are the
fundamental
building blocks of
Java programs.

Every Java
application contains
a class with a main
method. When the
application starts,
the instructions in
the main method
are executed.

Each class contains
declarations of
methods. Each
method contains
a sequence
of instructions.

©
 A

m
a
n

d
a
 R

o
h

d
e
/i

S
to

ck
p

h
o

to
.

12 Chapter 1 Introduction

as a part of the “plumbing” that is required to create a Java program. Our first pro-
gram has all instructions inside the main method of the class.

The main method contains one or more instructions called statements. Each state-
ment ends in a semi colon (;). When a program runs, the statements in the main method
are executed one by one.

In our example program, the main method has a single statement:

System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. In this statement, we call
a method which, for reasons that we will not explain here, is specified by the rather
long name System.out.println.

We do not have to implement this method—the programmers who wrote the Java
library already did that for us. We simply want the method to perform its intended
task, namely to print a value.

Whenever you call a method in Java, you need to specify

1. The method you want to use (in this case, System.out.println).

2. Any values the method needs to carry out its task (in this case, "Hello, World!").
The technical term for such a value is an argument. Arguments are enclosed in
parentheses. Multiple arguments are sep arated by commas.

A sequence of characters enclosed in quotation marks

"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks
so that the compiler knows you literally mean "Hello, World!". There is a reason for
this requirement. Suppose you need to print the word main. By enclosing it in quota-
tion marks, "main", the compiler knows you mean the sequence of characters m a i n,
not the method named main. The rule is simply that you must enclose all text strings in
quotation marks, so that the compiler considers them plain text and does not try to
inter pret them as program instructions.

A method is called
by specifying the
method and
its arguments.

A string is a sequence
of characters
enclosed in
quotation marks.

Syntax 1.1 Java Program

public class HelloPrinter

{

 public static void main(String[] args)

 {

 System.out.println("Hello, World!");

 }

}

Every program contains at least one class.
Choose a class name that describes
the program action.

The statements inside the
main method are executed
when the program runs.

Every Java program
contains a main method
with this header.

Replace this
statement when you

write your own
programs.

Be sure to match the
opening and closing braces.

Each statement
ends in a semicolon.
 See Common Error 1.1.

1.5 Analyzing Your First Program 13

You can also print numerical values. For example, the statement

System.out.println(3 + 4);

evaluates the expression 3 + 4 and displays the number 7.
The System.out.println method prints a string or a number and then starts a new

line. For example, the sequence of statements

System.out.println("Hello");

System.out.println("World!");

prints two lines of text:

Hello

World!

There is a second method, System.out.print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");

System.out.println(3 + 4);

is the single line

007

11. How do you modify the HelloPrinter program to greet you instead?

12. How would you modify the HelloPrinter program to print the word “Hello”
vertically?

13. Would the program continue to work if you replaced line 7 with this statement?

System.out.println(Hello);

14. What does the following set of statements print?

System.out.print("My lucky number is");

System.out.println(3 + 4 + 5);

15. What do the following statements print?
System.out.println("Hello");

System.out.println("");

System.out.println("World");

Practice It Now you can try these exercises at the end of the chapter: R1.7, R1.8, E1.5, E1.8.

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a common
error. It confuses the compiler, because the compiler uses the semicolon to find where one
statement ends and the next one starts. The compiler does not use line breaks or closing braces
to recognize the end of statements. For example, the compiler considers

System.out.println("Hello")

System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System follow-
ing the closing parenthe sis after "Hello".

The remedy is simple. Scan every statement for a terminating semicolon, just as you would
check that every English sentence ends in a period. However, do not add a semicolon at the
end of public class Hello or public static void main. These lines are not statements.

FULL CODE EXAMPLE

Go to wiley.com/
go/bjlo2code to
download a program
to demonstrate print
commands.

S E L F C H E C K

Common Error 1.1

14 Chapter 1 Introduction

1.6 Errors

Experiment a little with the HelloPrinter program.
What happens if you make a typing error such as

System.ou.println("Hello, World!");

System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will
say that it has no clue what you mean by ou. The
exact wording of the error message is dependent
on your development environment, but it might be
something like “Cannot find symbol ou”. This is a
compile-time error. Something is wrong accord-
ing to the rules of the language and the compiler
finds it. For this reason, compile-time errors are
often called syntax errors. When the compiler
finds one or more errors, it refuses to translate the program into Java virtual machine
instructions, and as a consequence you have no program that you can run. You must
fix the error and compile again. In fact, the compiler is quite picky, and it is common
to go through several rounds of fixing compile-time errors before compila tion suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once.

Sometimes, an error throws the compiler off track. Suppose, for example, you
forget the quotation marks around a string: System.out.println(Hello, World!). The
compiler will not complain about the missing quotation marks. Instead, it will report
“Cannot find symbol Hello”. Unfortunately, the com piler is not very smart and it
does not realize that you meant to use a string. It is up to you to realize that you need
to enclose strings in quotation marks.

The error in the second line above is of a different kind. The program will compile
and run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error. The program is syntactically correct and does something,
but it doesn’t do what it is supposed to do. Because run-time errors are caused by
logical flaws in the program, they are often called logic errors.

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they gen-
erate an exception: an error message from the Java virtual machine. For example, if
your program includes the statement

System.out.println(1 / 0);

you will get a run-time error message “Division by zero”.
During program development, errors are unavoidable. Once a program is longer

than a few lines, it would require superhuman concentration to enter it correctly
without slipping up once. You will find yourself omitting semicolons or quotation
marks more often than you would like, but the compiler will track down these prob-
lems for you.

Run-time errors are more troublesome. The compiler will not find them—in fact,
the compiler will cheerfully translate any program as long as its syntax is correct—

Programmers spend a fair amount

of time fixing compile-time and run-

time errors.

A compile-time error
is a violation of
the programming
language rules that
is detected by
the compiler.

A run-time error
causes a program to
take an action that
the programmer did
not intend.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to down-
load three programs
that illustrate errors.

©
 M

a
rt

in
 C

a
rl

ss
o

n
/i

S
to

ck
p

h
o

to
.

1.7 Problem Solving: Algorithm Design 15

but the resulting program will do some thing wrong. It is the responsibility of the
program author to test the program and find any run-time errors.

16. Suppose you omit the "" characters around Hello, World! from the HelloPrinter.
java program. Is this a compile-time error or a run-time error?

17. Suppose you change println to printline in the HelloPrinter.java program. Is this
a compile-time error or a run-time error?

18. Suppose you change main to hello in the HelloPrinter.java program. Is this a
compile-time error or a run-time error?

19. When you used your computer, you may have experienced a program that
“crashed” (quit spontane ously) or “hung” (failed to respond to your input). Is
that behavior a compile-time error or a run-time error?

20. Why can’t you test a program for run-time errors when it has compiler errors?

Practice It Now you can try these exercises at the end of the chapter: R1.9, R1.10, R1.11.

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always be
completely obvious from the error messages what went wrong. Here is a good example of how
simple spelling errors can cause trouble:

public class HelloPrinter

{

 public static void Main(String[] args)

 {

 System.out.println("Hello, World!");

 }

}

This class declares a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case sen-
sitive. Upper- and lowercase letters are considered to be completely different from each other,
and to the compiler Main is no better match for main than rain. The compiler will cheerfully
compile your Main method, but when the Java virtual machine reads the compiled file, it will
complain about the missing main method and refuse to run the program. Of course, the mes-
sage “missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler or virtual machine is on
the wrong track, check for spelling and capitalization. If you misspell the name of a symbol
(for example, ou instead of out), the compiler will produce a message such as “cannot find sym-
bol ou”. That error message is usually a good clue that you made a spelling error.

1.7 Problem Solving: Algorithm Design

You will soon learn how to program calculations and decision making in Java. But
before we look at the mechanics of implementing computations in the next chapter,
let’s consider how you can describe the steps that are necessary for finding the solu-
tion to a problem.

S E L F C H E C K

Common Error 1.2

16 Chapter 1 Introduction

1.7.1 The Algorithm Concept

You may have run across advertisements that
encourage you to pay for a computerized service
that matches you up with a love partner. Think
how this might work. You fill out a form and send
it in. Others do the same. The data are processed
by a computer program. Is it reasonable to assume
that the computer can perform the task of finding
the best match for you? Suppose your younger
brother, not the computer, had all the forms on his
desk. What instructions could you give him? You
can’t say, “Find the best-looking person who likes
inline skating and browsing the Internet”. There
is no objective standard for good looks, and your
brother’s opinion (or that of a computer program
analyzing the photos of prospective partners) will likely be different from yours. If
you can’t give written instructions for someone to solve the problem, there is no way
the com puter can magically find the right solution. The computer can only do what
you tell it to do. It just does it faster, without getting bored or exhausted.

For that reason, a computerized match-making service cannot guarantee to find
the optimal match for you. Instead, you may be presented with a set of potential part-
ners who share common interests with you. That is a task that a computer program
can solve.

In order for a computer program to provide an answer to a problem that computes
an answer, it must follow a sequence of steps that is

• Unambiguous

• Executable

• Terminating

The step sequence is unambiguous when there are precise instructions for what to do
at each step and where to go next. There is no room for guesswork or personal opin-
ion. A step is executable when it can be carried out in practice. For example, a com-
puter can list all people that share your hobbies, but it can’t predict who will be your
life-long partner. Finally, a sequence of steps is terminating if it will eventually come
to an end. A program that keeps working without delivering an answer is clearly not
useful.

A sequence of steps that is unambiguous,
executable, and terminating is called an algorithm.
Although there is no algorithm for finding a part-
ner, many problems do have algorithms for solving
them. The next section gives an example.

An algorithm is a recipe for

finding a solution.

Finding the perfect partner is not a

problem that a computer can solve.

An algorithm for
solving a problem is
a sequence of steps
that is unambiguous,
executable, and
terminating.

©
 m

a
m

m
a
m

a
a
rt

/i
S

to
ck

p
h

o
to

.
©

 C
la

u
d

ia
d

/i
S

to
ck

p
h

o
to

.

1.7 Problem Solving: Algorithm Design 17

1.7.2 An Algorithm for Solving an Investment Problem

Consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How many
years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

 year interest balance

 0 10000

 1 10000.00 x 0.05 = 500.00 10000.00 + 500.00 = 10500.00

 2 10500.00 x 0.05 = 525.00 10500.00 + 525.00 = 11025.00

 3 11025.00 x 0.05 = 551.25 11025.00 + 551.25 = 11576.25

 4 11576.25 x 0.05 = 578.81 11576.25 + 578.81 = 12155.06

You keep going until the balance is at least $20,000. Then the last number in the year
column is the answer.

Of course, carrying out this computation is intensely boring to you or your
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of the
steps for finding the solution. Each step must be clear and unam biguous, requiring no
guesswork. Here is such a description:

Set year to 0, balance to 10000.

 year interest balance

 0 10000

While the balance is less than $20,000
 Add 1 to the year.
 Set the interest to balance x 0.05 (i.e., 5 percent interest).
 Add the interest to the balance.

 year interest balance

 0 10000

 1 500.00 10500.00

 14 942.82 19799.32

 15 989.96 20789.28

Report year as the answer.

These steps are not yet in a language that a computer can understand, but you will
soon learn how to formulate them in Java. This informal description is called pseudo-
code. We examine the rules for writing pseudocode in the next section.

18 Chapter 1 Introduction

1.7.3 Pseudocode

There are no strict requirements for pseudocode because it is read by human readers,
not a computer program. Here are the kinds of pseudocode statements and how we
will use them in this book:

• Use statements such as the following to describe how a value is set or changed:

total cost = purchase price + operating cost
Multiply the balance value by 1.05.
Remove the first and last character from the word.

• Describe decisions and repetitions as follows:

If total cost 1 < total cost 2
While the balance is less than $20,000
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated:

For each car
 operating cost = 10 x annual fuel cost
 total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for
each car.

• Indicate results with statements such as:

Choose car1.
Report year as the answer.

1.7.4 From Algorithms to Programs

In Section 1.7.2, we developed pseudocode for finding how long it takes to double an
investment. Let’s double-check that the pseudocode represents an algorithm; that is,
that it is unambiguous, executable, and terminating.

Our pseudocode is unambiguous. It simply tells how to update values in each step.
The pseudocode is executable because we use a fixed interest rate. Had we said to use
the actual interest rate that will be charged in years to come, and not a fixed rate of 5
percent per year, the instructions would not have been executable. There is no way
for anyone to know what the interest rate will be in the future. It requires a bit of
thought to see that the steps are terminating: With every step, the balance goes up by
at least $500, so eventually it must reach $20,000.

Therefore, we have found an algorithm to solve our investment problem, and
we know we can find the solution by programming a computer. The existence of
an algorithm is an essential prerequisite for programming a task. You need to first
discover and describe an algorithm for the task before you start programming (see
Figure 8). In the chapters that follow, you will learn how to express algorithms in the
Java language.

Figure 8 The Software Development Process

Pseudocode is an
informal description
of a sequence of
steps for solving
a problem.

Understand
the problem

Develop and
describe an
algorithm

Translate
the algorithm

into Java

Test the
algorithm with
simple inputs

Compile and test
your program

1.7 Problem Solving: Algorithm Design 19

21. Suppose the interest rate was 20 percent. How long would it take for the invest-
ment to double?

22. Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of
calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees. Give
an algorithm to compute the monthly charge from a given number of minutes.

23. Consider the following pseudocode for finding the most attractive photo from a
sequence of photos:

Set "the best so far" to the first photo.
For each photo in the sequence
 If the photo is more attractive than "the best so far"
 Set "the best so far" to the photo.
Report "the best so far" as the most attractive photo in the sequence.

Is this an algorithm that will find the most attractive photo?

24. Suppose each photo in Self Check 23 had a price tag. Give an algorithm for find-
ing the most expen sive photo.

25. Suppose you have a random sequence of black and white marbles and want to
rearrange it so that the black and white marbles are grouped together. Consider
this algorithm:

Repeat until sorted
 Locate the first black marble that is preceded by a white marble, and switch them.

What does the algorithm do with the sequence mlmll? Spell out the steps
until the algorithm stops.

26. Suppose you have a random sequence of colored marbles. Consider this pseudo-
code:

Repeat until sorted
 Locate the first marble that is preceded by a marble of a different color, and switch them.

Why is this not an algorithm?

Practice It Now you can try these exercises at the end of the chapter: R1.16, E1.4, P1.1.

How To 1.1

S E L F C H E C K

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code––a sequence of precise steps formulated in English. To illustrate, we’ll devise an algo-
rithm for this problem:

Problem Statement You have the choice of buying one
of two cars. One is more fuel efficient than the other, but also
more expensive. You know the price and fuel efficiency (in miles
per gallon, mpg) of both cars. You plan to keep the car for ten
years. Assume a price of $4 per gallon of gas and usage of 15,000
miles per year. You will pay cash for the car and not worry about
financing costs. Which car is the better deal? ©

 d
le

w
is

3
3
/i

S
to

ck
p

h
o

to
.

20 Chapter 1 Introduction

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:

• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car

• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car

We simply want to know which car is the better buy. That is the desired output.

Step 2 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation separately
for each car. Once we have the total cost for each car, we can decide which car is the better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy:

For each car, compute the total cost as follows:
 annual fuel consumed = annual miles driven / fuel efficiency
 annual fuel cost = price per gallon x annual fuel consumed
 operating cost = 10 x annual fuel cost
 total cost = purchase price + operating cost
If total cost of car1 < total cost of car2
 Choose car1.
Else
 Choose car2.

Step 4 Test your pseudocode by working a problem.

We will use these sample values:

Car 1: $25,000, 50 miles/gallon

Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car:

annual fuel consumed = annual miles driven / fuel efficiency = 15000 / 50 = 300
annual fuel cost = price per gallon x annual fuel consumed = 4 x 300 = 1200
operating cost = 10 x annual fuel cost = 10 x 1200 = 12000
total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm is
to choose car 1.

1.7 Problem Solving: Algorithm Design 21

The following Worked Example demonstrates how to use the concepts in this chap-
ter and the steps in the How To to solve another problem. In this case, you will see
how to develop an algorithm for laying tile in an alternating pattern of colors. You
should read the Worked Example to review what you have learned, and for help in
tackling another problem.

In future chapters, Worked Examples are provided for you on the book’s compan-
ion Web site. A brief description of the problem tackled in the example will appear
with a reminder to download it from www.wiley.com/go/bjlo2examples. You will find any
code related to the Worked Example included with the book’s companion code for
the chapter. When you see the Worked Example description, download the example
and the code to learn how the problem was solved.

Step 1 Determine the inputs and outputs.

The inputs are the floor dimensions (length × width),
measured in inches. The output is a tiled floor.

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can
solve that task, then you can solve the problem by lay-
ing one row next to the other, starting from a wall, until
you reach the opposite wall.

How do you lay a row? Start with a tile at one wall.
If it is white, put a black one next to it. If it is black, put
a white one next to it. Keep going until you reach the
opposite wall. The row will contain width / 4 tiles.

Step 3 Describe each subtask in pseudocode.

In the pseudocode, you want to be more precise about exactly where the tiles are placed.

Place a black tile in the northwest corner.
While the floor is not yet filled
 Repeat width / 4 – 1 times
 Place a tile east of the previously placed tile. If the previously placed tile was white, pick a black one;

 otherwise, a white one.
 Locate the tile at the beginning of the row that you just placed. If there is space to the south, place a tile of

the opposite color below it.

Step 4 Test your pseudocode by working a problem.

Suppose you want to tile an area measuring 20 × 12 inches. The first step is to place a black tile
in the northwest corner.

1

20 inches

12

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

Problem Statement Write an algorithm for tiling a rectangular bathroom floor with
alternating black and white tiles measuring 4 × 4 inches. The floor dimensions, measured in
inches, are multiples of 4.

©
 r

b
a
n

/i
S

to
ck

p
h

o
to

.

