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Quadratic Formula

If ax2 + bx + c = 0, then  x =   − b ±  √ 
_______

  b   2  − 4ac  
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2a
   

Binomial Theorem

(  1 + x )  n  = 1 +   nx ___ 
1!

   +   
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   + . . .   ( x   2  < 1) 

Products of Vectors

Let θ be the smaller of the two angles between    → a    and    
→

 b   .  
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Trigonometric Identities

 sin α ± sin β = 2 sin   1 _ 
2
   (α ± β)  cos   1 _ 

2
   (α ∓ β)  

 cos α + cos β = 2 cos   1 _ 
2
   (α + β)  cos   1 _ 

2
   (α − β)  

Derivatives and Integrals

   d ___ 
dx

   sin x = cos x 

   d ___ 
dx

   cos x = − sin x 

   d ___ 
dx

    e   x  =  e   x  

   
 
  
 
     dx _________ 
 √ 

_______
  x   2  +  a   2   
     = ln(x +         x2 + a2 )

      
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( x   2  +  a   2  )  3/2 
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     =   x
 ____________  
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Cramer’s Rule

Two simultaneous equations in unknowns x and y,

a1x + b1y = c1  and  a2x + b2y = c2,

have the solutions

 x =   
 |    c  1  

  
 b  1  

  
 c  2  

  
 b  2  

   |  
 _______ 
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 b  1  
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   c  2  

   |  
 _______ 

 |    a  1  
  

 b  1  
  

 a  2  
  

 b  2  
   |  
   =   
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      
 
  sin x   dx = −cos x

      
 
  c  os x dx = sin x

      
 
   e   x    dx =  e   x 

SI PREFIXES*
Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro μ

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

101 deka da 10−24 yocto y

 *In all cases, the first syllable is accented, as in ná-no-mé-ter.

MATHEMATICAL FORMULAS*

*See Appendix E for a more complete list.
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xvii

P R E F A C E

As requested by instructors, here is a new edition of the textbook originated by David Halliday and 
Robert Resnick in 1963 and that I used as a first-year student at MIT. (Gosh, time has flown by.) 
Constructing this new edition allowed me to discover many delightful new examples and revisit a few 
favorites from my earlier eight editions. Here below are some highlights of this 12th edition.

Figure 10.39 What tension was required by the  
Achilles tendons in Michael Jackson in his gravity- 
defying 45º lean during his video Smooth Criminals?

Figure 34.5.4 In functional near infrared spectroscopy 
(fNIRS), a person wears a close-fitting cap with LEDs 
emitting in the near infrared range. The light can 
penetrate into the outer layer of the brain and reveal 
when that portion is activated by a given activity, from 
playing baseball to flying an airplane.

Figure 2.37 How should autonomous car B be 
programmed so that it can safely pass car A without 
being in danger from oncoming car C?

Figure 9.6.4 The most dangerous car 
crash is a head-on crash. In a head-on 
crash of cars of identical mass, by how 
much does the probability of a fatality 
of a driver decrease if the driver has a 
passenger in the car?

Figure 4.39 In a Pittsburgh left, a driver in  
the opposite lane anticipates the onset of  
the green light and rapidly pulls in front  
of your car during the red light. In a crash  
reconstruction, how soon before the green 
did the other driver start the turn?

Figure 28.5.2 Fast-neutron therapy is a 
promising weapon against salivary gland 
malignancies. But how can electrically 
neutral particles be accelerated to high 
speeds?

Figure 29.63 Parkinson’s disease and other 
brain disorders have been treated with 
transcranial magnetic stimulation in which 
pulsed magnetic fields force neurons several 
centimeters deep to discharge.

Figure 9.65 Falling is a chronic and serious condition 
among skateboarders, in-line skaters, elderly people, 
people with seizures, and many others. Often, they fall 
onto one outstretched hand, fracturing the wrist. What 
fall height can result in such fracture?

Figure 10.7.2 What is the 
increase in the tension of 
the Achilles tendons when 
high heels are worn?
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xviii PREFACE

In addition, there are problems dealing with

• remote detection of the fall of an elderly person,

• the illusion of a rising fastball,

• hitting a fastball in spite of momentary vision loss,

• ship squat in which a ship rides lower in the water in a channel,

• the common danger of a bicyclist disappearing from view at an intersection,

• measurement of thunderstorm potentials with muons,

and more.

WHAT’S IN THE BOOK

• Checkpoints, one for every module

• Sample problems

• Review and summary at the end of each chapter

• Nearly 300 new end-of-chapter problems

In constructing this new edition, I focused on several areas of research that intrigue me and wrote new
text discussions and many new homework problems. Here are a few research areas:

We take a look at the first image of a black hole (for which I have waited my entire life), and then we 
examine gravitational waves (something I discussed with Rainer Weiss at MIT when I worked in his 
lab several years before he came up with the idea of using an interferometer as a wave detector).

I wrote a new sample problem and several homework problems on autonomous cars where a com-
puter system must calculate safe driving procedures, such as passing a slow car with an oncoming car 
in the passing lane.

I explored cancer radiation therapy, including the use of Augur‐Meitner electrons that were first un-
derstood by Lise Meitner.

I combed through many thousands of medical, engineering, and physics research articles to find clever 
ways of looking inside the human body without major invasive surgery. Some are listed in the index 
under “medical procedures and equipment.” Here are three examples:

(1) Robotic surgery using single‐port incisions and optical fibers now allows surgeons to access inter-
nal organs, with patient recovery times of only hours instead of days or weeks as with previous surgery 
techniques.

(2) Transcranial magnetic stimulation is being used to treat chronic depression, Parkinson’s disease, 
and other brain malfunctions by applying pulsed magnetic fields from coils near the scalp to force 
neurons several centimeters deep to discharge.

(3) Magnetoencephalography (MEG) is being used to monitor a person’s brain as the person per-
forms a task such as reading. The task causes weak electrical pulses to be sent along conducting paths 
between brain cells, and each pulse produces a weak magnetic field that is detected by extremely 
sensitive SQUIDs.

Physics Circus
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xixPREFACE

 THE WILEYPLUS ADVANTAGE

WileyPLUS is a research-based online environment for effective teaching and learning. The custom-
ization features, quality question banks, interactive eTextbook, and analytical tools allow you to 
quickly create a customized course that tracks student learning trends. Your students can stay en-
gaged and on track with the use of intuitive tools like the syncing calendar and the student mobile 
app. Wiley is committed to providing accessible resources to instructors and students. As such, all 
Wiley educational products and services are born accessible, designed for users of all abilities.

Links Between Homework Problems and Learning Objectives    In WileyPLUS, every ques-
tion and problem at the end of the chapter is linked to a learning objective, to answer the (usually 
unspoken) questions, “Why am I working this problem? What am I supposed to learn from it?” By 
being explicit about a problem’s purpose, I believe that a student might better transfer the learning 
objective to other problems with a different wording but the same key idea. Such transference would 
help defeat the common trouble that a student learns to work a particular problem but cannot then 
apply its key idea to a problem in a different setting.

Animations of one of the key figures in each chapter.  Here in the book, those figures are 
flagged with the swirling icon. In the online chapter in WileyPLUS, a mouse click begins the ani-
mation. I have chosen the figures that are rich in information so that a student can see the physics 
in action and played out over a minute or two instead of just being flat on a printed page. Not only 
does this give life to the physics, but the animation can be repeated as many times as a student wants.

Video Illustrations  David Maiullo of Rutgers 
University has created video versions of approxi-
mately 30 of the photographs and figures from the 
chapters. Much of physics is the study of things that 
move, and video can often provide better represen-
tation than a static photo or figure.

Videos  I have made well over 1500 instructional 
videos, with more coming. Students can watch me 
draw or type on the screen as they hear me talk about 
a solution, tutorial, sample problem, or review, very 
much as they would experience were they sitting next 
to me in my office while I worked out something on 
a notepad. An instructor’s lectures and tutoring will 
always be the most valuable learning tools, but my videos are available 24 hours a day, 7 days a week, 
and can be repeated indefinitely.

• Video tutorials on subjects in the chapters. I chose the subjects that challenge the students the 
most, the ones that my students scratch their heads about.

• Video reviews of high school math, such as basic algebraic manipulations, trig functions, and simul-
taneous equations.

• Video introductions to math, such as vector multiplication, that will be new to the students.

• Video presentations of sample problems. My intent is to work out the physics, starting with the key 
ideas instead of just grabbing a formula. However, I also want to demonstrate how to read a sample 
problem, that is, how to read technical material to learn problem-solving procedures that can be 
transferred to other types of problems.

• Video solutions to 20% of the end-of chapter problems. The availability and timing of these solu-
tions are controlled by the instructor. For example, they might be available after a homework dead-
line or a quiz. Each solution is not simply a plug-and-chug recipe. Rather I build a solution from the 
key ideas to the first step of reasoning and to a final solution. The student learns not just how to solve 
a particular problem but how to tackle any problem, even those that require physics courage.

• Video examples of how to read data from graphs (more than simply reading off a number with no 
comprehension of the physics).

• Many of the sample problems in the textbook are available online in both reading and video formats.

A
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xx

Problem-Solving Help  I have written a large number of resources for WileyPLUS designed to 
help build the students’ problem-solving skills.

• Hundreds of additional sample problems. These are available as stand-alone resources but (at the 
discretion of the instructor) they are also linked out of the homework problems. So, if a homework 
problem deals with, say, forces on a block on a ramp, a link to a related sample problem is provided. 
However, the sample problem is not just a replica of the homework problem and thus does not pro-
vide a solution that can be merely duplicated without comprehension.

• GO Tutorials for 15% of the end-of-chapter home-
work problems. In multiple steps, I lead a student 
through a homework problem, starting with the key 
ideas and giving hints when wrong answers are sub-
mitted. However, I purposely leave the last step (for 
the final answer) to the students so that they are re-
sponsible at the end. Some online tutorial systems trap 
a student when wrong answers are given, which can 
generate a lot of frustration. My GO Tutorials are not 
traps, because at any step along the way, a student can 
return to the main problem.

• Hints on every end-of-chapter homework prob-

lem are available (at the discretion of the instruc-
tor). I wrote these as true hints about the main 
ideas and the general procedure for a solution, 
not as recipes that provide an answer without any 
 comprehension.

• Pre-lecture videos. At an instructor’s discretion, 
a pre-lecture video is available for every module. 
Also, assignable questions are available to accom-
pany these videos. The videos were produced by 
Melanie Good of the University of Pittsburgh.

Evaluation Materials

• Pre-lecture reading questions are available in 

WileyPLUS for each chapter section. I wrote these 
so that they do not  require analysis or any deep 
understanding; rather they simply test whether a 
student has read the section. When a student opens 
up a section, a randomly chosen reading question 
(from a bank of questions) appears at the end. The 
instructor can decide whether the question is part of 
the grading for that section or whether it is just for 
the benefit of the student.

• Checkpoints are available within each chapter module. I wrote these so that they require analysis 
and decisions about the physics in the section. Answers are provided in the back of the book.

• All end-of-chapter homework problems (and many more problems) are available in WileyPLUS. 
The instructor can construct a homework assignment and control how it is graded when the  answers 
are submitted online. For example, the instructor controls the deadline for submission and how 
many attempts a student is allowed on an answer. The instructor also controls which, if any,  learning 
aids are available with each homework problem. Such links can include hints, sample problems,  
in-chapter reading materials, video tutorials, video math reviews, and even video solutions (which 
can be made available to the students after, say, a homework deadline).

• Symbolic notation problems that require algebraic answers are available in every chapter.

• All end-of-chapter homework questions are available for assignment in WileyPLUS. These ques-
tions (in a multiple-choice format) are designed to evaluate the students’ conceptual  understanding.

PREFACE
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xxi

• Interactive Exercises and Simulations by Brad Trees of Ohio Wesleyan University. How do we help 
students understand challenging concepts in physics? How do we motivate students to engage with core 
content in a meaningful way? The simulations are intended to address these key questions. Each module 
in the Etext is linked to one or more simulations that convey concepts visually. A simulation depicts a 
physical situation in which time dependent phenomena are animated and information is presented in mul-
tiple representations including a visual representation of the physical system as well as a plot of related 
variables. Often, adjustable parameters allow the user to change a  property of the system and to see the 
effects of that change on the subsequent behavior. For visual learners, the simulations provide an oppor-
tunity to “see” the physics in action. Each simulation is also linked to a set of interactive exercises, which 
guide the student through a deeper interaction with the physics underlying the simulation. The exercises 
consist of a series of practice questions with feedback and detailed solutions. Instructors may choose to 
assign the exercises for practice, to recommend the exercises to students as additional practice, and to 
show individual simulations during class time to demonstrate a concept and to motivate class discussion. 

PREFACE

Icons for Additional Help  When worked-out solutions are provided either in print or electronically 
for certain of the odd-numbered problems, the statements for those problems include an icon to alert 
both student and instructor. There are also icons indicating which problems have a GO Tutorial or 
a link to the The Flying Circus of Physics, which require calculus, and which involve a biomedical 
application. An icon guide is provided here and at the beginning of each set of problems.

FUNDAMENTALS OF PHYSICS—FORMAT OPTIONS

Fundamentals of Physics was designed to optimize students’ online learning experience.  We highly 
recommend that students use the digital course within WileyPLUS as their primary course mate-
rial. Here are students’ purchase options:

• 12th Edition WileyPLUS course 

• Fundamentals of Physics Looseleaf Print Companion bundled with WileyPLUS 

      Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

SSM CALC  Requires calculus

BIO  Biomedical application

GO

FCP

FM_Regular.indd   21 04/06/21   2:13 PM



xxii PREFACE

• Fundamentals of Physics volume 1 bundled with WileyPLUS

• Fundamentals of Physics volume 2 bundled with WileyPLUS 

• Fundamentals of Physics Vitalsource Etext

SUPPLEMENTARY MATERIALS AND ADDITIONAL RESOURCES

Supplements for the instructor can be obtained online through WileyPLUS or by contacting your 
Wiley representative. The following supplementary materials are available for this edition:

Instructor’s Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This 
manual provides worked-out solutions for all problems found at the end of each chapter. It is avail-
able in both MSWord and PDF.

• Instructor’s Manual This resource contains lecture notes outlining the most important topics of 
each chapter; demonstration experiments; laboratory and computer projects; film and video sources; 
answers to all questions, exercises, problems, and checkpoints; and a correlation guide to the ques-
tions, exercises, and problems in the previous edition. It also contains a complete list of all problems 
for which solutions are available to students.

• Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University. There 
are two sets of questions available: Reading Quiz questions and Interactive Lecture questions.The 
Reading Quiz questions are intended to be relatively straightforward for any student who reads the as-
signed material. The Interactive Lecture questions are intended for use in an interactive lecture setting.

• Wiley Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier Soft-
ware. This is a collection of 50 interactive simulations (Java applets) that can be used for classroom 
demonstrations.

• Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of 
 digital videos of 80 standard physics demonstrations. They can be shown in class or accessed from 
 WileyPLUS. There is an accompanying Instructor’s Guide that includes “clicker” questions.

• Test Bank by Suzanne Willis, Northern Illinois University. The Test Bank includes nearly 3,000 mul-
tiple-choice questions. These items are also available in the Computerized Test Bank, which provides 
full editing features to help you customize tests (available in both IBM and Macintosh  versions).

• All text illustrations suitable for both classroom projection and printing.

• Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors, 
outlining key concepts and incorporating figures and equations from the text.

STUDENT SUPPLEMENTS

Student Solutions Manual (ISBN 9781119455127) by Sen-Ben Liao, Lawrence Livermore 
National Laboratory. This manual provides students with complete worked-out solutions to 15 per-
cent of the problems found at the end of each chapter within the text. The Student Solutions Manual 
for the 12th edition is written using an innovative approach called TEAL, which stands for Think, 
Express, Analyze, and Learn. This learning strategy was originally developed at the Massachusetts 
Institute of Technology and has proven to be an effective learning tool for students. These problems 
with TEAL solutions are indicated with an SSM icon in the text.

Introductory Physics with Calculus as a Second Language (ISBN 9780471739104) Mastering 

Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the 

 student how to approach problems more efficiently and effectively. The student will learn how 
to recognize common patterns in physics problems, break problems down into manageable steps, 
and apply appropriate techniques. The book takes the student step by step through the solutions 
to numerous examples.
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1

1.1 MEASURING THINGS, INCLUDING LENGTHS
Learning Objectives 
After reading this module, you should be able to . . .

1.1.1 Identify the base quantities in the SI system.

1.1.2 Name the most frequently used prefixes for 

SI units.

1.1.3 Change units (here for length, area, and 

 volume) by using chain- link conversions.

1.1.4 Explain that the meter is defined in terms of the 

speed of light in a vacuum.

Key Ideas 
● Physics is based on measurement of physical quanti-

ties. Certain physical quantities have been chosen as 

base quantities (such as length, time, and mass); each 

has been defined in terms of a standard and given a 

unit of measure (such as meter, second, and kilogram). 

Other physical quantities are defined in terms of the 

base quantities and their standards and units.

● The unit system emphasized in this book is the 

International System of Units (SI). The three physical 

quantities displayed in Table 1.1.1 are used in the early 

chapters. Standards, which must be both accessible 

and invariable, have been established for these base 

quantities by  international agreement. These standards 

are used in all physical measurement, for both the 

base quantities and the quantities derived from them. 

 Scientific notation and the prefixes of Table 1.1.2 are 

used to simplify measurement notation.

● Conversion of units may be performed by using 

chain- link conversions in which the original data are 

multiplied successively by conversion factors written 

as unity and the units are manipulated like algebraic 

quantities until only the desired units remain.

● The meter is defined as the distance traveled by 

light during a precisely specified time interval.

What Is Physics?
Science and engineering are based on measurements and comparisons. Thus, 
we need rules about how things are measured and compared, and we need 
 experiments to establish the units for those measurements and comparisons. One 
purpose of physics (and engineering) is to design and conduct those  experiments.

For example, physicists strive to develop clocks of extreme accuracy so that 
any time or time interval can be precisely determined and compared. You may 
wonder whether such accuracy is actually needed or worth the effort. Here is one 
example of the worth: Without clocks of extreme accuracy, the Global Positioning 
System (GPS) that is now vital to worldwide navigation would be useless.

Measuring Things
We discover physics by learning how to measure the quantities involved in 
 physics. Among these quantities are length, time, mass, temperature, pressure, 
and electric current.

C H A P T E R  1

Measurement

c01Measurement.indd   1 05/05/21   3:50 PM



2 CHAPTER 1 MEASUREMENT

We measure each physical quantity in its own units, by comparison with 
a standard. The unit is a unique name we assign to measures of that quantity—
for example, meter (m) for the quantity length. The standard corresponds to 
exactly 1.0 unit of the quantity. As you will see, the standard for length, which 
 corresponds to exactly 1.0 m, is the distance traveled by light in a vacuum during 
a  certain fraction of a second. We can define a unit and its standard in any way 
we care to. However, the important thing is to do so in such a way that scientists 
around the world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the 
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of 
the standard. Rulers, which approximate our length standard, give us one such 
procedure for measuring length. However, many of our comparisons must be 
 indirect. You cannot use a ruler, for example, to measure the radius of an atom 
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem 
to organize them. Fortunately, they are not all independent; for example, speed 
is the ratio of a length to a time. Thus, what we do is pick out—by international 
 agreement—a small number of physical quantities, such as length and time, and 
assign standards to them alone. We then define all other physical quantities in 
terms of these base quantities and their standards (called base standards). Speed, 
for  example, is defined in terms of the base quantities length and time and their 
base standards.

Base standards must be both accessible and invariable. If we define the 
length standard as the distance between one’s nose and the index finger on an 
outstretched arm, we certainly have an accessible standard—but it will, of course, 
vary from person to person. The demand for precision in science and  engineering 
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven 
quantities as base quantities, thereby forming the basis of the International 
 System of Units, abbreviated SI from its French name and popularly known 
as the metric system. Table 1.1.1 shows the units for the three base quantities—
length, mass, and time—that we use in the early chapters of this book. These units 
were defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example, 
the SI unit for power, called the watt (W), is defined in terms of the base units 
for mass, length, and time. Thus, as you will see in Chapter 7,

 1 watt = 1 W = 1 kg ⋅ m2/s3, (1.1.1)

where the last collection of unit symbols is read as kilogram- meter squared per 
second cubed.

To express the very large and very small quantities we often run into in 
 physics, we use scientific notation, which employs powers of 10. In this notation,

 3 560 000 000 m = 3.56 × 109 m (1.1.2)

and 0.000 000 492 s = 4.92 × 10−7 s. (1.1.3)

Scientific notation on computers sometimes takes on an even briefer look, as in 
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on 
some calculators, where E is replaced with an empty space.

Table 1.1.1 Units for Three SI  

Base Quantities

Quantity Unit Name Unit Symbol

Length meter m

Time second s

Mass kilogram kg
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31.1 MEASURING THINGS, INCLUDING LENGTHS

As a further convenience when dealing with very large or very small measure-
ments, we use the prefixes listed in Table 1.1.2. As you can see, each prefix represents 
a certain power of 10, to be used as a multiplication factor. Attaching a prefix to an 
SI unit has the effect of multiplying by the associated factor. Thus, we can express a 
particular electric power as

 1.27 × 109 watts = 1.27 gigawatts = 1.27 GW (1.1.4)

or a particular time interval as

 2.35 × 10−9 s = 2.35 nanoseconds = 2.35 ns. (1.1.5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are 
 probably familiar to you.

Changing Units
We often need to change the units in which a physical quantity is expressed. 
We do so by a method called chain- link conversion. In this method, we multiply 
the original measurement by a conversion factor (a ratio of units that is equal 
to  unity). For example, because 1 min and 60 s are identical time intervals, 
we have

   1 min ______ 
60 s

   = 1 and   60 s ______ 
1 min

   = 1. 

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion  factors. 
This is not the same as writing    1 __ 

60
   = 1 or 60 = 1 ; each number and its unit must be 

treated together.
Because multiplying any quantity by unity leaves the quantity unchanged, 

we can introduce conversion factors wherever we find them useful. In chain-link 
conversion, we use the factors to cancel unwanted units. For example, to convert 
2 min to seconds, we have

  2 min = (2 min)(1) = (2 min) (  60 s ______ 
1 min

  )  = 120 s.  (1.1.6)

If you introduce a conversion factor in such a way that unwanted units do not 

cancel, invert the factor and try again. In conversions, the units obey the same 
 algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units, 
including non-SI units still used in the United States. However, the conversion 
factors are written in the style of “1 min = 60 s” rather than as a ratio. So, you 
need to decide on the numerator and denominator in any needed ratio.

Length
In 1792, the newborn Republic of France established a new system of weights 
and measures. Its cornerstone was the meter, defined to be one ten-millionth 
of the distance from the north pole to the equator. Later, for practical reasons, 
this Earth standard was abandoned and the meter came to be defined as the 
distance between two fine lines engraved near the ends of a platinum– iridium 
bar, the standard meter bar, which was kept at the International Bureau of 
Weights and Measures near Paris. Accurate copies of the bar were sent to stan-
dardizing laboratories throughout the world. These secondary standards were 
used to produce other, still more accessible standards, so that ultimately every 

Table 1.1.2 Prefixes for SI Units

Factor Prefixa Symbol

1024 yotta- Y

1021 zetta- Z

1018 exa- E

1015 peta- P

1012 tera- T

109 giga- G

106 mega- M

103 kilo- k

102 hecto- h

101 deka- da

10−1 deci- d

10−2 centi- c

10−3 milli- m

10−6 micro- μ

10−9 nano- n

10−12 pico- p

10−15 femto- f

10−18 atto- a

10−21 zepto- z

10−24 yocto- y

aThe most frequently used prefixes are 

shown in bold type.
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4 CHAPTER 1 MEASUREMENT

measuring device derived its authority from the standard meter bar through a 
complicated chain of comparisons.

Eventually, a standard more  precise  than the distance between two fine 
scratches on a metal bar was required. In 1960, a new standard for the meter, 
based on the wavelength of light, was adopted. Specifically, the standard for the 
meter was redefined to be 1 650 763.73  wavelengths of a particular orange- red 
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) 
in a gas discharge tube that can be set up anywhere in the world. This awkward 
number of wavelengths was chosen so that the new standard would be close to 
the old meter- bar standard.

By 1983, however, the demand for higher precision had reached such a point 
that even the krypton-86 standard could not meet it, and in that year a bold 
step was taken. The meter was redefined as the distance traveled by light in a 
 specified time interval. In the words of the 17th General Conference on Weights 
and Measures:

This time interval was chosen so that the speed of light c is exactly

c = 299 792 458 m/s.

Measurements of the speed of light had become extremely precise, so it made 
sense to adopt the speed of light as a defined quantity and to use it to redefine 
the meter.

Table 1.1.3 shows a wide range of lengths, from that of the universe (top line) 
to those of some very small objects.

Significant Figures and Decimal Places
Suppose that you work out a problem in which each value consists of two digits. 
Those digits are called significant figures and they set the number of digits that you 
can use in reporting your final answer. With data given in two significant figures, 
your final answer should have only two significant figures. However, depending 
on the mode setting of your calculator, many more digits might be displayed. 
Those extra digits are meaningless. 

In this book, final results of calculations are often rounded to match the least 
number of significant figures in the given data. (However, sometimes an extra 
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or 
more, the last remaining digit is rounded up; otherwise it is retained as is. For  
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is 
rounded to three significant figures as 11.3. (The answers to sample problems in 
this book are usually presented with the symbol = instead of ≈ even if rounding 
is involved.)

When a number such as 3.15 or 3.15 × 103 is provided in a problem, the num-
ber of significant figures is apparent, but how about the number 3000? Is it known 
to only one significant figure (3 × 103)? Or is it known to as many as four signifi-
cant figures (3.000 × 103)? In this book, we assume that all the zeros in such given 
numbers as 3000 are significant, but you had better not make that assumption 
elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths 
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they 
have one, two, and five decimal places, respectively.

Table 1.1.3 Some Approximate 

Lengths

Measurement 
Length in 

Meters

Distance to the 
first  galaxies formed 2 × 1026

Distance to the  
 Andromeda galaxy 2 × 1022

Distance to the nearby  
star Proxima Centauri 4 × 1016

Distance to Pluto 6 × 1012

Radius of Earth 6 × 106

Height of Mt. Everest 9 × 103

Thickness of this page 1 × 10−4

Length of a typical virus 1 × 10−8

Radius of a hydrogen 
atom 5 × 10−11

Radius of a proton 1 × 10−15

The meter is the length of the path traveled by light in a vacuum during a time 
 interval of 1/299 792 458 of a second.

c01Measurement.indd   4 05/05/21   3:50 PM



51.2 TIME

Sample Problem 1.1.1 Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To 
the nearest order of magnitude, what is the total length L 
of the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the 
total length L, but that would take great effort and make 
the ball’s builder most unhappy. Instead, because we want 
only the nearest order of magnitude, we can estimate any 
quantities required in the calculation.

Calculations: Let us assume the ball is spherical with 
radius R = 2 m. The string in the ball is not closely packed 
(there are uncountable gaps between adjacent sections of 
string). To allow for these gaps, let us somewhat overes-
timate the cross-sectional area of the string by assuming 
the cross section is square, with an edge length d = 4 mm. 

Then, with a cross-sectional area of d2 and a length L, the 
string occupies a total volume of

V = (cross- sectional area)(length) = d2L.

This is approximately equal to the volume of the ball, 
given by    4 _ 

3
    πR   3  , which is about 4R3 because π is about 3. 

Thus, we have the following

 d2L = 4R3, 

or  L =   4 R   3  ____ 
 d   2 

   =   
4(2 m )  3 

 ____________  
(4 ×  10  −3  m )  2 

    

  =   2 × 10   6  m ≈  10  6  m =  10  3  km.  
 (Answer)

(Note that you do not need a calculator for such a simpli-
fied calculation.) To the nearest order of magnitude, the 
ball contains about 1000 km of string!

1.2 TIME
Learning Objectives 
After reading this module, you should be able to . . .

1.2.1 Change units for time by using chain- link 

conversions.

1.2.2 Use various measures of time, such as for motion 

or as determined on different clocks. 

Key Idea 
● The second is defined in terms of the oscillations of 

light emitted by an atomic (cesium-133) source. Accurate 

time signals are sent worldwide by radio signals keyed to 

atomic clocks in standardizing laboratories.

Time
Time has two aspects. For civil and some scientific purposes, we want to know 
the time of day so that we can order events in sequence. In much scientific work, 
we want to know how long an event lasts. Thus, any time standard must be able 
to answer two questions: “When did it happen?” and “What is its duration?” 
Table 1.2.1 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s 
 rotation, which determines the length of the day, has been used in this way for 
centuries; Fig. 1.2.1 shows one novel example of a watch based on that rotation. 
A quartz clock, in which a quartz ring is made to vibrate continuously, can be 
 calibrated against Earth’s rotation via astronomical observations and used to 
measure time intervals in the laboratory. However, the calibration cannot be 
carried out with the accuracy called for by modern scientific and engineering 
technology.

Additional examples, video, and practice available at WileyPLUS
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6 CHAPTER 1 MEASUREMENT

To meet the need for a better time standard, atomic clocks have been 
 developed. An atomic clock at the National Institute of Standards and 
 Technology (NIST) in Boulder, Colorado, is the standard for Coordinated 
 Universal Time (UTC) in the United States. Its time signals are avail-
able by shortwave radio  (stations WWV and WWVH) and by telephone  
(303-499-7111). Time  signals (and related information) are also available from 

the United States Naval  Observatory at website https://
www.usno.navy.mil/USNO/time. (To set a clock  extremely 
 accurately at your particular location, you would have to 
account for the travel time required for these signals to 
reach you.)

Figure 1.2.2 shows variations in the length of one day on 
Earth over a 4-year period, as determined by comparison with 
a cesium (atomic) clock. Because the variation displayed by 
Fig. 1.2.2 is seasonal and repetitious, we suspect the  rotating 
Earth when there is a difference between Earth and atom as 
 timekeepers. The variation is due to tidal effects caused by the 
Moon and to large-scale winds.

The 13th General Conference on Weights and Measures 
in 1967 adopted a  standard second based on the cesium 
clock:

Atomic clocks are so consistent that, in principle, two cesium clocks would have to 
run for 6000 years before their readings would differ by more than 1 s. Even such 
accuracy pales in comparison with that of clocks currently being developed; their 
precision may be 1 part in 1018—that is, 1 s in 1 × 1018 s (which is about 3 × 1010 y).

1.3 MASS
Learning Objectives 
After reading this module, you should be able to . . .

1.3.1 Change units for mass by using chain- link  

conversions.

1.3.2 Relate density to mass and volume when the 

mass is uniformly distributed. 

Table 1.2.1 Some Approximate Time Intervals

Measurement
Time Interval  

in Seconds Measurement
Time Interval  

in Seconds

Lifetime of the   
proton (predicted) 3 × 1040

Time between human 
heartbeats 8 × 10−1

Age of the universe 5 × 1017 Lifetime of the muon 2 × 10−6

Age of the pyramid  
of Cheops 1 × 1011

Shortest lab light pulse

Lifetime of the 
most unstable particle

1 × 10−16

1 × 10−23Human life expectancy

Length of a day

2 × 109

9 × 104 The Planck timea 1 × 10−43

aThis is the earliest time after the big bang at which the laws of physics as we know them can be 

applied.

Figure 1.2.1 When the metric system 
was  proposed in 1792, the hour 
was redefined to  provide a 10-hour 
day. The idea did not catch on. The 
maker of this 10-hour watch wisely 
provided a small dial that kept con-
ventional 12-hour time. Do the two 
dials indicate the same time?
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Figure 1.2.2 Variations in the length 
of the day over a 4-year period. Note 
that the entire  vertical scale amounts 
to only 3 ms (= 0.003 s).

One second is the time taken by 9 192 631 770 oscillations of the light (of a 
 specified wavelength) emitted by a cesium-133 atom.
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71.3 MASS

Mass
The Standard Kilogram

The SI standard of mass is a cylinder of  platinum and iridium (Fig. 1.3.1) that 
is kept at the International Bureau of Weights and Measures near Paris and 
assigned, by international agreement, a mass of 1 kilogram. Accurate copies have 
been sent to standardizing laboratories in other countries, and the masses of other 
bodies can be determined by balancing them against a copy. Table 1.3.1 shows 
some  masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It 
is  removed, no more than once a year, for the purpose of checking duplicate 
 copies that are used elsewhere. Since 1889, it has been taken to France twice for 
recomparison with the primary standard.

Kibble Balance

A far more accurate way of measuring mass is now being adopted. In a Kibble 
balance (named after its inventor Brian Kibble), a standard mass can be mea-
sured when the downward pull on it by gravity is balanced by an upward force 
from a magnetic field due to an electrical current. The precision of this technique 
comes from the fact that the electric and magnetic properties can be determined 
in terms of quantum mechanical quantities that have been precisely defined or 
measured. Once a standard mass is measured, it can be sent to other labs where 
the masses of other bodies can be determined from it.

A Second Mass Standard

The masses of atoms can be compared with one another more precisely than they 
can be compared with the standard kilogram. For this reason, we have a second 
mass standard. It is the carbon-12 atom, which, by international agreement, has 
been assigned a mass of 12 atomic mass units (u). The relation  between the two 
units is

 1 u = 1.660 538 86 × 10−27 kg, (1.3.1)

with an uncertainty of ±10 in the last two decimal places. Scientists can, with 
 reasonable precision, experimentally determine the masses of other atoms rel-
ative to the mass of carbon-12. What we presently lack is a reliable means of 
 extending that precision to more common units of mass, such as a kilogram.

Density

As we shall discuss further in Chapter 14, density ρ (lowercase Greek letter rho) 
is the mass per unit volume:

   ρ =   m __ 
V

  .   (1.3.2)

Densities are typically listed in kilograms per cubic meter or grams per cubic 
centimeter. The density of water (1.00 gram per cubic centimeter) is often used as 
a comparison. Fresh snow has about 10% of that density; platinum has a density 
that is about 21 times that of water.

Table 1.3.1 Some Approximate 

Masses

Object
Mass in  

Kilograms

Known universe 1 × 1053

Our galaxy 2 × 1041

Sun 2 × 1030

Moon 7 × 1022

Asteroid Eros 5 × 1015

Small mountain 1 × 1012

Ocean liner 7 × 107

Elephant 5 × 103

Grape 3 × 10−3

Speck of dust 7 × 10−10

Penicillin molecule 5 × 10−17

Uranium atom 4 × 10−25

Proton 2 × 10−27

Electron 9 × 10−31

Key Ideas 
● The kilogram is defined in terms of a platinum– iridium 

standard mass kept near Paris. For measurements 

on an atomic scale, the atomic mass unit, defined in 

terms of the atom  carbon-12, is usually used.

● The density ρ of a material is the mass per unit 

volume:

 ρ =   m __ 
V

  . 

Figure 1.3.1 The international 1 kg 
standard of mass, a platinum– iridium 
cylinder 3.9 cm in height and in 
diameter.
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8 CHAPTER 1 MEASUREMENT

Measurement in Physics  Physics is based on measure-

ment of physical quantities. Certain physical quantities have 

been chosen as base quantities (such as length, time, and mass); 
each has been defined in terms of a standard and given a unit of 
measure (such as meter, second, and kilogram). Other physical 
quantities are defined in terms of the base quantities and their 
standards and units.

SI Units  The unit system emphasized in this book is the 
International System of Units (SI). The three physical quanti-
ties displayed in Table 1.1.1 are used in the early chapters. Stan-
dards, which must be both accessible and invariable, have been 
established for these base quantities by international agree-
ment. These standards are used in all physical measurement, for 
both the base quantities and the quantities derived from them. 
Scientific notation and the prefixes of Table 1.1.2 are used to 
simplify measurement notation.

Changing Units  Conversion of units may be performed 
by using chain- link conversions in which the original data are 

Review & Summary

multiplied successively by conversion factors written as unity 
and the units are manipulated like algebraic quantities until only 
the desired units remain.

Length  The meter is defined as the distance traveled by light 
during a precisely specified time interval.

Time  The second is defined in terms of the oscillations of light 
emitted by an atomic (cesium-133) source. Accurate time  sig-
nals are sent worldwide by radio signals keyed to atomic clocks 
in standardizing laboratories.

Mass  The kilogram is defined in terms of a platinum–  
iridium standard mass kept near Paris. For measurements on an 
atomic scale, the atomic mass unit, defined in terms of the atom 
carbon-12, is usually used.

Density  The density ρ of a material is the mass per unit 
 volume:

 ρ =    m __ 
V

   . (1.3.2)

figures) should be entered in (a) the cahiz column, (b) the fanega 
column, (c) the cuartilla column, and (d) the almude  column, 
starting with the top blank? Express 7.00 almudes in (e) medios, 
(f) cahizes, and (g) cubic centimeters (cm3).

7 M  Hydraulic engineers in the United States often use, as a 
unit of volume of water, the acre- foot, defined as the volume of 
water that will cover 1 acre of land to a depth of 1 ft. A  severe 
thunderstorm dumped 2.0 in. of rain in 30 min on a town of area 
26 km2. What volume of water, in acre- feet, fell on the town?

8 M  GO  Harvard Bridge, which connects MIT with its frater-
nities across the Charles River, has a length of 364.4 Smoots 
plus  one ear. The unit of one Smoot is based on the length 
of Oliver Reed Smoot, Jr., class of 1962, who was carried or 
dragged length by length across the bridge so that other pledge 
members of the Lambda Chi Alpha fraternity could mark off 
(with paint) 1-Smoot lengths along the bridge. The marks have 

Module 1.1  Measuring Things, Including Lengths

1 E  SSM  Earth is approximately a sphere of radius 6.37 × 106 m.  
What are (a) its circumference in kilometers, (b) its surface area 
in square kilometers, and (c) its volume in cubic kilo meters?

2 E  A gry is an old English measure for length, defined as 1/10 
of a line, where line is another old English measure for length, 
defined as 1/12 inch. A common measure for length in the pub-
lishing business is a point, defined as 1/72 inch. What is an area 
of 0.50 gry2 in points squared (points2)?

3 E  The micrometer (1 μm) is often called the micron. (a) How 
many microns make up 1.0 km? (b) What fraction of a centime-
ter equals 1.0 μm? (c) How many microns are in 1.0 yd?

4 E  Spacing in this book was generally done in units of points 
and picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was 
misplaced in the page proofs by 0.80 cm, what was the misplace-
ment in (a) picas and (b) points?

5 E  SSM  Horses are to race over a certain English meadow for 
a distance of 4.0 furlongs. What is the race distance in (a) rods 
and (b)  chains? (1 furlong = 201.168 m, 1 rod = 5.0292 m, 
and 1 chain = 20.117 m.)

6 M  You can easily convert common units and measures elec-
tronically, but you still should be able to use a conversion table, 
such as those in Appendix D. Table 1.1 is part of a conversion 
table for a system of volume measures once com mon in Spain; 
a volume of 1 fanega is equivalent to 55.501 dm3  (cubic decime-
ters). To complete the table, what numbers (to three  significant 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

Table 1.1 Problem 6

cahiz fanega cuartilla almude medio

1 cahiz = 1 12 48 144 288

1 fanega = 1 4 12 24

1 cuartilla = 1 3 6

1 almude = 1 2

1 medio = 1
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9PROBLEMS

been repainted biannually by fraternity pledges since the ini-
tial measurement, usually during times of traffic congestion so 
that the police cannot easily interfere. (Presumably, the police 
were originally upset because the Smoot is not an SI base unit, 
but these days they seem to have accepted the unit.) Figure 1.1 
shows three parallel paths, measured in Smoots (S), Willies (W), 
and Zeldas (Z). What is the length of 50.0 Smoots in (a) Willies 
and (b) Zeldas?

S

W

Z

0 32

60

212

258

216

0

Figure 1.1 Problem 8.

9 M  Antarctica is roughly semicircular, with a radius of 2000 km 
(Fig.  1.2). The average thickness of its ice cover is 3000  m.  
How many cubic centimeters of ice does Antarctica contain? 
(Ignore the curvature of Earth.)

3000 m

2000 km

Figure 1.2 Problem 9.

Module 1.2  Time

10 E  Until 1883, every city and town in the United States 
kept its own local time. Today, travelers reset their watches only 
when the time change equals 1.0 h. How far, on the  average, 
must you travel in degrees of longitude between the time- zone 
boundaries at which your watch must be reset by 1.0 h? (Hint: 
Earth rotates 360° in about 24 h.)

11 E  For about 10 years after the French Revolution, the 
French government attempted to base measures of time on mul-
tiples of ten: One week consisted of 10 days, one day consisted 
of 10 hours, one hour consisted of 100 minutes, and one minute 
consisted of 100 seconds. What are the ratios of (a) the French 
decimal week to the standard week and (b) the French decimal 
second to the standard second?

12 E  The fastest growing plant on record is a Hesperoyucca 

whipplei that grew 3.7 m in 14 days. What was its growth rate in 
micro meters per second?

13 E  GO  Three digital clocks A, B, and C run at different rates 
and do not have simultaneous readings of zero. Figure 1.3 shows 
simultaneous readings on pairs of the clocks for four occasions. 
(At the earliest occasion, for example, B reads 25.0 s and C 
reads 92.0 s.) If two events are 600 s apart on clock A, how far 
apart are they on (a) clock B and (b) clock C? (c) When clock 
A reads 400 s, what does clock B read? (d) When clock C reads 
15.0 s, what does clock B read? (Assume negative readings for 
prezero times.)

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142

Figure 1.3 Problem 13.

14 E  A lecture period (50 min) is close to 1 microcentury. 
(a) How long is a microcentury in minutes? (b) Using 

 percentage difference =   (     
actual − approximation

  _____________________  
actual

   )    100, 

find the percentage difference from the approximation.

15 E  A fortnight is a charming English measure of time equal 
to 2.0 weeks (the word is a contraction of “fourteen nights”). 
That is a nice amount of time in pleasant company but perhaps 
a painful string of microseconds in unpleasant company. How 
many microseconds are in a fortnight?

16 E  Time standards are now based on atomic clocks. A prom-
ising second standard is based on pulsars, which are rotating 
neutron stars (highly compact stars consisting only of neutrons). 
Some rotate at a rate that is highly stable, sending out a radio 
beacon that sweeps briefly across Earth once with each rotation, 
like a lighthouse beacon. Pulsar PSR 1937 + 21 is an example; it 
rotates once every 1.557 806 448 872 75 ± 3 ms, where the trail-
ing ±3 indicates the uncertainty in the last decimal place (it does 
not mean ±3 ms). (a) How many rotations does PSR 1937 + 21 
make in 7.00 days? (b) How much time does the pulsar take to 
rotate exactly one  million times and (c) what is the associated 
uncertainty?

17 E  SSM  Five clocks are being tested in a laboratory. Exactly 
at noon, as determined by the WWV time signal, on successive 
days of a week the clocks read as in the following table. Rank 
the five clocks according to their relative value as good time-
keepers, best to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

18 M  Because Earth’s rotation is gradually slowing, the length 
of each day increases: The day at the end of 1.0 century is 1.0 ms 
longer than the day at the start of the century. In 20 centuries, 
what is the total of the daily increases in time?

19 H  Suppose that, while lying on a beach near the equator 
watching the Sun set over a calm ocean, you start a stopwatch 
just as the top of the Sun disappears. You then stand, elevat-
ing your eyes by a height H = 1.70 m, and stop the watch when 
the top of the Sun again disappears. If the elapsed time is 
t = 11.1 s, what is the radius r of Earth?

Module 1.3  Mass

20 E  GO  The record for the largest glass bottle was set in 1992 
by  a team in Millville, New Jersey—they blew a bottle with a 
 volume of 193 U.S. fluid gallons. (a) How much short of 1.0 mil-
lion cubic centimeters is that? (b) If the bottle were filled with 
water at the leisurely rate of 1.8 g/min, how long would the fill-
ing take? Water has a density of 1000 kg/m3.

21 E  Earth has a mass of 5.98 × 1024 kg. The average mass of the 
atoms that make up Earth is 40 u. How many atoms are there 
in Earth?
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10 CHAPTER 1 MEASUREMENT

22 E  Gold, which has a density of 19.32 g/cm3, is the most ductile 
metal and can be pressed into a thin leaf or drawn out into a long 
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed 
into a leaf of 1.000 μm thickness, what is the area of the leaf?  
(b) If,  instead, the gold is drawn out into a cylindrical fiber of 
radius 2.500 μm, what is the length of the fiber?

23 E  SSM  (a) Assuming that water has a density of exactly 
1 g/cm3, find the mass of one cubic meter of water in kilograms. 
(b) Suppose that it takes 10.0 h to drain a container of 5700 m3 
of water. What is the “mass flow rate,” in kilograms per second, 
of water from the container?

24 M  GO  Grains of fine California beach sand are approxi-
mately spheres with an average radius of 50 μm and are made 
of silicon dioxide, which has a density of 2600 kg/m3. What mass 
of sand grains would have a total surface area (the total area of 
all the individual spheres) equal to the surface area of a cube 
1.00 m on an edge?

25 M  FCP  During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m 
deep slips into a valley in a mud slide. Assume that the mud ends 
up uniformly distributed over a surface area of the valley measur-
ing 0.40 km × 0.40 km and that mud has a  density of 1900 kg/m3. 
What is the mass of the mud sitting above a 4.0 m2 area of the 
 valley floor?

26 M  One cubic centimeter of a typical cumulus cloud contains 
50 to 500 water drops, which have a typical radius of 10 μm. For 
that range, give the lower value and the higher value, respec-
tively, for the following. (a) How many cubic  meters of water 
are in a cylindrical cumulus cloud of height 3.0 km and radius 
1.0 km? (b) How many 1-liter pop bottles would that water fill? 
(c) Water has a density of 1000 kg/m3. How much mass does the 
water in the cloud have?

27 M  Iron has a density of 7.87 g/cm3, and the mass of an iron 
atom is 9.27 × 10−26 kg. If the atoms are spherical and tightly 
packed, (a) what is the volume of an iron atom and (b) what is 
the distance between the centers of adjacent atoms?

28 M  A mole of atoms is 6.02 × 1023 atoms. To the nearest  order 
of magnitude, how many moles of atoms are in a large domestic 
cat? The masses of a hydrogen atom, an oxygen atom, and a 
carbon atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats 
are sometimes known to kill a mole.)

29 M  On a spending spree in Malaysia, you buy an ox with 
a  weight of 28.9 piculs in the local unit of weights: 1 picul =  
100 gins, 1 gin = 16 tahils, 1 tahil = 10 chees, and 1 chee = 10 hoons. 
The weight of 1 hoon corresponds to a mass of 0.3779 g. When 
you arrange to ship the ox home to your  astonished family, how 
much mass in kilograms must you  declare on the shipping mani-
fest? (Hint: Set up multiple chain- link conversions.)

30 M  CALC  GO  Water is poured into a container that has a 
small leak. The mass m of the water is given as a function of 
time t by m = 5.00t0.8 − 3.00t + 20.00, with t ≥ 0, m in grams, and 
t in seconds. (a) At what time is the water mass greatest, and  
(b) what is that greatest mass? In kilograms per minute, what is 
the rate of mass change at (c) t = 2.00 s and (d) t = 5.00 s?

31 H  CALC  A vertical container with base area measuring 
14.0 cm by 17.0 cm is being filled with identical pieces of candy, 
each with a volume of 50.0 mm3 and a mass of 0.0200 g. Assume 
that the volume of the empty spaces between the  candies is 

negligible. If the height of the candies in the container increases 
at the rate of 0.250 cm/s, at what rate  (kilograms per minute) 
does the mass of the candies in the container increase?

Additional Problems

32  In the United States, a doll house has the scale of 1:12 of 
a real house (that is, each length of the doll house is    1 __ 

12
    that of 

the real house) and a miniature house (a doll house to fit within 
a doll house) has the scale of 1:144 of a real house. Suppose a 
real house (Fig. 1.4) has a front length of 20 m, a depth of 12 m, 
a height of 6.0 m, and a standard sloped roof (vertical triangular 
faces on the ends) of height 3.0 m. In  cubic meters, what are the 
volumes of the corresponding (a) doll house and (b) miniature 
house?

6.0 m

12 m

20 m

3.0 m

Figure 1.4 Problem 32.

33 SSM  A ton is a measure of volume frequently used in 
shipping, but that use requires some care because there are at 
least three types of tons: A displacement ton is equal to 7 barrels 
bulk, a freight ton is equal to 8 barrels bulk, and a register ton 
is equal to 20 barrels bulk. A barrel bulk is another measure of 
volume: 1 barrel bulk = 0.1415 m3. Suppose you spot a shipping 
order for “73 tons” of M&M candies, and you are certain that 
the client who sent the order intended “ton” to  refer to volume 
(instead of weight or mass, as discussed in Chapter 5). If the 
client actually meant displacement tons, how many extra U.S. 
bushels of the candies will you erroneously ship if you interpret 
the order as (a) 73 freight tons and (b) 73 register tons? (1 m3 = 
28.378 U.S. bushels.)

34  Two types of barrel units were in use in the 1920s in the 
United States. The apple barrel had a legally set volume of 
7056 cubic inches; the cranberry barrel, 5826 cubic inches. If a 
merchant sells 20 cranberry barrels of goods to a customer who 
thinks he is receiving apple barrels, what is the discrepancy in 
the shipment volume in liters?

35  An old English children’s rhyme states, “Little Miss Muffet 
sat on a tuffet, eating her curds and whey, when along came a 
spider who sat down beside her. . . .” The spider sat down not 
because of the curds and whey but because Miss Muffet had a 
stash of 11 tuffets of dried flies. The volume  measure of a tuf-
fet is given by 1 tuffet = 2 pecks = 0.50 Imperial bushel, where 
1 Imperial bush el = 36.3687 liters (L). What was Miss Muffet’s 
stash in (a) pecks, (b) Imperial bushels, and (c) liters?

36  Table 1.2 shows some old measures of  liquid volume. To 
 complete the table, what numbers (to three significant figures) 
should be entered in (a) the wey column, (b) the chaldron col-
umn, (c) the bag column, (d) the pottle column, and (e) the gill 
 column, starting from the top down? (f) The volume of 1 bag is 
equal to 0.1091 m3. If an old story has a witch cooking up some 
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vile liquid in a cauldron of volume 1.5 chaldrons, what is the 
volume in cubic meters?

Table 1.2 Problem 36

wey chaldron bag pottle gill

1 wey = 1 10/9 40/3 640 120 240

1 chaldron =

1 bag =

1 pottle =

1 gill =

37  A typical sugar cube has an edge length of 1 cm. If you had 
a cubical box that contained a mole of sugar cubes, what would 
its edge length be? (One mole = 6.02 × 1023 units.)

38  An old manuscript reveals that a landowner in the time of 
King Arthur held 3.00 acres of plowed land plus a livestock area 
of 25.0 perches by 4.00 perches. What was the total area in (a) the 
old unit of roods and (b) the more modern unit of square meters? 
Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is an 
area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft.

39 SSM  A tourist purchases a car in England and ships it home 
to the United States. The car sticker advertised that the car’s 
fuel consumption was at the rate of 40 miles per gallon on the 
open road. The tourist does not realize that the U.K. gallon dif-
fers from the U.S. gallon:

 1 U.K. gallon = 4.546 090 0 liters

 1 U.S. gallon = 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gal-
lons of fuel does (a) the mistaken tourist believe she needs and  
(b) the car actually require?

40  Using conversions and data in the chapter, determine 
the number of hydrogen atoms required to obtain 1.0 kg of 
 hydrogen. A hydrogen atom has a mass of 1.0 u.

41 SSM  A cord is a volume of cut wood equal to a stack 8 ft 
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42  One molecule of water (H2O) contains two atoms of 
 hydrogen and one atom of oxygen. A hydrogen atom has a mass 
of 1.0 u and an atom of oxygen has a mass of 16 u,  approximately. 
(a) What is the mass in kilograms of one  molecule of water?  
(b) How many molecules of water are in  the world’s oceans, 
which have an estimated total mass of 1.4 × 1021 kg?

43  A person on a diet might lose 2.3 kg per week. Express the 
mass loss rate in milligrams per second, as if the dieter could 
sense the second- by- second loss.

44  What mass of water fell on the town in Problem 7? Water 
has a density of 1.0 × 103 kg/m3.

45  (a) A unit of time sometimes used in microscopic physics is 
the shake. One shake equals 10−8 s. Are there more shakes in 
a second than there are seconds in a year? (b)  Humans have 
existed for about 106 years, whereas the  universe is about 
1010 years old. If the age of the universe is defined as 1 “universe 
day,” where a universe day consists of “universe seconds” as a 
normal day consists of normal seconds, how many universe sec-
onds have humans existed?

46  A unit of area often used in measuring land areas is the 
hectare, defined as 104 m2. An open- pit coal mine consumes 
75 hectares of land, down to a depth of 26 m, each year. What 
volume of earth, in cubic kilometers, is removed in this time?

47 SSM  An astronomical unit (AU) is the average distance 
 between Earth and the Sun, approximately 1.50 × 108 km. The 
speed of light is about 3.0 × 108 m/s. Express the speed of light in 
astronomical units per minute.

48  The common Eastern mole, a mammal, typically has a mass 
of 75 g, which corresponds to about 7.5 moles of atoms. (A mole 
of atoms is 6.02 × 1023 atoms.) In atomic mass units (u), what is 
the average mass of the atoms in the common Eastern mole?

49  A traditional unit of length in Japan is the ken (1 ken = 
1.97 m). What are the ratios of (a) square kens to square  meters 
and (b)  cubic kens to cubic meters? What is the volume of a 
cylindrical water tank of height 5.50 kens and radius 3.00 kens in 
(c) cubic kens and (d) cubic meters?

50  You receive orders to sail due east for 24.5 mi to put 
your  salvage ship directly over a sunken pirate ship. How-
ever, when your divers probe the ocean floor at that  location 
and find no evidence of a ship, you radio back to your source 
of information, only to discover that the sailing  distance was 
supposed to be 24.5 nautical miles, not regular miles. Use the 
Length table in Appendix D to calculate how far horizontally 
you are from the pirate ship in  kilometers.

51  Density and liquefaction. A heavy object can sink into the 
ground during an earthquake if the shaking causes the ground 
to undergo liquefaction, in which the soil grains experience little 
friction as they slide over one another. The ground is then effec-
tively quicksand. The possibility of liquefaction in sandy ground 
can be predicted in terms of the void ratio e for a sample of the 
ground: e = Vvoids/Vgrains. Here, Vgrains is the total volume of the 
sand grains in the sample and Vvoids is the total volume between 
the grains (in the voids). If e exceeds a critical value of 0.80, 
liquefaction can occur during an earthquake. What is the cor-
responding sand density ρsand? Solid silicon dioxide (the primary 
component of sand) has a density of   ρ   SiO  2     = 2.600 ×  10  3   kg/m  3 . 

52  Billion and trillion. Until 1974, the U.S. and the U.K. used 
the same names to mean different large numbers. Here are two 
examples: In American English a billion means a number with 
9 zeros after the 1 and in British English it formerly meant a 
number with 12 zeros after the 1. In American English a trillion 
means a number with 12 zeros after the 1 and in British English 
it formerly meant a number with 18 zeros after the 1. In scien-
tific notation with the prefixes in Table 1.1.2, what is 4.0 billion 
meters in (a) the American use and (b) the former British use? 
What is 5.0 trillion meters in (c) the American use and (d) the 
former British use?  

53  Townships. In the United States, real estate can be mea-
sured in terms of townships: 1 township = 36 mi2, 1 mi2 = 640 
acres, 1 acre = 4840 yd2, 1 yd2 = 9 ft2. If you own 3.0 townships, 
how many square feet of real estate do you own?

54  Measures of a man. Leonardo da Vinci, renowned for his 
understanding of human anatomy, valued the measures of a 
man stated by Vitruvius Pollio, a Roman architect and engineer 
of the first century BC: four fingers make one palm, four palms 
make one foot, six palms make one cubit, and four cubits make 
a man’s height. If we take a finger width to be 0.75 in., what then 
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12 CHAPTER 1 MEASUREMENT

are (a) the length of a man’s foot and (b) the height of a man, 
both in centimeters?

55  Dog years. Dog owners like to convert the age of a dog 
(dubbed dog years) to the usual meaning of years to account for 
the more rapid aging of dogs. One measure of the aging process 
in both dogs and humans is the rate at which the DNA changes 
in a process called methylation. Research on that process shows 
that after the first year, the equivalent age of a dog is given by 

equivalent age = 16 ln(dog years) + 31,

where ln is the natural logarithm. What then is the equivalent 
age of a dog on its 13th birthday?

56  Galactic years. The time the Solar System takes to circle 
around the center of the Milky Way galaxy, a galactic year, is 
about 230 My. In galactic years, how long ago did (a) the Tyran-

nosaurus rex dinosaurs live (67 My ago), (b) the first major ice 
age occur (2.2 Gy ago), and (c) Earth form (4.54 Gy ago)?

57  Planck time. The smallest time interval defined in physics is 
the Planck time   t  P   = 5.39 ×  10  −44  s , which is the time required for 
light to travel across a certain length in a vacuum. The universe 
began with the big bang 13.772 billion years ago. What is the 
number of Planck times since that beginning?

58  20,000 Leagues Under the Sea. In Jules Verne’s classic sci-
ence fiction story (published as a serial from 1869 to 1870), Cap-
tain Nemo travels in his underwater ship Nautilus through the 
seas of the world for a distance of 20,000 leagues, where a (met-
ric) league is equal to 4.000 km. Assume Earth is spherical with 
a radius of 6378 km. How many times could Nemo have traveled 
around Earth? 

59  Sea mile. A sea mile is a commonly used measure of dis-
tance in navigation but, unlike the nautical mile, it does not have 
a fixed value because it depends on the latitude at which it is 
measured. It is the distance measured along any given longitude 
that subtends 1 arc minute, as measured from Earth’s center 
(Fig. 1.5). That distance depends on the radius r of Earth at that 
point, but because Earth is not a perfect sphere but is wider at 
the equator and has slightly flattened polar regions, the radius 
depends on the latitude. At the equator, the radius is 6378 km; 
at the pole it is 6356 km. What is the difference in a sea mile 
measured at the equator and at the pole? 

Equator

Quarter
circle

1 sea mile Pole

1'

r

Earth

Figure 1.5 Problem 59.

60  Noctilucent clouds. Soon after the huge 1883 volcanic explo-
sion of Krakatoa Island (near Java in the southeast Pacific), 
silvery, blue clouds began to appear nightly in the Northern 
Hemisphere early at night. The explosion was so violent that it 
hurled dust to the mesosphere, a cool portion of the atmosphere 
located well above the stratosphere. There water collected and 
froze on the dust to form the particles that made the first of 
these clouds. Termed noctilucent clouds (“night shining”), these 
clouds are now appearing frequently (Fig. 1.6a), signaling a 
major change in Earth’s atmosphere, not because of volcanic 
explosions, but because of the increased production of methane 
by industries, rice paddies, landfills, and livestock flatulence.

The clouds are visible after sunset because they are in the 
upper portion of the atmosphere that is still illuminated by sun-
light. Figure 1.6b shows the situation for an observer at point A 
who sees the clouds overhead 38 min after sunset. The two lines 
of light are tangent to Earth’s surface at A and B, at radius r 
from Earth’s center. Earth rotates through angle θ between the 
two lines of light. What is the height H of the clouds?

(a)

(b)

Last light to A

Path of last
light from
Sun

Center of Earth

Last light
on clouds

Distant Sun
r

d

A

H

B
r

θ

θ

Clouds

Figure 1.6 Problem 60. (a) Noctilucent clouds. (b) Sunlight 
reaching the observer and the clouds.

61  Class time, the long of it. For a common four- year under-
graduate program, what are the total number of (a) hours 
and (b) seconds spent in class? Enter your answer in scientific 
notation.

N
o

ct
il

u
ce

n
t 

cl
o

u
d

s 
o

v
e
r 

th
e
 B

a
lt

ic
 S

e
a
 a

s 
v
ie

w
e
d

 

fr
o

m
 L

a
b

o
e
, 
G

e
rm

a
n

y
, 
2
0
1
9
. 
S

o
u

rc
e
: 
M

a
tt

h
ia

s 
S

ü
ß

e
n

. 

L
ic

e
n

se
d

 u
n

d
e
r 

C
C

 B
Y

-S
A

 4
.0

c01Measurement.indd   12 05/05/21   3:51 PM



13

C H A P T E R  2

2.1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY
Learning Objectives 
After reading this module, you should be able to . . . 

2.1.1 Identify that if all parts of an object move in the 

same direction and at the same rate, we can treat 

the object as if it were a (point- like) particle. (This 

chapter is about the motion of such objects.)

2.1.2 Identify that the position of a particle is its loca-

tion as read on a scaled axis, such as an x axis.

2.1.3 Apply the relationship between a particle’s 

 displacement and its initial and final positions.

2.1.4 Apply the relationship between a particle’s aver-

age  velocity, its displacement, and the time interval 

for that  displacement.

2.1.5 Apply the relationship between a particle’s aver-

age speed, the total distance it moves, and the time 

interval for the motion.

2.1.6 Given a graph of a particle’s position versus time, 

 determine the average velocity between any two 

particular times. 

Key Ideas 
● The position x of a particle on an x axis locates the par-

ticle with respect to the origin, or zero point, of the axis.

● The position is either positive or negative, according 

to which side of the origin the particle is on, or zero if 

the particle is at the origin. The positive direction on an 

axis is the direction of increasing positive numbers; the 

opposite direction is the negative direction on the axis.

● The displacement Δ  x of a particle is the change in its 

 position:

  Δ  x =  x  2   −  x  1  .  

● Displacement is a vector quantity. It is positive if the 

 particle has moved in the positive direction of the x 

axis and negative if the particle has moved in the nega-

tive  direction.

● When a particle has moved from position x1 to posi-

tion x2 during a time interval Δt = t2 − t1, its average 

velocity during that interval is

   v  avg   =   Δ  x ___ 
Δ t

   =   
 x  2   −  x  1   ______ 
 t  2   −  t  1  

  .  

● The algebraic sign of vavg indicates the direction of 

motion (vavg is a vector quantity). Average velocity does 

not depend on the actual distance a particle moves, 

but instead depends on its original and final positions. 

● On a graph of x versus t, the average velocity for 

a time interval Δt is the slope of the straight line con-

necting the points on the curve that represent the two 

ends of the interval. 

● The average speed savg of a particle during a time 

 interval Δt depends on the total distance the particle 

moves in that time interval: 

  s  avg   =   total distance  ____________ 
Δt

  . 

What Is Physics?
One purpose of physics is to study the motion of objects—how fast they move, for 
example, and how far they move in a given amount of time. NASCAR  engineers 
are fanatical about this aspect of physics as they determine the perform ance 
of their cars before and during a race. Geologists use this physics to measure 
 tectonic- plate motion as they attempt to predict earthquakes. Medical  researchers 
need this physics to map the blood flow through a patient when  diagnosing a par-
tially closed artery, and motorists use it to determine how they might slow suf-
ficiently when their radar detector sounds a warning. There are countless other 

Motion Along a Straight Line
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14 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

examples. In this chapter, we study the basic physics of  motion where the object 
(race car, tectonic plate, blood cell, or any other object) moves along a single axis. 
Such motion is called one- dimensional motion.

Motion
The world, and everything in it, moves. Even seemingly stationary things, such as 
a roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s 
orbit around the center of the Milky Way galaxy, and that galaxy’s migration 
relative to other galaxies. The classification and comparison of motions (called 
kinematics) is often challenging. What exactly do you measure, and how do you 
compare?

Before we attempt an answer, we shall examine some general properties of 
motion that is restricted in three ways.

1. The motion is along a straight line only. The line may be vertical, horizontal, 
or slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until 
 Chapter 5. In this chapter we discuss only the motion itself and changes in 
the motion. Does the moving object speed up, slow down, stop, or reverse 
 direction? If the motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point- like object 
such as an electron) or an object that moves like a particle (such that every 
portion moves in the same direction and at the same rate). A stiff pig  slipping 
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement
To locate an object means to find its position relative to some reference point, 
often the origin (or zero point) of an axis such as the x axis in Fig. 2.1.1. The 
 positive direction of the axis is in the direction of increasing numbers (coordi-
nates), which is to the right in Fig. 2.1.1. The opposite is the negative direction.

For example, a particle might be located at x = 5 m, which means it is 5 m in 
the positive direction from the origin. If it were at x = −5 m, it would be just as far 
from the origin but in the opposite direction. On the axis, a coordinate of −5 m 
is less than a coordinate of −1 m, and both coordinates are less than a  coordinate 
of +5 m. A plus sign for a coordinate need not be shown, but a  minus sign must 
always be shown.

A change from position x1 to position x2 is called a displacement Δx, where

 Δx = x2 − x1. (2.1.1)

(The symbol Δ, the Greek uppercase delta, represents a change in a quantity, 
and it means the final value of that quantity minus the initial value.) When num-
bers are inserted for the position values x1 and x2 in Eq. 2.1.1, a displacement in 
the positive direction (to the right in Fig. 2.1.1) always comes out positive, and 
a displacement in the opposite direction (left in the figure) always comes out 
 negative. For example, if the particle moves from x1 = 5 m to x2 = 12 m, then the 
displacement is Δx = (12 m) − (5 m) = +7 m. The positive result indicates that the 
motion is in the positive direction. If, instead, the particle moves from x1 = 5 m  
to x2 = 1 m, then Δx = (1 m) − (5 m) = −4 m. The negative result indicates that 
the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement 
involves only the original and final positions. For example, if the particle moves 

Figure 2.1.1 Position is determined 
on an axis that is marked in units 
of length (here meters) and that 
 extends indefinitely in opposite 
 directions. The axis name, here x,  
is always on the positive side of  
the origin.

–3 0

Origin

–2 –1 1 2 3

Negative direction

Positive direction

x (m)
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152.1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

from x = 5 m out to x = 200 m and then back to x = 5 m, the displacement from 
start to finish is Δx = (5 m) − (5 m) = 0.

Signs. A plus sign for a displacement need not be shown, but a minus sign 
must  always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For 
example, a displacement of Δx = −4 m has a magnitude of 4 m.

Displacement is an example of a vector quantity, which is a quantity that has 
both a direction and a magnitude. We explore vectors more fully in Chapter 3, 
but here all we need is the idea that displacement has two features: (1) Its mag-

nitude is the distance (such as the number of meters) between the original and 
final positions. (2) Its direction, from an original position to a final position, can 
be represented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding 

with a bit of reasoning. The answers are in the back of the book.

Figure 2.1.2 The graph of 
x(t) for an armadillo that 
is stationary at x = −2 m. 
The value of x is −2 m 
for all times t.

x (m)

t (s)
1 2 3 4

+1

–1
–1

x(t)

0

This is a graph

of position x

versus time t

for a stationary

object.

 

Same position

for any time. 

Checkpoint 2.1.1
Here are three pairs of initial and final positions, respectively, along an x axis. Which 
pairs give a negative displacement: (a) −3 m, +5 m; (b) −3 m, −7 m; (c) 7 m, −3 m?

Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not 
the product x times t.) As a simple example, Fig. 2.1.2 shows the position function 
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val. The animal’s position stays at x = −2 m.

Figure 2.1.3 is more interesting, because it involves motion. The armadillo 
is apparently first noticed at t = 0 when it is at the position x = −5 m. It moves 
 toward x = 0, passes through that point at t = 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2.1.3 also depicts the straight- line motion 
of the armadillo (at three times) and is something like what you would see. The 
graph in Fig. 2.1.3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One 
of them is the average velocity vavg, which is the ratio of the displacement Δx that 
occurs during a particular time interval Δt to that interval:

   v  avg   =   Δ x ___ 
Δt

   =   
 x  2   −  x  1   ______ 
 t  2   −  t  1  

  .  (2.1.2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the 
problems, but they are always in the form of length/time.
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16 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Figure 2.1.4 Calculation 
of the  average velocity 
between t = 1 s and t = 4 s  
as the slope of the line that 
connects the points on the 
x(t) curve representing 
those times. The swirling 
icon indicates that a figure 
is available in WileyPLUS 
as an animation with 
voiceover.

x (m)

t (s)

x(t)

1 2 3 4

4

3

2

1

–1

–2

–3

–4

–5

vavg = slope of this line

0

This horizontal distance is how long
it took, start to end:
Δt = 4 s – 1 s = 3 sStart of interval

This vertical distance is how far
it moved, start to end:
Δx = 2 m – (–4 m) = 6 m

End of interval
Δx__
Δt

rise___
run

= =

This is a graph

of position x

versus time t.

To find average velocity,

first draw a straight line,

start to end, and then

find the slope of the

line.

Graphs. On a graph of x versus t, vavg is the slope of the straight line that 
connects two particular points on the x(t) curve: one is the point that corresponds 
to x2 and t2, and the other is the point that corresponds to x1 and t1. Like displace-
ment, vavg has both magnitude and direction (it is another vector quantity). Its 
magnitude is the magnitude of the line’s slope. A positive vavg (and slope) tells us 
that the line slants upward to the right; a negative vavg (and slope) tells us that the 
line slants downward to the right. The average velocity vavg  always has the same 
sign as the displacement Δx because Δt in Eq. 2.1.2 is always positive.

Figure 2.1.4 shows how to find vavg in Fig. 2.1.3 for the time interval t = 1 s to 
t = 4 s. We draw the straight line that connects the point on the position curve at 
the beginning of the interval and the point on the curve at the end of the interval. 
Then we find the slope Δx/Δt of the straight line. For the given time interval, the 
average velocity is

   v  avg   =   6 m ____ 
3 s

   = 2 m / s.  

Figure 2.1.3 The graph of x(t) for a moving armadillo. The path  associated with the graph 
is also shown, at three times.

x (m)

t (s)
1 2 3 4

4

3

2

1

0

It is at position x = –5 m

when time t = 0 s.

Those data are plotted here.

 

This is a graph

of position x

versus time t

for a moving

object.

 

0–5 2
x (m)

0 s
0–5 2

x (m)

3 s 

At x = 0 m when t = 3 s.

Plotted here. 

At x = 2 m when t = 4 s.

Plotted here.

–1

–2

–3

–4

–5

x(t)
0–5 2

x (m)

4 s

A

A
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172.1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

So,   Δt =   Δt   car   +  Δt  jog   

(Answer) = 0.250 h + 0.500 h = 0.750 h. 

(c) What is your average velocity vavg from the starting 
point to the end of the jog? Find it both numerically and 
graphically.

KEY IDEA

From Eq. 2.1.2 we know that vavg for the entire trip is the 
ratio of the displacement of 13.0 km for the entire trip to the 
time interval of 0.750 h for the entire trip.

Calculation: Here we find

   v  avg   =   Δx ___ 
Δt

   =   13.0 km _______ 
0.750 h

   = 17.3 km / h.  (Answer)

To find vavg graphically, first we graph the function x(t) as 
shown in Fig. 2.1.5, where the beginning and final points 
on the graph are the origin and the point labeled “Stop.” 

Sample Problem 2.1.1 Average velocity

You get a lift from a car service to take you to a state park 
along a straight road due east (directly toward the east) 
for 10.0 km at an average velocity of 40.0 km/h. From the 
drop- off point, you jog along a straight path due east for 
3.00 km, which takes 0.500 h.

(a) What is your overall displacement from your starting 
point to the point where your jog ends?

KEY IDEA

For convenience, assume that you move in the positive 
direction of an x axis, from a first position of x1 = 0 to a 
second position of x2 at the end of the jog. That second 
position must be at x2 = 10.0 km + 3.00 km = 13.0 km. 
Then your displacement ∆x along the x axis is the second 
position minus the first position.

Calculation: From Eq. 2.1.1, we have

 Δx = x2 − x1 = 13.0 − 0 = 13.0 km. (Answer)

Thus, your overall displacement is 13.0 km in the positive 
 direction of the x axis.

(b) What is the time interval Δt from the beginning of 
your movement to the end of the jog?

KEY IDEA

We already know the jogging time interval ∆ tjog (= 0.500 h),  
but we lack the time interval ∆ tcar for the ride. However, 
we know that the displacement ∆ xcar is 10.0 km and the 
average velocity vavg,car is 40.0 km/h. That average veloc-
ity is the ratio of that displacement to the time interval for 
the ride, so we can find that time interval.

Calculations: We first write

  v  avg,car   =   
 Δx  car   _____ 
 Δt  car  

  . 

Rearranging and substituting data then give us

  Δt  car   =   
 Δx  car   ______  v  avg,car  

   =   10.0 km _________ 
40.0 km / h

   = 0.250 h. 

Figure 2.1.5 The lines marked “Riding” and “Jogging” are 
the position−time plots for the riding and jogging stages. 
The slope of the straight line joining the origin and the point 
labeled “Stop” is the average velocity for the motion from 
start to stop.
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Average speed savg is a different way of describing “how fast” a particle 
moves. Whereas the average velocity involves the particle’s displacement Δx, the 
average speed involves the total distance covered (for example, the number of 
meters moved), independent of direction; that is,

    s  avg   =   total distance  ____________ 
Δ t

  .   (2.1.3)

Because average speed does not include direction, it lacks any algebraic sign. 
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the 
two can be quite different.
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18 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Your average velocity is the slope of the straight line con-
necting those points; that is, vavg is the ratio of the rise  
(∆ x = 13.0 km) to the run (∆  t = 0.750 h), which gives us vavg =  
17.3 km/h.

(d) Suppose you then jog back to the drop- off point for 
another 0.500 h. What is your average speed from the 
beginning of your trip to that return?

KEY IDEA

Your average speed is the ratio of the total distance you 
 covered to the total time interval you took.

Calculation: The total distance is 10.0 km + 3.00 km + 
3.00 km = 16.0 km. The total time interval is 0.250 h + 
0.500 h + 0.500 h = 1.25 h. Thus, Eq. 2.1.3 gives us

   s  avg   =   16.0 km _______ 
1.25 h

   = 12.8 km / h.  (Answer)

Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average 
 velocity and average speed, both of which are measured over a time interval Δt. 
However, the phrase “how fast” more commonly refers to how fast a  particle is 
moving at a given instant—its instantaneous velocity (or simply  velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking 
the time interval Δt closer and closer to 0. As Δt dwindles, the average  velocity 
approaches a limiting value, which is the velocity at that instant:

   v =   lim  
Δt→0

     Δx ___ 
Δt

   =   dx ___ 
dt

  .   (2.2.1)

Note that v is the rate at which  position x is changing with time at a given  instant; 
that is, v is the derivative of x with respect to t. Also note that v at any instant is 
the slope of the position– time curve at the point representing that instant. Veloc-
ity is another vector quantity and thus has an associated  direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been 
stripped of any indication of direction, either in words or via an algebraic sign. 
(Caution: Speed and average speed can be quite different.) A velocity of +5 m/s 
and one of −5 m/s both have an associated speed of 5 m/s. The speedometer in 
a car measures speed, not velocity (it cannot determine the direction).

2.2 INSTANTANEOUS VELOCITY AND SPEED 
Learning Objectives 
After reading this module, you should be able to . . .

2.2.1 Given a particle’s position as a function of 

time, calculate the instantaneous velocity for any 

particular time.

2.2.2 Given a graph of a particle’s position versus time, 

determine the instantaneous velocity for any particu-

lar time.

2.2.3 Identify speed as the magnitude of the instanta-

neous velocity. 

Key Ideas 

● The instantaneous velocity (or simply velocity) v of a 

moving particle is 

 v =   lim  
Δt→0

     Δx ___ 
Δt

   =   dx ___ 
dt

  , 

where Δx = x2 − x1 and Δt = t2 − t1.

●  The instantaneous velocity (at a particular time) may 

be found as the slope (at that particular time) of the 

graph of x versus t.

● Speed is the magnitude of instantaneous velocity.

Additional examples, video, and practice available at WileyPLUS
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192.2 INSTANTANEOUS VELOCITY AND SPEED 

Sample Problem 2.2.1 Velocity and slope of x versus t, elevator cab

Figure 2.2.1 (a) The x(t) curve for an ele-
vator cab that moves upward along an x 
axis. (b) The v(t) curve for the cab. Note 
that it is the derivative of the x(t) curve 
(v = dx/dt). (c) The a(t) curve for the 
cab. It is the derivative of the v(t) curve 
(a = dv/dt). The stick  figures along the 
bottom suggest how a passenger’s body 
might feel during the  accelerations.

Δt

Δx

Deceleration

P
o

si
ti

o
n

 (
m

)

Time (s)

t
0 987654321

0

5

10

15

20

25

Slope
of x(t)

V
el

o
ci

ty
 (

m
/

s)

Time (s)
9

0

1

2

3

4

x

a
b

c
d

0

x(t)

v(t)b c

da

v

t

0
–1
–2
–3
–4

1
2

t

A
cc

el
er

at
io

n
 (

m
/

s2
)

(a)

(b)

(c)

987654321

87654321

a

a(t)

Acceleration

cba d

3

Slopes on the x versus t graph

are the values on the v versus t graph.

Slopes on the v versus t graph

are the values on the a versus t graph.

What you would feel.

x = 4.0 m
at t = 3.0 s

x = 24 m
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Calculations: The slope of x(t), and so also the velocity, is 
zero in the intervals from 0 to 1 s and from 9 s on, so then 
the cab is stationary. During the interval bc, the slope is 
constant and nonzero, so then the cab moves with con-
stant velocity. We calculate the slope of x(t) then as

     Δx ___ 
Δt

   = v =   24 m − 4.0 m  ____________  
8.0 s − 3.0 s

   = + 4.0 m / s.   (2.2.2)

Checkpoint 2.2.1
The following equations give the position x(t) of a particle in four situations (in each 
equation, x is in meters, t is in seconds, and t > 0): (1) x = 3t − 2; (2) x = −4t2 − 2;  
(3) x = 2/t2; and (4) x = −2. (a) In which situation is the velocity v of the particle 
constant? (b) In which is v in the negative x direction?

Figure 2.2.1a is an x(t) plot for an elevator cab that is ini-
tially stationary, then moves upward (which we take to be 
the positive direction of x), and then stops. Plot v(t).

KEY IDEA

We can find the velocity at any time from the slope of the 
x(t) curve at that time. 
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20 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

The plus sign indicates that the cab is moving in the pos-
itive x direction. These intervals (where v = 0 and v = 
4 m/s) are plotted in Fig. 2.2.1b. In addition, as the cab 
initially begins to move and then later slows to a stop, 
v varies as indicated in the intervals 1 s to 3 s and 8 s to 
9 s. Thus, Fig. 2.2.1b is the  required plot. (Figure 2.2.1c 
is considered in Module 2.3.)

Given a v(t) graph such as Fig. 2.2.1b, we could 
“work backward” to produce the shape of the associated 
x(t) graph (Fig. 2.2.1a). However, we would not know 
the actual values for x at various times, because the v(t) 
graph indicates only changes in x. To find such a change 
in x during any interval, we must, in the language of 

calculus, calculate the area  “under the curve” on the 
v(t) graph for that interval. For  example, during the 
 interval 3 s to 8 s in which the cab has a velocity of 4.0 
m/s, the change in x is

 Δx = (4.0 m/s)(8.0 s − 3.0 s) = +20 m. (2.2.3)

(This area is positive because the v(t) curve is above the 
t axis.) Figure 2.2.1a shows that x does indeed increase 
by 20 m in that interval. However, Fig. 2.2.1b does not tell 
us the values of x at the beginning and end of the inter-
val. For that, we need additional information, such as the 
value of x at some instant.

Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration 
(or to accelerate). For motion along an axis, the average acceleration aavg over 
a time interval Δt is

    a  avg   =   
 v  2   −  v  1   ______ 
 t  2   −  t  1  

   =   Δv ___ 
Δt

  ,   (2.3.1)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The 
 instantaneous acceleration (or simply acceleration) is

   a =   dv ___ 
dt

  .   (2.3.2)

2.3 ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

2.3.1 Apply the relationship between a particle’s aver-

age acceleration, its change in velocity, and the time 

interval for that change.

2.3.2 Given a particle’s velocity as a function of time, 

calculate the instantaneous acceleration for any 

particular time.

2.3.3 Given a graph of a particle’s velocity versus 

time, determine the instantaneous acceleration for 

any particular time and the average acceleration 

between any two particular times. 

Key Ideas 
● Average acceleration is the ratio of a change in 

velocity Δv to the time interval Δt in which the change 

occurs:

  a  avg   =   Δv ___ 
Δt

  . 

The algebraic sign indicates the direction of aavg.

● Instantaneous acceleration (or simply acceleration) a 

is the first time derivative of velocity v(t) and the sec-

ond time derivative of position x(t):

 a =   dv ___ 
dt

   =    d   2  x ____ 
 dt   2 

  . 

● On a graph of v versus t, the acceleration a at any time 

t is the slope of the curve at the point that represents t. 

Additional examples, video, and practice available at WileyPLUS
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212.3 ACCELERATION

In words, the acceleration of a particle at any instant is the rate at which its  velocity 
is changing at that instant. Graphically, the acceleration at any point is the slope 
of the curve of v(t) at that point. We can combine Eq. 2.3.2 with Eq. 2.2.1 to write

  a =   dv ___ 
dt

   =   d __ 
dt

    (  dx ___ 
dt

  )  =    d   2 x ____ 
 dt   2 

  .  (2.3.3)

In words, the acceleration of a particle at any instant is the second derivative of 
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s ⋅ s) 
or m/s2. Other units are in the form of length/(time ⋅ time) or length/time2. Accel-
eration has both magnitude and direction (it is yet another vector quantity). Its 
algebraic sign represents its direction on an axis just as for displacement and 
velocity; that is, acceleration with a positive value is in the positive direction of 
an axis, and acceleration with a negative value is in the negative direction.

Figure 2.2.1 gives plots of the position, velocity, and acceleration of an 
elevator moving up a shaft. Compare the a(t) curve with the v(t) curve—each 
point on the a(t) curve shows the derivative (slope) of the v(t) curve at the 
corres ponding time. When v is constant (at either 0 or 4 m/s), the derivative 
is zero and so also is the acceleration. When the cab first begins to move, the 
v(t) curve has a positive derivative (the slope is positive), which means that a(t) 
is positive. When the cab slows to a stop, the derivative and slope of the v(t) 
curve are negative; that is, a(t) is negative.

Next compare the slopes of the v(t) curve during the two acceleration pe-
riods. The slope associated with the cab’s slowing down (commonly called 
 “deceleration”) is steeper because the cab stops in half the time it took to get 
up to speed. The steeper slope means that the magnitude of the deceleration is 
larger than that of the acceleration, as indicated in Fig. 2.2.1c.

Sensations. The sensations you would feel while riding in the cab of 
Fig. 2.2.1 are indicated by the sketched figures at the bottom. When the cab first 
accelerates, you feel as though you are pressed downward; when later the cab is 
braked to a stop, you seem to be stretched upward. In between, you feel nothing 
special. In other words, your body reacts to accelerations (it is an accelerometer) 
but not to  velocities (it is not a speedometer). When you are in a car traveling at 
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of the 
 motion. However, if the car or plane quickly changes velocity, you may become 
keenly aware of the change, perhaps even frightened by it. Part of the thrill of an 
amusement park ride is due to the quick changes of velocity that you undergo 
(you pay for the accelerations, not for the speed). A more extreme example is 
shown in the photographs of Fig. 2.3.1, which were taken while a rocket sled was 
rapidly accelerated along a track and then rapidly braked to a stop. FCP  

g Units. Large accelerations are sometimes expressed in terms of g units, with

 1g = 9.8 m/s2   (g unit). (2.3.4)

(As we shall discuss in Module 2.5, g is the magnitude of the acceleration of a fall-
ing object near Earth’s surface.) On a roller coaster, you may experience brief 
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough 
to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific 
meaning: Positive acceleration means that the speed of an object is  increasing, and 
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not 
whether an object’s speed is increasing or  decreasing. For example, if a car with an 
initial velocity v = −25 m/s is braked to a stop in 5.0 s, then aavg = +5.0 m/s2. The 
 acceleration is positive, but the car’s speed has decreased. The reason is the differ-
ence in signs: The direction of the acceleration is opposite that of the velocity.
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22 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Here then is the proper way to interpret the signs:

Checkpoint 2.3.1
A wombat moves along an x axis. What is the sign of its acceleration if it is moving 
(a) in the positive direction with increasing speed, (b) in the positive direction with 
decreasing speed, (c) in the negative  direction with increasing speed, and (d) in the 
negative  direction with decreasing speed?

acceleration function a(t), we differentiate the velocity 
function v(t) with respect to time. 

Calculations: Differentiating the position function, we find

 v = −27 + 3t2, (Answer)

with v in meters per second. Differentiating the velocity 
function then gives us

 a = +6t, (Answer)

with a in meters per second squared.

Sample Problem 2.3.1 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2.1.1 is given by

x = 4 − 27t + t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle 
must be moving. Find the particle’s velocity function v(t) 
and acceleration function a(t).

KEY IDEAS

(1) To get the velocity function v(t), we  differentiate the 
position function x(t) with respect to time. (2) To get the 

Figure 2.3.1 Colonel J. P. Stapp in a rocket sled as it is brought up to high speed (accel-
eration out of the page) and then very rapidly braked (acceleration into the page).
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 If the signs of the velocity and acceleration of a particle are the same, the speed 
of the particle increases. If the signs are opposite, the speed decreases.
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232.4 CONSTANT ACCELERATION

(b) Is there ever a time when v = 0?

Calculation: Setting v(t) = 0 yields

0 = −27 + 3t2,

which has the solution

 t = ±3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the 
clock reads 0.

(c) Describe the particle’s motion for t ≥ 0.

Reasoning: We need to examine the expressions for x(t), 
v(t), and a(t).

At t = 0, the particle is at x(0) = +4 m and is  moving 
with a velocity of v(0) = −27 m/s—that is, in the negative 
 direction of the x axis. Its acceleration is a(0) = 0 because 
just then the particle’s velocity is not changing (Fig. 2.3.2a).

For 0 < t < 3 s, the particle still has a negative  velocity, 
so it continues to move in the negative direction. However, 
its  acceleration is no longer 0 but is  increasing and posi-
tive. Because the signs of the velocity and the acceleration 
are  opposite, the particle must be slowing (Fig. 2.3.2b).

Indeed, we already know that it stops momentarily 
at t = 3 s. Just then the particle is as far to the left of the 
 origin in Fig. 2.1.1 as it will ever get. Substituting t = 3 s 
into the  expression for x(t), we find that the particle’s 
position just then is x = −50 m (Fig. 2.3.2c). Its accelera-
tion is still positive.

For t > 3 s, the particle moves to the right on the axis. 
Its acceleration remains positive and grows  progressively 
larger in magnitude. The velocity is now positive, and it 
too grows progressively larger in  magnitude (Fig. 2.3.2d).

Figure 2.3.2 Four stages of the particle’s motion.

x

−50 m

t = 3 s
v = 0
a pos

reversing

(c)

t = 4 s
v pos
a pos

speeding up

(d )

0   4 m
t = 0
v neg
a = 0

leftward
motion

(a)

t = 1 s
v neg
a pos

slowing

(b)

2.4 CONSTANT ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

2.4.1 For constant acceleration, apply the relationships 

between position, displacement, velocity, accelera-

tion, and elapsed time (Table 2.4.1). 

2.4.2 Calculate a particle’s change in velocity by inte-

grating its acceleration function with respect to time.

2.4.3 Calculate a particle’s change in position by inte-

grating its velocity function with respect to time. 

Key Idea 
● The following five equations describe the motion of a particle with constant acceleration:

v = v0 + at, x − x0 = v0 t +    
1 __ 
2
   at2,

v2 = v2
0 + 2a(x − x0), x − x0 =    

1 __ 
2
   (v0 + v)t, x − x0 = vt −    1 __ 

2
   at2.

These are not valid when the acceleration is not constant.

Constant Acceleration: A Special Case
     In many types of motion, the acceleration is either constant or approximately so. 
For example, you might accelerate a car at an approximately constant rate when 
a traffic light turns from red to green. Then graphs of your position,  velocity, 

Additional examples, video, and practice available at WileyPLUS
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24 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

and  acceleration would resemble those in Fig. 2.4.1. (Note that a(t) in 
Fig. 2.4.1c is constant, which requires that v(t) in Fig. 2.4.1b have a constant 
slope.) Later when you brake the car to a stop, the acceleration (or decel-
eration in common  language) might also be approximately constant.

Such cases are so common that a special set of equations has been 
derived for dealing with them. One approach to the derivation of these equa-
tions is given in this section. A second approach is given in the next sec-
tion. Throughout both sections and later when you work on the homework 
problems, keep in mind that these equations are valid only for constant accel-

eration (or situations in which you can approximate the acceleration as being 

constant).
First Basic Equation. When the acceleration is constant, the average 

acceleration and instantaneous acceleration are equal and we can write  
Eq. 2.3.1, with some changes in  notation, as

 a =  a  avg   =   
v −  v  0   ______ 
t − 0

  . 

Here v0 is the velocity at time t = 0 and v is the velocity at any later time t. 
We can recast this equation as

 v = v0 + at. (2.4.1)

As a check, note that this equation reduces to v = v0 for t = 0, as it must. As 
a further check, take the derivative of Eq. 2.4.1. Doing so yields dv/dt = a, 
which is the definition of a. Figure 2.4.1b shows a plot of Eq. 2.4.1, the v(t) 
function; the function is linear and thus the plot is a straight line.

Second Basic Equation. In a similar manner, we can rewrite Eq. 2.1.2 
(with a few changes in nota tion) as

  v  avg   =   
x −  x  0   ______ 
t − 0

   

and then as

 x = x0 + vavgt, (2.4.2)

in which x0 is the position of the particle at t = 0 and vavg is the average velocity 
between t = 0 and a later time t.

For the linear velocity function in Eq. 2.4.1, the average velocity over any 
time interval (say, from t = 0 to a later time t) is the average of the velocity at the 
beginning of the interval (= v0) and the velocity at the end of the interval (= v). 
For the interval from t = 0 to the later time t then, the average velocity is

    v  avg   =   1 _ 
2
    (    v  0   + v )  .    (2.4.3)

Substituting the right side of Eq. 2.4.1 for v yields, after a little rearrangement,

    v  avg   =  v  0   +   1 _ 
2
   at.   (2.4.4)

Finally, substituting Eq. 2.4.4 into Eq. 2.4.2 yields

   x −  x  0   =  v  0   t +   1 _ 
2
    at   2 .   (2.4.5)

As a check, note that putting t = 0 yields x = x0, as it must. As a further check, 
taking the derivative of Eq. 2.4.5 yields Eq. 2.4.1, again as it must. Figure 2.4.1a 
shows a plot of Eq. 2.4.5; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2.4.1 and 2.4.5 are the basic equations for 

constant acceleration; they can be used to solve any constant acceleration  problem 

Figure 2.4.1 (a) The position x(t) of a 
 particle moving with constant acceleration. 
(b) Its  velocity v(t), given at each point by 
the slope of the curve of x(t). (c) Its (con-
stant) acceleration, equal to the (constant) 
slope of the curve of v(t).

0

a

Slope = 0

a(t)

(a)

(b)

(c)
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Slopes of the position graph 

are plotted on the velocity graph.

Slope of the velocity graph is 

plotted on the acceleration graph.
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252.4 CONSTANT ACCELERATION

in this book. However, we can derive other equations that might prove useful in 
certain  specific situations. First, note that as many as five quantities can possibly 
be  involved in any problem about constant acceleration—namely, x − x0, v, t, a, 
and v0. Usually, one of these quantities is not involved in the problem, either as 

a given or as an unknown. We are then presented with three of the remaining 
quantities and asked to find the fourth.

Equations 2.4.1 and 2.4.5 each contain four of these quantities, but not the 
same four. In Eq. 2.4.1, the “missing ingredient” is the displacement x − x0. In Eq. 
2.4.5, it is the velocity v. These two equations can also be combined in three ways 
to yield three additional equations, each of which involves a different “missing 
variable.” First, we can eliminate t to obtain

    v   2  =  v  0  
2  + 2a  (  x −  x  0   )  .    (2.4.6)

This equation is useful if we do not know t and are not required to find it. Second, 
we can eliminate the acceleration a between Eqs. 2.4.1 and 2.4.5 to produce an 
equation in which a does not appear:

  x −  x  0   =   1 _ 
2
    (    v  0   + v )  t.   (2.4.7)

Finally, we can eliminate v0, obtaining

   x −  x  0   = vt −   1 _ 
2
    at   2 .   (2.4.8)

Note the subtle difference between this equation and Eq. 2.4.5. One involves the 
initial velocity v0; the other involves the velocity v at time t.

Table 2.4.1 lists the basic constant-acceleration equations (Eqs. 2.4.1 and 2.4.5) 
as well as the specialized equations that we have derived. To solve a simple constant-
acceleration problem, you can usually use an equation from this list (if you have the 
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Eqs. 2.4.1 and 
2.4.5, and then solve them as simultaneous equations whenever needed. 

Table 2.4.1 Equations for Motion 

with Constant Accelerationa

Equation 
Number Equation

Missing 
Quantity

2.4.1 v = v0 + at x − x0

2.4.5  x −  x  0   =  v  0   t +   1 _ 
2
   a t   2  v

2.4.6   v   2  =  v  0  
2  + 2a  (  x −  x  0   )    t

2.4.7  x −  x  0   =   1 _ 
2
    (   v  0   + v )   t a

2.4.8  x −  x  0   = vt −   1 _ 
2
    at   2  v0

aMake sure that the acceleration is indeed 

constant before using the equations in 

this table.

Checkpoint 2.4.1
The following equations give the position x(t) of a particle in four  situations: (1) x = 
3t − 4; (2) x = −5t3 + 4t2 + 6; (3) x = 2/t2 − 4/t; (4) x = 5t2 − 3. To which of these situa-
tions do the equations of Table 2.4.1 apply?

safe. So, the first step in the system’s control is to calcu-
late that passing time.

We want B to pull into the other lane, accelerate at a  
constant a = 3.50 m/s2 until it reaches a speed of v = 27.0 m/s  
(60 mi/h, the speed limit) and then, when it is at distance 
3.00L ahead of A, pull back into the initial lane (it will then 
maintain 27.0 m/s). Assume that the lane changing takes 
negligible time. Figure 2.4.2c shows the situation at the 
onset of the acceleration, with the rear of car B at xB1 = 0 
and the rear of car A at xA1 = 4L. Figure 2.4.2d shows the 
situation when car B is about to pull back into the initial 
lane. Let t1 and d1 be the time required for the acceleration 

Sample Problem 2.4.1 Autonomous car passing slower car

In Fig. 2.4.2a, you are riding in a car controlled by an 
autonomous driving system and trail a slower car that 
you want to pass. Figure 2.4.2b shows the initial situa-
tion, with you in car B. Your system’s radar detects the 
speed and location of slow car A. Both cars have length 
L = 4.50 m, speed v0 = 22.0 m/s (49 mi/h, slower than the 
speed limit), and travel on a straight road with one lane 
in each direction. Your car initially trails A by distance 
3.00L when you ask it to pass the slow car. That would 
require you to move into the other lane where there can 
be an oncoming vehicle. Your system must determine the 
time required for passing A, to see if passing would be 
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(f) Putting the pieces together, we find

   x  B2   =  x  A2   + 4L

  d  1   + v  t  2   = 4L +  v  0   (  t  1   +  t  2   ) + 4L

  t  2   (v −  v  0  ) = 8L +  v  0    t  1   −  d  1  

  t  2   =   
 8L +  v  0    t  1   −  d  1    _____________ v −  v  0  

   

 =   
8(4.50 )  + (22.0 m/s)(1.4285 s) − 35.0 m

    __________________________________   
(27.0 m/s) − (22.0 m/s)

  

 = 6.4854 s ≈ 6.49 s.  (Answer)

(g) The total time is

   t  tot   =  t  1   +  t  2   = 1.4285 s + 6.4854 s

 = 7.91 s.  (Answer)
As explored in one of the end- of- chapter problems, the 
next step for your car’s control system is to detect the 
speed and distance of any oncoming car, to see if this 
much time is safe.

and the distance traveled during the acceleration. Let t2 
be the time from the end of the acceleration to when B 
is ahead of A by 3L and ready to pull back. We want the 
total time ttot = t1 + t2. Here are the pieces in the calcula-
tion. What are the values of (a) t1 and (b) d1? (c) In terms 
of L, v0, t1, and t2, what is the coordinate xB 2 of the rear of 
car B when B is ready to pull back? (d) In terms of L, v0, 
t1, and t2, what is the coordinate xA2 of the rear of car A  
just then? (e) What is xB2 in terms of xA2 and L? Putting 
the pieces together, find the values of (f) t2 and (g) ttot.

KEY IDEA

We can apply the equations of constant acceleration to 
both stages of passing: when car B has acceleration a = 
3.50 m/s2 and when it travels at constant speed (thus, with 
constant a = 0).

Calculations: (a) In the passing lane, B accelerates at the 
constant rate a = 3.50 m/s2 from initial speed v0 = 22.0 m/s 
to final speed v = 27.0 m/s. From Eq. 2.4.1, we find the 
time t1 required for the acceleration:

   t  1   =   
v −  v  0   ______ a   =   

(27.0 m/s) − (22.0 m/s)
  ____________________  

3.50  m/s  2 
  

 = 1.4285 s ≈ 1.43 s.  (Answer)

(b) In Eq. 2.4.6, let  x −  x  0    be the distance d1 traveled by B 
during the acceleration. We can then write

   v   2  =  v  0  
2  + 2a d  1  

  d  1   =   
 v   2  −  v  0  

2 
 ______ 

2a
   =   

(27.0   m/s)  2  − (22.0   m/s)  2 
   ______________________  

2(3.50   m/s  2  )
   

(Answer) = 35.0 m 

(c) After the acceleration through displacement d1 from 
its initial position of xB1 = 0, the rear of car B moves at 
constant speed v for the unknown time t2. Its position 
is then

  
 x  B2   =  d  1   + v t  2  .  (Answer)

(d) From its initial position of xA1 = 4L, the rear of car 
A moves at constant speed v0 for the total time t1 + t2. 
Thus, its position is then 

  
 x  A2   = 4L +  v  0   (  t  1   +  t  2   ).  (Answer)

(e) The rear of car B is then 3L from the front of A and 
thus 4L from the rear of A. So,

  
 x  B2   =  x  A2   + 4L.  (Answer)

Figure 2.4.2 (a) Trailing car’s radar system detects distance 
and speed of lead car. (b) Initial situation. (c) Trailing car B 
pulls into passing lane. (d) Car B is about to pull back into 
initial lane.

(a)

3LL L

v0 v0

(b)

B A

x

xB1= 0
x

xA1 = 4L

(c)

B

A

v0

v0

L

xA2

x
xB2

(d)

B

A 3L

Additional examples, video, and practice available at WileyPLUS
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Another Look at Constant Acceleration*
The first two equations in Table 2.4.1 are the basic equations from which the 
 others are derived. Those two can be obtained by integration of the acceleration 
with the condition that a is constant. To find Eq. 2.4.1, we rewrite the definition 
of acceleration (Eq. 2.3.2) as

dv = a dt.

We next write the indefinite integral (or antiderivative) of both sides:

   
 

      dv     =   
 

      a  dt. 

Since acceleration a is a constant, it can be taken outside the integration. We obtain

   
 

      dv     = a  
 

      dt  

or v = at + C. (2.4.9)

To evaluate the constant of integration C, we let t = 0, at which time v = v0. 
 Substituting these values into Eq. 2.4.9 (which must hold for all values of t, 
 including t = 0) yields

v0 = (a)(0) + C = C.

Substituting this into Eq. 2.4.9 gives us Eq. 2.4.1.
To derive Eq. 2.4.5, we rewrite the definition of velocity (Eq. 2.2.1) as

dx = v dt

and then take the indefinite integral of both sides to obtain

   
 

      dx    =   
 

      v   dt. 

Next, we substitute for v with Eq. 2.4.1:

   
 

      dx  =   
 

      ( v  0   + at )    dt. 

Since v0 is a constant, as is the acceleration a, this can be rewritten as

   
 

      dx  =  v  0     
 

      dt   + a  
 

      t   dt. 

Integration now yields

  x =  v  0  t +   1 _ 
2
   a t   2  + C′,  (2.4.10)

where   C ′    is another constant of integration. At time t = 0, we have x = x0. Substi-
tuting these values in Eq. 2.4.10 yields x0 =  C ′   . Replacing   C ′    with x0 in Eq. 2.4.10 
gives us Eq. 2.4.5.

*This section is intended for students who have had integral calculus.

c02MotionAlongAStraightLine.indd   27 05/05/21   3:44 PM



28 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Figure 2.5.1 A feather and an apple 
free fall in vacuum at the same 
 magnitude of acceleration g. The 
 acceleration increases the distance 
between successive images. In the 
absence of air, the feather and apple 
fall together.

2.5 FREE- FALL ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . .

2.5.1 Identify that if a particle is in free flight (whether 

upward or downward) and if we can neglect the 

effects of air on its motion, the particle has a 

constant downward acceleration with a magnitude g 

that we take to be 9.8 m/s2.

2.5.2 Apply the constant- acceleration equations 

(Table 2.4.1) to free- fall motion. 

Key Idea 

● An important example of straight- line motion with 

constant acceleration is that of an object rising or 

falling freely near Earth’s surface. The constant- 

acceleration equations describe this motion, but 

we make two changes in notation: (1) We refer the 

motion to the vertical y axis with +y vertically up; (2) 

we replace a with −g, where g is the magnitude of the 

 free- fall acceleration. Near Earth’s surface, 

g = 9.8 m/s2 = 32 ft/s2. 

Free- Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the 
 effects of air on its flight, you would find that the object accelerates down-
ward at a certain constant rate. That rate is called the free- fall acceleration, 
and its magnitude is represented by g. The acceleration is independent of 
the object’s characteristics, such as mass, density, or shape; it is the same for  
all objects.

Two examples of free- fall acceleration are shown in Fig. 2.5.1, which is a 
series of stroboscopic photos of a feather and an apple. As these objects fall, they 
 accelerate downward—both at the same rate g. Thus, their speeds increase at the 
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level 
in Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you 
should use as an exact number for the problems in this book unless otherwise 
noted.

The equations of motion in Table 2.4.1 for constant acceleration also apply 
to free fall near Earth’s surface; that is, they apply to an object in vertical flight, 
 either up or down, when the effects of the air can be neglected. However, note 
that for free fall: (1) The directions of motion are now along a vertical y axis 
 instead of the x axis, with the positive direction of y upward. (This is important 
for later chapters when combined horizontal and vertical motions are examined.)  
(2) The free- fall acceleration is negative—that is, downward on the y axis, toward 
Earth’s center—and so it has the value −g in the equations.

Suppose you toss a tomato directly upward with an initial (positive) velocity 
v0 and then catch it when it returns to the release level. During its free- fall flight 
(from just after its release to just before it is caught), the equations of Table 2.4.1 
apply to its motion. The acceleration is always a = −g = −9.8 m/s2, negative 
and thus downward. The velocity, however, changes, as indicated by Eqs. 2.4.1 
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 The free- fall acceleration near Earth’s surface is a = −g = −9.8 m/s2, and the 
 magnitude of the acceleration is g = 9.8 m/s2. Do not substitute −9.8 m/s2 for g.
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292.5 FREE- FALL ACCELERATION

or  5.0 m =   (  12 m / s )   t −   (    1 _ 
2
   )   (9.8   m / s  2 ) t   2 .  

If we temporarily omit the units (having noted that they 
are consistent), we can rewrite this as

4.9t2 − 12t + 5.0 = 0.

Solving this quadratic equation for t yields

 t = 0.53 s  and  t = 1.9 s. (Answer)

There are two such times! This is not really surprising 
 because the ball passes twice through y = 5.0 m, once on 
the way up and once on the way down.

Sample Problem 2.5.1 Time for full up-down flight, baseball toss

In Fig. 2.5.2, a pitcher tosses a baseball up along a y axis, 
with an initial speed of 12 m/s. FCP  

(a) How long does the ball take to reach its maximum 
height?

KEY IDEAS

(1) Once the ball leaves the pitcher and  before it  returns 
to his hand, its acceleration is the free- fall acceleration  
a = −g. Because this is constant, Table 2.4.1 applies to the 
 motion. (2) The velocity v at the maximum height must 
be 0. 

Calculation: Knowing v, a, and the initial velocity v0 = 
12 m/s, and seeking t, we solve Eq. 2.4.1, which contains 
those four variables. This yields

  t =   
v −  v  0   ______ a   =   0 − 12 m / s __________ 

− 9.8   m / s  2 
   = 1.2 s.  (Answer)

(b) What is the ball’s maximum height above its release 
point?

Calculation: We can take the ball’s release point to be 
y0 = 0. We can then write Eq. 2.4.6 in y notation, set y − y0 = y  
and v = 0 (at the maximum height), and solve for y. We get

  y =   
 v   2  −  v  0  

2 
 ______ 

2a
   =   

0 −   (  12 m / s )    2 
  ____________  

2(−9.8   m / s  2 )
   = 7.3 m.  (Answer)

(c) How long does the ball take to reach a point 5.0 m 
above its release point?

Calculations: We know v0, a = −g, and displacement 
y  −  y0  = 5.0 m, and we want t, so we choose Eq. 2.4.5. 
Rewriting it for y and setting y0 = 0 give us

 y =  v  0   t −   1 _ 
2
    gt   2 , 

Figure 2.5.2 A pitcher tosses 
a baseball straight up into 
the air. The equations of 
free fall  apply for rising as 
well as for falling objects, 
provided any effects from 
the air can be  neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Checkpoint 2.5.1
(a) If you toss a ball straight up, what is the sign of the ball’s  displacement for the  ascent, 
from the release point to the highest point? (b) What is it for the descent, from the highest 
point back to the release point? (c) What is the ball’s  acceleration at its highest point?

and 2.4.6: During the ascent, the magnitude of the positive velocity decreases, 
 until it momentarily becomes zero. Because the tomato has then stopped, it is at 
its maximum height. During the descent, the magnitude of the (now negative) 
velocity increases.

Additional examples, video, and practice available at WileyPLUS
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30 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

2.6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS 
Learning Objectives 
After reading this module, you should be able to . . . 

2.6.1 Determine a particle’s change in velocity by 

graphical  integration on a graph of acceleration 

versus time.

2.6.2 Determine a particle’s change in position by 

graphical integration on a graph of velocity versus 

time. 

Key Ideas 
● On a graph of acceleration a versus time t, the 

change in the velocity is given by 

  v  1   −  v  0   =   
 t  0  
  

 t  1  

  a dt . 

The integral amounts to finding an area on the graph:

    
 t  0  
  

 t  1  

  a dt  =  ( 
area between acceleration curve

    
and time axis, from   t  0    to   t  1  

  ) . 

● On a graph of velocity v versus time t, the change in 

the  position is given by

  x  1   −  x  0   =   
 t  0  
  

 t  1  

  v dt , 

where the integral can be taken from the graph as 

   
 t  0  
  

 t  1  

  v dt    =  ( 
area between velocity curve

    
and time axis, from   t  0    to   t  1  

  ) . 

Graphical Integration in Motion Analysis
Integrating Acceleration. When we have a graph of an object’s acceleration a ver-
sus time t, we can integrate on the graph to find the velocity at any given time. 
Because a is defined as a = dv/dt, the Fundamental Theorem of Calculus tells us that

 
  v  1   −  v  0   =   

 t  0  
  

 t  1  

  a dt .  (2.6.1)

The right side of the equation is a definite integral (it gives a numerical result 
rather than a function), v0 is the velocity at time t0, and v1 is the velocity at later 
time t1. The definite integral can be evaluated from an a(t) graph, such as in 
Fig. 2.6.1a. In particular,

 
   

 t  0  
  

 t  1  

  a dt  =   (   
area between acceleration curve

    
and time axis, from   t  0    to   t  1  

   )   .  (2.6.2)

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the cor-
responding unit of area on the graph is

(1 m/s2)(1 s) = 1 m/s,

which is (properly) a unit of velocity. When the acceleration curve is above 
the time axis, the area is positive; when the curve is below the time axis, the 
area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of 
the position x as v = dx/dt, then

 
  x  1   −  x  0   =   

 t  0  
  

 t  1  

  v dt ,  (2.6.3)

where x0 is the position at time t0 and x1 is the position at time t1. The 
definite  integral on the right side of Eq. 2.6.3 can be evaluated from a v(t) 
graph, like that shown in Fig. 2.6.1b. In particular,

 
    

 t  0  
  

 t  1  

  v dt  =   (   
area between velocity curve

   
and time axis, from   t  0    to   t  1  

   )   .   (2.6.4)

Figure 2.6.1 The area between a  plotted 
curve and the horizontal time axis, from 
time t0 to time t1, is indicated for (a) a graph 
of acceleration a versus t and (b) a graph of 
 velocity v versus t.

a

t0
t

t1

Area

(a)

v

t0
t

t1

Area

(b)

This area gives the

change in velocity.

This area gives the

change in position.
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