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Objectives

A primary objective in a first course in mechanics is to help develop a stu-

dent’s ability first to analyze problems in a simple and logical manner, and 

then to apply basic principles to its solution. A strong conceptual understand-

ing of these basic mechanics principles is essential for successfully solving 

mechanics problems. We hope that this text, as well as the proceeding vol-

ume, Vector Mechanics for Engineers: Dynamics, will help instructors achieve 

these goals.†

General Approach

Vector analysis is introduced early in the text and is used in the presentation 

and discussion of the fundamental principles of mechanics. Vector methods 

are also used to solve many problems, particularly three-dimensional problems 

where these techniques result in a simpler and more concise solution. The 

emphasis in this text, however, remains on the correct understanding of the 

principles of mechanics and on their application to the solution of engineering 

problems, and vector analysis is presented chiefly as a convenient tool.‡

Practical Applications Are Introduced Early. One of the characteris-

tics of the approach used in this book is that mechanics of particles is clearly 

separated from the mechanics of rigid bodies. This approach makes it possible 

to consider simple practical applications at an early stage and to postpone the 

introduction of the more difficult concepts. For example:

∙ In Statics, statics of particles is treated first (Chap. 2); after the rules of 

addition and subtraction of vectors are introduced, the principle of equi-

librium of a particle is immediately applied to practical situations involv-

ing only concurrent forces. The statics of rigid bodies is considered in 

Chaps. 3 and 4. In Chap. 3, the vector and scalar products of two vectors 

are introduced and used to define the moment of a force about a point and 

about an axis. The presentation of these new concepts is followed by a 

thorough and rigorous discussion of equivalent systems of forces leading, 

in Chap. 4, to many practical applications involving the equilibrium of 

rigid bodies under general force systems.

∙ In Dynamics, the same division is observed. The basic concepts of force, 

mass, and acceleration, of work and energy, and of impulse and momen-

tum are introduced and first applied to problems involving only particles. 

Thus, students can familiarize themselves with the three basic methods 

used in dynamics and learn their respective advantages before facing the 

difficulties associated with the motion of rigid bodies.

Preface

†Both texts also are available in a single volume, Vector Mechanics for Engineers: Statics 

and Dynamics, eleventh edition.
‡In a parallel text, Mechanics for Engineers: Statics, fifth edition, the use of vector algebra 

is limited to the addition and subtraction of vectors.

2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 

discuss how to add forces by using their components, especially rectangular 

components. This method is often the most convenient way to add forces and, 

in practice, is the most common approach. (Note that we can readily extend the 

properties of vectors established in this section to the rectangular components 

of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components 
of a Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that are 

perpendicular to each other. Figure 2.14 shows a force F resolved into a compo-

nent Fx along the x axis and a component Fy along the y axis. The parallelogram 

drawn to obtain the two components is a rectangle, and Fx and Fy are called 

rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, respec-

tively, as in Fig. 2.14; they may, however, be chosen in any two perpendicular 

directions, as shown in Fig. 2.15. In determining the rectangular components of 

a force, you should think of the construction lines shown in Figs. 2.14 and 2.15 

as being parallel to the x and y axes, rather than perpendicular to these axes. 

This practice will help avoid mistakes in determining oblique components, as 

in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rectangular 

components, we introduce two vectors of unit magnitude, directed respectively 

along the positive x and y axes. These vectors are called unit vectors and are 

denoted by i and j, respectively (Fig. 2.16). Recalling the definition of the prod-

uct of a scalar and a vector given in Sec. 2.1C, note that we can obtain the rect-

angular components Fx and Fy of a force F by multiplying respectively the unit 

vectors i and j by appropriate scalars (Fig. 2.17). We have

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

Fig. 2.14 Rectangular components of a 

force F.
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Fig. 2.15 Rectangular components of a 
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and vertical.
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Fig. 2.16 Unit vectors along the x and y 

axes.

x

y

Magnitude = 1j

i



Preface ix

New Concepts Are Introduced in Simple Terms. Since this text is 

designed for the first course in statics, new concepts are presented in simple 

terms and every step is explained in detail. On the other hand, by discussing the 

broader aspects of the problems considered, and by stressing methods of gen-

eral applicability, a definite maturity of approach is achieved. For example, the 

concepts of partial constraints and statical indeterminacy are introduced early 

and are used throughout.

Fundamental Principles Are Placed in the Context of Simple 
Applications. The fact that mechanics is essentially a deductive science 

based on a few fundamental principles is stressed. Derivations have been pre-

sented in their logical sequence and with all the rigor warranted at this level. 

However, the learning process being largely inductive, simple applications are 

considered first. For example:

∙ The statics of particles precedes the statics of rigid bodies, and problems 

involving internal forces are postponed until Chap. 6.

∙ In Chap. 4, equilibrium problems involving only coplanar forces are con-

sidered first and solved by ordinary algebra, while problems involving 

three-dimensional forces and requiring the full use of vector algebra are 

discussed in the second part of the chapter.

Systematic Problem-Solving Approach. All the sample problems are 

solved using the steps of Strategy, Modeling, Analysis, and Reflect & Think, or 

the “SMART” approach. This methodology is intended to give students confi-

dence when approaching new problems, and students are encouraged to apply 

this approach in the solution of all assigned problems.

Free-Body Diagrams Are Used Both to Solve Equilibrium Problems 
and to Express the Equivalence of Force Systems. Free-body dia-

grams are introduced early, and their importance is emphasized throughout the 

text. They are used not only to solve equilibrium problems but also to express 

the equivalence of two systems of forces or, more generally, of two systems of 

vectors. The advantage of this approach becomes apparent in the study of the 

dynamics of rigid bodies, where it is used to solve three-dimensional as well 

as two-dimensional problems. By placing the emphasis on “free-body-diagram 

equations” rather than on the standard algebraic equations of motion, a more 

intuitive and more complete understanding of the fundamental principles of 

dynamics can be achieved. This approach, which was first introduced in 1962 

in the first edition of Vector Mechanics for Engineers, has now gained wide 

acceptance among mechanics teachers in this country. It is, therefore, used 

in preference to the method of dynamic equilibrium and to the equations of 

motion in the solution of all sample problems in this book.

A Four-Color Presentation Uses Color to Distinguish 
Vectors. Color has been used, not only to enhance the quality of the illustra-

tions, but also to help students distinguish among the various types of vectors 

they will encounter. While there was no intention to “color code” this text, the 

same color is used in any given chapter to represent vectors of the same type. 

Throughout Statics, for example, red is used exclusively to represent forces and 

couples, while position vectors are shown in blue and dimensions in black. This 

makes it easier for the students to identify the forces acting on a given par-

ticle or rigid body and to follow the discussion of sample problems and other 

examples given in the text.

17.1  ENERGY METHODS FOR  
A RIGID BODY

We now use the principle of work and energy to analyze the plane motion of 

rigid bodies. As we pointed out in Chap. 13, the method of work and energy is 

particularly well-adapted to solving problems involving velocities and displace-

ments. Its main advantage is that the work of forces and the kinetic energy of 

objects are scalar quantities.

17.1A Principle of Work and Energy

To apply the principle of work and energy to the motion of a rigid body, we 

again assume that the rigid body is made up of a large number n of particles of 

mass Δmi. From Eq. (14.30) of Sec. 14.2B, we have

Principle of work  

and energy, rigid body

   T  1   +  U  1→2   =  T  2    (17.1)

where T1, T2 =  the initial and final values of total kinetic energy of particles 

forming the rigid body 

   U1→2 = work of all forces acting on various particles of the body
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A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained. Because of the current trend in the American 

government and industry to adopt the international system of units (SI metric 

units), the SI units most frequently used in mechanics are introduced in Chap. 

1 and are used throughout the text. Approximately half of the sample problems 

and 60 percent of the homework problems are stated in these units, while the 

remainder are in U.S. customary units. The authors believe that this approach 

will best serve the need of students, who, as engineers, will have to be conver-

sant with both systems of units.

It also should be recognized that using both SI and U.S. customary units 

entails more than the use of conversion factors. Since the SI system of units 

is an absolute system based on the units of time, length, and mass, whereas 

the U.S. customary system is a gravitational system based on the units of time, 

length, and force, different approaches are required for the solution of many 

problems. For example, when SI units are used, a body is generally specified 

by its mass expressed in kilograms; in most problems of statics it will be 

necessary to determine the weight of the body in newtons, and an additional 

calculation will be required for this purpose. On the other hand, when U.S. 

customary units are used, a body is specified by its weight in pounds and, in 

dynamics problems, an additional calculation will be required to determine its 

mass in slugs (or lb•s2/ft). The authors, therefore, believe that problem assign-

ments should include both systems of units.

The Instructor’s and Solutions Manual provides six different lists of 

assignments so that an equal number of problems stated in SI units and in 

U.S. customary units can be selected. If so desired, two complete lists of 

assignments can also be selected with up to 75 percent of the problems stated 

in SI units.

Optional Sections Offer Advanced or Specialty Topics. A large 

number of optional sections have been included. These sections are indicated 

by asterisks and thus are easily distinguished from those which form the core 

of the basic statics course. They can be omitted without prejudice to the under-

standing of the rest of the text.

Among the topics covered in these additional sections are the reduction 

of a system of forces to a wrench, applications to hydrostatics, equilibrium of 

cables, products of inertia and Mohr’s circle, the determination of the principal 

axes and the mass moments of inertia of a body of arbitrary shape, and the 

method of virtual work. The sections on the inertia properties of three- 

dimensional bodies are primarily intended for students who will later study 

in dynamics the three-dimensional motion of rigid bodies.

The material presented in the text and most of the problems require no 

previous mathematical knowledge beyond algebra, trigonometry, and elemen-

tary calculus; all the elements of vector algebra necessary to the understanding 

of the text are carefully presented in Chaps. 2 and 3. In general, a greater 

emphasis is placed on the correct understanding of the basic mathematical 

concepts involved than on the nimble manipulation of mathematical formulas. 

In this connection, it should be mentioned that the determination of the cen-

troids of composite areas precedes the calculation of centroids by integration, 

thus making it possible to establish the concept of the moment of an area 

firmly before introducing the use of integration.

Sample Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces 

exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 

point A to the points of application of the various forces and resolve the 

forces into rectangular components. Then, sum the forces and moments.

MODELING and ANALYSIS: Note that FB = (700 N) λ BE,  

where

  λ BE   =   
  
⟶

 BE 
 ___ 

BE
   =   

75i − 150j + 50k
  _____________ 

175
   

Using meters and newtons, the position and force vectors are

   

 r B/A   =   
⟶

 AB  = 0.075i + 0.050k

  

  F B   = 300i − 600j + 200k

       r C/A   =   
⟶

 AC  = 0.075i − 0.050k    F C   = 707i − 707k     

 r D/A   =   
⟶

 AD  = 0.100i − 0.100j

  

  F D   = 600i + 1039j

   

The force-couple system at A equivalent to the given forces con-

sists of a force  R = ΣF  and a couple   M  A  
R  = Σ(r × F) . Obtain the force 

R by adding respectively the x, y, and z components of the forces:

 R = ΣF = (1607 N)i + (439 N)j − (507 N)k ◂ 

(continued)

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N

700 N

x

y

z

O

A
B

C

D

45°

45°

30°

60°

E(150 mm, –50 mm, 100 mm)

Remark: Because all the forces are contained in the plane of the figure, 

you would expect the sum of their moments to be perpendicular to that plane. 

Note that you could obtain the moment of each force component directly from 

the diagram by first forming the product of its magnitude and perpendicular 

distance to O and then assigning to this product a positive or a negative sign, 

depending upon the sense of the moment.

 b. Single Tugboat. The force exerted by a single tugboat must be equal to 

R, and its point of application A must be such that the moment of R about O is 

equal to   M  O  
R    (Fig. 3). Observing that the position vector of A is

 r = xi + 70j 

you have

   

r × R

  

=

  

 M  O  
R  

  

 

       (  xi + 70j )   ×  (  9.04i − 9.79j )     =  − 1035k       

 − x (  9.79 )  k − 633k 

  

=

  

− 1035k

  

 

  

REFLECT and THINK: Reducing the given situation to that of a single force 

makes it easier to visualize the overall effect of the tugboats in maneuvering the 

ocean liner. But in practical terms, having four boats applying force allows for 

greater control in slowing and turning a large ship in a crowded harbor.

 x = 41.1 ft ◂ 

Fig. 3 The point of application of 

a single tugboat to create the same 

effect as the given force system.

70 ft

x

9.04 i

–9.79 jR

A

O
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Chapter Introduction. Each chapter begins with a list of learning objec-

tives and an outline that previews chapter topics. An introductory section 

describes the material to be covered in simple terms, and how it will be applied 

to the solution of engineering problems.

Chapter Lessons. The body of the text is divided into sections, each con-

sisting of one or more sub-sections, several sample problems, and a large num-

ber of end-of-section problems for students to solve. Each section corresponds 

to a well-defined topic and generally can be covered in one lesson. In a number 

of cases, however, the instructor will find it desirable to devote more than one 

lesson to a given topic. The Instructor’s and Solutions Manual contains sugges-

tions on the coverage of each lesson.

Concept Applications. Concept Applications are used within selected 

theory sections to amplify certain topics, and they are designed to reinforce the 

specific material being presented and facilitate its understanding.

Sample Problems. The Sample Problems are set up in much the same 

form that students will use when solving assigned problems, and they employ 

the SMART problem-solving methodology that students are encouraged to use 

in the solution of their assigned problems. They thus serve the double purpose 

of amplifying the text and demonstrating the type of neat and orderly work 

that students should cultivate in their own solutions. In addition, in-problem 

references and captions have been added to the sample problem figures for 

contextual linkage to the step-by-step solution. In the digital version, many 

Sample Problems now have simulations to help students visualize the problem. 

Enhanced digital content is indicated by a  within the text.

 Case Studies. Statics principles are used extensively in engineering 

applications, particularly for design and for analysis of engineering failures. 

Much can be learned from the historical successes and failures of past designs, 

and unique insight can be gained by studying how engineers developed dif-

ferent products and structures. To this end, real-world Case Studies have 

been introduced in this text to provide relevancy and application to the prin-

ciples of engineering mechanics being discussed. These are developed using 

the SMART problem-solving methodology to both present the story behind 

each Case Study, as well as to analyze some aspect of the situation. In some 

instances, these Case Studies are examined further in the accompanying digital 

content through Connect®. The digital content also provides additional cases 

that are developed in their entirety.

Solving Problems on Your Own. A section entitled Solving Problems 

on Your Own is included for each lesson, between the sample problems and 

the problems to be assigned. The purpose of these sections is to help students 

organize in their own minds the preceding theory of the text and the solution 

methods of the sample problems so that they can more successfully solve the 

Guided Tour

Sample Problem 4.10

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD that has 

been bent as shown. The pipe is supported by ball-and-socket joints A and D, 

which are fastened, respectively, to the floor and to a vertical wall, and by a 

cable attached at the midpoint E of the portion BC of the pipe and at a point G 

on the wall. Determine (a) where G should be located if the tension in the cable 

is to be minimum, (b) the corresponding minimum value of the tension.

STRATEGY: Draw the free-body diagram of the pipe showing the reac-

tions at A and D. Isolate the unknown tension T and the known weight W by 
 summing moments about the diagonal line AD, and compute values from the 

equilibrium equations.

MODELING and ANALYSIS:

Free-Body Diagram. The free-body diagram of the pipe includes the load 

W = (–450 lb)j, the reactions at A and D, and the force T exerted by the cable 

(Fig. 1). To eliminate the reactions at A and D from the computations, take the 

sum of the moments of the forces about the line AD and set it equal to zero. 

Denote the unit vector along AD by λ, which enables you to write

    ΣM  AD   = 0:  λ · (  
⟶

 AE  × T) + λ · (  
⟶

 AC  × W) = 0   (1)

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

Fig. 1 Free-body diagram of the pipe.

A

B C DE

x

y

z

T

λ

Dxi

Dy j

Dzk

A x i

A y j

A zk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

(continued)

CASE STUDY 1.1*

Located in Baltimore, Maryland, the Carrollton Viaduct is the oldest railroad 

bridge in North America and continues in revenue service today. Construction 

was completed and the bridge put into operation in 1829 by the Baltimore &  

Ohio Railroad. The structure includes the stone masonry arch shown in 

CS Photo 1.1, and spans 80 ft. Assuming that the span is solid granite having a 

unit weight of 170 lb/ft3, and that its dimensions can be approximated by those 

given in CS Fig. 1.1, let’s estimate the weight of this span.

*Adapted from American Railway Engineering Association, Bulletin 732, October 1991, p. 221.

CS Photo 1.1 The Carrollton Viaduct in Baltimore, MD.

AREA Bulletin 732 Volume 92 (October 1991)

(continued)

STRATEGY:

First calculate the volume of the span, and then multiply this volume by the unit 

weight.
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homework problems. Also included in these sections are spe-

cific suggestions and strategies that will enable the students to 

more efficiently attack any assigned problems.

Homework Problem Sets. Most of the problems are of a 

practical nature and should appeal to engineering students. They 

are primarily designed, however, to illustrate the material pre-

sented in the text and to help students understand the principles 

of mechanics. The problems are grouped according to the por-

tions of material they illustrate and, in general, are arranged in 

order of increasing difficulty. Problems requiring special atten-

tion are indicated by asterisks. Answers to 70 percent of the 

problems are given at the end of the book. Problems for which 

the answers are given are set in straight type in the text, while 

problems for which no answer is given are set in italic and red 

font color.

Chapter Review and Summary. Each chapter ends with 

a review and summary of the material covered in that chapter. 

Marginal notes are used to help students organize their review 

work, and cross-references have been included to help them find 

the portions of material requiring their special attention.

Review Problems. A set of review problems is included at 

the end of each chapter. These problems provide students further 

opportunity to apply the most important concepts introduced in 

the chapter.

Computer Problems. Accessible through Connect are 

problem sets for each chapter that are designed to be solved with 

computational software. Many of these problems are relevant to 

the design process; they may involve the analysis of a structure 

for various configurations and loadings of the structure, or the 

determination of the equilibrium positions of a given mechanism 

that may require an iterative method of solution. Developing the 

algorithm required to solve a given mechanics problem will ben-

efit the students in two different ways: (1) it will help them gain 

a better understanding of the mechanics principles involved;  

(2) it will provide them with an opportunity to apply their com-

puter skills to the solution of a meaningful engineering problem.

 

Over 350 of the homework problems in the text are new 

or revised.

NEW!
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In this chapter, we have studied the effect of forces on particles, i.e., on bodies 

of such shape and size that we may assume all forces acting on them apply at 

the same point.

Resultant of Two Forces
Forces are vector quantities; they are characterized by a point of application, 

a magnitude, and a direction, and they add according to the parallelogram law 

(Fig. 2.30). We can determine the magnitude and direction of the resultant R 

of two forces P and Q either graphically or by trigonometry using the law of 

cosines and the law of sines (Sample Prob. 2.1).

Components of a Force
Any given force acting on a particle can be resolved into two or more compo-

nents, i.e., it can be replaced by two or more forces that have the same effect 

on the particle. A force F can be resolved into two components P and Q by 

drawing a parallelogram with F for its diagonal; the components P and Q are 

then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 

Again, we can determine the components either graphically or by trigonometry 

(Sec. 2.1E).

Review and Summary

Fig. 2.30

Q

R

P

A

Rectangular Components; Unit Vectors
A force F is resolved into two rectangular components if its components Fx and 

Fy are perpendicular to each other and are directed along the coordinate axes 

(Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, respec-

tively, we can write the components and the vector as (Sec. 2.2A)

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

where Fx and Fy are the scalar components of F. These components, which can 

be positive or negative, are defined by the relations

   F x   = F cos θ    F y   = F sin θ  (2.8)

Fig. 2.31

Q
F

P

A

Fig. 2.32
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Fx = Fx i
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80

 2.127 Two forces P and Q are applied to the lid of a storage bin as shown. 

Knowing that P = 48 N and Q = 60 N, determine by trigonometry the 

magnitude and direction of the resultant of the two forces.

 2.128 Determine the x and y components of each of the forces shown.

Review Problems

 2.129 A hoist trolley is subjected to the three forces shown. Knowing that  

α = 40° , determine (a) the required magnitude of the force P if the 

resultant of the three forces is to be vertical, (b) the corresponding 

magnitude of the resultant.

 2.130 Knowing that  α = 55°  and that boom AC exerts on pin C a force 

directed along line AC, determine (a) the magnitude of that force,  

(b) the tension in cable BC.

Fig. P2.127
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Connect® is a highly reliable, easy-to-use home-

work and learning management solution that 

embeds learning science and award-winning adap-

tive tools to improve student results.

Analytics Connect Insight is Connect’s one-

of-a-kind visual analytics dashboard. Now avail-

able for both instructors and students, it provides 

at-a-glance information regarding student performance, which is immediately 

actionable. By presenting assignment, assessment, and topical performance 

results together with a time metric that is easily visible for aggregate or indi-

vidual results, Connect InSight gives the user the ability to take a just-in-time 

approach to teaching and learning, which was never before available. Connect 

Insight presents data that empower students and help instructors improve class 

performance in a way that is efficient and effective.

Autograded Free-Body Diagram Problems

∙ Within Connect, algorithmic end-of-chapter problems include our new 

Free-Body Diagram Drawing tool. The Free-Body Diagram Tool allows 

students to draw free-body diagrams that are auto graded by the system. Stu-

dent’s receive immediate feedback on their diagrams to help student’s solid-

ify their understanding of the physical situation presented in the problem.

Case Study Interactives

 New digital content has been added throughout the text to enhance student 

learning. This includes a more in-depth discussion of the new Case Studies, 

as well as interactive questions embedded in these video explorations to make 

students think about the problem rather than just viewing the video. Within 

the text, simulations and short videos have been added to help students visual-

ize topics, such as zero-force members and the motion of different linkages.

Find the following instructor resources available through Connect:

∙ Instructor’s and Solutions Manual. The Instructor’s and Solutions 

Manual that accompanies the eleventh edition features solutions to all 

end of chapter problems. This manual also features a number of tables 

designed to assist instructors in creating a schedule of assignments for 

their course. The various topics covered in the text have been listed in 

Table I and a suggested number of periods to be spent on each topic has 

been indicated. Table II prepares a brief description of all groups of prob-

lems and a classification of the problems in each group according to the 

units used. Sample lesson schedules are shown in Tables III, IV, and V, 

together with various alternative lists of assigned homework problems.

∙ Lecture PowerPoint Slides for each chapter that can be modified. These 

generally have an introductory application slide, animated worked-out 

problems that you can do in class with your students, concept questions, 

and “what-if?” questions at the end of the units.

Digital Resources

NEW!



∙ Textbook images

∙ Computer Problem sets for each chapter that are designed to be solved 

with computational software.

∙ C.O.S.M.O.S., the Complete Online Solutions Manual Organization Sys-

tem that allows instructors to create custom homework, quizzes, and tests 

using end-of-chapter problems from the text.

xiv Digital Resources

SmartBook helps students study 

more efficiently by highlighting 

where in the chapter to focus, asking review questions and pointing them to 

resources until they understand.
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xvi

 a Constant; radius; distance

 A, B, C, . . . Reactions at supports and connections

 A, B, C, . . . Points

 A Area

 b Width; distance

 c Constant

 C Centroid

 d Distance

 e Base of natural logarithms

 F Force; friction force

 g Acceleration of gravity

 G Center of gravity; constant of gravitation

 h Height; sag of cable

 i, j, k Unit vectors along coordinate axes

 I, Ix, . . . Moments of inertia

    I ̄    Centroidal moment of inertia

 Ixy, . . . Products of inertia

 J Polar moment of inertia

 k Spring constant

 kx, ky, kO Radii of gyration

    k ¯    Centroidal radius of gyration

 l Length

 L Length; span

 m Mass

 M Couple; moment

 MO Moment about point O

   M  O  
R
   Moment resultant about point O

 M Magnitude of couple or moment; mass of 

earth

 MOL Moment about axis OL

 N Normal component of reaction

 O Origin of coordinates

 p Pressure

 P Force; vector

 Q Force; vector

 r Position vector

 r Radius; distance; polar coordinate

 R Resultant force; resultant vector; reaction

 R Radius of earth

 s Position vector

 s Length of arc; length of cable

 S Force; vector

 t Thickness

 T Force

 T Tension

 U Work

 V Vector product; shearing force

 V Volume; potential energy; shear

 w Load per unit length

 W, W Weight; load

 x, y, z Rectangular coordinates; distances

   x ̄  ,   y ¯  ,   z ̄    Rectangular coordinates of centroid or  

center of gravity

 α, β, γ Angles

 γ Specific weight

 δ Elongation

 δr Virtual displacement

 δU Virtual work

 λ Unit vector along a line

 η Efficiency

 θ Angular coordinate; angle; polar 

coordinate

 μ Coefficient of friction

 ρ Density

 ϕ Angle of friction; angle

List of Symbols
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1
The tallest skyscraper in the Western Hemisphere, One World Trade 

Center is a prominent feature of the New York City skyline. From its 

foundation to its structural components and mechanical systems, the 

design and operation of the tower is based on the fundamentals of 

engineering mechanics.

Introduction



2 Introduction

1.1 WHAT IS MECHANICS?
Mechanics is defined as the science that describes and predicts the conditions 

of rest or motion of bodies under the action of forces. It consists of the mechan-

ics of rigid bodies, mechanics of deformable bodies, and mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics.  

Statics deals with bodies at rest; dynamics deals with bodies in motion. In 

this text, we assume bodies are perfectly rigid. In fact, actual structures and 

machines are never absolutely rigid; they deform under the loads to which they 

are subjected. However, because these deformations are usually small, they do 

not appreciably affect the conditions of equilibrium or the motion of the struc-

ture under consideration. They are important, though, as far as the resistance 

of the structure to failure is concerned. Deformations are studied in a course in 

mechanics of materials, which is part of the mechanics of deformable bodies. 

The third division of mechanics, the mechanics of fluids, is subdivided into the 

study of incompressible fluids and of compressible fluids. An important sub-

division of the study of incompressible fluids is hydraulics, which deals with 

applications involving water.

Mechanics is a physical science, because it deals with the study of physi-

cal phenomena. However, some teachers associate mechanics with mathemat-

ics, whereas many others consider it as an engineering subject. Both of these 

views are justified in part. Mechanics is the foundation of most engineering 

sciences and is an indispensable prerequisite to their study. However, it does 

not have the empiricism found in some engineering sciences, i.e., it does not 

rely on experience or observation alone. The rigor of mechanics and the empha-

sis it places on deductive reasoning makes it resemble mathematics. However, 

mechanics is not an abstract or even a pure science; it is an applied science.

The purpose of mechanics is to explain and predict physical phenomena 

and thus to lay the foundations for engineering applications. You need to know 

statics to determine how much force will be exerted on a point in a bridge design 

and whether the structure can withstand that force. Determining the force a dam 

needs to withstand from the water in a river requires statics. You need statics 

to calculate how much weight a crane can lift, how much force a locomotive 

needs to pull a freight train, or how much force a circuit board in a computer 

can withstand. The concepts of dynamics enable you to analyze the flight char-

acteristics of a jet, design a building to resist earthquakes, and mitigate shock 

and vibration to passengers inside a vehicle. The concepts of dynamics enable 

Introduction

 1.1 WHAT IS MECHANICS?

 1.2 FUNDAMENTAL 

CONCEPTS AND 

PRINCIPLES

 1.3 SYSTEMS OF UNITS

 1.4 CONVERTING BETWEEN 

TWO SYSTEMS OF UNITS

 1.5 METHOD OF SOLVING 

PROBLEMS

 1.6 NUMERICAL ACCURACY

Objectives
 • Define the science of mechanics and examine its fundamen-

tal principles.

 • Discuss and compare the International System of Units  

and U.S. customary units.

 • Discuss how to approach the solution of mechanics 

problems, and introduce the SMART problem-solving 

methodology.

 • Examine factors that govern numerical accuracy in the  

solution of a mechanics problem.
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you to calculate how much force you need to send a satellite into orbit, acceler-

ate a 200,000-ton cruise ship, or design a toy truck that doesn’t break. You will 

not learn how to do these things in this course, but the ideas and methods you 

learn here will be the underlying basis for the engineering applications you will 

learn in your work.

1.2  FUNDAMENTAL CONCEPTS 
AND PRINCIPLES

Although the study of mechanics goes back to the time of Aristotle (384–322 B.C.)  

and Archimedes (287–212 B.C.), not until Newton (1642–1727) did anyone 

develop a satisfactory formulation of its fundamental principles. These prin-

ciples were later modified by d’Alembert, Lagrange, and Hamilton. Their 

validity remained unchallenged until Einstein formulated his theory of  

relativity (1905). Although its limitations have now been recognized, newtonian  

mechanics still remains the basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and force. 

These concepts cannot be truly defined; they should be accepted on the basis 

of our intuition and experience and used as a mental frame of reference for our 

study of mechanics.

The concept of space is associated with the position of a point P. We can 

define the position of P by providing three lengths measured from a certain 

reference point, or origin, in three given directions. These lengths are known as 

the coordinates of P.

To define an event, it is insufficient to indicate its position in space. We 

also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies on the 

basis of certain fundamental mechanical experiments. Two bodies of the same 

mass, for example, are attracted by the earth in the same manner; they also offer 

the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can be 

exerted by actual contact, like a push or a pull, or at a distance, as in the case 

of gravitational or magnetic forces. A force is characterized by its point of 

application, its magnitude, and its direction; a force is represented by a vector  

(Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute concepts 

that are independent of each other. (This is not true in relativistic mechanics, 

where the duration of an event depends upon its position and the mass of a body 

varies with its velocity.) On the other hand, the concept of force is not indepen-

dent of the other three. Indeed, one of the fundamental principles of newtonian 

mechanics listed below is that the resultant force acting on a body is related to 

the mass of the body and to the manner in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of particles 

and rigid bodies in terms of the four basic concepts we have introduced. By 

particle, we mean a very small amount of matter, which we assume occupies a 

single point in space. A rigid body consists of a large number of particles occu-

pying fixed positions with respect to one another. The study of the mechanics of 

particles is therefore a prerequisite to that of rigid bodies. Besides, we can use 

the results obtained for a particle directly in a large number of problems dealing 

with the conditions of rest or motion of actual bodies.

The study of elementary mechanics rests on six fundamental principles, 

based on experimental evidence.
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 ∙ The Parallelogram Law for the Addition of Forces. Two forces acting 

on a particle may be replaced by a single force, called their resultant, 

obtained by drawing the diagonal of the parallelogram with sides equal to 

the given forces (Sec. 2.1A).

 ∙ The Principle of Transmissibility. The conditions of equilibrium or of 

motion of a rigid body remain unchanged if a force acting at a given point 

of the rigid body is replaced by a force of the same magnitude and same 

direction, but acting at a different point, provided that the two forces have 

the same line of action (Sec. 3.1B).

 ∙ Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton in 

the late seventeenth century, these laws can be stated as follows:

  FIRST LAW. If the resultant force acting on a particle is zero, the par-

ticle remains at rest (if originally at rest) or moves with constant speed in 

a straight line (if originally in motion) (Sec. 2.3B).

  SECOND LAW. If the resultant force acting on a particle is not zero, the 

particle has an acceleration proportional to the magnitude of the resultant 

and in the direction of this resultant force.

  As you will see in Sec. 12.1, this law can be stated as

  F = ma  (1.1)

  where F, m, and a represent, respectively, the resultant force acting on 

the particle, the mass of the particle, and the acceleration of the particle 

expressed in a consistent system of units.

  THIRD LAW. The forces of action and reaction between bodies in con-

tact have the same magnitude, same line of action, and opposite sense 

(Chap. 6, Introduction).

 ∙ Newton’s Law of Gravitation. Two particles of mass M and m are mutu-

ally attracted with equal and opposite forces F and –F of magnitude F 

(Fig. 1.1), given by the formula

  F = G   
Mm

 ____ 
 r  2 

    (1.2)

  where r = the distance between the two particles and G = a universal con-

stant called the constant of gravitation. Newton’s law of gravitation intro-

duces the idea of an action exerted at a distance and extends the range  

of application of Newton’s third law: the action F and the reaction –F in 

Fig. 1.1 are equal and opposite, and they have the same line of action.

A particular case of great importance is that of the attraction of the earth 

on a particle located on its surface. The force F exerted by the earth on the par-

ticle is defined as the weight W of the particle. Suppose we set M equal to the 

mass of the earth, m equal to the mass of the particle, and r equal to the earth’s 

radius R. Then, introducing the constant

  g =   
GM

 ____ 
 R  2 

    (1.3)

we can express the magnitude W of the weight of a particle of mass m as†

  W = mg  (1.4)

The value of R in formula (1.3) depends upon the elevation of the point consid-

ered; it also depends upon its latitude, because the earth is not truly spherical.  

The value of g therefore varies with the position of the point considered. 

†A more accurate definition of the weight W should take into account the earth’s rotation.

Fig. 1.1 From Newton’s law of gravitation, 

two particles of masses M and m exert 

forces upon each other of equal magnitude, 

opposite direction, and the same line of 

action. This also illustrates Newton’s third 

law of motion.

M

–F

F

m

r
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However, as long as the point actually remains on the earth’s surface, it is suf-

ficiently accurate in most engineering computations to assume that g equals 

9.81 m/s2 or 32.2 ft/s2.

The principles we have just listed will be introduced in the course of our 

study of mechanics as they are needed. The statics of particles carried out in 

Chap. 2 will be based on the parallelogram law of addition and on Newton’s 

first law alone. We introduce the principle of transmissibility in Chap. 3 as we 

begin the study of the statics of rigid bodies, and we bring in Newton’s third 

law in Chap. 6 as we analyze the forces exerted on each other by the various 

members forming a structure. We introduce Newton’s second law and Newton’s 

law of gravitation in dynamics. We will then show that Newton’s first law is 

a particular case of Newton’s second law (Sec. 12.1) and that the principle of 

transmissibility could be derived from the other principles and thus eliminated 

(Sec. 16.1D). In the meantime, however, Newton’s first and third laws, the par-

allelogram law of addition, and the principle of transmissibility will provide us 

with the necessary and sufficient foundation for the entire study of the statics of 

particles, rigid bodies, and systems of rigid bodies.

As noted earlier, the six fundamental principles listed previously are 

based on experimental evidence. Except for Newton’s first law and the principle 

of transmissibility, they are independent principles that cannot be derived math-

ematically from each other or from any other elementary physical principle. 

On these principles rests most of the intricate structure of newtonian mechan-

ics. For more than two centuries, engineers have solved a tremendous number 

of problems dealing with the conditions of rest and motion of rigid bodies, 

deformable bodies, and fluids by applying these fundamental principles. Many 

of the solutions obtained could be checked experimentally, thus providing a 

further verification of the principles from which they were derived. Only in 

the twentieth century has Newton’s mechanics been found to be at fault, in the 

study of the motion of atoms and the motion of the planets, where it must be 

supplemented by the theory of relativity. On the human or engineering scale, 

however, where velocities are small compared with the speed of light, Newton’s 

mechanics have yet to be disproved.

1.3 SYSTEMS OF UNITS
Associated with the four fundamental concepts just discussed are the so-called 

kinetic units, i.e., the units of length, time, mass, and force. These units cannot 

be chosen independently if Eq. (1.1) is to be satisfied. Three of the units may be 

defined arbitrarily; we refer to them as basic units. The fourth unit, however, 

must be chosen in accordance with Eq. (1.1) and is referred to as a derived 

unit. Kinetic units selected in this way are said to form a consistent system  

of units.

International System of Units (SI Units).† In this system, which will 

be in universal use after the United States has completed its conversion to SI 

units, the base units are the units of length, mass, and time, and they are called, 

respectively, the meter (m), the kilogram (kg), and the second (s). All three 

are arbitrarily defined. The second was originally chosen to represent 1/86 400 

of the mean solar day, but it is now defined as the duration of 9 192 631 770 

cycles of the radiation corresponding to the transition between two levels of the 

fundamental state of the cesium-133 atom. The meter, originally defined as one 

†SI stands for Système International d’Unités (French).

Photo 1.1 When in orbit of the earth, 

people and objects are said to be 

weightless, even though the gravitational 

force acting is approximately 90% of that 

experienced on the surface of the earth.  

This apparent contradiction will be resolved 

in Chapter 12 when we apply Newton’s 

second law to the motion of particles.

Source: NASA



6 Introduction

ten-millionth of the distance from the equator to either pole, is now defined as  

1 650 763.73 wavelengths of the orange-red light corresponding to a certain 

transition in an atom of krypton-86. (The newer definitions are much more pre-

cise, and with today’s modern instrumentation, are easier to verify as a stan-

dard.) The kilogram, which is approximately equal to the mass of 0.001  m3 

of water, is defined as the mass of a platinum-iridium standard kept at the 

International Bureau of Weights and Measures at Sèvres, near Paris, France. 

The unit of force is a derived unit. It is called the newton (N) and is defined as 

the force that gives an acceleration of 1 m/s2 to a body of mass 1 kg (Fig. 1.2). 

From Eq. (1.1), we have

  1 N = (1 kg)(1  m/s  2 ) = 1 kg· m/s  2   (1.5)

The SI units are said to form an absolute system of units. This means that the 

three base units chosen are independent of the location where measurements 

are made. The meter, the kilogram, and the second may be used anywhere on 

the earth; they may even be used on another planet and still have the same 

significance.

The weight of a body, or the force of gravity exerted on that body, like any 

other force, should be expressed in newtons. From Eq. (1.4), it follows that the 

weight of a body of mass 1 kg (Fig. 1.3) is

   

W

  

=

  

mg

     =  (1 kg)(9.81  m/s  2 )   

 

  

=

  

9.81 N

    

Multiples and submultiples of the fundamental SI units are denoted 

through the use of the prefixes defined in Table 1.1. The multiples and submul-

tiples of the units of length, mass, and force most frequently used in engineering 

are, respectively, the kilometer (km) and the millimeter (mm); the megagram‡ 

(Mg) and the gram (g); and the kilonewton (kN). According to Table 1.1,  

we have

    

1 km

  

=

  

1000 m

  

1 mm

  

=

  

0.001 m

    1 Mg  =  1000 kg  1 g  =  0.001 kg    

1 kN

  

=

  

1000 N

  

 

  

 

  

 

    

The conversion of these units into meters, kilograms, and newtons, respectively, 

can be effected by simply moving the decimal point three places to the right or 

to the left. For example, to convert 3.82 km into meters, move the decimal point 

three places to the right:

   3.82 km  =  3820 m   

Similarly, to convert 47.2 mm into meters, move the decimal point three places 

to the left:

   47.2 mm  =  0.0472 m   

Using engineering notation, you can also write

    
3.82 km

  
=

  
3.82 ×  10  3   m

    
47.2 mm

  
=

  
47.2 ×  10  w−3   m

   

The multiples of the unit of time are the minute (min) and the hour (h). 

Because 1 min = 60 s and 1 h = 60 min = 3600 s, these multiples cannot be 

converted as readily as the others.

‡Also known as a metric ton.

Fig. 1.2 A force of 1 newton applied to a 

body of mass 1 kg provides an acceleration 

of 1 m/s2.

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.3 A body of mass 1 kg experiencing 

an acceleration due to gravity of 9.81 m/s2 

has a weight of 9.81 N.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N
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By using the appropriate multiple or submultiple of a given unit, you can 

avoid writing very large or very small numbers. For example, it is usually simpler 

to write 427.2 km rather than 427 200 m and 2.16 mm rather than 0.002 16 m.†

Units of Area and Volume. The unit of area is the square meter (m2), 

which represents the area of a square of side 1 m; the unit of volume is the cubic 

meter (m3), which is equal to the volume of a cube of side 1 m. In order to avoid 

exceedingly small or large numerical values when computing areas and vol-

umes, we use systems of subunits obtained by respectively squaring and cubing 

not only the millimeter, but also two intermediate submultiples of the meter: the 

decimeter (dm) and the centimeter (cm). By definition,

    
1 dm

  
=

  
 0.1      m =  10  −1   m

   1 cm  =  0.01 m =  10  −2   m   

1 mm

  

=

  

0.001 m =  10  −3   m

   

Therefore, the submultiples of the unit of area are

    

1   dm  2 

  

=

  

(1 dm  )  2  = (  10  −1   m  )  2  =  10  −2     m  2 

     1   cm  2   =  (1 cm  )  2  = (  10  −2   m  )  2  =  10  −4     m  2      

1   mm  2 

  

=

  

(1 mm  )  2  = (  10  −3   m  )  2  =  10  −6     m  2 

   

Similarly, the submultiples of the unit of volume are

    

1   dm  3 

  

=

  

(1 dm  )  3  = (  10  −1   m  )  3  =  10  −3     m  3 

     1   cm  3   =  (1 cm  )  3  = (  10  −2   m  )  3  =  10  −6     m  3      

1   mm  3 

  

=

  

(1 mm  )  3  = (  10  −3   m  )  3  =  10  −9     m  3 

   

Note that when measuring the volume of a liquid, the cubic decimeter (dm3) is 

usually referred to as a liter (L).

†Note that when more than four digits appear on either side of the decimal point to express a 

quantity in SI units—as in 427 000 m or 0.002 16 m—use spaces, never commas, to separate 

the digits into groups of three. This practice avoids confusion with the comma used in place of 

a decimal point, which is the convention in many countries.

Multiplication Factor Prefix† Symbol

1 000 000 000 000 = 1012 Tera T

1 000 000 000 = 109 Giga G

1 000 000 = 106 Mega M

1 000 = 103 Kilo k

100 = 102 Hecto‡ h

10 = 101 Deka‡ da

0.1 = 10–1 Deci‡ d

0.01 = 10–2 Centi‡ c

0.001 = 10–3 Milli m

0.000 001 = 10–6 Micro μ

0.000 000 001 = 10–9 Nano n

0.000 000 000 001 = 10–12 Pico p

0.000 000 000 000 001 = 10–15 Femto f

0.000 000 000 000 000 001 = 10–18 Atto a

†The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the 

preferred pronunciation of kilometer places the accent on the first syllable, not the second.
‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 

and for the nontechnical use of centimeter, as for body and clothing measurements.

Table 1.1 SI Prefixes
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Table 1.2 shows other derived SI units used to measure the moment of a 

force, the work of a force, etc. Although we will introduce these units in later 

chapters as they are needed, we should note an important rule at this time: 

When a derived unit is obtained by dividing a base unit by another base unit, 

you may use a prefix in the numerator of the derived unit, but not in its denomi-

nator. For example, the constant k of a spring that stretches 20 mm under a load 

of 100 N is expressed as

  k =   
100 N

 ______ 
20 mm

   =   
100 N

 _______ 
0.020 m

   = 5000 N/m or k = 5 kN/m  

but never as k = 5 N/mm.

U.S. Customary Units. Most practicing American engineers still com-

monly use a system in which the base units are those of length, force, and time. 

These units are, respectively, the foot (ft), the pound (lb), and the second (s). 

The second is the same as the corresponding SI unit. The foot is defined as 

0.3048 m. The pound is defined as the weight of a platinum standard, called 

the standard pound, which is kept at the National Institute of Standards and 

Technology outside Washington, DC, the mass of which is 0.453 592 43 kg. 

Because the weight of a body depends upon the earth’s gravitational attraction, 

which varies with location, the standard pound should be placed at sea level and 

at a latitude of 45° to properly define a force of 1 lb. Thus, the U.S. customary 

units do not form an absolute system of units. Because they depend upon the 

gravitational attraction of the earth, they form a gravitational system of units.

Although the standard pound also serves as the unit of mass in commer-

cial transactions in the United States, it cannot be used that way in engineering 

Table 1.2 Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration Meter per second squared . . . m/s2

Angle Radian rad †

Angular acceleration Radian per second squared . . . rad/s2

Angular velocity Radian per second . . . rad/s

Area Square meter . . . m2

Density Kilogram per cubic meter . . . kg/m3

Energy Joule J N·m

Force Newton N kg·m/s2

Frequency Hertz Hz s–1

Impulse Newton-second . . . kg·m/s

Length Meter m ‡

Mass Kilogram kg ‡

Moment of a force Newton-meter . . . N·m

Power Watt W J/s

Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s ‡

Velocity Meter per second . . . m/s

Volume

 Solids Cubic meter . . . m3

 Liquids Liter L 10–3 m3

Work Joule J N·m

†Supplementary unit (1 revolution = 2π rad = 360°).
‡Base unit.
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computations, because such a unit would not be consistent with the base units 

defined in the preceding paragraph. Indeed, when acted upon by a force of  

1 lb—that is, when subjected to the force of gravity—the standard pound has 

the acceleration due to gravity, g = 32.2 ft/s2 (Fig. 1.4), not the unit acceleration 

required by Eq. (1.1). The unit of mass consistent with the foot, the pound, and 

the second is the mass that receives an acceleration of 1 ft/s2 when a force of  

1 lb is applied to it (Fig. 1.5). This unit, sometimes called a slug, can be derived 

from the equation F = ma after substituting 1 lb for F and 1 ft/s2 for a. We have

  F = ma  1 lb = (1 slug)(1 ft /  s  2 )  

This gives us

  1 slug =   
1 lb

 _____ 
1  ft/s  2 

   = 1 lb· s  2  / ft  (1.6)

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 times 

larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are character-

ized by their weight in pounds rather than by their mass in slugs is convenient in 

the study of statics, where we constantly deal with weights and other forces and 

only seldom deal directly with masses. However, in the study of dynamics, where 

forces, masses, and accelerations are involved, the mass m of a body is expressed 

in slugs when its weight W is given in pounds. Recalling Eq. (1.4), we write

  m =   
W

 ___ 
g
    (1.7)

where g is the acceleration due to gravity (g = 32.2 ft/s2).

Other U.S. customary units frequently encountered in engineering prob-

lems are the mile (mi), equal to 5280 ft; the inch (in.), equal to (1/12) ft; and 

the kilopound (kip), equal to 1000 lb. The ton is often used to represent a mass 

of 2000 lb but, like the pound, must be converted into slugs in engineering 

computations.

The conversion into feet, pounds, and seconds of quantities expressed 

in other U.S. customary units is generally more involved and requires greater 

attention than the corresponding operation in SI units. For example, suppose we 

are given the magnitude of a velocity v = 30 mi/h and want to convert it to ft/s. 

First we write

  v = 30   
mi

 ___ 
h
    

Because we want to get rid of the unit miles and introduce instead the unit feet, 

we should multiply the right-hand member of the equation by an expression con-

taining miles in the denominator and feet in the numerator. However, because 

we do not want to change the value of the right-hand side of the equation, the 

expression used should have a value equal to unity. The quotient (5280 ft)/ 

(1 mi) is such an expression. Operating in a similar way to transform the unit 

hour into seconds, we have

  v =    (30   
mi

 _ 
h
  )    (  

5280 ft
 _ 

1 mi
  )    (  

1 h
 _ 

3600 s
  )     

Carrying out the numerical computations and canceling out units that appear in 

both the numerator and the denominator, we obtain

  v = 44   
ft

 __ 
s
   = 44 ft/s  

Fig. 1.4 A body of 1 pound mass 

acted upon by a force of 1 pound has an 

acceleration of 32.2 ft/s2.

a = 32.2 ft /s2

m = 1 lb mass

F = 1 lb

Fig. 1.5 A force of 1 pound applied 

to a body of mass 1 slug produces an 

acceleration of 1 ft/s2.

a = 1 ft /s2

m = 1 slug

(= 1 lb ∙ s2/ft) 

F = 1 lb
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1.4  CONVERTING BETWEEN TWO 
SYSTEMS OF UNITS

In many situations, an engineer might need to convert into SI units a numerical 

result obtained in U.S. customary units or vice versa. Because the unit of time 

is the same in both systems, only two kinetic base units need to be converted. 

Thus, because all other kinetic units can be derived from these base units, only 

two conversion factors need to be remembered.

Units of Length. By definition, the U.S. customary unit of length is

  1 ft = 0.3048 m  (1.8)

It follows that

   1 mi = 5280 ft = 5280 (  0.3048 m )   = 1609 m   

or

  1 mi = 1.609 km  (1.9)

Also,

  1 in. =   
1
 ___ 

12
   ft =   

1
 ___ 

12
   (0.3048 m) = 0.0254 m  

or

  1 in. = 25.4 mm  (1.10)

Units of Force. Recall that the U.S. customary unit of force (pound) is 

defined as the weight of the standard pound (of mass 0.4536 kg) at sea level 

and at a latitude of 45° (where g = 9.807 m/s2). Then, using Eq. (1.4), we write

    
W

  
=

  
mg

  
1 lb

  
=

  
(0.4536 kg)(9.807   m/s  2  ) = 4.448 kg·  m/s  2 

   

From Eq. (1.5), this reduces to

  1 lb = 4.448 N  (1.11)

Units of Mass. The U.S. customary unit of mass (slug) is a derived unit. 

Thus, using Eqs. (1.6), (1.8), and (1.11), we have

  1 slug = 1 lb· s  2  / ft =   
1 lb

 _____ 
1  ft/s  2 

   =   
4.448 N

 __________ 
0.3048  m/s  2 

   = 14.59 N· s  2  / m  

Again, from Eq. (1.5),

  1 slug = 1 lb· s  2 /ft = 14.59 kg  (1.12)

Although it cannot be used as a consistent unit of mass, recall that the mass of 

the standard pound is, by definition,

  1 pound mass = 0.4536 kg  (1.13)

We can use this constant to determine the mass in SI units (kilograms) of a body 

that has been characterized by its weight in U.S. customary units (pounds).
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To convert a derived U.S. customary unit into SI units, simply multiply or divide 

by the appropriate conversion factors. For example, to convert the moment of 

a force that is measured as M = 47 lb·in. into SI units, use formulas (1.10) and 

(1.11) and write

   
M

  
=

  
47 lb·in. = 47(4.448 N)(25.4 mm)

    
 
  
=

  
5310 N·mm = 5.31 N·m

    

You can also use conversion factors to convert a numerical result obtained in 

SI units into U.S. customary units. For example, if the moment of a force is 

measured as M = 40 N·m, follow the procedure at the end of Sec. 1.3 to write

  M = 40 N·m =  (40 N·m) (     
1 lb
 _ 

4.448 N
   )   (     

1 ft
 _ 

0.3048 m
   )     

Carrying out the numerical computations and canceling out units that appear in 

both the numerator and the denominator, you obtain

  M = 29.5 lb·ft  

The U.S. customary units most frequently used in mechanics are listed in  

Table 1.3 with their SI equivalents.

1.5  METHOD OF SOLVING 
PROBLEMS

You should approach a problem in mechanics as you would approach an actual 

engineering situation. By drawing on your own experience and intuition about 

physical behavior, you will find it easier to understand and formulate the prob-

lem. Once you have clearly stated and understood the problem, however, there 

is no place in its solution for arbitrary methodologies.

The solution must be based on the six fundamental principles stated in 

Sec. 1.2 or on theorems derived from them.

Every step you take in the solution must be justified on this basis. Strict rules 

must be followed, which lead to the solution in an almost automatic fashion, 

leaving no room for your intuition or “feeling.” After you have obtained an 

answer, you should check it. Here again, you may call upon your common sense 

and personal experience. If you are not completely satisfied with the result, 

you should carefully check your formulation of the problem, the validity of the 

methods used for its solution, and the accuracy of your computations.

In general, you can usually solve problems in several different ways; there 

is no one approach that works best for everybody. However, we have found 

that students often find it helpful to have a general set of guidelines to use for 

framing problems and planning solutions. In the Sample Problems throughout 

this text, we use a four-step method for approaching problems, which we refer 

to as the SMART methodology: Strategy, Modeling, Analysis, and Reflect  

and Think.

 1. Strategy. The statement of a problem should be clear and precise, and it 

should contain the given data and indicate what information is required. 

The first step in solving the problem is to decide what concepts you have 

learned that apply to the given situation and to connect the data to the 

required information. It is often useful to work backward from the infor-

mation you are trying to find: Ask yourself what quantities you need to 

Photo 1.2 In 1999, The Mars Climate 

Orbiter entered orbit around Mars at too low 

an altitude and disintegrated. Investigation 

showed that the software on board the 

probe interpreted force instructions in 

newtons, but the software at mission 

control on the earth was generating those 

instructions in terms of pounds.

Source: NASA/JPL-Caltech
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Quantity U.S. Customary Unit SI Equivalent

Acceleration ft/s2 0.3048 m/s2

in./s2 0.0254 m/s2

Area ft2 0.0929 m2

in2 645.2 mm2

Energy ft·lb 1.356 J

Force kip 4.448 kN

lb 4.448 N

oz 0.2780 N

Impulse lb·s 4.448 N·s

Length ft 0.3048 m

in. 25.40 mm

mi 1.609 km

Mass oz mass 28.35 g

lb mass 0.4536 kg

slug 14.59 kg

ton 907.2 kg

Moment of a force lb·ft 1.356 N·m

lb·in. 0.1130 N·m

Moment of inertia

 Of an area in4 0.4162 × 106 mm4

 Of a mass lb·ft·s2 1.356 kg·m2

Momentum lb·s 4.448 kg·m/s

Power ft·lb/s 1.356 W

hp 745.7 W

Pressure or stress lb/ft2 47.88 Pa

lb/in2 (psi) 6.895 kPa

Velocity ft/s 0.3048 m/s

in./s 0.0254 m/s

mi/h (mph) 0.4470 m/s

mi/h (mph) 1.609 km/h

Volume ft3 0.02832 m3

in3 16.39 cm3

Liquids gal 3.785 L

qt 0.9464 L

Work ft·lb 1.356 J

Table 1.3 U.S. Customary Units and Their SI Equivalents

know to obtain the answer, and if some of these quantities are unknown, 

how can you find them from the given data.

 2. Modeling. The first step in modeling is to define the system; that is, 

clearly define what you are setting aside for analysis. After you have 

selected a system, draw a neat sketch showing all quantities involved, with 

a separate diagram for each body in the problem. For equilibrium prob-

lems, indicate clearly the forces acting on each body along with any rel-

evant geometrical data, such as lengths and angles. (These diagrams are 

known as free-body diagrams and are described in detail in Sec. 2.3C 

and the beginning of Chap. 4.)

 3. Analysis. After you have drawn the appropriate diagrams, use the fun-

damental principles of mechanics listed in Sec. 1.2 to write equations 

expressing the conditions of rest or motion of the bodies considered. 

Each equation should be clearly related to one of the free-body diagrams 

and should be numbered. If you do not have enough equations to solve 

for the unknowns, try selecting another system, or reexamine your strat-

egy to see if you can apply other principles to the problem. Once you 
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have obtained enough equations, you can find a numerical solution by 

following the usual rules of algebra, neatly recording each step and the 

intermediate results. Alternatively, you can solve the resulting equations 

with your calculator or a computer. (For multipart problems, it is some-

times convenient to present the Modeling and Analysis steps together, 

but they are both essential parts of the overall process.)

 4. Reflect and Think. After you have obtained the answer, check it care-

fully. Does it make sense in the context of the original problem? For 

instance, the problem may ask for the force at a given point of a structure. 

If your answer is negative, what does that mean for the force at the point?

You can often detect mistakes in reasoning by checking the units. For 

example, to determine the moment of a force of 50 N about a point 0.60 m from 

its line of action, we write (Sec. 3.3A)

   M = Fd =  (  30 N )   (  0.60 m )   = 30 N·m   

The unit N·m obtained by multiplying newtons by meters is the correct unit for 

the moment of a force; if you had obtained another unit, you would know that 

some mistake had been made.

You can often detect errors in computation by substituting the numerical 

answer into an equation that was not used in the solution and verifying that the 

equation is satisfied. The importance of correct computations in engineering 

cannot be overemphasized.

CASE STUDY 1.1*

Located in Baltimore, Maryland, the Carrollton Viaduct is the oldest railroad 

bridge in North America and continues in revenue service today. Construction 

was completed and the bridge put into operation in 1829 by the Baltimore &  

Ohio Railroad. The structure includes the stone masonry arch shown in 

CS Photo 1.1, and spans 80 ft. Assuming that the span is solid granite having a 

unit weight of 170 lb/ft3, and that its dimensions can be approximated by those 

given in CS Fig. 1.1, let’s estimate the weight of this span.

*Adapted from American Railway Engineering Association, Bulletin 732, October 1991, p. 221.

CS Photo 1.1 The Carrollton Viaduct in Baltimore, MD.

AREA Bulletin 732 Volume 92 (October 1991)

(continued)

STRATEGY:
First calculate the volume of the span, and then multiply this volume by the unit 

weight.
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CS Fig. 1.1 Assumed arch span geometry.

Parabola

40 ft 40 ft

15 ft

37 ft

26 ft

8 ft

Vertex

MODELING:
The span can be represented by a body where a parabolic portion has been 

removed from a rectangular portion as shown in CS Fig. 1.2 (with both parts 

having a depth of 26 ft).

CS Fig. 1.2 Modeling the arch span.

37 ft
45 ft

80 ft 80 ft

ANALYSIS:
Volume of the Span, V. Removing the parabolic region from the rectangle,

 V =  [(80 ft)(45 ft) −   
2
 __ 

3
   (80 ft)(37 ft)]  (26 ft) =  42,300 ft  

3
  

Weight of the Span, W. Multiplying the volume by the unit weight,

 W = (170  lb/ft  3 )( 42,300 ft  3 ) = 7.19 ×  10  6  lb 

REFLECT AND THINK:
Though completed in 1829, regular locomotive usage didn’t begin on this bridge 

until 1831 with the steam-powered York, which weighed approximately 7000 lb.  

(Up to that point, trains had been pulled by horses.) Then in 1832, there was 

initially concern regarding the ability of the stone arch to support a newer and 

heavier locomotive, the 13,000-lb Atlantic.* As our knowledge of engineering 

mechanics has progressed since then, we better understand that a massive arch 

(continued)
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like this can indeed sustain such loads quite easily. This is illustrated by the 

modern-day coal cars shown crossing this same span in CS Photo 1.1, where 

each car has a rated weight of 263,000 lb. Arches derive load-carrying capac-

ity through compression and are well-suited for stone masonry construction, 

because it provides high compressive strength. And while trains traversing the 

bridge would tend to introduce other types of effects into the span, the massive-

ness of the span itself (which we estimated to be 7.19 × 106 lb) far exceeds the 

car loads and therefore keeps the barrel (or portal) of the arch in compression.

1.6 NUMERICAL ACCURACY
The accuracy of the solution to a problem depends upon two items: (1) the 

accuracy of the given data and (2) the accuracy of the computations performed. 

The solution cannot be more accurate than the less accurate of these two items.

For example, suppose the loading of a bridge is known to be 75,000 lb 

with a possible error of 100 lb either way. The relative error that measures the 

degree of accuracy of the data is

    
100 lb

 ________ 
75, 000 lb

   = 0.0013 = 0.13%  

In computing the reaction at one of the bridge supports, it would be meaning-

less to record it as 14,322 lb. The accuracy of the solution cannot be greater 

than 0.13%, no matter how precise the computations are, and the possible error 

in the answer may be as large as (0.13/100)(14,322 lb) ≈ 20 lb. The answer 

should be properly recorded as 14,320 ± 20 lb.

In engineering problems, the data are seldom known with an accuracy 

greater than 0.2%. It is therefore seldom justified to write answers with an accu-

racy greater than 0.2%. A practical rule is to use four figures to record num-

bers beginning with a “1” and three figures in all other cases. Unless otherwise 

indicated, you should assume the data given in a problem are known with a 

comparable degree of accuracy. A force of 40 lb, for example, should be read as  

40.0 lb, and a force of 15 lb should be read as 15.00 lb.

Electronic calculators are widely used by practicing engineers and 

engineering students. The speed and accuracy of these calculators facilitate 

the numerical computations in the solution of many problems. However, you 

should not record more significant figures than can be justified merely because 

you can obtain them easily. As noted previously, an accuracy greater than 0.2% 

is seldom necessary or meaningful in the solution of practical engineering 

problems.



2
Many engineering problems can be solved by considering the 

equilibrium of a “particle.” In the case of this beam that is being hoisted 

into position, a relation between the tensions in the various cables 

involved can be obtained by considering the equilibrium of the hook to 

which the cables are attached.

Statics of Particles

©Getty Images RF
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Introduction

In this chapter, you will study the effect of forces acting on particles. By the 

word “particle” we do not mean only tiny bits of matter, like an atom or an 

electron. Instead, we mean that the sizes and shapes of the bodies under consid-

eration do not significantly affect the solutions of the problems. Another way of 

saying this is that we assume all forces acting on a given body act at the same 

point. This does not mean the object must be tiny—if you were modeling the 

mechanics of the Milky Way galaxy, for example, you could treat the sun and 

the entire Solar System as just a particle.

Our first step is to explain how to replace two or more forces acting on 

a given particle by a single force having the same effect as the original forces. 

This single equivalent force is called the resultant of the original forces. After 

this step, we will derive the relations among the various forces acting on a par-

ticle in a state of equilibrium. We will use these relations to determine some of 

the forces acting on the particle.

The first part of this chapter deals with forces contained in a single plane. 

Because two lines determine a plane, this situation arises any time we can 

reduce the problem to one of a particle subjected to two forces that support a 

third force, such as a crate suspended from two chains or a traffic light held in 

place by two cables. In the second part of this chapter, we examine the more 

general case of forces in three-dimensional space.

2.1  ADDITION OF PLANAR 
FORCES

Many important practical situations in engineering involve forces in the same 

plane. These include forces acting on a pulley, projectile motion, and an object 

in equilibrium on a flat surface. We will examine this situation first before look-

ing at the added complications of forces acting in three-dimensional space.

2.1A  Force on a Particle: Resultant 
of Two Forces

A force represents the action of one body on another. It is generally charac-

terized by its point of application, its magnitude, and its direction. Forces 

acting on a given particle, however, have the same point of application. Thus, 

Objectives
 • Describe force as a vector quantity.

 • Examine vector operations useful for the analysis of forces.

 • Determine the resultant of multiple forces acting on a particle.

 • Resolve forces into components.

 • Add forces that have been resolved into rectangular 

components.

 • Introduce the concept of the free-body diagram.

 • Use free-body diagrams to assist in the analysis of planar 

and spatial particle equilibrium problems.

Introduction

 2.1 ADDITION OF PLANAR 

FORCES

 2.1A Force on a Particle: Resultant 

of Two Forces

 2.1B Vectors

 2.1C Addition of Vectors

 2.1D Resultant of Several 

Concurrent Forces

 2.1E Resolution of a Force into 

Components

 2.2 ADDING FORCES BY 

COMPONENTS

 2.2A Rectangular Components of 

a Force: Unit Vectors

 2.2B Addition of Forces 

by Summing x and y 

Components

 2.3 FORCES AND 

EQUILIBRIUM IN A 

PLANE

 2.3A Equilibrium of a Particle

 2.3B Newton’s First Law of Motion

 2.3C Free-Body Diagrams and 

Problem Solving

 2.4 ADDING FORCES IN 

SPACE

 2.4A Rectangular Components of 

a Force in Space

 2.4B Force Defined by Its 

Magnitude and Two Points 

on Its Line of Action

 2.4C Addition of Concurrent 

Forces in Space

 2.5 FORCES AND 

EQUILIBRIUM IN SPACE
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Experimental evidence shows that two forces P and Q acting on a par-

ticle A (Fig. 2.2a) can be replaced by a single force R that has the same effect 

on the particle (Fig. 2.2c). This force is called the resultant of the forces P and 

Q. We can obtain R, as shown in Fig. 2.2b, by constructing a parallelogram, 

using P and Q as two adjacent sides. The diagonal that passes through A 

represents the resultant. This method for finding the resultant is known as the 

parallelogram law for the addition of two forces. This law is based on experi-

mental evidence; it cannot be proved or derived mathematically.

2.1B Vectors

We have just seen that forces do not obey the rules of addition defined in ordi-

nary arithmetic or algebra. For example, two forces acting at a right angle to 

each other, one of 4 lb and the other of 3 lb, add up to a force of 5 lb acting at 

an angle between them, not to a force of 7 lb. Forces are not the only quantities 

that follow the parallelogram law of addition. As you will see later, displace-

ments, velocities, accelerations, and momenta are other physical quantities pos-

sessing magnitude and direction that add according to the parallelogram law. 

All of these quantities can be represented mathematically by vectors. Those 

physical quantities that have magnitude but not direction, such as volume, mass, 

or energy, are represented by plain numbers often called scalars to distinguish 

them from vectors.

each force considered in this chapter is completely defined by its magnitude 

and direction.

The magnitude of a force is characterized by a certain number of units. 

As indicated in Chap. 1, the SI units used by engineers to measure the magni-

tude of a force are the newton (N) and its multiple the kilonewton (kN), which 

is equal to 1000 N. The U.S. customary units used for the same purpose are the 

pound (lb) and its multiple the kilopound (kip), which is equal to 1000 lb. We 

saw in Chap. 1 that a force of 445 N is equivalent to a force of 100 lb or that a 

force of 100 N equals a force of about 22.5 lb.

We define the direction of a force by its line of action and the sense of 

the force. The line of action is the infinite straight line along which the force 

acts; it is characterized by the angle it forms with some fixed axis (Fig. 2.1). 

The force itself is represented by a segment of that line; through the use of an 

appropriate scale, we can choose the length of this segment to represent the 

magnitude of the force. We indicate the sense of the force by an arrowhead. It is 

important in defining a force to indicate its sense. Two forces having the same 

magnitude and the same line of action but a different sense, such as the forces 

shown in Fig. 2.1a and b, have directly opposite effects on a particle.

Fig. 2.1 The line of action of a force makes an angle with a given fixed axis. 

(a) The sense of the 10-lb force is away from particle A; (b) the sense of the 10-lb 

force is toward particle A.

(a)

A 30°

Fixed axis Fixed axis

10 lb

(b)

A 30°

10 lb

Fig. 2.2 (a) Two forces P and Q act on 

particle A. (b) Draw a parallelogram with 

P and Q as the adjacent sides and label the 

diagonal that passes through A as R. (c) R is 

the resultant of the two forces P and Q and 

is equivalent to their sum.

A

(a)

A

Resultant

Parallelogram

(b)

A

(c)

P

Q

P
R

Q

R

Photo 2.1 In its purest form, a tug-of-war 

pits two opposite and almost-equal forces 

against each other. Whichever team can 

generate the larger force, wins. As you can 

see, a competitive tug-of-war can be quite 

intense. ©DGB/Alamy
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Vectors are defined as mathematical expressions possessing magni-

tude and direction, which add according to the parallelogram law. Vectors 

are represented by arrows in diagrams and are distinguished from scalar quanti-

ties in this text through the use of boldface type (P). In longhand writing, a vec-

tor may be denoted by drawing a short arrow above the letter used to represent it  

(  
→

 P ) . The magnitude of a vector defines the length of the arrow used to represent 

it. In this text, we use italic type to denote the magnitude of a vector. Thus, the 

magnitude of the vector P is denoted by P.

A vector used to represent a force acting on a given particle has a well-

defined point of application––namely, the particle itself. Such a vector is said to 

be a fixed, or bound, vector and cannot be moved without modifying the condi-

tions of the problem. Other physical quantities, however, such as couples (see 

Chap. 3), are represented by vectors that may be freely moved in space; these 

vectors are called free vectors. Still other physical quantities, such as forces act-

ing on a rigid body (see Chap. 3), are represented by vectors that can be moved 

along their lines of action; they are known as sliding vectors.

Two vectors that have the same magnitude and the same direction are 

said to be equal, whether or not they also have the same point of application 

(Fig. 2.3); equal vectors may be denoted by the same letter.

The negative vector of a given vector P is defined as a vector having the 

same magnitude as P and a direction opposite to that of P (Fig. 2.4); the nega-

tive of the vector P is denoted by −P. The vectors P and −P are commonly 

referred to as equal and opposite vectors. Thus, we have

 P + (− P) = 0 

2.1C Addition of Vectors

By definition, vectors add according to the parallelogram law. Thus, we obtain 

the sum of two vectors P and Q by attaching the two vectors to the same point 

A and constructing a parallelogram, using P and Q as two adjacent sides 

(Fig. 2.5). The diagonal that passes through A represents the sum of the vectors 

P and Q, denoted by P + Q. The fact that the sign + is used for both vector and 

scalar addition should not cause any confusion if vector and scalar quantities 

are always carefully distinguished. Note that the magnitude of the vector P + Q 

is not, in general, equal to the sum P + Q of the magnitudes of the vectors P 

and Q.

Because the parallelogram constructed on the vectors P and Q does not 

depend upon the order in which P and Q are selected, we conclude that the 

addition of two vectors is commutative, and we write

   P + Q = Q + P   (2.1)

From the parallelogram law, we can derive an alternative method for 

determining the sum of two vectors, known as the triangle rule. Consider 

Fig. 2.5, where the sum of the vectors P and Q has been determined by the 

parallelogram law. Because the side of the parallelogram opposite Q is equal 

to Q in magnitude and direction, we could draw only half of the parallelogram 

(Fig. 2.6a). The sum of the two vectors thus can be found by arranging P and 

Q in tip-to-tail fashion and then connecting the tail of P with the tip of Q. If 

we draw the other half of the parallelogram, as in Fig. 2.6b, we obtain the same 

result, confirming that vector addition is commutative.

We define subtraction of a vector as the addition of the correspond-

ing negative vector. Thus, we determine the vector P − Q, representing the 

Fig. 2.5 Using the parallelogram law to 

add two vectors.

A

P

P + Q

Q

Fig. 2.4 The negative vector of a given 

vector has the same magnitude but the 

opposite direction of the given vector.

P

–P

Fig. 2.3 Equal vectors have the same 

magnitude and the same direction, even if 

they have different points of application.

P

P

Fig. 2.6 The triangle rule of vector 

addition. (a) Adding vector Q to vector P 

equals (b) adding vector P to vector Q.

A

A

(a)

(b)

P

P

Q

Q

P +
 Q

P +
 Q
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difference between the vectors P and Q, by adding to P the negative vector −Q 

(Fig. 2.7). We write

  P − Q = P + (−Q)  (2.2)

Here again we should observe that, although we use the same sign to denote 

both vector and scalar subtraction, we avoid confusion by taking care to distin-

guish between vector and scalar quantities.

We now consider the sum of three or more vectors. The sum of three vec-

tors P, Q, and S is, by definition, obtained by first adding the vectors P and Q 

and then adding the vector S to the vector P + Q. We write

  P + Q + S = (P + Q) + S  (2.3)

Similarly, we obtain the sum of four vectors by adding the fourth vector to the 

sum of the first three. It follows that we can obtain the sum of any number of 

vectors by applying the parallelogram law repeatedly to successive pairs of vec-

tors until all of the given vectors are replaced by a single vector.

If the given vectors are coplanar, i.e., if they are contained in the same 

plane, we can obtain their sum graphically. For this case, repeated application 

of the triangle rule is simpler than applying the parallelogram law. In Fig. 2.8a, 

we find the sum of three vectors P, Q, and S in this manner. The triangle rule is 

first applied to obtain the sum P + Q of the vectors P and Q; we apply it again 

to obtain the sum of the vectors P + Q and S. However, we could have omitted 

determining the vector P + Q and obtain the sum of the three vectors directly, 

as shown in Fig. 2.8b, by arranging the given vectors in tip-to-tail fashion 

and connecting the tail of the first vector with the tip of the last one. This is 

known as the polygon rule for the addition of vectors.

The result would be unchanged if, as shown in Fig. 2.8c, we had replaced 

the vectors Q and S by their sum Q + S. We may thus write

  P + Q + S = (P + Q) + S = P + (Q + S)  (2.4)

which expresses the fact that vector addition is associative. Recalling that vec-

tor addition also has been shown to be commutative in the case of two vectors, 

we can write

   
P + Q + S

  
=

  
(P + Q) + S = S + (P + Q)

    
 
  
=

  
 S + (Q + P) = S + Q + P 

    (2.5)

This expression, as well as others we can obtain in the same way, shows that 

the order in which several vectors are added together is immaterial (Fig. 2.8d).

Product of a Scalar and a Vector. It is convenient to denote the sum 

P + P by 2P, the sum P + P + P by 3P, and, in general, the sum of n equal 

vectors P by the product nP. Therefore, we define the product nP of a positive 

integer n and a vector P as a vector having the same direction as P and the 

magnitude nP. Extending this definition to include all scalars and recalling the 

definition of a negative vector given earlier, we define the product kP of a scalar 

k and a vector P as a vector having the same direction as P (if k is positive) or 

a direction opposite to that of P (if k is negative) and a magnitude equal to the 

product of P and the absolute value of k (Fig. 2.9).

Fig. 2.7 Vector subtraction: Subtracting 

vector Q from vector P is the same as adding 

vector −Q to vector P.

P
 –

 Q

P
P

Q

–Q

(a) (b)

Fig. 2.8 Graphical addition of vectors. (a) 

Applying the triangle rule twice to add three 

vectors; (b) the vectors can be added in one 

step by the polygon rule; (c) vector addition 

is associative; (d) the order of addition is 

immaterial.

A

A

A

A

(a)

(b)

(c)

(d)

P

Q S

P +
 Q

P + Q + S

P

Q S

P + Q + S

P

Q S

Q + S

P + Q
 + S

P

P

Q

Q S

S

P + Q + S

= S + Q + P
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2.1D Resultant of Several Concurrent Forces

Consider a particle A acted upon by several coplanar forces, i.e., by several 

forces contained in the same plane (Fig. 2.10a). Because the forces all pass 

through A, they are also said to be concurrent. We can add the vectors repre-

senting the forces acting on A by the polygon rule (Fig. 2.10b). Because the use 

of the polygon rule is equivalent to the repeated application of the parallelo-

gram law, the vector R obtained in this way represents the resultant of the given 

concurrent forces. That is, the single force R has the same effect on the particle 

A as the given forces. As before, the order in which we add the vectors P, Q, 

and S representing the given forces is immaterial.

2.1E Resolution of a Force into Components

We have seen that two or more forces acting on a particle may be replaced by a 

single force that has the same effect on the particle. Conversely, a single force 

F acting on a particle may be replaced by two or more forces that, together, 

have the same effect on the particle. These forces are called components of the 

original force F, and the process of substituting them for F is called resolving 

the force F into components.

Each force F can be resolved into an infinite number of possible sets of com-

ponents. Sets of two components P and Q are the most important as far as practical 

applications are concerned. However, even then, the number of ways in which a 

given force F may be resolved into two components is unlimited (Fig. 2.11).

In many practical problems, we start with a given vector F and want to 

determine a useful set of components. Two cases are of particular interest:

 1. One of the Two Components, P, Is Known. We obtain the second com-

ponent, Q, by applying the triangle rule and joining the tip of P to the 

tip of F (Fig. 2.12). We can determine the magnitude and direction of Q 

graphically or by trigonometry. Once we have determined Q, both com-

ponents P and Q should be applied at A.

 2. The Line of Action of Each Component Is Known. We obtain the 

magnitude and sense of the components by applying the parallelogram 

law and drawing lines through the tip of F that are parallel to the given 

lines of action (Fig. 2.13). This process leads to two well-defined compo-

nents, P and Q, which can be determined graphically or computed trigo-

nometrically by applying the law of sines.

You will encounter many similar cases; for example, you might know the direc-

tion of one component while the magnitude of the other component is to be 

as small as possible (see Sample Prob. 2.2). In all cases, you need to draw the 

appropriate triangle or parallelogram that satisfies the given conditions.

Fig. 2.9 Multiplying a 

vector by a scalar changes 

the vector’s magnitude, 

but not its direction (unless 

the scalar is negative, in 

which case the direction is 

reversed).

P 1.5 P

–2 P

Fig. 2.10 Concurrent forces can be added by 

the polygon rule.

A

A

(a) (b)

P

P

Q

Q

S

S
R

Fig. 2.11 Three possible sets of 

components for a given force vector F.

A

A
A

(a) (b)

(c)

P

P P

Q

Q

Q

F

F

F

Fig. 2.12 When component P is known, 

use the triangle rule to find component Q.

A

P

Q

F

Fig. 2.13 When the lines of action are 

known, use the parallelogram rule to 

determine components P and Q.

A

P

Q
F
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Sample Problem 2.1

Two forces P and Q act on a bolt A. Determine their resultant.

STRATEGY: Two lines determine a plane, so this is a problem of two copla-

nar forces. You can solve the problem graphically or by trigonometry.

MODELING: For a graphical solution, you can use the parallelogram rule or 

the triangle rule for addition of vectors. For a trigonometric solution, you can 

use the law of cosines and law of sines or use a right-triangle approach.

ANALYSIS:
Graphical Solution. Draw to scale a parallelogram with sides equal to P 

and Q (Fig. 1). Measure the magnitude and direction of the resultant. They are

  R = 98 N α = 35° R = 98 N ⦨ 35° ◂ 

You can also use the triangle rule. Draw forces P and Q in tip-to-tail fash-

ion (Fig. 2). Again measure the magnitude and direction of the resultant. The 

answers should be the same.

  R = 98 N α = 35° R = 98 N ⦨ 35° ◂ 

Trigonometric Solution. Using the triangle rule again, you know two 

sides and the included angle (Fig. 3). Apply the law of cosines.

  

 R  2 

  

=

  

 P  2  +  Q  2  − 2PQ cos B

     R  2   =   (40 N)  2   + (60 N)  2  − 2(40 N)(60 N) cos 155°     

R

  

=

  

97.73 N

   

Now apply the law of sines:

    
sin A

 _____ 
Q

   =   
sin B

 _____ 
R

      
sin A

 _____ 
60 N

   =   
sin 155°

 ________ 
97.73 N

    (1)

Solving Eq. (1) for sin A, you obtain

 sin A =   
(60 N) sin  155°

  ______________ 
97.73 N

   

Using a calculator, compute this quotient, and then obtain its arc sine:

 A = 15.04°   α = 20° + A = 35.04° 

Use three significant figures to record the answer (c.f. Sec. 1.6):

   R = 97.7 N ⦨ 35.0° ◂ 

Alternative Trigonometric Solution. Construct the right triangle BCD 

(Fig. 4) and compute

  
CD = (60 N) sin 25° = 25.36 N

    
BD = (60 N) cos 25° = 54.38 N

  

Fig. 1 Parallelogram law  

applied to add forces P and Q.

25°

20°
A

Q = 60 N

P = 40 N

A
P

Q

R

α

Fig. 2 Triangle rule applied to add 

forces P and Q.

A
P

Q

R

α

Fig. 3 Geometry of triangle rule 

applied to add forces P and Q.

155° 25°

20°

R

B

C

P = 40 N

Q = 60 N

α
A

Fig. 4 Alternative geometry of 

triangle rule applied to add forces 

P and Q.

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

α
A

(continued)
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Then, using triangle ACD, you have

  

tan A =   
25.36 N

 _______ 
94.38 N

  

  

 A = 15.04°

    

  R =   
25.36

 _____ 
sin A

  

  

R = 97.73 N

   

Again,

  α = 20° + A = 35.04°  R = 97.7 N ⦨ 35.0° ◂ 

REFLECT and THINK: An analytical solution using trigonometry pro-

vides for greater accuracy. However, it is helpful to use a graphical solution as 

a check.

Sample Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by the 

tugboats is a 5000-lb force directed along the axis of the barge, determine  

(a) the tension in each of the ropes, given that α = 45°, (b) the value of α for 

which the tension in rope 2 is a minimum.

STRATEGY: This is a problem of two coplanar forces. You can solve the first 

part either graphically or analytically. In the second part, a graphical approach 

readily shows the necessary direction for rope 2, and you can use an analytical 

approach to complete the solution.

MODELING: You can use the parallelogram law or the triangle rule to solve 

part (a). For part (b), use a variation of the triangle rule.

ANALYSIS: a. Tension for  α = 45° .

Graphical Solution. Use the parallelogram law. The resultant (the diago-

nal of the parallelogram) is equal to 5000 lb and is directed to the right. Draw 

the sides parallel to the ropes (Fig. 1). If the drawing is done to scale, you 

should measure

   T 1   = 3700 lb  T 2   = 2600 lb ◂ 

30°
1

2

α

A

C

B

(continued)

Fig. 1 Parallelogram law 

applied to add forces T1 and T2.

30°
45°

30°45°

5000 lb

T1

T2

B
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Trigonometric Solution. Use the triangle rule. Note that the triangle in 

Fig. 2 represents half of the parallelogram shown in Fig. 1. Using the law of 

sines,

   
 T 1   _______ 

sin  45°
   =   

 T 2   _______ 
sin  30°

   =   
5000 lb

 ________ 
sin  105°

   

Fig. 3 Determination of direction of 

minimum T2.

1

2
2

2

5000 lb
1'

2'

2'

2'

Fig. 4 Triangle rule applied 

for minimum T2.

30°

5000 lb

T1

T2 90°

α

B

Fig. 2 Triangle rule applied 

to add forces T1 and T2.

45° 30°

5000 lb

105°
T1

T2

B

With a calculator, compute and store the value of the last quotient. Multiply this 

value successively by sin 45° and sin 30°, obtaining

   T 1   = 3660 lb  T 2   = 2590 lb ◂ 

 b. Value of α for Minimum T2. To determine the value of α for which 

the tension in rope 2 is a minimum, use the triangle rule again. In Fig. 3, line 

1-1′ is the known direction of T1. Several possible directions of T2 are shown 

by the lines 2-2′. The minimum value of T2 occurs when T1 and T2 are perpen-

dicular (Fig. 4). Thus, the minimum value of T2 is

  T 2   = (5000 lb) sin 30° = 2500 lb 

Corresponding values of T1 and  α  are

   
 T 1    

=
  
(5000 lb) cos 30° = 4330 lb

  
 
     

α
  
=

  
90°  − 30°

  
  � = 60°  ◂

  

REFLECT and THINK: Part (a) is a straightforward application of resolv-

ing a vector into components. The key to part (b) is recognizing that the mini-

mum value of T2 occurs when T1 and T2 are perpendicular.
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SOLVING PROBLEMS  

ON YOUR OWN

The preceding sections were devoted to adding vectors by using the parallelogram law, 

triangle rule, and polygon rule with application to forces.

We presented two Sample Problems. In Sample Prob. 2.1, we used the parallelogram law 

to determine the resultant of two forces of known magnitude and direction. In Sample 

Prob. 2.2, we used it to resolve a given force into two components of known direction.

You will now be asked to solve problems on your own. Some may resemble one of the 

Sample Problems; others may not. What all Problems and Sample Problems in this section 

have in common is that they can be solved by direct application of the parallelogram law.

Your solution of a given problem should consist of the following steps:

1. Identify which forces are the applied forces and which is the resultant. It is often 

helpful to write the vector equation that shows how the forces are related. For example, 

in Sample Prob. 2.1 you could write

 R = P + Q 

You may want to keep this relation in mind as you formulate the next part of the 

solution.

2. Draw a parallelogram with the applied forces as two adjacent sides and the resul-

tant as the included diagonal (Fig. 2.2). Alternatively, you can use the triangle rule 

with the applied forces drawn in tip-to-tail fashion and the resultant extending from the 

tail of the first vector to the tip of the second (Fig. 2.6).

3. Indicate all dimensions. Using one of the triangles of the parallelogram or the triangle 

constructed according to the triangle rule, indicate all dimensions—whether sides or 

angles—and determine the unknown dimensions either graphically or by trigonometry.

4. Recall the laws of trigonometry. If you use trigonometry, remember that the law of 

cosines should be applied first if two sides and the included angle are known (Sample 

Prob. 2.1), and the law of sines should be applied first if one side and all angles are known 

(Sample Prob. 2.2).

If you have had prior exposure to mechanics, you might be tempted to ignore the solution 

techniques of this lesson in favor of resolving the forces into rectangular components. The 

component method is important and is considered in the next section, but use of the paral-

lelogram law simplifies the solution of many problems and should be mastered first.
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 2.1 Two forces are applied as shown to a hook. Determine graphically the 

magnitude and direction of their resultant using (a) the parallelogram 

law, (b) the triangle rule. 

Problems

Fig. P2.1

45°

30°

900 N

600 N

Fig. P2.2

500 lb

800 lb

35°

60°

Fig. P2.3 and P2.4

20°

A

35°

P

Q

Fig. P2.5

120 N P

α25°

 2.2 Two forces are applied as shown to a bracket support. Determine 

graphically the magnitude and direction of their resultant using (a) the 

parallelogram law, (b) the triangle rule. 

 2.3 Two forces P and Q are applied as shown at point A of a hook support. 

Knowing that P = 75 N and Q = 125 N, determine graphically the 

magnitude and direction of their resultant using (a) the parallelogram 

law, (b) the triangle rule.

 2.4 Two forces P and Q are applied as shown at point A of a hook sup-

port. Knowing that P = 60 lb and Q = 25 lb, determine graphically the 

magnitude and direction of their resultant using (a) the parallelogram 

law, (b) the triangle rule. 

 2.5 A stake is being pulled out of the ground by means of two ropes as 

shown. Knowing that α = 30°, determine by trigonometry (a) the 

magnitude of the force P so that the resultant force exerted on the 

stake is vertical, (b) the corresponding magnitude of the resultant. 
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 2.6 A telephone cable is clamped at A to the pole AB. Knowing that the 

tension in the left-hand portion of the cable is T1 = 800 lb, determine 

by trigonometry (a) the required tension T2 in the right-hand portion if 

the resultant R of the forces exerted by the cable at A is to be vertical, 

(b) the corresponding magnitude of R. 

 2.7 A telephone cable is clamped at A to the pole AB. Knowing that the 

tension in the right-hand portion of the cable is T2 = 1000 lb, deter-

mine by trigonometry (a) the required tension T1 in the left-hand por-

tion if the resultant R of the forces exerted by the cable at A is to be 

vertical, (b) the corresponding magnitude of R. 

 2.8 A disabled automobile is pulled by means of two ropes as shown. The 

tension in rope AB is 2.2 kN, and the angle α is 25°. Knowing that the 

resultant of the two forces applied at A is directed along the axis of 

the automobile, determine by trigonometry (a) the tension in rope AC, 

(b) the magnitude of the resultant of the two forces applied at A. 

 2.9 A disabled automobile is pulled by means of two ropes as shown. 

Knowing that the tension in rope AB is 3 kN, determine by trigonom-

etry the tension in rope AC and the value of α so that the resultant force 

exerted at A is a 4.8-kN force directed along the axis of the automobile. 

 2.10 Two forces are applied as shown to a hook support. Knowing that the 

magnitude of P is 35 N, determine by trigonometry (a) the required 

angle α if the resultant R of the two forces applied to the support is to 

be horizontal, (b) the corresponding magnitude of R. 

Fig. P2.6 and P2.7

A

B

25°15°

T1
T2

Fig. P2.8 and P2.9

30°

B

C

A

α

Fig. P2.10

50 N

25°

P

α

Fig. P2.11, P2.12, and P2.13

425 lb

A

P

30° α

 2.11 A steel tank is to be positioned in an excavation. Knowing that  

α = 20°, determine by trigonometry (a) the required magnitude of the 

force P if the resultant R of the two forces applied at A is to be verti-

cal, (b) the corresponding magnitude of R. 

 2.12 A steel tank is to be positioned in an excavation. Knowing that the 

magnitude of P is 500 lb, determine by trigonometry (a) the required 

angle α if the resultant R of the two forces applied at A is to be verti-

cal, (b) the corresponding magnitude of R.

 2.13 A steel tank is to be positioned in an excavation. Determine by trigo-

nometry (a) the magnitude and direction of the smallest force P for 

which the resultant R of the two forces applied at A is vertical, (b) the 

corresponding magnitude of R.
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 2.16 Solve Prob. 2.1 by trigonometry.

 2.17 Solve Prob. 2.4 by trigonometry.

 2.18 For the stake of Prob. 2.5, knowing that the tension in one rope is 

120 N, determine by trigonometry the magnitude and direction of the 

force P so that the resultant is a vertical force of 160 N.

 2.19 Two structural members A and B are bolted to a bracket as shown. 

Knowing that both members are in compression and that the force is 

10 kN in member A and 15 kN in member B, determine by trigonom-

etry the magnitude and direction of the resultant of the forces applied 

to the bracket by members A and B.

 2.14 For the hook support of Prob. 2.10, determine by trigonometry (a) the 

magnitude and direction of the smallest force P for which the resultant 

R of the two forces applied to the support is horizontal, (b) the cor-

responding magnitude of R.

 2.15 The barge B is pulled by two tugboats A and C. At a given instant, the 

tension in cable AB is 4500 lb and the tension in cable BC is 2000 lb. 

Determine by trigonometry the magnitude and direction of the resul-

tant of the two forces applied at B at that instant.

Fig. P2.15

30°

45°

A

C

B

Fig. P2.19 and P2.20

A B

40°
20°

 2.20 Two structural members A and B are bolted to a bracket as shown. 

Knowing that both members are in compression and that the force is 

15 kN in member A and 10 kN in member B, determine by trigonom-

etry the magnitude and direction of the resultant of the forces applied 

to the bracket by members A and B.
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2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 

discuss how to add forces by using their components, especially rectangular 

components. This method is often the most convenient way to add forces and, 

in practice, is the most common approach. (Note that we can readily extend the 

properties of vectors established in this section to the rectangular components 

of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components 
of a Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that are 

perpendicular to each other. Figure 2.14 shows a force F resolved into a compo-

nent Fx along the x axis and a component Fy along the y axis. The parallelogram 

drawn to obtain the two components is a rectangle, and Fx and Fy are called 

rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, respec-

tively, as in Fig. 2.14; they may, however, be chosen in any two perpendicular 

directions, as shown in Fig. 2.15. In determining the rectangular components of 

a force, you should think of the construction lines shown in Figs. 2.14 and 2.15 

as being parallel to the x and y axes, rather than perpendicular to these axes. 

This practice will help avoid mistakes in determining oblique components, as 

in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rectangular 

components, we introduce two vectors of unit magnitude, directed respectively 

along the positive x and y axes. These vectors are called unit vectors and are 

denoted by i and j, respectively (Fig. 2.16). Recalling the definition of the prod-

uct of a scalar and a vector given in Sec. 2.1C, note that we can obtain the rect-

angular components Fx and Fy of a force F by multiplying respectively the unit 

vectors i and j by appropriate scalars (Fig. 2.17). We have

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

The scalars Fx and Fy may be positive or negative, depending upon the sense 

of Fx and of Fy, but their absolute values are equal to the magnitudes of the 

component forces Fx and Fy, respectively. The scalars Fx and Fy are called the 

 scalar  components of the force F, whereas the actual component forces Fx and 

Fy should be referred to as the vector components of F. However, when there 

exists no possibility of confusion, we may refer to the vector as well as the scalar 

components of F as simply the components of F. Note that the scalar component 

Fx is positive when the vector component Fx has the same sense as the unit vector 

i (i.e., the same sense as the positive x axis) and is negative when Fx has the oppo-

site sense. A similar conclusion holds for the sign of the scalar component Fy.

Scalar Components. Denoting by F the magnitude of the force F and 

by θ the angle between F and the x axis, which is measured counterclockwise 

Fig. 2.14 Rectangular components of a 

force F.

O

F
Fy

Fx
x

y

θ

Fig. 2.15 Rectangular components of a 

force F for axes rotated away from horizontal 

and vertical.

Fy

Fx

F

x

y

O

θ

Fig. 2.17 Expressing the components 

of F in terms of unit vectors with scalar 

multipliers.

F

x

y

Fy = Fy j = F sin θj

Fx = Fx i = F cos θi

j

i

θ

Fig. 2.16 Unit vectors along the x and y 

axes.

x

y

Magnitude = 1j

i
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from the positive x axis (Fig. 2.17), we may express the scalar components 

of F as

   F x   = F cos θ   F y   = F sin θ  (2.8)

These relations hold for any value of the angle θ from 0° to 360°, and they 

define the signs and absolute values of the scalar components Fx and Fy.

Concept Application 2.1

A force of 800 N is exerted on a bolt A, as shown in Fig. 2.18a. Determine the 

horizontal and vertical components of the force.

Solution In order to obtain the correct sign for the scalar components Fx 

and Fy, we could substitute the value 180° − 35° = 145° for θ in Eqs. (2.8). 

However, it is often more practical to determine by inspection the signs of 

Fx and Fy (Fig. 2.18b) and then use the trigonometric functions of the angle 

α = 35°. Therefore,

  
 F x   = −F cos α = −(800 N) cos 35° = − 655 N

     
 F y   = +F sin α = +(800 N) sin 35° = +459 N

   

The vector components of F are thus

  F x   = −(655 N)i   F y   = +(459 N)j 

and we may write F in the form

   F = − (655 N)i + (459 N)j ◂ 

Fig. 2.18 (a) Force F exerted on a bolt; 

(b) rectangular components of F.

F = 800 N

F = 800 N

35°

A

A

(a)

(b)

x

y

Fy

Fx

α = 35°

θ = 145°

Concept Application 2.2

A man pulls with a force of 300 N on a rope attached to the top of a building, 

as shown in Fig. 2.19a. What are the horizontal and vertical components of the 

force exerted by the rope at point A?

Fig. 2.19 (a) A man pulls on a rope attached to a building; (b) components of the 

rope’s force F.

(b)

F = 300 N

A

Fy

Fx

x

y

α

θ

(a)

6 m

8 m

A

B

α

(continued)
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Direction of a Force. When a force F is defined by its rectangular com-

ponents Fx and Fy (see Fig. 2.17), we can find the angle θ defining its direc-

tion from

   tan  θ =   
 F y  

 ___ 
 F x  

     (2.9)

We can obtain the magnitude F of the force by applying the Pythagorean 

theorem,

  F =  √ 
_______

  F  x  
2  +  F  y  

2     (2.10)

or by solving for F from one of the Eqs. (2.8).

Solution You can see from Fig. 2.19b that

  F x   = +(300 N) cos α    F y   = −(300 N) sin α 

Observing that AB = 10 m, we find from Fig. 2.19a that

 cos α =   
8 m

 ____ 
AB

   =   
8 m

 _____ 
10 m

   =   
4
 __ 

5
    sin α =   

6 m
 ____ 

AB
   =   

6 m
 _____ 

10 m
   =   

3
 __ 

5
   

We thus obtain

  F x   = +(300 N)   
4
 __ 

5
   = +240 N   F y   = −(300 N)   

3
 __ 

5
   = −180 N 

This gives us a total force of

   F = (240 N)i − (180 N)j ◂ 

Concept Application 2.3

A force F = (700 lb)i + (1500 lb)j is applied to a bolt A. Determine the magni-

tude of the force and the angle θ it forms with the horizontal.

Solution First draw a diagram showing the two rectangular components of 

the force and the angle θ (Fig. 2.20). From Eq. (2.9), you obtain

 tan θ =   
 F y  

 ___ 
 F x  

   =   
1500 lb

 _______ 
700 lb

   

Using a calculator, enter 1500 lb and divide by 700 lb; computing the arc tan-

gent of the quotient gives you  θ = 65.0° .  Solve the second of Eqs. (2.8) for F to get

 F =   
 F y  
 _____ 

sin θ
   =   

1500 lb
 ________ 

sin  65.0°
   = 1655 lb 

The last calculation is easier if you store the value of Fy when originally entered; 

you may then recall it and divide it by sin θ.
Fig. 2.20 Components of a force F 

exerted on a bolt.

A x

y

F

Fx = (700 lb) i

F
y 

=
 (

1
5
0
0
 l

b
)
j

θ
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The procedure just described is most efficiently carried out if you arrange 

the computations in a table (see Sample Prob. 2.3). Although this is the only 

practical analytic method for adding three or more forces, it is also often pre-

ferred to the trigonometric solution in the case of adding two forces.

2.2B  Addition of Forces by Summing x and y 
Components

We described in Sec. 2.1A how to add forces according to the parallelogram 

law. From this law, we derived two other methods that are more readily appli-

cable to the graphical solution of problems: the triangle rule for the addition of 

two forces and the polygon rule for the addition of three or more forces. We also 

explained that the force triangle used to define the resultant of two forces could 

be used to obtain a trigonometric solution.

However, when we need to add three or more forces, we cannot obtain any 

practical trigonometric solution from the force polygon that defines the resul-

tant of the forces. In this case, the best approach is to obtain an analytic solution 

of the problem by resolving each force into two rectangular components.

Consider, for instance, three forces P, Q, and S acting on a particle A 

(Fig. 2.21a). Their resultant R is defined by the relation

  R = P + Q + S  (2.11)

Resolving each force into its rectangular components, we have

   
 R x   i +  R y   j 

  
=

  
 P x  i +  P y   j +  Q x   i +  Q y   j +  S x   i +  S y   j

  
 
     

 
  

=
  
( P x   +  Q x   +  S x  )i + ( P y   +  Q y   +  S y  )j

  
 
  

From this equation, we can see that

   R x   =  P x   +  Q x   +  S x      R y   =  P y   +  Q y   +  S y     (2.12)

or for short,

   R x   = Σ F x      R y   = Σ F y    (2.13)

We thus conclude that when several forces are acting on a particle, we obtain the 

scalar components Rx and Ry of the resultant R by adding algebraically the cor-

responding scalar components of the given forces. (This result also applies to the 

addition of other vector quantities, such as velocities, accelerations, or momenta.)

In practice, determining the resultant R is carried out in three steps, as 

illustrated in Fig. 2.21.

 1. Resolve the given forces (Fig. 2.21a) into their x and y components 

(Fig. 2.21b).

 2. Add these components to obtain the x and y components of R (Fig. 2.21c).

 3. Apply the parallelogram law to determine the resultant R = Rx i + Ry j 

(Fig. 2.21d).

Fig. 2.21 (a) Three forces acting on a 

particle.

S

P

Q

A

(a)

Fig. 2.21 (b) Rectangular components of 

each force.

(b)

A

Py j

Sy j

Sx i

Q
y
j

Q
x
i Px i

Fig. 2.21 (c) Summation of the 

components.

(c)

A

R y j

R x i

Fig. 2.21 (d) Determining the resultant 

from its components.

(d )

A

R

θ
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Sample Problem 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces on the 

bolt.

REFLECT and THINK: Arranging data in a table not only helps you keep 

track of the calculations, but also makes things simpler for using a calculator on 

similar computations.

Fig. 1 Rectangular components of 

each force.

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i

(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j

F2 = 80 N
F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

STRATEGY: The simplest way to approach a problem of adding four forces 

is to resolve the forces into components.

MODELING: As we mentioned, solving this kind of problem is usually 

easier if you arrange the components of each force in a table. In the table 

below, we entered the x and y components of each force as determined by 

trigonometry (Fig. 1). According to the convention adopted in this section, 

the scalar number representing a force component is positive if the force com-

ponent has the same sense as the corresponding coordinate axis. Thus, x com-

ponents acting to the right and y components acting upward are represented 

by positive numbers.

ANALYSIS:

Force Magnitude, N x Component, N y Component, N

F1 150  +129.9 +75.0

F2 80  −27.4 +75.2

F3 110  0 −110.0

F4 100  +96.6 −25.9

Rx = +199.1 Ry = +14.3

Thus, the resultant R of the four forces is

  R =  R x   i +  R y   j R = (199.1 N)i + (14.3 N)j ◂ 

You can now determine the magnitude and direction of the resultant. From 

the triangle shown in Fig. 2, you have

  tan  α =   
 R y  

 ___ 
 R x  

   =   
14.3 N

 _______ 
199.1 N

     α =  4.1  ° 

 R =   
14.3 N

 ______ 
sin α

   = 199.6 N  R = 199.6 N ⦨ 4. 1  °  ◂ 

Fig. 2 Resultant of the given force 

system.

R

Ry = (14.3 N) j Rx = (199.1 N) i

α
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You saw in the preceding lesson that we can determine the resultant of two forces 

either graphically or from the trigonometry of an oblique triangle.

A. When three or more forces are involved, the best way to determine their resultant 

R is by first resolving each force into rectangular components. You may encounter either 

of two cases, depending upon the way in which each of the given forces is defined.

Case 1. The force F is defined by its magnitude F and the angle α it forms with the 

x axis. Obtain the x and y components of the force by multiplying F by cos α and sin α, 

respectively (Concept Application 2.1).

Case 2. The force F is defined by its magnitude F and the coordinates of two points 

A and B on its line of action (Fig. 2.19). Find the angle α that F forms with the x axis 

by trigonometry, and then use the process of Case 1. However, you can also find the 

components of F directly from proportions among the various dimensions involved without 

actually determining α (Concept Application 2.2).

B. Rectangular components of the resultant. Obtain the components Rx and Ry of the 

resultant by adding the corresponding components of the given forces algebraically ( Sample 

Prob. 2.3).

You can express the resultant in vectorial form using the unit vectors i and j, which are 

directed along the x and y axes, respectively:

 R =  R x  i +  R y   j 

Alternatively, you can determine the magnitude and direction of the resultant by solving 

the right triangle of sides Rx and Ry for R and for the angle that R forms with the x axis.

SOLVING PROBLEMS  

ON YOUR OWN
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 2.21 and 2.22 Determine the x and y components of each of the forces shown.

Problems

 2.23 and 2.24 Determine the x and y components of each of the forces shown.

Fig. P2.25

A

C

B

720 mm

650 mm

Fig. P2.22 

O

Dimensions

in mm

424 N 408 N

800 N

x

y

900

800

600

560 480

Fig. P2.24

40°
30°

45°

x

y

150 lb
80 lb

120 lb

Fig. P2.23

45°

60° 25°

y

x

350 N

800 N
600 N

Fig. P2.21

29 lb

51 lb
O x

y

90 in.

96 in.

28 in.
84 in.

80 in.

48 in.

50 lb

 2.25 Member BC exerts on member AC a force P directed along line BC. 

Knowing that P must have a 325-N horizontal component, determine 

(a) the magnitude of the force P, (b) its vertical component.
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 2.26 Member BD exerts on member ABC a force P directed along line BD. 

Knowing that P must have a 300-lb horizontal component, determine 

(a) the magnitude of the force P, (b) its vertical component.

 2.27 The hydraulic cylinder BC exerts on member AB a force P directed 

along line BC. Knowing that P must have a 600-N component per-

pendicular to member AB, determine (a) the magnitude of the force P,  

(b) its component along line AB.

 2.28 Cable AC exerts on beam AB a force P directed along line AC. 

Knowing that P must have a 350-lb vertical component, determine  

(a) the magnitude of the force P, (b) its horizontal component.

 2.29 The hydraulic cylinder BD exerts on member ABC a force P directed 

along line BD. Knowing that P must have a 750-N component perpen-

dicular to member ABC, determine (a) the magnitude of the force P, 

(b) its component parallel to ABC. 

 2.30 The guy wire BD exerts on the telephone pole AC a force P directed 

along BD. Knowing that P must have a 720-N component perpendicu-

lar to the pole AC, determine (a) the magnitude of the force P, (b) its 

component along line AC.

 2.31 Determine the resultant of the three forces of Prob. 2.21. 

 2.32 Determine the resultant of the three forces of Prob. 2.23. 

 2.33 Determine the resultant of the three forces of Prob. 2.24.

 2.34 Determine the resultant of the three forces of Prob. 2.22. 

Fig. P2.26

A

B

C D

35°

Q

Fig. P2.27

45°
30°

B

A

M

C

Fig. P2.28

A

B

C

55°

Q

Fig. P2.29

60°

50°

B

C

D

A

Q

Fig. P2.30

A

B

C D

7 m

2.4 m
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 2.35 Knowing that α = 35°, determine the resultant of the three forces 

shown.

 2.36 Knowing that the tension in cable BC is 725 N, determine the resul-

tant of the three forces exerted at point B of beam AB. 

 2.37 Knowing that α = 40°, determine the resultant of the three forces 

shown.

 2.38 Knowing that α = 75°, determine the resultant of the three forces 

shown.

 2.39 A collar that can slide on a vertical rod is subjected to the three forces 

shown. Determine (a) the required value of α if the resultant of the 

three forces is to be horizontal, (b) the corresponding magnitude of 

the resultant. 

 2.40 For the beam of Prob. 2.36, determine (a) the required tension in 

cable BC if the resultant of the three forces exerted at point B is to be 

vertical, (b) the corresponding magnitude of the resultant. 

 2.41 Determine (a) the required tension in cable AC, knowing that the 

resultant of the three forces exerted at point C of boom BC must be 

directed along BC, (b) the corresponding magnitude of the resultant.

 2.42 For the block of Probs. 2.37 and 2.38, determine (a) the required value 

of α if the resultant of the three forces shown is to be parallel to the 

incline, (b) the corresponding magnitude of the resultant. 

Fig. P2.35

200 N

150 N

100 N

30°

α
α

Fig. P2.36

800 mm

4

3

5 5
13

12

A

C

B

840 mm

L = 1160 mm

500 N

780 N

Fig. P2.37 and P2.38

120 lb

80 lb

60 lb

a

a'

α
α

20°

Fig. P2.39

110 N

170 N

85 N

α

α

Fig. P2.41 

75 lb

50 lb

25°

65°

35°

A

B

C
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2.3  FORCES AND EQUILIBRIUM 
IN A PLANE

Now that we have seen how to add forces, we can proceed to one of the key 

concepts in this course: the equilibrium of a particle. The connection between 

equilibrium and the sum of forces is very direct: a particle can be in equilibrium 

only when the sum of the forces acting on it is zero.

2.3A Equilibrium of a Particle

In the preceding sections, we discussed methods for determining the resultant 

of several forces acting on a particle. Although it has not occurred in any of the 

problems considered so far, it is quite possible for the resultant to be zero. In 

such a case, the net effect of the given forces is zero, and the particle is said to 

be in equilibrium. We thus have the definition:

When the resultant of all the forces acting on a particle is zero, the 

 particle is in equilibrium.

A particle acted upon by two forces is in equilibrium if the two forces 

have the same magnitude and the same line of action but opposite sense. The 

resultant of the two forces is then zero, as shown in Fig. 2.22.

Another case of equilibrium of a particle is represented in Fig. 2.23a, 

where four forces are shown acting on particle A. In Fig. 2.23b, we use the 

polygon rule to determine the resultant of the given forces. Starting from point 

O with F1 and arranging the forces in tip-to-tail fashion, we find that the tip of 

F4 coincides with the starting point O. Thus, the resultant R of the given system 

of forces is zero, and the particle is in equilibrium.

Photo 2.2 Forces acting on the carabiner 

include the weight of the girl and her 

harness, and the force exerted by the pulley 

attachment. Treating the carabiner as a 

particle, it is in equilibrium because the 

resultant of all forces acting on it is zero. 

©Michael Doolittle/Alamy

Fig. 2.22 When a particle is in equilibrium, 

the resultant of all forces acting on the 

particle is zero.

A

100 lb

100 lb

Fig. 2.23 (a) Four forces acting on particle A; (b) using the polygon law to find the 

resultant of the forces in (a), which is zero because the particle is in equilibrium.

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30°

30°

(a)

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

(b)

The closed polygon drawn in Fig. 2.23b provides a graphical expression 

of the equilibrium of A. To express algebraically the conditions for the equilib-

rium of a particle, we write

Equilibrium of a particle  R = ΣF = 0  (2.14)

Resolving each force F into rectangular components, we have

  Σ( F x   i +  F y   j) = 0  or  (Σ F x  )i + (Σ F y  )j = 0 


