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Objectives

A primary objective in a first course in mechanics is to help develop a stu-

dent’s ability first to analyze problems in a simple and logical manner, and 

then to apply basic principles to their solutions. A strong conceptual under-

standing of these basic mechanics principles is essential for successfully solv-

ing mechanics problems. We hope that this text, as well as the preceding 

volume, Vector Mechanics for Engineers: Statics, will help instructors achieve 

these goals.†

General Approach

Vector algebra was introduced at the beginning of the first volume and is used 

in the presentation of the basic principles of statics, as well as in the solution 

of many problems, particularly three-dimensional problems. Similarly, the 

concept of vector differentiation will be introduced early in this volume, and 

vector analysis will be used throughout the presentation of dynamics. This 

approach leads to more concise derivations of the fundamental principles of 

Preface

†Both texts also are available in a single volume, Vector Mechanics for Engineers: Statics 

and Dynamics, eleventh edition.
‡In a parallel text, Mechanics for Engineers: Dynamics, fifth edition, the use of vector algebra 

is limited to the addition and subtraction of vectors, and vector differentiation is omitted.

2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 

discuss how to add forces by using their components, especially rectangular 

components. This method is often the most convenient way to add forces and, 

in practice, is the most common approach. (Note that we can readily extend the 

properties of vectors established in this section to the rectangular components 

of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components 
of a Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that are 

perpendicular to each other. Figure 2.14 shows a force F resolved into a compo-

nent Fx along the x axis and a component Fy along the y axis. The parallelogram 

drawn to obtain the two components is a rectangle, and Fx and Fy are called 

rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, respec-

tively, as in Fig. 2.14; they may, however, be chosen in any two perpendicular 

directions, as shown in Fig. 2.15. In determining the rectangular components of 

a force, you should think of the construction lines shown in Figs. 2.14 and 2.15 

as being parallel to the x and y axes, rather than perpendicular to these axes. 

This practice will help avoid mistakes in determining oblique components, as 

in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rectangular 

components, we introduce two vectors of unit magnitude, directed respectively 

along the positive x and y axes. These vectors are called unit vectors and are 

denoted by i and j, respectively (Fig. 2.16). Recalling the definition of the prod-

uct of a scalar and a vector given in Sec. 2.1C, note that we can obtain the rect-

angular components Fx and Fy of a force F by multiplying respectively the unit 

vectors i and j by appropriate scalars (Fig. 2.17). We have

   F x   =  F x   i    F y   =  F y   j  (2.6)

Fig. 2.14 Rectangular components of a 

force F.
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mechanics. It also makes it possible to analyze many problems in kinematics 

and kinetics which could not be solved by scalar methods. The emphasis in 

this text, however, remains on the correct understanding of the principles of 

mechanics and on their application to the solution of engineering problems, 

and vector analysis is presented chiefly as a convenient tool.‡

Practical Applications Are Introduced Early. One of the characteris-

tics of the approach used in this book is that mechanics of particles is clearly 

separated from the mechanics of rigid bodies. This approach makes it possible 

to consider simple practical applications at an early stage and to postpone the 

introduction of the more difficult concepts. For example:

∙ In Statics, the statics of particles is treated first, and the principle of 

equilibrium of a particle was immediately applied to practical situations 

involving only concurrent forces. The statics of rigid bodies is considered 

later, at which time the vector and scalar products of two vectors were 

introduced and used to define the moment of a force about a point and 

about an axis.

∙ In Dynamics, the same division is observed. The basic concepts of force, 

mass, and acceleration, of work and energy, and of impulse and momen-

tum are introduced and first applied to problems involving only particles. 

Thus, students can familiarize themselves with the three basic methods 

used in dynamics and learn their respective advantages before facing the 

difficulties associated with the motion of rigid bodies.

New Concepts Are Introduced in Simple Terms. Since this text is 

designed for the first course in dynamics, new concepts are presented in simple 

terms and every step is explained in detail. On the other hand, by discussing 

the broader aspects of the problems considered, and by stressing methods of 

general applicability, a definite maturity of approach has been achieved. For 

example, the concept of potential energy is discussed in the general case of 

17.1  ENERGY METHODS FOR  
A RIGID BODY

We now use the principle of work and energy to analyze the plane motion of 

rigid bodies. As we pointed out in Chap. 13, the method of work and energy is 

particularly well-adapted to solving problems involving velocities and displace-

ments. Its main advantage is that the work of forces and the kinetic energy of 

objects are scalar quantities.

17.1A Principle of Work and Energy

To apply the principle of work and energy to the motion of a rigid body, we 

again assume that the rigid body is made up of a large number n of particles of 

mass Δmi. From Eq. (14.30) of Sec. 14.2B, we have

Principle of work  

and energy, rigid body

   T  1   +  U  1→2   =  T  2    (17.1)

where T1, T2 =  the initial and final values of total kinetic energy of particles 

forming the rigid body 

   U1→2 = work of all forces acting on various particles of the body

Just as we did in Chap. 13, we can express the work done by nonconserva-

tive forces as   U  1→2  
NC   , and we can define potential energy terms for conservative 

forces. Then we can express Eq. (17.1) as

   T  1   +  V   g  1     +  V   e  1     +  U  1→2  
NC   =  T  2   +  V   g  2     +  V   e  2      (17.1′)

where   V   g  1      and   V   g  2      are the initial and final gravitational potential energy of the 

center of mass of the rigid body with respect to a reference point or datum, and   

V   e  1      and   V   e  2      are the initial and final values of the elastic energy associated with 

springs in the system.

We obtain the total kinetic energy

1 n

Photo 17.1 The work done by friction 

reduces the kinetic energy of the wheel.  
©Richard McDowell/Alamy RF



Preface xv

a conservative force. Also, the study of the plane motion of rigid bodies is 

designed to lead naturally to the study of their general motion in space. This is 

true in kinematics as well as in kinetics, where the principle of equivalence of 

external and effective forces is applied directly to the analysis of plane motion, 

thus facilitating the transition to the study of three-dimensional motion.

Fundamental Principles Are Placed in the Context of Simple 
Applications. The fact that mechanics is essentially a deductive science 

based on a few fundamental principles is stressed. Derivations have been pre-

sented in their logical sequence and with all the rigor warranted at this level. 

However, the learning process being largely inductive, simple applications are 

considered first. For example:

∙ The kinematics of particles (Chap. 11) precedes the kinematics of rigid 

bodies (Chap. 15).

∙ The fundamental principles of the kinetics of rigid bodies are first applied 

to the solution of two-dimensional problems (Chaps. 16 and 17), which 

can be more easily visualized by the student, while three-dimensional 

problems are postponed until Chap. 18.

The Presentation of the Principles of Kinetics Is Unified. The 

twelfth edition of Vector Mechanics for Engineers retains the unified presenta-

tion of the principles of kinetics which characterized the previous eleven edi-

tions. The concepts of linear and angular momentum are introduced in Chap. 

12 so that Newton’s second law of motion can be presented not only in its con-

ventional form  F = ma, but also as a law relating, respectively, the sum of the 

forces acting on a particle and the sum of their moments to the rates of change 

of the linear and angular momentum of the particle. This makes possible an 

earlier introduction of the principle of conservation of angular momentum and 

a more meaningful discussion of the motion of a particle under a central force 

(Sec. 12.3A). More importantly, this approach can be readily extended to the 

study of the motion of a system of particles (Chap. 14) and leads to a more 

concise and unified treatment of the kinetics of rigid bodies in two and three 

dimensions (Chaps. 16 through 18).

Systematic Problem-Solving Approach. All the sample problems are 

solved using the steps of Strategy, Modeling, Analysis, and Reflect & Think, or 

the “SMART” approach. This methodology is intended to give students confi-

dence when approaching new problems, and students are encouraged to apply 

this approach in the solution of all assigned problems.

Free-Body Diagrams Are Used Both to Solve Equilibrium Problems 
and to Express the Equivalence of Force Systems. Free-body dia-

grams are introduced early in Statics, and their importance is emphasized 

throughout. They are used not only to solve equilibrium problems but also to 

express the equivalence of two systems of forces or, more generally, of two 

systems of vectors. In dynamics we will introduce a kinetic diagram, which 

is a pictorial representation of inertia terms. The advantage of this approach 

becomes apparent in the study of the dynamics of rigid bodies, where it is used 

to solve three-dimensional as well as two-dimensional problems. By placing 

the emphasis on the free-body diagram and kinetic diagram, rather than on the 

standard algebraic equations of motion, a more intuitive and more complete 

understanding of the fundamental principles of dynamics can be achieved. 

This approach, which was first introduced in 1962 in the first edition of Vector 

Mechanics for Engineers, has now gained wide acceptance among mechanics 

Sample Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces 

exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 

point A to the points of application of the various forces and resolve the 

forces into rectangular components. Then, sum the forces and moments.

MODELING and ANALYSIS: Note that FB = (700 N) λ BE,  

where

  λ BE   =   
  
⟶

 BE 
 ___ 

BE
   =   

75i − 150j + 50k
  _____________ 

175
   

Using meters and newtons, the position and force vectors are

   

 r B/A   =   
⟶

 AB  = 0.075i + 0.050k

  

  F B   = 300i − 600j + 200k

       r C/A   =   
⟶

 AC  = 0.075i − 0.050k    F C   = 707i − 707k     

 r D/A   =   
⟶

 AD  = 0.100i − 0.100j

  

  F D   = 600i + 1039j

   

The force-couple system at A equivalent to the given forces con-

sists of a force  R = ΣF  and a couple   M  A  
R  = Σ(r × F) . Obtain the force 

R by adding respectively the x, y, and z components of the forces:

 R = ΣF = (1607 N)i + (439 N)j − (507 N)k ◂ 

(continued)

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N

700 N

x

y

z

O

A
B

C

D

45°

45°

30°

60°

E(150 mm, –50 mm, 100 mm)

Remark: Because all the forces are contained in the plane of the figure, 

you would expect the sum of their moments to be perpendicular to that plane. 

Note that you could obtain the moment of each force component directly from 

the diagram by first forming the product of its magnitude and perpendicular 

distance to O and then assigning to this product a positive or a negative sign, 

depending upon the sense of the moment.

 b. Single Tugboat. The force exerted by a single tugboat must be equal to 

R, and its point of application A must be such that the moment of R about O is 

equal to   M  O  
R    (Fig. 3). Observing that the position vector of A is

 r = xi + 70j 

you have

   

r × R

  

=

  

 M  O  
R  

  

 

       (  xi + 70j )   ×  (  9.04i − 9.79j )     =  − 1035k       

 − x (  9.79 )  k − 633k 

  

=

  

− 1035k

  

 

  

REFLECT and THINK: Reducing the given situation to that of a single force 

makes it easier to visualize the overall effect of the tugboats in maneuvering the 

ocean liner. But in practical terms, having four boats applying force allows for 

greater control in slowing and turning a large ship in a crowded harbor.

 x = 41.1 ft ◂ 

Fig. 3 The point of application of 

a single tugboat to create the same 

effect as the given force system.

70 ft

x

9.04 i

–9.79 jR

A

O
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teachers in this country. It is, therefore, used in preference to the method of 

dynamic equilibrium and to the equations of motion in the solution of all sam-

ple problems in this book.

A Careful Balance between SI and U.S. Customary Units Is 
Consistently Maintained. Because of the current trend in the American 

government and industry to adopt the international system of units (SI metric 

units), the SI units most frequently used in mechanics are introduced in Chap. 

1 and are used throughout the text. Approximately half of the sample problems 

and 60 percent of the homework problems are stated in these units, while the 

remainder are in U.S. customary units. The authors believe that this approach 

will best serve the need of the students, who, as engineers, will have to be con-

versant with both systems of units.

It also should be recognized that using both SI and U.S. customary units 

entails more than the use of conversion factors. Since the SI system of units 

is an absolute system based on the units of time, length, and mass, whereas 

the U.S. customary system is a gravitational system based on the units of time, 

length, and force, different approaches are required for the solution of many 

problems. For example, when SI units are used, a body is generally specified 

by its mass expressed in kilograms; in most problems of statics it will be 

necessary to determine the weight of the body in newtons, and an additional 

calculation will be required for this purpose. On the other hand, when U.S. 

customary units are used, a body is specified by its weight in pounds and, in 

dynamics problems, an additional calculation will be required to determine its 

mass in slugs (or lb•s2/ft). The authors, therefore, believe that problem assign-

ments should include both systems of units.

The Instructor’s and Solutions Manual provides six different lists of 

assignments so that an equal number of problems stated in SI units and in 

U.S. customary units can be selected. If so desired, two complete lists of 

assignments can also be selected with up to 75 percent of the problems stated 

in SI units.

Optional Sections Offer Advanced or Specialty Topics. A large 

number of optional sections have been included. These sections are indicated 

by asterisks and thus are easily distinguished from those which form the core of 

the basic dynamics course. They can be omitted without prejudice to the under-

standing of the rest of the text.

The topics covered in the optional sections include graphical methods 

for the solution of rectilinear-motion problems, the trajectory of a particle 

under a central force, the deflection of fluid streams, problems involving jet 

and rocket propulsion, the kinematics and kinetics of rigid bodies in three 

dimensions, damped mechanical vibrations, and electrical analogues. These 

topics will be found of particular interest when dynamics is taught in the 

junior year.

The material presented in the text and most of the problems require no 

previous mathematical knowledge beyond algebra, trigonometry, elementary 

calculus, and the elements of vector algebra presented in Chaps. 2 and 3 of 

the volume on statics.† However, special problems are included, which make 

†Some useful definitions and properties of vector algebra have been summarized in Appendix 

A at the end of this volume for the convenience of the reader. Also, Secs. 9.5 and 9.6 of the 

volume on statics, which deal with the moments of inertia of masses, have been reproduced 

in Appendix B.
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use of a more advanced knowledge of calculus, and certain sections, such as 

Secs. 19.5A and 19.5B on damped vibrations, should be assigned only if 

students possess the proper mathematical background. In portions of the text 

using elementary calculus, a greater emphasis is placed on the correct under-

standing and application of the concepts of differentiation and integration, 

than on the nimble manipulation of mathematical formulas. In this connection, 

it should be mentioned that the determination of the centroids of composite 

areas precedes the calculation of centroids by integration, thus making it pos-

sible to establish the concept of moment of area firmly before introducing the 

use of integration.
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Guided Tour

Chapter Introduction. Each chapter begins with a list of learning objec-

tives and an outline that previews chapter topics. An introductory section 

describes the material to be covered in simple terms, and how it will be applied 

to the solution of engineering problems.

Chapter Lessons. The body of the text is divided into sections, each con-

sisting of one or more sub-sections, several sample problems, and a large num-

ber of end-of-section problems for students to solve. Each section corresponds 

to a well-defined topic and generally can be covered in one lesson. In a number 

of cases, however, the instructor will find it desirable to devote more than one 

lesson to a given topic. The Instructor’s and Solutions Manual contains sugges-

tions on the coverage of each lesson.

Sample Problems. The Sample Problems are set up in much the same 

form that students will use when solving assigned problems, and they employ 

the SMART problem-solving methodology that students are encouraged to use 

in the solution of their assigned problems. They thus serve the double purpose 

of reinforcing the text and demonstrating the type of neat and orderly work 

that students should cultivate in their own solutions. In addition, in-problem 

references and captions have been added to the sample problem figures for 

contextual linkage to the step-by-step solution. In the digital version, many 

Sample Problems now have simulations to help students visualize the problem. 

Enhanced digital content is indicated by a  within the text.

Solving Problems on Your Own. A section entitled Solving Problems 

on Your Own is included for each lesson, between the sample problems and 

the problems to be assigned. The purpose of these sections is to help students 

organize in their own minds the preceding theory of the text and the solution 

methods of the sample problems so that they can more successfully solve the 

homework problems. Also included in these sections are specific sugges-

tions and strategies that will enable the students to more efficiently attack any 

assigned problems.

 Case Studies. Statics and dynamics principles are used extensively in 

engineering applications, particularly for the designing of solutions to problems 

and for failure analysis when those solutions do not work as planned. Much 

can be learned from the historical successes and failures of past designs, and 

unique insight can be gained by studying how engineers developed different 

products and structures. To this end, real-world Case Studies have been intro-

duced in this revision to provide relevance and application to the principles of 

engineering mechanics being discussed. The Case Studies are developed using 

the SMART problem-solving methodology to present the story. In this way, 

they serve as both a practical illustration of the concepts linked to some real-

world situation and reinforce the consistent five-step approach to solving engi-

neering problems.

©Renato Bordoni/Alamy

1
The tallest skyscraper in the Western Hemisphere, One World Trade 

Center is a prominent feature of the New York City skyline. From its 

foundation to its structural components and mechanical systems, the 

design and operation of the tower is based on the fundamentals of 

engineering mechanics.

Introduction

Sample Problem 4.10

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD that has 

been bent as shown. The pipe is supported by ball-and-socket joints A and D, 

which are fastened, respectively, to the floor and to a vertical wall, and by a 

cable attached at the midpoint E of the portion BC of the pipe and at a point G 

on the wall. Determine (a) where G should be located if the tension in the cable 

is to be minimum, (b) the corresponding minimum value of the tension.

STRATEGY: Draw the free-body diagram of the pipe showing the reac-

tions at A and D. Isolate the unknown tension T and the known weight W by 
 summing moments about the diagonal line AD, and compute values from the 

equilibrium equations.

MODELING and ANALYSIS:

Free-Body Diagram. The free-body diagram of the pipe includes the load 

W = (–450 lb)j, the reactions at A and D, and the force T exerted by the cable 

(Fig. 1). To eliminate the reactions at A and D from the computations, take the 

sum of the moments of the forces about the line AD and set it equal to zero. 

Denote the unit vector along AD by λ, which enables you to write

    ΣM  AD   = 0:  λ · (  
⟶

 AE  × T) + λ · (  
⟶

 AC  × W) = 0   (1)

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

Fig. 1 Free-body diagram of the pipe.

A

B C DE

x

y

z

T

λ

Dxi

Dy j

Dzk

A x i

Ay j

A zk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

(continued)

CASE STUDY 1.1*

Located in Baltimore, Maryland, the Carrollton Viaduct is the oldest railroad 

bridge in North America and continues in revenue service today. Construction 

was completed and the bridge put into operation in 1829 by the Baltimore &  

Ohio Railroad. The structure includes the stone masonry arch shown in 

CS Photo 1.1, and spans 80 ft. Assuming that the span is solid granite having a 

unit weight of 170 lb/ft3, and that its dimensions can be approximated by those 

given in CS Fig. 1.1, let’s estimate the weight of this span.

*Adapted from American Railway Engineering Association, Bulletin 732, October 1991, p. 221.

CS Photo 1.1 The Carrollton Viaduct in Baltimore, MD.

AREA Bulletin 732 Volume 92 (October 1991)

(continued)

STRATEGY:

First calculate the volume of the span, and then multiply this volume by the unit 

weight.
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In this chapter, we have studied the effect of forces on particles, i.e., on bodies 

of such shape and size that we may assume all forces acting on them apply at 

the same point.

Resultant of Two Forces
Forces are vector quantities; they are characterized by a point of application, 

a magnitude, and a direction, and they add according to the parallelogram law 

(Fig. 2.30). We can determine the magnitude and direction of the resultant R 

of two forces P and Q either graphically or by trigonometry using the law of 

cosines and the law of sines (Sample Prob. 2.1).

Components of a Force
Any given force acting on a particle can be resolved into two or more compo-

nents, i.e., it can be replaced by two or more forces that have the same effect 

on the particle. A force F can be resolved into two components P and Q by 

drawing a parallelogram with F for its diagonal; the components P and Q are 

then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 

Again, we can determine the components either graphically or by trigonometry 

(Sec. 2.1E).

Review and Summary

Fig. 2.30

Q

R

P

A

Rectangular Components; Unit Vectors
A force F is resolved into two rectangular components if its components Fx and 

Fy are perpendicular to each other and are directed along the coordinate axes 

(Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, respec-

tively, we can write the components and the vector as (Sec. 2.2A)

   F x   =  F x   i    F y   =  F y   j  (2.6)

and

   F =  F x   i +  F y   j   (2.7)

where Fx and Fy are the scalar components of F. These components, which can 

be positive or negative, are defined by the relations

   F x   = F cos θ    F y   = F sin θ  (2.8)

Fig. 2.31

Q
F

P

A

Fig. 2.32

F

x

y

Fy = Fy j

Fx = Fx i

j

i

θ

 In some instances, these Case Studies are examined further 

in the accompanying digital content through Connect®. The 

digital content also provides additional cases that are devel-

oped in their entirety.

Homework Problem Sets. Most of the problems 

are of a practical nature and should appeal to engineering 

students. They are primarily designed, however, to illus-

trate the material presented in the text and to help students 

understand the principles of mechanics. The problems are 

grouped according to the portions of material they illustrate 

and, in general, are arranged in order of increasing diffi-

culty. Problems requiring special attention are indicated by 

asterisks. Answers to 70 percent of the problems are given 

at the end of the book. Problems for which the answers are 

given are set in straight type in the text, while problems for 

which no answer is given are set in italic and red font color.

Chapter Review and Summary. Each chapter ends with 

a review and summary of the material covered in that chapter. 

Marginal notes are used to help students organize their review 

work, and cross-references have been included to help them 

find the portions of material requiring their special attention.
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 2.127 Two forces P and Q are applied to the lid of a storage bin as shown. 

Knowing that P = 48 N and Q = 60 N, determine by trigonometry the 

magnitude and direction of the resultant of the two forces.

 2.128 Determine the x and y components of each of the forces shown.

Review Problems

 2.129 A hoist trolley is subjected to the three forces shown. Knowing that  

α = 40° , determine (a) the required magnitude of the force P if the 

resultant of the three forces is to be vertical, (b) the corresponding 

magnitude of the resultant.

 2.130 Knowing that  α = 55°  and that boom AC exerts on pin C a force 

directed along line AC, determine (a) the magnitude of that force,  

(b) the tension in cable BC.

Fig. P2.127

A

55°

25°

85°

P

Q

Fig. P2.128

80 N

120 N

150 N
30°

35°
40°

y

x

Fig. P2.129

α

α

200 lb

400 lb

P

Fig. P2.130

30° 20°

α

300 lb

A

B

C

†Hestenes, D., Wells, M., and Swakhamer, G (1992). The force concept inventory. The  Physics 

Teacher, 30: 141–158.

Streveler, R. A., Litzinger, T. A., Miller, R. L., and Steif, P. S. (2008). Learning conceptual 

knowledge in the engineering sciences: Overview and future research directions, JEE, 279–294.

 

Approximately 300 of the homework problems in the 

text are new or revised.

NEW!
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Review Problems. A set of review problems is included at the end of each 

chapter. These problems provide students further opportunity to apply the most 

important concepts introduced in the chapter.

Concept Questions. Educational research has shown that students can often 

choose appropriate equations and solve algorithmic problems without having 

a strong conceptual understanding of mechanics principles.† To help assess and 

develop student conceptual understanding, we have included Concept Questions, 

which are multiple choice problems that require few, if any, calculations. Each pos-

sible incorrect answer typically represents a common misconception (e.g., students 

often think that a vehicle moving in a curved path at constant speed has zero accel-

eration). Students are encouraged to solve these problems using the principles and 

techniques discussed in the text and to use these principles to help them develop 

their intuition. Mastery and discussion of these Concept Questions will deepen 

students’ conceptual understanding and help them to solve dynamics problems.

Free Body and Impulse-Momentum Diagram Practice Problems.  
Drawing diagrams correctly is a critical step in solving kinetics problems in 

dynamics. A new type of problem has been added to the text to emphasize the 

importance of drawing these diagrams. In Chaps. 12 and 16 

the Free Body Practice Problems require students to draw a 

free-body diagram (FBD) showing the applied forces and an 

equivalent diagram called a “kinetic diagram” (KD) showing 

ma or its components and  Īα. These diagrams provide stu-

dents with a pictorial representation of Newton’s second law 

and are critical in helping students to correctly solve kinetic 

problems. In Chaps. 13 and 17 the Impulse-Momentum 

Diagram Practice Problems require students to draw dia-

grams showing the momenta of the bodies before impact, the 

impulses exerted on the body during impact, and the final 

momenta of the bodies. The answers to all of these questions 

can be accessed through Connect.

Computer Problems. Accessible through Connect are 

problem sets for each chapter that are designed to be solved 

with computational software. Many of these problems are 

relevant to the design process; they may involve the analysis 

of a structure for various configurations and loadings of the 

structure, or the determination of the equilibrium positions of 

a given mechanism that may require an iterative method of 

solution. Developing the algorithm required to solve a given 

mechanics problem will benefit the students in two different 

ways: (1) it will help them gain a better understanding of the 

mechanics principles involved; (2) it will provide them with 

an opportunity to apply their computer skills to the solution 

of a meaningful engineering problem. 1137

FREE-BODY PRACTICE PROBLEMS

 16.F1 A 6-ft board is placed in a truck with one end resting against a block 

secured to the floor and the other leaning against a vertical partition. 

Draw the FBD and KD necessary to determine the maximum allow-

able acceleration of the truck if the board is to remain in the position 

shown.

 16.F2 A uniform circular plate of mass 3 kg is attached to two links AC and 

BD of the same length. Knowing that the plate is released from rest in 

the position shown, in which lines joining G to A and B are, respec-

tively, horizontal and vertical, draw the FBD and KD for the plate.

C

A

D

B

G

75°

75°

Fig. P16.F2

 16.F3 Two uniform disks and two cylinders are assembled as indicated. Disk 

A weighs 20 lb and disk B weighs 12 lb. Knowing that the system is 

released from rest, draw the FBD and KD for the whole system.

18 lb15 lb

6 in.8 in.

B

C D

A

Fig. P16.F3

 16.F4 The 400-lb crate shown is lowered by means of two overhead cranes. 

Knowing the tension in each cable, draw the FBD and KD that can be 

used to determine the angular acceleration of the crate and the accel-

eration of the center of gravity.

A

B

78°

Fig. P16.F1

TA TB

6.6 ft

3.6 ft

3.3 ft

1.8 ft

A

G

B

Fig. P16.F4
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Connect® is a highly reliable, easy-to-use home-

work and learning management solution that 

embeds learning science and award-winning adap-

tive tools to improve student results.

Analytics Connect Insight is Connect’s one-

of-a-kind visual analytics dashboard. Now avail-

able for both instructors and students, it provides 

at-a-glance information regarding student performance, which is immediately 

actionable. By presenting assignment, assessment, and topical performance 

results together with a time metric that is easily visible for aggregate or indi-

vidual results, Connect InSight gives the user the ability to take a just-in-time 

approach to teaching and learning, which was never before available. Connect 

Insight presents data that empower students and help instructors improve class 

performance in a way that is efficient and effective.

Autograded Free-Body Diagram Problems

∙ Within Connect, algorithmic end-of-chapter problems include our new 

Free-Body Diagram Drawing tool. The Free-Body Diagram Tool allows 

students to draw free-body diagrams that are auto graded by the system. Stu-

dent’s receive immediate feedback on their diagrams to help student’s solid-

ify their understanding of the physical situation presented in the problem.

Case Study Interactives

 New digital content has been added throughout the text to enhance student 

learning. This includes a more in-depth discussion of the new Case Studies, 

as well as interactive questions embedded in these video explorations to make 

students think about the problem rather than just viewing the video. Within 

the text, simulations and short videos have been added to help students visual-

ize topics, such as zero-force members and the motion of different linkages.

Find the following instructor resources available through Connect:

∙ Instructor’s and Solutions Manual. The Instructor’s and Solutions 

Manual that accompanies the eleventh edition features solutions to all 

end of chapter problems. This manual also features a number of tables 

designed to assist instructors in creating a schedule of assignments for 

their course. The various topics covered in the text have been listed in 

Table I and a suggested number of periods to be spent on each topic has 

been indicated. Table II prepares a brief description of all groups of prob-

lems and a classification of the problems in each group according to the 

units used. Sample lesson schedules are shown in Tables III, IV, and V, 

together with various alternative lists of assigned homework problems.

∙ Lecture PowerPoint Slides for each chapter that can be modified. These 

generally have an introductory application slide, animated worked-out 

problems that you can do in class with your students, concept questions, 

and “what-if?” questions at the end of the units.

Digital Resources

NEW!
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∙ Textbook images

∙ Computer Problem sets for each chapter that are designed to be solved 

with computational software.

∙ C.O.S.M.O.S., the Complete Online Solutions Manual Organization 

 System that allows instructors to create custom homework, quizzes, and 

tests using end-of-chapter problems from the text.

SmartBook helps students study 

more efficiently by highlighting 

where in the chapter to focus, asking review questions and pointing them to 

resources until they understand.
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 a, a Acceleration

 a Constant; radius; distance; semimajor axis of ellipse

   a ¯   ,    a ¯    Acceleration of mass center

 aB/A Acceleration of B relative to frame in translation with A

 aP/ℱ Acceleration of P relative to rotating frame ℱ

 ac Coriolis acceleration

 A, B, C, . . . Reactions at supports and connections

 A, B, C, . . . Points

 A Area

 b Width; distance; semiminor axis of ellipse

 c Constant; coefficient of viscous damping

 C Centroid; instantaneous center of rotation; capacitance

 d Distance

 en, et Unit vectors along normal and tangent

 er, eθ Unit vectors in radial and transverse directions

 e Coefficient of restitution; base of natural logarithms

 E Total mechanical energy; voltage

 f Scalar function

 ff Frequency of forced vibration

 fn Natural frequency

 F Force; friction force

 g Acceleration of gravity

 G Center of gravity; mass center; constant of gravitation

 h Angular momentum per unit mass

 HO Angular momentum about point O

    H ˙    G    Rate of change of angular momentum HG  

with respect to frame of fixed orientation

   (  H ˙    G   )  Gxyz    Rate of change of angular momentum HG with respect to 

rotating frame Gxyz

 i, j, k Unit vectors along coordinate axes

 i Current

 I, Ix, . . . Moments of inertia

    I ̄    Centroidal moment of inertia

 Ixy, . . . Products of inertia

 J Polar moment of inertia

 k Spring constant

 kx, ky, kO Radii of gyration

   k ¯    Centroidal radius of gyration

 l Length

 L Linear momentum

 L Length; inductance

 m Mass

 m′ Mass per unit length

 M Couple; moment

 MO Moment about point O

   M  O  
R
   Moment resultant about point O

List of Symbols
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 M Magnitude of couple or moment; mass of earth

 MOL Moment about axis OL

 n Normal direction

 N Normal component of reaction

 O Origin of coordinates

 P Force; vector

   P ˙    Rate of change of vector P with respect to frame of fixed 

orientation

 q Mass rate of flow; electric charge

 Q Force; vector

   Q ˙    Rate of change of vector Q with respect to frame of fixed 

orientation

   ( Q ˙   )  Oxyz    Rate of change of vector Q with respect to frame Oxyz

 r Position vector

 rB/A Position vector of B relative to A

 r Radius; distance; polar coordinate

 R Resultant force; resultant vector; reaction

 R Radius of earth; resistance

 s Position vector

 s Length of arc

 t Time; thickness; tangential direction

 T Force

 T Tension; kinetic energy

 u Velocity

 u Variable

 U Work

   U  1−2  
NC

    work done by non-conservative forces

 v, v Velocity

 v Speed

   v ¯  ,   v ¯    Velocity of mass center

  vB/A Velocity of B relative to frame in translation with A

 vP/ℱ Velocity of P relative to rotating  

frame ℱ

 V Vector product

 V Volume; potential energy

 w Load per unit length

 W, W Weight; load

 x, y, z Rectangular coordinates; distances

   x ˙  ,  y ˙  ,  z ˙    Time derivatives of coordinates x, y, z

   x ̄  ,   y ¯  ,   z ̄    Rectangular coordinates of centroid, center of gravity, or mass 

center

 α, α Angular acceleration

 α, β, γ Angles

 γ Specific weight

 δ Elongation

 ε Eccentricity of conic section or of orbit

 λ Unit vector along a line

 η Efficiency

 θ Angular coordinate; Eulerian angle; angle; polar 

coordinate

 μ Coefficient of friction

 ρ Density; radius of curvature

 τ Periodic time



List of Symbols xxix

 τn Period of free vibration

 ϕ Angle of friction; Eulerian angle; phase angle; angle

 φ Phase difference

 ψ Eulerian angle

 ω, ω Angular velocity

 ωf Circular frequency of forced vibration

 ωn Natural circular frequency

 Ω Angular velocity of frame of reference
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11
The motion of the paraglider can be described in terms of its position, 

velocity, and acceleration. When landing, the pilot of the paraglider 

needs to consider the wind velocity and the relative motion of the glider 

with respect to the wind. The study of motion is known as kinematics 

and is the subject of this chapter.

Kinematics of Particles
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Introduction

Chaps. 1 to 10 were devoted to statics; that is, to the analysis of bodies at rest. 

We now begin the study of dynamics, which is the part of mechanics that deals 

with the analysis of bodies in motion.

Although the study of statics goes back to the time of the Greek phi-

losophers, the first significant contribution to dynamics was made by Galileo 

(1564–1642). Galileo’s experiments on uniformly accelerated bodies led 

Newton (1642–1727) to formulate his fundamental laws of motion. 

Dynamics includes two broad areas of study:

 1. Kinematics, which is the study of the geometry of motion. The prin-

ciples of kinematics relate the displacement, velocity, acceleration, 

and time of a body’s motion, without reference to the cause of the 

motion.

 2. Kinetics, which is the study of the relation between the forces acting on 

a body, the mass of the body, and the motion of the body. We use kinetics 

to predict the motion caused by given forces or to determine the forces 

required to produce a given motion.

Chaps. 11 through 14 describe the dynamics of particles; in Chap. 11, 

we consider the kinematics of particles. The use of the word particles does 

not mean that our study is restricted to small objects; rather, it indicates that in 

these first chapters we study the motion of bodies—possibly as large as cars, 

rockets, or airplanes—without regard to their size or shape. By saying that we 

analyze the bodies as particles, we mean that we consider only their motion as 

an entire unit; we neglect any rotation about their own centers of mass. In some 

cases, however, such a rotation is not negligible, and we cannot treat the bod-

ies as particles. Such motions are analyzed in later chapters dealing with the 

dynamics of rigid bodies.

Objectives
 • Describe the basic kinematic relationships between 

 position, velocity, acceleration, and time.

 • Solve problems using these basic kinematic relationships 

and calculus or graphical methods.

 • Define position, velocity, and acceleration in terms of 

Cartesian, tangential and normal, and radial and transverse 

coordinates.

 • Analyze the relative motion of multiple particles by using a 

translating coordinate system.

 • Determine the motion of a particle that depends on the 

motion of another particle.

 • Determine which coordinate system is most appropriate 

for solving a curvilinear kinematics problem.

 • Calculate the position, velocity, and acceleration of a 

 particle undergoing curvilinear motion using Cartesian, 

 tangential and normal, and radial and transverse 

coordinates.

Introduction

 11.1 RECTILINEAR MOTION 

OF PARTICLES

 11.1A Position, Velocity, and 

Acceleration

 11.1B Determining the Motion of a 

Particle

 11.2 SPECIAL CASES AND 

RELATIVE MOTION

 11.2A Uniform Rectilinear Motion

 11.2B Uniformly Accelerated 

Rectilinear Motion

 11.2C Motion of Several Particles

 *11.3 GRAPHICAL SOLUTIONS

 11.4 CURVILINEAR MOTION 

OF PARTICLES

 11.4A Position, Velocity, and 

Acceleration Vectors

 11.4B Derivatives of Vector 

Functions

 11.4C Rectangular Components of 

Velocity and Acceleration

 11.4D Motion Relative to a Frame in 

Translation

 11.5 NON-RECTANGULAR 

COMPONENTS

 11.5A Tangential and Normal 

Components

 11.5B Radial and Transverse 

Components
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In the first part of Chap. 11, we describe the rectilinear motion of a par-

ticle; that is, we determine the position, velocity, and acceleration of a particle 

at every instant as it moves along a straight line. We first use general methods 

of analysis to study the motion of a particle; we then consider two important 

particular cases, namely, the uniform motion and the uniformly accelerated 

motion of a particle (Sec. 11.2). We then discuss the simultaneous motion of 

several particles and introduce the concept of the relative motion of one particle 

with respect to another. The first part of this chapter concludes with a study of 

graphical methods of analysis and their application to the solution of problems 

involving the rectilinear motion of particles.

In the second part of this chapter, we analyze the motion of a particle as it 

moves along a curved path. We define the position, velocity, and acceleration of 

a particle as vector quantities and introduce the derivative of a vector function 

to add to our mathematical tools. We consider applications in which we define 

the motion of a particle by the rectangular components of its velocity and accel-

eration; at this point, we analyze the motion of a projectile (Sec. 11.4C). Then, 

we examine the motion of a particle relative to a reference frame in translation. 

Finally, we analyze the curvilinear motion of a particle in terms of components 

other than rectangular. In Sec. 11.5, we introduce the tangential and normal 

components of an object’s velocity and acceleration, and then examine the radial 

and transverse components of an object’s motion.

11.1  RECTILINEAR MOTION 
OF PARTICLES

A particle moving along a straight line is said to be in rectilinear motion. The only 

variables we need to describe this motion are the time, t, and the  distance along 

the line, x, as a function of time. With these variables, we can define the  particle’s 

position, velocity, and acceleration, which  completely  describe the  particle’s 

motion. When we study the motion of a particle  moving in a plane (two dimensions) 

or in space (three dimensions), we will use a more general position vector rather 

than simply the distance along a line.

11.1A Position, Velocity, and Acceleration

At any given instant t, a particle in rectilinear motion occupies some position 

on the straight line. To define the particle’s position P, we choose a fixed origin 

O on the straight line and a positive direction along the line. We measure the 

distance x from O to P and record it with a plus or minus sign, according to 

whether we reach P from O by moving along the line in the positive or nega-

tive direction. The distance x, with the appropriate sign, completely defines the 

position of the particle; it is called the position coordinate of the particle. For 

example, the position coordinate corresponding to P in Fig. 11.1a is x = +5 m; 

the coordinate corresponding to P′ in Fig. 11.1b is x′ = −2 m.

When we know the position coordinate x of a particle for every value of 

time t, we say that the motion of the particle is known. We can provide a “time-

table” of the motion in the form of an equation in x and t, such as x = 6t2 − t3, or 

in the form of a graph of x versus t, as shown in Fig. 11.6. The units most often 

used to measure the position coordinate x are the meter (m) in the SI system of 

units† and the foot (ft) in the U.S. customary system of units. Time t is usually 

measured in seconds (s).

Fig. 11.1 Position is measured from a fixed 

origin. (a) A positive position coordinate;  

(b) a negative position coordinate.

O

O

P

x

x

(a)

(b)

1 m

P′

x′

x

1 m

†See Sec. 1.3.
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Now consider the position P occupied by the particle at time t and the 

corresponding coordinate x (Fig. 11.2). Consider also the position P′ occupied 

by the particle at a later time t + Δt. We can obtain the position coordinate of 

P′ by adding the small displacement Δx to the coordinate x of P. This displace-

ment is positive or negative according to whether P′ is to the right or to the left 

of P. We define the average velocity of the particle over the time interval Δt as 

the quotient of the displacement Δx and the time interval Δt as

  Average velocity =   
Δx

 ___ 
Δt

   

If we use SI units, Δx is expressed in meters and Δt in seconds; the average 

velocity is then expressed in meters per second (m/s). If we use U.S. customary 

units, Δx is expressed in feet and Δt in seconds; the average velocity is then 

expressed in feet per second (ft/s).

We can determine the instantaneous velocity v of a particle at the instant 

t by allowing the time interval Δt to become infinitesimally small. Thus,

  Instantaneous velocity = v =   lim  
Δt→0

     
Δx

 ___ 
Δt

   

The instantaneous velocity is also expressed in m/s or ft/s. Observing that the 

limit of the quotient is equal, by definition, to the derivative of x with respect 

to t, we have

Velocity of a particle  

along a line

  v =   
dx

 ___ 
dt

    (11.1)

We represent the velocity v by an algebraic number that can be positive or 

 negative.‡ A positive value of v indicates that x increases, i.e., that the  particle 

moves in the positive direction (Fig. 11.3a). A negative value of v indicates that 

x decreases; that is, that the particle moves in the negative direction (Fig. 11.3b). 

The magnitude of v is known as the speed of the particle.

Consider the velocity v of the particle at time t and also its velocity 

v + Δv at a later time t + Δt (Fig. 11.4). We define the average acceleration of 

the particle over the time interval Δt as the quotient of Δv and Δt as

  Average acceleration =   
Δv

 ___ 
Δt

   

If we use SI units, Δv is expressed in m/s and Δt in seconds; the average acceler-

ation is then expressed in m/s2. If we use U.S. customary units, Δv is expressed 

in ft/s and Δt in seconds; the average acceleration is then expressed in ft/s2.

We obtain the instantaneous acceleration a of the particle at the instant 

t by again allowing the time interval Δt to approach zero. Thus,

  Instantaneous acceleration = a =   lim  
Δt→0

     
Δv

 ___ 
Δt

   

Fig. 11.2 A small displacement Δx from 

time t to time t + Δt.

O

P
x

x(t) (t + Δt)

P'
Δx

Photo 11.1 The motion of this solar car can 

be described by its position, velocity, and 

acceleration. 

Source: Stefano Paltera/NREL

‡As you will see in Sec. 11.4A, velocity is actually a vector quantity. However, because we are 

considering here the rectilinear motion of a particle where the velocity has a known and fixed 

direction, we need only specify its sense and magnitude. We can do this conveniently by using 

a scalar quantity with a plus or minus sign. This is also true of the acceleration of a particle in 

rectilinear motion.

Fig. 11.3 In rectilinear motion, velocity 

can be only (a) positive or (b) negative along 

the line.

(a)

(b)

P

P

x

x

v > 0

v < 0

Fig. 11.4 A change in velocity from v to 

v + Δv corresponding to a change in time 

from t to t + Δt.

(t) (t + Δt)

v + ΔvP'P

x

v
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The instantaneous acceleration is also expressed in m/s2 or ft/s2. The limit of the 

quotient, which is by definition the derivative of v with respect to t, measures 

the rate of change of the velocity. We have

Acceleration of a particle  

along a line

  a =   
dv

 ___ 
dt

    (11.2)

or substituting for v from Eq. (11.1),

  a =   
 d  2 x

 ___ 
d t  2 

    (11.3)

We represent the acceleration a by an algebraic number that can be positive or 

negative (see the footnote on the preceding page). A positive value of a indi-

cates that the velocity (i.e., the algebraic number v) increases. This may mean 

that the particle is moving faster in the positive direction (Fig. 11.5a) or that 

it is moving more slowly in the negative direction (Fig. 11.5b); in both cases, 

Δv is positive. A negative value of a indicates that the velocity decreases; either 

the particle is moving more slowly in the positive direction (Fig. 11.5c), or it is 

moving faster in the negative direction (Fig. 11.5d).

Sometimes we use the term deceleration to refer to a when the speed 

of the particle (i.e., the magnitude of v) decreases; the particle is then moving 

more slowly. For example, the particle of Fig. 11.5 is decelerating in parts b and c; 

it is truly accelerating (i.e., moving faster) in parts a and d.

We can obtain another expression for the acceleration by eliminating 

the differential dt in Eqs. (11.1) and (11.2). Solving Eq. (11.1) for dt, we have 

dt = dx/v; substituting into Eq. (11.2) gives us

  a = v  
dv

 ___ 
dx

    (11.4)

Fig. 11.5 Velocity and acceleration can be in the same or different directions. (a, d) 

When a and v are in the same direction, the particle speeds up; (b, c) when a and v  

are in opposite directions, the particle slows down.

v

P

x

P'

v'

a > 0

(a)

x

v

PP'

v'

a > 0

(b)

x

v

P P'

v'

a < 0

(c)

x

v

PP'

v'

a < 0

(d)
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Concept Application 11.1

Consider a particle moving in a straight line, and assume that its position is 

defined by

  x = 6  t  2  −  t  3  

where t is in seconds and x in meters. We can obtain the velocity v at any time t 

by differentiating x with respect to t as

  v =   
dx

 ___ 
dt

   = 12t − 3 t  2  

We can obtain the acceleration a by differentiating again with respect to t. 

Hence,

  a =   
dv

 ___ 
dt

   = 12 − 6t 

In Fig. 11.6, we have plotted the position coordinate, the velocity, and the accel-

eration. These curves are known as motion curves. Keep in mind, however, that 

the particle does not move along any of these curves; the particle moves in a 

straight line.

Because the derivative of a function measures the slope of the corre-

sponding curve, the slope of the x–t curve at any given time is equal to the 

value of v at that time. Similarly, the slope of the v–t curve is equal to the 

value of a. Because a = 0 at t = 2 s, the slope of the v–t curve must be zero at 

t = 2 s; the velocity reaches a maximum at this instant. Also, because v = 0 

at t = 0 and at t = 4 s, the tangent to the x–t curve must be horizontal for both 

of these values of t.

A study of the three motion curves of Fig. 11.6 shows that the motion of 

the particle from t = 0 to t = ∞ can be divided into four phases:

 1. The particle starts from the origin, x = 0, with no velocity but with 

a positive acceleration. Under this acceleration, the particle gains a 

positive velocity and moves in the positive direction. From t = 0 to 

t = 2 s, x, v, and a are all positive.

 2. At t = 2 s, the acceleration is zero; the velocity has reached its maxi-

mum value. From t = 2 s to t = 4 s, v is positive, but a is negative. 

The particle still moves in the positive direction but more slowly; the 

particle is decelerating.

 3. At t = 4 s, the velocity is zero; the position coordinate x has reached 

its maximum value (32 m). From then on, both v and a are negative; 

the particle is accelerating and moves in the negative direction with 

increasing speed.

 4. At t = 6 s, the particle passes through the origin; its coordinate x is 

then zero, while the total distance traveled because the beginning of 

the motion is 64 m (i.e., twice its maximum value). For values of t 

larger than 6 s, x, v, and a are all negative. The particle keeps moving 

in the negative direction—away from O—faster and faster.

Fig. 11.6 Graphs of position, velocity, 

and acceleration as functions of time 

for Concept Application 11.1.
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11.1B  Determining the Motion  
of a Particle

We have just seen that the motion of a particle is said to be known if we know 

its position for every value of the time t. In practice, however, a motion is sel-

dom defined by a relation between x and t. More often, the conditions of the 

motion are specified by the type of acceleration that the particle possesses. 

For example, a freely falling body has a constant acceleration that is directed 

downward and equal to 9.81 m/s2 or 32.2 ft/s2, a mass attached to a stretched 

spring has an acceleration proportional to the instantaneous elongation of the 

spring measured from its equilibrium position, etc. In general, we can express 

the acceleration of the particle as a function of one or more of the variables x, 

v, and t. Thus, in order to determine the position coordinate x in terms of t, we 

need to perform two successive integrations.

Let us consider three common classes of motion.

 1. a = f (t). The Acceleration Is a Given Function of t. Solving Eq. (11.2) 

for dv and substituting f (t) for a, we have

  dv = a dt

 dv = f (t)dt 

  Integrating both sides of the equation, we obtain

  ∫ dv = ∫  f   (  t )   dt  

  This equation defines v in terms of t. Note, however, that an arbitrary 

constant is introduced after the integration is performed. This is due to 

the fact that many motions correspond to the given acceleration a = f (t). 

In order to define the motion of the particle uniquely, it is necessary to 

specify the initial conditions of the motion; that is, the value v0 of the 

velocity and the value x0 of the position coordinate at t = 0. Rather than 

use an arbitrary constant that is determined by the initial conditions, it 

is often more convenient to replace the indefinite integrals with  definite 

integrals. Definite integrals have lower limits corresponding to the  initial 

conditions t = 0 and v = v0 and upper limits corresponding to t = t and 

v = v. This gives us

    

 ∫ 
 v  0  

  
v

   dv 

  

=

  

 ∫ 
0

  
t

  f   (  t )   dt  

   

v −  v  0  

  

=

  

 ∫ 
0

  
t

  f  (  t )   dt  

   

  which yields v in terms of t.

We can now solve Eq. (11.1) for dx as

  dx = v dt 

  and substitute the expression obtained from the first integration for v. 

Then, we integrate both sides of this equation via the left-hand side with 

respect to x from x = x0 to x = x and the right-hand side with respect to 

t from t = 0 to t = t. In this way, we obtain the position coordinate x in 

terms of t; the motion is completely determined.

We will study two important cases in greater detail in Sec. 11.2: the 

case when a = 0, corresponding to a uniform motion, and the case when 

a = constant, corresponding to a uniformly accelerated motion.
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 2. a = f (x). The Acceleration Is a Given Function of x. Rearranging 

Eq. (11.4) and substituting f (x) for a, we have

  v dv = a dx

  v dv = f  (  x )  dx  

  Because each side contains only one variable, we can integrate the equa-

tion. Denoting again the initial values of the velocity and of the position 

coordinate by v0 and x0, respectively, we obtain

    

 ∫ 
 v  0  

  
v

   v dv 

  

=

  

 ∫ 
 x  0  

  
x

   f  (x) dx  

   

  
1
 __ 

2
    v  2  −   

1
 __ 

2
    v  0  

2 

  

=

  

 ∫ 
 x  0  

  
x

   f  (x) dx  

  

  which yields v in terms of x. We now solve Eq. (11.1) for dt, giving us

  dt =   
dx

 ___ 
v
   

  and substitute for v the expression just obtained. We can then integrate 

both sides to obtain the desired relation between x and t. However, in 

most cases, this last integration cannot be performed analytically, and we 

must resort to a numerical method of integration.

 3. a = f (v). The Acceleration Is a Given Function of v. We can now sub-

stitute f (v) for a in either Eqs. (11.2) or (11.4) to obtain either

   

f (v)

  

=

  

  
dv

 ___ 
dt

     

  

f (v)

  

=

  

v  
dv

 ___ 
dx

  

   

dt

  

=

  

  
dv

 ____ 
f (v)

    

  

dx

  

=

  

  
v dv

 ____ 
f (v)

  

  

  Integration of the first equation yields a relation between v and t; integra-

tion of the second equation yields a relation between v and x. Either of 

these relations can be used in conjunction with Eq. (11.1) to obtain the 

relation between x and t that characterizes the motion of the particle.
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Sample Problem 11.1

The position of a particle moving along a straight line is defined by the relation 

x = t3 − 6t2 − 15t + 40, where x is expressed in feet and t in seconds. Determine 

(a) the time at which the velocity is zero, (b) the position and distance trav-

eled by the particle at that time, (c) the acceleration of the particle at that time, 

(d) the distance traveled by the particle from t = 4 s to t = 6 s.

STRATEGY: You need to use the basic kinematic relationships between 

position, velocity, and acceleration. Because the position is given as a function 

of time, you can differentiate it to find equations for the velocity and accelera-

tion. Once you have these equations, you can solve the problem.

MODELING and ANALYSIS: Taking the derivative of position, you obtain

  x =  t  3  − 6  t  2  − 15t + 40  (1)

  v =   
dx

 ___ 
dt

   = 3  t  2  − 12t − 15  (2)

  a =   
dv

 ___ 
dt

   = 6t − 12  (3)

These equations are graphed in Fig. 1.

 a. Time When v = 0. Set v = 0 in Eq. (2) for

       3 t  2  − 12t − 15 = 0  t = − 1 s  and t = +5 s ◂ 

Only the root t = +5 s corresponds to a time after the motion has begun: for 

t < 5 s, v < 0 and the particle moves in the negative direction; for t > 5 s, v > 0 

and the particle moves in the positive direction.

 b. Position and Distance Traveled When v = 0. Substitute t = +5 s 

into Eq. (1), yielding

    x  5   =  (5)  3  − 6  (  5 )    2  − 15  (  5 )   + 40   x  5   = − 60 ft ◂ 

The initial position at t = 0 was x0 = +40 ft. Because v ≠ 0 during the interval 

t = 0 to t = 5 s, you have

 Distance traveled =  x  5   −  x  0   = − 60 ft − 40 ft = − 100 ft 

  Distance traveled = 100 ft in the negative direction ◂ 

 c. Acceleration When v = 0. Substitute t = +5 s into Eq. (3) for

   a  5   = 6(5 )   − 12  a  5   = +18  ft/s  2  ◂ 

 d. Distance Traveled from t = 4 s to t = 6 s. The particle moves in 

the negative direction from t = 4 s to t = 5 s and in the positive direction from 

t = 5 s to t = 6 s; therefore, the distance traveled during each of these time inter-

vals must be computed separately.

From  t = 4 s to t = 5 s:   x  5   = − 60 ft 

  x  4   =   (  4 )    3  − 6  (  4 )    2  − 15  (  4 )   + 40 = − 52 ft  

(continued)

Fig. 1 Motion curves for the particle.
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Distance traveled

  
=

  
 x  5   −  x  4   = − 60 ft −   (  −52 ft )   = − 8 ft 

     
 
  

=
  
8 ft in the negative direction

   

From  t = 5 s to t = 6 s:   x  5   = − 60 ft 

    

 x  6  

  

=

  

   (  6 )     3  − 6  (  6 )    2  − 15  (  6 )    + 40 = − 50 ft

      Distance traveled  =   x  6   −  x  5   = − 50 ft −   (  −60 ft )   = +10 ft      

 

  

=

  

10 ft in the positive direction

   

Total distance traveled from t = 4 s to t = 6 s is 8 ft + 10 ft  = 18 ft

REFLECT and THINK: The total distance traveled by the particle in the 

two-second interval is 18 ft, but because one distance is positive and one is 

negative, the net change in position is only 2 ft (in the positive direction). This 

illustrates the difference between total distance traveled and net change in posi-

tion. Note that the maximum displacement occurs at t = 5 s, when the velocity 

is zero.

Sample Problem 11.2

You throw a ball vertically upward with a velocity of 10 m/s from a window 

located 20 m above the ground. Knowing that the acceleration of the ball is 

constant and equal to 9.81 m/s2 downward, determine (a) the velocity v and 

elevation y of the ball above the ground at any time t, (b) the highest elevation 

reached by the ball and the corresponding value of t, (c) the time when the ball 

hits the ground and the corresponding velocity. Draw the v–t and y–t curves. 

STRATEGY: The acceleration is constant, so you can integrate the defining 

kinematic equation for acceleration once to find the velocity equation and a 

second time to find the position relationship. Once you have these equations, 

you can solve the problem.

MODELING and ANALYSIS: Model the ball as a particle with negligible 

drag.

 a. Velocity and Elevation. Choose the y axis measuring the position 

coordinate (or elevation) with its origin O on the ground and its positive sense 

upward. The value of the acceleration and the initial values of v and y are as 

indicated in Fig. 1. Substituting for a in a = dv/dt and noting that when t = 0, 

v0 = +10 m/s, you have

    
dv

 ___ 
dt

   = a = −9.81 m/ s  2 

  ∫ 
 v  0   = 10

  
v

   dv  = − ∫ 
0

  
t

  9.81 dt 

 [v ]  10  
v   = −[9.81 t     ]  0  

t  

 v − 10 = −9.81t

  v = 10 − 9.81t   (  1 )    ◂ 

Fig. 1 Acceleration, initial 

velocity, and initial position of 

the ball.

y

O

a = – 9.81 m/s2

v0 = +10 m/s

y0 = +20 m

(continued)
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Substituting for v in v = dy/dt and noting that when t = 0, y0 = 20 m, you have

   

  
dy

 ___ 
dt

  

  

=

  

v = 10 − 9.81t

  

 

  

 

    
 ∫ 

 y  0   = 20

  
y

   dy 
  
=

  
 ∫ 

0

  
t

    (  10 − 9.81t )   dt  
  
 
  
 
    

[y ]  20  
y  

  

=

  

[10t − 4.905 t  2  ]  0  
t  

  

 

  

 

    

y − 20

  

=

  

10t − 4.905  t  2 

  

 

  

 

   

 

  

 

  

 

  

 

  

 

  

   y = 20 + 10t − 4.905  t  2    (  2 )      ◂ 

Graphs of these equations are shown in Figs. 2 and 3.

 b. Highest Elevation. The ball reaches its highest elevation when 

v = 0. Substituting into Eq. (1), you obtain

  10 − 9.81t = 0 t = 1.019 s ◂ 

Substituting t = 1.019 s into Eq. (2), you find

  y = 20 + 10(1.019) − 4.905  (  1.019 )    2  y = 25.1 m ◂ 

 c. Ball Hits the Ground. The ball hits the ground when y = 0. 

Substituting into Eq. (2), you obtain

  20 + 10t − 4.905 t  2  = 0  t = − 1.243 s  and  t = +3.28 s ◂ 

Only the root t = +3.28 s corresponds to a time after the motion has begun. 

Carrying this value of t into Eq. (1), you find

  v = 10 − 9.81  (  3.28 )   = − 22.2 m/s  v = 22.2 m/s ↓ ◂ 

REFLECT and THINK: When the acceleration is constant, the velocity 

changes linearly, and the position is a quadratic function of time. You will see 

in Sec. 11.2 that the motion in this problem is an example of free fall, where the 

acceleration in the vertical direction is constant and equal to −g.

Fig. 2 Velocity of the ball as a 

function of time.
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Fig. 3 Height of the ball as a 

function of time.
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Sample Problem 11.3

Many mountain bike shocks utilize a piston that travels in an oil-filled cylin-

der to provide shock absorption; this system is shown schematically. When the 

front tire goes over a bump, the cylinder is given an initial velocity v0. The pis-

ton, which is attached to the fork, then moves with respect to the cylinder, and 

oil is forced through orifices in the piston. This causes the piston to decelerate 

at a rate proportional to the velocity at a = −kv. At time t = 0, the position of 

the piston is x = 0. Express (a) the velocity v in terms of t, (b) the position x 

in terms of t, (c) the velocity v in terms of x. Draw the corresponding motion 

curves.

(continued)

Piston

Oil

x
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STRATEGY: Because the acceleration is given as a function of velocity, 

you need to use either a = dv/dt or a = v dv/dx and then separate variables 

and integrate. Which one you use depends on what you are asked to find. 

Because part a asks for v in terms of t, use a = dv/dt. You can integrate this 

again using v = dx/dt for part b. Because part c asked for v(x), you should use 

a = v dv/dx and then separate the variables and integrate.

MODELING and ANALYSIS: Rotation of the piston is not relevant, so you 

can model it as a particle undergoing rectilinear motion.

 a. v in Terms of t. Substitute −kv for a in the fundamental formula 

defining acceleration, a = dv/dt. You obtain

 − kv =   
dv

 ___ 
dt

      
dv

 ___ 
v
   = − k dt   ∫ 

 v  0  

  
v

      
dv

 ___ 
v
    = − k ∫ 

0

  
t

  dt 

 ln  
v
 __ 

 v  0  
   = − kt v =  v  0    e  −kt  ◂ 

 b. x in Terms of t. Substitute the expression just obtained for v into 

v = dx/dt. You get

   

 v  0   e  −kt 

  

=

  

  
dx

 ___ 
dt

  

   ∫ 
0

  
x

  dx   =   v  0   ∫ 
0

  
t

   e  −kt dt     

x = −   
 v  0   __ 
k
  [ e  −kt  ]  0  

t  

  

=

  

−   
 v  0   __ 
k
  ( e  −kt  − 1)

       

   x =   
 v  0   __ 
k
  (1 −  e  −kt ) ◂ 

 c. v in Terms of x. Substitute −kv for a in a = v dv/dx. You have

   

− kv

  

=

  

v   
dv

 ___ 
dx

  

  

 

  

 

   
dv

  
=

  
− k dx

  
 
  
 
   

 ∫ 
 v  0  

  
v

   dv 

  

=

  

− k ∫ 
0

  
x

  dx 

  

 

  

 

   

v −  v  0  

  

=

  

− kx

  

 

  

  

  

   v =  v  0   − kx   ◂ 

The motion curves are shown in Fig. 1.

REFLECT and THINK: You could have solved part c by eliminating t from 

the answers obtained for parts a and b. You could use this alternative method 

as a check. From part a, you obtain e−kt = v/v0; substituting into the answer of 

part b, you have

  x =   
 v  0   __ 
k
   (1 −  e  −kt )  =   

 v  0   __ 
k
    (  1 −   

v
 _ 

 v  0  
   )       v =  v  0   − kx      (  checks )     Fig. 1 Motion curves for the piston.
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Sample Problem 11.4

An uncontrolled automobile traveling at 45 mph strikes a highway crash bar-

rier square on. After initially hitting the barrier, the automobile decelerates at 

a rate proportional to the distance x the automobile has moved into the barrier; 

specifically,  a = − 60  √ 
__

 x   , where a and x are expressed in ft/s2 and ft, respec-

tively. Determine the distance the automobile will move into the barrier before 

it comes to rest.

STRATEGY: Because you are given the deceleration as a function of dis-

placement, you should start with the basic kinematic relationship a = v dv/dx.

MODELING and ANALYSIS: Model the car as a particle. First find the 

initial speed in ft/s,

  v  0   =   (  45  
mi

 _ 
hr

   )   (    
1 hr

 _ 
3600 s

   )   (    
5280 ft

 _ 
mi

   )   = 66  
ft

 _ 
s
    

Substituting  a = − 60  √ 
__

 x    into a = v dv/dx gives

 a = − 60  √ 
__

 x   =   
v dv

 ____ 
dx

   

Separating variables and integrating gives

  

v dv = − 60 √ 
__

 x   dx →  ∫ 
 v  0  

  
0

  v dv  = −  ∫ 
0

  
x

  60 √ 
__

 x   dx 

     

  
1
 __ 

2
    v  2  −   

1
 __ 

2
    v  0  

2  = −40 x  3/2  → x =   (    
1
 ___ 

80
  ( v  0  

2  −  v  2 ) )    
2/3

 

  

   (1)

Substituting v = 0, v0 = 66 ft/s gives

   d = 14.37 ft ◂ 

REFLECT and THINK: A distance of 14 ft seems reasonable for a 

barrier  of  this type. If you substitute d into the equation for a, you find 

a  maximum deceleration of about 7 g’s. Note that this problem would have 

been much harder to solve if you had been asked to find the time for the 

automobile to stop. In this case, you would need to determine v(t) from Eq. (1). 

This gives  v =  √ 
_________

  v  0  
2  − 80  x  3/2    . Using the basic kinematic relationship v = dx/dt, 

you can easily show that

  ∫ 
0

  
t

  dt  =  ∫ 
0

  
x

    
dx
 _________  

 √ 
_________

  v  0  
2  − 80  x  3/2   

    

Unfortunately, there is no closed-form solution to this integral, so you would 

need to solve it numerically.

v0

y

x

z

–a (ft/s2)

x (ft)
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Case Study 11.1

People with mobility impairments often have difficulty participating in athletic 

and recreational activities, missing out on the social and physiological bene-

fits such recreation has to offer. Some senior engineering students decided to 

design and build an adapted dart launcher to allow athletes with disabilities to 

play this fun game with their friends.

CS Photo 11.1 Adapted dart launcher.
©Katherine Mavrommati

The device they designed, shown in CS Photo 11.1, is similar to an air cannon. The 

athlete fills a pressure tank by moving a pneumatic cylinder back and forth; the 

displacement necessary is less than 150 mm and the required force is less than 

20 N. Each pump supplies approximately 5 kN/m2 pressure to the reservoir.

Assuming an adiabatic system, the acceleration a of the dart while in the 

launch tube can be expressed as

   a =   
1
 _ 

m
   [    

A P  0    V  0   _ 
 V  0   + Ax

   − f ]     (1)

where A is the cross-sectional area of the launch tube, P0 is the stored pressure in 

the reservoir, V0 is the volume of the reservoir, x is the distance along the tube, 

and f is the friction force between the dart launch carriage and the tube wall.

During testing, the darts stick best when they hit perpendicular to the 

board. You can experiment with different launch angles (20°, 30°, 40°, and 45°) 

and the number of pumps to determine the best combination when trying to hit 

the bull’s eye. CS Fig. 11.1 shows the location of the dart board with respect to 

the launcher.

The cannon has the following parameters: cannon inner radius r = 20 mm, 

cannon tube length L = 330 mm, volume of reservoir V0 = 0.0005 m3, mass 

of dart and piston m = 0.2 kg, friction force along walls f = 0.1 N, and launch 

height y0 = 1.0 m.

STRATEGY: You are given acceleration as a function of position, so you 

should start with the basic relationship a = v dv/dx. You will then need to use 

projectile motion to analyze the flight of the dart toward the board.

(continued)
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MODELING: Treat the air cannon as an adiabatic system (you will learn 

more about this in your thermodynamics class) and the dart as a particle, with 

drag considered negligible during flight.

ANALYSIS: Substituting the expression for a in Eq. (1) into a = v dv/dx, and 

then separating variables and integrating gives you:

   ∫
0

  
L

    
1
 __ 

m
   [  

A P  0   V  0   _______ 
 V  0   + Ax

   − f] dx =  ∫
0

  
 v  0  

  vdv 

Performing these integrations and solving for the exit velocity v0 as a function 

of the system parameters gives

   v  0   =   [     
2
 _ 

m
   (    P  0   V  0   ln (    

 V  0   + AL
 _ 

 V  0  
   )   − fL  )    ]    

1/2

   (2)

The pressure P0 is equal to the number of pumps N times the pressure per pump, 

5000 N/m2. You can calculate v0 of the dart for a given number of pumps, and 

then use this to solve for the projectile motion of the dart after it leaves the can-

non. For the x direction, you get

   x =  x  0   +   (   v  0   )    x   t, where  x  0   = 0 and   (   v  0   )    x   =  v  0   cos (  θ )    

Solving for the time gives

  t =   
d
 _______ 

 v  0   cos θ
   

Using this time, you can determine the vertical component of velocity (vhit)y 

using

    (   v  hit   )    y   =  v  0   sin θ − gt 

and the height y where the dart hits the board

  y =  y  0   +  v  0   sin θt −   
1
 __ 

2
  g t  2  

The exit velocity v0 for different pumps is shown in CS Table 11.1, and the 

y component of velocity (which we want close to zero to ensure it sticks) and 

the height of the dart when it hits the board are shown in CS Table 11.2 for 

CS Fig. 11.1 Dart launch schematic—distance and height to bull’s eye.

2.37 m

1.73 m

1 m

Dart final
position

(continued)
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launch angles of 20, 30, and 40 degrees. From this table, you can see that a 

launch angle at 30° with four pumps, which results in a vertical velocity compo-

nent of 0.411 m/s and a height of 1.75 m, is the best combination.

REFLECT and THINK: Wheelchair dart competitions place the bull’s-eye 

at a height of 1.37 m. How would this change the calculations performed above? 

A number of different variables have to be considered when designing the sys-

tem, including cannon length, reservoir size, displacement and force required 

to pump the air cylinders, aesthetics, and athlete engagement. Athletes with 

mobility impairments may have limited range and force production to actuate 

the pump cylinder, and the design should provide them with the opportunity to 

get some exercise and to control how the dart is “thrown.” Additionally, there 

are a number of safety considerations that have to be taken into account.

Number of Pumps Velocity (m/s)

2 5.47

3 6.71

4 7.75

5 8.67

6 9.50

7 10.27

8 10.98

CS Table 11.1: Exit Velocity of Dart

CS Table 11.2:  Vertical Velocity and Height When the Dart Hits the Board 

for Different Pumps and at Different Launch Angles

Angle

Velocity and Position  

of Hit

Number of Pumps

2 3 4 5 6 7 8

20° (vhit)y (m/s) –2.66 –1.396 –0.542 0.1115 0.645 1.100 1.500

y (m) 0.818 1.169 1.343 1.448 1.517 1.567 1.604

30° (vhit)y (m/s) –2.18 –0.651 0.411 1.238 1.925 2.52 3.04

y (m) 1.138 1.550 1.750 1.880 1.961 2.02 2.06

40° (vhit)y (m/s) –2.04 –0.216 1.066 2.0722 2.91 3.64 4.29

y (m) 1.417 1.945 2.21 2.36 2.47 2.54 2.60
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In the problems for this section, you will be asked to determine the position, velocity, 

and/or acceleration of a particle in rectilinear motion. As you read each problem, it 

is important to identify both the independent variable (typically t or x) and what is required 

(e.g., the need to express v as a function of x). You may find it helpful to start each prob-

lem by writing down both the given information and a simple statement of what is to be 

determined.

1. Determining v(t) and a(t) for a given x(t). As explained in Sec. 11.1A, the first and 

second derivatives of x with respect to t are equal to the velocity and the acceleration, 

respectively, of the particle [Eqs. (11.1) and (11.2)]. If the velocity and acceleration have 

opposite signs, the particle can come to rest and then move in the opposite direction 

(Sample Prob. 11.1). Thus, when computing the total distance traveled by a particle, you 

should first determine if the particle comes to rest during the specified interval of time. 

Constructing a diagram similar to that of Sample Prob. 11.1, which shows the position 

and the velocity of the particle at each critical instant (v = vmax, v = 0, etc.), will help you 

to visualize the motion.

2. Determining v(t) and x(t) for a given a(t). We discussed the solution of problems of 

this type in the first part of Sec. 11.1B. We used the initial conditions, t = 0 and v = v0, 

for the lower limits of the integrals in t and v, but any other known state (e.g., t = t1 and 

v = v1) could be used instead. Also, if the given function a(t) contains an unknown constant 

(e.g., the constant k if a = kt), you will first have to determine that constant by substituting 

a set of known values of t and a in the equation defining a(t).

3. Determining v(x) and x(t) for a given a(x). This is the second case considered in 

Sec. 11.1B and is illustrated in Sample Prob. 11.4. We again note that the lower limits of 

integration can be any known state (e.g., x = x1 and v = v1). In addition, because v = vmax 

when a = 0, you can determine the positions where the maximum or minimum values of 

the velocity occur by setting a(x) = 0 and solving for x.

4. Determining v(x), v(t), and x(t) for a given a(v). This is the last case treated in 

Sec. 11.1B; the appropriate solution techniques for problems of this type are illustrated in 

Sample Prob. 11.3. All of the general comments for the preceding cases once again apply. 

Note that Sample Prob. 11.3 provides a summary of how and when to use the equations 

v = dx/dt, a = dv/dt, and a = v dv/dx.

SOLVING PROBLEMS  

ON YOUR OWN

(continued)
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We can summarize these relationships in Table 11.1.

Table 11.1

If. . . . Kinematic Relationship Integrate

a = a(t)    
dv

 ___ 
dt

   = a(t)   ∫ 
 v  0  

  
v

   dv  =  ∫ 
0

  
t

  a(t)dt  

a = a(x)  v   
dv

 ___ 
dx

   = a(x)   ∫ 
 v  0  

  
v

   v dv  =  ∫ 
 x  0  

  
x

   a  (  x )   dx  

a = a(v)

   
dv

 ___ 
dt

   = a(v)   ∫ 
 v  0  

  
v

     
dv
 ____ 

a (  v )  
    =  ∫ 

0

  
t

  dt  

 v   
dv

 ___ 
dx

   = a(v)   ∫ 
 x  0  

  
x

   dx  =  ∫ 
 v  0  

  
v

     
vdv

 ____ 
a(v)

    



633

CONCEPT QUESTIONS

 11.CQ1 A bus travels the 100 miles between A and B at 50 mi/h and then 

another 100 miles between B and C at 70 mi/h. The average speed of 

the bus for the entire 200-mile trip is:

 a. More than 60 mi/h.

 b. Equal to 60 mi/h.

 c. Less than 60 mi/h.

 11.CQ2 Two cars A and B race each other down a straight road. The position 

of each car as a function of time is shown. Which of the following 

statements are true? (More than one answer can be correct.)

 a. At time t2, both cars have traveled the same distance.

 b. At time t1, both cars have the same speed.

 c. Both cars have the same speed at some time t < t1.

 d. Both cars have the same acceleration at some time t < t1.

 e. Both cars have the same acceleration at some time t1 < t < t2.

Problems†

†Answers to all problems set in straight type (such as 11.1) are given at the end of the book. 

Answers to problems with a number set in italic type (such as 11.6) are not given.

END-OF-SECTION PROBLEMS

 11.1 A snowboarder starts from rest at the top of a double black diamond 

hill. As she rides down the slope, GPS coordinates are used to deter-

mine her displacement as a function of time: x = 0.5t3 + t2 + 2t, where 

x and t are expressed in feet and seconds, respectively. Determine the 

position, velocity, and acceleration of the boarder when t = 5 seconds.

 11.2 The motion of a particle is defined by the relation x = t3 − 12t2 + 36t 

+ 30, where x and t are expressed in feet and seconds, respectively. 

Determine the time, the position, and the acceleration of the particle 

when v = 0.

 11.3 The vertical motion of mass A is defined by the relation 

x = cos(10t) − 0.1sin(10t), where x and t are expressed in mm and sec-

onds, respectively. Determine (a) the position, velocity, and acceleration 

of A when t = 0.4 s, (b) the maximum velocity and acceleration of A.

Fig. P11.CQ1
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 11.5 A group of hikers uses a GPS while doing a 40-mile trek in Colorado. 

A curve fit to the data shows that their altitude can be approximated by 

the function y(t) = 0.12t5 − 6.75t4 + 135t3 − 1120t2 + 3200t + 9070, 

where y and t are expressed in feet and hours, respectively. During 

the 18-hour hike, determine (a) the maximum altitude that the hikers 

reach, (b) the total feet they ascend, (c) the total feet they descend. 

Hint: You will need to use a calculator or computer to solve for the 

roots of a fourth-order polynomial.

 11.6 The motion of a particle is defined by the relation x = t3 − 6t2 + 

9t  +  5,  where x is expressed in feet and t in seconds. Determine 

(a) when the velocity is zero, (b) the position, acceleration, and total 

distance traveled when t = 5 s.

 11.7 A girl operates a radio-controlled model car in a vacant parking lot. 

The girl’s position is at the origin of the xy coordinate axes, and the 

surface of the parking lot lies in the x–y plane. She drives the car 

in  a  straight line so that the x coordinate is defined by the relation 

x(t) = 0.5t3 − 3t2 + 3t + 2, where x and t are expressed in meters and 

seconds, respectively. Determine (a) when the velocity is zero, (b) the 

position and total distance traveled when the acceleration is zero.

 11.4 A loaded railroad car is rolling at a constant velocity when it couples 

with a spring and dashpot bumper system. After the coupling, the 

motion of the car is defined by the relation x = 60e–4.8t sin 16t, where x 

and t are expressed in millimeters and seconds, respectively. Determine 

the position, the velocity, and the acceleration of the railroad car when 

(a) t = 0, (b) t = 0.3 s.

 11.8 The motion of a particle is defined by the relation x = t2 − (t − 2)3, 

where x and t are expressed in feet and seconds, respectively. 

Determine (a) the two positions at which the velocity is zero, (b) the 

total distance traveled by the particle from t = 0 to t = 4 s.

Fig. P11.4
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 11.9 The brakes of a car are applied, causing it to slow down at a rate of 

10 ft/s2. Knowing that the car stops in 300 ft, determine (a) how fast 

the car was traveling immediately before the brakes were applied, 

(b) the time required for the car to stop.

 11.10 The acceleration of a particle is defined by the relation a = 3e−0.2t, 

where a and t are expressed in ft/s2 and seconds, respectively. Knowing 

that x = 0 and v = 0 at t = 0, determine the velocity and position of the 

particle when t = 0.5 s.

 11.11 The acceleration of a particle is defined by the relation a = 9 − 3t2, 

where a and t are expressed in ft/s2 and seconds, respectively. The 

particle starts at t = 0 with v = 0 and x = 5 ft. Determine (a) the 

time when the velocity is again zero, (b) the position and velocity 

when t =  4 s, (c)  the total distance traveled by the particle from 

t = 0 to t = 4 s.

 11.12 Many car companies are performing research on collision avoidance 

systems. A small prototype applies engine braking that decelerates 

the vehicle according to the relationship  a = − k √ 
_
 t   , where a and t 

are expressed in m/s2 and seconds, respectively. The vehicle is trav-

eling at 20 m/s when its radar sensors detect a stationary obstacle. 

Knowing that it takes the prototype vehicle 4 seconds to stop, deter-

mine (a) expressions for its velocity and position as a function of time, 

(b) how far the vehicle traveled before it stopped.

 11.13 A Scotch yoke is a mechanism that transforms the circular motion of 

a crank into the reciprocating motion of a shaft (or vice versa). It has 

been used in a number of different internal combustion engines and in 

control valves. In the Scotch yoke shown, the acceleration of point A 

is defined by the relation a = −1.8 sin kt, where a and t are expressed 

in m/s2 and seconds, respectively, and k = 3 rad/s. Knowing that x = 0 

and v = 0.6 m/s when t = 0, determine the velocity and position of 

point A when t = 0.5 s.

 11.14 For the Scotch yoke mechanism shown, the acceleration of point A 

is defined by the relation a = −1.08 sin kt − 1.44 cos kt, where a and 

t are expressed in m/s2 and seconds, respectively, and k = 3 rad/s. 

Knowing that x = 0.16 m and v = 0.36 m/s when t = 0, determine the 

velocity and position of point A when t = 0.5 s.

 11.15 A piece of electronic equipment that is surrounded by packing mate-

rial is dropped so that it hits the ground with a speed of 4 m/s. After 

contact, the equipment experiences an acceleration of a = −kx, where 

k is a constant and x is the compression of the packing material. If 

the packing material experiences a maximum compression of 15 mm, 

determine the maximum acceleration of the equipment. 

 11.16 A projectile enters a resisting medium at x = 0 with an initial velocity 

v0 = 1000 ft/s and travels 3 in. before coming to rest. Knowing that 

the velocity of the projectile is defined by the relation v = v0 − kx, 

where v is expressed in ft/s and x is in feet, determine (a) the initial 

acceleration of the projectile, (b) the time required for the projectile to 

penetrate 2.5 in. into the resisting medium. 
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 11.17 Point A oscillates with an acceleration a = 100(0.25 − x), where a and 

x are expressed in m/s2 and meters, respectively. Knowing that the 

system starts at time t = 0 with v = 0 and x = 0.2 m, determine the 

position and the velocity of A when t = 0.2 s.

 11.18 A brass (nonmagnetic) block A and a steel magnet B are in equilibrium 

in a brass tube under the magnetic repelling force of another steel mag-

net C located at a distance x = 0.004 m from B. The force is inversely 

proportional to the square of the distance between B and C. If block A 

is suddenly removed, the acceleration of block B is a = −9.81 + k/x2, 

where a and x are expressed in m/s2 and meters, respectively, and  

k = 4 × 10–4 m3/s2. Determine the maximum velocity and acceleration 

of B.

 11.19 Based on experimental observations, the acceleration of a particle 

is defined by the relation a = −(0.1 + sin x/b), where a and x are 

expressed in m/s2 and meters, respectively. Knowing that b = 0.8 m 

and that v = 1 m/s when x = 0, determine (a) the velocity of the par-

ticle when x = −1 m, (b) the position where the velocity is maximum, 

(c) the maximum velocity.

 11.20 A spring AB is attached to a support at A and to a collar. The 

unstretched length of the spring is l. Knowing that the  collar is released 

from rest at x = x0 and has an acceleration defined by  the rela-

tion  a = − 100(x − lx /  √ 
_____

  l  2  +  x  2   ) , determine the velocity of the collar 

as it passes through point C.

 11.21 The acceleration of a particle is defined by the relation a = k(1 − e–x), 

where k is a constant. Knowing that the velocity of the particle is 

v = +9 m/s when x = −3 m and that the particle comes to rest at the 

origin, determine (a) the value of k, (b) the velocity of the particle 

when x = −2 m.

 11.22 Starting from x = 0 with no initial velocity, a particle is given an accel-

eration  a = 0.8 √ 
______

  v  2  + 49   , where a and v are expressed in ft/s2 and ft/s, 

respectively. Determine (a) the position of the particle when v = 24 ft/s, 

(b) the speed and acceleration of the particle when x = 40 ft.

 11.23 A ball is dropped from a boat so that it strikes the surface of a lake 

with a speed of 16.5 ft/s. While in the water the ball experiences an 

acceleration of a = 10 − 0.8v, where a and v are expressed in ft/s2 and 

ft/s, respectively. Knowing that the ball takes 3 s to reach the bottom 

of the lake, determine (a) the depth of the lake, (b) the speed of the 

ball when it hits the bottom of the lake.

 11.24 The acceleration of a particle is defined by the relation  a = − k √ 
__

 v   , 

where k is a constant. Knowing that x = 0 and v = 81 m/s at t = 0, and 

that v = 36 m/s when x = 18 m, determine (a) the velocity of the particle 

when x = 20 m, (b) the time required for the particle to come to rest.

 11.25 The acceleration of a particle is defined by the relation a = −kv2.5, 

where k is a constant. The particle starts at x = 0 with a velocity of 

16 mm/s, and when x = 6 mm, the velocity is observed to be 4 mm/s. 

Determine (a) the velocity of the particle when x = 5 mm, (b) the time 

at which the velocity of the particle is 9 mm/s.
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