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xiii

T
he purpose of this book is to provide an understandable and enjoyable teach-

ing instrument in the classroom or independently for the study of compress-

ible fluid flow. It is intentionally written in a rather informal style to talk 

to the reader, to gain his or her interest, and to keep the reader absorbed from 

cover to cover. It is aimed primarily at the senior undergraduate and first-year 

graduate student in aerospace, mechanical, and chemical engineering. However, it 

is also written for use by the practicing engineer and scientist who is striving to 

obtain a cohesive picture of the subject of compressible flow from a modern per-

spective. This book is meant to be read, not just used as a handbook to search for 

the equation that will solve a given problem. Compressible flow is a beautiful 

intellectual technical subject, and I believe that, like a masterwork painting made 

up of an inestimable number of brushstrokes, every word in this book is like a 

brushstroke in the whole canvas of compressible flow. Every word should be read 

and thought about in order for the reader to truly appreciate the “masterpiece” 

intellectual nature of this subject.

 The response to the first three editions of this book from students, faculty, and 

practicing professionals has been overwhelmingly favorable. Therefore, the fourth 

edition carries over much of the fundamental content of the previous edition, plus 

adding the following important components:

1. End-of-chapter problems have been added to those few chapters that 

originally had no problems listed. Those particular chapters are heavily 

theoretically based, and the original purpose was to allow the reader to 

concentrate on absorbing the theoretical concepts without the additional 

activity of problem solving. In this new edition, however, problems have 

been added to these particular chapters in order to obtain a type of “full 

closure” on understanding the material.

2. At the end of every chapter, and just before the list of problems, a “Sugges-

tions” section has been added. The purpose of these suggestions is to help 

the reader better understand each end-of-chapter problem and to get started 

on a right path for the solution of each problem (please note that for many 

of the problems, there may be several “right paths”).  Moreover, each of the 

suggestions for problem solving helps to more strongly connect the reader 

with the particular relevant physical and theoretical content in the text reading 

material.

3. Chapter 15 on Hypersonic Flow has been expanded to recognize the greatly 

increased interest and current activity in the hypersonic flight regime. 

Hypersonic flow has many important physical and theoretical features that 

distinguish it from basic supersonic flow, and these differences are highlighted 

PREFACE TO THE FOURTH EDITION

and71446_fm_i-xiv.indd   13 10/23/19   10:42 AM



xiv Preface to the Fourth Edition

in Chap. 15. The author feels that the current new activity and interest in 

the hypersonic flight regime will be long lasting, and Chap. 15 has been 

expanded with new content and figures with such matters in mind. This 

expansion is solidly in keeping with the title of this text, namely the 

“modern” aspects of Modern Compressible Flow. 

4. Continuing with the theme of “modern” that has permeated the previous 

editions, this new edition maintains the content devoted to computational 

fluid dynamics and high-temperature gas dynamics, two fields of intellectual 

endeavor that are intrinsically woven into most modern applications of 

compressible flow.

Taken in total, the book provides the twenty-first-century student with a balanced 

treatment of both the classical and modern aspects of compressible flow.

 Special thanks are given to various people who have been responsible for the 

materialization of this fourth edition:

1.  My students, as well as students and readers from all over the world, who 

have responded so enthusiastically to the first three editions, and who have 

provided the ultimate joy to the author of being an engineering educator.

2. My family, who provide the other ultimate joy of being a husband, father, 

and grandfather.

3. My colleagues at the University of Maryland and the National Air and 

Space Museum, and at many other academic and research institutions, as 

well as industry, around the world who have helped to expand my horizons.

4. My editors at McGraw-Hill who have looked after me in the most profes-

sional, knowledgeable, understanding, and gentle manner possible.

 Finally, compressible flow is an exciting subject—exciting to learn, exciting 

to use, exciting to teach, and exciting to write about. The purpose of this book is 

to excite the reader and to make the study of compressible flow an enjoyable 

experience. So this author says—read on and enjoy.

John D. Anderson, Jr.
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1

 C H A P T E R  1
Compressible Flow—Some 
History and Introductory 
Thoughts

It required an unhesitating boldness to undertake a venture so few thought could 

succeed, an almost exuberant enthusiasm to carry across the many obstacles and 

unknowns, but most of all a completely unprejudiced imagination in departing 

so drastically from the known way.

J. van Lonkhuyzen, 1951, in discussing the problems faced in designing 

the Bell XS-1, the first supersonic airplane
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2 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

PREVIEW BOX

by shock waves generated in the air around the vehicle. 
Shock waves are an important aspect of compressible 
flow—they occur in almost all practical situations where 
supersonic flow exists. In this book, you will learn a lot 
about shock waves. When the Concorde flew overhead 
at supersonic speeds, a “sonic boom” was heard by those 
of us on the earth’s surface. The sonic boom is a result 
of the shock waves emanating from the supersonic ve-
hicle. The environmental impact of the sonic boom lim-
ited the Concorde to supersonic speeds only over water. 
However, modern research is striving to find a way to 
design a “quiet” supersonic airplane. Perhaps some of 
the readers of this book will help to unlock such secrets 
in the future—maybe even pioneering the advent of 
practical hypersonic airplanes (more than five times the 
speed of sound). In my opinion, the future applications 
of compressible flow are boundless.
 Compressible flow is the subject of this book. 
Within these pages you will discover the intellectual 
beauty and the powerful applications of compressible 
flow. You will learn to appreciate why modern airplanes 
are shaped the way they are, and to marvel at the won-
derfully complex and interesting flow processes through 
a jet engine. You will learn about supersonic shock 
waves, and why in most cases we would like to do with-
out them if we could. You will learn much more. You 
will learn the fundamental physical and mathematical 
aspects of compressible flow, which you can apply to 
any flow situation where the flow speeds exceed that of 
about 0.3 the speed of sound. In the modern world of 
aerospace and mechanical engineering, an understand-
ing of the principles of compressible flow is essential. 
The purpose of this book is to help you learn, under-
stand, and appreciate these fundamental principles, 
while at the same time giving you some insight as to 
how compressible flow is practiced in the modern engi-
neering world (hence the word “modern” in the title of 
this book).
 Compressible flow is a fun subject. This book is 
designed to convey this feeling. The format of the book 
and its conversational style are intended to provide a 
smooth and intelligible learning process. To help this, 
each chapter begins with a preview box and road map to 
help you see the bigger picture, and to navigate around 

Modern life is fast paced. We put a premium on moving 
fast from one place to another. For long-distance travel, 
flying is by far the fastest way to go. We fly in airplanes, 
which today are the result of an exponential growth in 
technology over the last 100 years. In 1930, airline pas-
sengers were lumbering along in the likes of the Fokker 
trimoter (Fig. 1.1), which cruised at about 100 mi/h. In 
this airplane, it took a total elapsed time of 36 hours to 
fly from New York to Los Angeles, including 11 stops 
along the way. By 1936, the new, streamlined Douglas 
DC-3 (Fig. 1.2) was flying passengers at 180 mi/h, tak-
ing 17 hours and 40 minutes from New York to Los 
 Angeles, making three stops along the way. By 1955, 
the Douglas DC-7, the most advanced of the generation 
of  reciprocating engine/propeller-driven transports 
 (Fig. 1.3), made the same trip in 8 hours with no stops. 
However, this generation of airplane was quickly sup-
planted by the jet transport in 1958. Today, the modern 
Boeing 777 (Fig. 1.4) whisks us from New York to Los 
Angeles nonstop in about 5 hours, cruising at 0.83 the 
speed of sound. This airplane is powered by advanced, 
third-generation turbofan engines, such as the Pratt and 
Whitney 4000 turbofan shown in Fig. 1.5, each capable 
of producing up to 84,000 pounds of thrust.
 Modern high-speed airplanes and the jet engines 
that power them are wonderful examples of the applica-
tion of a branch of fluid dynamics called compressible 

flow. Indeed, look again at the Boeing 777 shown in 
Fig. 1.4 and the turbofan engine shown in Fig. 1.5—they 
are compressible flow personified. The principles of 
compressible flow dictate the external aerodynamic 
flow  over the airplane. The internal flow through the 
 turbofan—the inlet, compressor, combustion chamber, 
turbine, nozzle, and the fan—is all compressible flow. 
Indeed, jet engines are one of the best examples in mod-
ern technology of compressible flow machines.
 Today we can transport ourselves at speeds faster 
than sound—supersonic speeds. The Anglo-French 
Concorde supersonic transport (Fig. 1.6) was such a ve-
hicle. (Several years ago I had the opportunity to cross 
the  Atlantic Ocean in the Concorde, taking off from 
New York’s Kennedy Airport and arriving at London’s 
Heathrow Airport just 3 hours and 15 minutes later—
what a way to travel!) Supersonic flight is accompanied 
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63′3″

49′2″

Figure 1.1 | Fokker Trimoter airliner, from the late 1920s.
(continued on next page)
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Figure 1.2 | Douglas DC-3 Airliner, from the middle 1930s.

(continued from page 3)
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Figure 1.3 | Douglas DC-7 airliner, from the middle 1950s.

Figure 1.4 | Boeing 777 jet airliner, from the 1990s.

(continued on next page)

 Preview Box 5

and71446_ch01_001-040.indd   5 22/07/19   11:11 AM
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Figure 1.5 | Pratt and Whitney 4000 turbofan engine. Third-generation turbofan 
for widebody transports. Produces up to 84,000 lb (329.2 kN) of thrust. Powers 
some versions of the Boeing 777 (see Fig. 1.4).

Figure 1.6 | The Anglo-French Aerospatiale/BAC Concorde supersonic airliner.

(continued from page 5)
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COMPRESSIBLE FLOW

3. In integral form

4. One-dimensional flow

5. Oblique waves

6. Quasi-one-dimensional flow

1. What it is, and how it blends
    with thermodynamics

2. The governing conservation
    equations

10. Unsteady moving shock
      and expansion waves

12. Numerical techniques for
      steady supersonic flow

Method of characteristics

Finite difference methods

Flow around blunt bodies

Two-dimensional nozzle flows

13. Time-marching numerical
      technique

14. Three-dimensional flows

15. Transonic flow

11. Conical flow

7. In differential form

17. High-temperature flows

Normal shock waves

Oblique shock waves

Expansion waves

Wave interactions

Nozzles

Diffusers

Flow with heat addition

Flow with friction

Wind tunnels
and rocket engines

16. Hypersonic flow

8. Velocity potential equation

9. Linearized flow

Subsonic flow

Supersonic flow

Figure 1.7 | Road map for the book.

than the differential form obtained later in box 7. Using 
just the integral form of the conservation equations, we 
will study one-dimensional flow (box 4), including nor-
mal shock waves, oblique shock, and expansion waves 
(box 5), and the quasi-one-dimensional flow through 
nozzles and diffusers, with applications to wind tunnels 
and rocket engines (box 6). All of these subjects can 
be  studied by application of the integral form of the 
 conservation equations, which usually reduce to alge-
braic equations for the application listed in boxes 4–6. 
Boxes 1–6 frequently constitute a basic “first course” in 

some of the mathematical and physical details that are 
buried in the chapter. The road map for the entire book 
is given in Fig. 1.7. To help keep our equilibrium, we 
will periodically refer to Fig. 1.7 as we progress through 
the book. For now, let us just survey Fig. 1.7 for some 
general guidance. After an introduction to the subject 
and a brief review of thermodynamics (box 1 in Fig. 1.7), 
we derive the governing fundamental conservation 
equations (box 2). We first obtain these equations in in-
tegral form (box 3), which some people will argue is 
philosophically a more fundamental form of the equations 

(continued on next page)

 Preview Box 7
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8 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

 We note that all of the material in this book, boxes 
1–17 in Fig. 1.7, assumes inviscid flow, i.e., flow with 
no friction, thermal conduction, or mass diffusion, ex-
cept for the special case of one-dimensional flow with 
friction (box 4 in Fig. 1.7). Flows where the dissipative 
transport processes of friction, thermal conduction, and 
mass diffusion are important are called viscous flows. 
Viscous flow is a subject all by itself and is beyond the 
scope of this book. The assumption of inviscid flow may 
at first sound ideal and restrictive—flows in the real 
world are not so ideal. However, the important physics 
that dictates compressible flow, such as the propagation 
of pressure waves through the flow, is essentially an 
 inviscid phenomenon. Moreover, for the vast majority 
of compressible flow applications, the influence of the 
dissipative transport phenomena is limited to small 
regions, such as the boundary layer along a solid surface. 
Hence, the inviscid flows treated in this book are indeed 
very practical and apply to a vast majority of everyday 
applications of compressible flow.
 All of this constitutes a preview for the material that 
is covered in this book—a broad, general view to give 
you a better, almost philosophical feeling for what com-
pressible flow is about. As we continue, each  chapter has 
its own preview box in order to enhance a broader under-
standing of the material in the chapter and to relate it to 
the general view. In this fashion, the detailed material in 
each chapter will more readily come to life for you.
 In regard to the present chapter, we start out with 
some historical high-water marks in the application of 
compressible flow, and then discuss some introductory 
thoughts that are essential for our understanding of com-
pressible flow in the subsequent chapters. For example, in 
this chapter we give a brief review of thermodynamics—
but only those aspects of thermodynamics that relate di-
rectly to our subsequent discussions. Compressible flows 
are usually high-energy flows. Imagine that you are driv-
ing down the highway at 65 mph, and you stick your hand 
out of the window; your hand will literally feel the en-
ergy of the 65-mph airstream, and it feels impressive. But 
65 mph is really a low velocity in the scheme of com-
pressible flow applications. Rather, imagine the energy 
you would feel if you were traveling at 650 mph, near the 
speed of sound, and you stick your hand out of the window 
(definitely not recommended). You would feel a lot of 
 en ergy in the flow. High-speed flows are high- energy flows. 
Thermodynamics is the study of energy changes and their 

 compressible flow, and the mathematics usually does 
not go beyond that of algebra. However, to deal with 
unsteady and/or multidimensional flows, we have to 
step to box 7 and obtain the governing conservation 
equations in differential form. They take the form of a 
system of coupled, highly nonlinear, partial differential 
equations. In some special cases for subsonic and super-
sonic flows, they can be linearized (boxes 8 and 9), lead-
ing to so-called “linearized flow.” However, in most 
cases, we must cope with the nonlinear equations. The 
way we do this, and the fascinating physical phenomena 
we discover along the way, is told in boxes 10–16 deal-
ing with unsteady flow, flow over cones, flows over 
 supersonic blunt-nosed bodies, three-dimensional flows 
over bodies at an angle of attack to a uniform free 
stream, and the very special characteristics of transonic 
and hypersonic flows.
 Our treatment of the material covered in boxes 4–6 
and 8–16 in Fig. 1.7 assumes the gas to be calorically 
perfect, i.e., to have constant values of specific heats. 
This is valid as long as the temperature in the flow does 
not exceed about 1000 K. The vast bulk of compressible 
flow applications satisfy this criterion, including the 
flow around the Concorde when it was cruising at Mach 
2. However, the flow over higher speed vehicles, as well 
as the flow through parts of a jet engine, will encounter 
temperatures high enough that the assumption of a calo-
rically perfect gas is not valid. Witness the flow over 
parts of the Space Shuttle as it entered the atmosphere 
at Mach 25, where flow temperatures were as high as 
8000 K, and the flow through rocket engines where tem-
peratures on the order of 4000 K or higher occur in the 
combustion chamber. At these temperatures, the flow is 
chemically reacting, and the analysis of compressible 
flow applications at these conditions must include the 
appropriate physical-chemical effects. Hence, to round 
out our study of compressible flow, toward the end of 
this book we identify, discuss, and analyze these high-
temperature flow effects. This subject is somewhat 
 self-contained and is relatively independent of the ear-
lier chapters; for this reason in Fig. 1.7 we show high- 
temperature flows in box 17 in an adjunct position 
somewhat separate from the main structure. However, 
this is not to minimize its importance. In many high-
speed flow applications today, high-temperature effects 
are very important. Any study of modern compressible 
flow must include box 17.

(continued from page 7)
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 1.1 Historical High-Water Marks 9

 The remainder of this chapter simply deals with 
other introductory thoughts necessary to provide you 
with smooth sailing through the rest of the book. I wish 
you a pleasant voyage.

effects on the properties of a system. Hence, compressible 
flow embraces thermodynamics. I know of no compress-
ible flow problem that can be understood and solved 
without involving some aspect of thermodynamics. So 
that is why we start out with a review of thermodynamics.

1.1 | HISTORICAL HIGH-WATER MARKS

The year is 1893. In Chicago, the World Columbian Exposition has been opened 
by President Grover Cleveland. During the year, more than 27 million people visit 
the 666-acre expanse of gleaming white buildings, specially constructed from a 
composite of plaster of paris and jute fiber to simulate white marble. Located 
adjacent to the newly endowed University of Chicago, the Exposition commemo-
rates the discovery of America by Christopher Columbus 400 years earlier. Exhibi-
tions related to engineering, architecture, and domestic and liberal arts, as well as 
collections of all modes of transportation, are scattered over 150 buildings. In the 
largest, the Manufacturer’s and Liberal Arts Building, engineering exhibits from 
all over the world herald the rapid advance of technology that will soon reach 
explosive proportions in the twentieth century. Almost lost in this massive 31-acre 
building, under a roof of iron and glass, is a small machine of great importance. 
A single-stage steam turbine is being displayed by the Swedish engineer Carl G. P. 
de Laval. The machine is less than 6 ft long; designed for marine use, it has two 
independent turbine wheels, one for forward motion and the other for the reverse 
direction. But what is novel about this device is that the turbine blades are driven 
by a stream of hot, high-pressure steam from a series of unique convergent–diver-
gent nozzles. As sketched in Fig. 1.8, these nozzles, with their convergent–diver-
gent shape representing a complete departure from previous engineering applications, 
feed a high-speed flow of steam to the blades of the turbine wheel. The deflection 
and consequent change in momentum of  the steam as it flows past the turbine 
blades exerts an impulse that rotates the wheel to speeds previously unattainable—
over 30,000 r/min. Little does de Laval  realize that his convergent–divergent steam 
nozzle will open the door to the supersonic wind tunnels and rocket engines of the 
mid-twentieth century.

The year is now 1947. The morning of October 14 dawns bright and beautiful 
over the Muroc Dry Lake, a large expanse of flat, hard lake bed in the Mojave 
Desert in California. Beginning at 6:00 A.M., teams of engineers and technicians 
at the Muroc Army Air Field ready a small rocket-powered airplane for flight. 
Painted  orange and resembling a 50-caliber machine gun bullet mated to a pair of 
straight, stubby wings, the Bell XS-1 research vehicle is carefully installed in the 
bomb bay of a four-engine B-29 bomber of World War II vintage. At 10:00 A.M. 
the B-29 with its soon-to-be-historic cargo takes off and climbs to an altitude of 
20,000 ft. In the cockpit of the XS-1 is Captain Charles (Chuck) Yeager, a veteran 
P-51 pilot from the European theater during the war. This morning Yeager is in 
pain from two broken ribs incurred during a horseback riding accident the previous 
weekend. However, not wishing to disrupt the events of the day, Yeager informs 
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10 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

no one at Muroc about his condition. At 10:26 A.M., at a speed of 250 mi/h 
(112  m/s), the brightly painted XS-1 drops free from the bomb bay of the B-29. 
Yeager fires his Reaction Motors XLR-11 rocket engine and, powered by 6000 lb 
of thrust, the sleek airplane accelerates and climbs rapidly. Trailing an exhaust jet 
of shock diamonds from the four convergent–divergent rocket nozzles of the 
engine, the XS-1 is soon flying faster than Mach 0.85, that speed beyond which 
there are no wind tunnel data on the problems of transonic flight in 1947. Entering 
this unknown regime, Yeager momentarily shuts down two of the four rocket 
chambers, and carefully tests the controls of the XS-1 as the Mach meter in the 
cockpit registers 0.95 and still increasing. Small shock waves are now dancing 
back and forth over the top surface of the wings. At an altitude of 40,000 ft, the 
XS-1 finally starts to level off, and Yeager fires one of the two shutdown rocket 
chambers. The Mach meter moves smoothly through 0.98, 0.99, to 1.02. Here, the 
meter hesitates, then jumps to 1.06. A stronger bow shock wave is now formed in 
the air ahead of the needlelike nose of the XS-1 as Yeager reaches a velocity of 
700 mi/h, Mach 1.06, at 43,000 ft. The flight is smooth; there is no violent buffeting 
of the airplane and no loss of control, as was feared by some engineers. At this 
moment, Chuck Yeager becomes the first pilot to successfully fly faster than the 
speed of sound, and the small but beautiful Bell XS-1, shown in Fig. 1.9, becomes 
the first successful supersonic airplane in the history of flight. (For more details, 
see Refs. 1 and 2 listed at the back of this book.)

Today, both de Laval’s 10-hp turbine from the World Columbian Exhibition 
and the orange Bell XS-1 are part of the collection of the Smithsonian Institution 
of Washington, D.C., the former on display in the History of Technology Building 

Figure 1.8 | Schematic of de Laval’s  
turbine incorporating a convergent– 
divergent nozzle.
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 1.1 Historical High-Water Marks 11

and the latter hanging with distinction from the roof of the National Air and Space 
 Museum. What these two machines have in common is that, separated by more 
than half a century, they represent high-water marks in the engineering application 
of the principles of compressible flow—where the density of the flow is not con-
stant. In both cases they represent marked departures from previous fluid dynamic 
practice and  experience.

The engineering fluid dynamic problems of the eighteenth, nineteenth, and early 
twentieth centuries almost always involved either the flow of liquids or the low-
speed flow of gases; for both cases the assumption of constant density is quite valid. 
Hence, the familiar Bernoulli’s equation

 p + 1
2 ρV 2 = const (1.1)

was invariably employed with success. However, with the advent of high-speed 
flows, exemplified by de Laval’s convergent–divergent nozzle design and the super-
sonic flight of the Bell XS-1, the density can no longer be assumed constant 
throughout the flowfield. Indeed, for such flows the density can sometimes vary by 
orders of magnitude. Consequently, Eq. (1.1) no longer holds. In this light, such 
events were indeed a marked departure from previous experience in fluid dynamics.

This book deals exclusively with that “marked departure,” i.e., it deals with 
compressible flows, in which the density is not constant. In modern engineering 
 applications, such flows are the rule rather than the exception. A few important 
 examples are the internal flows through rocket and gas turbine engines, high-speed 
subsonic, transonic, supersonic, and hypersonic wind tunnels, the external flow 
over modern airplanes designed to cruise faster than 0.3 of the speed of sound, 
and the flow inside the common internal combustion reciprocating engine. 

Figure 1.9 | The Bell XS-1, first manned supersonic aircraft. 
Source: NASA
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12 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

The purpose of this book is to develop the fundamental concepts of compressible 
flow, and to illustrate their use.

1.2 |  DEFINITION OF COMPRESSIBLE FLOW

Compressible flow is routinely defined as variable density flow; this is in contrast 
to incompressible flow, where the density is assumed to be constant throughout. 
Obviously, in real life every flow of every fluid is compressible to some greater 
or lesser extent; hence, a truly constant density (incompressible) flow is a myth. 
However, as previously mentioned, for almost all liquid flows as well as for the 
flows of some gases under certain conditions, the density changes are so small that 
the assumption of constant density can be made with reasonable accuracy. In such 
cases, Bernoulli’s equation, Eq. (1.1), can be applied with confidence. However, 
for the subject of this book—compressible flow—Eq. (1.1) does not hold, and for 
our purposes here, the reader should dismiss it from his or her thinking.

The simple definition of compressible flow as one in which the density is vari-
able requires more elaboration. Consider a small element of fluid of volume v. The 
pressure exerted on the sides of the element by the neighboring fluid is p. Assume 
the pressure is now increased by an infinitesimal amount dp. The volume of the 
element will be correspondingly compressed by the amount dv. Since the volume is 
reduced, dv is a negative quantity. The compressibility of the fluid, τ, is defined as

 τ = −
1
v

 
dv

dp
 (1.2)

Physically, the compressibility is the fractional change in volume of the fluid ele-
ment per unit change in pressure. However, Eq. (1.2) is not sufficiently precise. 
We know from experience that when a gas is compressed (say in a bicycle pump), 
its temperature tends to increase, depending on the amount of heat transferred into 
or out of the gas through the boundaries of the system. Therefore, if the tempera-
ture of the fluid element is held constant (due to some heat transfer mechanism), 
then the isothermal compressibility is defined as

 τT = −
1
v

 ( ∂v

∂p)
T

 (1.3)

On the other hand, if no heat is added to or taken away from the fluid element (if 
the compression is adiabatic), and if no other dissipative transport mechanisms such 
as viscosity and diffusion are important (if the compression is reversible), then the 
compression of the fluid element takes place isentropically, and the isentropic com-

pressibility is defined as

 τs = −
1
v

 ( ∂v

∂p)
s

 (1.4)

where the subscript s denotes that the partial derivative is taken at constant entropy.
Compressibility is a property of the fluid. Liquids have very low values of 

 compressibility (τT for water is 5 × 10–10 m2/N at 1 atm) whereas gases have 
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 1.2 Definition of Compressible Flow 13

high   compressibilities (τT for air is 10–5 m2/N at 1 atm, more than four orders of 
magnitude larger than water). If the fluid element is assumed to have unit mass, v 
is the specific volume (volume per unit mass), and the density is ρ = 1/v. In terms 
of density, Eq.  (1.2) becomes

 τ =
1
ρ

 
dρ

dp
 (1.5)

Therefore, whenever the fluid experiences a change in pressure, dp, the correspond-
ing change in density will be dρ, where from Eq. (1.5)

 dρ = ρτ dp (1.6)

To this point, we have considered just the fluid itself, with compressibility 
being a property of the fluid. Now assume that the fluid is in motion. Such flows 
are initiated and maintained by forces on the fluid, usually created by, or at least 
accompanied by, changes in the pressure. In particular, we shall see that high-
speed flows gene rally involve large pressure gradients. For a given change in 
pressure, dp, due to the flow, Eq. (1.6) demonstrates that the resulting change in 
density will be small for liquids (which have low values of τ), and large for gases 
(which have high values of τ). Therefore, for the flow of liquids, relatively large 
pressure gradients can create high velocities without much change in density. 
Hence, such flows are usually assumed to be incompressible, where ρ is constant. 
On the other hand, for the flow of gases with their attendant large values of τ, 
moderate to strong pressure gradients lead to substantial changes in the density 
via Eq. (1.6). At the same time, such pressure gradients create large velocity 
changes in the gas. Such flows are defined as compressible flows, where ρ is a 
variable.

We shall prove later that for gas velocities less than about 0.3 of the speed of 
sound, the associated pressure changes are small, and even though τ is large for 
gases, dp in Eq. (1.6) may still be small enough to dictate a small dρ. For this 
reason, the low-speed flow of gases can be assumed to be incompressible. For 
example, the flight velocities of most airplanes from the time of the Wright broth-
ers in 1903 to the beginning of World War II in 1939 were generally less than 
250 mi/h (112 m/s), which is less than 0.3 of the speed of sound. As a result, the 
bulk of early aerodynamic literature treats incompressible flow. On the other hand, 
flow velocities higher than 0.3 of the speed of sound are associated with relatively 
large pressure changes, accompanied by correspondingly large changes in density. 
Hence, compressibility effects on airplane aerodynamics have been important since 
the advent of high- performance aircraft in the 1940s. Indeed, for the modern high-
speed subsonic and supersonic aircraft of today, the older incompressible theories 
are wholly inadequate, and compressible flow analyses must be used.

In summary, in this book a compressible flow will be considered as one where 
the change in pressure, dp, over a characteristic length of the flow, multiplied by 
the compressibility via Eq. (1.6), results in a fractional change in density, dρ∕ρ, 
which is too large to be ignored. For most practical problems, if the density changes 
by 5 percent or more, the flow is considered to be compressible.
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14 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

EXAMPLE 1.1

Consider the low-speed flow of air over an airplane wing at standard sea level conditions; 
the free-stream velocity far ahead of the wing is 100 mi/h. The flow accelerates over the 
wing, reaching a maximum velocity of 150 mi/h at some point on the wing. What is the 
percentage pressure change between this point and the free stream?

■ Solution

Since the airspeeds are relatively low, let us (for the first and only time in this book) assume 
incompressible flow, and use Bernoulli’s equation for this problem. (See Ref.  1 for an 
elementary discussion of Bernoulli’s equation, as well as Ref. 104 for a more detailed pre-
sentation of the role of this equation in the solution of incompressible flow. Here, we assume 
that the reader is familiar with Bernoulli’s equation—its use and its limitations. If not, 
examine carefully the appropriate discussions in Refs. 1 and 104.) Let points 1 and 2 denote 
the free stream and wing points, respectively. Then, from Bernoulli’s equation,

  p1 + 1
2 ρ V1 

2 = p2 + 1
2 ρ V2 

2

or  p1 − p2 = 1
2 ρ (V2 

2 − V1 
2)

At standard sea level, ρ = 0.002377 slug/ft3. Also, using the handy conversion that 60 mi/h 
= 88 ft/s, we have V1 = 100 mi/h = 147 ft/s and V2 = 150 mi/h = 220 ft/s. (Note that, as 
 always in this book, we will use consistent units; for example, we will use either the English 
Engineering System, as in this problem, or the International System. See the footnote in 
Sec. 1.4 of this book, as well as Chap. 2 of Ref. 1. By using consistent units, none of our 
basic equations will ever contain conversion factors, such as qc and J, as is found in some 
references.) With this information, we have

  p1 − p2 = 1
2 ρ (V2 

2 − V1 
2)

  = 1
2(0.002377)[(220)2 − (147)2] = 31.8 lb/ft2

The fractional change in pressure referenced to the free-stream pressure, which at standard 
sea level is p1 = 2116 lb/ft2, is obtained as

 
p1 − p2

p1
=

31.8
2116

= 0.015

Therefore, the percentage change in pressure is 1.5 percent. In expanding over the wing surface, 
the pressure changes by only 1.5 percent. This is a case where, in Eq. (1.6), dp is small, and 
hence dρ is small. The purpose of this example is to demonstrate that, in low-speed flow prob-
lems, the percentage change in pressure is always small, and this, through Eq. (1.6), justifies the 
assumption of incompressible flow (dρ = 0) for such flows. However, at high-flow velocities, 
the change in pressure is not small, and the density must be treated as variable. This is the regime 
of compressible flow—the subject of this book. Note: Bernoulli’s equation used in this example 
is good only for incompressible flow; therefore, it will not appear again in any of our subsequent 
discussions. Experience has shown that, because it is one of the first  equations usually encoun-
tered by students in the study of fluid dynamics, there is a tendency to use Bernoulli’s equation 
for situations where it is not valid. Compressible flow is one such situation. Therefore, for our 
subsequent discussions in this book, remember never to invoke Bernoulli’s equation.
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1.3 | FLOW REGIMES

The age of successful manned flight began on December 17, 1903, when Orville 
and Wilbur Wright took to the air in their historic Flyer I, and soared over the 
windswept sand dunes of Kill Devil Hills in North Carolina. This age has contin-
ued to the present with modern, high-performance subsonic and supersonic air-
planes, as well as the hypersonic atmospheric entry of space vehicles. In the 
twentieth century, manned flight has been a major impetus for the advancement of 
fluid dynamics in general, and compressible flow in particular. Hence, although 
the fundamentals of compressible flow are applied to a whole spectrum of modern 
engineering problems, their  application to aerodynamics and propulsion geared to 
airplanes and missiles is frequently encountered.

In this vein, it is useful to illustrate different regimes of compressible flow by 
considering an aerodynamic body in a flowing gas, as sketched in Fig. 1.10. First, 
consider some definitions. Far upstream of the body, the flow is uniform with a 
free-stream velocity of V∞. A streamline is a curve in the flowfield that is tangent 
to the local velocity vector V at every point along the curve. Figure 1.10 illustrates 
only a few of the infinite number of streamlines around a body. Consider an arbi-
trary point in the flowfield, where p, T, ρ, and V are the local pressure, temperature, 
density, and vector velocity at that point, respectively. All of these quantities are 
point properties and vary from one point to another in the flow. In Chap. 3, we 
will show the speed of sound a to be a thermodynamic property of the gas; hence, 
a also varies from point to point in the flow. If a∞ is the speed of sound in the 
uniform free stream, then the ratio V∞∕a∞ defines the free-stream Mach number 
M∞. Similarly, the local Mach number M is defined as M = V∕a, and varies from 
point to point in the flowfield. Further physical significance of Mach number will 
be discussed in Chap. 3. In the present section, M simply will be used to define 
four different flow regimes in fluid dynamics, as discussed next.

1.3.1 Subsonic Flow

Consider the flow over an airfoil section as sketched in Fig. 1.10a. Here, the local 
Mach number is everywhere less than unity. Such a flow, where M < 1 at every 
point, and hence, the flow velocity is everywhere less than the speed of sound, is 
 defined as subsonic flow. This flow is characterized by smooth streamlines and 
continuously varying properties. Note that the initially straight and parallel stream-
lines in the free stream begin to deflect far upstream of the body, i.e., the flow is 
forewarned of the presence of the body. This is an important property of subsonic 
flow and will be discussed further in Chap. 4. Also, as the flow passes over the 
airfoil, the local velocity and Mach number on the top surface increase above 
their  free-stream values. However, if M∞ is sufficiently less than 1, the local 
Mach  number everywhere will remain subsonic. For airfoils in common use, if 
M∞ ≤ 0.8, the flowfield is generally completely subsonic. Therefore, to the airplane 
aerodynamicist, the subsonic regime is loosely identified with a free stream where 
M∞ ≤ 0.8.
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16 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

Figure 1.10 | Illustration of different regimes of flow. 
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1.3.2 Transonic Flow

If M∞ remains subsonic, but is sufficiently near 1, the flow expansion over the 
top  surface of the airfoil may result in locally supersonic regions, as sketched in 
Fig. 1.10b. Such a mixed region flow is defined as transonic flow. In Fig. 1.10b, 
M∞ is less than 1 but high enough to produce a pocket of locally supersonic flow. 
In most cases, as sketched in Fig. 1.10b, this pocket terminates with a shock wave 
across which there is a discontinuous and sometimes rather severe change in flow 
properties. Shock waves will be discussed in Chap. 4. If M∞ is increased to slightly 
above unity, this shock pattern will move to the trailing edge of the airfoil, and a 
second shock wave appears upstream of the leading edge. This second shock wave 
is called the bow shock, and is sketched in Fig. 1.10c. (Referring to Sec. 1.1, this 
is the type of flow pattern existing around the wing of the Bell XS-1 at the moment 
it was “breaking the sound barrier” at M∞ = 1.06.) In front of the bow shock, the 
streamlines are straight and parallel, with a uniform supersonic free-stream Mach 
number. In passing through that part of the bow shock that is nearly normal to the 
free stream, the flow becomes subsonic. However, an extensive supersonic region 
again forms as the flow expands over the airfoil surface, and again terminates with 
a trailing-edge shock. Both flow patterns sketched in Figs. 1.10b and c are char-
acterized by mixed regions of locally subsonic and supersonic flow. Such mixed 
flows are defined as transonic flows, and 0.8 ≤ M∞ ≤ 1.2 is loosely defined as the 
transonic regime. Transonic flow is discussed at length in Chap. 14.

1.3.3 Supersonic Flow

A flowfield where M > 1 everywhere is defined as supersonic. Consider the super-
sonic flow over the wedge-shaped body in Fig. 1.10d. A straight, oblique shock 
wave is attached to the sharp nose of the wedge. Across this shock wave, the 
streamline direction changes discontinuously. Ahead of the shock, the streamlines 
are straight, parallel, and horizontal; behind the shock they remain straight and 
parallel but in the direction of the wedge surface. Unlike the subsonic flow in 
Fig.  1.10a, the supersonic uniform free stream is not forewarned of the presence 
of the body until the shock wave is encountered. The flow is supersonic both 
upstream and (usually, but not  always) downstream of the oblique shock wave. 
There are dramatic physical and mathematical differences between subsonic and 
supersonic flows, as will be discussed in subsequent chapters.

1.3.4 Hypersonic Flow

The temperature, pressure, and density of the flow increase almost explosively 
across  the shock wave shown in Fig. 1.10d. As M∞ is increased to higher super-
sonic speeds, these increases become more severe. At the same time, the oblique 
shock wave moves closer to the surface, as sketched in Fig. 1.10e. For values of 
M∞ > 5, the shock wave is very close to the surface, and the flowfield between 
the shock and the body (the shock layer) becomes very hot—indeed, hot enough 
to dissociate or even ionize the gas. Aspects of such high-temperature chemically 
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18 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

reacting flows are discussed in Chaps. 16 and 17. These effects—thin shock layers 
and hot, chemically reacting gases—add complexity to the analysis of such flows. 
For this reason, the flow regime for M∞ > 5 is given a special label—hypersonic 

flow. The choice of M∞ = 5 as a dividing point between supersonic and hypersonic 
flows is a rule of thumb. In reality, the special characteristics associated with 
hypersonic flow appear gradually as M∞ is increased, and the Mach number at 
which they become important depends greatly on the shape of the body and the 
free-stream density. Hypersonic flow is the subject of Chap. 15.

It is interesting to note that incompressible flow is a special case of subsonic 
flow; namely, it is the limiting case where M∞ → 0. Since M∞ = V∞   /̸a∞, we have 
two possibilities:

M∞ → 0 because V∞ → 0
M∞ → 0 because a∞ → ∞

The former corresponds to no flow and is trivial. The latter states that the speed 
of sound in a truly incompressible flow would have to be infinitely large. This is 
compatible with Eq. (1.6), which states that, for a truly incompressible flow where 
dρ = 0, τ must be zero, i.e., zero compressibility. We shall see in Chap. 3 that the 
speed of sound is inversely proportional to the square root of τ; hence, τ = 0 
implies an infinite speed of sound.

There are other ways of classifying flowfields. For example, flows where the 
effects of viscosity, thermal conduction, and mass diffusion are important are called 
viscous flows. Such phenomena are dissipative effects that change the entropy of 
the flow and are important in regions of large gradients of velocity, temperature, 
and chemical composition. Examples are boundary layer flows, flow in long pipes, 
and  the thin shock layer on high-altitude hypersonic vehicles. Friction drag, flow-
field separation, and heat transfer all involve viscous effects. Therefore, viscous 
flows are of major importance in the study of fluid dynamics. In contrast, flows in 
which viscosity, thermal conduction, and diffusion are ignored are called inviscid 

flows. At first glance, the assumption of inviscid flows may appear highly restric-
tive; however, there are a number of important applications that do not involve 
flows with large gradients, and that readily can be assumed to be inviscid. Examples 
are the large regions of flow over wings and bodies outside the thin boundary layer 
on the surface, flow through wind tunnels and rocket engine nozzles, and the flow 
over compressor and turbine blades for jet engines. Surface pressure distributions, 
as well as aerodynamic lift and moments on some bodies, can be accurately obtained 
by means of the assumption of inviscid flow. In this book, viscous effects will not 
be treated except in regard to their role in forming the internal structure and thick-
ness of shock waves. That is, this book deals with compressible, inviscid flows.

Finally, we will always consider the gas to be a continuum. Clearly, a gas is 
composed of a large number of discrete atoms and/or molecules, all moving in a more 
or less random fashion, and frequently colliding with each other. This microscopic 
 picture of a gas is essential to the understanding of the thermodynamic and chemical 
properties of a high-temperature gas, as described in Chaps. 16 and 17. However, 
in deriving the fundamental equations and concepts for fluid flows, we take advantage 
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of the fact that a gas usually contains a large number of molecules (over 2 × 1019 
molecules/cm3 for air at normal room conditions), and hence on a macroscopic basis, 
the fluid behaves as if it were a continuous material. This continuum assumption is 
violated only when the mean distance an atom or molecule moves between collisions 
(the mean free path) is so large that it is the same order of magnitude as the char-
acteristic dimension of the flow. This implies low density, or rarefied flow. The 
extreme situation, where the mean free path is much larger than the characteristic 
length and where virtually no molecular collisions take place in the flow, is called 
free-molecular flow. In this case, the flow is essentially a stream of remotely spaced 
particles.  Low-density and free-molecular flows are rather special cases in the whole 
spectrum of fluid dynamics, occurring in flight only at very high altitudes (above 
200,000 ft), and in special laboratory devices such as electron beams and low-
pressure gas lasers. Such rarefied gas effects are beyond the scope of this book.

1.4 | A BRIEF REVIEW OF THERMODYNAMICS

The kinetic energy per unit mass, V2∕2, of a high-speed flow is large. As the flow 
moves over solid bodies or through ducts such as nozzles and diffusers, the local 
 velocity, hence local kinetic energy, changes. In contrast to low-speed or incom-
pressible flow, these energy changes are substantial enough to strongly interact 
with other properties of the flow. Because in most cases high-speed flow and 
compressible flow are synonymous, energy concepts play a major role in the study 
and understanding of compressible flow. In turn, the science of energy (and 
entropy) is thermodynamics; consequently, thermodynamics is an essential ingredi-
ent in the study of compressible flow.

This section gives a brief outline of thermodynamic concepts and relations 
necessary to our further discussions. This is in no way an exposition on thermo-
dynamics; rather it is a review of only those fundamental ideas and equations which 
will be of direct use in subsequent chapters.

1.4.1 Perfect Gas

A gas is a collection of particles (molecules, atoms, ions, electrons, etc.) that are 
in more or less random motion. Due to the electronic structure of these particles, 
a force field pervades the space around them. The force field due to one particle 
reaches out and interacts with neighboring particles, and vice versa. Hence, these 
fields are called intermolecular forces. The intermolecular force varies with dis-
tance between particles; for most atoms and molecules it takes the form of a weak 
attractive force at large distance, changing quickly to a strong repelling force at 
close distance. In general, these intermolecular forces influence the motion of the 
particles; hence, they also influence the thermodynamic properties of the gas, 
which are nothing more than the macroscopic ramification of the particle motion.

At the temperatures and pressures characteristic of many compressible flow 
 applications, the gas particles are, on the average, widely separated. The average 
 distance between particles is usually more than 10 molecular diameters, which 
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20 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

 corresponds to a very weak attractive force. As a result, for a large number of 
engineering applications, the effect of intermolecular forces on the gas properties 
is negligible. By definition, a perfect gas is one in which intermolecular forces 

are  neglected. By ignoring intermolecular forces, the equation of state for a perfect 
gas can be derived from the theoretical concepts of modern statistical mechanics 
or kinetic theory. However, historically, it was first synthesized from laboratory 
measurements by Robert Boyle in the seventeenth century, Jacques Charles in the 
eighteenth century, and Joseph Gay-Lussac and John Dalton around 1800. The 
empirical result which unfolded from these observations was

 p� = MRT (1.7)

where p is pressure (N/m2 or lb/ft2), � is the volume of the system (m3 or ft3), 
M is the mass of the system (kg or slug), R is the specific gas constant [J/(kg · K) 
or (ft · lb)/(slug · °R)], which is a different value for different gases, and T is the 
temperature (K or °R).† This equation of state can be written in many forms, most 
of which are summarized here for the reader’s convenience. For example, if 
Eq.  (1.7) is  divided by the mass of the system,

 pv = RT  (1.8)

where v is the specific volume (m3/kg or ft3/slug). Since the density ρ = 1∕v, 
Eq.  (1.8) becomes

 p = ρRT  (1.9)

Along another track that is particularly useful in chemically reacting systems, 
the early fundamental empirical observations also led to a form for the equation 
of state:

 p� = �ℛT (1.10)

where � is the number of moles of gas in the system, and ℛ is the universal gas 
constant, which is the same for all gases. Recall that a mole of a substance is that 
amount which contains a mass numerically equal to the molecular weight of the 
gas, and which is identified with the particular system of units being used, i.e., a 
 kilogram-mole (kg · mol) or a slug-mole (slug · mol). For example, for pure 
diatomic oxygen (O2), 1 kg · mol has a mass of 32 kg, whereas 1 slug · mol has 
a mass of 32 slug.  Because the masses of different molecules are in the same ratio 
as their molecular weights, 1 mol of different gases always contains the same 
number of molecules, i.e., 1 kg · mol always contains 6.02 × 1026 molecules, 
independent of the species of the gas. Continuing with Eq. (1.10), dividing by the 
number of moles of the system yields

† Two sets of consistent units will be used throughout this book, the International System (SI) and the 
English Engineering System. In the SI system, the units of force, mass, length, time, and temperature 
are the newton (N), kilogram (kg), meter (m), second (s), and Kelvin (K), respectively; in the English 
Engineering System they are the pound (lb), slug, foot (ft), second (s), and Rankine (°R), respectively. 
The respective units of energy are joules (J) and foot-pounds (ft · lb).
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 p�′ = ℛT (1.11)

where �′ is the molar volume [m3/(kg · mol) or ft3/(slug · mol)]. Of more use in 
gasdynamic problems is a form obtained by dividing Eq. (1.10) by the mass of the 
system:

 pv = ηℛT  (1.12)

where v is the specific volume as before, and η is the mole-mass ratio [(kg · mol)/kg 
and (slug · mol)/slug]. (Note that the kilograms and slugs in these units do not cancel, 
because the kilogram-mole and slug-mole are entities in themselves; the “kilogram” 
and “slug” are just identifiers on the mole.) Also, Eq. (1.10) can be divided by the 
system volume, yielding

 p = CℛT (1.13)

where C is the concentration [(kg · mol)/m3 or (slug · mol)/ft3].
Finally, the equation of state can be expressed in terms of particles. Let NA be 

the number of particles in a mole (Avogadro’s number, which for a kilogram-mole 
is 6.02 × 1026 particles). Multiplying and dividing Eq. (1.13) by NA,

 p = (NAC)(ℛNA
)T  (1.14)

Examining the units, NAC is physically the number density (number of parti-
cles per unit volume), and ℛ ̸NA is the gas constant per particle, which is precisely 
the Boltzmann constant k. Hence, Eq. (1.14) becomes

 p = nkT (1.15)

where n denotes number density.
In summary, the reader will frequently encounter the different forms of the 

perfect gas equation of state just listed. However, do not be confused; they are all 
the same thing and it is wise to become familiar with them all. In this book, par-
ticular use will be made of Eqs. (1.8), (1.9), and (1.12). Also, do not be confused 
by the variety of gas constants. They are easily sorted out:

1. When the equation deals with moles, use the universal gas constant, which 
is the “gas constant per mole.” It is the same for all gases, and equal to the 
following in the two systems of units:

 ℛ = 8314 J/(kg · mol · K)
 ℛ = 4.97 × 104 (ft · lb)/(slug · mol · °R)

2. When the equation deals with mass, use the specific gas constant R, which 
is the “gas constant per unit mass.” It is different for different gases, and is 
related to the universal gas constant, R = ℛ∕ℳ, where ℳ is the molecular 
weight. For air at standard conditions:

 R = 287 J/(kg · K)
 R = 1716 (ft · lb)/(slug · °R)

 1.4 A Brief Review of Thermodynamics 21
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3. When the equation deals with particles, use the Boltzmann constant k, which 
is the “gas constant per particle”:

 k = 1.38 × 10−23 J/K

 k = 0.565 × 10−23 (ft · lb) /°R

How accurate is the assumption of a perfect gas? It has been experimentally 
determined that, at low pressures (near 1 atm or less) and at high temperatures 
(standard temperature, 273 K, and above), the value p v R̸T for most pure gases 
deviates from unity by less than 1 percent. However, at very cold temperatures and 
high pressures, the molecules of the gas are more closely packed together, and 
consequently intermolecular forces become more important. Under these conditions, 
the gas is defined as a real gas. In such cases, the perfect gas equation of state must 
be replaced by more accurate relations such as the van der Waals equation

 (p +
a

v 

2)(v − b) = RT  (1.16)

where a and b are constants that depend on the type of gas. As a general rule of 
thumb, deviations from the perfect gas equation of state vary approximately as p   ̸T 3. 
In the vast majority of gasdynamic applications, the temperatures and pressures are 
such that p = ρRT can be applied with confidence. Such will be the case throughout 
this book.

In the early 1950s, aerodynamicists were suddenly confronted with hypersonic 
entry vehicles at velocities as high as 26,000 ft/s (8 km/s). The shock layers about 
such vehicles were hot enough to cause chemical reactions in the airflow (disso-
ciation, ionization, etc.). At that time, it became fashionable in the aerodynamic 
literature to denote such conditions as “real gas effects.” However, in classical 
physical chemistry, a real gas is defined as one in which intermolecular forces are 
important, and the definition is completely divorced from the idea of chemical 
reactions. In the preceding paragraphs, we have followed such a classical defini-
tion. For a chemically reacting gas, as will be discussed at length in Chap. 16, 
most problems can be treated by assuming a mixture of perfect gases, where the 
relation p = ρRT still holds. However, because R = ℛ ̸ℳ and ℳ varies due to 
the chemical reactions, then R is a variable throughout the flow. It is preferable, 
therefore, not to identify such  phenomena as “real gas effects,” and this term will 
not be used in this book. Rather, we will deal with “chemically reacting mixtures 
of perfect gases,” which are the  subject of Chaps. 16 and 17.

A pressure vessel that has a volume of 10 m3 is used to store high-pressure air for operat-
ing a supersonic wind tunnel. If the air pressure and temperature inside the vessel are 20 atm 
and 300 K, respectively, what is the mass of air stored in the vessel?

■ Solution

Recall that 1 atm = 1.01 × 105 N/m2. From Eq. (1.9)

 ρ =
p

RT
=

(20)(1.01 × 105)
(287)(300)

= 23.46 kg/m3

EXAMPLE 1.2
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The total mass stored is then

 M = �ρ = (10)(23.46) = 234.6 kg

Calculate the isothermal compressibility for air at a pressure of 0.5 atm.

■ Solution

From Eq. (1.3)

 τT = −
1
v( ∂v

∂p)
T

From Eq. (1.8)

 v =
RT

p

Thus,

 ( ∂v

∂p)
T

= −
RT

p2

Hence,

 τT = −
1
v( ∂v

∂p)
T

= −(
p

RT)(−
RT

p2 ) =
1
p

We see that the isothermal compressibility for a perfect gas is simply the reciprocal of the 
 pressure:

 τT =
1
p

=
1

0.5
=   2 atm−1

In terms of the International System of units, where p = (0.5)(1.01 × 105) = 5.05 × 104 N/m2,

 τT = 1.98 × 10−5 m2/ N

In terms of the English Engineering System of units, where p = (0.5)(2116) = 1058 lb/ft2,

 τT = 9.45 × 10−4 ft2/ lb

1.4.2 Internal Energy and Enthalpy

Returning to our microscopic view of a gas as a collection of particles in random 
motion, the individual kinetic energy of each particle contributes to the overall 
energy of the gas. Moreover, if the particle is a molecule, its rotational and vibra-
tional motions (see Chap. 16) also contribute to the gas energy. Finally, the motion 
of electrons in both atoms and molecules is a source of energy. This small sketch 
of atomic and molecular energies will be enlarged to a massive portrait in Chap. 16; 
it is sufficient to note here that the energy of a particle can consist of several dif-
ferent forms of motion. In turn, these energies, summed over all the particles of 

EXAMPLE 1.3
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24 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

the gas, constitute the internal energy, e, of the gas. Moreover, if the particles of 
the gas (called the system) are rattling about in their state of “maximum disorder” 
(see again Chap. 16), the system of particles will be in equilibrium.

Return now to the macroscopic view of the gas as a continuum. Here, equi-
librium is evidenced by no gradients in velocity, pressure, temperature, and chem-
ical concentrations throughout the system, i.e., the system has uniform properties. 
For an equilibrium system of a real gas where intermolecular forces are important, 
and also for an equilibrium chemically reacting mixture of perfect gases, the inter-
nal energy is a function of both temperature and volume. Let e denote the specific 
internal energy (internal energy per unit mass). Then, the enthalpy, h, is defined, 
per unit mass, as h = e + pv, and we have

 e = e (T, v)
 h = h (T, p) 

(1.17)

for both a real gas and a chemically reacting mixture of perfect gases.
If the gas is not chemically reacting, and if we ignore intermolecular forces, 

the resulting system is a thermally perfect gas, where internal energy and enthalpy 
are functions of temperature only, and where the specific heats at constant volume 
and pressure, cv and cp, are also functions of temperature only:

 e = e (T )
 h = h (T )
 de = cv d T 
 dh = cp d T 

(1.18)

The temperature variation of cv and cp is associated with the vibrational and elec-
tronic motion of the particles, as will be explained in Chap. 16.

Finally, if the specific heats are constant, the system is a calorically perfect 

gas, where

 e = cvT

 h = cpT 
(1.19)

In Eq. (1.19), it has been assumed that h = e = 0 at T = 0.
In many compressible flow applications, the pressures and temperatures are 

moderate enough that the gas can be considered to be calorically perfect. Indeed, 
there is a large bulk of literature for flows with constant specific heats. For the 
first half of this book, a calorically perfect gas will be assumed. This is the case 
for atmospheric air at temperatures below 1000 K. However, at higher tempera-
tures, the vibrational motion of the O2 and N2 molecules in air becomes important, 
and the air becomes thermally perfect, with specific heats that vary with tempera-
ture. Finally, when the temperature exceeds 2500 K, the O2 molecules begin to 
dissociate into O atoms, and the air becomes chemically reacting. Above 4000 K, 
the N2 molecules begin to dissociate. For these chemically reacting cases, from 
Eq. (1.17), e depends on both T and v, and h depends on both T and p. (Actually, 
in equilibrium thermodynamics, any state variable is uniquely determined by any 
two other state variables. However, it is convenient to associate T and v with e, 
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and T and p with h.) Chapters 16 and 17 will discuss the thermodynamics and 
gasdynamics of both thermally perfect and chemically reacting gases.

Consistent with Eq. (1.9) and the definition of enthalpy is the relation

 cp − cv = R (1.20)

where the specific heats at constant pressure and constant volume are defined as

 cp = ( ∂h

∂T)
p

and cv = ( ∂e

∂T)
v

respectively. Equation (1.20) holds for a calorically perfect or a thermally perfect 
gas. It is not valid for either a chemically reacting or a real gas. Two useful forms 
of Eq. (1.20) can be simply obtained as follows. Divide Eq. (1.20) by cp:

 1 −
cv

cp

=
R

cp

 (1.21)

Define γ ≡ cp  ̸cv. For air at standard conditions, γ = 1.4. Then Eq. (1.21) becomes

 1 −
1
γ

=
R

cp

Solving for cp,

 
cp =

γR

γ − 1  
(1.22)

Similarly, by dividing Eq. (1.20) by cv, we find that

 

cv =
R

γ − 1
 

(1.23)

Equations (1.22) and (1.23) hold for a thermally or calorically perfect gas; they 
will be useful in our subsequent treatment of compressible flow.

For the pressure vessel in Example 1.2, calculate the total internal energy of the gas stored 
in the vessel.

■ Solution

From Eq. (1.23)

 cv =
R

γ − 1
=

287
1.4 − 1

= 717.5 J/kg · K

EXAMPLE 1.4
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From Eq. (1.19)

 e = cvT = (717.5)(300) = 2.153 × 105 J/kg

From Example 1.2, we calculated the mass of air in the vessel to be 234.6 kg. Thus, the 
total internal energy is

 E = M e = (234.6)(2.153 × 105) =   5.05 × 107 J

1.4.3 First Law of Thermodynamics

Consider a system, which is a fixed mass of gas separated from the surroundings 
by a flexible boundary. For the time being, assume the system is stationary, i.e., 
it has no directed kinetic energy. Let δq be an incremental amount of heat added 
to the system across the boundary (say by direct radiation or thermal conduction). 
Also, let δw denote the work done on the system by the surroundings (say by a 
displacement of the  boundary, squeezing the volume of the system to a smaller 
value). Due to the molecular motion of the gas, the system has an internal energy e. 
(This is the specific internal energy if we assume a system of unit mass.) The heat 
added and work done on the system cause a change in energy, and since the sys-
tem is stationary, this change in energy is simply de:

 δq + δw = de  (1.24)

This is the first law of thermodynamics; it is an empirical result confirmed by labora-
tory and practical experience. In Eq. (1.24), e is a state variable. Hence, de is an exact 
differential, and its value depends only on the initial and final states of the system. 
In contrast, δq and δw depend on the process in going from the initial and final states.

For a given de, there are in general an infinite number of different ways (pro-
cesses) by which heat can be added and work done on the system. We will be 
primarily concerned with three types of processes:

1. Adiabatic process—one in which no heat is added to or taken away from 
the system

2. Reversible process—one in which no dissipative phenomena occur, i.e., 
where the effects of viscosity, thermal conductivity, and mass diffusion are 
absent

3. Isentropic process—one which is both adiabatic and reversible

For a reversible process, it can be easily proved (see any good text on thermo-
dynamics) that δw = −p dv, where dv is an incremental change in specific volume 
due to a displacement of the boundary of the system. Hence, Eq. (1.24) becomes

 δ q = p d v = de (1.25)

If, in addition, this process is also adiabatic (hence, isentropic), Eq. (1.25) leads to 
some extremely useful thermodynamic formulas. However, before obtaining these 
formulas, it is useful to review the concept of entropy.
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1.4.4 Entropy and the Second Law of Thermodynamics

Consider a block of ice in contact with a red-hot plate of steel. Experience tells us 
that the ice will warm up (and probably melt) and the steel plate will cool down. 
However, Eq. (1.24) does not necessarily say this will happen. Indeed, the first 
law allows that the ice may get cooler and the steel plate hotter—just as long as 
energy is conserved during the process. Obviously, this does not happen; instead, 
nature imposes another condition on the process, a condition which tells us in 

which direction a process will take place. To ascertain the proper direction of a 
process, let us define a new state variable, the entropy, as

 ds =
δqrev

T

where s is the entropy of the system, δqrev is an incremental amount of heat added 
reversibly to the system, and T is the system temperature. Do not be confused by 
this definition. It defines a change in entropy in terms of a reversible addition of 
heat, δqrev. However, entropy is a state variable, and it can be used in conjunction 
with any type of process, reversible or irreversible. The quantity δqrev is just an 
artifice; an effective value of δqrev can always be assigned to relate the initial and 
end points of an irreversible process, where the actual amount of heat added is δq. 
Indeed, an alternative and probably more lucid relation is

 ds =
δq

T
+ dsirrev  (1.26)

Equation (1.26) applies in general; it states that the change in entropy during any 
incremental process is equal to the actual heat added divided by the temperature, 
δq  ̸T, plus a contribution from the irreversible dissipative phenomena of viscosity, 
thermal conductivity, and mass diffusion occurring within the system, dsirrev. These 
dissipative phenomena always increase the entropy:

 
dsirrev ≥ 0

 
(1.27)

The equal sign denotes a reversible process, where, by definition, the dissipative 
phenomena are absent. Hence, a combination of Eqs. (1.26) and (1.27) yields

 ds ≥
δq

T
 (1.28)

Furthermore, if the process is adiabatic, δq = 0, and Eq. (1.28) becomes

 ds ≥ 0  (1.29)

Equations (1.28) and (1.29) are forms of the second law of thermodynamics. The 
second law tells us in what direction a process will take place. A process will 
proceed in a direction such that the entropy of the system plus surroundings always 
increases, or at best stays the same. In our example at the beginning of Sec.1.4.4, 
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28 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

consider the system to be both the ice and steel plate combined. The simultaneous 
heating of the ice and cooling of the plate yields a net increase in entropy for the 
system. On the other hand, the impossible situation of the ice getting cooler and 
the plate hotter would yield a net decrease in entropy, a situation forbidden by the 
second law. In summary, the concept of entropy in combination with the second 
law allows us to predict the direction that nature takes.

1.4.5 Calculation of Entropy

Consider again the first law in the form of Eq. (1.25). If we assume that the heat 
is reversible, and we use the definition of entropy in the form δqrev = T ds, then 
Eq.  (1.25) becomes
 T ds − p d v = de

 T ds = de + p dv  (1.30)

Another form can be obtained in terms of enthalpy. For example, by definition,
 h = e + pv

Differentiating, we obtain

 dh = de + p dv + v dp (1.31)

Combining Eqs. (1.30) and (1.31), we have

 T ds = dh = v dp  (1.32)

Equations (1.30) and (1.32) are important, and should be kept in mind as much as 
the original form of the first law, Eq. (1.24).

For a thermally perfect gas, from Eq. (1.18), we have dh = cp d T. Substitution 
into Eq. (1.32) gives

 ds = cp

dT

T
−

v dp

T
 (1.33)

Substituting the perfect gas equation of state p v = RT into Eq. (1.33), we have

 ds = cp

d T

T
− R 

dp

p
 (1.34)

Integrating Eq. (1.34) between states 1 and 2,

 s2 − s1 = ∫  
T2

T1

cp

d T

T
− R ln 

p2

p1
 (1.35)

Equation (1.35) holds for a thermally perfect gas. It can be evaluated if cp is known 
as a function of T. If we further assume a calorically perfect gas, where cp is con-
stant, Eq. (1.35) yields

 s2 − s1 = cp ln 
T2

T1
− R ln 

p2

p1
 (1.36)
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Similarly, starting with Eq. (1.30), and using de = cv d T, the change in entropy 
can also be obtained as

 s2 − s1 = cv ln  

T2

T1
+ R ln  

v2

v1
 (1.37)

As an exercise, show this yourself. Equations (1.36) and (1.37) allow the calcula-
tion of the change in entropy between two states of a calorically perfect gas in 
terms of either the pressure and temperature, or the volume and temperature. Note 
that entropy is a function of both p and T, or v and T, even for the simplest case 
of a calorically perfect gas.

Consider the air in the pressure vessel in Example 1.2. Let us now heat the gas in the vessel. 
Enough heat is added to increase the temperature to 600 K. Calculate the change in entropy 
of the air inside the vessel.

■ Solution

The vessel has a constant volume; hence, as the air temperature is increased, the pressure 
also increases. Let the subscripts 1 and 2 denote the conditions before and after heating, 
respectively. Then, from Eq. (1.8),

 
p2

p1
=

T2

T1
=

600
300

= 2

In Example 1.4, we found that cv = 717.5 J/kg · K. Thus, from Eq. (1.20)

 cp = cv + R = 717.5 + 287 = 1004.5 J/kg · K

From Eq. (1.36)

s2 − s1 = cp ln 
T2

T1
− R ln 

p2

p1

= 1004.5 ln 2 − 287 ln 2 = 497.3 J/kg · K

From Example 1.2, the mass of air inside the vessel is 234.6 kg. Thus, the total entropy 
change is

  S2 − S1 = M(s2 − s1) = (234.6)(497.3) = 1.167 × 105 J/K

1.4.6 Isentropic Relations

An isentropic process was already defined as adiabatic and reversible. For an 
adiabatic process, δq = 0, and for a reversible process, dsirrev = 0. Hence, from 
Eq.  (1.26), an isentropic process is one in which ds = 0, i.e., the  entropy is 

 constant.

EXAMPLE 1.5
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30 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

Important relations for an isentropic process can be obtained directly from 
Eqs.  (1.36) and (1.37), setting s2 = s1. For example, from Eq. (1.36)

0 = cp ln  

T2

T1
− R ln  

p2

p1

ln 
p2

p1
=

cp

R
 ln 

T2

T1

 
p2

p1
= (T2

T1)
cp∕R

 (1.38)

Recalling Eq. (1.22),

 
cp

R
=

γ

γ − 1

and substituting into Eq. (1.38),

 
p2

p1
= (T2

T1)
γ∕(γ−1)

 (1.39)

Similarly, from Eq. (1.37)

 0 = cv ln  
T2

T1
+ R ln  

v2

v1

ln 
v2

v1
= −

cv

R
 ln 

T2

T1

 
v2

v1
= (T2

T1)
−cv∕R

 (1.40)

From Eq. (1.23)

 
cv

R
=

1
γ − 1

Substituting into Eq. (1.40), we have

 
v2

v1
= (T2

T1)
−1∕(γ−1)

 (1.41)

Recall that ρ2∕ρ1 = v1∕v2. Hence, from Eq. (1.41)

 
ρ2

ρ1
= (T2

T1)
1∕(γ−1)

 (1.42)

Summarizing Eqs. (1.39) and (1.42),

 
p2

p1
= (

ρ2

ρ1)
γ

= (T2

T1)
γ∕(γ−1)

 (1.43)

Equation (1.43) is important. It relates pressure, density, and temperature for an 
isentropic process, and is very frequently used in the analysis of compressible flows.
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You might legitimately ask the questions why Eq. (1.43) is so important, and 
why it is frequently used. Indeed, at first thought the concept of an isentropic 
process itself may seem so restrictive—adiabatic as well as reversible—that one 
might expect it to find only limited applications. However, such is not the case. 
For example, consider the flows over an airfoil and through a rocket engine. In 
the regions adjacent to the airfoil surface and the rocket nozzle walls, a boundary 
layer is formed wherein the dissipative mechanisms of viscosity, thermal conduc-
tion, and diffusion are strong. Hence, the entropy increases within these boundary 
layers. On the other hand, consider the fluid elements outside the boundary layer, 
where dissipative effects are negligible. Moreover, no heat is being added or taken 
away from the fluid elements at these points—hence, the flow is adiabatic. As a 
result, the fluid elements outside the boundary layer are experiencing adiabatic and 
reversible processes—namely, isentropic flow. Moreover, the viscous boundary 
layers are usually thin; hence, large regions of the flowfields are isentropic. There-
fore, a study of isentropic flows is directly applicable to many types of practical 
flow problems. In turn, Eq.  (1.43) is a powerful relation for such flows, valid for 
a calorically perfect gas.

This ends our brief review of thermodynamics. Its purpose has been to give a 
quick summary of ideas and equations that will be employed throughout our sub-
sequent discussions of compressible flow. Aspects of the thermodynamics associ-
ated with a high-temperature chemically reacting gas will be developed as necessary 
in Chap. 16.

Consider the flow through a rocket engine nozzle. Assume that the gas flow through the 
nozzle is an isentropic expansion of a calorically perfect gas. In the combustion chamber, 
the gas which results from the combustion of the rocket fuel and oxidizer is at a pressure 
and temperature of 15 atm and 2500 K, respectively; the molecular weight and specific heat 
at constant pressure of the combustion gas are 12 and 4157 J/kg ⋅ K, respectively. The gas 
expands to supersonic speed through the nozzle, with a temperature of 1350 K at the nozzle 
exit. Calculate the pressure at the exit.

■ Solution

From our earlier discussion on the equation of state,

 R =
ℛ

ℳ
=

8314
12

= 692.8 J/kg · K

From Eq. (1.20)

 cv = cp − R = 4157 − 692.8 = 3464 J/kg · K

Thus

 γ =
cp

cv

=
4157
3464

= 1.2

EXAMPLE 1.6
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32 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

From Eq. (1.43), we have

  
p2

p1
= (

T2

T1)
γ∕(γ−1)

= (1350
2500)

1.2∕(1.2−1)

= 0.0248

  p2 = 0.025p1 = (0.0248)(15 atm) = 0.372 atm

Calculate the isentropic compressibility for air at a pressure of 0.5 atm. Compare the result 
with that for the isothermal compressibility obtained in Example 1.3.

■ Solution

From Eq. (1.4), the isentropic compressibility is defined as

 τs = −
1
v( ∂v

∂p)
s

Since v = 1∕ρ, we can write Eq. (1.4) as

 τs =
1
ρ(

∂ρ

∂p)
s

 (E.1)

The variation between p and ρ for an isentropic process is given by Eq. (1.43)

 
p2

p1
= (

ρ2

ρ1)
γ

which is the same as writing

 p = cρ 
γ (E.2)

where c is a constant. From Eq. (E.2)

 (
∂p

∂ρ)
s

= cγργ−1 =
p

ρ 
γ(γρ  

γ−1) =
γp

ρ
 (E.3)

From Eqs. (E.1) and (E.3),

 τs =
1
ρ(

∂ρ

∂p)
s

=
1
ρ(

∂p

∂ρ)
−1

s

=
1
ρ

 (
γp

ρ )
−1

Hence,

 τs =
1
γp

 (E.4)

Recall from Example 1.3 that τT = 1∕p. Hence,

 τs =
τT

γ
 (E.5)

Note that τs is smaller than τT by the factor γ. From Example 1.3, we found that for  
p = 0.5 atm, τT = 1.98 × 10−5 m2/N. Hence, from Eq. (E.5)

 τs =
1.98 × 10−5

1.4
= 1.41 × 10−5 m2/N

EXAMPLE 1.7
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1.5 | AERODYNAMIC FORCES ON A BODY

The history of fluid dynamics is dominated by the quest to predict forces on a 
body moving through a fluid—ships moving through water, and in the nineteenth 
and twentieth centuries, aircraft moving through air, to name just a few examples. 
 Indeed, Newton’s treatment of fluid flow in his Principia (1687) was oriented in 
part toward the prediction of forces on an inclined surface. The calculation of 
aero dynamic and hydrodynamic forces still remains a central thrust of modern fluid 
 dynamics. This is especially true for compressible flow, which governs the aero-
dynamic lift and drag on high-speed subsonic, transonic, supersonic, and hyper-
sonic airplanes, and missiles. Therefore, in several sections of this book, the 
fundamentals of compressible flow will be applied to the practical calculation of 
aerodynamic forces on high-speed bodies.

The mechanism by which nature transmits an aerodynamic force to a surface 
is straightforward. This force stems from only two basic sources: surface pressure 
and  surface shear stress. Consider, for example, the airfoil of unit span sketched 
in Fig. 1.11. Let s be the distance measured along the surface of the airfoil from 
the nose. In general, the pressure p and shear stress τ are functions of s; p = p(s) 
and τ = τ(s). These pressure and shear stress distributions are the only means that 
nature has to communicate an aerodynamic force to the airfoil. To be more specific, 
consider an elemental surface area dS on which is exerted a pressure p acting 
normal to dS and a shear stress τ acting tangential to dS, as sketched in Fig. 1.11 
Let n and m be unit vectors perpendicular and parallel, respectively, to the element 
dS, as shown in Fig. 1.11. For future discussion, it is convenient to define a vector 
d S ≡ n dS; hence, d S is a vector normal to the surface with a magnitude dS. From 
Fig. 1.11, the elemental force d F acting on dS is then

 d F = −p n dS + τ m dS = −p dS + τm dS (1.44)

Note from Fig. 1.11 that p acts toward the surface, whereas dS = n dS is directed 
away from the surface. This is the reason for the minus sign in Eq. (1.44). The total 

Figure 1.11 | Sources of aerodynamic force; resultant force and its resolution into lift 
and drag.
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34 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

aerodynamic force F acting on the complete body is simply the sum of all the ele-
ment forces acting on all the elemental areas. This can be expressed as a surface 
integral, using Eq. (1.44):

 F = ∯  dF = −∯  p dS + ∯  τm dS (1.45)

On the right-hand side of Eq. (1.45), the first integral is the pressure force on the 
body, and the second is the shear, or friction force. The integrals are taken over 
the complete surface of the body.

Consider x, y, z orthogonal coordinates as shown in Fig. 1.11. Let x and y be 
parallel and perpendicular, respectively, to V∞. If F is the net aerodynamic force 
from Eq. (1.45), then the lift L and drag D are defined as the components of F in 
the y and x directions, respectively. In aerodynamics, V∞ is called the relative wind, 
and lift and drag are always defined as perpendicular and parallel, respectively, to 
the relative wind. For most practical aerodynamic shapes, L is generated mainly 
by the  surface pressure distribution; the shear stress distribution generally makes 
only a small contribution. Hence from Eq. (1.45) and Fig. 1.11, the aerodynamic 
lift can be approximated by

 L ≈ y component of[−∯  p dS] (1.46)

With regard to drag, from Eq. (1.45) and Fig. 1.11,

 D = x component of [−∯  p dS]
pressure drag

+ x component of [ ∯  τm dS]
skin−friction drag

 (1.47)

In this book, inviscid flows are dealt with exclusively, as discussed in Sec. 1.3. 
For many bodies, the inviscid flow accurately determines the surface pressure dis-
tribution. For such bodies, the results of this book in conjunction with Eq. (1.46) 
allow a reasonable prediction of lift. On the other hand, drag is due both to pressure 
and shear stress distributions via Eq. (1.47). Since we will not be considering vis-
cous flows, we will not be able to calculate skin-friction drag. Moreover, the pres-
sure drag in Eq. (1.47) is often influenced by flow separation from the body—also 
a viscous  effect. Hence, the fundamentals of inviscid compressible flow do not lead 
to an accurate prediction of drag for many situations. However, for pressure drag 
on slender supersonic shapes due to shock waves, so-called wave drag, inviscid 
techniques are usually quite adequate, as we shall see in subsequent chapters.

A flat plate with a chord length of 3 ft and an infinite span (perpendicular to the page 
in  Fig.  1.12) is immersed in a Mach 2 flow at standard sea level conditions at an angle 
of  attack of 10°. The pressure distribution over the plate is as follows: upper surface, 
p2 = const = 1132 lb/ft2; lower surface, p3 = const = 3568 lb/ft2. The local shear stress is 

EXAMPLE 1.8

and71446_ch01_001-040.indd   34 22/07/19   11:11 AM



given by τw = 13╱ξ 0.2, where τw is in pounds per square feet and ξ is the distance in feet 
along the plate from the leading edge. Assume that the distribution of τw over the top and 
bottom surfaces is the same. (We make this assumption for simplicity in this example. In 
reality, the shear stress distributions over the top and bottom surfaces will be different 
because the flow properties over these two surfaces are different.) Both the pressure and 
shear stress distributions are sketched qualitatively in Fig. 1.12. Calculate the lift and drag 
per unit span on the plate.

■ Solution

Considering a unit span,

−∯  p dS = [− ∫
 3

0

p2 dξ + ∫
 3

0

p3 dξ]n = [−(1132)(3) + (3568)(3)]n = 7308n

Figure 1.12 | Geometry for Example 1.8.
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36 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

From Eq. (1.46)

 L = y component of [−∯  p d S] = 7308 cos 10° = 7197 lb  per unit span

From Eq. (1.47)

 Pressure drag = wave drag ≡ Dw = x component of [−∯  p d S]
Hence,

 Dw = 7308 sin 10° = 1269 lb  per unit span

Also from Eq. (1.46)

 Skin-friction drag ≡ Df = x component of [ ∯  τ m dS]
 ∯   τ m dS = [13 ∫  

3

0

ξ−0.2 dξ] m = 16.25ξ 
4∕5 ∣ 3

0
 m = 39.13m

Hence, recalling that shear stress acts on both sides,

 Df = 2(39.13) cos 10° = 77.1 lb  per unit span

The total drag is
 D = Dw + Df

 D = 1269 lb + 77.1 lb = 1346 lb

Note: For this example, the drag is mainly wave drag; skin-friction drag accounts for only 
5.7  percent of the total drag. This illustrates an important point. For supersonic flow over 
slender bodies at a reasonable angle of attack, the wave drag is the primary drag contributor 
at sea level, far exceeding the skin-friction drag. For such applications, the inviscid methods 
discussed in this book suffice, because the wave drag (pressure drag) can be obtained from 
such methods. We see here also why so much attention is focused on the reduction of wave 
drag—because it is frequently the primary drag component. At smaller angles of attack, the 
relative proportion of Df to D increases. Also, at higher altitudes, where viscous effects 
become stronger (the Reynolds number is lower), the relative proportion of Df to D increases.

1.6 | MODERN COMPRESSIBLE FLOW

In Sec. 1.1, we saw how the convergent-divergent steam nozzles of de Laval helped 
to usher compressible flow into the world of practical engineering applications. 
However, compressible flow did not begin to receive major attention until the 
advent of jet propulsion and high-speed flight during World War II. Indeed, 
between 1945 and 1960, the fundamentals and applications of compressible flow 
became essentially “classic,” generally characterized by

1. Treatment of a calorically perfect gas, i.e., constant specific heats.
2. Exact solutions of flows in one dimension, but usually approximate solu-

tions (based on linearized equations) for two- and three-dimensional flows. 
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These solutions were closed form, yielding equations or formulas for the 
desired information. Exceptions were the method of characteristics, an exact 
numerical approach applicable to certain classes of compressible flows (see 
Chap. 11), and the exact Taylor–Maccoll solution to the flow over a sharp, 
right-circular cone at zero angle of attack (see Chap. 10). Both of these 
exceptions required numerical solutions, which were laborious endeavors 
before the advent of the modern high-speed digital computer.

Many good textbooks on classical compressible flow have been written since 1945. 
Some of them are listed as Refs. 3 through 17 at the end of this book. The reader 
is strongly encouraged to study these references, because a thorough understanding 
of classical compressible flow is essential to modern applications.

Since approximately 1960, compressible flow has entered a “modern” period, 
characterized by

1. The necessity of dealing with high-temperature, chemically reacting gases 
associated with hypersonic flight and rocket engines, hence requiring a 
major extension and modification of the classical literature based on a 
 calorically perfect gas. (See, for example, Ref. 119.)

2. The rise of computational fluid dynamics, which is a new third dimension in 
fluid dynamics, complementing the previous existing dimensions of pure experi-
ment and pure theory. With the advent of modern high-speed digital computers, 
and the subsequent development of computational fluid dynamics as a distinct 
discipline, the practical solution of the exact governing equations for a myriad 
of complex compressible flow problems is now at hand. In brief, computational 
fluid dynamics is the art of replacing the governing partial differential equations 
of fluid flow with numbers, and advancing these numbers in space and/or time 
to obtain a final numerical description of the complete flowfield of interest. The 
end product of computational fluid dynamics is indeed a collection of numbers, 
in contrast to a closed-form analytical solution. However, in the long run, the 
objective of most engineering analyses, closed form or otherwise, is a quantita-
tive description of the problem, i.e., numbers. (See, for example, Ref. 18.)

The modern compressible flow of today is a mutually supportive mixture of 
classical analyses along with computational techniques, with the treatment of non-
calorically perfect gases as almost routine. The purpose of this book is to provide 
an  understanding of compressible flow from this point of view. Its intent is to blend 
the important aspects of classical compressible flow with the recent techniques of 
computational fluid dynamics. Moreover, the first part of the book will deal almost 
exclusively with a calorically perfect gas. In turn, the second part will contain a 
logical extension to realms of high-temperature gases, and the results will be con-
trasted with those from classical analyses. In addition, various historical aspects of 
the  development of compressible flow, both classical and modern, will be included 
along with the technical material. In this fashion, it is hoped that the reader will 
gain an appreciation of the heritage of the discipline. The author feels strongly that 
a knowledge of such historical traditions and events is important for a truly fun-
damental understanding of the discipline.
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38 C H A P T E R  1 Compressible Flow—Some History and Introductory Thoughts

1.7 | SUMMARY

The compressibility is generically defined as

 τ = −
1
v

 
dv

dp
 (1.2)

hence,

 dρ = ρ τ dp (1.6)

From Eq. (1.6), a flow must be treated as compressible when the pressure gradients 
in the flowfield are large enough such that, in combination with a large enough 
value of the compressibility, τ, the resulting density changes are too large to ignore. 
For gases, this occurs when the flow Mach number is greater than about 0.3. In 
short, for high-speed flows, the density becomes a variable; such variable-density 
flows are called compressible flows.

High-speed, compressible flow is also high-energy flow. Thermodynamics is 
the science of energy and entropy; hence, a study and application of compressible 
flow involves a coupling of purely fluid dynamic fundamentals with the results of 
thermodynamics.

Compressible flow pertains to flows at Mach numbers from 0.3 to infinity. In 
turn, this range of Mach number is subdivided into four regimes, each with its own 
distinguishing physical characteristics and different analytical methods. These 
regimes are subsonic, transonic, supersonic, and hypersonic flow. Each of these 
regimes is discussed at length in this book.

PROBLEMS

Suggestions

Here the author gives some suggestions (hints?) as to how to approach the solu-
tion of the following problems, and to provide some insight as to how some 
answers are mutually supportive of each other. This is a learning aid new to the 
present edition, and similar suggestion sections will precede the problem listing 
in other chapters. These suggestions are motivated by the author’s desire that 
the reader become more comfortable with the content of each chapter, and to 
minimize any frustration about how to start the solutions of the problems. Let 
us start. 

Problems 1.1 and 1.2 are exercises to make you feel comfortable with the 
various forms of the equation of state as reflected in Sec. 1.4.1. Look these equa-
tions over carefully; you will find the solutions to be straightforward.

Problem 1.3 begins with the definition of enthalpy in Sec. 1.4.2, and then inserts 
first the algebraic expressions of Eq. (1.19) for a calorically perfect gas, and then 
second the differential expressions in Eq. (1.19) for a thermally perfect gas.

Problem 1.4 is an exercise in the use of the entropy equation, Eq. (1.36).
Problem 1.5 is an exercise in the use of the isentropic relation, Eq. (1.43).
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For problem 1.6, first review Sec. 1.2. Then incorporate results in this section 
with Euler’s equation given in the problem statement to find some interesting 
results about speed effects on the density change.

 1.1 At the nose of a missile in flight, the pressure and temperature are 5.6 atm 
and 850°R, respectively. Calculate the density and specific volume.  
(Note: 1 atm = 2116 lb/ft2.)

1.2 In the reservoir of a supersonic wind tunnel, the pressure and temperature 
of air are 10 atm and 320 K, respectively. Calculate the density, the num-
ber density, and the mole-mass ratio. (Note: 1 atm = 1.01 × 105 N/m2.)

1.3 For a calorically perfect gas, derive the relation cp − cv = R. Repeat the 
derivation for a thermally perfect gas.

1.4 The pressure and temperature ratios across a given portion of a shock wave 
in air are p2⧸p1 = 4.5 and T2⧸T1 = 1.687, where 1 and 2 denote conditions 
ahead of and behind the shock wave, respectively. Calculate the change in 
entropy in units of (a) (ft ⋅ lb)/(slug ⋅ °R) and (b) J/(kg ⋅ K).

1.5 Assume that the flow of air through a given duct is isentropic. At one 
point in the duct, the pressure and temperature are p1 = 1800 lb/ft2 and 
T1 = 500°R, respectively. At a second point, the temperature is 400°R. 
Calculate the pressure and density at this second point.

1.6 Consider a room that is 20 ft long, 15 ft wide, and 8 ft high. For standard 
sea level conditions, calculate the mass of air in the room in slugs. Calcu-
late the weight in pounds. (Note: If you do not know what standard sea 
level conditions are, consult any aerodynamics text, such as Refs. 1 and 
104, for these values. Also, they can be obtained from any standard 
 atmosphere table.)

1.7 In the infinitesimal neighborhood surrounding a point in an inviscid flow, 
the small change in pressure, dp, that corresponds to a small change in 
velocity, dV, is given by the differential relation dp = −ρV dV. (This 
 equation is called Euler’s Equation; it is derived in Chap. 6.)

a. Using this relation, derive a differential relation for the fractional 
change in density, dρ⧸ρ, as a function of the fractional change in 
velocity, dV⧸V, with the compressibility τ as a coefficient.

b. The velocity at a point in an isentropic flow of air is 10 m/s (a low 
speed flow), and the density and pressure are 1.23 kg/m3 and 
1.01 × 105 N/m2, respectively (corresponding to standard sea level 
 conditions). The fractional change in velocity at the point is 0.01. 
 Calculate the fractional change in density.

c. Repeat part (b), except for a local velocity at the point of 1000 m/s 
(a high-speed flow). Compare this result with that from part (b), and 
comment on the differences.
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 C H A P T E R  2

Integral Forms of the 
Conservation Equations 
for Inviscid Flows

Mathematics up to the present day have been quite useless to us in regard to flying.

From the 14th Annual Report of the Aeronautical Society of Great 

Britain, 1879

Mathematical theories from the happy hunting grounds of pure mathematicians are 

found suitable to describe the airflow produced by aircraft with such excellent 

accuracy that they can be applied directly to airplane design.

Theodore von Karman, 1954 
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Figure 2.1 | Road map for Chap. 2.

CONSERVATION EQUATIONS

Three fundamental
physical principles

Models of the flow

1. Mass can be neither
    created nor destroyed 

3. First law of
    thermodynamics

2. Newton’s second law:
    Force = time-rate-of-
    change of momentum

Continuity equation

Momentum equation

Energy equation

Application of the
momentum equation
Thrust of a jet
propulsion device

PREVIEW BOX

progressively more exciting and challenging applica­

tions. This chapter is all about fundamental equations. 

The deviation of these equations is an intellectual exer­

cise that is interesting in and of itself. So sit back and 

let yourself enjoy the intellectual gems to be found here.

 To further orient ourselves, return to Fig. 1.7, 

which is the general road map for this book. The present 

chapter deals with boxes 2 and 3 in Fig. 1.7. The  

road map for the present chapter is given in Fig. 2.1. 

This chapter deals exclusively with three familiar funda­

mental physical principles, and how they are applied to 

a compressible flow: (1) mass can be neither created nor 

destroyed; (2) Newton’s second law; and (3) the first law 

of thermodynamics. This chapter is all about converting 

these word statements into corresponding equations 

 labeled, respectively, the integral forms of the continu­

ity, momentum, and energy equations. However, this 

chapter is not devoid of applications. We end the chapter 

with a detailed derivation of the thrust equation for a jet 

propulsion device. This is a beautiful application of the 

integral form of the momentum equation in order to 

 obtain a very practical result.

The common phrase “you can not get something for 

nothing,” besides holding in everyday life, and besides 

representing a colloquial statement of the second law of 

thermodynamics, is also relevant to the present chapter. 

Most students of engineering are anxious to get to the 

exciting practical applications that form the core of their 

profession; this is usually the reason for their interest in 

engineering in the first place. A study of compressible 

flow is no different—we would love to jump right in and 

design a supersonic airplane, or learn about rocket en­

gines. But at this early stage in our studies we have no 

theoretical tools to design anything or to gain an under­

standing of any exciting application. We first have to ac­

quire the necessary theoretical tools—the fundamental 

equations that govern the flow of a compressible fluid. 

Such tool gathering is the main purpose of this chapter. 

Here we will convert three fundamental physical princi­

ples into equations that will be the first tools to go into 

our toolbox for the study of compressible flow. As we 

proceed through this book, other theoretical tools pro­

gressively will be added to our toolbox. In the process, 

these tools will enable us to understand and quantify  
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