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a acceleration ft / s2 m / s2

a some arbitrary direction or length (Sec. 2.1) ft m

a resistance of filter medium (Sec. 11.4) 1 / ft 1 / m

ax , ay , az x, y, and z components of acceleration ft / s2 m / s2

ac centrifugal acceleration ft / s2 m / s2

a, b, c, d exponents in algebraic procedure (Sec. 9.3) — —

A area or cross-sectional area perpendicular to flow ft2 m2

A independent variable (Sec. 9.3) various various

A, B, C, D arbitrary constants various various

b background concentration (Sec. 3.6) lbm / ft3 kg / m3

B dependent variable (Sec. 9.3) various various

c volume fraction in hindered settling — —

c speed of light (Chap. 4 only) ft / s m / s

c speed of sound ft / s m / s

c concentration lbm / ft3 kg / m3

C heat capacity Btu / lbm · °F or J / kg · K or

    Btu / lbmol · °F   J / mol · K

Cd  drag coefficient (Sec. 6.13) — —

Ci constants of integration various various

Cl lift coefficient (Sec. 6.13) — —

Cf  integrated drag coefficient (Sec. 17.2) — —

C′f  local drag coefficient (Sec. 17.2) — —

CP heat capacity at constant pressure Btu / lbm · °F or J / kg · K or

    Btu / lbmol · °F   J / mol · K

C
ʋ
 orifice or venturi coefficient (Sec. 5.8) — —

CV  heat capacity at constant volume Btu / lbm · °F or J / kg · K or

    Btu / lbmol · °F   J / mol · K

CC capital cost factor (Sec. 6.12) 1 / yr 1 / yr

D diameter ft m

Dp particle diameter  ft m

D ∕ Dt  Stokes or substantive or convective derivative 1 / s 1 / s

� diffusivity, molecular or turbulent ft2 / s m2 / s

erf gauss error function (see Fig. 19.5) — —

E energy Btu or equivalent J

E voltage volt volt

Es surface energy ft · lbf / ft2 J / m2

f Fanning friction factor (Sec. 6.4) — —

fP.M. friction factor for porous medium (Sec. 11.1) — —

NOTATION
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 NOTATION xv

f (n) spectrum function (Sec. 18.4) 1 / hertz 1 / hertz

°F temperature or temperature interval, degrees °F

   Fahrenheit

F force lbf N

ℱ friction heating per lbm ft · lbf / lbm J / kg

    or equivalent

Fx , Fy , Fz x, y, and z components of force lbf N

Fθ tangential component of force lbf N

FI , FV , FG , inertia, viscous, gravity, surface, elastic, lbf N

  FS , FE , FP   and pressure forces (Sec. 9.3)

F(n) spectrum function (Sec. 18.4) — —

ℱr  Froude number — —

g acceleration of gravity ft / s2 m / s2

gc conversion factor = 1 = 32.2 lbm · ft / lbf · s2 — —

h height or depth ft m

h enthalpy per unit mass or mole (u + Pʋ)  Btu / lbm or J / kg or

    Btu / lbmol   J / mol

hc centroid depth measured from free surface ft m

   (Prob. 2.26)

H enthalpy (U + PV )  Btu J

H height ft m

H effective stack height (Chap. 19) ft m

H mixing height (Chap. 3) ft m

hp horsepower ft · lbf / s

ℋe Hedstrom number (Chap. 13) — —

HR hydraulic radius ft m

i, j, k unit vectors in the x, y, and z directions — —

I electric current (dQ ∕ dt)  amp amp

I angular moment of inertia (Chap. 7) lbm · ft2 kg · m2

Isp specific impulse lbf · s / lbm N · s / kg

Jx , Jy , Jz x, y, and z components of the electric current amp / m2 amp / m2

   density (Sec. 16.3)

k number of independent dimensions (Sec. 9.3) — —

k ratio of specific heats, CP ∕ CV  (Sec. 8.1) — —

k thermal conductivity (Sec. 16.3) Btu / hr · °F · ft W / m · K

k permeability (Sec. 16.3 and Chap. 11) ft2 m2

k ratio of radii in a Couette viscometer — —

k turbulent ke per unit mass Btu / lbm J / kg

ke kinetic energy per unit mass Btu / lbm J / kg

K arbitrary constant in “power law” (Chap. 13) lbf · sn / ft2 N · sn / m2

K bulk modulus (Sec. 8.1) lbf / in2 Pa

K resistance coefficient (Sec. 6.9) — —

K arbitrary constant in jet equation (Chap. 19) — —

KE kinetic energy Btu J

l length ft m

L length or lever arm ft m

L angular momentum (Chap. 7) lbm · ft2 / s kg · m2 / s

m mass lbm kg

m
.
 mass flow rate lbm / s kg / s

M molecular weight lbm / lbmol g / mol

ℳ Mach number — —

n number of independent variables — —

n number of moles lbmol mol

n arbitrary power in “power law” (Chap. 13) — —

n frequency cyc / s hertz
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xvi NOTATION

n constant in Chézy Eq. (Chap. 6) — —

N 4f Δx ∕ D (Sec. 8.4) — —

N rotation rate (rpm or rps) 1 / min; 1 / s 1 / min; 1 / s

pe potential energy per unit mass Btu / lbm J / kg

P pressure lbf / in2 Pa

Po power ft · lbf / s W

PE potential energy Btu J

PC pumping cost (Sec. 6.12) $ / yr · hp

PP purchased price factor for a pipe (Sec. 6.12) $ / in · ft

q emission rate per unit area (Sec. 3.6) lbm / s · ft2 kg / s · m2

qx , qy , qz x, y, and z components of heat flux (Sec. 16.3) Btu / h · ft2 W / m2

Q volumetric flow rate ft3 / s m3 / s

Q heat Btu J

Q charge coul coul

r radius ft m

R universal gas constant  See inside See inside

    back cover   back cover

R correlation coefficient (Sec. 18.5) — —

R radius of curvature (Chap. 14) ft m

ℛ Reynolds number — —

ℛp particle Reynolds number — —

ℛP.M. Reynolds number for porous media — —

ℛx Reynolds number based on distance from — —

   leading edge

ℛpower law Reynolds number for power law fluids — —

ℛBingham Reynolds number for Bingham plastics — —

ℛimpeller Reynolds number for a mixer impeller — —

s entropy per unit mass or per mole Btu / lbm · °R or J / kg · K or

    Btu / lbmol · °R   J / mol · K

s cake compressibility coefficient (Sec. 11.4) — —

SG specific gravity — —

t time s s

t wall thickness (Sec. 2.4) ft m

T absolute temperature °R or K K

T relative intensity of turbulence (Sec. 18.4) — —

u internal energy per unit mass or per mole Btu / lbm or J / kg or

    Btu / lbmol   J / mol

u* friction velocity (Sec. 17.4) ft / s m / s

u+ Vx ∕ u* (Sec. 17.4) — —

U internal energy Btu J

ʋ volume per unit mass ft3 / lbm m3 / kg

ʋ fluctuating component of velocity (Chaps. 17 and 18) ft / s m / s

V velocity ft / s m / s

V volume ft3 m3

Vx , Vy , Vz x, y, and z components of velocity ft / s m / s

Vθ tangential component of velocity ft / s m / s

Vr  radial velocity ft / s m / s

Vavg average velocity  ft / s m / s

Vcenterline centerline velocity in a pipe ft / s m / s

V∞ free-stream velocity ft / s m / s

Vs superficial velocity (Sec. 11.1) ft / s m / s

VI  interstitial velocity (Sec. 11.1) ft / s m / s

Vmf  minimum fluidizing velocity (Sec. 11.5) ft / s m / s

W work ft · lbf  J

W weight lbf N
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 NOTATION xvii

W width ft m

Wn.f. non-flow work (excluding injection work) ft · lbf  J

W volumetric solids content of slurry (Sec. 11.4) — —

x, y, z directions of coordinate axes, or lengths ft m

x distance ft m

y distance perpendicular to the flow direction ft m

y+ (rwall − r)u* ∕ ν (Sec. 17.4) — —

z elevation ft m

α coefficient of thermal expansion 1 / °F 1 / K

α specific resistance of filter cake (Sec. 11.4) 1 / lbf 1 / N

α small angle, jet angle (Chap. 19) rad rad

α thermal diffusivity ft2 / s m2 / s

α constant in Chézy Eq. (Chap. 6) — —

β isothermal compressibility = 1 ∕ (bulk modulus)  1 / (lbf / in2)  1 / Pa

γ  specific weight = ρg lbf / ft3 N / m3

Γ torque ft · lbf  N · m

δ boundary-layer thickness (Chap. 17) ft m

δ* displacement thickness (Sec. 17.2) ft m

ε absolute roughness ft m

ε porosity or void fraction or volume fraction of gas — —

ε eddy (kinematic) viscosity ft2 / s m2 / s

ε turbulent dissipation rate ft2 / s3 m2 / s3

ζ  vorticity = 2ω 1 / s 1 / s

η efficiency — —

η y (Vx ∕ νx)
1 ∕  2 (Sec. 17.2) — —

η viscosity (non-Newtonian fluids) lbm / ft · s or cP Pa · s

θ  angle rad rad

θ  momentum thickness (Sec. 17.2) ft m

θ  contact angle (Sec. 17.3) rad rad

μ viscosity lbm / ft · s or cP Pa · s

ν kinematic viscosity (μ ∕ ρ)  ft2 / s or cSt m2 / s

π  number of dimensionless groups (Chap. 9) — —

ρ density lbm / ft3 kg / m3

ρ resistivity (Sec. 16.3) — ohm · m

σ  surface tension lbf / ft N / m

σ  stress lbf / in2 Pa

σ  shear rate 1 / s 1 / s

σx , σy , σz turbulent dispersion coefficients (Chap. 19) ft m

σxx normal stress in the x direction lbf / in2 Pa

τ  shear stress lbf / in2 Pa

τxy shear stress in the x direction on a face lbf / in2 Pa

   perpendicular to the y axis

τwall shear stress at a solid wall lbf / in2 Pa

τ0 shear stress at a solid surface lbf / in2 Pa

τyield yield stress for a Bingham fluid lbf / in2 Pa

ϕ potential ft2 / s for m2 / s for

    fluid flow   fluid flow

ϕ(t)  arbitrary function of time (Sec. 16.2) — —

ψ  stream function ft2 / s m2 / s

ω angular velocity rad / s rad / s

Superscripts

* sonic condition (Chap. 8)

X  time average of X various various
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xviii NOTATION

Subscripts

R reservoir state in Chap. 8

S isentropic condition (speed of sound)

1, 2 arbitrary states

x, y conditions before and after a normal

   shock in Chap. 8

Vector

boldface indicates a vector various various

∇ ∇ = i 
∂

∂x
+ j 

∂

∂y
+ k 

∂

∂z
 1 / ft 1 / m
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xix

PREFACE

This book presents an introduction to fluid mechanics for undergraduate chemical 

engineering students.

 Throughout the text, emphasis is placed on the connection between physical 

reality and the mathematical models of reality, which we manipulate. The ultimate 

test of a mathematical solution is its ability to predict the results of future experiments. 

Because a mathematically correct consequence of inapplicable assumptions is often 

simply wrong, the text occasionally offers intentionally wrong solutions to caution 

the student.

 The simplest mathematical approaches are used, consistent with technical rigor. 

 Considerable attention is paid to the units of quantities in the equations because 

students usually have trouble with them, and because this reminds them that each 

symbol in our equations stands for a real physical quantity.

 The book is divided into four sections. Section I, preliminaries, provides back-

ground for the study of flowing fluids. It includes a separate chapter on the balance 

equation. One might think that this is such a simple topic that it deserves only a few 

lines. However, it is a continual source of trouble to students. Furthermore, it is the 

most all-pervasive concept of chemical engineering, forming the basic mathematical 

framework for the application of the laws of thermodynamics, Newtonian mechanics, 

stoichiometry, and for the study of chemically reacting systems. There is also a chap-

ter on the first law of thermodynamics. In the undergraduate program at the Univer-

sity of Utah, the students study basic engineering thermodynamics before they are 

introduced to fluid mechanics; thus, Chapter 4 is merely a review for them.

 Section II discusses flows that are practically one-dimensional or can be treated 

as such. This organization of the book is radically different from the organization of 

fluids books written by mechanical and civil engineers, who begin with three-

dimensional fluid mechanics and work their way down to one-dimensional fluid 

mechanics. The reasons for this organization, which fits better with the background 

of chemical engineers, are spelled out in Section 1.11. Sections I and II are the core 

of the book, covering all the basic ideas in fluid mechanics, and many of the problems 

of greatest interest to chemical engineers.

 Section III discusses some other topics that can be viewed by the methods of 

one-dimensional fluid mechanics. These six chapters introduce other areas of fluid 
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mechanics that are of great practical interest to some chemical engineers but that are

not covered in an introductory course for want of time. They can be assigned, in any 

order, as supplementary reading, or covered briefly in class, introducing students to 

the terminology and basic ideas of these fields and helping them to read related matters 

in the current literature.

 Section IV introduces the student to two- and three-dimensional fluid mechan-

ics. It shows the relations between the methods used for these flows and the simpler 

approaches used in Sections II and III. It shows what two- and three-dimensional 

problems can be solved by hand (a small number) and shows the basis on which most 

such problems are currently solved by Computational Fluid Mechanics programs. A 

separate chapter introduces the student to mixing, which is basic chemical engineering, 

but not routinely covered in fluid mechanics texts.

 The fourth edition includes numerous new and revised examples. Chapters 2 

(Fluid Statics) and 6 (Fluid Friction in Steady, 1-D Flow) introduce hydraulic fractur-

ing though calculations of the minimum surface pressure required to fracture rock and 

the surface pressure required to steadily force fluid into the rock. Chapter 10 (Pumps, 

Compressors, and Turbines) includes new material on wind turbines. It also describes 

three new positive displacement pumps including peristaltic pumps and a one-use 

liquid dispenser. The latter is an example of the book’s continued insightful use of 

household items to illustrate key concepts, phenomena, and equipment in fluid 

mechanics. There are about 30 new problems that draw on the new material. Also 

new to the fourth edition is a chapter on microfluidics (Chap. 21), which has impor-

tant applications in biology, medicine, and chemical analysis.

 Where necessary, older examples have been updated. For example, a coffee per-

colator in Chap. 2 has been replaced with a modern coffer maker, and in Chap. 7 the 

jet engine shown in Fig. 7.15 has been replaced with a modern, more efficient design.

 Computers do not make hand calculations unnecessary. No new or unfamiliar 

computer solution should be believed until manual plausibility checks have shown 

that the computer is indeed solving the problem we think it is solving and that its 

solution is physically reasonable. Simply plugging values into available computer 

packages does not build physical insight, which is one of the most important tools of 

the successful engineer. Good pedagogy begins with hand solutions of simplified 

versions of the real problem, which build physical insight and some understanding of 

physical magnitudes, followed by computer solutions, which can relax the simplifica-

tions and cover a wider variety of conditions, followed by manual plausibility checks 

of the computer solutions.

 After an initial rush of enthusiasm for SI, engineering educators seem to be 

deciding that the English system of units is not likely to vanish overnight. For this 

reason our students must become like educated Europeans, who speak more than one 

language fluently and can read and understand one or two additional languages. Our 

students must be fluent in SI and in the English system of units and must understand 

traditional metric and cgs, and be able to read and understand texts using the slug 

and the poundal. This book has a long discussion of these various systems of units. 

Examples are presented in both SI and English units. This is unlikely to please purists 

of any persuasion, but it probably serves our students as well as any other approach 

and better than some.

xx PREFACE
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 Our goal is to present a text that average chemical engineering undergraduates 

can read and understand and from which they can attack a variety of meaningful 

problems. We have tried to help the student develop a physical insight into the pro-

cesses of fluid mechanics and develop the understanding that the equations on these 

pages truly describe what nature does. We have tried to choose examples from the 

student’s own experiences, or that relate to things they can observe in their everyday 

lives. The home is a wonderful place to observe the principles of chemical engineer-

ing; good teachers help students interpret what they see in the home in terms of 

chemical engineering principles.

 The true test of the quality of a textbook is whether it becomes the most worn 

and tattered book on a practicing engineer’s bookshelf. Former students tell us that 

the first three editions of this book pass that test. We hope copies of this edition will 

become even more worn and tattered.

 For instructor resources, visit the text’s website at http://www.mhhe.com/ 

denevers4e. 
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1

CHAPTER

1
INTRODUCTION

1.1 WHAT IS FLUID MECHANICS?

Mechanics is the study of forces and motions. Therefore, fluid mechanics is the study 

of forces and motions in fluids. But what is a fluid? We all can think of some things 

that obviously are fluids: air, water, gasoline, lubricating oil, and milk. We also can 

think of some things that obviously are not fluids: steel, diamonds, rubber bands, and 

paper. These we call solids. But there are some very interesting intermediate types of 

matter: gelatin, peanut butter, cold cream, mayonnaise, toothpaste, roofing tar, library 

paste, bread dough, and auto grease.

 To decide what we mean by the word “fluid,” we first have to consider the idea 

of shear stress. It is easiest to discuss shear stress in comparison with tensile stress 

and compressive stress; see Fig. 1.1.

 In Fig. 1.1(a) a rope is holding up a weight. The weight exerts a force that tends 

to pull the rope apart. A stress is the ratio of the applied force to the area over which 

it is exerted (force/area). Thus, the stress in the rope is the force exerted by the weight 

divided by the cross-sectional area of the rope. The force that tries to pull things apart 

is called a tensile force, and the stress it causes is called a tensile stress.

 In Fig. 1.1(b) a steel column is holding up a weight. The weight exerts a force 

that tends to crush the column. This kind of force is called a compressive force, and 

the stress in the column, the force divided by the cross-sectional area of the column, 

is called a compressive stress.

 In Fig. 1.1(c) some glue is holding up a weight. The weight exerts a force that 

tends to pull the weight down the walls and thus to shear the glue. This force, which 

den75522_ch01_001-034.indd   1 17/10/19   10:48 AM



2 FLUID MECHANICS FOR CHEMICAL ENGINEERS

tends to make one surface slide parallel to an adjacent surface, is called a shear force, 

and the stress in the glue, the force divided by the area of the glue joint, is called a 

shear stress.

 A more detailed examination of these examples would show that all three kinds 

of stress are present in each case, but those we have identified are the main ones. (For 

more information on this topic, see any text on strength of materials.)

 Solids are substances that can permanently resist very large shear forces. When 

subject to a shear force, they move a short distance (elastic deformation), thereby 

setting up internal shear stresses that resist the external force, and then they stop mov-

ing. Materials that obviously are fluids cannot permanently resist a shear force, no 

matter how small. When subject to a shear force, they start to move and keep on 

moving as long as the force is applied.

 Substances intermediate between solids and fluids can permanently resist a small 

shear force but cannot permanently resist a large one. For example, if we put a “blob” 

of any obvious liquid on a vertical wall, gravity will make it run down the wall. If we 

attach a piece of steel or diamond securely to a wall, it will remain there, no matter 

how long we wait. If we attach some peanut butter to a wall, it will probably stay, but 

if we increase the shear stress on the peanut butter by spreading it with a knife, it will 

flow like a fluid. We cannot spread steel with a knife as we spread peanut  butter.

 If, as shown above, the relevant difference between peanut butter and steel is 

the magnitude of the shear stress that the material can resist, then the difference  is 

one of degree, not of kind. At extreme shear stresses steel can be made to “flow like 

a fluid.” In the remainder of this book we will be talking mostly about materials such 

as air and water, which cannot permanently resist any shear force. However, it is well 

to keep our minds open to other possibilities of “fluid” behavior [1]. (Numbers in 

brackets refer to items listed in the References at the end of the chapter.)

Rope

100
lb

100
lb

100
lb

Steel
column

Glue

(a) (b) (c)

FIGURE 1.1

Comparison of tensile, compressive, and shear stresses. (a) The rope 

is in tensile stess; (b) the column is in compressive stress; and 

(c)  the glue is in shear stress.
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 CHAPTER 1 INTRODUCTION 3

1.2 WHAT GOOD IS FLUID MECHANICS?

The problems in fluid mechanics are basically no different from those in “ordinary” 

mechanics (the mechanics of solids) or in thermodynamics. Therefore, in principle 

one can solve problems in fluid mechanics with the same methods used to solve 

 problems in mechanics or thermodynamics. However, for many of the problems 

involving the flow of fluids (or the movement of bodies through fluids), we use a 

combination of the problem-solving methods of mechanics and thermodynamics. Fur-

thermore, the methods that work for hydraulics problems (dams, canals, locks, river 

flow, etc.) are applicable, with slight modifications, to aerodynamics problems (air-

planes, rockets, wind forces on bridges, etc.) and to problems of special interest to 

chemical engineers such as the flow in chemical reactors, in distillation columns, or 

in polymer extrusion dies. Therefore, it makes sense to combine the study of this class 

of similar problems into one discipline, which we call fluid mechanics.

 Consider the important fluids in our lives: the air we breathe, the water we 

drink, many of the foods we consume, most of the fuels for heating our houses or 

propelling our vehicles, and the various fluids in our bodies that make up our internal 

environment. Without some idea of the behavior of fluids, we can have only a very 

limited understanding of how the world works.

 Some of the subdivisions and applications of fluid mechanics are:

1. Hydraulics: the flow of water in rivers, pipes, canals, pumps, and turbines.

2. Aerodynamics: the flow of air around airplanes, rockets, projectiles, and structures.

3. Meteorology: the flow of the atmosphere.

4.  Particle dynamics: the flow of fluids around particles, the interaction of particles and 

fluids (i.e., dust settling, slurries, pneumatic transport, fluidized beds, air pollutant 

particles, and corpuscles in our blood).

5. Hydrology: the flow of water and water-borne pollutants in the ground.

6. Reservoir mechanics: the flow of oil, gas, and water in petroleum reservoirs.

7.  Multiphase flow: coffee makers, oil wells, fuel injectors, combustion chambers, and 

sprays.

8.  Combinations of fluid flow: with chemical reactions in combustion, with electro-

magnetic phenomena in magnetohydrodynamics, and with mass transport in distil-

lation or drying.

9.  Viscosity-dominated flows: lubrication, injection molding, wire coating, lava, and 

continental drift.

1.3 BASIC IDEAS IN FLUID MECHANICS

Fluid mechanics is based largely on working out the detailed consequences of four 

basic ideas:

1. The principle of the conservation of mass.

2. The first law of thermodynamics (the principle of the conservation of energy).

3. The second law of thermodynamics.

4. Newton’s second law of motion, which may be summarized in the form F = ma.
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4 FLUID MECHANICS FOR CHEMICAL ENGINEERS

 Each of these four ideas is a generalization of experimental data. None of them 

can be deduced from the others or from any other prior principle. None of them can 

be “proven” mathematically. Rather, they stand on their ability to predict correctly the 

results of any experiment ever run to test them.

 Sometimes, in fluid mechanics, we may start with these four ideas and the mea-

sured physical properties of the fluid(s) and proceed directly to solve mathematically 

for the desired forces, velocities, etc. This is generally possible only in the case of 

very simple flows. The observed behavior of a great many fluid flows is too complex 

to be solved directly from these four principles, so we must resort to experimental 

tests. Through the use of techniques called dimensional analysis (Chap. 9), we often 

can use the results of one experiment to predict the results of a much different exper-

iment. Thus, careful experimental work is very important in fluid mechanics. With 

modern computers we can find useful numerical solutions to problems that would 

previously have required experimental tests. The methods for doing that are outlined 

in Part IV of this book. As computers become faster and cheaper, we will see addi-

tional complex fluid mechanics problems solved on computers. Ultimately, though, 

the computer solutions must be tested experimentally.

 These four ideas are applied to fluid mechanical problems as follows. This intro-

ductory chapter launches our study and defines some important terms. Then Part I of the 

book, Chaps. 2–4, deals with preliminaries. We will need these in our study of moving 

fluids, and they provide direct solutions and/or insight into many practical problems. Parts 

II and III, Chaps. 5–14, deal with the flow of fluids that are one-dimensional or can be 

treated as if they were. Part IV, Chaps. 15–20, deals with two- and three-dimensional 

fluid mechanics. Each of these sections will be described as we begin them.

 Students using this book should have previously completed a course in elemen-

tary thermodynamics. Chapters 3 and 4 should serve as a review of matter previously 

covered; they are included because the principles involved are central to fluid mechan-

ics. It is assumed that the student is familiar with the second law of thermodynamics, 

which is used occasionally. Remember that this entire book is devoted to the applica-

tion of the four basic ideas and the results of experimental tests to fluid-flow problems. 

Although the details can become quite involved, the basic ideas are few.

1.4 LIQUIDS AND GASES

Fluids are of two types, liquids and gases. On the molecular level these are quite differ-

ent. In liquids the molecules are close together and are held together by  significant forces 

of attraction; in gases the molecules are relatively far apart and have very weak forces 

of attraction. As a rule, the specific volumes of gases are ≈1000 times those of liquids, 

which means that the average intermolecular distance (center to center of the molecules) 

is roughly 10 times as far in a typical gas as in a typical liquid. As temperature and 

pressure increase, these differences become less and less, until the liquid and gas become 

identical at the critical temperature and pressure. The difference between the behavior of 

liquids and gases is most marked when these fluids are expanded. Suppose that some 

fluid completely fills the space below the piston in Fig. 1.2. When we raise the piston, 

the volume occupied by the fluid is increased. If the fluid is a gas, it will expand read-

ily, filling all the space vacated by the piston; gases can expand without limit to occupy 

space made available to them. But, if the fluid is a liquid, then as the piston is raised, 
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 CHAPTER 1 INTRODUCTION 5

the liquid can expand only a small amount, and then it can 

expand no more. What fills the space between the piston and 

the liquid? Part of the liquid must turn into a gas by boiling, 

and this gas expands to fill the vacant space. This can be 

explained on the molecular level by saying that there is a 

maximum distance between molecules over which the attrac-

tive forces hold them together to form a liquid and that, when 

the molecules separate more than this distance, they cease 

behaving as a liquid and behave as a gas.

 Because of their closer molecular spacing, liquids 

normally have higher densities, viscosities, refractive indi-

ces, etc., than gases (see Prob. 1.2). In engineering this 

frequently leads to quite different behaviors of liquids and 

gases, as we will see.

1.5  PROPERTIES OF FLUIDS

The physical properties of fluids that will enter our calcula-

tions most often are density, viscosity, and surface tension.

1.5.1 Density

The density ρ is defined the mass per unit volume:

 
ρ =

m

V
 (1.1)

We are all aware of the differences in density between various materials, such as that 

between lead and wood. How can we measure the density of a material? If we want 

to know the density of a liquid, we can weigh a bottle of known volume (determine 

its mass), fill it with the liquid, weigh it again, and compute the density with the aid 

of  Eq. 1.1. (This is one of the standard laboratory methods of determining liquid 

 den sity; the special weighing bottles designed for this purpose are called pyncnometers, 

Prob.  1.5) If we want to know the density of a cubical solid block, we can measure 

the length of its sides, compute its volume, weigh it, and apply these results to Eq. 1.1.

 Now suppose that we are asked to determine the density of a piece of Swiss cheese. 

If we have a large block of the cheese, we can cut off a cube, measure its sides,  compute 

its volume, weigh it, and then calculate its density. This is an average density, one that 

includes the density of the air in the holes in the cheese. As long as we are dealing 

with large pieces of cheese, it is a satisfactory density. Suppose, however, we are asked 

to find the density at some point inside a large block of the cheese. If we can cut the 

cheese open, and if we find that the point in question is in the solid cheese and not in 

one of its holes, we can find the density easily enough or, if the point in question is 

in a hole, we find the density of the air in the hole. But if the point is on the surface 

of a hole, the problem is more difficult. Then the density is discontinuous; see Fig. 1.3. 

There is no meaningful single value of the density at x.

 Why this long discussion about the density of Swiss cheese? Because the world 

is full of holes! Atomic physics tells us that even in a solid bar of steel, the space 

Piston

Fluid

Cylinder

FIGURE 1.2

Piston and cylinder. If the 

fluid is a gas, we can move 

the piston up and down as 

much as we like, and the gas 

will expand or contract to 

fill the volume available. If 

the fluid is a liquid, we can 

move the piston down very 

little without producing 

extreme pressures; if we 

move it up, the liquid must 

partly evaporate to produce 

a gas to fill the space.
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6 FLUID MECHANICS FOR CHEMICAL ENGINEERS

Density
Density of

“solid” cheese

Average density
of cheese and holes

Density of
air in holes

Distancex

FIGURE 1.3

The density of Swiss cheese is not uniform from point to point, but 

has local point densities and an average density.

occupied by the electrons, protons, and neutrons is a very small fraction of the total 

space; the rest presumably is empty. Furthermore, even at the molecular level, there 

are holes; in a typical gas the space actually occupied by the individual gas molecules 

at any instant is a small fraction of the total space. Thus, in any attempt to speak of 

density at a given point we are in the same trouble as with the Swiss cheese. There-

fore, we must restrict the definition of density to samples large enough to average out 

the holes. This causes no problem in fluid mechanics, because of the size of the 

samples normally used, but it indicates that the concept of density does not readily 

apply to samples of molecular and subatomic sizes.

 In addition, we must be careful in defining the densities of composite materials. 

For example, a piece of reinforced concrete consists of several parts with different 

densities. In discussing such materials, we must distinguish between the  particle den-

sities of the individual pebbles or steel reinforcing bars and the bulk density of the mixed 

mass. When we refer to bulk density, our sample must be large compared with the 

dimen sions of one particle. Some examples of composite solid materials are cast iron, 

fiberglass-reinforced plastics, and wood. Some examples of composite liquids are 

 slurries, such as muds, milkshakes, and toothpaste, and emulsions, such as homogenized 

milk, mayonnaise, and cold cream. Smokes and clouds behave as composite gases.

Example 1.1. A typical mud is 70 wt. % sand and 30 wt. % water. What is 

its density? The sand is practically pure quartz (SiO2), for which ρsand =

165 lbm / ft3 (2.65 g / cm3). See App. E for the properties of water used in all 

examples and problems.

 Here we assume that there is no volume change on mixing sand and water. 

There are volume changes on mixing for some substances like ethanol and water, 

but they are small enough to ignore for most problems, including this one. Then

 ρ =
m

V
=

msand + mwater

Vsand + Vwater

=
msand + mwater

(m ∕ ρ)sand + (m ∕ ρ)water

 (1.A)

[Every equation in this book has a number. Those, like this one, that are parts of 

examples or in other ways specific to some situation are identified with 

 number-letter combinations, such as (l.A). General equations have number- 

number combinations, such as (1.1).]
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 CHAPTER 1 INTRODUCTION 7

 We could simplify Eq. l.A algebraically, but a more intuitive approach is to 

choose as our basis 100 lbm of mud, and substitute into Eq. l.A, finding

  ρ =
msand + mwater

(m

ρ )
sand

+ (m

ρ )
water

=
70 lbm + 30 lbm

( 70 lbm

165 lbm /  ft3)
sand

+ ( 30 lbm

62.3 lbm /  ft3)
water

 

  = 110.4 
lbm

ft3
= 1769 

kg

m3
 (1.B)

■

The ■ indicates the end of an example.

1.5.2 Specific Gravity

Specific gravity of liquids and solids (SG) is defined as

 SG =
density

density of water at some specified temperature and pressure
 (1.2)

This definition has the merit of being a ratio and, hence, a pure number, which is 

independent of the system of units chosen. Occasionally it leads to confusion, because 

some specific gravities are referred to water at 60°F, some to water at 70°F, and some 

to water at 39°F = 4°C (all at a pressure of 1 atm). The differences are small but 

great enough to cause trouble.

 If the temperature of the water is specified as 39°F = 4°C, then the density of 

water is 1.000 g / cm3. (The gram was defined to make this number come out 1.000). 

Thus, if this basis of measurement is chosen, then specific gravities become numeri-

cally identical with densities expressed in g / cm3 or kg / L or metric tons / m3. The 

mud in Example 1.1 has SG = 1.769.

 Many process industries use special scales of fluid density, which are usually 

referred to as gravities. Some of them are the API gravity (American Petroleum 

 Institute) for oil and petroleum products (Prob. l.6), Brix gravity for the sugar indus-

try, and Baumé gravity for sulfuric acid. Each scale is directly convertible to density; 

 conversion tables and formulae are available in handbooks.

 Specific gravities of gases are normally defined as

 (SG of

a gas ) = (
density of the gas

density of air )
Both at the same temperature and pressure

 (1.3)

For ideal gases the specific gravity of any gas = (Mgas ∕ Mair).

 Throughout this text we use liquid and solid specific gravities referred to water at 

4°C. Thus a liquid with a specific gravity of 0.8 is a liquid with a density of 0.8 g / cm3.

1.5.3 Viscosity

Viscosity is a measure of internal, frictional resistance to flow. If we tip over a glass 

of water on the dinner table, the water will spill out before we can stop it. If we tip 

over an open jar of honey, we probably can set it upright again before much honey 
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8 FLUID MECHANICS FOR CHEMICAL ENGINEERS

flows out; this is possible because 

the honey has much more resis-

tance to flow, more viscosity, than 

water. A more precise definition of 

viscosity is possible in terms of the 

following conceptual experiment.

Consider two long, solid plates 

separated by a thin film of fluid (see 

Fig. 1.4). This apparatus is easy to 

grasp conceptually and mathemati-

cally but difficult to use, because the 

fluid leaks out at the edges and grav-

ity pulls the two plates together. 

Other devices that are more complex 

mathematically but easier to use are 

actually used to meas ure viscosities (see Example l.2 and Chaps. 6 and 13). If we slide 

the upper plate steadily in the x direction with velocity V0, a force will be required to 

overcome the inter nal friction in the fluid between the plates. This force will be different 

for  different velocities, different plate sizes, different fluids, and different distances 

between the plates. We can eliminate the effect of different plate sizes,  however, by 

measuring the force per unit area of the plate, which we define as the shear stress τ.

 It has been demonstrated experimentally that at low values of V0, the velocity 

profile in the fluid between the plates is linear, i.e.,

 V =
V0 y

y0

 (1.C)

so that

 σ = (shear rate, rectangular

coordinates ) =
dV

dy
=

V0

y0

 (1.D)

It also has been demonstrated experimentally that for most fluids, the results of this 

experiment can be shown most conveniently on a plot of τ versus dV ∕ dy (see Fig. 

1.6). As shown here, dV ∕ dy is simply a velocity divided by a distance. In more 

complex geometries, it is the limiting value of such a ratio at a point. It is commonly 

called shear rate, the rate of strain, and rate of shear deformation, all of which mean 

exactly the same thing.

Example 1.2.  Figure 1.5 shows a cutaway photograph of a concentric- cylinder 

(“cup and bob”) viscometer also called a Couette viscometer. An inner cylinder 

(the bob) rotates inside a stationary outer cylinder (the cup). The shaft that 

drives the bob is instrumented to record both the angular velocity and the 

applied torque. The solid bob has D1 = 25.15 mm and L = 92.27 mm. The sur-

rounding cup has D2 = 27.62 mm and is longer than the bob. When the bob is 

driven at 10 rpm, the observed torque (tangential force times radius) is 

Γ = 0.005 N·mm. What are τ and dV ∕ dy?

 This viscometer is simply the device in Fig. 1.4, wrapped around a  cylinder. 

In this form, the leakage-at-the-edges problem and the difficulty of keeping 

Fluid

y

x

y = y0

y = 0

Plate moving with velocity V0

V0

Stationary plate, V = 0

FIGURE 1.4

The sliding-plate experiment.
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 CHAPTER 1 INTRODUCTION 9

the distance between the two surfaces constant 

are solved. (Fluid forces hold the rotating inner 

cylinder properly centered inside the outer cyl-

inder.) Here we must replace the ys in Eq. 1.5 

with rs, because the velocity is changing in the 

radial direction. Δy = y0 is replaced by

 Δr = 0.5(D2 − D1) = 0.5(27.62 − 25.15)

 = 1.235 mm  (1.E)

and

 V0 = πD1 · rpm = π · 25.15 mm ·
10

min

 = 790.1 
mm

min
= 13.17 

mm

s
 (1.F)

Thus,

dV

dr
=

V0

Δr
=

13.17 mm / s

1.235 mm
= 10.66 

1

s
  (1.G)

This is a linearized approximation of a cylindri-

cal problem that understates the correct value, 

which is 12.26 (1 / s) (see Prob. 1.10), a differ-

ence of 15%. We will use the correct (cylindri-

cal) value in the rest of this chapter.

 The shear stress at the surface of the inner 

cylinder is

 τ =
F

A
=

Γ ∕r1

πD1L
=

0.005 N·mm ∕ (0.5 · 25.15 mm)

π · 25.15 mm · 92.37 mm

 = 5.45 · 10−8 
N

mm2
= 0.0545 

N

m2
 (1.H)

■

 This example ignores the stress on the bottom surface of the bob, a small effect, 

for which a correction is made in real viscosity measurements. The whole device is 

shown immersed in a constant-temperature bath, because the results are very tem-

perature dependent.

 The experiment in Example 1.2 can be repeated at different rotational speeds and 

the results plotted as shown in Fig. 1.6. Four different kinds of curve are shown as 

experimental results in the figure. All four of these results are observed in nature. The 

most common behavior is that represented by the straight line through the origin in the 

figure. This line is called Newtonian because it is described by Newton’s law of viscosity

 τ = μ 
dV

dy
  [Newtonian fluids]  (1.4)

FIGURE 1.5

Cutaway photograph of a concentric- 

cylinder viscometer. This is simply the 

sliding-plate arrangement in Fig. 1.4, 

wrapped around a cylinder, thus 

eliminating the leaky edges in Fig. 1.4. 

The drive mechanism at the top holds the 

outer cylinder fixed and rotates the inner 

closed cylindrical bob. It provides a 

measured, controllable rotation rate and 

simultaneously measures the torque 

required to produce that rotation. The 

two flexible hoses circulate constant-

temperature water or other fluid, to hold 

the whole apparatus at a constant 

temperature. Example 1.2 shows the 

dimensions of this device. (Courtesy of 

Brookfield Engineering Company.)
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10 FLUID MECHANICS FOR CHEMICAL ENGINEERS

This equation says that the shear 

stress τ is linearly proportional to 

the velocity gradient dV ∕ dy. It 

is also the definition of viscosity, 

because we can rearrange it to

 
μ =

τ

dV ∕ dy
 (1.5)

Here μ is called the viscosity or 

the coefficient of viscosity. [We 

occasionally see this equation 

written with a minus sign in 

front of the τ. This is done so 

that the  equation will have the 

same form as the heat-conduction 

and mass-diffusion equations 

([2], pp.  266, 515). Since the 

shear stress acts in one direction 

on the rotating cylinder and in 

the opposite direction on the fluid adjacent to it, we can introduce this minus sign 

and reverse our idea of the direction of τ so that the result is always the same as in 

Eq.  (1.5).] For Example l.2, we would calculate

 
μ =

τ

dV ∕ dy
=

0.0545 N / m2

12.26 / s
= 0.0044 

N · s

m2
 (1.I)

For fluids such as air the value of μ is very low; therefore, their observed behavior 

is represented in Fig. 1.6 by a straight line through the origin, very close to the dV ∕ dy 

axis. For fluids such as corn syrup the value of μ is very large, and the straight line 

through the origin is close to the τ axis.

 Fluids that exhibit this behavior in the sliding-plate experiment or its cylindri-

cal equivalent (i.e., fluids that obey Newton’s law of viscosity) are called  Newtonian 

fluids. All the others are called non-Newtonian fluids. Which fluids are  Newtonian? 

All gases are Newtonian. All pure liquids for which we can write a simple chemical 

formula are Newtonian, such as water, benzene, ethyl alcohol, carbon tetrachloride, 

and hexane. Most dilute solutions of simple molecules in water or organic solvents 

are Newtonian, such as solutions of inorganic salts or sugar in water or benzene. 

Which fluids are non-Newtonian? Generally, non-Newtonian fluids are complex 

mixtures: slurries, pastes, gels, polymer solutions, etc. (some authors refer to them 

as complex fluids). Most non-Newtonian fluids are mixtures with constituents of 

very different sizes. For example, toothpaste consists of solid particles suspended 

in an aqueous solution of various polymers. The solid particles are much, much 

bigger than water molecules, and the polymer molecules are much bigger than water 

molecules.

S
h
ea

r 
fo

rc
e

A
re

a
τ 

=
 

dV

dy

V0

y0

Velocity of moving plate

Distance between plates
 =  = 

Pse
ud

op
la

st
ic

New
tonian

, s
lope =

 µ

Dila
tan

t

Bingham

T = const.

FIGURE 1.6

Possible outcomes of the sliding-plate experiment at constant 

temperature and pressure.
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Slope = µ = “apparent viscosity” 

A

B

C

τ

O dV  ̸ dy

T = const.

FIGURE 1.7

The “apparent viscosity” of a pseudoplastic fluid decreases as the 

shear rate increases.

 In discussing non-Newtonian fluids, we must agree on what we mean by viscos-

ity. If we retain the definition given by Eq. (1.5), then the viscosity can no longer be 

considered a constant independent of dV ∕ dy for a given temperature, but must be 

considered a function of dV ∕ dy. This is shown in Fig. 1.7. Here each of the lines 

OA, OB, and OC has slope μ, so the viscosity is decreasing with increasing dV ∕ dy. 

(Viscosities defined as the slopes in Fig. 1.7 are often called apparent viscosities.) 

Using this definition, we can observe that there are three common types of non-

Newtonian fluid (Fig. 1.6):

1.  Pseudoplastic fluids show an apparent viscosity that decreases with increasing 

velocity gradient. Examples are most slurries, muds, polymer solutions, solutions of 

natural gums, and blood. These fluids are referred to as shear thinning fluids. This is 

the most common type of non-Newtonian behavior.

2.  Bingham fluids, sometimes called Bingham plastics, resist a small shear stress indef-

initely but flow easily under larger shear stresses. One may say that at low stresses 

the viscosity is infinite and at higher stresses the viscosity decreases with increasing 

velocity gradient. Examples are bread dough, toothpaste, applesauce, some paints, 

jellies, and some slurries.

3.  Dilatant fluids show a viscosity that increases with the increasing velocity gradient. 

This behavior is called shear thickening; it is uncommon, but starch suspensions 

and some muds behave this way. For these materials the liquid lubricates the pas-

sage of one solid particle over another; at high shear rate the  lubrication breaks 

down, and the particles have more resistance to slipping past each other.

 So far, we have assumed that the curve of τ versus dV / dy is not a function of 

time; i.e., if we move the sliding plate at a constant speed, we will always require 

the  same force. This is true of most fluids, but not of all. A more complete picture 
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12 FLUID MECHANICS FOR CHEMICAL ENGINEERS

FIGURE 1.8

The viscosity of fluids can be independent of time of shearing or can increase or decrease with time as 

the fluid is sheared.

A

A

A

A

τ

τ

dV

dy

Time
Section A-A

Time-independent

Thixotropic

Rheopectic

Tim
e

T = const.

is  given in Fig. 1.8. In Fig. 1.8 we see a constant dV ∕ dy slice out of the solid 

 constructed of τ versus dV ∕ dy versus time. We see three possibilities:

1.  The viscosity can remain constant with time, in which case the fluid is called time 

independent.

2.  The viscosity can decrease with time, in which case the fluid is called thixotropic.

3.  The viscosity can increase with time, in which case the fluid is called rheopectic.

 All Newtonian fluids are time independent, as are most non-Newtonian fluids. 

Many thixotropic fluids are known, almost all of which are slurries or solutions of 

polymers, and a few examples of rheopectic fluids are known.

 In addition, some fluids, called viscoelastic fluids, can show not only the kinds 

of behavior represented in Figs. 1.6 and 1.8 but also elastic properties, which allow 

them to “spring back” when a shear force is released. The most common examples 

of viscoelastic fluids are egg whites, cookie dough, and the rubber cement sold at 

stationery stores. Rubber cement’s viscoelastic properties can be demonstrated most 

 easily by starting to pour a little out of the bottle and then snapping it back into the 

bottle with a quick jerk of the hand. The same can be done with egg white. This is 

quite impossible with any ordinary fluid such as water; try it!

 These strange types of fluid behavior are of considerable practical use. A good 

toothpaste must be a Bingham fluid, so that it can easily be squeezed out of the tube 
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but will not drip off the toothbrush the way water or honey would. A good paint 

should be a thixotropic Bingham fluid, so that in the can it will be very viscous and 

the pigment will not settle to the bottom, but when it is stirred, it will become less 

viscous and can easily be brushed onto a surface. In addition, the brushing should 

temporarily reduce the viscosity so that the paint will flow sideways (under the influ-

ence of surface tension; see below) and fill in the brush marks (called leveling in the 

paint industry); then, as it stands, its viscosity should increase, so that it will not form 

drops and run down the wall.

 Most engineering applications of fluid flow involve water, air, gases, and simple 

fluids. Therefore, most fluid-flow problems have to do with Newtonian fluids, as do 

most of the problems in this book. Non-Newtonian fluids (Chap. 13) are important, 

however, precisely because of their non-Newtonian behavior.

 The viscosity of simple gases, such as helium, can be calculated for all tem-

peratures and pressures from the kinetic theory of gases using only one experimental 

measurement for each gas [2]. For the viscosities of most gases and all liquids, several 

experimental data points are required, although ways of predicting viscosity change 

with changing temperature and pressure are available [3]. As a general rule, the vis-

cosity of gases increases slowly with increasing temperature, and the viscosity of 

liquids decreases rapidly with increasing temperature. The viscosity of both gases and 

liquids is practically independent of pressure at low and moderate pressures.

 The basic unit of viscosity is the poise, where P = 1 g / (cm · s) = 0.1 Pa · s =

6.72 · 10−2 lbm / (ft · s)  [See App. D for conversion factors.] The poise is widely used 

for materials like high-polymer solutions and molten polymers. However, it is too large 

a unit for most common fluids. By sheer coincidence the  viscosity of pure water at 

about 68°F = 20°C is 0.01 poise; for that reason the  common unit of viscosity in the 

United States is the centipoise, cP = 0.01 P = 0.01 g / (cm · s) = 0.001 N · s / m2 = 

0.001 Pa · s = 6.72 · 10−4 lbm / (ft · s). Hence, the viscosity of a fluid expressed in cen-

tipoise is the same as the ratio of its viscos ity to that of water at room temperature. The 

viscosities of some common liquids and  gases  are shown in App. A.1. The computed 

viscosity of the fluid in Example 1.2 is 4.4 cP.

1.5.4 Kinematic Viscosity

In many engineering problems, viscosity appears only in the relation (viscosity/density). 

Therefore, to save writing, we define

 Kinematic viscosity = ν = μ ∕ ρ (1.6)

The most common unit of kinematic viscosity is the centistoke (cSt):

 
1 cSt =

1 cP

1 g / cm3
= 10−6 

m2

s
= 1.08 · 10−5 

ft2

s
 (1.J)

at 68°F = 20°C, water has a kinematic viscosity of 1.004 ≈ 1 cSt. To avoid confu-

sion over which viscosity is being used, some writers refer to the viscosity μ 

as the absolute viscosity. The kinematic viscosity has the same dimension 

(length2 / time) as the thermal diffusivity and the molecular diffusivity; in many 
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14 FLUID MECHANICS FOR CHEMICAL ENGINEERS

problems, it acts the same way as them. 

In Chap. 6, we will see some examples 

of the practical convenience of the 

kinematic viscosity.

1.5.5 Surface Tension

Liquids behave as if they were sur-

rounded by a skin that tends to shrink, or 

contract, like a sheet of stretched rubber, 

a phenomenon known as surface tension. 

It is seen in many everyday events, the 

most disheartening of which is the ten-

dency of water, when poured slowly from 

a glass, to dribble down the edge of the 

glass (see Fig. 1.9).

 Surface tension is caused by the attractive forces in liquids. All of the mol-

ecules attract each other; those in the center are attracted equally in all directions, 

but those at the surface are drawn toward the center because there are no liquid 

 molecules in the other direction to pull them outward (see Fig. 1.10). The “effort” 

of each molecule to reach the center causes the fluid to try to take a shape that 

will have the greatest number of molecules nearest the center, a sphere (Prob. 1.11). 

Any other shape has more surface per unit volume; therefore, regardless of the 

shape of a liquid, the attractive forces tend to pull the liquid into a sphere. Other 

forces such as gravity often oppose surface tension forces, so the spherical shape 

is only seen for small systems, such as small water drops on a water-repellent sur-

face. The fluid thus tries to decrease its surface area to a minimum. (An analogous 

situation in two dimensions is observable in the behavior of some army ants. They 

travel in large groups, 

and, viewed from above, 

the swarm often looks 

like a circle. The reason 

appears to be that the ants 

are attracted by the scent 

of other ants and, hence 

all try to get to the place 

where the scent is stron-

gest, the center. The ants 

all stay in one plane, so 

the result is the plane fig-

ure with the smallest pos-

sible ratio of perimeter to 

area—a circle [4].)

 The tendency of a 

surface to contract can be 

measured with the device 

FIGURE 1.9

Disheartening effect of surface tension. The water 

dribbles down the surface of the container.

FIGURE 1.10

Surface tension is caused by the attractive forces between molecules.

Liquid

Forces of
attraction to

other molecules

Gas

Surface

Molecule in the
center is pulled
equally in all
directions

Molecule at the
surface is pulled
toward the center
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shown in Fig. 1.11. A wire frame with 

one movable side is dipped into a liquid 

and carefully removed with a film of 

liquid in the space formed by the frame. 

The film tries to assume a spherical 

shape, but since it adheres to the wire, 

it draws the movable part of the frame 

inward. The force necessary to resist 

this motion is measured by a weight. It 

is found experimentally that the ratio of 

the force to the length of the sliding part 

of the wire is always the same for a 

given  liquid at a given temperature, 

regardless of the size of the apparatus. 

The liquid film in the frame has two 

 surfaces (front  and back), so the force-

to-length ratio of one of the surfaces is 

exactly one-half of the total measurement. The surface tension of the  liquid is then 

defined as

 Surface tension =
force of one film

length
  or  σ =

F

l
 (1.7)

Example 1.3.  The device in Fig. 1.10 has a sliding part 10 cm long. The mass 

needed to resist the inward pull of the fluid is 0.6 g, which exerts a force of 

0.005 89 N. What is the surface tension of the fluid?

 From Eq. 1.7,

 σ =
F(one film)

l
=

0.005 89 N ∕ 2

0.1 m
= 0.0294 

N

m
= 0.000 168 

lbf

in
 (1.K)

■

The device shown in Fig. 1.11 is easy to understand but not very practical as a mea-

suring device; more practical ones are discussed in Chap. 14.

 Surface tension is very slightly influenced by what the surrounding gas is—air 

or water vapor or some other gas. Typical values of the surface tension of liquids 

exposed to air are shown in Table 1.1. The traditional unit of surface tension is the 

dyne / cm = 0.001 N / m. At 68°F = 20°C, most organic liquids have about the same 

surface tension (≈25 dyne / cm) whereas that of water is about 3 times higher, and 

that of mercury is 20 times higher.

 We indicated that the liquid adheres to the solid in the apparatus shown in 

Fig. 1.11. Liquids adhere strongly to some solids and not to others. For example, 

water adheres strongly to glass but very weakly to polyethylene. This greatly com-

plicates the whole subject of surface tension; the phenomenon shown in Fig. 1.9 

occurs much more often with glass, ceramic, or metal cups than with polyethylene 

or Teflon cups.

FIGURE 1.11

A very simple way to measure surface tension; 

see Example 1.3.

Sliding part
of frame

Weight

Film of liquid
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16 FLUID MECHANICS FOR CHEMICAL ENGINEERS

 Two important effects attributable to surface tension are the capillary rise of 

liquids in small tubes and porous wicks (without which candles, kerosene lanterns, 

or copper sweat-solder fittings would not work at all) and the tendency of jets of 

liquid to break up into drops (as from a garden hose or gasoline or diesel fuel injec-

tor or in an ink-jet printer). Surface tension effects are very important in systems 

involving large surface areas, such as emulsions (mayonnaise, cold cream, water-

based paints) and multiphase flow through porous media (oil fields); see Chap. 14 

and references [5,6].

1.6 PRESSURE

Pressure is defined as a compressive stress or compressive force per unit area. In a 

stationary fluid (liquid or gas) the compressive force per unit area is the same in all 

directions. In a solid or in a moving fluid, the compressive force per unit area at 

some point is not necessarily the same in all directions. We can visualize why by 

squeezing a rubber eraser between our fingers; see Fig. 1.12. As we squeeze the 

eraser, it becomes thinner and longer, as shown. If we analyze the stresses in the 

eraser, we find that in the y direction the eraser is 

in compression, whereas in the x direction it is in 

tension. (This seems strange, but the eraser has 

been stretched in the x direction, and its elastic 

forces will pull it back when we let go; hence the 

tension.) The contraction in one direction and 

expansion in another in an elastic solid is described 

in terms of Poisson’s ratio, discussed in any text 

on strength of materials. Because the tensile and 

compressive forces are at right angles to each 

other, there is also a strong shear stress at 45° to 

the x axis.

TABLE 1.1

Surface tensions of pure fluids exposed to air at 68°F = 20°C

 Surface tension, Surface tension,

Fluid dyne / cm = 0.001 N / m lbf / in

Acetic acid 27.8 0.000 159

Acetone 23.7 0.000 135

Benzene 28.25 0.000 161

Carbon tetrachloride 26.95 0.000 154

Ethyl alcohol 22.75 0.000 130

n-Octane 21.8 0.000 124

Toluene 28.5 0.000 163

Water 72.74 0.000 415

Mercury 484 0.002 763

Lide, David R. Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2003; and 

various other handbooks. 

Eraser

x

y

Eraser in

compressed state

FIGURE 1.12

The response of an elastic solid to 

compression in one direction.
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 What would happen if we held our fingers in a cup of water and tried to squeeze 

the water between our fingers? Obviously, the water would run out from between our 

fingers, and our fingers would come together. Why? When we start to squeeze the 

water, it behaves like the eraser, setting up internal shear and tensile forces in the 

same directions as the eraser. However, ordinary fluids cannot permanently resist shear 

forces, so the water begins to flow and finally flows away. The eraser also flowed, 

until it had taken up a new shape, in which its internal tensile and shear resistance 

were enough to hold our fingers apart. Water cannot set up such resistance and so it 

simply flows away.

 If we really wanted to squeeze the water, we would put it in some container 

that would prevent its flowing out to the side. If we did this with the eraser, then as 

we compressed it from the top, it would press out on the sides of the container. So 

also does water.

 The foregoing is a description of why the pressure at a point in a fluid at rest 

is the same in all directions. It is not a proof of that fact; for a proof, see App. B.1.

 What we mean by pressure is not so clear for a solid as it is for a liquid or a 

gas. The compressive stresses at a given point in a solid are not the same in all direc-

tions. The usual definition of pressure in a solid is as follows: Pressure at a point is 

the average of the compressive stresses measured in three perpendicular directions. 

Since, as we have seen, these three stresses are all the same in a fluid at rest, the two 

definitions are the same. For a fluid in motion, the three perpendicular compressive 

stresses may not be the same. However, for this difference to be significant, the shear 

stresses must be very large, well outside the range of normal problems in fluid 

mechanics. Therefore, we normally extend the notion that pressure in a fluid at rest 

is the same in all directions to fluids in motion, with the reservation that at very high 

shear stresses (such as in the flow of metals or polymer melts through forming dies) 

this is not necessarily true. For polymer solutions and polymer melts the differences 

between the compressive stresses in directions at right angles to one another can be 

very  significant and can lead to behavior quite different from the behavior of simple 

fluids; see [7].

 In the solution of many problems, particularly those involving gases, it is most 

convenient to deal with pressures in an absolute sense, i.e., pressures relative to a 

compressive stress of zero; these are called absolute pressures. In the solution of many 

other problems, particularly those involving liquids with free surfaces, such as are 

encountered in rivers, lakes, and open or vented tanks, it is more convenient to deal 

with pressures above an arbitrary datum, the local atmospheric pressure. Pressures 

relative to the local atmospheric pressure are called gauge pressures.

 Because both systems of measurement are in common use, it is necessary to 

make clear which kind of pressure we mean when we write “a pressure of 15 lb / in2” 

[This unit is also called psi (pounds per square inch)]. It is usual to say “15 psi abso-

lute” or “15 psia” for absolute pressure and “15 psi gauge” or “15 psig” for gauge 

pressure. The SI unit of pressure is the pascal, Pa = N / m2. There does not seem to 

be a common set of abbreviations for Pascal absolute and Pascal gauge, so these must 

be written out.

 Another two-datum situation familiar to the reader is found in the measurement 

of elevation. Mountain tops, road routes, and rivers are normally surveyed relative to 
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18 FLUID MECHANICS FOR CHEMICAL ENGINEERS

mean sea level, which serves as an “absolute” datum, but most buildings are designed 

and constructed relative to some local elevation (usually a marker in the street); see 

Fig. 1.13. In both cases the most common measuring method gives answers in terms of 

the local datum. Most pressure gauges read the difference between the measured pres-

sure and the local atmospheric pressure. For instance, the pressure gauge on the 

compressed air system in the figure would read 20 psig = 137.8 kPa gauge; the build-

ing height (by tape measure or transits) might be given as 100 ft = 30.5 m elevation. 

Both such measurements usually involve negative values, based on the local datum; 

the basement has a negative elevation relative to the street, −30 ft = −9.15 m, and 

the vacuum system has a negative pressure relative to the atmosphere, −5 psig =

−34.5 kPa gauge.

 Negative elevations relative to sea level can exist; the Dead Sea, for instance, 

is about 1200 feet (366 m) below sea level. Can negative absolute pressures exist? 

Certainly; a negative absolute pressure is a negative compressive stress, i.e., a tensile 

stress. These occur often in solids, very rarely in liquids, never in gases. They are rare 

in liquids because all liquids possess a finite vapor pressure. If the pressure of a 

liquid is reduced below its vapor pressure, the liquid boils and thus replaces the low 

pressure with the equilibrium vapor pressure of the liquid. However, this boiling never 

takes place spontaneously in an absolutely pure liquid [8], but rather occurs around 

small particles of impurities or at the wall of the container. (Most people have observed 

this phenomenon when they pour a cold carbonated drink into a glass; the bubbles 

form mostly at the edge of the glass, not in the bulk of the liquid. It can be shown 

dramatically by dropping some sugar into a cold, fresh glass of soft drink; do this 

over a sink!) Thus, if a liquid is very pure and the surfaces of its container are very 

smooth, the liquid can exist in tension at a negative absolute pressure. This situation 

is unstable, and a slight disturbance can cause the liquid to boil [9].
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The relation between gauge and absolute pressure, and a comparison with elevation measurements.
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1.7 FORCE, MASS, AND WEIGHT

In fluid mechanics we are often concerned with forces, masses, and weights. The 

problem of units of force and mass is discussed in the next section. An unbalanced 

force makes things change speed or direction. Most forces in the world are balanced 

by opposite forces (a building exerts a force on the ground; the ground exerts an equal 

and opposite force on the building; neither moves). To make anything start moving 

or stop moving, we must exert an unbalanced force.

 Mass is an indication of how much matter is present. The more matter, the more 

mass. (We may think of matter in any size, as bricks, molecules, atoms, nucleons, 

quarks, etc.) Mass is also an indicator of how hard it is to get some amount of matter 

moving or how hard it is to stop it once it is moving. We can all stop a baseball 

moving 50 ft / s (15.2 m / s)  with little more damage than a possible sore hand. If we 

step in front of an automobile moving at the same speed, we will certainly be killed. 

The auto has much more mass; it is much harder to stop.

 Weight is a force—the force that a body exerts due to the acceleration of grav-

ity. When there is no gravity, there is no weight (e.g., in earth satellites there is no 

apparent gravity; this state is referred to as weightlessness).

1.8 UNITS AND CONVERSION FACTORS

Engineering is about real physical things, which can be measured and described in terms 

of those units of measure. Most engineering calculations involve these units of mea-

sure.  It would be simple if there were only one set of such units that the whole world 

agreed upon and used, but that is not the case today. In the United States, most mea-

surements use the English system of units, based on the foot, the pound, and the °F, 

but most of the world uses the metric (or SI) system of units based on the meter, the 

kg, and the °C. The metric system has been legally accepted in the United States since 

1866, and it has been the declared policy of the U.S. government to convert to metric 

since 1975 [10]. Progress has been disappointingly slow.

 The situation is similar with languages; it would be easier if we all spoke one 

language. But we do not; the world has many languages. Educated Europeans all speak 

at least two languages well and generally can read one or two more. Similarly, U.S. 

engineers must be fluent in English and in metric units and be able to understand 

older literature written in the centimeter-gram-second (cgs) system, and in variant 

English systems that use the poundal or the slug, and in specialized industrial units, 

like the 42-gal barrel for petroleum products or pressure differences expressed in 

inches of water. U.S. engineers must even deal with mixed systems, like automotive 

air pollutant emissions expressed in grams per mile. Furthermore, they must under-

stand the differences between the common-use version of metric and SI, discussed 

below; they will be better able to deal with those differences if they understand why 

the differences arise.

 In fluid mechanics we most often deal with dimensioned quantities, such as 

12 ft / s (= 3.66 m / s), rather than with pure numbers such as 12 or 3.66. We often 

drop the units, for example, “I was driving 60,” which in the United States normally 

means 60 mi / h, but in the rest of the world means 60 km / h. This is poor practice, 
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but common. In 1999 [11] a $125 million NASA Mars probe was destroyed because 

someone failed to check their units. In technical work we always make clear the units 

in which any value is expressed! To become competent at solving fluid mechanics 

problems, we must become virtually infallible in the handling of such units and their 

conversion  factors. For most engineers the major sources of difficulties with units and 

conversion factors are carelessness and the simultaneous appearance of force and mass 

in the same equation.

 A useful “system” for avoiding carelessness and consistently converting the 

dimensions of engineering quantities from one set of units to another has two rules:

1.  Always (repeat, always) include the dimensions with any engineering quantity you 

write down.

2.  Convert the dimensions you have written down to the dimensions you want in your 

answer by multiplying or dividing by 1.

Example 1.4.  We are required to convert a speed of 327 mi / h to a speed in 

ft / s. The first step is to write the equation

 Speed = 327 mi / h (1.L)

This is not the same as 327 km / h or 327. If we omit the dimensions, our equation 

is meaningless. We now write, as an equation, the definition of a mile:

 1 mi = 5280 ft (1.M)

Dividing both sides of this equation by 1 mi, we find

 

1 mi

1 mi
= 1 =

5280 ft

mi
 (1.N)

You may not be used to thinking of 5280 ft / mi as being the same thing as 1, but 

Eq. 1.N shows that they are the same. Similarly, we write the definition of an hour 

as an equation,

 1 h = 3600 s (1.O)

and divide both sides by 3600 s to find

 

3600 s

3600 s
= 1 =

h

3600 s
 (1.P)

Again, you may not be used to thinking of 1 h / 3600 s as the same thing as 1, but 

it is. Now let us return to Eq. 1.L and multiply both sides by 1 twice, choosing our 

equivalents of 1 from Eqs. 1.N and l.P:

 
Speed · 1 · 1 =

327 mi

h
·

5280 ft

mi
·

h

3600 s
 (1.Q)

We can now cancel the two 1’s on the left side, because they do not change the 

value of “Speed,” and we can cancel the units that appear both above and below 

the line on the right side to find 

 
Speed =

327 mi

h
·

5280 ft

mi
·

h

3600 s
=

327 · 5280 ft

3600 s
= 480 

ft

s
= 146 

m

s  
(1.R)

■
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This was an easy example, one you could certainly solve without going into as much 

detail as shown here, but it illustrates the procedure to be used in more complicated 

 problems.

Example 1.5.  Suppose Time equals 2.6 h. How many seconds is this? Again 

we begin by writing Time with its dimension as an equation:

 Time = 2.6 h (1.S)

We want to know its value in seconds, so we divide by 1,

 
Time = 2.6 h ·

3600 s

h
= 2.6 · 3600 s = 9360 s (1.T)

■

 How did we know to multiply by 1 h / 3600 s in Example 1.4 and to divide by 

1 h / 3600 s in Example 1.5? In each case, we chose the value of 1 that allowed us to 

 cancel the unwanted dimension. Three ideas are involved here:

1.  Dimensions are treated as algebraic quantities and multiplied or divided  accordingly.

2.  Multiplying or dividing any quantity by 1 does not change its value.

3.  Any dimensioned equation can be converted to 1 = 1 by dividing through by either 

side.

 Using the last procedure, we can write

 
1 =

60 s

min
=

12 in

ft
=

7000 gr

lbm
=

mi2

640 acres
=

Btu

252 cal
=

W

VA
= etc. (1.8)

and as many other values of 1 as we like.

 The previous examples did not involve the unit conversions that cause difficul-

ties, the ones involving force and mass or thermal and mechanical energies. If every-

one always used SI, we would never have those difficulties. In SI there is no difficulty 

with the units of force and mass; force is measured in newtons (N) and mass in 

kilograms (kg), and the only unit of energy is the mechanical-energy unit, the joule, 

where J = N · m.

 Unfortunately, in the English system (and in the traditional metric system as it 

is used by the public in Europe), there is difficulty with force-mass unit conversion. 

If we ask a typical European male what he weighs, he might well respond “80 kilos,” 

meaning 80 kg. If he were speaking in SI, he would not use kg as a unit of weight, 

because weight is a force and the SI unit of force is the newton. He should respond, 

“784.8 newtons” because that is the weight of an 80 kg mass in a standard gravita-

tional field of 9.807 m / s2 = 32.17 ft / s2. It is hard enough to teach novice engineers 

the difference between weight and mass; it is probably impossible to get the general 

public to take the view that a mass of 80 kg does not exert a force of 80 kg. To make 

this come out right, we need to decide that there are really two kilogram units, the 

kilogram-mass (kgm) and the kilogram-force (kgf). We can define these so that one 

kgm exerts a force of one kgf at standard gravity. That is what most of the people in 

the world actually do. Similarly, in the English system of units we need two kinds of 
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pounds; pound-mass (lbm) and pound-force (lbf). Again we have defined these so that 

one lbm has a weight of (exerts a force of) one lbf at standard gravity.

 Why does this cause problems? Because the kgm and kgf look like the same 

thing, so we are tempted to believe they are the same thing, and the lbm and the lbf 

look like the same thing, so we are tempted to believe they are the same thing. That 

is wrong. It is a trap for the unwary. They are not the same. This leads to serious 

errors in engineering calculations.

 Newton’s second law of motion is

 F = ma (1.9)

where F is force, m is mass, and a is acceleration. The pound-force (lbf) is defined 

as that force which, acting on a mass of 1 lbm, produces an acceleration of 32.2 ft / s2. 

Substituting this definition into the last equation, we find

 
1 lbf = lbm · 32.2 

ft

s2
 (1.U)

Dividing both sides of this by 1 lbf, we find

 
1 =

lbf

lbf
= 32.2 

lbm · ft

lbf · s2
 (1.V)

If we then make the mistake of canceling the lbm on the top and the lbf on the 

bottom right-hand side, we will conclude that 1 = 32.2 ft / s2. This is clearly wrong, 

and if we do it in a problem we will find that the dimensions do not check and 

the numerical value of the answer will be wrong by a factor of 32.2 (if we use 

English units) or 9.8 (if we use metric units). Similarly, in the traditional metric 

system, we have

 1 kfg = kgm · 9.8 m / s2 (1.W)

and if we divide both sides by kgf, we find

 
1 =

kgf

kgf
= 9.8 

kgm · m

kgf · s2
 (1.X)

If we then cancel kgm and kgf on the right side, we will conclude that 1 = 9.8 m / s2, 

which is equally absurd.

 How can we get out of this difficulty? One way is to always work exclusively 

in SI. In that case kg will always mean kgm, and kgf will never appear. Instead the 

unit of force will always be the N = (1 ∕ 9.8) kgf. However, then we will be unable 

to deal with the public, who speak (unintentionally) in kgf and lbf, or to deal with 

those parts of the engineering literature that use kgf and lbf. The other way is to 

decide we must live with the kgf and lbf, and so we will regularly have to use the 

force-mass conversion factor whenever units of force and of mass occur in the same 

equation. This conversion factor has the following values:

 1 = 9.8 
kgm · m

kgf · s2
= 1.0 

kgm · m

N · s2
= 32.2 

lbm · ft

lbf · s2
 (1.10)
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 Furthermore, we must know some history to understand the older literature. 

First, we must know that many older textbooks and articles used the symbol gc to 

stand for this force-mass conversion factor. So whenever we see a gc written into an 

equation, we must recognize it as a reminder that we must use the force-mass conver-

sion factor. We must not confuse gc, the force-mass conversion factor, with g, the 

acceleration of gravity; they are not the same.

 Second, we should recognize that engineers using English units have tried to 

evade this difficulty by inventing two new units, the slug (1 slug = 32.2 lbm =

14.6 kg)  and the poundal (pdl) (1 pdl = lbf / 32.2 = 0.138 N = 0.014 kgf). Using 

these, we have the following force-mass conversion factors:

1 = 9.8 
kgm · m

kgf · s2
= 1.0 

kgm · m

N · s2
= 32.2 

lbm · ft

lbf · s2
= 1.0 

slug · ft

lbf · s2
= 1.0 

lbm · ft

pdl · s2
  (1.11)

Chemical engineers rarely use the slug or the poundal, but other branches of engineering 

do; we must recognize them when we see them.

 The kgf and the lbf have been around a long time, in spite of the efforts of 

scientists and engineers to replace them with the newton or the poundal. They survive 

because they seem natural to nonscientific users. Probably they will continue to 

be  widely used, in spite of the efforts of the scientific community to replace them. 

Prudent engineers will learn to live with this fact, to use them when it seems appro-

priate, and to understand why they came about.

 The second difficulty with units concerns mechanical and thermal units of 

energy. In SI the only unit of energy is the joule, 1 J = 1 N · m. This is clearly a 

mechanical unit, the product of a force and a distance. If we are transferring thermal 

energy (e.g., heating our houses or our soup), it seems natural to base the measure-

ments on the quantity of thermal energy required to raise the temperature of some 

reference substance by some finite temperature interval. In the English system this 

quantity is the British thermal unit (Btu), which is the quantity of  thermal energy 

required to raise the temperature of 1 lbm of water by 1°F. In the  metric system the 

unit is the calorie (cal), which is the quantity of thermal energy required to raise the 

temperature of 1 g of water 1°C, or the kcal (kcal = 1000 cal; this is the “calorie” 

used in describing the energy content of foods). If we want to use the calorie or the 

Btu, then we need to convert from joules to calories or  ft-lbf to Btu:

 
1 =

Btu

778 ft · lbf
=

Btu

1055 J
=

cal

4.18 J
=

kcal

4180 J
=

kcal

4.18 kJ
 (1.12)

 The Btu and the cal (or kcal) seem likely to continue in common usage; the Btu 

appears on almost all U.S. heating appliance and fuel bills (sometimes natural gas 

bills use the therm = 105 Btu or the Dekatherm = 10 therm = 106 Btu), and kcal 

appears on numerous food products.

 In summary, if we can do all our work in SI, we need never be concerned about 

force-mass conversions (N = kg · m / s)  or energy conversions (J = N · m = W · s). 

If we are confronted with problems (or literature, or current U.S. legal definitions) 

involving the kgf, lbf, cal, kcal, or Btu, we must follow the rules outlined above. 

Always write down the dimensions, treat the dimensions as algebraic quantities, and 

multiply by 1 as often as needed to get the quantities into the desired set of units, using 
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the appropriate values of the force-mass conversion factor and the thermal-mechanical 

energy conversion factor. Even in SI, if we stray from the basic units (m, kg, s, A, K, 

mol, and cd), we will need conversion factors such as

 
1 =

1000 g

kg
=

100 cm

m
=

1000 mV

V
 (1.13)

Example 1.6.  A mass of 10 lbm (4.54 kgm) is acted on by a force of 3.5 lbf 

(15.56 N or 1.59 kgf). What is the acceleration in ft / min2?

 Rearranging Eq. 1.9, we find

 a = F ∕ m (1.14)

Substituting, we find

 
a =

3.5

10
 

lbf

lbm
 (1.Y)

Here we want the acceleration in ft / s2 so we multiply or divide by those equiva-

lents of 1 that will convert the units:

  a =
3.5 lbf

10 lbm
·

32.2 lbm · ft

lbf · s2
=

3.5 · 32.2

10
 
ft

s2
= 11.27 

ft

s2
= 3.44 

m

s2
 (1.Z)

or

  a =
15.56 N

4.54 kg
·

kg · m

N · s2
=

15.56

4.54
 
m

s2
= 3.43 

m

s2
= 11.25 

ft

s2
 (1.AA)

or

  a =
1.59 kgf

4.54 kgm
·

9.8 kgm · m

kgf · s2
=

1.59 · 9.8 

4.54
 
m

s2
= 3.43 

m

s2
 11.26 

ft

s2
 (1.AB)

The difference between these three answers is due to round-off error in the con-

version factors used. If more figures had been carried (e.g., kgf = 9.806 50 N), 

the answers would have agreed exactly, but since we know the input data to only 

two significant figures, our best answer, in all three cases, should be 11.3 ft / s2.

 ■

 Example 1.6 will be the last example in this book to use the kgf. Clearly the 

method of dealing with kgm and kgf is just the same as the method of dealing with 

lbm and lbf. For the rest of this book, we will use either lbm and lbf, or SI.

Example 1.7.  An aluminum cell (Hall-Héroult process) has a current of 

50 000 amp. If we assume it is 100% efficient, how much metallic aluminum 

does it produce per hour?

 We first convert the current to gram equivalents per hour, using the neces-

sary values of 1, one of which we take out of Prob. 1.16:

 
I = 50 000 A ·

C

A · s
·

3600 s

h
·

g equiv

95 600 C
= 1870 

g equiv

h
 (1.AC)
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For aluminum,

 27 g = 1 mol (1.AD)

and

 1 mol = 3 g equiv (1.AE)

therefore,

 
I = 1870 

g equiv

h
·

mol

3 g equiv
·

27 g

mol
·

lbm

454 g
= 37.1 

lbm

h
= 16.8 

kg

h
 (1.AF)

■

 In solving Example 1.7, we multiplied by 1 six times. Nonetheless, the procedure 

is simple and straightforward. Each multiplication by 1 gets rid of an undesired dimen-

sion and brings us closer to an answer in the desired units. We saw that an apparently 

complex problem was really a simple conversion-of-units problem. In the course of 

our studies and our professional careers we will have to convert units as quickly and 

as easily as we now add and subtract. It will be easiest if we develop the habit of 

following the two rules given at the start of Sec. 1.8, namely:

1. Always include the dimensions with any engineering quantity you write.

2.  Convert the dimensions you have written to the dimensions you want in your answer 

by multiplying or dividing by 1.

 A short table of these conversion factors can be found in App. D. The American 

National Standard for Metric Practice [12] presents a much longer and more complete 

table, which reveals some additional complexity.

1.9 PRINCIPLES AND TECHNIQUES

As discussed in Sec. 1.3, there are very few underlying ideas in fluid mechanics. With 

these few ideas we can solve a great variety of problems. In so doing, we can focus 

our attention either on the application of principles or on the techniques of solving 

problems. The author recommends attention to the principles. In the 10 years follow-

ing his graduation from college, the engineering business was revolutionized by the 

digital computer, the transistor, and the space industry, among other things. None of 

these amounted to much in 1954, and they were not part of undergraduate courses.

 All these technologies rigidly obey Newton’s laws and the laws of thermody-

namics. Students who learned “cookbook” techniques for solving problems on 1954 

were not well prepared for the technologies that appeared during the next 10 years, 

but those who learned the basic principles and how to apply them could adapt to any 

one of them. There seems to be little reason to believe that the pace of technological 

change will become slower in the future. If we concentrate on learning techniques, 

we may be faced in a few years with “technical obsolescence,” but if we learn 
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principles and their applications, we should have no such problem. The author believes 

that there will never be a surplus of people who really understand Newton’s laws and 

the laws of thermodynamics.

1.10 ENGINEERING PROBLEMS

Although this book may fall into the hands of a practicing engineer, most of its read-

ers will be college juniors; the following is addressed to them.

 Engineering students start out in their freshman and sophomore years by doing 

“plug-in” problems. Given a problem statement, they select the appropriate formula either 

from the textbook or from their memory, and “plug in” the data in the problem to find 

the final answer. In their junior year they begin to find problems that can be readily 

reduced to plug-ins or to problems involving two or more equations that require some 

manipulations to be put in plug-in form. Furthermore, they may be exposed to problems 

that cannot be reduced to plug-ins and must be solved by trial and error. It is assumed 

that they can do simple plug-ins (such as gas-law calculations) without hesitation.

 Instructors of third-year students would like to assign more complicated or dif-

ficult problems but generally cannot because:

1.  The time required for them is too great—they cannot be done in the time that most 

students will devote to one homework problem.

2.  The students would probably get intellectual indigestion on them. Therefore, at the 

third-year level most of the problems and examples in texts like this one are plug-ins 

or can be readily reduced to plug-ins.

 When students start a senior laboratory or design course, they find their first real 

engineering problems. One of these may require 10 or 20 h of work and consist of 15 

or 20 parts, each comparable to the problems and examples in this book. To deal with 

these problems, students break them into pieces small enough to handle as plug-ins. 

The interesting and exciting part of engineering is often the task of deciding how to 

divide a problem into reasonable pieces and how then to reassemble these pieces into 

a recognizable whole so that they fit together properly.

 In the examples and problems in this book, there are numerous simple plug-in 

problems. They are included because their solutions give the reader some feel for the 

numerical values involved in fluid mechanics. There are also more complex problems, 

in which two or more basic principles are involved (such as the mass balance and the 

energy balance). In these, some manipulation is required to get the equations into 

plug-in form. The recommended procedure for solving such problems is this:

1.  Make sure you understand precisely what the problem is; in particular, make sure 

you know precisely what is being asked for.

2.  Decide which physical laws relate what you know to what you want to find.

3.  Write the working form of these laws (as discussed later), and rearrange them to get 

the symbol for the quantity you seek standing alone to the left of the equal sign. In so 

doing, you will probably have to discard several terms in the physical-law equations. 

Discarding a term corresponds to making an assumption about the physical nature 

of the system (e.g., that a certain velocity is negligible). Thus, a list of such terms 

dropped is a list of assumptions made in solving the problem.
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4.  When step 3 is finished, the problem is reduced to a plug-in. Insert the given data, 

check the units, and find the numerical value of the answer.

5.  Check the answer for plausibility: Does it indicate negative masses, velocities greater 

than the speed of light, or efficiencies greater than 100%? Does it pass the test of 

common sense, that is, do the results match your intuitive idea of what they should 

be? If not, is the difficulty with the calculations? or with your intuition? If neither is 

incorrect, perhaps you have made a new technical discovery! Also, re-examine the 

assumptions listed in step 3 to see whether they are consistent with the answer. If 

these checks are met, the answer probably is satisfactory.

6.  If the problem is one that you may have to repeat with different data (such as the 

calculation of a fluid-flow rate from a measured pressure difference), then it might 

be worthwhile to see whether the answer can be put in a more convenient form, for 

example, some general plot or diagram. 

7.  Currently most engineers have access to a variety of computer programs. Many of 

these require the user to learn a new language. Some fluids books introduce these as 

tools for problems and examples. In this book I use only Microsoft Excel. Its advan-

tages include extreme simplicity, high intuitive content, worldwide acceptance, and 

ease of file transfer. It maintains backward compatibility; Excel documents from 20 

years ago are easily read by the current versions, which is not the case for Micro-

soft Word and many other programs. All of the examples in this book have been 

easily checked for numerical accuracy using Excel. When one of the examples in 

the 3rd edition was found to be in error, its Excel program was reviewed, and the 

error promptly found and easily corrected. The use of Excel to solve trial-and-error 

problems is explained in detail in Example 6.5, and then used without such detailed 

explanation in the remaining such solutions throughout the book.

Such solutions are simpler and more intuitive than the solutions in other program-

ming languages. I strongly urge all readers to become fluent in Excel. Once you 

do, you will find yourself preferring to do all routine numerical computations (e.g., 

balancing your checkbook or preparing your income tax) with it, in preference to all 

other methods.

 In all engineering we must consider the degree of precision needed. Voltaire’s 

famous dictum “The perfect is the enemy of the good!” describes the situation of the 

engineer. We could always spend more engineering effort, and do more testing, and 

thereby refine our design or our calculation a little more. But, in any real problem the 

engineer’s time is one of the limiting resources. We would all like the conditions that 

the famous architect Kobori Enshu demanded and received from the Japanese dictator 

Hideyoshi for the Katsura Villa: no limit on expense, no limit on time, and no client 

visits until the job is done. Many believe the result to be the greatest achievement of 

Japanese architecture and garden planning [13]. (If you are ever in Kyoto, visit it and 

decide for yourself.) But most engineers (and other professionals) are always working 

with limited time and limited budgets as well as clients who want intermediate prog-

ress reports. For us the goal is always to do the best possible, within the time, budget, 

and other constraints imposed by the client (or codes and regulations). So engineers 

must allocate their time well, handling routine things swiftly, and concentrating on 

those that are not routine and that may be a source of trouble. Much of what you 

learn in this book is routine to practicing engineers. The goal of this book is that 
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students not only learn to do those routine things but also learn the scientific basis 

of the solution of those routine problems. In so doing, you will learn how engineers 

and scientists have turned yesterday’s difficult problems into today’s routine ones. 

That will help you to develop the habits of mind that will turn today’s difficult prob-

lems into tomorrow’s routine problems.

 You should consider your degree of confidence in the answer to a problem. If 

the calculation used physical property data that is accurate to no more than ±5%, 

then it makes no sense to report the answer to 3 or more significant figures. If the 

solution presented required really speculative calculating approaches, or questionable 

input data, the reader should be alerted to that fact.

 In the problems at the end of each chapter, one or two need to be broken down 

into simpler ones before they can be solved. The practice gained in doing these is 

well worth the effort.

1.11  WHY THIS BOOK IS DIFFERENT FROM 
OTHER FLUID MECHANICS BOOKS

Most undergraduate fluid mechanics books are written by mechanical or civil engi-

neers. Please look at one; your impression will be that those books and this one are 

about totally different subjects. The reasons they look so different are:

1.  The fluid mechanics problems of greatest interest to mechanical and civil engineers 

(aerodynamics, flow around structures) are inherently two- or three-dimensional. 

They cannot be understood as or easily reduced to one-dimensional form. Most of 

the fluid mechanics problems of greatest interest to chemical engineers are inher-

ently one-dimensional or can be understood and easily reduced to one-dimensional 

form. For this reason, civil and mechanical engineers start fluid mechanics as a three-

dimensional study, and then derive the one-dimensional forms of greatest interest to 

chemical engineers from those three-dimensional forms.

2.  Mechanical and civil engineers base most of their work on force and momentum. 

Those are the basic tools of the mechanical and civil engineer. Chemical engineers 

base most of their work on the conservation of mass and energy; the first course in 

chemical engineering is about mass and energy balances. Chemical engineers learn 

about force and momentum in physics but use them much less in their professional 

careers than they use mass and energy. The single most useful equation in fluid 

mechanics, Bernoulli’s equation, can be found by starting with force and momen-

tum, or with energy. Mechanical and civil engineers start with momentum. This 

book starts with energy. The energy approach makes much more sense to chemical 

engineers than does the momentum approach.

3.  Momentum and force are vectors. For mechanical and civil engineers, fluid mechan-

ics is inherently an exercise in vector calculus. Their books are full of vector equa-

tions. Many take the view that one of the main purposes of a fluid mechanics course 

is to immerse their students in the vector calculus, and make them exercise it. Mass 

and energy are scalars. Most of the quantities in chemical engineering are also scalars. 

Thus, chemical engineers have much less use of the vector calculus than do mechani-

cal and civil engineers. Our graduate students are normally expected to become good 

at the vector calculus, but our undergraduates rarely use it.
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FIGURE 1.14

The mercaptan manufacturing unit at the Borger, Texas, complex of the Chevron Phillips Chemical 

Company. This plant is full of fluid flows, almost all of which are inside pipes, pumps, distillation 

columns, and associated vessels. (Leonid Eremeychuk/Shutterstock.)

 For these reasons, this book uses scalars as much as possible and vectors only 

when necessary. It begins with the conservation of mass and energy and shows the 

vast range of practical fluid mechanical problems that can be solved with them, before 

it shows the momentum balance (which is inherently a vector balance) and shows the 

problems for which we need it. As a consequence, this book has far simpler mathemat-

ics than other fluids books. That does not mean that it sacrifices rigor; complexity is 

not rigor, or simplicity carelessness. In many cases the complete derivations are shown 

in appendices, with only the practical result shown in the main text.

 In Parts II and III of this book, we cover the wide range of fluid mechanical prob-

lems of interest to chemical engineers that are best approached in a one-dimensional, 

energy-first approach. Then in Part IV, we introduce the two- or three-dimensional, 

momentum-first approach, and discuss some of the chemical engineering problems that 

are best approached that way.

 Figure 1.14 shows a chemical processing plant, in which lower-price chemicals 

are converted to higher-price (more useful) chemicals for profit and social benefit (and 

jobs for chemical engineers!). Many readers of this book will participate in the design, 

construction, and/or operation of similar plants. In such a plant the fluid flows are 

almost entirely inside pipes, pumps, vessels, fractionators, reactors, etc. We keep them 

inside because they are too valuable to waste and/or because their release would be 

dangerous or polluting. Almost all the flows in such a plant are most easily studied, 

predicted, and managed by the one-dimensional, mass-and-energy balance approach 

that forms Parts II and III of this book.
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Figure 1.15 shows a sche-

matic of a “cabin-type” indus-

trial furnace. These are widely 

used for pyrolysis and reforming 

reactions in chemical engineer-

ing. Fifty years ago these were 

designed by hand using the one-

dimensional methods presented 

in Parts II and III. With the 

recent spectacular advances in 

computer power, such furnaces 

are now designed using the two- 

and three-dimensional fluid 

mechanics methods presented in 

Part IV. Those methods and 

their computer implementation 

were largely developed by aero-

nautical engineers, to deal with 

the inherently three-dimensional 

flow around airplanes. Furnace 

designers and other chemical 

engineers now use large com-

puter codes to model the simul-

taneous three-dimensional fluid 

flow, heat transfer, and chemical 

reactions in such furnaces. The 

improvement in computational 

accuracy more than repays the 

additional cost and complexity. 

Part IV only introduces the 

basic ideas underlying such 

computations, and gives a bit of 

their history.

1.12 SUMMARY

 1.  Fluid mechanics is the study of forces and motions in fluids.

 2.  Fluids are substances that move continually when subjected to a shear force as long 

as the force is applied. Solids are substances that deform slightly when subjected to 

a shear force and then stop moving and permanently resist the force. There are, how-

ever, intermediate types of substance; the distinction between solid and liquid is one 

of degree rather than of kind.

 3.  Fluid mechanics is based on the principle of the conservation of matter, the first 

two laws of thermodynamics, Newton’s laws of motion, and careful experiments.

FIGURE 1.15

Cutaway drawing of a modern industrial furnace. The external 

steel frame supports the high-temperature refractory ceramic 

walls. There are multiple burners at the bottom, of which only 

one is shown. The flame heats the walls and the pipes through 

which the fluid being heated flows. Above the combustion 

chamber the hot gases pass over another bank of tubes, in 

which cooler fluid is warmed by the hot gases before they 

pass up the exhaust stacks seen at the top. (Courtesy of John 

Zink Co. LLC.)
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 4.  Gases have weak intermolecular attractions and expand without limit. Liquids have 

much stronger intermolecular attractions and can expand very little. With increas-

ing temperature and pressure, the differences between liquids and gases gradually 

disappear.

 5.  Density is mass per unit volume. Specific gravity of liquids is density / (density of 

water at 4°C). Specific gravity of gases is density / (density of air at the same T and P).

 6.  Viscosity is a measure of a fluid’s resistance to flow. Most simple fluids are repre-

sented well by Newton’s law of viscosity. The exceptions (non-Newtonian fluids) 

are generally complex mixtures, some of which are of great practical significance. 

Kinematic viscosity is viscosity divided by density.

 7.  Surface tension is a measure of a liquid’s tendency to take a spherical shape, caused 

by the mutual attraction of the liquid’s molecules.

 8.  Pressure is compressive force divided by area. It is the same in all directions for a 

fluid at rest and practically the same in all directions for most moving fluids.

 9.  In handling the units (dimensions) in this text, one should always write down the 

units of any dimensioned quantity and then multiply or divide by 1 to find the 

desired units in the answer.

10.  Much of fluid mechanics can be based either on force and momentum, or on mass 

and energy. This book, for chemical engineers, bases most of fluid mechanics or on 

mass and energy, thus dealing mostly with scalars instead of vectors. Momentum 

and vectors are used where they are needed.

PROBLEMS

See the Common Units and Values for Problems and Examples in App. E. An aster-

isk (*) on the problem number indicates that the answer is in App. C.

 1.1.  In Sec. 1.3 the basic laws on which fluid mechanics rests are listed. How many of the 

basic laws of nature are not included in the list? To answer this question, make a list 

of what you consider to be the basic laws of nature. By basic laws, we mean laws that 

cannot be derived from other more basic ones; for example, Galileo’s “laws of falling 

bodies” can be derived form Newton’s laws and are not basic.

 1.2.  At low pressures there is a significant difference between the densities of liquids and of 

gases. For example, at 1 atm the densest gas known to the author is uranium hexafluoride, 

which has M = 352 g / mol; its normal boiling point is 56.2°C. Calculate its density in 

the gas phase at 1 atm and 56.2°C, assuming that it obeys the ideal gas law. The least 

dense liquid known to the author is liquid hydrogen, which at its normal boiling point, 

20 K, has a density of 0.071 g / cm3. Liquid helium also has a very low density, about 

0.125 g / cm3 (at 4 K). Excluding these remarkable materials, make a list of liquids that 

at 1 atm can exist at densities of less than 0.5 g / cm3. A good source of data is The 

Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, annual  editions.

 1.3.*  For some oil and gas drilling operations, we need a high-density drilling fluid (called 

“drilling mud”). Repeat Example 1.1 for a mud that is 50 wt. % water, 50 wt. % BaSO4 

(barite), SGbarite = 4.49.

 1.4.  Why are specific gravities most often referred to the density of water at 4°C instead of 0°C?

 1.5.*  A special-purpose piece of laboratory glassware, called a pyncnometer, is used to measure 

liquid densities. It has a volume of 25 cc, and a mass of 17.24 g when it is full of air. 
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When filled with a liquid of unknown density, its mass = 45.00 g. What is the density 

of this liquid? How large an error do we make if we ignore the mass of the air that was 

in it when we weighed it and found m = 17.24 g?

 1.6.  The American Petroleum Institute (API) gravity (used extensively in the petroleum indus-

try) is defined, in “degrees,” by

 Deg API =
141.5

specific gravity
 − 131.5 (1.AG)

Here the specific gravity is the ratio of the density of the liquid to that of water, both at 

60°F. Sketch the relation between density in g / cm3 and degrees API. What advantages of 

this scale might have led the petroleum industry to invent and adopt it?

 1.7.  Estimate the specific gravities (gas) for methane and propane. Their molecular weights 

are shown in App. E. (Commercial natural gas and commercial propane are mostly meth-

ane and propane, with small amounts of other substances, which may be ignored for this 

problem.) Which is more dangerous, a natural gas leak or a propane leak? Why?

 1.8.  What are the dimensions of dV ∕ dy? What are the dimensions of shear stress? Shear 

stress in liquids is often called “momentum flux” [2]. Show that shear stress has the same 

dimensions as momentum ∕ (area · time). What are the dimensions of viscosity?

 1.9.  List as many applications as you can of industrial, domestic, or other materials in which 

non-Newtonian viscosity behavior is desirable. In each case, specify why this behavior is 

desirable.

1.10.  In Example 1.2 we replaced a cylindrical problem with a linear approximation. The 

velocity distribution for this flow, taking the cylindrical character into account (see Prob. 

15.22 and also [2], p. 91), is

 Vθ = ω ( k2

1 − k2) · (R2

r
− r) (l.AH)

where R is the radius of the outer cylinder, r is the local radius, k = rinner cylinder ∕ R, and ω 

is the angular velocity of the inner cylinder.

(a)  Verify that this distribution shows a zero velocity at the radius of the outer,  non- moving 

cylinder and shows Vθ = ωkR at the surface of the inner, rotating cylinder.

(b)  The shear rate in cylindrical coordinates, for a fluid whose velocity depends only on r 

(equivalent to dV ∕ dy in rectangular coordinates), is given by

 σ = (shear rate cylindrical

coordinates ) = r 
d

dr
 (

Vθ

r ) (1.AI)

Show that for the above velocity distribution, the shear rate at the surface of the inner 

cylinder is given by

 σ = ω ( 2

1 − k2) (1.AJ)

(c)  Show that the shear rate computed by Eq. 1.AJ using the values in Example 1.2 is 

12.26 / s, which is 1.15 times the value for the flat approximation in Example 1.2. The 

manual for the viscometer shown in Fig. 1.5 provides formulae equivalent to those in 

this problem.

1.11.*  Calculate the surface ∕ volume of a sphere, a cube, and a right cylinder of height equal 

to diameter. Which has the least surface ∕ volume?

1.12.  A liquid under tensile stress is unstable [9]; a small disturbance can cause it to boil and 

thereby change to a stable state. Make a list of other unstable situations demonstrable in 
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a chemistry or physics laboratory. The working criterion of instability is that a very small 

disturbance can cause a large effect.

1.13.  Earth may be considered a sphere with a diameter of ≈8000 mi and an average SG of 

≈5.5. What is its mass? What is its weight? Explain your answer.

1.14.  A cubic foot of water at 68°F = 20°C weighs 62.3 lbf on earth.

(a) What is its density?

(b) What does it weigh on the moon (g ≈ 6 ft / s2)?

(c) What is its density on the moon?

1.15.*  How many U.S. gallons are there in a cubic mile? The total proven oil reserves of the 

United States are roughly 30 · 109 bbl. How many cubic miles is this?

1.16.  In electrochemical equations, it is common to write in the symbol ℱ (called Faraday’s 

constant) to remind the user to convert from moles of electrons to coulombs. This is just 

like the force-mass and thermal energy-mechanical energy conversion factor, namely,

 ℱ = 1 =
95 600 C

g equiv of electrons
 (1.AK)

1 g equiv of electrons = 6.02 · 1023 electrons. How many electrons are there in 1 C?

1.17.  Older thermodynamics and fluids textbooks not only put the symbol gc into equations to 

remind us to make the force-mass conversion but also put a J in equations to remind us 

to make the conversion from mechanical units of energy (e.g., ft · lbf)  to thermal units 

of energy (e.g., Btu). Equation 1.11 shows the values of gc = 1 for a variety of systems 

of units. Show the corresponding equation for J. (The use of the symbol gc caused con-

fusion because it is similar to g. Is there a symbol with which the J discussed in this 

problem can be confused?)

1.18.*  As discussed in the text, the slug and the poundal were invented to make the conversion 

factor (mass length) ∕ (force time2)  have a coefficient of 1. A new unit of length or a 

new unit of time could just as logically have been invented for this. Let us name those 

units the toof and the dnoces. What are the values of the toof and the dnoces in terms 

of the foot and the second?

1.19.  In U.S. irrigation practice, water is measured in acre-feet, which is the volume of water that 

covers an acre of land, one foot deep. What is the mass of an acre-foot of water (1 mi2 = 
640 acres)? What is the mass of a hectare-meter (ha · m) of water (km2 = 100 ha)? Why 

would the acre-foot be a practical measure of irrigation water?

1.20.  Einstein’s equation E = mc2 indicates that the speed of light squared must be expressible 

in units of energy per unit mass. What is the value of the square of the speed of light 

in Btu / lbm? In J / kg? The speed of light c ≈ 186 000 mi / s = 2.998 · 108 m / s.

1.21.*  A common basis for comparing rocket fuel systems is the specific impulse, defined as 

lbf of thrust produced divided by lbm / s of fuel and oxidizer consumed (see Chap. 7). 

The common values are 250 to 400 lbf · s / lbm. We frequently see the specific impulse 

referred to simply as “300 s.” Is 300 s the same thing as 300 lbf s / lbm? European 

engineers regularly express the same quantity in terms of the equivalent exhaust velocity 

of the rocket. If a rocket has a specific impulse of 300 lbf s / lbm, what is its equivalent 

exhaust velocity?

1.22.  Most U.S. engineers work with heat fluxes with the unit Btu / (h · ft2). In the rocket 

business the common unit is cal / (s · cm2). How many Btu / (h · ft2)  is 1 cal / (s · cm2)? 

The proper SI unit is J / (m2 · s). How many Btu / (h · ft2) = 1 J / (m2 · s)?

1.23.*  The Reynolds number, discussed in Chap. 6, is defined for a pipe as 

(velocity · diameter · density) ∕ viscosity. What is the Reynolds number for water flow-

ing at 10 ft / s in a pipe with a diameter of 6 in? What are its dimensions?
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1.24.  The flow of fluids through porous media (such as oil sands) is often described by Darcy’s 

equation (see Chap. 11):

 
Flow

Area
=

permeability

viscosity
· pressure gradient (1.AL)

The unit of permeability is the darcy, which is defined as that permeability for which a 

pressure gradient of 1 atm / cm for a fluid of 1 cP viscosity produces a flow of 1 cm3 / s 

through an area of 1 cm2. What are the dimensions of the darcy? What is its numerical 

value in the dimension? Give the answer both in English units and in SI units. See Chap. 11.

1.25.*  What mass (weight?) would be needed in Example 1.3 if the liquid had been water?

1.26.  Determine the value of X in the equation,

 1.0 
Btu

lbm · °F
= X 

cal

g · °C
 (1.AM)

1.27.  In strict SI, the only unit of pressure is the Pascal (Pa). The most widely used derived 

unit is the bar (bar = 105 Pa = 0.1 MPa). What is the relation between the bar and the 

pressure of the atmosphere at sea level? Why is the bar a popular choice for a working 

SI derived unit?

1.28.*  Air pollutant emissions from autos and trucks in the United States are reported in a mixed 

metric-English unit, g / mi. Suggest reasons why this might be a practical unit.

1.29.  Many European pressure gauges give the pressure in kg / cm2. Is this kgm or kgf? Why 

would this be a convenient unit of pressure?

1.30.  In the third part of Example 1.6, what would have happened if we had taken the force-mass 

conversion factor as 32.2 lbm · ft / (lbf · s2), instead of 9.8 kgm · m / (kgf · s2)?
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