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PREFACE

What Is This Book About?

The practice of data analytics is changing and modernizing. Innovations in computation and 

machine learning are creating new opportunities for the data analyst: exposing previously 

unexplored data to scientific analysis, scaling tasks through automation, and allowing deeper 

and more accurate modeling. Spreadsheet models and pivot tables are being replaced by code 

scripts in languages like R and Python. There has been massive growth in digitized information, 

accompanied by development of systems for storage and analysis of this data. There has also 

been an intellectual convergence across fields—machine learning and computer science, sta-

tistics, and social sciences and economics—that has raised the breadth and quality of applied 

analysis everywhere. This is the data science approach to analytics, and it allows leaders to go 

deeper than ever to understand their operations, products, and customers.

This book is a primer for those who want to gain the skills to use data science to help make 

decisions in business and beyond. The modern business analyst uses tools from machine learn-

ing, economics, and statistics to not only track what has happened but predict the future for 

their businesses. Analysts may need to identify the variables important for business policy, run 

an experiment to measure these variables, and mine social media for information about public 

response to policy changes. A company might seek to connect small changes in a recommen-

dation system to changes in customer experience and use this information to estimate a demand 

curve. And any analysis will need to scale to companywide data, be repeatable in the future, 

and quantify uncertainty about the model estimates and conclusions.

This book focuses on business and economic applications, and we expect that our core 

audience will be looking to apply these tools as data scientists and analysts inside companies. 

But we also cover examples from health care and other domains, and the practical material that 

you learn in this book applies far beyond any narrow set of business problems.

This is not a book about one of machine learning, economics, or statistics. Rather, this 

book pulls from all of these fields to build a toolset for modern business analytics. The material 

in this book is designed to be useful for decision making. Detecting patterns in past data can 

be useful—we will cover a number of pattern recognition topics—but the necessary analysis 

for deeper business problems is about why things happen rather than what has happened. For 

this reason, this book will spend the time to move beyond correlation to causal analysis. This 

material is closer to economics than to the mainstream of data science, which should help you 

have a bigger practical impact through your work.

We can’t cover everything here. This is not an encyclopedia of data analysis. Indeed, for 

continuing study, there are a number of excellent books covering different areas of contempo-

rary machine learning and data science. For example, Hastie et al. (2009) is a comprehensive 

modern statistics reference and James et al. (2021) is a less advanced text from a similar view-

point. You can view this current text as a stepping stone to a career of continued exploration 

and learning in statistics and machine learning. We want you to leave with a set of best prac-

tices that make you confident in what to trust, how to use it, and how to learn more.
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GUIDED TOUR

This book is based on the Business Data Science text by Taddy (2019), which was itself developed 

as part of the MBA data science curriculum at the University of Chicago Booth School of Business. 

This new adaptation creates a more accessible and course-ready textbook, and includes a major 

expansion of the examples and content (plus an appendix tutorial on computing with R). Visit Con-

nect for digital assignments, code, datasets, and additional resources.

Practical Data Science for Decision Making

Our target readership is anyone who wants to get the skills to use modern large-scale data to 

make decisions, whether they are working in business, government, science, or anywhere else.

In the past 10 years, we’ve observed the growth of a class of generalists who can understand busi-

ness problems and also dive into the (big) data and run their own analyses. There is a massive demand 

for people with these capabilities, and this book is our attempt to help grow more of these sorts of 

people. You may be reading this book from a quantitative undergraduate course, as part of your MBA 

degree at a business school, or in a data science or other graduate program. Or, you may just be reading 

the book on your own accord. As data analysis has become more crucial and exciting, we are seeing 

a boom in people switching into data analysis careers from a wide variety of backgrounds. Those 

self-learners and career-switchers are as much our audience here as students in a classroom.

All of this said, this is not an easy book. We have tried to avoid explanations that require 

calculus or advanced linear algebra, but you will find the book a tough slog if you do not have a 

solid foundation in first-year mathematics and probability. Since the book includes a breadth of 

material that spans a range of complexity, we begin each chapter with a summary that outlines 

each section and indicates their difficulty according to a ski-hill scale:

The easiest material, requiring familiarity with some transformations like logarithms 

and exponents, and an understanding of the basics of probability.

Moderately difficult material, involving more advanced ideas from probability and 

statistics or ideas that are going to be difficult to intuit without some linear algebra.

The really tough stuff, involving more complex modeling ideas (and notation) and 

tools from linear algebra and optimization.

The black diamond material is not necessary for understanding future green or blue sections, 

and so instructors may wish to set their courses to cover the easy and moderately difficult sec-

tions while selecting topics from the hardest sections.

The book is designed to be self-contained, such that you can start with little prerequisite 

background in data science and learn as you go. However, the pace of content on introductory 

probability and statistics and regression is such that you may struggle if this is your first-ever 

course on these ideas. If you find this to be the case, we recommend spending some time work-

ing through a dedicated introductory statistics book to build some of this understanding before 

diving into the more advanced data science material.
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It is also important to recognize that data science can be learned only by doing. This means 

writing the code to run analysis routines on really messy data. We will use the R scripting lan-

guage for all of our examples. All example code and data is available online, and one of the 

most important skills you will get out of this book will be an advanced education in this pow-

erful and widely used statistical software. For those who are completely new to R, we have also 

included an extensive R primer. The skills you learn here will also prepare you well for learning 

how to program in other languages, such as Python, which you will likely encounter in your 

business analysis career.

This is a book about how to do modern business analytics. We will lay out a set of core 

principles and best practices that come from statistics, machine learning, and economics. You 

will be working through many real data analysis examples as you learn by doing. It is a book 

designed to prepare scientists, engineers, and business professionals to use data science to 

improve their decisions.

An Introductory Example

Before diving into the core material, we will work through a simple finance example to illus-

trate the difference between data processing or description and a deeper business analysis. 

Consider the graph in Figure 0.1. This shows seven years of monthly returns for stocks in the 

S&P 500 index (a return is the difference between the current and previous price divided by 

the prior value). Each line ranging from bright yellow to dark red denotes an individual stock’s 

return series. Their weighted average—the value of the S&P 500—is marked with a bold line. 

Returns on three-month U.S. treasury bills are in gray.

This is a fancy plot. It looks cool, with lots of different lines. It is the sort of plot that you 

might see on a computer screen in a TV ad for some online brokerage platform. If only I had 

that information, I’d be rich!

R
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2010 2011 2012 2013 2014 2015 2016 2017
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FIGURE 0.1 A fancy plot: monthly stock returns for members of the S&P 500 and their average (the bold 

line). What can you learn?
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But what can you actually learn from Figure  0.1? You can see that returns do tend to 

bounce around near zero (although the long-term average is reliably much greater than zero). 

You can also pick out periods of higher volatility (variance) where the S&P 500 changes more 

from month to month and the individual stock returns around it are more dispersed. That’s 

about it. You don’t learn why these periods are more volatile or when they will occur in the 

future. More important, you can’t pull out useful information about any individual stock. There 

is a ton of data on the graph but little useful information.

Instead of plotting raw data, let’s consider a simple market model that relates individual 

stock returns to the market average. The capital asset pricing model (CAPM) regresses the 

returns of an individual asset onto a measure of overall market returns, as shown here:

 rjt = αj + βjmt + εjt (0.1)

The output rjt is equity j return at time t. The input mt is a measure of the average return—the 

“market”—at time t. We take mt as the return on the S&P 500 index that weights 500 large 

companies according to their market capitalization (the total value of their stock). Finally, εjt is 

an error that has mean zero and is uncorrelated with the market.

Equation (0.1) is the first regression model in this book. You’ll see many more. This is a 

simple linear regression that should be familiar to most readers. The Greek letters define a line 

relating each individual equity return to the market, as shown in Figure 0.2. A small βj, near zero, 

indicates an asset with low market sensitivity. In the extreme, fixed-income assets like treasury 

bills have βj = 0. On the other hand, a βj > 1 indicates a stock that is more volatile than the mar-

ket, typically meaning growth and higher-risk stocks. The αj is free money: assets with αj > 0 are 

adding value regardless of wider market movements, and those with αj < 0 destroy value.

Figure 0.3 represents each stock “ticker” in the two-dimensional space implied by the mar-

ket model’s fit on the seven years of data in Figure 0.1. The tickers are sized proportional to 

each firm’s market capitalization. The two CAPM parameters—[α, β]—tell you a huge amount 

about the behavior and performance of individual assets. This picture immediately allows you 

to assess market sensitivity and arbitrage opportunities. For example, the big tech stocks of 

Facebook (FB), Amazon (AMZN), Apple (AAPL), Microsoft (MSFT), and Google (GOOGL) 

all have market sensitivity β values close to one.  However, Facebook, Amazon, and Apple 

generated more money independent of the market over this time period compared to Micro-

soft and Google (which have nearly identical α values and are overlapped on the plot). Note 
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FIGURE 0.2 A scatterplot of a single stock’s returns against market returns, with the fitted regression 

line for the model of Equation (0.1) shown in red.
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that Facebook’s CAPM parameters are estimated from a shorter time period, since it did not 

have its IPO until May of 2012. Some of the older technology firms, such as Oracle (ORCL), 

Cisco (CSCO), and IBM, appear to have destroyed value over this period (negative alpha). 

Such information can be used to build portfolios that maximize mean returns and minimize 

variance in the face of uncertain future market conditions. It can also be used in strategies 

like pairs-trading where you find two stocks with similar betas and buy the higher alpha while 

“shorting” the other.

CAPM is an old tool in financial analysis, but it serves as a great illustration of what to strive 

toward in practical data science. An interpretable model translates raw data into information that 

is directly relevant to decision making. The challenge in data science is that the data you’ll be 

working with will be larger and less structured (e.g., it will include text and image data). Moreover, 

CAPM is derived from assumptions of efficient market theory, and in many applications you won’t 

have such a convenient simplifying framework on hand. But the basic principles remain the same: 

you want to turn raw data into useful information that has direct relevance to business policy.

Machine Learning

Machine learning (ML) is the field of using algorithms to automatically detect and predict pat-

terns in complex data. The rise of machine learning is a major driver behind data science and a 

big part of what differentiates today’s analyses from those of the past. ML is closely related to 

modern statistics, and indeed many of the best ideas in ML have come from statisticians. But 

whereas statisticians have often focused on model inference—on understanding the parameters 

of their models (e.g., testing on individual coefficients in a regression)—the ML community 

has historically been more focused on the single goal of maximizing predictive performance 

(i.e., predicting future values of some response of interest, like sales or prices).
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FIGURE 0.3 Stocks positioned according to their fitted market model, where α is money you make 

regardless of what the market does and β summarizes sensitivity to market movements. The tickers are sized 

proportional to market capitalization. Production change alpha to α and beta to β in the plot axis labels.
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A focus on prediction tasks has allowed ML to quickly push forward and work with larger 

and more complex data. If all you care about is predictive performance, then you don’t need 

to worry about whether your model is “true” but rather just test how well it performs when 

predicting future values. This single-minded focus allows rapid experimentation on alternative 

models and estimation algorithms. The result is that ML has seen massive success, to the point 

that you can now expect to have available for almost any type of data an algorithm that will 

work out of the box to recognize patterns and give high-quality predictions.

However, this focus on prediction means that ML on its own is less useful for many decision-

making tasks. ML algorithms learn to predict a future that is mostly like the past. Suppose that 

you build an ML algorithm that looks at how customer web browser history predicts how much 

they spend in your e-commerce store. A purely prediction-focused algorithm will discern what 

web traffic tends to spend more or less money. It will not tell you what will happen to the 

spending if you change a group of those websites (or your prices) or perhaps make it easier for 

people to browse the Web (e.g., by subsidizing broadband). That is where this book comes in: 

we will use tools from economics and statistics in combination with ML techniques to create a 

platform for using data to make decisions.

Some of the material in this book will be focused on pure ML tasks like prediction and 

pattern recognition. This is especially true in the earlier chapters on regression, classification, 

and regularization. However, in later chapters you will use these prediction tools as parts of 

more structured analyses, such as understanding subject-specific treatment effects, fitting 

consumer demand functions, or as part of an artificial intelligence system. This typically 

involves a mix of domain knowledge and analysis tools, which is what makes the data scientist 

such a powerful figure. The ML tools are useless for policy making without an understanding 

of the business problems, but a policy maker who can deploy ML as part of their analysis 

toolkit will be able to make better decisions faster.

Computing with R

You don’t need to be a software engineer to work as a data scientist, but you need to be able 

to write and understand computer code. To learn from this book, you will need to be able to 

read and write in a high-level scripting language, in other words, flexible code that can be used 

to describe recipes for data analysis. In particular, you will need to have a familiarity with R 

(r-project.org).

The ability to interact with computers in this way—by typing commands rather than click-

ing buttons or choosing from a menu—is a basic data analysis skill. Having a script of com-

mands allows you to rerun your analyses for new data without any additional work. It also 

allows you to make small changes to existing scripts to adapt them for new scenarios. Indeed, 

making small changes is how we recommend you work with the material in this book. The 

code for every in-text example is available on-line, and you can alter and extend these scripts 

to suit your data analysis needs. In the examples for this book, all of the analysis will be con-

ducted in R. This is an open-source high-level language for data analysis. R is used widely 

throughout industry, government, and academia. Companies like RStudio sell enterprise prod-

ucts built around R. This is not a toy language used simply for teaching purposes—R is the real 

industrial-strength deal.

For the fundamentals of statistical analysis, R is tough to beat: all of the tools you need for 

linear modeling and uncertainty quantification are mainstays. R is also relatively forgiving for 
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the novice programmer. A major strength of R is its ecosystem of contributed packages. These 

are add-ons that increase the capability of core R. For example, almost all of the ML tools that 

you will use in this book are available via packages. The quality of the packages is more varied 

than it is for R’s core functionality, but if a package has high usage you should be confident that 

it works as intended.

The Appendix of this book contains a tutorial that is dedicated to getting you started in R. 

It focuses on the topics and algorithms that are used in the examples in this book. You don’t 

need to be an expert in R to learn from this book; you just need to be able to understand the 

fundamentals and be willing to mess around with the coded examples. If you have no formal 

background in coding, worry not: many in the field started out in this position. The learning 

curve can be steep initially, but once you get the hang of it, the rest will come fast. The tutorial 

in the Appendix should help you get started. We also provide extensive examples throughout 

the book, and all code, data, and homework assignments are available through Connect. Every 

chapter ends with a Quick Reference section containing the basic R recipes from that chapter. 

When you are ready to learn more, there are many great places where you can supplement your 

understanding of the basics of R. If you simply search for R or R statistics books on-line, you 

will find a huge variety of learning resources.
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This chapter develops the framework and language of regression: building models 

that predict response outputs from feature inputs.

Section 1.1 Linear Regression: Specify, estimate, and predict from a linear 

regression model for a quantitative response y as a function of inputs x. Use 

log transforms to model multiplicative relationships and elasticities, and use 

 interactions to allow the effect of inputs to depend on each other.

Section 1.2 Residuals: Calculate the residual errors for your regression fit, and 

understand the key fit statistics deviance, R2, and degrees of freedom.

Section 1.3 Logistic Regression: Build logistic regression models for a binary 

response variable, and understand how logistic regression is related to linear 

regression as a generalized linear model. Translate the concepts of  deviance, 

likelihood, and R2 to logistic regression, and be able to interpret logistic 

 regression coefficients as effects on the log odds that y = 1.

Section 1.4 Likelihood and Deviance: Relate likelihood maximization and 

deviance minimization, use the generalized linear models to determine  residual 

deviance, and use the predict function to integrate new data with the same 

 variable names as the data used to fit your regression.

Section 1.5 Time Series: Adapt your regression models to allow for 

 dependencies in data that has been observed over time, and understand time 

series concepts including seasonal trends, autoregression, and panel data.

Section 1.6 Spatial Data: Add spatial fixed effects to your regression mod-

els and use Gaussian process models to estimate spatial dependence in your 

observations.

1
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T
he vast majority of problems in applied data science require regression modeling. You 
have a response variable (y) that you want to model or predict as a function of a vector 
of input features, or covariates (x). This chapter introduces the basic framework and lan-

guage of regression. We will build on this material throughout the rest of the book.
Regression is all about understanding the conditional probability distribution for “y given 

x,” which we write as p(y|x). Figure 1.1 illustrates the conditional distribution in contrast to a 
marginal distribution, which is so named because it corresponds to the unconditional distribu-
tion for a single margin (i.e., column) of a data matrix.

A variable that has a probability distribution (e.g., number of bathrooms in Figure 1.1) is 
called a random variable. The mean for a random variable is the average of random draws from 
its probability distribution. While the marginal mean is a simple number, the conditional mean 
is a function. For example, from Figure 1.1b, you can see that the average home selling price 
takes different values indexed by the number of bathrooms. The data is distributed randomly 
around these means, and the way that you model these distributions drives your estimation and 
prediction strategies.

Conditional Expectation

A basic but powerful regression strategy is to build models in terms of averages and lines. That 
is, we will model the conditional mean for our output variable as a linear function of inputs. 
Other regression strategies can sometimes be useful, such as quantile regression that models 
percentiles of the conditional distribution. However for the bulk of applications you will find 
that mean regression is a good approach.

There is some important notation that you need to familiarize yourself with for the rest of 
the book. We model the conditional mean for y given x as

  �[y | x] = f   (  x′β )    (1.1)

where

 •   �[⋅ ]     denotes the taking of the expectation or average of whatever random variable is inside 
the brackets. It is an extremely important operation, and we will use this notation to define 
many of our statistical models.

FIGURE 1.1 Illustration of marginal versus conditional distributions for home prices. On the left, we have 
the marginal distribution for all of the home prices. On the right, home price distributions are conditional on 
the number of bathrooms.
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 • The vertical bar | means “given” or “conditional upon,” so that   �[y|x]   is read as “the 
 average for y given inputs x.”

 • f (·) is a “link” function that transforms from the linear model to your response.
 • x = [1, x1, x2, . . . xp] is the vector of covariates and β = [β0, β1, β2, . . . βp] are the 

 corresponding coefficients.

The vector notation, x′β, is shorthand for the sum of elementwise products:

  x′β = [1 x  1    x  2   ⋯  x  p  ]  

⎡

 ⎢ 

⎣

    

 β  0  

  
 β  1  

   β  2    
⋮

  

 β  p  

  

⎤

 ⎥ 

⎦

    =  β  0   +  x  1   β  1   +  x  2   β  2   + … +  x  p   β  p    (1.2)

This shorthand notation will be used throughout the book. Here we have used the convention 
that x0 = 1, such that β0 is the intercept.

The link function, f(·), defines the relationship between your linear function x′β and the 
response. The link function gives you a huge amount of modeling flexibility. This is why mod-
els of the kind written in Equation (1.1) are called generalized linear models (GLMs). They 
allow you to make use of linear modeling strategies after some simple transformations of your 
output variable of interest. In this chapter we will outline the two most common GLMs: linear 
regression and logistic regression. These two models will serve you well for the large majority 
of analysis problems, and through them you will become familiar with the general principles 
of GLM analysis.

1.1 Linear Regression

Linear regression is the workhorse of analytics. It is fast to fit (in terms of both analyst and com-
putational time), it gives reasonable answers in a variety of settings (so long as you know how 
to ask the right questions), and it is easy to interpret and understand. The model is as follows:

   �[y|x] =  β  0   +  x  1   β  1   +  x  2   β  2   + … +  x  p   β  p     (1.3)

This corresponds to using the link function f(z) = z in Equation (1.1).
With just one input x, you can write the model as   � [  y |  x ]   =  β  0   + x  β  1     and plot it as in 

 Figure 1.2. β0 is the intercept. This is where the line crosses the y axis when x is 0. β1 is the 

FIGURE 1.2 Simple linear regression with a positive slope  β1. The plotted line corresponds to � [  y |  x ]  .
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slope and describes how   �[y|x ]     changes as x changes. If x increases by 1 unit,   � [  y|x ]     changes by 
β1. For a two predictor model, we are fitting a plane. Higher dimensions are more difficult to 
imagine, but the basic intuition is the same.

When fitting a regression model—i.e., when estimating the β coefficients—you make 
some assumptions about the conditional distribution beyond its mean at   � [  y|x ]    . Linear regres-
sion is commonly fit for Gaussian (normal) conditional distributions. We write this conditional 
distribution as

  y | x ~ N (  x′β,  σ   2  )    (1.4)

This says that the distribution for y as a function of x is normally distributed around  
  �[y|x] = x′β   with variance σ2. The same model is often written with an additive error term:

  y = x′β + ε, ε ~ N(0,  σ   2 )  (1.5)

where ε are the “independent” or “idiosyncratic” errors. These errors contain the variations in 
y that are not correlated with x. Equations (1.4) and (1.5) describe the same model. Figure 1.3 
illustrates this model for single-input simple linear regression. The line is the average   �[y|x]   
and vertical variation around the line is what is assumed to have a normal distribution.

You will often need to transform your data to make the linear model of Equation (1.5) 
realistic. One common transform is that you need to take a logarithm of the response, say, “r,” 
such that your model becomes

  log (r) = x′β + ε, ε ~ N(0,  σ   2 )  (1.6)

Of course this is the same as the model in Equation (1.5), but we have just made the replace-
ment y = log(r). You will likely also consider transformations for the input variables, such that 
elements of x include logarithmic and other functional transformations. This is often referred 
to as feature engineering.

Example 1.1 Orange Juice Sales: Exploring Variables and the Need for a log-log Model As 
a concrete example, consider sales data for orange juice (OJ) from Dominick’s grocery 
stores. Dominick’s was a Chicago-area chain. This data was collected in the 1990s and 
is publicly available from the Kilts Center at the University of Chicago’s Booth School of 
Business. The data includes weekly prices and unit sales (number of cartons sold) for three OJ 

FIGURE 1.3 Using simple linear regression to picture the Gaussian conditional distribution for y|x.  
Here   �[y|x]   are the values on the line and the variation parallel to the y axis (i.e., within each narrow vertical 
strip) is assumed to be described by a  Gaussian distribution.

Gaussian
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x

E[Y∣X]
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brands—Tropicana, Minute Maid, Dominick’s—at 83 stores in the Chicago area, as well as an 
indicator, ad, showing whether each brand was advertised (in store or flyer) that week.

> oj <– read.csv(“oj.csv”,strings=T)

> head(oj)

  sales price brand ad

1 8256 3.87 tropicana 0

2 6144 3.87 tropicana 0

3 3840 3.87 tropicana 0

4 8000 3.87 tropicana 0

5 8896 3.87 tropicana 0

6 7168 3.87 tropicana 0

> levels(oj$brand)

[1] “dominicks”  “minute.maid” “tropicana”

Notice the argument strings=T in read.csv as shorthand for “stringsAsFactors = TRUE.” 
This converts our brand column into a factor variable. This was the default behavior of read.
csv prior to version 4.0.0 of R, but you now need to specify it explicitly. Otherwise you will get 
an error when you try to make the plots or fit the regression models below.

The code-printout above is our first example showing R code and output. We will include 
a ton of code and output snippets like this throughout the book: they are an integral part of the 
material. If this output looks unfamiliar to you, you should break here and take the time to work 
through the R-primer in the Appendix.

Figure 1.4 shows the prices and sales broken out by brand. You can see in Figure 1.4a that 
each brand occupies a different price range: Dominick’s is the budget option, Tropicana is the 
luxury option, and Minute Maid lives between. In Figure 1.4c, sales are clearly decreasing with 

FIGURE 1.4 Dominick’s OJ prices by brand and monthly sales, both raw and after a log transformation.
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price. This makes sense: demand is downward sloping, and if you charge more, you sell less. 
More specifically, it appears that log sales has a roughly linear relationship with log price. This 
is an important point. Whenever you are working with linear (i.e., additive) models, it is crucial 
that you try to work in the space where you expect to find linearity. For variables that change 
multiplicatively with other factors, this is usually the log scale (see the nearby box for a quick 
review on logarithms). For comparison, the raw (without log) values in Figure 1.4b show a 
nonlinear relationship between prices and sales.

log-log Models and Elasticities

Another common scenario models against each other two variables that both move multipli-
catively. For example, Figure  1.5 shows the national gross domestic product (GDP) versus 
imports for several countries. Fitting a line to the left panel would be silly; its slope will be 
entirely determined by small changes in the U.S. values. In contrast, the right panel shows that 
GDP and imports follow a neat linear relationship in log space.

Returning to our OJ example, Figure 1.4c indicates that this log-log model might be appro-
priate for the orange juice sales versus price analysis. One possible regression model is

   log  (  ����� )   =  β  0   +  β  1   log  (  ����� )   + ε   (1.7)

Here, log(sales) increase by β1 for every unit increase in log(price). Conveniently, log-log 
models have a much more intuitive interpretation: sales increase by β1% for every 1% increase 
in price. To see this, you need a bit of calculus. Write y = exp[β0 + β1 log(x) + ε] and differen-
tiate with respect to x:

    
dy

 ___ 
dx

   =   
 β  1   __ x    e    β  0  + β  1  log (  x )  +ε  =   

 β  1   __ x   y ⇒  β  1   =   
dy / y

 ____ 
dx / x    (1.8)

This shows that β1 is the proportional change in y over the proportional change in x. In econom-
ics there is a special name for such an expression: elasticity. The concept of elasticity will play 
an important role in many of our analyses.

FIGURE 1.5 National GDP against imports, in original and log scale.
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Example 1.2 Orange Juice Sales: Linear Regression Now that we have established what a 
log-log model will do for us, let’s add a bit of complexity to the model from (1.7) to make it 
more realistic. If you take a look at Figure 1.4c, it appears that the three brands have log-log 
sales-price relationships that are concentrated around three separate lines. If you suspect that 
each brand has the same β1 elasticity but a different intercept (i.e., if all brands have sales that 
move with price the same way but at the same price some brands will sell more than others), 
then you would use a slightly more complex model that incorporates both brand and price:

   log (�����) =  α  �����   + β log (�����) + ε   (1.13)

Here, αbrand is shorthand for a separate intercept for each OJ brand, which we could write out 
more fully as

   α  �����   =  α  0    1   [  ��������� ]     +  α  1    1   [  ���
��.���� ]     +  α  2    1   [  ��������� ]    .  (1.14)

The indicator functions,   1   [  v ]     , are one if v is the true factor level and zero otherwise. Hence, 
Equation (1.13) says that, even though their sales all have the same elasticity to price, the 
brands can have different sales at the same price due to brand-specific intercepts.

Fitting Regressions with glm

To fit this regression in R you will use the glm function, which is used to estimate the class of 
generalized linear models that we introduced in Equation (1.1). There is also a lm function that 

Recall the logarithm definition:

   log (a) = b ⇔ a =  e   b    (1.9)

Here, e ≈ 2.72 is “Euler’s number” and we refer to eb as “e to the power of b” or, simply, 
‘b exponentiated.’ We will sometimes write exp[b] instead of eb; they mean the same 
thing. There are other types of logarithms (sometimes base 10 is used in introductory 
classes), but we will always use the natural log defined in Equation (1.9). The base e 
plays a central role in science and modeling of systems because ex is its own derivative:  
dex/dx = ex for those readers who know their calculus.

In a simple linear regression for log(y) on x, β1 is added to the expected value for 
log(y) for each unit increase in x:

   log  (  y )   =  β  0   +  β  1  x + ϵ.   (1.10)

The fact that we are taking the log of y makes this model multiplicative. Recall some 
basic facts about logs and exponents: log(ab) = log(a) +log(b), log(ab) = b log(a), and  
ea+b = eaeb. Thus, exponentiating both sides of Equation (1.10) yields

  y =  e    β  0  + β  1  x+ϵ  =  e    β  0     e    β  1  x   e   ϵ   (1.11)

Considering x* = x + 1, you get that

  y* =  e    β  0  +ϵ   e    β  1  x*  =  e    β  0  +ϵ   e    β  1   (  x+1 )    =  e    β  0  + β  1  x+ϵ   e    β  1    =  ye    β  1     (1.12)

Therefore, each unit increase in x leads   � [  y|x ]     to be multiplied by the factor   e    β  1    .

Logarithms and Exponents
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The fitted object fit is a list of useful things (type names(fit) to see them), and there are 
functions to access the results. For example,

 • summary(fit) prints the model, information about residual errors, the estimated coeffi-
cients and uncertainty about these estimates (we will cover the uncertainty in detail in the 
next chapter), and statistics related to model fit.

 • coef(fit) supplies just the coefficient estimates.
 • predict(fit, newdata=mynewdata) predicts y where mynewdata is a data frame 

with the same variables as mydata.

The formula syntax in the glm call is important. The ~ symbol is read as “regressed onto” or “as 
a function of.” The variable you want to predict, the y response variable, comes before the ~,  
and the input features, x, come after. This model formula notation will be used throughout the 
remainder of the book, and we note some common specifications in Table 1.1.

The R formula for (1.13) is log(sales) ~ brand + log(price). You can fit this with 
glm using the oj data, and then use the coef function to view the fitted coefficients. (More on 
this in Section 1.4.)

> fit <– glm( y ~ var1 + ... + varP, data=mydata)

fits only linear regression models, so you could use that here also (it takes the same arguments), 
but we will get in the habit of using glm since it works for many different GLMs. The function 
is straightforward to use: you give it a data frame with the data argument and provide a for-
mula that defines your regression.

TABLE 1.1 Some common syntax for use in formulas.

y ~ x1 model by x1

y ~ . include all other columns
y ~ .−x3 include all except x3

y ~ .−1 include all, but no intercept
y ~ 1 intercept only
y ~ x1*x2 include interaction for x1 and x2 and lower order terms
y ~ x1:x2 include interaction only
y ~ .^2 all possible 2 way interactions and lower order terms

> fit<–glm( log(sales) ~ brand + log(price), data=oj)

> coef(fit) # fitted coefficients

 (Intercept) brandminute.maid brandtropicana log(price)

 10.8288216 0.8701747 1.5299428 –3.1386914

There are a few things to notice here. First, you can see that   β ̂   = − 3.1  for the estimated coef-
ficient on log price. Throughout this book we use the convention that   θ ̂    denotes the estimated 
value for some parameter θ. So   β ̂    is the estimated “sales-price elasticity,” and it says that 
expected sales drop by about 3% for every 1% price increase. Second, notice that there are 
distinct model coefficients for Minute Maid and Tropicana but not for Dominick’s. This is due 
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to the way that R creates a numeric representation of the factor variables. It treats one of the 
factor levels as a ‘reference level’ that is subsumed into the intercept. For details, see the box on 
model matrices (i.e. design matrices).

The fitted values from the regression in Equation (1.13) are shown in Figure 1.6 alongside 
the original data. You see three lines shifted according to brand identity. At the same price, 
Tropicana sells more than Minute Maid, which in turn sells more than Dominick’s. This makes 
sense: Tropicana is a luxury product that is preferable at the same price.

FIGURE 1.6 OJ data and the fitted regression lines (i.e., conditional expectations) for our model from 
(1.13) that regresses log(sales) on log(price) and brand.
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When you regress onto a factor variable, glm converts the factor levels into a specific 
numeric representation. Take a look at rows 100, 200, and 300 from the oj data and notice 
that the brand column contains brand names, not numbers.

Model (Design) Matrices in R

> oj[c(100,200,300),]

  sales price brand ad

100  4416 3.19 tropicana 0

200 5440 2.79 minute.maid 0

300 51264 1.39 dominicks 1
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1.1.1 Interactions

All of the lines in Figure 1.6 have the same slope. In economic terms, the model assumes that 
consumers of the three brands have the same price sensitivity. This seems unrealistic: money 
is probably less of an issue for Tropicana customers than it is for the average  Dominick’s 
consumer. You can build this information into your regression by having log price interact 
with brand.

An interaction term is the product of two inputs. Including an interaction between, say, 
xj and xk inputs, implies that your linear regression equation includes the product xjxk as  
an input.

   �[y|x] =  β  0   + … +  β  k   x  k   +  β  j   x  j   +  x  j   x  k   β  jk     (1.15)

Here, “. . .” just denotes whatever else is in your multiple linear regression model. Equation (1.15)  
says that the effect on the expected value for y due to a unit increase in xj is βj + xkβjk, such that 
it depends upon xk.

Interactions are central to scientific and business questions. For example,

 • How does drug effectiveness change with patient age?
 • Does gender change the effect of education on wages?
 • How does consumer price sensitivity change across brands?

The first step of glm is to create a model matrix (also called a design matrix) that defines 
the numeric inputs x. It does this with a call to the model.matrix function, and you can 
pull that step out to see what happens.

The model.matrix function has expanded these brand factor levels into a couple 
of binary, or “dummy,” variables that are one when the observation is from that brand 
and zero otherwise. For example, brandtropicana is 1 for the Tropicana observation in 
row 100 and zero otherwise. There is no branddominicks indicator because you need 
only two variables to represent three categories: when both brandminute.maid and  
brandtropicana are zero, the intercept gives the value for Dominick’s expected log sales 
at a log price of zero. Each factor’s reference level is absorbed by the intercept and the 
other coefficients represent “change relative to reference” (here, Dominick’s). To check 
the reference level of your factors, type levels(myfactor). The first level is the refer-
ence and by default this will be the first in the alphabetized list of levels. To change this, 
you can do myfactor = relevel(myfactor, “myref”).

> x <– model.matrix( ~ log(price) + brand, data=oj)

> x[c(100,200,300),]

  (Intercept) log(price) brandminute.maid brandtropicana

100  1 1.1600209 0 1

200 1 1.0260416 1 0

300 1 0.3293037 0 0
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In each case here, you want to know whether one variable changes the effect of another. You 
don’t want to know the average price sensitivity of customers; you want to know whether they 
are more price sensitive for one product versus another.

Example 1.3 OJ Sales: Interaction In the OJ sales regression, to get brand-specific price 
elasticity terms you need to include an interaction between each of the brand indicator terms 
and the log price. We can write this as a model with a separate intercept and slope for each 
brand:

   log (�����) =  α  �����   +  β  �����   log (�����) + ε   (1.16)

We can also expand this notation out to write the exact model that glm will be estimating:

   
 log  (  ����� )   = 

  
 α  0   +  α  1   �   [  ���
��.���� ]     +  α  2   �   [  ��������� ]    +

     
 
  

 ( β  0   +  β  1   �   [  ���
��.���� ]     +  β  2   �   [  ��������� ]    ) log (�����) + ε 
   (1.17)

As before, dominicks is the reference level for brand and so it is absorbed into both the 
intercept and baseline slope on log price. For an observation from Dominick’s, the indicator 
functions are all zero so that   � [   log (�����)  ]   =  α  0   +  β  0  log (�����)  .

You can fit this model in glm with the * symbol, which is syntax for “interacted with.” Note 
that * also adds the main effects—all of the terms from our earlier model in Equation (1.13).

> fit2way <– glm(log(sales) ~ log(price)*brand, data=oj)

> coef(fit2way)

                (Intercept)                   log(price)

                10.95468173                  –3.37752963

           brandminute.maid               brandtropicana

                 0.88825363                   0.96238960

log(price):brandminute.maid    log(price):brandtropicana

                 0.05679476                   0.66576088

The fitted regression is pictured in Figure 1.7.
In the glm output, the log(price):brand coefficients are the interaction terms. Plug-

ging in 0 for both Tropicana and Minute Maid indicators yields the equation of the line for 
Dominick’s:

   � [   log  (  ����� )    ]   = 10.95 − 3.38 log  (  ����� )     

Plugging in one for Minute Maid terms and zero for Tropicana terms yields the equation for 
Minute Maid:

   
 � [   log  (  ����� )    ]   

  
 = 10.95 − 3.38 log  (  ����� )   + 0.89 + 0.06 log  (  ����� )   

      
 
  

 = 11.84 − 3.32 log  (  ����� )   
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And plugging in one for Tropicana and zero for Minute Maid yields the regression line for 
Tropicana:

   
� [  log  (  ����� )   ]  

  
=

  
10.95 − 3.38 log  (  ����� )   + 0.96 + 0.67 log  (  ����� )  

      
 
  
=

  
11.91 − 2.71 log  (  ����� )  

    

We see that Tropicana customers are indeed less sensitive than the others: they have a sales-
price elasticity of −2.7 versus around −3.3 for both Dominick’s and Minute Maid. This means, 
for example, that the store should expect a smaller sales increase for price cuts or coupons on 
Tropicana relative to use of the same promotion on the other brands. The price sensitivity that 
we estimated for model Equation (1.13), −3.1, was the result of averaging across the three dis-
tinct brand elasticities.

Advertising and Price Elasticity

We conclude this introduction to linear regression—and the study of orange juice—with a 
look at the role of advertising in the relationship between sales and prices. Recall that the OJ 
data includes an ad dummy variable, indicating that a given brand was promoted with either 
an in-store display or a flier ad during the week that sales and prices were recorded. The ads 
can increase sales at all prices, they can change price sensitivity, and they can do both of these 
things in a brand-specific manner. To model this, we specify a three-way interaction between 
price, brand, and ad:

   log  (  ����� )   =  α  �����, ��   +  β  �����, ��   log  (  ����� )   + ε   (1.18)

By subsetting on brand, ad we are indicating that there are different intercepts and slopes for 
each combination of the two factors. To fit this model with glm, you interact brand, ad, and 
log(price) with each other in the formula. Again, glm automatically includes the lower-level 

FIGURE 1.7 Fit for the model where we allow interaction between price and brand. Note that if you 
extrapolate too far, the linearity assumption implies Tropicana selling less than Minute Maid at the same 
price. This is a reminder that linear models are approximations and should be used with care away from the 
center of the observed data.
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The brand and ad specific elasticities are compiled in Table 1.2. We see that being featured 
always leads to more price sensitivity. Minute Maid and Tropicana elasticities drop from −2 
to below −3.5 with ads, while Dominick’s drops from −2.8 to −3.2. Why does this happen? 
One possible explanation is that advertisement increases the population of consumers who are 
considering your brand. In particular, it can increase your market beyond brand loyalists, to 
people who will be more price sensitive than those who reflexively buy your orange juice every 
week. Indeed, if you observe increased price sensitivity, it can be an indicator that your mar-
keting efforts are expanding your consumer base. This is why Marketing 101 dictates that ad 
campaigns should usually be accompanied by price cuts. There is also an alternative explana-
tion. Since the featured products are often also discounted, it could be that at lower price points 
the average consumer is more price sensitive (i.e., that the price elasticity is also a function of 
price). The truth is probably a combination of these effects.

Finally, notice that in our two-way interaction model (without including ad) Minute 
Maid’s elasticity of −3.3 was roughly the same as Dominick’s—it behaved like a budget prod-
uct where its consumers are focused on value. However, in Table 1.2, you can see that Minute 
Maid and Tropicana have nearly identical elasticities and that both are different from Dom-
inick’s. Minute Maid is looking more similar now to the other national brand product. What 
happened?

interactions and main effects—all of the terms from our model in (1.18)—in addition to the 
new three-way interactions.

> fit3way <– glm(log(sales) ~ log(price)*brand*ad, data=oj)

> coef(fit3way)

 (Intercept) log(price)

 10.40657579 –2.77415436

 brandminute.maid brandtropicana

 0.04720317 0.70794089

 ad log(price):brandminute.maid

 1.09440665 0.78293210

 log(price):brandtropicana log(price):ad

 0.73579299 –0.47055331

 brandminute.maid:ad brandtropicana:ad

 1.17294361 0.78525237

 log(price):brandminute.maid:ad log(price):brandtropicana:ad

 –1.10922376 –0.98614093

TABLE 1.2 Brand and ad dependent elasticities. Test that you can recover these numbers from the R 
output.

Dominick’s Minute Maid Tropicana
Not featured −2.8 −2.0 −2.0
Featured −3.2 −3.6 −3.5
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The answer is that the simpler model in Equation (1.16) led to a confounding between 
advertisement and brand effects. Figure 1.8 shows that Minute Maid was featured more often 
than Tropicana. Since being featured leads to more price sensitivity, this made Minute Maid 
artificially appear more price sensitive when you don’t account for the ad’s effect. The model 
in Equation (1.18) corrects this by including ad in the regression. This phenomenon, where 
variable effects can get confounded if you don’t control for them correctly (i.e., include those 
effects in your regression model), will play an important role in our later discussions of 
causal inference.

1.1.2 Prediction with glm

Once you have decided on a fitted model, using it for prediction is easy in R. The predict 
function takes the model you want to use for prediction and a data frame containing the new 
data you want to predict with.

Example 1.4 Orange Juice Sales: Predicting Sales We can use our fitted model, fit3way, 
to make predictions of sales of orange juice. Suppose you want to predict sales for all three 
brands when orange juice is featured at a price of $2.00 per carton. The first step is to create 
a data frame containing the observations to predict from. Be sure to specify a value for each 
predictor in the model.

FIGURE 1.8 A mosaic plot of the amount of advertisement by brand. In a mosaic plot, the size of the 
boxes is proportional to the amount of data contained in that category. For example, the plot indicates that  
most sales are not accompanied by advertising (the featured=FALSE column is wider than for  
featured=TRUE) and that Minute Maid is featured (i.e., ad=1) more often than Tropicana.
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Once you have your data frame specifying values for each variable in the model, simply feed it 
into the predict function and specify the model glm should use for prediction.

> newdata <– data.frame(price=rep(2,3),

+     brand=factor(c(“tropicana”,“minute.maid”,“dominicks”),

+             levels=levels(oj$brand)),

+     ad=rep(1,3))

> newdata #our data frame of 3 new observations

  price       brand    ad

1     2   tropicana     1

2     2 minute.maid     1

3     2   dominicks     1

> predict(fit3way, newdata=newdata)

 1 2 3

 10.571588 10.245901 9.251922

> exp(predict(fit3way, newdata=newdata))

 1 2 3

 39010.56 28166.85 10424.59

Of course, there is uncertainty about these predictions (and about all of our coefficient esti-
mates above). For now we are just fitting lines, but in Chapter 2 we will detail how you go 
about uncertainty quantification.

Note that you can exponentiate these values to translate from log sales to raw sales:

However, these raw sales predictions are actually biased estimates of the raw expected sales. 
Due to the nonlinearity introduced through log transformation, exponentiating the expected log 
sales will give you a different answer than the expected raw sales (the exponentiated expected 
log sales will tend to be lower than the expected sales). We will discuss this bias further in the 
next chapter and introduce a technique for bias correction.

1.2 Residuals

When we fit a linear regression model, we have estimated an expected value for each   
observation in our dataset. These are often called the fitted values, and they are written as  
   y ̂    i   =  x  i  ′  β ̂    using our usual convention of putting hats on estimated values. Unless you have data 
with zero noise or as many input variables as observations (in either case you have no business 
fitting a regression with glm), then the fitted values will not be equal to the observed values. 
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The difference between them is called the residual. We will usually denote the residual as ei, 
such that

   e  i   =  y  i   −   y ̂    i   =  y  i   −  x  i  ′  β ̂    (1.19)

Residuals play a central role in how linear regression works. They are our estimates of the error 
terms, εi, and they represent the variability in response that is not explained by the model.

Figure  1.9a illustrates residuals for a single-input regression. Points above the 
line have a positive residual and points below have a negative residual. Figure  1.9b 
shows the observed versus fitted y for our OJ example. The residuals are the verti-
cal distance between each point and the fitted line. For observed y that are higher than the  
predicted response,   y ˆ   , the residual is positive and for observed y that are lower, the residual is 
negative, that is, observed y that are higher than the predicted response   y ˆ   .

The residuals tell you about your fit of the linear regression model. Recall our full model 
is   log  (   �����  i   )   =  x  i  ′  β +  ε  i     where εi ~ N(0, σ2). The residuals are your estimates for the errors 
εi, and you can use them to evaluate the model εi ~ N(0, σ2). For example, one important 
consideration is whether we are correct to assume a constant error variance: the fact that σ2  
is the same for every εi. If you look at Figure 1.9b, you can see that this is probably not true.  
On the bottom side of the plot, there is a collection of large negative residuals for Dominick’s. 
The model appears to have a floor on expected log sales. If you look at the results, the maximum 
price ever charged for Dominick’s is $2.69 and this leads to a floor on expected log sales of  
ŷ = 7.66 (when ad = 0). However, our residuals show that sometimes Dominick’s sells far less 
than this floor. This is possibly driven by stock-outs, where the supply of Dominick’s orange 
juice can’t keep up with demand. Although the problem here appears isolated to a small num-
ber of observations, we could likely improve our model for the Dominick’s OJ sales-price 
elasticity if we were able to remove observations where the store ran out of OJ. In Chapter 2 we 
will discuss strategies for dealing with this type of nonconstant error variance.

FIGURE 1.9 Panel (a) shows residuals in a simple linear regression, and panel (b) shows the fitted 
response ŷ vs. observed response y for the Dominick’s OJ example along with a line along ŷ = y. In both 
plots, the residuals are the vertical distance between each point and the fitted line.
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In the case of our three-way interaction model for OJ log sales, the estimated error variance is  
  σ ̂   2 = 0.4829706. To understand how glm came up with this estimate, we need to dive deeper 
into the concepts in the bottom two lines shown here: deviance and degrees of freedom.

1.2.1 Deviance and Least Squares Regression

Deviance is the distance between your fitted model and the data. We will look at the specifics 
of deviance later, in the context of both linear and logistic regression. But for now you just need 
to know that deviance for linear regression is the sum of squared errors. The null deviance is 
calculated for the “null model,” i.e. a model where none of the regression inputs have an impact 
on y. This is just the model yi ~ N(μ, σ2). Estimating μ with the sample mean response,   y ¯   , we 
can calculate this null deviance as Σi(yi –   y ¯   )2. For our OJ regression, this produces the 30,079 
value from the summary output.

> summary(fit3way)

...

(Dispersion parameter for gaussian family taken to be 0.4829706)

    Null deviance: 30079  on 28946  degrees of freedom

Residual deviance: 13975  on 28935  degrees of freedom

...

Error Variance

Another important use of the residuals is to estimate the error variance, σ2. Notwithstanding 
the minor issue of the handful of large Dominick’s errors just described, we can do this by 
looking at the variability of the residuals. When you call summary on the fitted glm object, R 
calls the summary.glm function that prints a bunch of information about the model estimates. 
Don’t worry about all of this information; we will work through most of it in the coming two 
chapters. But near the bottom it prints out an estimate for the “dispersion parameter for 
gaussian family.” This is what glm calls its estimate for the error variance,   σ ̂   2.

> ( SST <– sum( (log(oj$sales) – mean(log(oj$sales)))^2 ) )

[1] 30078.71

The null deviance for linear regression is known as the sum squared total error, or SST. It mea-
sures how much variation you have in your response before fitting the regression.

The residual deviance, or more commonly fitted deviance or simply deviance, is calculated 
for your fitted regression model. It measures the amount of variation you have after fitting the 
regression. Given residuals ei = yi – ŷi, the residual deviance is just the sum of squared residuals   
Σ  i   e  i  2  . For our OJ regression, this gives us a residual deviance of 13,975.

> ( SSE <– sum( ( log(oj$sales) – fit3way$fitted )^2 ) )

[1] 13974.76
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This residual deviance for linear regression is known as the sum squared residual error, or 
SSE. It measures the tightness of your model fit. For example, a common metric for model 
fit takes the SSE and scales it by the number of observations to get mean squared error:  
MSE = SSE/n, where n is the sample size.

Proportion of Deviance Explained

The calculations behind SSE and SST are illustrated for simple linear regression in Figure 1.10. 
Comparison between these two deviances tells you how the variability has been reduced due to 
the information in your regression inputs. A common and useful statistic, one that we will use 
throughout the book, is the R2 equal to one minus the residual deviance over the null deviance. 
In linear regression this is

   R   2  = 1 −   SSE ____ 
SST

    (1.20)

The R2 is the proportion of variability explained by the regression. It is the proportional reduc-
tion in squared errors due to your regression inputs. The name R2 is derived from the fact that, 
for linear regression only, it is equal to the square of the correlation (usually denoted r) between 
fitted ŷi and observed values yi.

Example 1.5 Orange Juice Sales: R2 We can calculate the R2 a couple of different ways for 
our three-way interaction OJ regression.

FIGURE 1.10 Figure 1.10a shows the squared residual errors. These are the components of the SSE, the 
quantity that linear regression minimizes and is output in glm as Residual   deviance. Figure 1.10b 
shows the squared vertical distance for each observation to the overall mean,   y ¯   . The sum of these squared 
areas is the sum square total (SST) and is output as Null   deviance.

(a) SSE (b) SST

Y = b0 + b1X

Y
–

<

# using the glm object attributes

> 1–fit3way$deviance/fit3way$null.deviance
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However you calculate it, the regression model explains around 54% of the variability in log 
orange juice sales. The interpretation of R2 as squared correlation can help you get a sense of 
what this means: if R2 = 1, a plot of fitted vs. observed values should lie along the perfectly 
straight line ŷ = y. As R2 decreases the scatter around this line increases.

The residual, or “fitted,” deviance plays a crucial role in how models are fit. The con-
cept of deviance minimization is crucial to all model estimation and machine learning. In 
the case of linear regression, you are minimizing the sum of squared residual errors. This 
gives linear regression its common name: ordinary least squares, or OLS (the “ordinary” is 
in contrast to “weighted least squares” in which some observations are given more weight 
than others). Our readers coming from an economics or social sciences background might 
be more familiar with this terminology. We will use the terms OLS and linear regression 
interchangeably.

1.2.2 Degrees of Freedom

Reprinting the relevant summary output, we have one final concept to decipher.

[1] 0.5353939

# using the SSE and SST calculated above

> 1 – SSE/SST

[1] 0.5353939

# correlation squared

> cor(fit3way$fitted,log(oj$sales))^2

[1] 0.5353939

> summary(fit3way)

...

(Dispersion parameter for gaussian family taken to be 0.4829706)

    Null deviance: 30079  on 28946  degrees of freedom

Residual deviance: 13975  on 28935  degrees of freedom

...

The degrees of freedom are crucial for mapping from your deviance to the estimated dispersion 
parameter,    σ ̂     2  . Unfortunately, the way that summary.glm uses this term is confusing because 
it doesn’t differentiate between two different types of degrees of freedom: those used in the 
model fit, and those left for calculating the error variance. These concepts are important in 
statistics and machine learning, so we’ll take the time to pull them apart.

To understand degrees of freedom, take a step back from regression and consider one of 
the most basic estimation problems in statistics: estimating the variance of a random variable. 
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Say you have a sample {z1 . . . zn } drawn independently from the probability distribution p(z). 
Recall your usual formula for estimating the variance of this distribution:

   var(z) ≈   ∑ 
i=1

  
n

      
 ( z  i   −  z ¯   )     2  _ 

n − 1     (1.21)

where    z ¯   =  (  1 / n )    ∑ i=1  n     z  i     is the sample mean. Why are we dividing by (n – 1) instead of n? If 
we divide by n our estimate of the variance will be biased low—it will tend to underestimate 
var(z). To get the intuition behind this, consider an n =1 sample that consists of a single draw:   
z ¯   =  z  1   , and thus   z  1   −  z ¯   = 0  by construction. Since you are estimating the mean from your sam-
ple, you have the flexibility to fit perfectly a single observation. In other words, when n =1 you 
have zero opportunities to view any actual variation around the mean. Extending to a larger 
sample of size n, you have only n – 1 opportunities to observe variation around   z ¯   .

To use the language of statistics, “opportunities to observe variation” are called degrees 
of freedom. In our simple variance example, we used one model degree of freedom to estimate  
  � [  z ]    , and that leaves us with n – 1 residual degrees of freedom to observe error variance. More 
generally:

 • The model degrees of freedom are the number of random observations your model could 
fit perfectly. In regression models, this is the number of coefficients. For example, given a 
model with two coefficients (an intercept and slope) you can fit a line directly through two 
points.

 • The residual degrees of freedom are equal to the number of opportunities that you have 
to observe variation around the fitted model mean. This is the sample size, n, minus the 
model degrees of freedom.

The model degrees of freedom are used for fitting the model and the residual degrees of free-
dom are what is left over for calculating variability after fitting the model. Throughout the rest 
of the book, we will follow the convention of using degrees of freedom (or df) to refer to the 
model degrees of freedom unless stated otherwise. Somewhat confusingly, the summary.glm 
output uses degrees of freedom to refer to the residual degrees of freedom, or n – df in our 
notation.

Once we have the terminology straight, we can now complete our original mission to under-
stand how glm has calculated    σ ̂     2  . In fitting the linear regression, the number of model degrees 
of freedom used is equal to the number of parameters in the regression line. For our model in 
fit3way, there are a total of 12 parameters in the model (use length(coef(fit3way)) to 
verify). So we would say df = 12 for this model. And since there are 28,947 observations in the 
OJ dataset, the residual degrees of freedom for this model are 28,947 − 12 = 28,935. This is the 
number that glm outputs next to the residual deviance. It is the number of opportunities that we 
have to view variation around the regression line. So, to estimate the residual variance, we take 
the sum of the squared residuals (the SSE) and divide by 28,935.

> SSE/fit3way$df.residual

[1] 0.4829706

This gives you    σ ̂     2  , or what summary.glm calls the “dispersion.” The summary output also 
provides a degrees of freedom for the null deviance. Since the null model fits only a 
single mean value,   � [  y ]   =  y ¯    , this is equal to n – 1, the denominator in our simple variance  
equation (1.21). For the OJ example this is 28,946.
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1.3 Logistic Regression

Linear regression is just one instance of the general linear modeling framework. Another 
extremely useful GLM is logistic regression. This is the GLM that you will want to use for 
modeling a binary response: a y that is either 1 or 0 (e.g., true or false). While linear regression 
is probably the most commonly used technique in business analytics, logistic regression would 
come a close second in popularity. In machine learning, logistic regression and extensions of 
the framework are the dominant tools for prediction and classification.

Binary responses arise from a number of prediction targets:

 • Will this person pay their bills or default?
 • Is this a thumbs-up or thumbs-down review?
 • Will the customer take advantage of the offer?
 • Is the writer a Republican or Democrat?

Even when the response of interest is not binary (e.g., revenue), it may be that your 
 decision-relevant information is binary (e.g., profit versus loss) and it is simplest to think 
in these terms. Logistic regression is also the stepping stone to more complex classification 
 methodologies, which we will dive into in Chapter 4.

As you read through this section, it is important to keep in mind that logistic regression 
works very similarly to linear regression. It is easy to get wrapped up in the differences 
between logistic and linear regression, but the basics are exactly the same. In each case you 
are fitting a linear function of the input features and you are estimating the model by mini-
mizing the deviance. The only difference is the choice of link function in your generalized 
linear model.

1.3.1 Logit Link Function

Recall our basic GLM specification of Equation (1.1) for expressing the expected value of 
response y given inputs x:   �[y|x] = f   (  x′β )    . The link function, f, is used to map from a linear 
function to a response that takes a few specific values. When the response y is 0 or 1, the con-
ditional mean becomes

 �[y|x] = p (  y = 1|x )   × 1 + p (  y = 0|x )   × 0 = p (  y = 1|x )   

Therefore, the expectation you’re modeling is a probability. This implies that you need to 
choose the link function f (·) to give values between zero and one.

Using the shorthand of p = p(y = 1|x), you need to choose a link function such that it 
makes sense to write

  p = p (  y = 1|x )   = f   (    β  0   +  β  1   x  1   … +  β  k   x  k   )    

Logistic regression addresses this by using a logit link function, f  (z) = ez /(1 + ez). This func-
tion, which is also often called the “sigmoidal function,” is plotted in Figure 1.11. Notice that 
the function asymptotes (approaches but does not cross) zero at large negative z values, and one 
at large positive z values.

To see how this link works, consider extreme values for z. At large negative values, say as  
z → –∞, then f(z) → 0/(1 + 0) = 0 and the event y = 1 approaches zero probability. At large 
positive values, say as z → ∞, then f  (z) → ∞/(∞ + 1) = 1 and y = 1 becomes guaranteed. 
Thus, the logit link maps from the “real line” of numbers to the [0,1] space of probabilities.
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Using a logit link, the GLM equation for   � [  y |  x ]     is defined as

   �[y|x] = p(y = 1|x) =    e   x′β  ________ 
1 +  e   x′β 

   =    e    β  0  + β  1   x  1  ⋯+ β  k   x  k     ____________  
1 +  e    β  0  + β  1   x  1  ⋯+ β  k   x  k   

     (1.22)

A common alternate way to write (1.22) results from dividing the numerator and denominator 
by   e   x′β  :

   �[y|x] =    e   x′β  ________ 
1 +  e   x′β 

   =   
   e   x′β  ____ 
 e   x′β 

  
 _________ 

  1 ____ 
 e   x′β 

   +    e   x′β  ____ 
 e   x′β 

  
   =   1 _________ 

 e   −x′β  + 1
     (1.23)

How do we interpret the β coefficients in this model? We need to start with the relationship 
between probability and odds. The odds of an event are defined as the probability that it hap-
pens over the probability that it doesn’t.

  odds =   
p
 ___ 1 − p    (1.24)

For example, if an event has a 0.25 probability of happening, then its odds are 0.25/0.75, or 1/3. 
If an event has a probability of 0.9 of happening, the odds of its happening are 0.9/0.1 = 9. 
Odds transform from probabilities, which take values between zero and one, to the space of all 
positive values from zero to infinity.

Looking at (1.22), we can do some algebra and then take the log to derive an interpretation 
for the βj coefficients. Using the shorthand p = p(y = 1|x), we have

  

p =    e   x′β  ________ 
1 +  e   x′β 

  

  
  ⇒ p +  pe   x′β  =  e   x′β 

   
  ⇒   

p
 ___ 1 − p   =  e   x′β 

   

  ⇒ log   (     
p
 _ 1 − p   )    =  β  0   +  β  1   x  1   ⋯ +  β  k    x  k  

  

Thus, logistic regression is a linear model for log odds. Using what we know about logs and 
exponentiation, you can interpret   e    β  j     as the multiplicative effect for a unit increase in xj on the 

FIGURE 1.11 The logit link function, f(z) = ez/(1 + ez).

–6

0.0

Z

E
x
p

(z
)/

(1
 +

 e
x
p

(z
))

0.5

1.0

–4 –2 0 2 4 6



Chapter 1  Regression   23

odds for the event y =1. For example, consider a logistic regression model with a single predic-
tor x, such that odds(x) = exp[β0 + β1x].

1.3.2 Fitting Logistic Regression in R

You can use glm to fit logistic regressions in R. The syntax is exactly the same as for linear 
regression, you just add the argument family=“binomial”. Recall that the binomial distri-
bution is the distribution for random trials with a binary outcome. The classic binomial dis-
tribution is a coin toss. Telling glm that you are working with a binomial distribution implies 
that you will be working with a binary response and want to estimate probabilities. The logit 
link is how glm fits probabilities. The response variable can take a number of forms including 
numeric 0 or 1, logical TRUE or FALSE, or a two level factor such as win vs. lose.

Example 1.6 Logistic Regression: Detecting Spam For our first logistic regression example, 
we’ll build a filter for email spam—junk mail that can be ignored. Every time an email arrives, 
your email client performs a binary classification: is this spam or not spam? The email that is 
classified as spam gets automatically moved to a spam folder (like that in Figure 1.12), keeping 
your inbox free for important messages. We’ll train our own spam filter by fitting logistic 
regression to previous emails.

Our training data spam.csv has 4601 emails, 1813 of which are spam. It contains 57 
email features including indicators for the presence of 54 keywords or characters (e.g., free 
or !), counts for capitalized letters (total number and longest continuous block length), and 
a numeric spam variable for whether each email has been tagged as spam by a human reader 
(spam is one for true spam, zero for important emails). We read this data into R as a data frame 
named spammy.

FIGURE 1.12 An email folder filled with spam.

> spammy<– read.csv(“spam.csv”)

> spammy[c(1,4000), c(16,56,58)]

     word_free capital_run_length_longest spam

1            1                         61    1

4000         0                         26    0
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Notice that the first email, which contained the word free and had a block of 61 capitalized 
letters, was tagged as spam. Email 4000, with its more modest sequence of 26 capital letters, 
is not spam.

Our logistic regression will use all of the features in spammy as inputs. The R formula “y ~ .”  
tells glm to regress onto all variables in the data frame except for the response.

> spamFit <– glm(spam ~ ., data=spammy, family='binomial')

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

The warning message you get when you run this regression, fitted probabilities numer-
ically 0 or 1 occurred, means the regression is able to fit some data points exactly. For 
example, a spam email is modeled as having a 100% probability of being spam. This situation 
is called perfect separation; it can lead to strange estimates for some coefficients and their 
standard errors. It is a symptom of overfit, and in Chapter 3 we show how to avoid it via regu-
larization techniques.

The fitted object, spamFit, is a glm object that contains all the same attributes that we 
were able to access when doing linear regression. For example, you can use the summary func-
tion to get statistics about your coefficients and model fit.

> summary(spamFit)

...

 Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) –1.9682470 0.1465703 –13.429 < 2e–16 ***

word_make –0.5529572 0.2356753 –2.346 0.018963 *

word_address –0.1338696 0.2217334 –0.604 0.546016 

word_all –0.4946420 0.1775333 –2.786 0.005333 **

word_3d 0.8301668 0.8244961 1.007 0.313994 

...

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 6170.2  on 4600  degrees of freedom

Residual deviance: 1548.7  on 4543  degrees of freedom

...

The output looks basically the same as what you get for a linear regression. Note that in  logistic 
regression there is no σ2 to estimate as the “dispersion parameter” because there is no error 
term like the ε of linear regression. Instead, glm outputs Dispersion parameter for bino-
mial family taken to be 1. If you don’t see this, then you might have forgotten to put 
“type=binomial”.

Interpreting Coefficients

Take a look at one of the large positive coefficients in your fit:
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The word_free variable is either one if the email contains the word free, and zero if it 
doesn’t. Thus, the odds that an email is spam are about five times higher for emails that contain 
the word free than for those that do not. On the other hand, you can see next that if the email 
contains the word george, the odds of its being spam decrease.

> coef(spamFit)[“word_free”]

word_free

 1.542706

> exp(1.542706)

[1] 4.67723

> coef(spamFit)[“word_george”]

word_george

  –5.779841

> exp(–5.779841)

[1] 0.003089207

> 1/exp(–5.779841)

[1] 323.7077

The odds of the email being spam when the word george is present are 0.003 of the odds 
of its being spam if it does not contain the word george. Or, taking the reciprocal, the odds 
of its being spam when the word george is absent are about 324 times higher than if the word 
george is present. This is an old dataset collected from the inbox of a guy named George. 
Spammers were not very sophisticated in the 1990s, so emails containing your name were 
most likely not spam.

Predicting Spam Probabilities

As with linear regression, prediction for logistic regression is easy after you’ve fit the model 
with glm. You call predict on your fitted glm object and provide some newdata, with the 
same variable names as the training data, at the locations where you’d like to predict. The 
 output will be  x′ β ̂    for each x row of mynewdata.

> predict(spamFit, newdata=spammy[c(1,4000),])

 1 4000

 2.029963 –1.726788

Of course, these are not probabilities. To get those, you need to transform to   f  (x′ β ̂  )   through  
the logit link as    e   x′ β ̂   /(1 +  e   x′ β ̂   )  , as in Eqn 1.22. The predict() function lets you add the 
type=“response” argument to make this transformation and get predictions on the scale of 
the response (i.e., in [0,1] probability space).
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The first email (true spam) has an 88% chance of being spam, while email 4000 (not spam) has 
a 15% chance of being spam—in other words, an 85% chance of being important email that 
George wants to read. Figure 1.13 shows predicted probabilities of spam by actual spam status 
for every email in the dataset. Note the long tails of small spam probabilities for true spam 
and of large spam probabilities for truly important mail: any spam classifier that you construct 
based on this model will occasionally make a mistake on how it treats the email. See Chapter 4 
for material on designing and evaluating classification rules.

1.4 Likelihood and Deviance

Earlier in this chapter, you learned that deviance is the distance between the model and the 
data. In the case of linear regression, the deviance is the sum of squared errors. Logistic regres-
sion also has a deviance, and this is the metric that glm minimizes to fit the model. But what 
is the deviance for logistic regression? It is not a sum of squared errors. Instead, the logistic 
regression deviance is derived from the assumed binomial distribution for the response.

How this works relies on two complementary concepts: the likelihood and the deviance. 
These concepts are a bit abstract, but they play a key role in the statistical learning algorithms 
that we will be working with throughout this book.

 • Likelihood is the probability of your data given the estimated model. When you maximize 
the likelihood, you are fitting the parameters to “make the data look most likely.”

 • Deviance is a measure of the distance between the data and the estimated model. When 
you minimize the deviance, you are fitting the parameters to make the model and data look 
as close as possible.

FIGURE 1.13 Fit plot of ŷ versus y for the spam logistic regression. Since the true y is binary for spam, 
you get a boxplot rather than a scatterplot. As a test of your intuition, imagine what a perfect fit (i.e., ŷ = y) 
would look like for this regression.
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> predict(spamFit,newdata=spammy[c(1,4000),],type=“response”)

        1      4000

0.8839073 0.1509989
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Likelihood

To unravel these concepts we’ll start with the likelihood function. Consider a dataset, say Z, 
with probability p(Z|Θ). This probability is a function of both the data Z and the parameters 
Θ. The likelihood function takes a given dataset as fixed and represents how this probability 
changes as a function of the parameters. Thus we write the likelihood as lhd(Θ; Z), or some-
times just lhd(Θ) for short, to indicate that it is a function of the parameters Θ. But there 
is nothing complicated going on: the likelihood is just a probability. In particular, lhd(Θ) = 
p(Z|Θ) in our imaginary setup here.

Consider a simple binomial example. You have a weighted coin with probability p of com-
ing up heads. You have flipped the coin ten times: it has come up heads eight times and tails 
twice. We could write our dataset as Z = {heads = 8, tails = 2}. The probability of this dataset, 
and the likelihood, is written

   p(Z|p) =   (   10  
8
  )    p   8    (  1 − p )     2  = lhd (  p )     (1.25)

We can evaluate and plot this likelihood in R (see Figure 1.14a).

> p <- seq(0,1,length=100)

> plot(p, dbinom(8, size=10, prob=p), type=“l”, ylab=“Likelihood”)

Every time glm fits a model, it is choosing the parameters to maximize the likelihood. 
This is a very common estimation strategy with many great properties. Although we will look 
at other techniques in the next chapter, in particular adding penalties on parameter size during 
estimation, everything will still be built around the foundation of likelihood maximization. 
In our coin-flipping example, the maximum likelihood estimate (the MLE) is   p ̂   = 0.8 . This 
is marked with a vertical line in Figure 1.14a, and it corresponds to the highest point on the 
likelihood curve.

FIGURE 1.14 The likelihood (a) and deviance (b) for the probability of success, p, in a binomial trial 
with eight successes and two failures.
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Deviance

The deviance—the distance between your model and the data—is a simple transformation of 
the likelihood. In particular,

   Deviance = − 2 log  [  Likelihood ]   + C   (1.26)

Here, C is a constant that you can ignore. The precise definition for deviance is −2 times 
the difference between log likelihoods for your fitted model and for a “fully saturated” model 
where you have as many parameters as observations. The term corresponding to this fully satu-
rated model gets wrapped into the constant, C, but again you can ignore this in most situations. 
In practice, we will often use the ∝, or proportional to, symbol when working with the deviance 
and only keep track of the parts that change as a function of the parameters. For example, in our 
coin tossing example, the deviance is

   dev(p) ∝ − 2 log ( p   8   (1 − p)   2 ) = − 16 log (p) − 4 log (1 − p)   (1.27)

This is plotted in Figure 1.14b, with the deviance minimizing solution marked at   p ̂   = 0.8 . Devi-
ance minimization is the mirror image of likelihood maximization. With glm you have been 
fitting models by minimizing the deviance, just the same as you have been fitting models to 
maximize the likelihood.

Example 1.7 Gaussian Deviance Let’s work through an example with linear regression 
and Gaussian (normal) errors. The probability model is y ~ N(x′β, σ2), where the Gaussian 
probability density function is

   N(x′β,  σ   2 ) =   1 _ 
 √ 
_

 2 ��   2   
   exp   [  −   

 (y − x′β )     2  ___________ 
2 σ   2 

   ]      (1.28)

Recall that independent random variables have the property that p(y1, . . . , yn) = p(y1) × p(y2) ×  
. . . p(yn). Given n independent observations, the likelihood (i.e., the probability density of the 
data) is

     ∏ 
i=1

  
n

    p( y  i  |  x  i  ) =   ∏ 
i=1

  
n

    N( y  i  ;  x  i  ′  β,  σ   2 ) =  (2  ��   2 )   −  n _ 2    exp   [  −   1 _ 
2  σ   2 

     ∑ 
i=1

  
n

     ( y  i   −  x  i  ′ β)   2  ]      (1.29)

Taking a log and multiplying by −2 (and removing terms that don’t involve β), you get

   dev( β) =   1 _ 
 σ   2 

     ∑ 
i=1

  
n

     ( y  i   −  x  i  ′  β)   2  + C ∝   ∑ 
i=1

  
n

      (   y  i   −  x  i  ′  β )     2    (1.30)

Thus, for linear regression with Gaussian errors, the deviance is proportional to the sum of 
squared errors (the SSE). We stated this fact earlier in the chapter, but now you can derive it for 
yourself. This is why linear regression is also “least-squares” regression: deviance  minimization 
is the same thing as minimizing the SSE.

Example 1.8 Logistic Deviance We can do a similar derivation for logistic regression. For 
binary response with probabilities pi = p(yi = 1), the likelihood is

     ∏ 
i=1

  
n

    P( y  i  | x  i  ) =   ∏ 
i=1

  
n

     p  i  
yi

    (  1 −  p  i   )     1− y  i      (1.31)
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Using your logistic regression equation for pi, this becomes

   lhd( β) =   ∏ 
i=1

  
n

       (  exp   (   x  i  ′  β )    _ 1 + exp   (   x  i  ′  β )     )     
 y  i  

    (  1 _ 1 + exp   (   x  i  ′  β )     )     
1− y  i  

    (1.32)

Taking log and multiplying by -2 gives you the logistic regression deviance:

   
 dev(  β) = − 2   ∑ 

i=1
  

n

   [  y  i   log  (   p  i   )   +  (  1 −  y  i   )   log  (  1 −  p  i   )   ] 
     

∝   ∑ 
i=1

  
n

    [ log (1 +  exp    x  i  ′ β ) −  y  i    x  i  ′  β  ]   
    (1.33)

This is the function that glm minimizes for logistic regression.

Deviance in summary.glm

Returning to our output from summary.glm (which is the function that is called when you apply 
summary to a fitted glm object), we have deviances for each of the OJ and spam regressions. 
For the three-way interaction OJ linear regression:

> summary(fit3way)

...

    Null deviance: 30079 on 28946 degrees of freedom

Residual deviance: 13975 on 28935 degrees of freedom

...

> summary(spamFit)

...

    Null deviance: 6170.2  on 4600  degrees of freedom

Residual deviance: 1548.7  on 4543  degrees of freedom

...

And for the spam filter logistic regression:

From Equations (1.30) and (1.33), we now know how to calculate these residual deviance val-
ues. The null deviances come from the same models, and so have the same functional form, 
but they replace the regression fitted values for y with simple sample averages. With D0 as the 
symbol for null deviance, we have

 • D0 = Σ(yi –   y ¯   )2 in linear regression
 • D0 = – 2Σ[yi log(  y ¯   ) + (1 – yi) log(1 –   y ¯   )] in logistic regression

While some statistics texts restrict the concept of R2 to linear regression, we find it useful to 
generalize it as the proportion of deviance that is reduced due to the regression model. Using 
the symbol D to denote the residual deviance, our R2 formula is

   R   2  = 1 −   D ___  D  0  
    (1.34)

This R2 formula is often called McFadden’s Pseudo R2 when it is used outside of linear regression.
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In the case of our OJ example, we previously calculated an R2 of 0.54. For the spam regression, 
we can apply (1.34) to calculate that R2 = 1 – 1549/6170 = 0.75 such that around three-quarters 
of the variability in spam occurrence is explained by our logistic regression. We introduced R2 
in the context of linear regression, as a function of the SST and SSE, but expressing it in terms 
of deviance means that it applies to any model that we fit.

1.5 Time Series

We close this chapter with an introduction to working with dependent data. The models we 
have looked at so far all assume that you have independent observations. However, events that 
occur one after the other in time, or say geographically near to each other, can be correlated. 
For example, lawn furniture sales are always higher in spring and summer, the weather today 
gives you information about what the weather will be tomorrow, or when a popular restaurant 
has a busy night its neighboring restaurants also gain traffic from those who couldn’t get a 
table. In this section we’ll figure out how to work with data that occurs in time, and in the next 
section we consider data that occurs in space.

Fortunately, the main tools for dealing with dependence all fit within a standard regression 
framework. For the most part, you simply include the variables that cause dependence in your 
set of inputs. By engineering the right input features, you can control for underlying trends (e.g., 
monthly trends or regional effects) and for autoregression, which is the dependence between 
neighboring outcomes. In this section we will focus on time series dependence. This is the sort 
of dependence that you get for data that are observed over time, and it is common in business 
analysis settings. The tools you learn for time series extend to other dependence settings, and 
we give some pointers on this at the end of the section.

The traditional statistics approach to time series emphasizes careful testing for different 
forms of time series structure. Through the regularization and machine learning material from 
later chapters in this book, we can avoid a lot of this manual feature selection. Although it 
won’t work for all types of time series dependence, a powerful modeling strategy is to simply 
include a large set of time series features and rely on the data to tell you what works best. Thus, 
this section will focus on helping you understand how to construct the features that are useful 
for modeling time series data rather than on techniques for testing for time series dependence. 
If you have a good intuition about the ingredients of a time series model, you will be in good 
shape to use these features in your applied analysis work.

1.5.1 Regression for Time Series Data

A time series dataset contains observations of a response variable, and input features, taken 
over time. Typical time intervals are daily, weekly, monthly, quarterly, or yearly. In business 
settings, the response of interest is typically sales numbers, revenue, profit, active users, or 
prices. The response variables are almost always correlated over time.

Example 1.9 Airline Passenger Data: Regression for Time Series As an introductory 
example, consider a series of monthly total international airline passengers between the years 
1949 and 1960.
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To work with time series data in R, your first step is to create a time variable. We can use 
the as.Date function to build a Date class vector. Note that if you are working on a finer time 
scale, R has the POSIXct class that can be used to represent dates and times down to fractions 
of a second. To create a Date variable in our air travel example, we need to translate from the 
Year and Month variables in our data frame. The first step is to paste these two variables into 
a single year-month string for each observation, and we then call as.Date to tell R that this 
is date information. The default format to read in dates is year-month-day, and that is what 
we will use here. We set the day to the first of each month for convenience; these are monthly 
counts so it doesn’t matter what day we use.

> air$date<–paste(“19”,air$Year,“–”,air$Month,“–01”, sep=“”)

> air$date[c(1,70,144)]

[1] “1949–1–01” “1954–10–01” “1960–12–01”

> air$date<–as.Date(air$date)

> air$date[c(1,70,144)]

[1] “1949–01–01” “1954–10–01” “1960–12–01”

> class(air$date)

[1] “Date”

> air<–read.csv(“airline.csv”)

> air[c(1,70,144),]

    Year Month Passengers

1     49     1        112

70    54    10        229

144   60    12        432

We now have the date variable, which R knows to treat as a calendar date. These dates are 
represented internally as days relative to January 1, 1970. You can convert them to numeric to 
see how R tracks the date.

> as.numeric(air$date[c(1,70,144)])

[1] –7670 –5571 –3318

> plot(Passengers ~ date, data=air, type=“l”)

> plot(log(Passengers) ~ date, data=air, type=“l”)

The two lines of code below produce plots of this data as in Figure 1.15.

> as.numeric(as.Date(“1970–01–01”))

[1] 0
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Unlike our usual approach of plotting scatters of data points, here we have drawn a line 
plot (using the type=“l” argument) to indicate dependence over time. In Figure 1.15a, you see 
an overall trend of an increasing number of passengers with time. In addition to this upward 
trend, you also see a repeated annual oscillation around the annual average. It is evident from 
Figure 1.15a that the oscillations around this upward trend are getting larger with time. This 
is a hallmark of a time series that is changing on a percentage scale with each observation. 
Recalling our work with sales data earlier in this chapter, that is an indication that you will want 
to be building a linear model on the log scale. Figure 1.15b shows the log monthly passenger 
volume. You can see that the log transformation yields consistently sized annual oscillations 
around a roughly linear-looking trend.

Linear Time Trend

We could fit a simple linear regression model to this data, say

 log  (   y  t   )   = α + βt +  ε  t   

If you use the date variable as the input to glm to fit this regression, then from our as.numeric 
representations above you can see that the time trend will be counted in terms of days. This 
means that the impact of β on the monthly change will be a function of the number of the days 
of the month. This might be desirable in some applications, but to keep things simple here we 
will instead regress onto a simple index variable t that tracks the counts of months since the 
beginning of the dataset.

FIGURE 1.15 Time series data for 12 years of the monthly total count of international air passengers, 
1949 through 1960.
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> air$t <– 1:nrow(air)

> fitAirSLR <– glm(log(Passengers)~t, data=air)

> coef(fitAirSLR)


