
Sixth Edition

JULIA BURDGE

CHEMISTRY



Useful Conversion Factors and Relationships

1 lb = 453.6 g

1 in = 2.54 cm (exactly)

1 mi = 1.609 km

1 km = 0.6215 mi

1 pm = 1 × 10−12 m = 1 × 10−10 cm

1 atm = 760 mmHg = 760 torr = 101,325 N/m2 = 101,325 Pa

1 cal = 4.184 J (exactly)

1 L ⋅ atm = 101.325 J

1 J = 1 C × 1 V

?°C = (°F − 32°F) × ​​ 
5°C

 _ 
9°F

 ​​​

?°F = ​​ 
9°F

 _ 
5°C

 ​​ × (°C) + 32°F

?K = (°C + 273.15°C) ​​(​ 
1K

 _ 
1°C

 ​)​​

Some Prefixes Used with SI Units

tera (T) 1012 centi (c) 10−2

giga (G) 109 milli (m) 10−3

mega (M) 106 micro (µ) 10−6

kilo (k) 103 nano (n) 10−9

deci (d) 10−1 pico (p) 10−12

Fundamental Constants

Avogadro’s number (NA) 6.0221418 × 1023

Electron charge (e) 1.6022 × 10−19 C

Electron mass 9.109387 × 10−28 g

Faraday constant (F ) 96,485.3 C/mol e−

Gas constant (R) 0.08206 L ⋅ atm/K ⋅ mol

8.314 J/K ⋅ mol

62.36 L ⋅ torr/K ⋅ mol

1.987 cal/K ⋅ mol

Planck’s constant (h) 6.6256 × 10−34 J ⋅ s

Proton mass 1.672623 × 10−24 g

Neutron mass 1.674928 × 10−24 g

Speed of light in a vacuum 2.99792458 × 108 m/s
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Element Symbol Atomic Number Atomic Mass† Element Symbol Atomic Number Atomic Mass†

Actinium Ac 89 (227) Mendelevium Md 101 (258)

Aluminum Al 13 26.9815386 Mercury Hg 80 200.59

Americium Am 95 (243) Molybdenum Mo 42 95.94

Antimony Sb 51 121.760 Moscovium Mc 115 (289)

Argon Ar 18 39.948 Neodymium Nd 60 144.242

Arsenic As 33 74.92160 Neon Ne 10 20.1797

Astatine At 85 (210) Neptunium Np 93 (237)

Barium Ba 56 137.327 Nickel Ni 28 58.6934

Berkelium Bk 97 (247) Nihonium Nh 113 (286)

Beryllium Be 4 9.012182 Niobium Nb 41 92.90638

Bismuth Bi 83 208.98040 Nitrogen N 7 14.0067

Bohrium Bh 107 (272) Nobelium No 102 (259)

Boron B 5 10.811 Oganesson Og 118 (294)

Bromine Br 35 79.904 Osmium Os 76 190.23

Cadmium Cd 48 112.411 Oxygen O 8 15.9994

Calcium Ca 20 40.078 Palladium Pd 46 106.42

Californium Cf 98 (251) Phosphorus P 15 30.973762

Carbon C 6 12.0107 Platinum Pt 78 195.084

Cerium Ce 58 140.116 Plutonium Pu 94 (244)

Cesium Cs 55 132.9054519 Polonium Po 84 (209)

Chlorine Cl 17 35.453 Potassium K 19 39.0983

Chromium Cr 24 51.9961 Praseodymium Pr 59 140.90765

Cobalt Co 27 58.933195 Promethium Pm 61 (145)

Copernicium Cn 112 (285) Protactinium Pa 91 231.03588

Copper Cu 29 63.546 Radium Ra 88 (226)

Curium Cm 96 (247) Radon Rn 86 (222)

Darmstadtium Ds 110 (281) Rhenium Re 75 186.207

Dubnium Db 105 (268) Rhodium Rh 45 102.90550

Dysprosium Dy 66 162.500 Roentgenium Rg 111 (280)

Einsteinium Es 99 (252) Rubidium Rb 37 85.4678

Erbium Er 68 167.259 Ruthenium Ru 44 101.07

Europium Eu 63 151.964 Rutherfordium Rf 104 (267)

Fermium Fm 100 (257) Samarium Sm 62 150.36

Flerovium Fl 114 (289) Scandium Sc 21 44.955912

Fluorine F 9 18.9984032 Seaborgium Sg 106 (271)

Francium Fr 87 (223) Selenium Se 34 78.96

Gadolinium Gd 64 157.25 Silicon Si 14 28.0855

Gallium Ga 31 69.723 Silver Ag 47 107.8682

Germanium Ge 32 72.64 Sodium Na 11 22.98976928

Gold Au 79 196.966569 Strontium Sr 38 87.62

Hafnium Hf 72 178.49 Sulfur S 16 32.065

Hassium Hs 108 (270) Tantalum Ta 73 180.94788

Helium He 2 4.002602 Technetium Tc 43 (98)

Holmium Ho 67 164.93032 Tellurium Te 52 127.60

Hydrogen H 1 1.00794 Tennessine Ts 117 (293)

Indium In 49 114.818 Terbium Tb 65 158.92535

Iodine I 53 126.90447 Thallium Tl 81 204.3833

Iridium Ir 77 192.217 Thorium Th 90 232.03806

Iron Fe 26 55.845 Thulium Tm 69 168.93421

Krypton Kr 36 83.798 Tin Sn 50 118.710

Lanthanum La 57 138.90547 Titanium Ti 22 47.867

Lawrencium Lr 103 (262) Tungsten W 74 183.84

Lead Pb 82 207.2 Uranium U 92 238.02891

Lithium Li 3 6.941 Vanadium V 23 50.9415

Livermorium Lv 116 (293) Xenon Xe 54 131.293

Lutetium Lu 71 174.967 Ytterbium Yb 70 173.04

Magnesium Mg 12 24.3050 Yttrium Y 39 88.90585

Manganese Mn 25 54.938045 Zinc Zn 30 65.409

Meitnerium Mt 109 (276) Zirconium Zr 40 91.224

*These atomic masses show as many significant figures as are known for each element. The atomic masses in the periodic table are shown to four significant figures, which is 

sufficient for solving the problems in this book.

†Approximate values of atomic masses for radioactive elements are given in parentheses. 

List of the Elements with Their Symbols and Atomic Masses*
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Preface

Welcome to the exciting and dynamic world of Chemistry! My desire to create a gen-

eral chemistry textbook grew out of my concern for the interests of students and fac-

ulty alike. Having taught general chemistry for many years, and having helped new 

teachers and future faculty develop the skills necessary to teach general chemistry, I 

believe I have developed a distinct perspective on the common problems and misun-

derstandings that students encounter while learning the fundamental concepts of 

chemistry—and that professors encounter while teaching them. I believe that it is pos-

sible for a textbook to address many of these issues while conveying the wonder and 

possibilities that chemistry offers. With this in mind, I have tried to write a text that 

balances the necessary fundamental concepts with engaging real-life examples and 

applications, while utilizing a consistent, step-by-step problem-solving approach and 

an innovative art and media program.

Key Features

Problem-Solving Methodology

Sample Problems are worked examples that guide the student step-by-step through the 

process of solving problems. Each Sample Problem follows the same four-step method: 

Strategy, Setup, Solution, and Think About It (check).

  

SAMPLE PROBLEM 4.8

For an aqueous solution of glucose (C6H12O6), determine (a) the molarity of 2.00 L of a solution that contains 50.0 g of glucose, (b) the 

volume of this solution that would contain 0.250 mol of glucose, and (c) the number of moles of glucose in 0.500 L of this solution.

Strategy Convert the mass of glucose given to moles, and use the equations for interconversions of M, liters, and moles to calcu-

late the answers.

Setup The molar mass of glucose is 180.2 g.

 moles of glucose =   
50.0 g
 ___________ 

180.2 g/mol
   = 0.277 mol

 Solution (a) molarity =   
0.227 mol  C  6    H  12    O  6  

  _________________  
2.00 L solution 

   = 0.139 M

A common way to state the concentration of this solution is to say, “This solution is 0.139 M in glucose.”

(b) volume =   
0.250 mol  C  6    H  12    O  6  

  _________________  
0.139 M

   = 1.80 L

(c) moles of C6H12O6 in 0.500 L = 0.500 L × 0.139 M = 0.0695 mol

THINK ABOUT IT

Check to see that the magnitudes of your answers are logical. For example, the mass given in the problem corresponds to 

0.277 mol of solute. If you are asked, as in part (b), for the volume that contains a number of moles smaller than 0.277, make 

sure your answer is smaller than the original volume.

Practice Problem A TTEMPT  For an aqueous solution of sucrose (C12H22O11), determine (a) the molarity of 5.00 L of a 

solution that contains 235 g of sucrose, (b) the volume of this solution that would contain 1.26 mol of sucrose, and (c) the number 

of moles of sucrose in 1.89 L of this solution.  

Practice Problem B UILD For an aqueous solution of sodium chloride (NaCl), 

determine (a) the molarity of 3.75 L of a solution that contains 155 g of sodium 

chloride, (b) the volume of this solution that would contain 4.58 mol of sodium 

chloride, and (c) the number of moles of sodium chloride in 22.75 L of this solution.  

Practice Problem C ONCEPTUALIZE  The diagrams represent solutions 

of two different concentrations. What volume of solution 2 contains the same 

amount of solute as 5.00 mL of solution 1? What volume of solution 1 contains 

the same amount of solute as 30.0 mL of solution 2? solution 1 solution 2

Strategy: plan is laid out for 
solving the problem.

Solution: problem is worked out.

Setup: necessary information is 
gathered and organized.

Think About It:

– Assess the result.
– �Provides information that shows 

the relevance of the result or the 
technique.

– �Sometimes shows an alternate 
route to the same answer.
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oblem B UILD  F

molarity of 3.75 

oblem A TTEMPT  F

ains 235 g of sucrose, 

Each Sample Problem is followed by my ABC approach of three Practice Problems: 

Attempt, Build, and Conceptualize.

Practice Problem A (or “Attempt”) asks the student to apply the same Strategy to solve 

a problem very similar to the Sample Problem. In general, the same Setup and series of 

steps in the Solution can be used to solve Practice Problem A.

Practice Problem B (or “Build”) assesses mastery of the same skills as those required for 

the Sample Problem and Practice Problem A, but everywhere possible; Practice Prob-

lem B cannot be solved using the same Strategy used for the Sample Problem and for 

Practice Problem A. This provides the student an opportunity to develop a strategy 

independently, and combats the tendency that some students have to want to apply a 

“template” approach to solving chemistry problems. Practice Problems “Attempt” and 

“Build” have been incorporated into the problems available in Connect (R) and can be 

used in online homework and/or quizzing.

Practice Problem C (or “Conceptualize”) provides an exercise that probes the student’s 

conceptual understanding of the material. Practice Problems C often include concept 

and molecular art.

Each chapter’s end-of-chapter questions and problems begin with 

an Integrative Problem, titled Applying What You’ve Learned. These 

integrative problems incorporate multiple concepts from the chapter, 

with each step of the problem providing a specific reference to the 

appropriate Sample Problem in case the student needs direction.

Key Skills

Newly located immediately before the end-of-chapter problems, Key Skills pages are 

modules that provide a review of specific problem-solving techniques from that particu-

lar chapter. These are techniques the author knows are vital to success in later chapters. 

The Key Skills pages are designed to be easy-to-find touchstones to hone specific skills 

from earlier chapters—in the context of later chapters. The answers to the Key Skills 

Problems can be found in the Answer Appendix in the back of the book.

oblem C ONCEPTUALIZE  The 

concentrations. What volume of solution 

Applying What You’ve Learned

Sports drinks typically contain sucrose (C12H22O11), fructose (C6H12O6), sodium citrate (Na3C6H5O7), potassium 

citrate (K3C6H5O7), and ascorbic acid (H2C6H6O6), among other ingredients. (a) Classify each of these ingredients 

as a nonelectrolyte, a weak electrolyte, or a strong electrolyte [|◂◂ Sample Problem 4.1]. (b) If a sports drink is 0.0015 M in 

both potassium citrate and potassium phosphate, what is the overall concentration of potassium in the drink [|◂◂ Sample 

Problem 4.11]? (c) The aqueous iodine used to determine vitamin C content in sports drinks can be prepared by combining 

aqueous solutions of iodic acid (HIO3) and hydroiodic acid (HI). (The products are aqueous iodine and liquid water.) Write 

a balanced equation for this reaction [|◂◂ Sample Problem 3.3]. (d) Write the net ionic equation for the reaction [|◂◂ Sample 

Problem 4.3]. (e) Determine the oxidation number for each element in the net ionic equation [|◂◂ Sample Problem 4.5].
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KEY SKILLS Enthalpy of Reaction

Using tabulated ΔH°f values, we can calculate the standard enthalpy of reaction (ΔH°rxn) using Equation 5.19:

ΔH°rxn = ΣnΔH°f (products) − ΣmΔH°f (reactants)

This method of calculating thermodynamic quantities such as enthalpy of reaction is important not only in this chapter, but 

also in Chapters 19 and 20. The following examples illustrate the use of Equation 5.19 and data from Appendix 2. Each 

example provides a specific reminder of one of the important facets of this approach.

(–1206.9) +187.8 kJ/mol

–393.5

–

–1206.9 –635.6

[(–635.6) + (–393.5)]

CaCO3(s)

CaCO3(s)

CaO(s) + CO2(g)

CaO(s)

CO2(g)

–1206.9

–635.6

–393.5

ΔHf° (kJ/mol)

ΔHf° =

Look up ΔHf° values for
reactants and products.

Sum all ΔHf° values
for products.

Sum all ΔHf° values
for reactants.

Subtract reactant sum
from product sum.

=

=[(50.4) + 2(9.66)] –53.92 kJ/mol

–285.8

–

9.6650.4 90.4

[6(90.4) + 2(–285.8)]

N2H4(l) + 2N2O4(g)

N2O4(g)

N2H4(l)

6NO(g)

NO(g)

H2O(l)

9.66

50.4

90.4

–285.8

ΔHf° (kJ/mol)

ΔHf° =

2H2O(l)+

Each ΔH°f value must be multiplied by the corresponding stoichiometric coefficient in the balanced equation.
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=[(0) + 2(–285.8)] –426.7 kJ/mol

–229.94 0

–

–285.80 –538.4

[(–538.4) + 2(–229.94) + (0)]

Ba(s) + 2H2O(l)

Ba2+(aq)

H2O(l)

Ba2+(aq)

OH–(aq)

H2(g)

–538.4

–285.8

Ba(s) 0

–229.94

0

ΔHf° (kJ/mol)

ΔHf° =

2OH–(aq) H2(g)+ +

You will find more than one tabulated ΔH°f value for some substances, such as water. It is important to select the value 

that corresponds to the phase of matter represented in the chemical equation. In previous examples, water has appeared in 

the balanced equations as a liquid. It can also appear as a gas.

=[2(–124.7) + (0)] –5379.6 kJ/mol

–248.1

–

–124.7 –393.5

[8(–393.5) + 10(–248.1)]

2C4H10(g) + 13O2(g)

CO2(g)

O2(g)

8CO2(g)

H2O(g)

H2O(l)

–393.5

0

C4H10(g) –124.7

–248.1

–285.8

ΔHf
° (kJ/mol)

ΔHf
° =

10H2O(g)+

0

Ba(s) + 2H2O(l)  Ba(OH)2(aq) + H2(g)

By definition, the standard enthalpy of formation for an element in its standard state is zero. In addition, many tables  

of thermodynamic data, including Appendix 2, do not contain values for aqueous strong electrolytes such as barium 

hydroxide. However, the tables do include values for the individual aqueous ions. Therefore, determination of this enthalpy 

of reaction is facilitated by rewriting the equation with Ba(OH)2 written as separate ions:

5.1

Using data from Appendix 2, calculate the standard enthalpy 

of the following reaction:

Mg(OH)2(s)  MgO(s) + H2O(l)

(a) –608.7 kJ/mol (b) –81.1 kJ/mol (c) –37.1 kJ/mol  

(d) +81.1 kJ/mol (e) +37.1 kJ/mol

5.2

Using data from Appendix 2, calculate the standard enthalpy 

of the following reaction:

4HBr(g) + O2(g)  2H2O(l) + 2Br2(l)

(a) –426.8 kJ/mol (b) –338.8 kJ/mol (c) –249.6 kJ/mol 

(d) +426.8 kJ/mol (e) +338.8 kJ/mol

5.3

Using data from Appendix 2, calculate the standard enthalpy 

of the following reaction (you must first balance the equation):

P(red) + Cl2(g)  PCl3(g)

(a) –576.1 kJ/mol (b) –269.7 kJ/mol (c) –539.3 kJ/mol 

(d) –602.6 kJ/mol (e) +639.4 kJ/mol

5.4

Using only whole number coefficients, the combustion of 

hexane can be represented as:

2C6H14(l) + 19O2(g)  12CO2(g) + 14H2O(l)

ΔH° = −8388.4 kJ/mol

Using this and data from Appendix 2, determine the standard 

enthalpy of formation of hexane.

(a) –334.8 kJ/mol (b) –167.4 kJ/mol (c) –669.6 kJ/mol

(d) +334.8 kJ/mol (e) +669.6 kJ/mol

Key Skills Problems
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New to the Sixth Edition

∙	 Updated periodic-table numbering scheme.
∙	 New chapter openers, with emphasis on the chemistry associated with global  

climate change.
∙	 New End-of-Chapter Problems have been added in response to user comments. These 

include additional conceptual problems, and updates of information in topical questions.
∙	 Specific references to Key Skills pages in the “Before You Begin, Review These 

Skills” sections.
∙	 New figures to help students develop conceptual understanding.
∙	 Continued development of truly comprehensive and consistent problem-solving. 

Hundreds of worked examples (Sample Problems) help students get started learning 

how to approach and solve problems.

New and updated chapter content includes:

Incorporation of essential information from student notes into the main flow of text in 

each chapter. The remaining student notes are designed to help students over a variety 

of stumbling blocks. They include timely warnings about common errors, reminders of 

important information from previous chapters, and general information that helps place 

the material in an easily understood context.

Chapter 1—New and updated end-of-chapter problems and a new figure 

illustrating intensive and extensive properties

Chapter 2—Updated end-of-chapter problems

Chapter 4—New and updated conceptual end-of-chapter problems

Chapter 5—New and updated conceptual end-of-chapter problems

Chapter 7—New conceptual checkpoint questions

Chapter 9—New chapter opener and Applying-What-You’ve-Learned problems

Chapter 10—Updated end-of-chapter problems

Chapter 11—New Sample and Practice Problems

Chapter 13—New chapter opener and new end-of-chapter problems

Chapter 14—New and updated conceptual end-of-chapter problems

Chapter 17—New conceptual end-of-chapter problems

Chapter 19—New conceptual end-of-chapter problems 

Instructor and Student Resources

Instructor Resources

ALEKS (Assessment and LEarning in Knowledge Spaces) is a web-based system 

for individualized assessment and learning available 24/7 over the Internet. ALEKS 

uses artificial intelligence to accurately determine a student’s knowledge and then 

guides her to the material that she is most ready to learn. ALEKS offers immediate 

feedback and access to ALEKSPedia—an interactive text that contains concise entries 

on chemistry topics. ALEKS is also a full-featured course management system with 

rich reporting features that allow instructors to monitor individual and class perfor-

mance, set student goals, assign/grade online quizzes, and more. ALEKS allows 

instructors to spend more time on concepts while ALEKS teaches students practical 

problem-solving skills. And with ALEKS 360, your student also has access to this 

text’s eBook. Learn more at www.aleks.com/highered/science.

Instructors have access to the following instructor resources:

∙	 Instructor’s Manual This supplement contains Learning Objectives; Applications, 

Demonstrations, Tips and References; a list of End-of-Chapter Problems sorted by dif-

ficulty; and a list of End-of-Chapter Problems sorted by type for each chapter of the text.
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∙	 Art Full-color digital files of all illustrations, photos, and tables in the book can be 

readily incorporated into lecture presentations, exams, or custom-made classroom 

materials. In addition, all files have been inserted into PowerPoint slides for ease of 

lecture preparation.
∙	 Animations Numerous full-color animations illustrating important processes are also 

provided. Harness the visual impact of concepts in motion by importing these files 

into classroom presentations or online course materials.
∙	 PowerPoint Lecture Outlines Ready-made presentations that combine art and lec-

ture notes are provided for each chapter of the text.
∙	 Computerized Test Bank Test questions that accompany Chemistry are available for 

creating exams or quizzes.
∙	 Instructor’s Solutions Manual This supplement contains complete, worked-out so-

lutions for all the end-of-chapter problems in the text.

McGraw Hill Virtual Labs is a must-see, outcomes-based lab simulation. It assesses 

a student’s knowledge and adaptively corrects deficiencies, allowing the student to 

learn faster and retain more knowledge with greater success. First, a student’s knowl-

edge is adaptively leveled on core learning outcomes: Questioning reveals knowledge 

deficiencies that are corrected by the delivery of content that is conditional on a  

student’s response. Then, a simulated lab experience requires the student to think and 

act like a scientist: recording, interpreting, and analyzing data using simulated equip-

ment found in labs and clinics. The student is allowed to make mistakes—a powerful 

part of the learning experience! A virtual coach provides subtle hints when needed, 

asks questions about the student’s choices, and allows the student to reflect on  

and correct those mistakes. Whether your need is to overcome the logistical chal-

lenges of a traditional lab, provide better lab prep, improve student performance, or 

make your online experience one that rivals the real world, McGraw Hill Virtual Labs 

accomplishes it all.



		

McGraw Hill Create
tm

With McGraw Hill Create, you can easily rearrange chapters, combine material from 

other content sources, and quickly upload content you have written, like your course 

syllabus or teaching notes. Find the content you need in Create by searching through 

thousands of leading McGraw Hill textbooks. Arrange your book to fit your teaching 

style. Create even allows you to personalize your book’s appearance by selecting the 

cover and adding your name, school, and course information. Order a Create book and 

you’ll receive a complimentary print review copy in three to five business days  

or a complimentary electronic review copy (eComp) via email in minutes. Go to  

www.mcgrawhillcreate.com today and register to experience how McGraw Hill Create 

empowers you to teach your students your way. www.mcgrawhillcreate.com

Additional Student Resources

All students will have access to chemistry animations for the animated Visualizing 

Chemistry figures as well as other chemistry animations. Within the text, the animations 

are mapped to the appropriate content.

Additionally, students can purchase a Student Solution Manual that contains 

detailed solutions and explanations for the odd-numbered problems in the main text.

For me, this text will always remain a work in progress. I encourage you to contact 

me with any comments or questions.

Julia Burdge

juliaburdge@cwidaho.cc
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1.1	 The Study of Chemistry

•	Chemistry You May Already Know

•	The Scientific Method

1.2	 Classification of Matter

•	States of Matter

•	Elements

•	Compounds

•	Mixtures

1.3	 Scientific Measurement

•	SI Base Units

•	Mass

•	Temperature

•	Derived Units: Volume and Density

1.4	 The Properties of Matter

•	Physical Properties

•	Chemical Properties

•	Extensive and Intensive Properties

1.5	 Uncertainty in Measurement

•	Significant Figures

•	Calculations with Measured Numbers

•	Accuracy and Precision

1.6	 Using Units and Solving Problems

•	Conversion Factors

•	Dimensional Analysis—Tracking Units

Chemistry: The Central Science

C H A P T E R 



		  3

At the end of this chapter, you 

will be able to answer several 

questions related to the study 

of global climate change  

[▸▸| Applying What You’ve 

Learned, page 34].

Global Climate Change and  

the Scientific Method
To advance understanding of science, researchers use a set of guidelines known as 

the scientific method. The guidelines involve careful observations, educated reasoning, 

and the development and experimental testing of hypotheses and theories. One field 

of study in which the scientific method has informed our understanding of the world 

is that of global climate change.

Late in the nineteenth century, Swedish chemist Svante Arrhenius used the principles 

of chemistry to describe the “greenhouse effect,” the process by which certain com-

ponents of the atmosphere absorb some of the energy radiating from Earth’s surface 

and prevent it from escaping into space—thereby warming the planet. The greenhouse 

effect is a natural phenomenon, responsible in part for Earth’s average global tem-

perature being hospitable to humans and other forms of life. But Arrhenius also pre-

dicted what he perceived to be an inevitable, eventual consequence of the burning of 

coal and other fossil fuels, which increased significantly during the industrial revolu-

tion. He believed that, unchecked, the dramatic increase in atmospheric CO2 caused 

by human activities would cause a potentially dangerous increase in global tempera-

ture via the “enhanced greenhouse effect.”

Several groups of climate scientists, including those at the National Aeronautics and 

Space Administration’s Goddard Institute for Space Studies (NASA/GISS) at Columbia 

University, study global temperature trends by analyzing observations from many 

thousands of data sets gathered using a variety of different measurement techniques 

over the course of more than a century. Their findings have consistently validated 

Arrhenius’s prediction. There is no doubt that the temperature of our planet is increasing. 

Moreover, the connection between global temperature change and human activities—

most importantly the burning of fossil fuels—is undeniable. 

The issue of global climate change is one that appears frequently in the popular press. 

Unfortunately, it has become something of a political issue, with some people dismiss-

ing its importance or denying its existence outright. As a student of science, you will 

want to develop an informed perspective. To do this, you must understand how obser-

vations, hypotheses, theories, and experimentation contribute to a self-correcting sci-

entific narrative; and how they have given rise to the current scientific consensus 

regarding climate change and humankind’s role in it.

In This Chapter, You Will Learn

Some of what chemistry is and how it is studied using the 

scientific method. You will learn about the system of units used 

by scientists and about expressing and dealing with the 

numbers that result from scientific measurements.

Before You Begin, Review These Skills
•	 Basic algebra

•	 Scientific notation [▸▸| Appendix 1]
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1.1   The Study of Chemistry

Chemistry often is called the central science because knowledge of the principles of 

chemistry can facilitate understanding of other sciences, including physics, biology, 

geology, astronomy, oceanography, engineering, and medicine. Chemistry is the study 

of matter and the changes that matter undergoes. Matter is what makes up our bodies, 

our belongings, our physical environment, and in fact our universe. Matter is anything 

that has mass and occupies space.

Although it can take many different forms, all matter consists of various combina-

tions of atoms of only a relatively small number of simple substances called elements. 

The properties of matter depend on which of these elements it contains and on how the 

atoms of those elements are arranged.

Chemistry You May Already Know

You may already be familiar with some of the terms used in chemistry. Even if this is 

your first chemistry course, you may have heard of molecules and know them to be 

tiny pieces of a substance—much too tiny to see. Further, you may know that molecules 

are made up of atoms, even smaller pieces of matter. And even if you don’t know what 

a chemical formula is, you probably know that H2O is water and CO2 is carbon dioxide. 

You may have used, or at least heard, the term chemical reaction; and you are undoubt-

edly familiar with a variety of chemical reactions, such as those shown in Figure 1.1.

Familiar chemical reactions, such as those shown in Figure 1.1, are all things 

that you can observe at the macroscopic level. In other words, these processes and 

their results are visible to the human eye. In studying chemistry, you will learn to 

understand and visualize many of these processes at the molecular level.

Because atoms and molecules are far too small to observe directly, we need a 

way to visualize them. One way is through the use of molecular models. Throughout 

Figure 1.1  Many familiar processes are chemical 

reactions: (a) The flame of a creme brulee torch is the 

combustion of butane. (b) The bubbles produced when 

Alka-Seltzer dissolves in water are carbon dioxide, 

produced by a chemical reaction between two 

ingredients in the tablets. (c) The formation of rust is a 

chemical reaction that occurs when iron, water, and 

oxygen are all present. (d) Many baked goods “rise” as 

the result of a chemical reaction that produces carbon 

dioxide. (e) The glow produced when luminol is used to 

detect traces of blood in crime-scene investigations is 

the result of a chemical reaction. 

a: Mike Liu/Shutterstock; b: Charles D. Winters/McGraw Hill;  

c: Danie van Niekerk/Shutterstock; d: Marie C Fields/Shutterstock; 

e: Couperfield/Shutterstock

(a) (c)

(e)

(d)

(b)
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Success in a chemistry class depends largely on 

problem-solving ability. The Sample Problems 

throughout this text are designed to help you 

develop problem-solving skills. Each is divided 

into four steps: Strategy, Setup, Solution, and 

Think About It.

Strategy:  Read the problem carefully and determine 

what is being asked and what information is provided. 

The Strategy step is where you should think about what 

skills are required and lay out a plan for solving the prob-

lem. Give some thought to what you expect the result to 

be. If you are asked to determine the number of atoms in 

a sample of matter, for example, you should expect the 

answer to be a whole number. Determine what, if any, 

units should be associated with the result. When possi-

ble, make a ballpark estimate of the magnitude of the 

correct result, and make a note of your estimate.

Setup:  Next, gather the information necessary to solve 

the problem. Some of the information will have been 

given in the problem itself. Other information, such as 

equations, constants, and tabulated data (including 

atomic masses), should also be brought together in this 

step. Write down and label clearly all of the information 

you will use to solve the problem. Be sure to write ap-

propriate units with each piece of information.

Solution:  Using the necessary equations, constants, 

and other information, calculate the answer to the prob-

lem. Pay particular attention to the units associated 

with each number, tracking and canceling units 

throughout the calculation. In the event that multiple 

calculations are required, carefully label any intermedi-

ate results.

How Can I Enhance My Chances of Success in  
Chemistry Class?

Think About It:  Consider your calculated result and 

ask yourself whether or not it makes sense. Compare the 

units and the magnitude of your result with your ballpark 

estimate from the Strategy step. If your result does not 

have the appropriate units, or if its magnitude or sign is 

not reasonable, check your solution for possible errors. A 

very important part of problem solving is being able to 

judge whether the answer is reasonable. It is relatively 

easy to spot a wrong sign or incorrect units, but you 

should also develop a sense of magnitude and be able to 

tell when an answer is either way too big or way too 

small. For example, if a problem asks how many mole-

cules are in a sample and you calculate a number that is 

less than 1, you should know that it cannot be correct.

For additional practice, each Sample Problem is followed 

by three Practice Problems: A, B, and C. Practice Problem A, 

“Attempt,” typically is very similar to the Sample Problem and 

can be solved using the same strategy. Practice Problem B, 

“Build,” generally tests the same skills as Practice Problem A, 

but usually requires a slightly different approach. Practice 

Problem B lets you practice devising your own problem- 

solving strategy—an indispensable skill in any science cur-

riculum. Practice Problem C, “Conceptualize,” specifically 

probes your understanding of the underlying chemical con-

cepts associated with the Sample Problem.

Regular use of the Sample Problems and Practice Prob-

lems A, B, and C in this text can help you develop an effective 

set of problem-solving skills. They can also help you assess 

whether you are ready to move on to the next new concepts. If 

you struggle with the Practice Problems, then you probably 

need to review the corresponding Sample Problem and the 

concepts that led up to it.

this book, we will represent matter at the molecular level using molecular art, the 

two-dimensional equivalent of molecular models. In these pictures, atoms are repre-

sented as spheres, and atoms of particular elements are represented using specific 

colors. Table 1.1 lists some of the elements that you will encounter most often and 

the colors used to represent them in this book.

Molecular art can be of ball-and-stick models, in which the bonds connecting 

atoms appear as sticks [Figure 1.2(b)], or of space-filling models, in which the atoms 

appear to overlap one another [Figure 1.2(c)]. Ball-and-stick and space-filling models 

illustrate the specific, three-dimensional arrangement of the atoms. The ball-and-stick 

model does a good job of illustrating the arrangement of atoms, but exaggerates the 

distances between atoms, relative to their sizes. The space-filling model gives a more 

accurate picture of these interatomic distances but can obscure the details of the three-

dimensional arrangement.

The Scientific Method

Experiments are the key to advancing our understanding of chemistry—or any science. 

Although not all scientists will necessarily take the same approach to experimentation, 

they all follow a set of guidelines known as the scientific method to add their results 
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to the larger body of knowledge within a given field. The flowchart in Figure 1.3 

illustrates this basic process. The method begins with the gathering of data via observa-

tions and experiments. Scientists study these data and try to identify patterns or trends. 

When they find a pattern or trend, they may summarize their findings with a law, a 

concise verbal or mathematical statement of a reliable relationship between phenomena. 

Scientists may then formulate a hypothesis, a tentative explanation for their observa-

tions. Further experiments are designed to test the hypothesis. If experiments indicate 

that the hypothesis is incorrect, the scientists go back to the drawing board, try to come 

up with a different interpretation of their data, and formulate a new hypothesis. The 

new hypothesis will then be tested by experiment. When a hypothesis stands the test 

of extensive experimentation, it may evolve into a theory. A theory is a unifying prin-

ciple that explains a body of experimental observations and the laws that are based on 

them. Theories can also be used to predict related phenomena, so theories are con-

stantly being tested. If a theory is disproved by experiment, then it must be discarded 

or modified so that it becomes consistent with experimental observations.

A fascinating example of the use of the scientific method is the story of how 

smallpox was eradicated. Late in the eighteenth century, an English doctor named Edward 

Jenner observed that even during outbreaks of smallpox in Europe, milkmaids seldom 

contracted the disease. He reasoned that when people who had frequent contact with cows 

contracted cowpox, a similar but far less harmful disease, they developed a natural immu-

nity to smallpox. He predicted that intentional exposure to the cowpox virus would pro-

duce the same immunity. In 1796, Jenner exposed an 8-year-old boy to the cowpox virus 

using pus from the cowpox lesions of an infected milkmaid. Six weeks later, he exposed 

the boy to the smallpox virus and, as Jenner had predicted, the boy did not contract the 

disease. Subsequent experiments using the same technique (later dubbed vaccination from 

the Latin vacca meaning cow) confirmed that immunity to smallpox could be induced.

Hydrogen

Carbon

Nitrogen

Boron

Oxygen

Fluorine

Sodium

Sulfur

Phosphorus

Chlorine

Bromine

Iodine

TABLE 1.1
Colors of Elements Commonly Used 
in Molecular Art

H2O

(a)

(b)

(c)

Figure 1.2  Water represented with a 

(a) molecular formula, (b) ball-and-stick 

model, and (c) space-filling model.

Observation:
Milkmaids don’t

contract smallpox.

Further
Experiment:

Many more humans
inoculated with
cowpox virus,

confirming the model.

Hypothesis:
Having contracted
cowpox, milkmaids

have a natural immunity
to smallpox.

Experiment:
Intentionally expose

a healthy child to
cowpox and later to

smallpox.

Model:
Because child did not

contract smallpox,
immunity seemed to
have resulted from
cowpox exposure.

Observations
Natural phenomena

and measured events;
if universally consistent,

 can be stated
as a law

Hypothesis
Tentative explanation

that explains
observations

Experiment
Procedure to test

hypothesis; measures
one variable at a time

Model (Theory)
Set of conceptual
assumptions that

explains data from
accumulated

experiments; predicts
 related phenomena

Further
Experiment

Tests predictions
based on model

Hypothesis revised if
experimental results

do not support it

Model altered if
experimental results

do not support it

Figure 1.3  Flowchart of the scientific method.
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Student Note: Some books refer to 

substances as pure substances. These 

two terms generally mean the same 

thing although the adjective pure is 

unnecessary in this context because a 

substance is, by definition, pure.

Solid Liquid Gas

Figure 1.4  Molecular-level illustrations of a solid, liquid, and gas.

Figure 1.5  Water as a solid (ice), 

liquid, and gas. (We can’t actually see 

water vapor, any more than we can see 

the nitrogen and oxygen that make up 

most of the air we breathe. When we 

see steam or clouds, what we are 

actually seeing is water vapor that has 

condensed upon encountering cold air.) 

Charles D. Winters/Timeframe Photography/

McGraw Hill

Animation

Matter—three states of matter.

A superbly coordinated international effort on the part of healthcare workers 

was successful in eliminating smallpox worldwide. In 1980, the World Health Organi-

zation declared smallpox officially eradicated in nature. This historic triumph over a 

dreadful disease, one of the greatest medical advances of the twentieth century, began 

with Jenner’s astute observations, inductive reasoning, and careful experimentation—

the essential elements of the scientific method.

1.2   Classification of Matter

Chemists classify matter as either a substance or a mixture of substances. A substance 

is a form of matter that has a specific composition and distinct properties. Examples 

are salt (sodium chloride), iron, water, mercury, carbon dioxide, and oxygen. Sub-

stances can be further classified as either elements (such as iron, mercury, and oxygen) 

or compounds (such as salt, water, and carbon dioxide). Different substances differ 

from one another in composition and properties, and each can be identified by its 

appearance, taste, smell, or other properties.

States of Matter

Every substance can, in principle, exist as a solid, a liquid, and a gas, the three physical 

states depicted in Figure 1.4. Solids and liquids sometimes are referred to collectively as 

the condensed phases. Liquids and gases sometimes are referred to collectively as fluids. 

In a solid, particles are held close together in an orderly fashion with little freedom of 

motion. As a result, a solid does not conform to the shape of its container. Particles in 

a liquid are close together but are not held rigidly in position; they are free to move past 

one another. Thus, a liquid conforms to the shape of the part of the container it fills. In 

a gas, the particles are separated by distances that are very large compared to the size of 

the particles. A sample of gas assumes both the shape and the volume of its container.

The three states of matter can be interconverted without changing the chemical com-

position of the substance. Upon heating, a solid (e.g., ice) will melt to form a liquid (water). 

Further heating will vaporize the liquid, converting it to a gas (water vapor). Conversely, 

cooling a gas will cause it to condense into a liquid. When the liquid is cooled further, it 

will freeze into the solid form. Figure 1.5 shows the three physical states of water.

Elements

An element is a substance that cannot be separated into simpler substances by chemical 

means. Iron, mercury, oxygen, and hydrogen are just 4 of the 118 elements that have 
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been identified. Most of the known elements occur naturally on Earth. The others have 

been produced by scientists via nuclear processes, which are discussed in Chapter 20. 

As shown in Figure 1.6(a) and (b), an element may consist of atoms or molecules.

For convenience, chemists use symbols of one or two letters to represent the ele-

ments. Only the first letter of an element’s chemical symbol is capitalized. A list of the 

elements and their symbols appears at the beginning of this book. The symbols of some 

elements are derived from their Latin names—for example, Ag from argentum (silver), 

Pb from plumbum (lead), and Na from natrium (sodium)—while most of them come from 

their English names—for example, H for hydrogen, Co for cobalt, and Br for bromine.

Compounds

Most elements can combine with other elements to form compounds. Hydrogen gas, 

for example, burns in the presence of oxygen gas to form water, which has properties 

that are distinctly different from those of either hydrogen or oxygen. Thus, water is a 

compound, a substance composed of atoms of two or more elements chemically united 

in fixed proportions [Figure 1.6(c)]. The elements that make up a compound are called 

the compound’s constituent elements. For example, the constituent elements of water 

are hydrogen and oxygen; and water always contains twice as many hydrogen atoms 

as oxygen atoms (fixed proportions).

A compound cannot be separated into simpler substances by any physical process. 

(A physical process [▸▸| Section 1.4] is one that does not change the identity of the 

matter. Examples of physical processes include boiling, freezing, and filtering.) Instead, 

the separation of a compound into its constituent elements requires a chemical reaction.

Mixtures

A mixture is a combination of two or more substances [Figure 1.6(d)] in which the 

substances retain their distinct identities. Like pure substances, mixtures can be solids, 

liquids, or gases. Some familiar examples are mixed nuts, 14-carat gold, apple juice, salt 

water, and air. Unlike compounds, mixtures do not have a universal constant composition. 

Therefore, samples of air collected in different locations will differ in composition 

because of differences in altitude, pollution, and other factors. The ratio of salt to water 

in different samples of salt water will vary depending on how they were prepared.

Mixtures are either homogeneous, having uniform composition throughout; or 

heterogeneous, having variable composition. When we dissolve a teaspoon of sugar in 

a glass of water, we get a homogeneous mixture. However, if we mix sand with iron 

filings, we get a a heterogeneous mixture in which the two substances remain distinct 

and discernible from each other (Figure 1.7).

Figure 1.7  (a) A heterogeneous mixture contains iron filings and sand. (b) A magnet is used 

to separate the iron filings from the mixture. 

a: Charles D. Winters/McGraw Hill; b: Charles D. Winters/Timeframe Photography/McGraw Hill

(a) (b)

Figure 1.6  (a) Isolated atoms of an 

element. (b) Molecules of an element. 

(c) Molecules of a compound, 

consisting of more than one element. 

(d) A mixture of atoms of an element 

and molecules of an element and a 

compound.

(a)

(b)

(c)

(d)

Student Note: A compound may 

consist of molecules or ions, which 

we discuss in Chapter 2.
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Mixtures, whether homogeneous or heterogeneous, can be separated into pure 

components by physical means—without changing the identities of the components. 

Thus, sugar can be recovered from a water solution by evaporating the solution to 

dryness. Condensing the vapor will give us back the water component. To separate 

the sand–iron mixture, we can use a magnet to remove the iron filings from the sand, 

because sand is not attracted to the magnet [see Figure 1.7(b)]. After separation, the 

components of the mixture will have the same composition and properties as they did 

prior to being combined. The relationships among substances, elements, compounds, 

and mixtures are summarized in Figure 1.8.

1.3   Scientific Measurement

Scientists use a variety of devices to measure the properties of matter. A meterstick 

is used to measure length; a burette, pipette, graduated cylinder, and volumetric flask 

are used to measure volume (Figure 1.9); a balance is used to measure mass; and a 

Homogeneous
mixtures

Heterogeneous
mixtures

Compounds Elements

Separation by

physical methodsMixtures Substances

Matter

Separation by

chemical methods
Figure 1.8  Flowchart for the classification of matter.

Pipette

(c)
Volumetric flask

(a)
Graduated cylinder

(b)
Burette

(d)

Figure 1.9  (a) A volumetric flask is used to prepare a precise 

volume of a solution for use in the laboratory. (b) A graduated 

cylinder is used to measure a volume of liquid. It is less 

precise than the volumetric flask. (c) A volumetric pipette is 

used to deliver a precise amount of liquid. (d) A burette is 

used to measure the volume of a liquid that has been added 

to a container. A reading is taken before and after the liquid 

is delivered, and the  

volume delivered  

is determined by  

subtracting the first  

reading from the  

second.



10	 CHAPTER 1  Chemistry: The Central Science

thermometer is used to measure temperature. Properties that can be measured are 

called quantitative properties because they are expressed using numbers. When we 

express a measured quantity with a number, though, we must always include the 

appropriate unit; otherwise, the measurement is meaningless. For example, to say that 

the depth of a swimming pool is 3 is insufficient to distinguish between one that is 

3 feet (0.9 meter) and one that is 3 meters (9.8 feet) deep. Units are essential to report-

ing measurements correctly.

The two systems of units with which you are probably most familiar are the 

English system (foot, gallon, pound, etc.) and the metric system (meter, liter, kilogram, 

etc.). Although there has been an increase in the use of metric units in the United 

States in recent years, English units still are used commonly. For many years, scientists 

recorded measurements in metric units, but in 1960, the General Conference on 

Weights and Measures, the international authority on units, proposed a revised metric 

system for universal use by scientists. We use both metric and revised metric (SI) 

units in this book.

SI Base Units

The revised metric system is called the International System of Units (abbreviated SI, 

from the French Système Internationale d’Unités). Table 1.2 lists the seven SI base 

units. All other units of measurement can be derived from these base units. The SI 

unit for volume, for instance, is derived by cubing the SI base unit for length. The 

prefixes listed in Table 1.3 are used to denote decimal fractions and multiples of SI 

units. This enables scientists to tailor the magnitude of a unit to a particular applica-

tion. For example, the meter (m) is appropriate for describing the dimensions of a 

classroom, but the kilometer (km), 1000 m, is more appropriate for describing the 

Prefix Symbol Meaning Example

Tera- T 1 × 1012 (1,000,000,000,000) 1 teragram (Tg) = 1 × 1012 g

Giga- G 1 × 109 (1,000,000,000) 1 gigawatt (GW) = 1 × 109 W

Mega- M 1 × 106 (1,000,000) 1 megahertz (MHz) = 1 × 106 Hz

Kilo- k 1 × 103 (1,000) 1 kilometer (km) = 1 × 103 m

Deci- d 1 × 10–1 (0.1) 1 deciliter (dL) = 1 × 10−1 L

Centi- c 1 × 10–2 (0.01) 1 centimeter (cm) = 1 × 10−2 m

Milli- m 1 × 10–3 (0.001) 1 millimeter (mm) = 1 × 10−3 m

Micro- μ 1 × 10–6 (0.000001) 1 microliter (μL) = 1 × 10−6 L

Nano- n 1 × 10–9 (0.000000001) 1 nanosecond (ns) = 1 × 10−9 s

Pico- p 1 × 10–12 (0.000000000001) 1 picogram (pg) = 1 × 10−12 g

TABLE 1.3 Prefixes Used with SI Units

Base Quantity Name of Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

TABLE 1.2 Base SI Units 
Student Note: Only one of the 

seven SI base units, the kilogram, 

itself contains a prefix.

Student Note: According to the U.S. 

Metric Association (USMA), the United 

States is “the only significant holdout” 

with regard to adoption of the metric 

system. The other countries that 

continue to use traditional units are 

Myanmar (formerly Burma) and Liberia.
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distance between two cities. Units that you will encounter frequently in the study of 

chemistry include those for mass, temperature, volume, and density.

Mass

Although the terms mass and weight often are used interchangeably, they do not mean 

the same thing. Strictly speaking, weight is the force exerted by an object or sample 

due to gravity. Mass is a measure of the amount of matter in an object or sample. 

Because gravity varies from location to location (gravity on the moon is only about 

one-sixth that on Earth), the weight of an object varies depending on where it is 

measured. The mass of an object remains the same regardless of where it is measured. 

The SI base unit of mass is the kilogram (kg), but in chemistry the smaller gram (g) 

often is more convenient and is more commonly used:

1 kg = 1000 g = 1 × 103 g

Temperature

There are two temperature scales used in chemistry. Their units are degrees Celsius 

(°C) and kelvin (K). The Celsius scale was originally defined using the freezing point 

(0°C) and the boiling point (100°C) of pure water at sea level. As Table 1.2 shows, 

the SI base unit of temperature is the kelvin. Kelvin is known as the absolute tem-

perature scale, meaning that the lowest temperature possible is 0 K, a temperature 

referred to as “absolute zero.” No degree sign (°) is used to represent a temperature 

on the Kelvin scale. The theoretical basis of the Kelvin scale has to do with the 

behavior of gases and is discussed in Chapter 10.

Units of the Celsius and Kelvin scales are equal in magnitude, so a degree 

Celsius is equivalent to a kelvin. Thus, if the temperature of an object increases by 

5°C, it also increases by 5 K. Absolute zero on the Kelvin scale is equivalent to 

−273.15°C on the Celsius scale. We use the following equation to convert a tem-

perature from units of degrees Celsius to kelvin:

	 K = °C + 273.15	 Equation 1.1

Depending on the precision required, the conversion from degrees Celsius to 

kelvin often is done simply by adding 273, rather than 273.15. 

Sample Problem 1.1 illustrates conversions between these two temperature 

scales.

SAMPLE PROBLEM 1.1

Normal human body temperature can range over the course of the day from about 36°C in the early morning to about 37°C in the 

afternoon. Express these two temperatures and the range that they span using the Kelvin scale.

Strategy  Use Equation 1.1 to convert temperatures from the Celsius scale to the Kelvin scale. Then convert the range of tempera-

tures from degrees Celsius to kelvin, keeping in mind that 1°C is equivalent to 1 K.

Setup  Equation 1.1 is already set up to convert the two temperatures from degrees Celsius to kelvin. No further manipulation of 

the equation is needed. The range in kelvin will be the same as the range in degrees Celsius.

Solution  36°C + 273 = 309 K, 37°C + 273 = 310 K, and the range of 1°C is equal to a range of 1 K.

THINK ABOUT IT

Check your math and remember that converting a temperature from degrees Celsius to kelvin is di�erent from converting a 

di�erence in temperature from degrees Celsius to kelvin.

(Continued on next page)
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Practice Problem A TTEMPT   Express the freezing  

point of water (0°C), the boiling point of water (100°C), 

and the range spanned by the two temperatures using the 

Kelvin scale.

Practice Problem B UILD   According to the website 

of the National Aeronautics and Space Administration 

(NASA), the average temperature of the universe is 2.7 K. 

Convert this temperature to degrees Celsius. 

Practice Problem C ONCEPTUALIZE   If a single 

degree on the Celsius scale is represented by the rectangle 

on the left, which of the rectangles on the right best 

represents a single kelvin? (i) (ii) (iii) (iv)

Bringing Chemistry to Life

Fahrenheit Temperature Scale

Outside of scientific circles, the Fahrenheit temperature scale is the one most used in the United States. Before the work 

of Daniel Gabriel Fahrenheit (German physicist, 1686–1736), there were numerous different, arbitrarily defined temperature 

scales, none of which gave consistent measurements. Accounts of exactly how Fahrenheit devised his temperature scale 

vary from source to source. In one account, in 1724, Fahrenheit labeled as 0° the lowest artificially attainable temperature 

at the time (the temperature of a mixture of ice, water, and ammonium chloride). Using a traditional scale consisting of 

12 degrees, he labeled the temperature of a healthy human body as the twelfth degree. On this scale, the freezing point  

of water occurred at the fourth degree. For better resolution, each degree was further divided into eight smaller degrees. 

This convention makes the freezing point of water 32° and normal body temperature 96°. Today we consider normal 

body temperature to be somewhat higher than 96°F.

The boiling point of water on the Fahrenheit scale is 212°, meaning that there are 180 degrees (212° − 32°) between 

the freezing and boiling points. This separation is considerably more than the 100 degrees between the freezing point and 

boiling point of water on the Celsius scale [named after Swedish physicist Ander Celsius (1701–1744)]. Thus, the size of 

a degree on the Fahrenheit scale is only 100/180 or five-ninths of a degree on the Celsius scale. Equations 1.2 and 1.3 

give the relationship between Fahrenheit and Celsius temperatures.

Equation 1.2	​ temp in °C = (temp in ° F − 32°F) × ​ 
5°C

 ____ 
9°F

 ​​

and

Equation 1.3	​ temp in °F = ​ 
9°F

 ____ 
5° C

 ​ × (temp in °C) + 32°F​

SAMPLE PROBLEM 1.2

A body temperature below 35.0°C constitutes hypothermia, whereas one above 39.0°C constitutes a high fever. Convert each of 

these temperatures to the Fahrenheit scale.

Strategy  We are given temperatures in Celsius and are asked to convert them to Fahrenheit.

Sample Problem 1.2 illustrates the conversion between Celsius and Fahrenheit 

scales.
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Derived Units: Volume and Density

There are many quantities, such as volume and density, that require units not 

included in the base SI units. In these cases, we must combine base units to derive 

appropriate units for the quantity.

The derived SI unit for volume, the meter cubed (m3), is a larger volume 

than is practical in most laboratory settings. The more commonly used metric 

unit, the liter (L), is derived by cubing the decimeter (one-tenth of a meter) and 

is therefore also referred to as the cubic decimeter (dm3). Another commonly used 

metric unit of volume is the milliliter (mL), which is derived by cubing the cen-

timeter (1/100 of a meter). The milliliter is also referred to as the cubic centimeter 

(cm3). Figure 1.10 illustrates the relationship between the liter (or dm3) and the 

milliliter (or cm3).

Density is the ratio of mass to volume. Oil floats on water, for example, because, 

in addition to not mixing with water, oil has a lower density than water. That is, given 

equal volumes of the two liquids, the oil will have a smaller mass than the water. 

Density is calculated using the following equation:

	 d = ​​ 
m

 __ 
V

 ​​	 Equation 1.4

where d, m, and V denote density, mass, and volume, respectively. The SI-derived 

unit for density is the kilogram per cubic meter (kg/m3). This unit is too large for 

most common uses, however, so grams per cubic centimeter (g/cm3) and its equivalent, 

Setup  We use Equation 1.3:

	​ temp in °F = ​ 
9° F

 ____ 
5° C

 ​ × (temp in ° C) + 32° F​	 Equation 1.3

Solution

​temp in ° F = ​ 
9° F

 ____ 
5° C

 ​ × 35.0° C + 32° F = 95.0° F​

​temp in °F = ​ 
9° F

 ____ 
5°C

 ​ × 39.0° C + 32° F = 102.2° F​

Practice Problem A TTEMPT   Convert the  

temperatures 45.0°C and 90.0°C, and the difference 

between them, to degrees Fahrenheit. 

Practice Problem B UILD   In Ray Bradbury’s 1953 

novel Fahrenheit 451, 451°F is said to be the temperature 

at which books, which have been banned in the story, 

ignite. Convert 451°F to the Celsius scale. 

Practice Problem C ONCEPTUALIZE   If a  

single degree on the Fahrenheit scale is represented by  

the rectangle on the left, which of the rectangles on the 

right best represents a single degree on the Celsius scale? 

Which best represents a single kelvin? (i) (ii) (iii) (iv)

THINK ABOUT IT

“Normal” body temperature on the Fahrenheit scale is generally considered to be 98.6°F. The temperatures of hypothermia 

and high fever should be below and above that number, respectively. Therefore, 95.0°F and 102.2°F seem like reasonable 

results.

Oil floating on water is a familiar 

demonstration of density di�erences.

David A. Tietz/Editorial Image, LLC
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grams per milliliter (g/mL), are used to express the densities of most solids and 

liquids. Water, for example, has a density of 1.00 g/cm3 at 4°C. Because gas  

densities generally are very low, we typically express them in units of grams per 

liter (g/L):

1 g/cm3 = 1 g/mL = 1000 kg/m3

1 g/L = 0.001 g/mL

Sample Problem 1.3 illustrates density calculations.

1 dm

1 dm

1 dm

1 cm

1 cm

1 cm

1 mm

1 dm3 = 1 L

1 cm3 = 1 mL

1 mm3

Figure 1.10  The larger cube has 1-dm (10-cm) sides and a volume of 1 L. The next smaller cube has 1-cm (10-mm) sides and a volume 

of 1 cm3 or 1 mL. The smallest cube has 1-mm sides and a volume of 1 mm3. Note that although there are 10 cm in a decimeter, there  

are 1000 cm3 in a cubic decimeter. This figure is drawn to scale to give you a sense of the actual dimensions of liters and cubic 

centimeters.
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SAMPLE PROBLEM 1.3

Ice cubes float in a glass of water because solid water is less dense than liquid water. (a) Calculate the density of ice given that, at 

0°C, a cube that is 2.0 cm on each side has a mass of 7.36 g, and (b) determine the volume occupied by 23 g of ice at 0°C.

Strategy  (a) Determine density by dividing mass by volume (Equation 1.4), and (b) use the calculated density to determine the 

volume occupied by the given mass.

Setup  (a) We are given the mass of the ice cube, but we must calculate its volume from the dimensions given. The volume of the 

ice cube is (2.0 cm)3, or 8.0 cm3. (b) Rearranging Equation 1.4 to solve for volume gives V = m∕d.

Solution  (a) ​d = ​ 
7.36 g

 _______ 
8.0 ​ cm​​ 3​

 ​ = 0.92 ​g/cm​​ 3​    or    0.92 g/mL​    (b) ​V = ​ 
23 g
 _________ 

0.92 ​g/cm​​ 3​
 ​ = 25 ​cm​​ 3​    or    25 mL​

Practice Problem A TTEMPT   Given that 25.0 mL of mercury has a mass of 340.0 g, calculate (a) the 

density of mercury and (b) the volume of 155 g of mercury.

Practice Problem B UILD   Calculate (a) the density of a solid substance if a cube measuring 2.33 cm on one 

side has a mass of 117 g and (b) the mass of a cube of the same substance measuring 7.41 cm on one side. 

Practice Problem C ONCEPTUALIZE   Using the picture of the graduated cylinder and its contents, arrange 

the following in order of increasing density: blue liquid, pink liquid, yellow liquid, grey solid, blue solid, green solid.

THINK ABOUT IT

For a sample with a density less than 1 g/cm3, the number of cubic centimeters should be greater than the 

number of grams. In this case, 25 (cm3) > 23 (g).

The following box illustrates the importance of using units carefully in scientific work.

On December 11, 1998, NASA launched the 

125-million-dollar Mars Climate Orbiter, which was 

intended to be the Red Planet’s first weather satellite. 

After a 416-million-mile (mi) journey, the spacecraft 

was supposed to go into Mars’s orbit on September 

23, 1999. Instead, it entered Mars’s atmosphere 

about 100 km (62 mi) lower than planned and was destroyed by 

heat. Mission controllers later determined that the spacecraft 

was lost because English measurement units were not converted 

to metric units in the navigation software.

Engineers at Lockheed Martin Corporation, who built the 

spacecraft, specified its thrust in pounds, which is an English 

unit of force. Scientists at NASA’s Jet Propulsion Laboratory, 

on the other hand, who were responsible for deployment, had 

assumed that the thrust data they were given were expressed in 

newtons, a metric unit. To carry out the conversion between 

pound and newton, we would start with 1 lb = 0.4536 kg and, 

from Newton’s second law of motion,

	 force = (mass)(acceleration) = (0.4536 kg)(9.81 m/s2)

	 = 4.45 kg ⋅ m/s2 = 4.45 N

because 1 newton (N) = 1 kg ⋅ m/s2. Therefore, instead of converting 

1 lb of force to 4.45 N, the scientists treated it as a force of 1 N. 

The considerably smaller engine thrust employed because of the 

engineers’ failure to convert from English to metric units resulted 

in a lower orbit and the ultimate destruction of the spacecraft.

Why Are Units So Important?

Commenting on the failure of the Mars mission, one 

scientist said, “This is going to be the cautionary tale that 

will be embedded into introduction to the metric system in 

elementary school, high school, and college science courses 

until the end of time.”

Mars Climate Orbiter during preflight tests.

Source: NASA Image Collection/Alamy Stock Photo
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1.3.1	 The coldest temperature ever recorded on Earth was 

−128.6°F (recorded at Vostok Station, Antarctica, on  

July 21, 1983). Express this temperature in degrees 

Celsius and in kelvins.

a)	 −89.2°C, −89.2 K	 d)  −173.9°C, 99.3 K

b)	 −289.1°C, −15.9 K	 e)  −7.0°C, 266.2 K

c)	 −89.2°C, 183.9 K

1.3.2	 What is the density of an object that has a volume of  

34.2 cm3 and a mass of 19.6 g?

a)	 0.573 g/cm3	 d)  53.8 g/cm3

b)	 1.74 g/cm3	 e)  14.6 g/cm3

c)	 670 g/cm3

1.3.3	 A sample of water is heated from room temperature to 

just below the boiling point. The overall change in 

temperature is 72°C. Express this temperature change 

in kelvins.

a)	 345 K	 d)  201 K

b)	 72 K	 e)  273 K

c)	 0 K

1.3.4	 Given that the density of gold is 19.3 g/cm3, calculate the 

volume (in cm3) of a gold nugget with a mass of 5.98 g.

a)	 3.23 cm3	 d)  0.310 cm3

b)	 5.98 cm3	 e)  13.3 cm3

c)	 115 cm3

CHECKPOINT – SECTION 1.3 Scientific Measurement

1.4   The Properties of Matter

Substances are identified by their properties as well as by their composition. Proper-

ties of a substance may be quantitative (measured and expressed with a number) or 

qualitative (not requiring explicit measurement).

Physical Properties

Color, melting point, boiling point, and physical state are all physical properties. 

A physical property is one that can be observed and measured without changing 

the identity of a substance. For example, we can determine the melting point of 

ice by heating a block of ice and measuring the temperature at which the ice is 

converted to water. Liquid water differs from ice in appearance but not in com-

position; both liquid water and ice are H2O. Melting is a physical change: one in 

which the state of matter changes, but the identity of the matter does not change. 

We can recover the original ice by cooling the water until it freezes. Therefore, 

the melting point of a substance is a physical property. Similarly, when we say 

that nitrogen dioxide gas is brown, we are referring to the physical property of 

color.

Chemical Properties

The statement “Hydrogen gas burns in oxygen gas to form water” describes a chemical 

property of hydrogen, because to observe this property we must carry out a chemical 

change—burning in oxygen (combustion), in this case. After a chemical change, the 

original substance (hydrogen gas in this case) will no longer exist. What remains is a 

different substance (water, in this case). We cannot recover the hydrogen gas from the 

water by means of a physical process, such as boiling or freezing.

Every time we bake cookies, we bring about a chemical change. When heated, 

the sodium bicarbonate (baking soda) in cookie dough undergoes a chemical change 

that produces carbon dioxide gas. The gas forms numerous little bubbles in the dough 

during the baking process, causing the cookies to “rise.” Once the cookies are baked, 

we cannot recover the sodium bicarbonate by cooling the cookies, or by any physical 
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process. When we eat the cookies, we cause further chemical changes that occur dur-

ing digestion and metabolism.

Extensive and Intensive Properties

All properties of matter are either extensive or intensive. The measured value of an 

extensive property depends on the amount of matter. Mass is an extensive property. 

More matter means more mass. Values of the same extensive property can be added 

together. For example, two gold nuggets will have a combined mass that is the sum 

of the masses of each nugget, and the length of two city buses is the sum of their 

individual lengths. The value of an extensive property depends on the amount of 

matter.

The value of an intensive property does not depend on the amount of matter. 

Density and temperature are intensive properties. Suppose that we have two beakers 

of water at the same temperature and we combine them to make a single quantity of 

water in a larger beaker. The density and the temperature of the water in the larger 

combined quantity will be the same as they were in the two separate beakers. Unlike 

mass and length, which are additive, temperature, density, and other intensive proper-

ties are not additive. Figure 1.11 illustrates some of the extensive and intensive prop-

erties of water.

Sample Problem 1.4 shows you how to differentiate chemical and physical 

processes.

Figure 1.11  Some extensive properties (mass and volume) and intensive properties (density, boiling point, and 

freezing point) of water. The measured values of the extensive properties depend on the amount of water. The 

measured values of the intensive properties are independent of the amount of water.

(Photos): H.S. Photos/Alamy Stock Photo

Mass

Volume

Density

Boiling point

Freezing point

25.0 g

25.0 mL

1.00 g/mL

100.0°C

0.00°C

50.0 g Extensive properties:

Measured values change

with amount of water.

Intensive properties:

Measured values do not

change with amount of

water.

50.0 mL

1.00 g/mL

100.0°C

0.00°C

(a) (b)
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SAMPLE PROBLEM 1.4

The diagram in (a) shows a compound made up of atoms of two elements (represented by the green and red spheres) in the liquid 

state. Which of the diagrams in (b) to (d) represent a physical change, and which diagrams represent a chemical change?

(a) (b) (c) (d)

Strategy  We review the discussion of physical and chemical changes. A physical change does not change the identity of a  

substance, whereas a chemical change does change the identity of a substance.

Setup  The diagram in (a) shows a substance that consists of molecules of a compound, each of which contains two different 

atoms, represented by green and red spheres. Diagram (b) contains the same number of red and green spheres, but they are not 

arranged the same way as in diagram (a). In (b), each molecule is made up of two identical atoms. These are molecules of elements, 

rather than molecules of a compound. Diagram (c) also contains the same numbers of red and green spheres as diagram (a). In (c), 

however, all the atoms are shown as isolated spheres. These are atoms of elements, rather than molecules of a compound. In diagram (d), 

the spheres are arranged in molecules, each containing one red and one green sphere. Although the molecules are farther apart in  

diagram (d), they are the same molecules as shown in diagram (a).

Solution  Diagrams (b) and (c) represent chemical changes. Diagram (d) represents a physical change.

THINK ABOUT IT

A chemical change changes the identity of matter. A physical change does not.

Practice Problem A TTEMPT   Which of the following processes is a physical change? (a) evaporation of water;  

(b) combination of hydrogen and oxygen gas to produce water; (c) dissolution of sugar in water; (d) separation of sodium chloride 

(table salt) into its constituent elements, sodium and chlorine; (e) combustion of sugar to produce carbon dioxide and water. 

Practice Problem B UILD   The diagram on the left shows a system prior to a process taking place. Which of the other diagrams 

[(i) to (iv)] could represent the system after a physical process; which could represent the system after a chemical process; and which 

could not represent either? 

(i) (iii)(ii) (iv)

Practice Problem C ONCEPTUALIZE   The diagram on the right represents the result of a process. Which of the diagrams 

[(i) to (iii)] could represent the starting material if the process were physical, and which could represent the starting material if the 

change were chemical?

(i) (iv) (ii) (iii)     
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1.4.1	 Which of the following [(a)–(f )] represents a physical 

change? (Select all that apply.) 

a)

b)

c)

before after

before after

before after

1.4.2	 Which of the following [(a)–(f )] represents a chemical 

change? (Select all that apply.) 

d)

e)

f)

before after

before after

before after

CHECKPOINT – SECTION 1.4 The Properties of Matter

1.5   Uncertainty in Measurement

Chemistry makes use of two types of numbers: exact and inexact. Exact numbers 

include numbers with defined values, such as 2.54 in the definition 1 inch (in) =  

2.54 cm, 1000 in the definition 1 kg = 1000 g, and 12 in the definition 1 dozen = 

12 objects. (The number 1 in each of these definitions is also an exact number.) Exact 

numbers also include those that are obtained by counting. Numbers measured by any 

method other than counting are inexact.

Measured numbers are inexact because of the measuring devices that are used, 

the individuals who use them, or both. For example, a ruler that is poorly calibrated 

will result in measurements that are in error—no matter how carefully it is used. 

Another ruler may be calibrated properly but have insufficient resolution for the neces-

sary measurement. Finally, whether or not an instrument is properly calibrated or has 

sufficient resolution, there are unavoidable differences in how different people see and 

interpret measurements.

Significant Figures

An inexact number must be reported in such a way as to indicate the uncertainty in 

its value. This is done using significant figures. Significant figures are the meaningful 

digits in a reported number. Consider the measurement of the USB plug in Figure 1.12 

using the ruler above it. The plug’s width is slightly greater than 1 cm. We may record 

the width as 1.2 cm, but because there are no gradations between 1 and 2 cm on this 

ruler, we are estimating the second digit. Although we are certain about the 1 in 1.2, 

we are not certain about the 2. The last digit in a measured number is referred to as 

the uncertain digit; and the uncertainty associated with a measured number is gener-

ally considered to be ±1 in the place of the last digit. Thus, when we report the width 

of the USB plug to be 1.2 cm, we are implying that its width is 1.2 ± 0.1 cm, meaning 

10 2 3 4 5
cm

10 2 3 4
cm

5

Figure 1.12  The width we report for 

the USB plug depends on which ruler 

we use to measure it.

Mega Pixel/Shutterstock
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that its actual width may be as low as 1.1 cm or as high as 1.3 cm. Each of the digits 

in a measured number, including the uncertain digit, is a significant figure. The 

reported width of the USB plug, 1.2 cm, contains two significant figures.

A ruler with millimeter gradations would enable us to be certain about the 

second digit in this measurement and to estimate a third digit. Now consider the 

measurement of the USB plug using the ruler below it. We may record the width 

as 1.15 cm. Again, we estimate one digit beyond those we can read. The reported 

width of 1.15 cm contains three significant figures. Reporting the width as 1.15 cm 

implies that the width is 1.15 ± 0.01 cm.

The number of significant figures in any number can be determined using the 

following guidelines:

Always Significant  Nonzero digits and the zeros between them:

137.1 209.51 410.05 10.0011 0.036 0.00501

significant figures 4 5 5 6 2 3

Zeros to the right of nonzero digits in numbers that contain decimal points:

8.300 161.000 0.50 0.0113 309.0 0.0052500

significant figures 4 6 2 3 4 5

Never Significant  Zeros to the left of leftmost nonzero digit:

0.00137 0.695 0.00008 0.051050 0.006011 0.00090

significant figures 3 3 1 5 4 2

Sometimes Significant  Zeros to the right of the rightmost nonzero digit in a 

number that does not contain a decimal point may or may not be considered sig-

nificant, depending on circumstance. For example, the number 1000 may have 

anywhere from one to four significant figures. Without additional information, it 

is not possible to know. To avoid ambiguity in such cases, it is best to express 

such numbers using scientific notation [▸▸| Appendix 1].

1 × 103 1.0 × 103 1.00 × 103 1.000 × 103 

significant figures 1 2 3 4

Sample Problem 1.5 lets you practice determining the number of significant 

figures in a number.

Student data indicate you may struggle 
with significant figures. Access the eBook to 
view additional Learning Resources on this 
topic.

Student Hot Spot

SAMPLE PROBLEM 1.5

Determine the number of significant figures in the following measurements: (a) 443 cm, (b) 15.03 g, (c) 0.0356 kg, (d) 3.000 × 10–7 L, 

(e) 50 mL, (f ) 0.9550 m.

Strategy  All nonzero digits are significant, so the goal will be to determine which of the zeros is significant.

Setup  Zeros are significant if they appear between nonzero digits or if they appear after a nonzero digit in a number that contains  

a decimal point. Zeros may or may not be significant if they appear to the right of the last nonzero digit in a number that does not 

contain a decimal point.

Solution  (a) 3; (b) 4; (c) 3; (d) 4; (e) 1 or 2, an ambiguous case; (f ) 4.

THINK ABOUT IT

Be sure that you have identified zeros correctly as either significant or not significant. They are significant in (b), (d), and (f); 

they are not significant in (c); and it is not possible to tell in (e).

Student Note: It is important not to 

imply greater certainty in a measured 

number than is realistic. For example, 

it would be inappropriate to report the 

width of the USB plug in Figure 1.12 as 

1.1500 cm, because this would imply 

an uncertainty of ±0.0001 cm.


