
Engineering Mechanics

STATICS
THIRD EDITION

Michael E. Plesha
Professor Emeritus, Department of Engineering Physics

University of Wisconsin–Madison

Gary L. Gray
Department of Engineering Science and Mechanics

Penn State University

Robert J. Witt
Department of Engineering Physics

University of Wisconsin–Madison

Francesco Costanzo
Department of Engineering Science and Mechanics

Penn State University



ENGINEERING MECHANICS: STATICS, THIRD EDITION

Published by McGraw Hill LLC, 1325 Avenue of the Americas, New York, NY 10019. Copyright

© 2023 by McGraw Hill LLC. All rights reserved. Printed in the United States of America. Previous

editions © 2013 and 2010. No part of this publication may be reproduced or distributed in any form

or by any means, or stored in a database or retrieval system, without the prior written consent of

McGraw Hill LLC, including, but not limited to, in any network or other electronic storage or

transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside

the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LWI 26 25 24 23 22

ISBN 978-1-264-97553-2 (bound edition)

MHID 1-264-97553-8 (bound edition)

ISBN 978-1-264-98175-5 (loose-leaf edition)

MHID 1-264-98175-9 (loose-leaf edition)

Portfolio Manager: Beth Bettcher

Product Developers: Heather Ervolino and Joan Weber

Marketing Manager: Lisa Granger

Content Project Managers: Laura Bies and Rachael Hillebrand

Buyer: Susan K. Culbertson

Designer: David W. Hash

Content Licensing Specialist: Lorraine Buczek

Cover Image: NASA/MSFC; NASA

Compositor: Aptara®, Inc.

All credits appearing on page or at the end of the book are considered to be an extension of the copyright

page.

Library of Congress Cataloging-in-Publication Data available upon request

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a

website does not indicate an endorsement by the authors or McGraw Hill LLC, and McGraw Hill LLC

does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered



A B O U T T H E A U T H O R S

Michael E. Plesha is a Professor Emeritus of Engineering Mechanics in the

Department of Engineering Physics at the University of Wisconsin–Madison.

Professor Plesha received his B.S. from the University of Illinois–Chicago in struc-

tural engineering and materials, and his M.S. and Ph.D. from Northwestern

University in structural engineering and applied mechanics. His primary research

areas are computational mechanics, focusing on the development of finite element

and discrete element methods for solving static and dynamic nonlinear problems, and

the development of constitutive models for characterizing the behavior of materials.

Much of his work focuses on problems featuring contact, friction, and material inter-

faces. Applications include nanotribology, high-temperature rheology of ceramic

composite materials, modeling geomaterials including rock and soil, penetration me-

chanics, and modeling crack growth in structures. He is coauthor of the book

Concepts and Applications of Finite Element Analysis (with R. D. Cook, D. S. Malkus,

and R. J. Witt). In addition to teaching statics and dynamics, he also has extensive

experience teaching courses in basic and advanced mechanics of materials, mechan-

ical vibrations, and finite element methods.

Gary L. Gray is an Associate Professor of Engineering Science and Mechanics in

the Department of Engineering Science and Mechanics at Penn State in University

Park, PA. He received a B.S. in mechanical engineering (cum laude) from Washington

University in St. Louis, MO, an S.M. in engineering science from Harvard University,

and M.S. and Ph.D. degrees in engineering mechanics from the University of

Wisconsin–Madison. His primary research interests are in dynamical systems,

dynamics of mechanical systems, and mechanics education. For his contributions

to mechanics education, he has been awarded the Outstanding and Premier Teaching

Awards from the Penn State Engineering Society, the Outstanding New Mechanics

Educator Award from the American Society for Engineering Education, the Learning

Excellence Award from General Electric, and the Collaborative and Curricular Inno-

vations Special Recognition Award from the Provost of Penn State. In addition to

dynamics, he also teaches mechanics of materials, mechanical vibrations, numerical

methods, advanced dynamics, and engineering mathematics.

Robert J. Witt retired from the University of Wisconsin–Madison, Department of

Engineering Physics, in 2020 after a 33-year teaching career. He received his B.S.

in mechanical engineering from the University of California–Davis and his M.S. and

Ph.D. in nuclear engineering from MIT. His research interests were in computational

methods in fluid and solid mechanics, with particular applications to nuclear systems.

He taught 20 different courses over the span of his career, including statics, dynamics,

mechanics of materials, and a variety of other classes in applied mechanics, compu-

tational methods, and nuclear engineering. He is coauthor of the book Concepts and

Applications of Finite Element Analysis (with R. D. Cook, D. S. Malkus, and M. E.

Plesha).

iiiiiiiii



Francesco Costanzo is a Professor of Engineering Science and Mechanics in

the Engineering Science and Mechanics Department at Penn State. He received the

Laurea in Ingegneria Aeronautica from the Politecnico di Milano, Milan, Italy. After

coming to the United States as a Fulbright scholar, he received his Ph.D. in aerospace

engineering from Texas A&M University. His primary research interest is the mathe-

matical and numerical modeling of material behavior. His specific research interests

include the theoretical and numerical characterization of dynamic fracture in ma-

terials subject to thermo-mechanical loading, the development of multi-scale meth-

ods for predicting continuum-level material properties from molecular calculations,

and modeling and computational problems in bio-medical applications. In addition

to scientific research, he has contributed to various projects for the advancement of

mechanics education under the sponsorship of several organizations, including the

National Science Foundation. For his contributions, he has received various awards,

including the 1998 and the 2003 GE Learning Excellence Awards and the 1999 ASEE

Outstanding New Mechanics Educator Award.

iviviv



The authors thank their families for their patience, understanding, and,

most importantly, encouragement during the long years it took to bring

these books to completion. Without their support, none of this would have

been possible.





B R I E F C O N T E N T S

Statics

1 Introduction to Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Vectors: Force and Position . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Equilibrium of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Moment of a Force and Equivalent Force Systems . . . . . . 203

5 Equilibrium of Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

6 Structural Analysis and Machines . . . . . . . . . . . . . . . . . . . . 363

7 Centroids and Distributed Force Systems . . . . . . . . . . . . . 431

8 Internal Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

9 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

10 Moments of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Appendices

A Technical Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

B Answers to Even-Numbered Problems . . . . . . . . . . . . A-5

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

U.S. Customary and SI Unit Systems

Properties of Lines and Area Moments of Inertia

Properties of Solids and Mass Moments of Inertia

viiviivii



T A B L E O F C O N T E N T S

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction to Statics . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Engineering and Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topics That Will Be Studied in Statics . . . . . . . . . . . . . . . . . . . 3

1.3 A Brief History of Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Galileo Galilei 4

Isaac Newton 5

1.4 Fundamental Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Newton’s laws of motion 7

1.5 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Units and Unit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Dimensional homogeneity and unit conversions 10

Prefixes 10

Angular measure 11

Small angle approximations 12

Accuracy of calculations 13

1.7 Newton’s Law of Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Relationship between specific weight and density 17

1.8 Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Vectors: Force and Position . . . . . . . . . . . . . . . . . . . . 29

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Introduction—force, position, vectors, and tides 29

Denoting vectors in figures 31

Basic vector operations 32

Performing vector operations 34

Resolution of a vector into vector components 34

2.2 Cartesian Representation of Vectors in Two Dimensions . . . . . . 48

Introduction—Cartesian representation and a walk to work 48

Unit vectors 48

Cartesian coordinate system 49

Cartesian vector representation 49

Addition of vectors using Cartesian components 51

Position vectors 52

2.3 Cartesian Representation of Vectors in Three Dimensions . . . . 66

viiiviiiviii



Right-hand Cartesian coordinate system 66

Cartesian vector representation 66

Direction angles and direction cosines 66

Position vectors 67

Use of position vectors to write expressions

for force vectors 68

Some simple structural members 68

2.4 Vector Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Dot product using Cartesian components 85

Determination of the angle between two vectors 85

Determination of the component of a vector

in a particular direction 86

Determination of the component of a vector

perpendicular to a direction 87

2.5 Vector Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Cross product using Cartesian components 102

Evaluation of cross product using determinants 103

Determination of the normal direction to a plane 105

Determination of the area of a parallelogram 105

Scalar triple product 105

2.6 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3 Equilibrium of Particles . . . . . . . . . . . . . . . . . . . . . . 125

3.1 Equilibrium of Particles in Two Dimensions . . . . . . . . . . . . . . . 125

Free body diagram (FBD) 126

Modeling and problem solving 130

Cables and bars 131

Pulleys 133

Reactions 134

3.2 Behavior of Cables, Bars, and Springs . . . . . . . . . . . . . . . . . . . 151

Equilibrium geometry of a structure 151

Cables 151

Bars 152

Modeling idealizations and solution of
∑

�⃗ = 0⃗ 152

Springs 152

3.3 Equilibrium of Particles in Three Dimensions . . . . . . . . . . . . . . 166

Reactions 166

Solution of algebraic equations 166

Summing forces in directions other than �, �, or � 167

3.4 Engineering Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Objectives of design 181

Particle equilibrium design problems 182

ixixix



3.5 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4 Moment of a Force and Equivalent Force Systems . . . . . . 203

4.1 Moment of a Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Scalar approach 204

Vector approach 205

Varignon’s theorem 207

Which approach should I use: scalar or vector? 208

4.2 Moment of a Force About a Line . . . . . . . . . . . . . . . . . . . . . . . . 220

Vector approach 220

Scalar approach 221

4.3 Moment of a Couple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Vector approach 233

Scalar approach 233

Comments on the moment of a couple 233

Equivalent couples 234

Equivalent force systems 234

Resultant couple moment 235

Moments as free vectors 235

4.4 Equivalent Force Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Transmissibility of a force 246

Equivalent force systems 247

Some special force systems 248

Wrench equivalent force systems 250

Why are equivalent force systems called equivalent? 250

4.5 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

5 Equilibrium of Bodies . . . . . . . . . . . . . . . . . . . . . . . .271

5.1 Equations of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5.2 Equilibrium of Rigid Bodies in Two Dimensions . . . . . . . . . . . . 272

Reactions 272

Free body diagram (FBD) 274

Alternative equilibrium equations 276

Gears 277

Examples of correct FBDs 277

Examples of incorrect and/or incomplete FBDs 279

5.3 Equilibrium of Bodies in Two Dimensions—Additional Topics . 298

Why are bodies assumed to be rigid? 298

Treatment of cables and pulleys 298

Springs 299

Superposition 300

xxx



Supports and fixity 300

Static determinacy and indeterminacy 301

Two-force and three-force members 303

5.4 Equilibrium of Bodies in Three Dimensions . . . . . . . . . . . . . . . 322

Reactions 322

More on bearings 322

Scalar approach or vector approach? 324

Solution of algebraic equations 324

Examples of correct FBDs 325

Examples of incorrect and/or incomplete FBDs 327

5.5 Engineering Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Codes and standards 346

Design problems 347

5.6 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

6 Structural Analysis and Machines . . . . . . . . . . . . . . . . 363

Structures and machines 363

6.1 Truss Structures and the Method of Joints . . . . . . . . . . . . . . . . 364

When may a structure be idealized as a truss? 365

Method of joints 365

Zero-force members 367

Typical truss members 369

6.2 Truss Structures and the Method of Sections . . . . . . . . . . . . . . 380

Treatment of forces that are not at joints 382

Static determinacy and indeterminacy 383

Design considerations 384

6.3 Trusses in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Stability of space trusses and design considerations 400

6.4 Frames and Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Analysis procedure and free body diagrams (FBDs) 408

Examples of correct FBDs 409

Examples of incorrect and/or incomplete FBDs 411

6.5 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

7 Centroids and Distributed Force Systems . . . . . . . . . . . 431

7.1 Centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Introduction—center of gravity 431

Centroid of an area 433

Centroid of a line 434

Centroid of a volume 435

Unification of concepts 435

xixixi



Which approach should I use: composite shapes or integration? 435

Finer points: surfaces and lines in three dimensions 436

7.2 Center of Mass and Center of Gravity . . . . . . . . . . . . . . . . . . . 449

Center of mass 449

Center of gravity 450

7.3 Theorems of Pappus and Guldinus . . . . . . . . . . . . . . . . . . . . . . 461

Area of a surface of revolution 461

Volume of a solid of revolution 462

Proof of the Pappus–Guldinus theorems 462

7.4 Distributed Forces, Fluid and Gas Pressure Loading . . . . . . . . 468

Distributed forces 468

Distributed forces applied to beams 468

Fluid and gas pressure 469

Forces produced by fluids 471

Forces produced by gases 473

7.5 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

8 Internal Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . .493

8.1 Internal Forces in Structural Members . . . . . . . . . . . . . . . . . . . 493

Why are internal forces important? 493

Internal forces for slender members in two dimensions 494

Internal forces for slender members in three dimensions 495

Determination of internal forces 495

8.2 Internal Forces in Straight Beams . . . . . . . . . . . . . . . . . . . . . . . 503

Determination of � and � using equilibrium 503

Shear and moment diagrams 503

8.3 Relations Among Shear, Moment, and Distributed Force . . . . . 514

Relations among � , �, and � 514

Determination of � and � using integration 515

Which approach should I use? 516

Tips and shortcuts for drawing shear and moment diagrams 517

Design considerations 518

8.4 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

9 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

9.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

A brief history of tribology 533

A simple experiment 534

Coulomb’s law of friction 535

Coefficients of friction 535

Dry contact versus liquid lubrication 537

xiixiixii



Angle of friction 537

Problems with multiple contact surfaces 537

Wedges 538

Coulomb’s law of friction in three dimensions 538

Design considerations 538

9.2 Problems with Multiple Contact Surfaces . . . . . . . . . . . . . . . . . 551

Determination of sliding directions 551

9.3 Belts and Cables Contacting Cylindrical Surfaces . . . . . . . . . . . 560

Equilibrium analysis 560

9.4 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

10 Moments of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . 573

10.1 Area Moments of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

An example—test scores 573

An example—beam loading 574

Definition of area moments of inertia 574

What are area moments of inertia used for? 575

Radius of gyration 576

Evaluation of moments of inertia using integration 577

10.2 Parallel Axis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Use of parallel axis theorem in integration 586

Use of parallel axis theorem for composite shapes 586

10.3 Mass Moments of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

An example—figure skating 593

Definition of mass moments of inertia 593

What are mass moments of inertia used for? 594

Radius of gyration 595

Parallel axis theorem 595

Evaluation of moments of inertia using integration 596

Evaluation of moments of inertia using composite shapes 597

10.4 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

A Technical Writing . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

B Answers to Even-Numbered Problems . . . . . . . . . . . . . A-5

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

U.S. Customary and SI Unit Systems

Properties of Lines and Area Moments of Inertia

Properties of Solids and Mass Moments of Inertia

xiiixiiixiii



P R E F A C E

Welcome to statics! We assume you are embarking on the study of statics because

you are interested in engineering and science. The major objectives of this book are

to help you

1. Learn the fundamental principles of statics; and

2. Gain the skills needed to apply these principles in the modeling of real-life

problems and for carrying out engineering design.

The need for thorough coverage of the fundamental principles is paramount, and

therefore a substantial portion of this book is devoted to these principles. Because

the development of problem-solving skills is equally important, we focus a great deal

of attention on these skills, especially in the context of real-life problems. Indeed, the

emphasis on problem-solving skills is a major difference in the treatment of statics

between engineering and physics. It is only by mastering these skills that you can

achieve a true, deep understanding of fundamentals. You must be flawless in your

ability to apply the concepts of statics to real-life problems. When mistakes are made,

structures and machines will fail, money and time will be lost, and worst of all, people

may be hurt or killed.

What should you take away from this book?

First and foremost, you should gain a thorough understanding of the fundamental

principles, and, at a minimum, key points should remain in your memory for the

rest of your life. We say this with a full appreciation that some of you will have ca-

reers with new and unexpected directions. Regardless of your eventual professional

responsibilities, knowledge of the fundamentals of statics will help you to be techni-

cally literate. By contrast, if you are actively engaged in the practice of engineering

and/or the sciences, then your needs go well beyond mere technical literacy. In addi-

tion to understanding the fundamentals, you must also be accomplished at applying

these fundamentals. This ability is needed so that you can study more advanced sub-

jects that build on statics, and because you will apply concepts of statics on a daily

basis in your career.

Why Another Statics and Dynamics Series?

These books provide thorough coverage of all the pertinent topics traditionally asso-

ciated with statics and dynamics. Indeed, many of the currently available texts also

provide this. However, these books offer several major innovations that enhance the

learning objectives and outcomes in these subjects.

What Then Are the Major Di�erences Between These Books and Other

Engineering Mechanics Texts?

A Consistent and Systematic Approach to Problem Solving One of the main

objectives of these texts is to foster the habit of solving problems using a systematic

approach. Therefore, the example problems in these texts follow a structured five-

step problem-solving methodology that will help you develop your problem-solving

skills not only in statics and dynamics, but also in almost all other mechanics sub-

jects that follow. This structured problem-solving approach consists of the following
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steps: Road Map, Modeling, Governing Equations, Computation, and Discussion &

Verification. The Road Map provides some of the general objectives of the problem

and develops a strategy for how the solution will be developed. Modeling is next,

where a real-life problem is idealized by a model. This step results in the creation of

a free body diagram and the selection of the balance laws needed to solve the prob-

lem. The Governing Equations step is devoted to writing all the equations needed to

solve the problem. These equations typically include the equilibrium equations, and,

depending upon the particular problem, force laws (e.g., spring law, failure criteria,

frictional sliding criteria) and kinematic equations. In the Computation step, the gov-

erning equations are solved. In the final step, Discussion & Verification, the solution

is interrogated to ensure that it is meaningful and accurate. This five-step problem-

solving methodology is followed for all examples that involve equilibrium concepts.

Some problems (e.g., determination of the center of mass for an object) do not involve

equilibrium concepts, and for these the Modeling step is not needed.

Contemporary Examples, Problems, and Applications The examples, home-

work problems, and design problems were carefully constructed to help show you

how the various topics of statics and dynamics are used in engineering practice. Stat-

ics and dynamics are immensely important subjects in modern engineering and sci-

ence, and one of our goals is to excite you about these subjects and the career that lies

ahead of you.

A Focus on Design A major difference between these texts and other books is the

systematic incorporation of design and modeling of real-life problems throughout.

Topics include important discussions on design, ethics, and professional responsibil-

ity. These books show you that meaningful engineering design is possible using the

concepts of statics and dynamics. Not only is the ability to develop a design very

satisfying, but it also helps you develop a greater understanding of basic concepts

and helps sharpen your ability to apply these concepts. Because the main focus of

statics and dynamics textbooks should be the establishment of a firm understanding

of basic concepts and correct problem-solving techniques, design topics do not have

an overbearing presence in the books. Rather, design topics are included where they

are most appropriate. While some of the discussions on design could be described

as “common sense,” such a characterization trivializes the importance and necessity

for discussing pertinent issues such as safety, uncertainty in determining loads, the

designer’s responsibility to anticipate uses, even unintended uses, communications,

ethics, and uncertainty in workmanship. Perhaps the most important feature of our

inclusion of design and modeling topics is that you get a glimpse of what engineer-

ing is about and where your career in engineering is headed. The book is structured

so that design topics and design problems are offered in a variety of places, and it is

possible to pick when and where the coverage of design is most effective.

Computational Tools Some examples and problems are appropriate for solution

using computer software. The use of computers extends the types of problems that

can be solved while alleviating the burden of solving equations. Such examples and

problems give you insight into the power of computer tools and further insight into

how statics and dynamics are used in engineering practice.

Modern Pedagogy Numerous modern pedagogical elements have been included.

These elements help reinforce concepts, and they provide you with additional infor-

mation to help you understand concepts. Marginal notes (including Helpful Information,
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Common Pitfalls, Interesting Facts, and Concept Alerts) help place topics, ideas, and

examples in a larger context. These notes will help you study (e.g., Helpful Infor-

mation and Common Pitfalls), will provide real-world examples of how different as-

pects of statics and dynamics are used (e.g., Interesting Facts), and will drive home

important concepts or help dispel misconceptions (e.g., Concept Alerts and Common

Pitfalls). Mini-Examples are used throughout the text to immediately and quickly

illustrate a point or concept without making readers wait for the worked-out exam-

ples at the end of the section.

Answers to Problems The answers to most even-numbered problems have been

included in the back matter for ease of use as Appendix B. Providing answers in this

manner allows for the inclusion of more complex information than would otherwise

be possible. In addition to final numerical or symbolic answers, selected problems

have more extensive information, such as free body diagrams and/or shear and mo-

ment diagrams. Furthermore, the multitude of free body diagram answers give you

ample opportunity to practice constructing these on your own for extra problems.

A Note to the Instructor

Statics is the first engineering course taken by most students en route to an undergrad-

uate degree in engineering. You face many challenges when choosing the text you use.

Because statics is so fundamental to subsequent engineering coursework and profes-

sional practice, a text must be accurate, thorough, and comprehensive. Statics also

presents an opportunity to excite students and show them what engineering is about

early in their education. Students who miss this opportunity and do not receive an

accurate picture of where their career is heading may make a poorly informed deci-

sion to change their major away from engineering. This is recognized in the current

Accreditation Board for Engineering and Technology (ABET) criteria for accredita-

tion of engineering programs, which requires design to be integrated throughout an

engineering curriculum. This book provides thorough coverage of the principles of

statics. It also includes discussions on the theory and the more subtle points of stat-

ics. Such discussions usually follow an introductory treatment of a topic so that stu-

dents have a grasp of concepts and their application before covering those more sub-

tle points. For example, the concepts of particle equilibrium are presented in Section 3.1

with common assumptions such as cables being inextensible and pulleys being

frictionless. In that section, the emphasis is on drawing free body diagrams, writing

equilibrium equations, solving equations, applying failure criteria, and interrogating

solutions. In Section 3.2, the reasons for the typical assumptions are thoroughly dis-

cussed, including the limitations of these assumptions for modeling real-life prob-

lems. This will help students develop an appreciation for the fact that, despite these

assumptions, statics is an immensely useful and widely applicable subject. Further,

the discussion in Section 3.2 is used to present more advanced topics such as springs

and static indeterminacy.

Design topics include ethics, professional responsibility, pertinent codes and stan-

dards, and much more. Design problems are open ended and allow students to show

creativity in developing solutions that solve important and realistic engineering prob-

lems. The design problems in this book may take students several hours to complete.

It is recommended that students write a short report, suitable for reading by an engi-

neer. A brief discussion of technical writing is included in Appendix A since many

students have not yet studied technical writing. Perhaps the most important feature
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of our inclusion of design and modeling topics is that students get a glimpse of

what engineering is about and where their career in engineering is headed. The book

is structured so that you may pick when and where design is most appropriately

covered.

Changes to the Third Edition

The third editions of Engineering Mechanics: Statics and Engineering Mechanics:

Dynamics retain all of the major pedagogical features of the previous editions, includ-

ing a structured problem-solving methodology for all example problems, contempo-

rary engineering applications in the example problems and homework exercises, the

inclusion of engineering design and its implications for problem solving and appli-

cations, and use of computational tools where applicable. In addition, as a result of

the author-based typesetting process, the outstanding accuracy of the earlier editions

has been preserved, leading to books whose accuracy is unrivaled among textbooks.

The third editions contain revised and enhanced textual discussions and example

problems, additional figures where effective, and new homework exercises. In Con-

nect, the online homework system, there are significant updates, including an auto-

graded FBD tool and interactive learning tools. These interactive assignments help

reinforce what is being covered in the text and show students how to tie the mate-

rial to real-world situations. These tools complement the hundreds of auto-graded,

algorithmic-exercises that are included in Connect from the text.
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GU I D E D TOUR

Mini-Example

Determine the support reactions for the structure shown in Fig. 5.4. �

�

50 mm

200 mm 300 mm

60 N

80 N

Figure

A structure with supports at points � and �.

�

�

�

�

�
�
�

�
�

�
�

60 N

80 N

50 mm

200 mm 300 mm

Figure

Free body diagram showing all forces applied to

the object.

Solution

The completed FBD is shown in Fig. 5.5, and it is constructed as follows. We first

sketch the structure and then choose an �� coordinate system. At each support

that is cut through (or removed from the structure) we introduce the appropriate

reactions. Thus, for the pin support at � we introduce reactions �
�

and �
�
, and at

the roller support at � we introduce reaction �
�
.

Next, we use Eq. (5.3) to write the equilibrium equations

�
�

= 0∶ �
�

+ 60 N = 0, (5.4)

�
�

= 0∶ �
�

+ �
�

− 80 N = 0, (5.5)

�
�

= 0∶ �
�
(500 mm) − (80 N)(200 mm)

+ (60 N)(50 mm) = 0. (5.6)

Solving Eqs. (5.4)–(5.6) provides

�
�

= −60 N, �
�

= 54 N, and �
�

= 26 N. (5.7)

308 Equilibrium of Bodies Chapter

E X A M P L E Springs

0.6 m
	 airflow


 � �

� 
 �
0.4 m

�
�

Figure

A wind tunnel is used to experimentally determine the lift force 	 and drag force � on a

scale model of an aircraft. The bracket supporting the aircraft is fitted with an axial spring

with stiffness � = 0.125 N∕mm and a torsional spring with stiffness �
�

= 50 N⋅m∕rad.

By measuring the deflections 
 and 
 of these springs during a test, the forces 	 and �

may be determined. If the geometry shown in Fig. 1 occurs when there is no airflow, and

if the springs are calibrated so that 
 = 0 and 
 = 0◦ when there is no airflow, determine

	 and � if 
 = 2.51 mm and 
 = 1.06◦ are measured.

SOLUT ION

RoadMap This problem involves spring elements, and these have equations that govern

their load–deformation response. Thus, the problem-solving methodology used here will

be enhanced to emphasize that in addition to the need for equilibrium equations, force

laws that describe the behavior of the springs are needed.

Modeling The FBD is shown in Fig. 2, where we assume that bar ��, which supports

the aircraft, is slender enough that it does not develop any lift or drag forces.

Governing Equations

EquilibriumEquations Summing forces in the � direction and summing moments about

point � provide

�
�

= 0∶ �
�

− � = 0, (1)

�
�

= 0∶ −�
�

+ �(400 mm) + 	(600 mm) = 0. (2)

In writing Eq. (2), we assume the deformation of the torsional spring is small so that the

geometry of the support bracket �� is essentially unchanged from its original geometry.

Notice that Eqs. (1) and (2) have five unknowns, so clearly more equations must be written

to obtain a determinate system of equations.

0.6 m�

�

	

� �

0.4 m
�

�
�

= �
�



�
�

= �
 �
�

Figure

Free body diagram.

Force Laws The force supported by the axial spring is related to its deformation 
, and

the moment supported by the torsional spring is related to its rotation 
, by

�
�

= �
, (3)

�
�

= �
�

. (4)

Computation Using Eq. (3), Eq. (1) may be solved for

� = �
 = 0.125
N

mm
(2.51 mm) = (5)

Using Eq. (4) and the solution for � just obtained, Eq. (2) may be solved for

	 =
−�(400 mm) + �

�



600 mm

=
−(0.3138 N)(400 mm) + (50

N⋅ m

rad
)(

103 mm

m
)(

� rad

180◦
)1.06◦

600 mm
= (6)

Matt Cardy/Getty Images News/Getty Images

Figure

A model of an Airbus airplane is prepared for

testing in a large wind tunnel.

Discussion & Verification If the springs are not sufficiently stiff, then 
 and/or 
 may

be substantially larger, and the original geometry cannot be used when writing Eq. (2).

An additional disadvantage of a soft torsional spring is that if 
 is large, then the angle

of attack of the aircraft also changes appreciably, which is undesirable. Since 
 and 


are known in this problem, it is easy to verify that the difference between the original

geometry and the deformed geometry is small. You can explore this issue in greater detail

in Probs. 5.79 through 5.82.

0.3138 N.

1.333 N.

Mini-Examples
Mini-examples are used throughout the

text to immediately and quickly illustrate a

point or concept without having to wait for

the worked-out examples at the end of the

section.

Examples
Consistent Problem-Solving Methodology

Every problem in the text employs a carefully

defined problem-solving methodology to

encourage systematic problem formulation

while reinforcing the steps needed to arrive at

correct and realistic solutions.

Each example problem contains these five steps:

• Road Map

• Modeling

• Governing Equations

• Computation

• Discussion & Verification

Some examples include a Closer Look (noted

with a magnifying glass icon ) that offers

additional insight into the example.
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Interesting Fact

Springs. Springs are important structural

members in their own right, but they are

also important for laying the groundwork for

characterizing more general engineering

materials and members, which you will

study in subjects that follow statics. Simply

stated, almost all materials are idealized

as springs, albeit more complex than that

shown in Fig. over at least some range

of forces.

lb more

over

Problem

Consider an airplane whose motion is described below. For each case, state whether or

not the airplane is in static equilibrium, with a brief explanation.

(a) The airplane flies in a straight line at a constant speed and at a constant altitude.

(b) The airplane flies in a straight line at a constant speed while climbing in altitude.

(c) The airplane flies at a constant speed and at a constant altitude while making a circular

turn.

(d) After touching down on the runway during landing, the airplane rolls in a straight line

at a constant speed.

(e) After touching down on the runway during landing, the airplane rolls in a straight line

while its brakes are applied to reduce its speed.

Note: Concept problems are about explanations, not computations.

escribed below. For each case, state whether or

ith b i f l ti

Concept Alert

Applications of the cross product. The

cross product between two vectors pro-

duces a result that is a vector. The cross

product is often used to determine the nor-

mal direction to a surface, the area of a paral-

lelogram formed by two vectors, and (as dis-

cussed in Chapter the moment produced

by a force. The last application is especially

important in statics and mechanics.

Common Pitfall

Failure loads. A common error in solving

problems with failure criteria, such as Part (b)

of this example, is to assume that all mem-

bers are at their failure loads at the same

time. With reference to the FBD of Fig. you

will be making this error if you take ��� =

1200N and ��� = −1600N; in fact, if you

do this, you will find that
∑

�	 = 0 (Eq.

cannot be satisfied! Another way to describe

this problem is to consider slowly increas-

ing force � from zero. Eventually, one of the

members will reach its failure load first, while

the other will be below its failure load.

Helpful Information

Free body diagram (FBD). An FBD is an

essential aid, or tool, for applying Newton’s

law of motion
∑

�⃗ = ��⃗. Among the many

skills you will need to be successful in

statics, and in the subjects that follow, and

as a practicing engineer, the ability to draw

accurate FBDs is essential. An incorrect FBD

is the most common source of errors in an

analysis.

Concept Alerts and Concept Problems
Two additional features are the Concept Alerts and the Concept Problems. These

have been included because research has shown (and it has been our experience)

that even though you may do quite well in a science or engineering course, your

conceptual understanding may be lacking. Concept Alerts are marginal notes and

are used to drive home important concepts (or help dispel misconceptions) that are

related to the material being developed at that point

in the text. Concept Problems are mixed in with

the problems that appear at the end of each section.

These are questions designed to get you thinking

about the application of a concept or idea presented

within that section. They should never require

calculation and should require answers of no more

than a few sentences.

Marginal Notes
Marginal notes have been implemented that will help

place topics, ideas, and examples in a larger context.

This feature will help students study (using Helpful

Information and Common Pitfalls) and will provide

real-world examples of how different aspects of

statics are used (using Interesting Facts).
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Sections and End of Section Summary

Each chapter is organized into several sections. There is a wealth of information and features within each

section, including examples, problems, marginal notes, and other pedagogical aids. Each section concludes

with an end of section summary that succinctly summarizes that section. In many cases, cross-referenced

important equations are presented again for review and reinforcement before the student proceeds to the

examples and homework problems.

Cartesian Representation of Vectors in
Three Dimensions

For problems in three dimensions, vectors are especially powerful, and without them

many problems would be intractable. Concepts of Section 2.2 apply, with some ad-

ditional enhancements needed for three dimensions. These include definitions of a

right-handed coordinate system, direction angles, and direction cosines.

Right-hand Cartesian coordinate system

In three dimensions a Cartesian coordinate system uses three orthogonal reference

directions. These will consist of 	, 
, and � directions as shown in Fig. 2.17(a). Proper

interpretation of many vector operations, such as the cross product to be discussed

in Section 2.5, requires the 	, 
, and � directions be arranged in a consistent manner.

For example, when you are constructing the coordinate system shown in Fig. 2.17(a),

imagine the 	 and 
 directions are chosen first. Then, should � be taken in the direction

shown, or can it be in the opposite direction? The universal convention in mechanics

and vector mathematics in general is � must be taken in the direction shown, and the

result is called a right-hand coordinate system. Figure 2.17(b) describes a scheme

for constructing a right-hand coordinate system. You should study this scheme and

become comfortable with its use.

(a)
	




�

(b)
	




�

(c)

	



�
	




�
	




�
	




�

Figure

(a) Cartesian coordinate system in three dimen-

sions. (b) A scheme for constructing a right-hand

coordinate system. Position your right hand so

the positive 	 direction passes into your palm and

the positive 
 direction passes through your fin-

gertips. Your thumb then indicates the positive �

direction. (c) More examples of right-hand coor-

dinate systems.

Cartesian vector representation

We define vectors �̂, �̂, and �̂ to be unit vectors that point in the positive 	, 
, and �

directions, respectively. A vector �⃗ can then be written as

�⃗ = �⃗	 + �⃗
 + �⃗�

= �	 �̂ + �
 �̂ + �� �̂. (2.23)

Resolution of �⃗ into 	, 
, and � components is shown in Fig. 2.18. The magnitude of

�⃗ is given by	




�

�⃗�
�⃗

�̂

�⃗	
�̂ �̂ �⃗


Figure

Right-hand Cartesian coordinate system with unit

vectors �̂, �̂, and �̂ in the 	, 
, and � directions, re-

spectively, and resolution of a vector �⃗ into vector

components �⃗	, �⃗
, and �⃗�.

�⃗ = �2	 + �2
 + �2�. (2.24)

This equation is obtained using the construction shown in Fig. 2.19 as follows. First,

a vector �⃗� that lies in the 	
 plane is defined. Because �	, �
, and �� form a right

triangle, the Pythagorean theorem provides �2� = �2	+�
2

. Then ��, ��, and � also form

a right triangle, and the Pythagorean theorem provides �2 = �2� + �2�. Substituting for

�2� in this latter expression yields �2 = �2	 + �2
 + �2�, and thus Eq. (2.24) follows.

	




�

�

�⃗	
�⃗�

�⃗


�⃗

�⃗�

Figure

Evaluation of a vector’s magnitude in terms of its

components.

Direction angles and direction cosines

An effective way to characterize a vector’s orientation is to use direction angles. Di-

rection angles 
	, 

, and 
� are shown in Fig. 2.20 and are defined to be the angles

measured from the positive 	, 
, and � directions, respectively, to the direction of the

vector. Direction angles have values between 0◦ and 180◦.

Direction angles can be used to obtain a vector’s components, and vice versa,

as follows. Consider the vector polygon shown in Fig. 2.21. This polygon is a right

triangle that consists of the vector’s magnitude �⃗ , the 
 component �
, and another

g y

FiFigFigFiggureureure

Right-hand Cartesian coordinate system with unit

vectors �̂, �̂, and �̂ in the 	, 
, and � directions, re-

spectively, and resolution of a vector �⃗ into vector

components �⃗	, �⃗
, and �⃗�.

�⃗

This equation is obtained using th

a vector �⃗� that lies in the 	
 pla

triangle, the Pythagorean theorem

a right triangle, and the Pythagore

�2� in this latter expression yields

	




�

�

�⃗	
�⃗�

�⃗


�⃗

�⃗�

Figure

Evaluation of a vector’s magnitude in terms of its

components.

Direction angles and dddire

An effective way to characterize a

rection angles 
	, 

, and 
� are s

measured from the positive 	, 
, a

vector. Direction angles haveaa valu

Direction angles can be used

as follows. Consider the vector po

triangle that consists of the vector

End of Sect ion Summary

In this section, Cartesian coordinate systems and Cartesian representation for vectors

in three dimensions have been defined. Some of the key points are:

• The 	
� coordinate system you use must be a right-hand coordinate system.

Proper interpretation of some vector operations requires this.

• Direction angles provide a useful way to specify a vector’s orientation in three

dimensions. A vector has three direction angles 
	, 

, and 
�, but only two of

these are independent. Direction angles satisfy the equation cos2 
	+cos2 

+

cos2 
� = 1, so if two direction angles are known, the third may be determined.

Direction angles have values between 0◦ and 180◦.

• Structural members such as cables, ropes, and bars support forces whose lines

of action have the same orientation as the member’s geometry. Thus, if �⃗ de-

scribes a member’s geometry, a vector expression for the force supported by

the member may be written as �⃗ = � (�⃗∕ �⃗ ).
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Problems

General instructions. Unless otherwise stated, in the following problems you may

use a scalar approach, a vector approach, or a combination of these.

Problems nd

Compute the moment of force � about point �, using the following procedures.

(a) Determine the moment arm � and then evaluate �� = ��.

(b) Resolve force � into 	 and 
 components at point� and use the principle of moments.

(c) Use the principle of moments with � positioned at point � .

(d) Use the principle of moments with � positioned at point �.

(e) Use the vector approach.




3 �
4

� = 25 lb
�

12 in.
�

� 60◦ 	
�

Figure

30◦ 


� = 25 lb �

�

12 in.
60◦ � �

	
�

Figure

Problems nd

The cover of a computer mouse is hinged at point � so that it may be clicked. Repeat

Prob. 4.1 to determine the moment about point �.




�

45◦
� = 3N

�
�

�
	

�
40mm

60mm

Figure




45◦

40mm � = 3N
�

20mm
	

� � �

�

Figure

Problem

An atomic force microscope (AFM) is a state-of-the-art device used to study the mechani-

cal and topological properties of surfaces on length scales as small as the size of individual

atoms. The device uses a flexible cantilever beam �� with a very sharp, stiff tip �� that

is brought into contact with the surface to be studied. Due to contact forces at � , the can-

tilever beam deflects. If the tip of the AFM is subjected to the forces shown, determine the

resultant moment of both forces about point �. Use both scalar and vector approaches.




12�m

� �
5 nN

�
	

13 nN
1.5�m

Figure

Problem

A large lever �� has a 5 kN force applied to it where the line of action of this force

passes through points � and � . Determine the moment of the force about point � for

any position of the lever where 0◦ ≤ � ≤ 180◦, and plot the moment versus �.

3m �

� = 5 kN
2m

�

Modern Problems

Problems of varying difficulty follow each section. These

problems allow students to develop their ability to apply

concepts of statics on their own. Statics is not an easy subject,

and the most common question asked by students is “How do I

set this problem up?” What is really meant by this question is

“How do I develop a good mathematical model for this

problem?” The only way to develop this ability is by practicing

numerous problems. Answers to most even-numbered problems

appear in Appendix B. Providing answers in this manner allows

for more complex information than would otherwise be

possible. In addition to final numerical or symbolic answers,

selected problems have more extensive information such as

free body diagrams and/or shear and moment diagrams.

Furthermore, the multitude of free body diagram answers give

students ample opportunity to practice constructing FBDs on

their own for extra problems. Appendix B gives examples of

the additional information provided for particular problems.

Each problem in the book is accompanied by a thermometer

icon that indicates the approximate level of difficulty. Those

considered to be “introductory” are indicated with the symbol .

Problems considered to be “representative” are indicated with

the symbol , and problems that are considered to be

“challenging” are indicated with the symbol .
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Engineering Design and Design Problems

Throughout the book, in appropriate places, engineering design is discussed, including topics such as methods

of design, issues of professional responsibility, and ethics. Design Problems are also presented. These problems

are open ended and allow students to show creativity in developing a solution that solves an important and

realistic real-life engineering problem.

Design Problems

General Instructions. In problems requiring the specification of sizes for steel ca-

ble, bar, or pipe, selections should be made from Tables 3.1–3.3. In all problems, write

a brief technical report following the guidelines of Appendix A, where you summarize

all pertinent information in a well-organized fashion. It should be written using proper,

simple English that is easy for another engineer to read. Where appropriate, sketches,

along with critical dimensions, should be included. Discuss the objectives and constraints

considered in your design, the process used to arrive at your final design, safety issues if

appropriate, and so on. The main discussion should be typed, and figures, if needed, can

be computer-drawn or neatly hand-drawn. Include a neat copy of all supporting calcula-

tions in an appendix that you can refer to in the main discussion of your report. A length

of a few pages, plus appendix, should be sufficient.

Design Problem

A scale for rapidly weighing ingredients in a commercial bakery operation is shown. An

empty bowl is first placed on the scale. Electrical contact is made at point �, which illu-

minates a light indicating the bowl’s contents are underweight. A bakery ingredient, such

as flour, is slowly poured into the bowl. When a sufficient amount is added, the contact

at � is broken. If too much is added, contact is made at �, thus indicating an overweight

condition. If the contents of the bowl are to weigh 18 lb ± 0.25 lb, specify dimensions ℎ

and �, spring stiffness �, and the unstretched length of the spring �0. The bowl and the

platform on which it rests have a combined weight of 5 lb. Assume the scale has guides

or other mechanisms so that the platform on which the bowl rests is always horizontal.

�

�

0.5 in.

�

ℎ
�

Figure

Design Problem

A plate storage system for a self-serve salad bar in a restaurant is shown. As plates are

added to or withdrawn from the stack, the spring force and stiffness are such that the plates

always protrude above the tabletop by about 60mm. If each plate has 0.509 kg mass, and

if the support � also has 0.509 kg mass, determine the stiffness � and unstretched length

�0 of the spring. Assume the spring can be compressed by a maximum of 40% of its initial

unstretched length before its coils begin to touch. Also specify the number of plates that

can be stored. Assume the system has guides or other mechanisms so the support � is

always horizontal.

60mm

20mm
� �

600mm
�

15mm �

�

15mm

30mm

Figure and

Design Problem

In Design Prob. 3.2, the spring occupies valuable space that could be used to store ad-

ditional plates. Repeat Design Prob. 3.2, employing cable(s) and pulley(s) in conjunc-

tion with one or more springs to design a different system that will allow more plates to

be stored. Pulleys, cables, and springs can be attached to surfaces �, �, � , and �. For

springs in compression, assume they may not contract by more than 40% of their initial

unstretched length before their coils begin to touch.
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1Introduction to Statics

Kapook2981/iStock/Getty Images

The Infinity Bridge crossing the River Tees in England is a dual arch bridge with steel arches and concrete

decking. Concepts from statics formed the basis for the analysis and design of this bridge.

In statics we study the equilibrium of bodies

under the action of forces that are applied to

them. Our goal is to provide an introduction

to the science, skill, and art involved in mod-

eling and designing real life mechanical sys-

tems. We begin the study of statics with an

overview of the relevant history of the sub-

ject. In subsequent sections and chapters, we

cover those elements of physics and mathe-

matics (especially vectors) needed to analyze

the equilibrium of particles and rigid bodies.

Throughout the book are discussions and ap-

plications of engineering design.

1.1 Engineering and Statics

Engineers design structures, machines, processes, and much more for the benefit of

humankind. In the process of doing this, an engineer must answer questions such

as “Is it strong enough?” “Will it last long enough?” and “Is it safe enough?” To

answer these questions requires the ability to quantify important phenomena in the

design or system at hand, and to compare these measures with known criteria for

what is acceptable and what is not. To do this requires an engineer to have thorough

knowledge of science, mathematics, and computational tools, and the creativity to

exploit the laws of nature to develop new designs. Central to all of this is the ability

to idealize real life problems with mathematical models that capture the essential

science of the problem, yet are tractable enough to be analyzed. Proficiency in doing

this is a characteristic that sets engineering apart from the pure sciences.

In most engineering disciplines, understanding the response of materials or ob-

jects subjected to forces is important, and the fundamental science concepts
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Dynamics

Statics

Advanced Dynamics

Vibrations

Controls

Robotics

Astrodynamics

Satellite Mechanics

Machine Dynamics

Mechanics of Materials

Advanced Mechanics

Finite Element

Structural Analysis

Aerospace Structures

Machine Design

Steel and Concrete Design

Soil and Rock Mechanics

Biomechanics

of Materials

(Computer) Analysis

Figure 1.1. Hierarchy of subject matter and courses studied by many engineering students.

Courses in statics, dynamics, and mechanics of materials provide fundamental concepts and a

basis for more advanced study. Many subjects, such as vibrations and finite element analysis,

draw heavily on concepts from both dynamics and mechanics of materials.

governing such response are known as Newtonian physics.∗ This book examines ap-

plications of this topic to engineering problems under the special circumstances in

which a system is in force equilibrium, and this body of knowledge is called statics.

Statics is usually the first engineering course that students take. Statics is an impor-

tant subject in its own right, and it develops essential groundwork for more advanced

study.

If you have read this far, then we presume you are embarking on a study of statics,

using this book as an aid. Figure 1.1 shows a hierarchy of subjects, many of which

you are likely to study en route to an education in engineering. Following a course in

statics are introductory courses in dynamics and mechanics of materials. Dynamics

studies the motion of particles and bodies subjected to forces that are not in equilib-

rium. Mechanics of materials introduces models for material behavior and methods

for determining stresses and deformations in structures. The concepts learned in these

three basic courses are used daily by almost all engineers who are concerned with the

mechanical response of structures and materials!

This book will provide you with a solid and comprehensive education in statics.

Often, when engineering problems are boiled down to their essential elements, they

are remarkably simple to analyze. In fact, throughout most of this book, the mathe-

∗ When the velocity of an object is close to the speed of light, relativistic physics is required.
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matics needed to analyze problems is straightforward. The bigger challenge usually

lies in the idealization of a real life problem by a model, and we hope this book helps

you cultivate your ability to do this.

Regarding mathematics, this book assumes you have knowledge of algebra and

basic trigonometry. Later in this book, beginning in Chapter 7, basic calculus involv-

ing differentiation and integration of simple functions is used. Vectors is an important

topic, and this book assumes that you have no prior knowledge of this; everything you

need to know about vectors for statics will be covered in this book.

1.2 Topics That Will Be Studied in Statics

The remainder of Chapter 1 is devoted to a discussion of the physical entities and

governing equations that form the basis of statics and dynamics. An important related

topic is the choice of the unit system to be used. Chapter 2 introduces vectors and how

they are used to represent entities such as force and position. In Chapters 3 through 6,

we use statics to solve problems involving particles and systems of particles that are in

equilibrium, and bodies and systems of bodies (i.e., frames and machines) that are in

equilibrium. Each of these topics builds upon previous topics to enable you to model

engineering problems of increasingly greater sophistication. Chapters 1 through 6

constitute the core of topics in statics.

Beginning in Chapter 7, we treat systems that have continuous distributions of

properties such as mass, weight, and pressure; basic calculus is effective and is used

beginning here. Chapter 8 addresses internal forces that develop within structures

due to loads that are applied to them; knowledge of internal forces is essential to

create designs and to address questions such as “Is it strong enough?” and “Is it safe

enough?” Chapter 9 is devoted to friction, which is a type of force between contacting

bodies. Friction presents some challenges to engineers to model and account for in

engineering problems. Finally, Chapter 10 is devoted to moments of inertia, which

characterize how area and mass are distributed; this topic is essential in dynamics and

mechanics of materials, and it marks the transition from statics to these subjects.

1.3 A Brief History of Statics∗

Interesting Fact

Earlystructuraldesigncodes.Whilemostof

our discussion focusesonaccomplishments

of philosophers, there were also significant

accomplishments in the development of

structural design codes over a period of

thousands of years. Some of these include

the ancient books of Ezekiel and Vitruvius

and the secret books of the medieval ma-

sonic lodges. Additional history is given in

J. Heyman, “Truesdell and the History of the

Theoryof Structures,” a chapter inEssayson

the History of Mechanics, edited by A. Bec-

chi, M. Corradi, F. Foce, and O. Pedemonte,

Birkhauser, Boston, 2003. These codes

were largely empirical rules of proportion

that provided for e�cient design and con-

struction of masonry structures. The great

Greek temples, Roman aqueducts, and

Gothic cathedrals are a testament to their

e�ectiveness. While the writers of these

codes were not philosophers, their engi-

neering accomplishments were impressive.

Bruno Cossa/SOPA/Corbis

The Parthenon in Athens, Greece, was com-

pleted in 438 B.C. and is an example of early

column and beammasonry construction.

The history of statics is not a distinct subject, as it is closely intertwined with the

development of dynamics and mechanics of materials. Early scientists and engineers

were commonly called philosophers, and their noble undertaking was to use thought-

ful reasoning to provide explanations for natural phenomena. Much of their focus was

on understanding and describing the equilibrium of objects and the motion of celestial

bodies. With few exceptions, their studies had to yield results that were intrinsically

beautiful and/or compatible with the dominant religion of the time and place. What

follows is a short historical survey of the major figures who profoundly influenced

the development of key aspects of mechanics that are especially significant to statics.

∗ This history is based on the excellent works of C. Truesdell, Essays in the History of Mechanics, Springer-

Verlag, Berlin, 1968; I. Bernard Cohen, The Birth of a New Physics, revised and updated edition, W.

W. Norton & Company, New York, 1985; R. Dugas, A History of Mechanics, Dover, Mineola, NY,

1988; and James H. Williams, Jr., Fundamentals of Applied Dynamics, John Wiley & Sons, New York,

1996.
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For centuries, philosophers studied the equilibrium and motion of bodies with

less than full understanding, and sometimes incorrect understanding. Notable early

contributors include:

• Aristotle (384–322 B.C.) wrote about science, politics, economics, and biology,

and he proposed what is often called a “physics of common sense.” He studied

levers and although he attributed their efficiency to the “magical” properties of

the circle, he understood some basic concepts of the moment of a force and its

effect on equilibrium. He classified objects as being either light or heavy, and he

believed that light objects fall more slowly than heavy objects. He recognized

that objects can move in directions other than up or down; he said that such

motion is contrary to the natural motion of the body and that some force must

continuously act on the body for it to move this way. Most importantly, he said

that the natural state of objects is for them to be at rest.

• Archimedes (287–212 B.C.) postulated several axioms based on experimen-

tal observations of the equilibrium of levers, and using these, he proved sev-

eral propositions. His work shows further understanding of the effects of the

moment of a force on equilibrium. Archimedes is perhaps best known for

his pioneering work on hydrostatic fluid mechanics, where one of his discov-

eries was that a body that floats in fluid will displace a volume of fluid whose

weight is equal to that of the body. Recently, evidence has been found that he

discovered some elementary concepts of calculus.

• Leonardo da Vinci (1452–1519) had bold imagination and tackled a wide va-

riety of problems. He correctly understood the moment of a force and used the

terminology arm of the potential lever to describe what we today call the mo-

ment arm. While his conclusions were wrong, he studied the equilibrium of a

body supported by two strings. He also conducted experiments on the strength

of structural materials.

Following the progress of these and many other early philosophers came the work

of Galileo and Newton. With their work came rapid progress in achieving the essential

elements of a theory for the motion of bodies, and their accomplishments represent the

most important milestone in the history of mechanics until the work of Einstein. The

contributions of Galileo and Newton are discussed in some detail in the remainder of

this section.

Galileo Galilei

Fine Art Images/Heritage Image Partnership Ltd/

Alamy Stock Photo

Figure 1.2

A portrait of Galileo painted in 1636 by Justus

Sustermans.

Galileo Galilei (1564–1642) had a strong interest in mathematics, mechanics, as-

tronomy, heat, and magnetism. He made important contributions throughout his life,

despite persecution from the church for his support of the Copernican theory that the

Earth was not the center of the universe. One of his most important contributions

was his thought experiment in which he concluded that a body in its natural state

of motion has constant velocity. Galileo discovered the correct law for freely falling

bodies; that is, the distance traveled by a body is proportional to the square of time.

He also concluded that two bodies of different weight would fall at the same rate and

that any differences are due to air resistance. Galileo developed a theory (with some

minor errors) for the strength of beams, such as that shown in Fig. 1.3. He was the

first to use the concept of stress as a fundamental measure of the loading a material

supports, and he is viewed as the father of mechanics of materials. He also discov-

ered that the strength of structures does not scale linearly; that is, if the dimensions
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of a beam are doubled, the load the beam can support does not double. He speculated

that it is for this reason that trees, animals, and so on have natural limits to the size

they could reach before they would fail under their own weight. More importantly,

his work showed that newer, larger structures could not necessarily be built by simply

scaling the dimensions of smaller structures that were successfully built.

The Picture Art Collection/Alamy Stock Photo

Figure 1.3

A sketch from Galileo’s last book Discourses

on Two New Sciences, published in 1638, where

he studies the strength of beams, among several

other topics.

Isaac Newton

Newton (1643∗–1727) was one of the greatest scientists of all time. He made impor-

tant contributions to optics, astronomy, mathematics, and mechanics, and his collec-

tion of three books entitled Philosophiæ Naturalis Principia Mathematica, or Prin-

cipia as they are generally known, which were published in 1687, is considered by

many to be the greatest collection of scientific books ever written.

In the Principia, Newton analyzed the motion of bodies in “resisting” and “non-

resisting media.” He applied his results to orbiting bodies, projectiles, pendula, and

free fall near the Earth. By comparing his “law of centrifugal force” with Kepler’s

third law of planetary motion, Newton further demonstrated that the planets were at-

tracted to the Sun by a force varying as the inverse square of the distance, and he

generalized that all heavenly bodies mutually attract one another in the same way.

In the first book of the Principia, Newton develops his three laws of motion; in the

second book he develops some concepts in fluid mechanics, waves, and other areas of

physics; and in the third book he presents his law of universal gravitation. His contri-

butions in the first and third books are especially significant to statics and dynamics.

Newton’s Principia was the final brick in the foundation of the laws that govern

the motion of bodies. We say foundation because it took the work of Daniel Bernoulli

(1700–1782), Johann Bernoulli (1667–1748), Jean le Rond d’Alembert (1717–1783),

Joseph-Louis Lagrange (1736–1813), and Leonhard Euler (1707–1783) to clarify, re-

fine, and advance the theory of dynamics into the form used today. Euler’s contribu-

tions are especially notable since he used Newton’s work to develop the theory for

rigid body dynamics. Newton’s work, along with Galileo’s, also provided the foun-

dation for the theory of mechanical behavior of deformable bodies, which is more

commonly called mechanics of materials. However, it took the work of Charles-

Augustin Coulomb (1736–1806), Claude Louis Marie Henri Navier (1785–1857),

and Augustin Cauchy (1789–1857) to further refine the concept of stress into the form

used today; the work of Robert Hooke (1635–1703) and Thomas Young (1773–1829)

to develop a theory for elastic deformation of materials; and the work of Leonhard

Euler (1707–1783) to consider the deformations of a structure (an elastic strip in

particular).†

Imagno/Hulton Fine Art Collection/Getty Images

Figure 1.4

A portrait of Newton painted in 1689 by Sir God-

frey Kneller, which is owned by the 10th Earl

of Portsmouth. It shows Newton before he went

to London to take charge of the Royal Mint and

when he was at his scientific peak.

1.4 Fundamental Principles

Space and time. Most likely you already have a good intuitive understanding of

the concepts of space and time. In fact, to refine concepts of space and time is not

easy and may not provide the clarification we would like. Space is the collection of

all positions in our universe that a point may occupy. The location of a point is usu-

ally described using a coordinate system where measurements are made from some

∗ This birth date is according to the Gregorian, or “modern,” calendar. According to the older Julian cal-

endar, which was used in England at that time, Newton’s birth was in 1642.
† Additional comments on the history of mechanics as it pertains to mechanics of materials are given in

M. Vable, Mechanics of Materials, Oxford University Press, New York, 2002.
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reference position using the coordinate system’s reference directions. While selection

of a reference position and directions is arbitrary, it is usually based on convenience.

Because space is three-dimensional, three pieces of information, called coordinates,

are required to locate a point in space. Most often we will use a rectangular Carte-

sian coordinate system where the distances to a point are measured in three orthogo-

nal directions from a reference location. Other coordinate systems, such as spherical

and cylindrical coordinates (and polar coordinates in two dimensions), are sometimes

more convenient. All engineering problems are three-dimensional, but often we will

be able to idealize a problem as being two-dimensional or one-dimensional. Time

provides a measure of when an event, or sequence of events, occurs.

Mass and force. Mass is the amount of matter, or material, in an object. Force is

an agency that is capable of producing motion of an object. Forces can arise from

contact or interaction between objects, from gravitational attraction, from magnetic

attraction, and so on. As discussed in Section 1.6, interpretation and quantification of

mass and force should be viewed as being related by Newton’s second law of motion.

Force is discussed further in Section 1.5.

Particle. A particle is an object whose mass is concentrated at a point. For this

reason, a particle is also called a point mass, and it is said to have zero volume. An

important consequence of this definition is that the notion of rotational motion of a

particle is meaningless. Clearly there are no true particles in nature, but under the

proper circumstances it is possible to idealize real life objects as particles. Objects

that are small compared to other objects and/or dimensions in a problem can often

be idealized as particles. For example, to determine the orbit of a satellite around the

Earth, it is probably reasonable to idealize the satellite as a particle. Objects do not

necessarily need to be small to be accurately idealized as particles. For example, for

the satellite orbiting Earth, the Earth is not small, but for many purposes the Earth

can also be idealized as a particle.

Body and rigid body. A body has mass and occupies a volume of space. In nature,

all bodies are deformable. That is, when a body is subjected to forces, the distances

between points in the body may change. A rigid body is a body that is not deformable,

and hence the distance between any two points in the body never changes. There are

no true rigid bodies in nature, but very often we may idealize an object to be a rigid

body, and this provides considerable simplification because the intricate details of

how the body deforms do not need to be accounted for in an analysis. Furthermore, in

statics we will be able to make precise statements about the behavior of rigid bodies,

and we will establish methods of analysis that are exact.

Concept Alert

Vectors. A vector is an entity that has both

size and direction. Vectors are immensely

useful in mechanics, and the ability to use

vectors to represent force, position, and

other entities is essential.

Scalars and vectors. A scalar is a quantity that is completely characterized by

a single number. For example, temperature, length, and density are scalars. In this

book, scalars are denoted by italic symbols, such as �. A vector is an entity that has

both size (or magnitude) and direction. Much will be said about vectors in Chapter

2, but basic notions of vectors will be useful immediately. Statements such as “my

apartment is 1 mile northeast of Engineering Hall” and “I’m walking north at 3 km/h”

are statements of vector quantities. In the first example, the position of one location

relative to another is stated, while in the second example, the velocity is stated. In

both examples, commonly used reference directions of north and east are employed.

Vectors are immensely useful for describing many entities in mechanics. Vectors offer

compact representation and easy manipulation, and they can be transformed. That
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is, if a vector is known in reference to one set of coordinate directions, then using

established rules for transformation, the vector is known in any other set of coordinate

directions. In this book, vectors are denoted by placing an arrow above the symbol

for the vector, such as �⃗.

Position, velocity, and acceleration. Position, velocity, and acceleration are all

examples of vectors. If we consider a particle that has position �⃗ relative to some

location, then the velocity of the particle is the time rate of change of its position

�⃗ = � �⃗∕��, (1.1)

where �∕�� denotes the derivative with respect to time.∗ Similarly, the acceleration

is the time rate of change of velocity

�⃗ = ��⃗∕��. (1.2)

Since statics is concerned with situations where �⃗ = 0⃗, our discussion of Eqs. (1.1)

and (1.2) will be brief. If a particle’s acceleration is zero, then integration of Eq. (1.2)

shows the particle has constant velocity, which may be zero or nonzero. If the ve-

locity is zero, then Eq. (1.1) shows the particle’s position does not change, while if

the velocity is nonzero but is constant, integration of Eq. (1.1) shows the particle’s

position changes as a linear function of time. If the acceleration is not zero, then the

particle will move with velocity and position that change with time.

Newton’s laws of motion

Inspired by the work of Galileo and others before him, Newton postulated his three

laws of motion in 1687:

First Law. A particle remains at rest, or continues to move in a straight line with

uniform velocity, if there is no unbalanced force acting on it.

Concept Alert

Newton’s second law. Newton’s second

law, 	⃗ = 
�⃗, is the most important funda-

mental principle upon which statics, dynam-

ics, and mechanics in general are based.

Second Law. The acceleration of a particle is proportional to the resultant force act-

ing on the particle and is in the direction of this force. The mathematical state-

ment of this law† is

	⃗ = 
�⃗, (1.3)

where 	⃗ is the resultant force acting on the particle, �⃗ is the acceleration of

the particle, and the constant of proportionality is the mass of the particle 
.

In Eq. (1.3), 	⃗ and �⃗ are vectors, meaning they have both size (or magnitude)

and direction. Vectors are discussed in detail in Chapter 2.

Third Law. The forces of action and reaction between interacting bodies are equal

in magnitude, opposite in direction, and collinear.

Newton’s laws of motion, especially Eq. (1.3), are the basis of mechanics. They are

postulates whose validity and accuracy have been borne out by countless experiments

∗ Equations (1.1) and (1.2) are valid regardless of how a vector might be represented. However, the details

of how the time derivative is evaluated depend on the particular vector representation (e.g., Cartesian,

spherical, etc.) that is used. Dynamics explores these details further.
† Actually, Newton stated his second law in a more general form as 	⃗ = �(
�⃗)∕��, where �⃗ is the velocity

of the particle and �(
�⃗)∕�� denotes the time rate of change of the product 
�⃗, which is called the

momentum of the particle. When mass is constant, this equation specializes to Eq. (1.3). For problems

in which mass is not constant, such as in the motion of a rocket that burns a substantial mass of fuel, the

more general form of Newton’s second law is required.
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and applications for more than three centuries. Unfortunately, there is no fundamental

proof of their validity, and we must accept these as rules that nature follows. The

first law was originally stated by Galileo. Of the three laws, only the second two are

independent. In Eq. (1.3), we see that if the resultant force 	⃗ acting on a particle is

zero, then the acceleration of the particle is zero, and hence the particle may move

with uniform velocity, which may be zero or nonzero in value. Hence, when there

is no acceleration (i.e., �⃗ = 0⃗), the particle is said to be in static equilibrium, or

simply equilibrium. The third law will play an important role when drawing free

body diagrams, which we will see are an essential aid for applying 	⃗ = 
�⃗.

1.5 Force

Forces are of obvious importance to us. In statics, we are usually interested in how

structures support the forces that are applied to them, and how to design structures

so they can accomplish the goal of supporting forces. In dynamics, we are usually

interested in the motions of objects that are caused by forces that are applied to them.

In this section, we discuss force in some detail, examine some different types of forces,

and discuss how forces are produced.

Simply stated, a force is any agency that is capable of producing an acceleration

of an unsupported body.∗ While this definition may seem vague, it is comprehensive.

All forces are produced from the interaction of two or more bodies (or collections of

matter), and the interaction between the bodies can take several forms, which gives

rise to different ways that forces can be produced.

For many purposes, a force can be categorized as being either a contact force or

a field force:

Interesting Fact

Measuring force. A force can cause an

unsupported body to accelerate and also

can cause a body (both unsupported and

supported) todeform, or changeshape. This

suggests two ways to measure force. First,

for an accelerating body with known mass


, by measuring the acceleration �⃗, we may

then determine the force 	⃗ applied to the

body, using Newton’s law 	⃗ = 
 �⃗. This
approach is common in celestial mechanics

and projectile motion, but it cannot be used

for objects that are in static equilibrium.

A second approach that is more common

for both static and dynamic applications is

by measuring the deformation (i.e., shape

change) that a force produces in an object

whose behavior is known. An example is

the handheld spring scale shown, which is

being used to weigh bananas.

pounds
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6

The weight of the bananas causes the

spring’s length to change, and because the

spring’s sti	ness is known, the force the ba-

nanas apply to the scale can be deter-

mined. A brief historical discussion of mass

and force measurements is given in J. C.

Maxwell’s notesondynamicsentitledMatter

and Motion, Dover Publications, Inc., New

York, 1991, the preface of which is dated

1877. A more contemporary discussion of

force measurements (and measurements in

general) is available from the National In-

stitute of Standards and Technology (NIST)

(see http://www.nist.gov/).

• Contact force. When two bodies touch, contact forces develop between them.

In general, the contact forces are distributed over a finite area of contact, and

hence, they are distributed forces with dimensions of force/area. If the bod-

ies touch over only a small region, or if we replace the distributed force by

an equivalent concentrated force as discussed in Chapter 7, then the contact

forces are concentrated at a point. Contact forces are made up of two parts: a

normal-direction force and a tangential-direction force, which is also called the

friction force. Examples of contact forces include the forces between your feet

and ground when you are standing, and the force applied by air to a building

during a blowing wind.

• Field force. A force between bodies that acts through space is called a field

force. Field forces act throughout the volume of an object and thus have di-

mensions of force/volume. Field forces are often called body forces. For many

applications, we can represent a field force by a concentrated force that acts at

a point. Examples of field forces include the weight of an object, the attrac-

tive force between the Earth and Moon, and the force of attraction between a

magnet and an iron object.

Some examples of contact and field forces are shown in Fig. 1.5.

Although the preceding definition of contact forces is useful, more careful con-

sideration of contact at an atomic length scale shows that a contact force is a special

∗ Whether or not a particular body does accelerate depends upon the combined action of all forces that are

applied to the body.
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(a) (b)

�

�

�
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Figure 1.5. Examples of contact forces and field forces. (a) A basketball rests on a hard level

surface. (b) A book is pushed across a table with your finger. In both examples, the field force

is the weight� of the object, and the contact forces are the normal force� , the friction force

	 , and the force 
 applied by your finger to the book. For the basketball, contact occurs over a

very small region, and it is reasonable to idealize this as a point. For the book, contact occurs

over the entire surface of the book cover, but it is nonetheless possible to model the contact

forces by concentrated forces acting at a point.

case of a field force. As an atom from one surface comes very close to an atom on

the opposite surface, the atoms never touch one another, but rather they develop a re-

pulsive field force that increases rapidly as the two atoms come closer. However, the

range of distances over which these forces act is very small (on the order of atomic

dimensions), and for macroscopic applications, our definition of contact forces is

useful.

1.6 Units and Unit Conversions

Helpful Information

Dimensions versus units. Dimensions and

units are di	erent. A dimension is a mea-

surable extent of some kind, while units are

used to measure a dimension. For example,

length and time are both dimensions, and

meter and second, respectively, are units

used to measure these dimensions.

Units are an essential part of any quantifiable measure. Newton’s law 	 = 
�,
written here in scalar form, provides for the formulation of a consistent and unam-

biguous system of units. We will employ both U.S. Customary units and SI units (In-

ternational System∗) as shown in Table 1.1.

Table 1.1. U.S. Customary and SI unit systems.

System of Units

Base Dimension U.S. Customary SI

force pound (lb) newtona(N) ≡ kg⋅m∕s2

mass sluga
≡ lb⋅s2∕ft kilogram (kg)

length foot (ft) meter (m)

time second (s) second (s)

a Derived unit.

Each system has three base units and a fourth derived unit. In the U.S. Customary

system, the base units measure force, length, and time, using lb, ft, and s, respectively,

and the derived unit is obtained from the equation 
 = 	∕�, which gives the mass

unit as lb⋅s2∕f t, which is defined as 1 slug. In the SI system, the base units mea-

sure mass, length, and time, using kg, m, and s, respectively, and the derived unit is

obtained from the equation 	 = 
�, which gives the force unit as kg⋅m∕s2, which

∗ SI has been adopted as the abbreviation for the French Le Système International d’Unités.
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is defined as 1 newton, N. For both systems, we may occasionally use different, but

consistent, measures for some units. For example, we may use minutes rather than

seconds, inches instead of feet, grams instead of kilograms, and so on. Nonetheless,

the definitions of 1 newton and 1 slug are always as shown in Table 1.1.

Dimensional homogeneity and unit conversions

Common Pitfall

Weight and mass are di�erent. It is unfor-

tunately common for people, especially lay-

people, to refer to weight using mass units.

For example, when a person says, “I weigh

70 kg,” the person really means “My mass

is 70 kg.” In this book, as well as through-

out engineering, we must be precise with

our nomenclature. Weights and forces will

always be reported using appropriate force

units, and masses will always be reported

using appropriate mass units.

Of course, the symbol “=” means that what is on the left-hand side of the symbol is

the same as what is on the right-hand side. Hence, for an expression to be correct, it

must be numerically correct and dimensionally correct. Normally this means that the

left- and right-hand sides have the same numerical value and the same units.∗ All too

often units are not carried along during a calculation, only to be incorrectly assumed

at the end. Our strong recommendation is that you always use appropriate units in

all equations. Such practice helps avoid catastrophic blunders and provides a useful

check on a solution, for if an equation is found to be dimensionally inconsistent, then

an error has certainly been made.

Unit conversions are frequently needed, and are easily accomplished using con-

version factors such as those found in Table 1.2 and rules of algebra. The basic idea

is to multiply either or both sides of an equation by dimensionless factors of unity,

where each factor of unity embodies an appropriate unit conversion. This description

perhaps sounds vague, and the procedure is better illustrated by the examples that

follow.

Table 1.2. Conversion factors between U.S. Customary and SI unit systems.

U.S. Customary SI

length 1 in. = 0.0254 m (2.54 cm, 25.4 mm)a

1 f t (12 in.) = 0.3048 ma

1 mi (5280 f t) = 1.609 km

force 1 lb = 4.448 N

1 kip (1000 lb) = 4.448 kN

mass 1 slug (1 lb⋅s2∕f t) = 14.59 kg

a Exact.

Prefixes

Prefixes are a useful alternative to scientific notation for representing numbers that

are very large or very small. Common prefixes and a summary of rules for use are

given in Table 1.3.

Interesting Fact

Abbreviation for inch. Notice in Table 1.2

that the abbreviation for inch is “in.”, which

contains a period. This is unusual, but

is done because without the period, the

abbreviation would also be the same as a

word in the English language, and thismight

lead to confusion.

Rules for Prefix Use

1. With few exceptions, use prefixes only in the numerator of unit combinations.

One common exception is kg, which may appear in numerator or denominator.

2. Use a dot or dash to denote multiplication of units. For example, use N ⋅m or

N-m.

∗ A simple example of an exception to this is the equation 12 in. = 1 ft. Such equations play a key role in

performing unit conversions.
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3. Exponentiation applies to both the unit and prefix. For example, mm2 = (mm)2.

4. When the number of digits on either side of a decimal point exceeds 4, it is

common to group the digits into groups of 3, with the groups separated by

commas or thin spaces. Since many countries use a comma to represent a dec-

imal point, the thin space is sometimes preferable. For example, 1234.0 could

be written as is, and 12345.0 should be written as 12,345.0 or as 12 345.0.

Table 1.3. Common prefixes used in the SI unit systems.

Multiplication Factor Prefix Symbol

1 000 000 000 000 000 000 000 000 1024 yotta Y

1 000 000 000 000 000 000 000 1021 zetta Z

1 000 000 000 000 000 000 1018 exa E

1 000 000 000 000 000 1015 peta P

1 000 000 000 000 1012 tera T

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

100 102 hecto h

10 101 deka da

0.1 10−1 deci d

0.01 10−2 centi c

0.001 10−3 milli m

0.000 001 10−6 micro �

0.000 000 001 10−9 nano n

0.000 000 000 001 10−12 pico p

0.000 000 000 000 001 10−15 femto f

0.000 000 000 000 000 001 10−18 atto a

0.000 000 000 000 000 000 001 10−21 zepto z

0.000 000 000 000 000 000 000 001 10−24 yocto y

While prefixes can often be incorporated in an expression by inspection, the rules

for accomplishing this are identical to those for performing unit transformations, as

shown in the examples of this section.

Angular measure
definition of

radian measure

�

�
�

�

�

�

� =
�
�

Figure 1.6

Definition of radian measure for angles.

Angles are usually measured using either radians (rad) or degrees (◦). The radian

measure of the angle � shown in Fig. 1.6 is defined to be the ratio of the circumference

� of a circular arc to the radius � of the arc. Thus, as seen in the examples of Fig. 1.7,

the angle for one-quarter of a circular arc is � = �∕2 rad (or 1.571 rad), and for a

full circular arc the angle is � = 2� rad (or 6.283 rad). Degree measure arbitrarily

chooses the angle for a full circular arc to be 360◦, in which case 1◦ is the angle of

an arc that is 1/360 parts of a full circle. Thus, the transformation between radian and

degree measure is

�

�
�

� =
�
2

rad

�
�
�

� = 2� rad

Figure 1.7

Examples of angles measured in radians.

2� rad = 360◦. (1.4)

Transformations are carried out using the procedures described in this section.

For example, to convert the angle � = 12◦ to radian measure, we use Eq. (1.4) to
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write

� = (12◦)
2� rad

360◦
= 0.209 rad. (1.5)

Radians are a measure of angle that naturally arises throughout mathematics and sci-

ence, and most equations derived from fundamental principles use radian measure.

Nonetheless, degree measure has intuitive appeal and is used widely.

When writing angles, we will always label these as radians or degrees. However,

radians and degrees are not units in the same way as those discussed earlier and, while

this may be puzzling, both of these measures are dimensionless. This can be seen by

examining the definition of radian measure shown in Fig. 1.6, namely � = �∕�. With �
and � having the same units of length, angle � is clearly dimensionless. Thus, radians

and degrees are not really units, but rather are statements of the convention used for

measuring an angle. Nonetheless, for practical purposes we may consider these to be

units, and we will transform them using our usual procedures. Further, if we derive an

expression that we expect to be dimensionless and we discover it has units of radians

or degrees, then we should not necessarily be alarmed.

Small angle approximations

The small angle approximations discussed below are frequently used in statics and

subjects that follow. Consider the right triangle shown in Fig. 1.8. The sine, cosine,

and tangent of angle � are defined as

sin � =
�
�
, cos � =

�
�
, and tan � =

�
�
. (1.6)

If � is measured in radians, then sin � and cos � may be expressed using Taylor series

�

�

�

�

Figure 1.8

A right triangle. If � is measured in radians and is

small (� ≪ 1 rad), then the small angle approxi-

mations are sin � ≈ �, cos � ≈ 1, and tan � ≈ �.
expansions as

sin � = � −
�3

6
+
�5

120
− … and cos � = 1 −

�2

2
+
�4

24
− … . (1.7)

When � is small (≪ 1 rad), Eq. (1.7) can be truncated after the first terms to obtain

the small angle approximations as

sin � ≈ � and cos � ≈ 1, if � ≪ 1 rad. (1.8)

Thus, if � is small, then Eq. (1.6) becomes

� ≈
�
�
, � ≈ �, and � ≈

�
�
, if � ≪ 1 rad. (1.9)

Mini-Example

Use the small angle approximations to determine the sine and cosine of 5◦, 10◦,

and 15◦, and compare these results to the exact values.

Solution

The angles expressed in radians are � = 5◦(� rad∕180◦) = 0.08727 rad, and

similarly � = 10◦ = 0.17453 rad, and � = 15◦ = 0.261799 rad. We then use

Eq. (1.8) to obtain the results listed in Table 1.4. Notice that the small angle

approximation for cosine is not as accurate as that for sine. Thus, for some

applications, an additional term from Eq. (1.7) is retained to yield the small angle

approximation cos � ≈ 1 − �2∕2.
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Table 1.4. Small angle approximations for 5◦, 10◦, and 15◦ angles.

� Small Angle Approx. Exact Value Error

5◦ = 0.08727 rad sin � ≈ 0.08727 0.087156 0.1%

cos � ≈ 1 0.996195 0.4%

10◦ = 0.17453 rad sin � ≈ 0.17453 0.173648 0.5%

cos � ≈ 1 0.984808 1.5%

15◦ = 0.261799 rad sin � ≈ 0.261799 0.258819 1.2%

cos � ≈ 1 0.965926 3.5%

Accuracy of calculations

The accuracy of answers obtained for a particular problem is only as precise as the

least accurate information used in the analysis. For example, consider the numbers

1.23 and 45.67. By writing these numbers using three and four digits, respectively, the

implication is that they are known to three and four significant digits of accuracy. The

exact product of these numbers is 56.1741. But it is wrong to imply that the product

is known to six-digit accuracy. Rather, it is appropriate to interpret the product as

being accurate to the same number of significant digits as the least accurate piece of

information used. Hence, we would round the exact product to three significant digits

and interpret the answer as being 56.2. The use of number of digits to imply precision,

Helpful Information

Throughout this book, we will generally

assume that given data is known to three

significant digits of accuracy. When we

present calculations, all intermediate results

are stored in the memory of a calculator

or computer using the full precision these

machines o	er. When intermediate results

are reported, they will usually be rounded

to four significant digits. Final answers are

also usually reported with four significant

digits, although they should generally be

interpreted as being accurate to only three

significant digits. If an intermediate or final

result can be exactly represented using

fewer than four digits, then we will usually

do so (e.g., if a number is exactly 1∕5, we

may write this as 0.2). When verifying the

calculations described in this book, you

may occasionally calculate results that are

slightly di	erent from those shown if you

do not store intermediate results as we

describe.

however, can be ambiguous. Consider the number 6000; it is not clear if this number is

known to one, two, three, or four significant digits. To embody accuracy information

in numbers, it is probably best to use scientific notation. Thus, for example, if the

number 6000 were known to three significant digits, we could write 6.00 × 103 with

the convention that the number of digits used indicates the accuracy of the number.

In this book, we will use a more pragmatic approach and will generally assume that

data is known to three significant digits. When you perform computations, it is good

practice to carry a few extra digits of accuracy for intermediate computations, and

if an electronic device such as a calculator or computer is used, then you certainly

want to use the full precision that is available. Nonetheless, final answers should be

interpreted as having precision that is commensurate with the precision of the data

used. The margin note on this page describes the convention for accuracy of numbers

that is used for the calculations carried out in this book.
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E X A M P L E 1.1 Unit Conversion

Convert the speed � = 5.12 f t∕s to the SI units m/s and km/h.

SOLUT ION

Road Map Starting with � = 5.12 f t∕s, we will multiply the right-hand side of this

expression by appropriate conversion factors to achieve the desired unit conversion.

Governing Equations & Computation Referring to Table 1.2, we find

1 f t = 0.3048 m. (1)

Dividing both sides of Eq. (1) by 1 ft provides the middle term of the following equation

Common Pitfall

Omitting units in equations. The most se-

rious mistake made when performing unit

conversions (as well as when writing equa-

tions in general) is to omit units in equations.

Although writing units in equations takes a

fewmoments longer,doingsowill helpavoid

the errors that are sure to result if you do not

make this a practice.

1 =
0.3048 m

1 f t
=

1 f t

0.3048 m
, (2)

whereas dividing both sides of Eq. (1) by 0.3048 m provides the last term of Eq. (2).

Regardless of which form of Eq. (2) is used, the left-hand side is the number 1, with no

units. The form of Eq. (2) that is used in a particular unit transformation will depend on

what units need to be replaced, or canceled. To accomplish the unit conversion needed for

� = 5.12 f t∕s, we write

� = 5.12
ft

s
(1) = 5.12

∕ft

s

0.3048 m

1 ∕ft
⏟⏞⏞⏟⏞⏞⏟

=1

= 1.561
m

s
. (3)

In writing Eq. (3), we first multiply 5.12 f t∕s by the dimensionless number 1; this changes

neither the value nor the units of �. Since we want to eliminate the foot unit, we substitute

for the dimensionless number 1 using the first form of transformation in Eq. (2), namely

1 = 0.3048 m∕1 f t. Finally, we cancel the foot unit in the numerator and denominator to

obtain the speed � = 1.561 m∕s in the desired SI units.

To obtain � in units of km/h, we continue with Eq. (3) and perform the following

transformations:

� = 1.561
∕m

∕s

km

103 ∕m
⏟⏟⏟

=1

60 ∕s

∕min
⏟⏟⏟

=1

60 ∕min

h
⏟⏟⏟

=1

= 5.618
km

h
. (4)

Discussion &Verification When possible, answers should be checked to verify that they

are reasonable. For example, starting with � = 5.12 f t∕s, the result in Eq. (3) is reasonable

since a meter is about 3 feet.
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E X A M P L E 1.2 Unit Conversion

The universal gravitational constant, whose physical significance we discuss later in this

chapter, is � = 66.74 × 10−12 m3∕(kg⋅s2). Express � in base U.S. Customary units.

SOLUT ION

Road Map Perhaps the most straightforward solution strategy is to first convert mass in

kilograms to mass in slugs and then replace the unit of slug with its fundamental definition.

Governing Equations & Computation Beginning our calculation with � = 66.74 ×

10−12 m3∕(kg ⋅s2), we multiply the right-hand side by appropriate conversion factors to

achieve the desired unit conversion. Thus,

� = 66.74 × 10−12
∕m3

∕kg⋅s2

14.59 ∕kg

∕slug
⏟⏞⏟⏞⏟

=1

(
ft

0.3048 ∕m

)3

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=(1)3

∕slug

lb⋅s2∕ft
⏟⏞⏟⏞⏟

=1

= 34.39 × 10−9 ft4

lb⋅s4
. (1)

Alternatively, we could also perform the unit transformation by first introducing the

SI force measure newton, followed by conversion to force measure in pounds, followed

by conversion of length. Thus,

� = 66.74 × 10−12
∕m3

∕kg⋅s2

∕kg⋅ ∕m∕s2

∕N
⏟⏞⏟⏞⏟

=1

4.448 ∕N

lb
⏟⏞⏟⏞⏟

=1

(
ft

0.3048 ∕m

)4

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=(1)4

= 34.39 × 10−9 ft4

lb⋅s4
. (2)

Discussion & Verification Because of the complexity of the unit combinations for �,

it is not possible to use inspection to verify that Eqs. (1) and (2) are reasonable. Rather,

the accuracy of our results relies solely on the use of appropriate conversion factors and

accurate cancellation of units in Eqs. (1) and (2). For this reason, it is essential that you

carry units throughout all equations.
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1.7 Newton’s Law of Gravitation

Because weight produced by gravity is so omnipresent, it is worthwhile to exam-

ine the source of such forces closely, and to understand the limitations of common

expressions such as � = 
� where 
 is an object’s mass, � is acceleration due

to gravity, and � is the object’s weight. Consider the force 	 of mutual attraction

between two particles, as shown in Fig. 1.9. In 1666, Newton developed his law of

universal gravitational attraction as

�

	

	


1


2

Figure 1.9

The force 	 that attracts two particles toward one

another is provided by Newton’s law of universal

gravitational attraction.

	 = �

1
2

�2
(1.10)

where


1, 
2 = masses of particles 1 and 2;

� = distance between the particles;

� = universal gravitational constant, found to be

approximately 66.74×10−12 m3∕(kg⋅s2);

	 = force of attraction between two particles.

Concept Alert

Force due to gravity. Force due to grav-

itational attraction between two objects is

a vector, hence it has both magnitude and

direction. Equation (1.10) gives the mag-

nitude, and the direction is along a line

connecting the centers of gravity of the

two objects.
It has been widely reported that Newton’s inspiration for this law was the motion

of an apple falling from a tree, but he also recognized that the same law should apply

to the attraction of celestial bodies to one another. Although Newton postulated the

law in 1666, it was not until 1687 that he published his ideas in the Principia. This

delay was due in part to the need to prove that an object such as the Earth (if assumed

to be spherical and uniform) could be treated as a point mass for gravitational effects

on neighboring particles, and in the course of proving this he developed calculus.∗

The first accurate measurement of � was by Lord Cavendish in 1798, and this value

has been refined by more careful experiments over the last two centuries, leading to

the value reported here. The law of universal gravitational attraction is a postulate,

and as with Newton’s three laws of motion, we must accept this as a rule that nature

follows without a fundamental proof of its validity.

For the vast majority of applications on Earth, Eq. (1.10) takes the simple and

convenient form� = 
�, as follows. Let 
1 in Eq. (1.10) denote the mass 
 of an

object, and let 
2 denote the mass of the Earth (with an approximate value 
Earth =

5.9736×1024 kg). If the object is on or near the surface of the Earth, then its position �
is about the same as the mean radius of the Earth (with an approximate value 6.371 ×

106 m). The force 	 in Eq. (1.10) is then called the weight � of the object, and

Eq. (1.10) can be rewritten as

� = 
� where � ≡ �
Earth∕�2. (1.11)

From Eq. (1.11), we see that � is not a constant because it depends on the value of �.
However, for the vast majority of applications where objects are near the surface of

∗ Calculus was also developed independently by Gottfried Wilhelm Leibniz (1646–1716), and he and New-

ton had a long-standing dispute over who was the true originator. The historical records show that while

Newton was the first to discover calculus (about 10 years before Leibniz), Leibniz was the first to pub-

lish his discovery (about 15 years before Newton). In some respects, Leibniz won since it is his superior

notation that we use in calculus today.



Section 1.7 Newton’s Law of Gravitation 17

the Earth, effects of small changes in � are negligible, and the commonly used values

for acceleration due to gravity are

� = 9.81 m/s2 = 32.2 ft/s2. (1.12)

Note that if the values reported above for�, Earth’s mass, and Earth’s mean radius

are used in Eq. (1.11), the value of � produced is slightly different than 9.81 m/s2. The

difference between the accepted value of � and the theoretically computed value pro-

vided by Eq. (1.11) has several sources, including that the Earth is not perfectly spher-

ical and does not have uniform mass distribution, and the effects of centripetal accel-

eration due to the Earth’s rotation are not accounted for. Because of these sources,

the actual acceleration due to gravity is about 0.3% lower at the equator and 0.3%

higher at the poles, relative to the numbers given in Eq. (1.12) which are for a north

or south latitude of 45◦ at sea level. In addition, there may be small local variations

in acceleration due to gravity due to the effects of geology. Nonetheless, throughout

this book we will use the standard values of � given in Eq. (1.12).

Helpful Information

Center of gravity. The center of gravity

is the point through which the weight of

a body, or a collection of bodies, may be

considered to act. In figures, we will often

denote the center of gravity by using the

symbol . To illustrate, imagine a server at

a restaurant brings you wine and pasta on

a tray. Obviously, the server must position

his hand so that the combinedweight of the

tray and everything on it is located over his

hand.

12 N

8 N
10 N

30 N

center of gravity

The weight of the wine (12 N), pasta (10 N),

and tray (8 N) can be thought of as a sin-

gle 30 N force acting through the center of

gravity for the collection of objects. Center

of gravity and how it is determined are dis-

cussed thoroughly in Chapter 7, where it

is seen that the two force systems shown

above are equivalent force systems. In the

meantime, a working knowledge of this def-

inition will be useful.

Relationship between specific weight and density

The specific weights and densities of some common materials are given in Table 1.5.

When using U.S. Customary units, it is common to characterize the density of

Table 1.5. Specific weight and density for some common materials. Except for water and ice,

numbers reported are generally at 20 ◦C. Data may vary depending on composition, alloying,

temperature, moisture content for wood, etc.

Specific Weight � Density �

Material (lb/ft3) (kg/m3)

iron (pure) 491 7860

iron (cast) 450 ± 15 7210 ± 240

aluminum (pure) 169 2710

aluminum (alloy) 170 ± 10 2710 ± 160

steel 490 7850

stainless steel 500 8010

brass 537 ± 8 8610 ± 130

titanium 280 4480

rubber 70 ± 10 1120 ± 160

nylon 70 1120

concrete 150 2400

rock (dry granite) 165 2640

cortical bone (adult) 119 1900

wood (dry Douglas fir) 32 ± 2 510 ± 30

water (fresh, 4 ◦C, 1 atm) 62.4 1000

ice 57 920

JP–4 jet fuel 48 770
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materials using specific weight (sometimes also called weight density, or unit weight),

which is defined to be the weight on Earth of a unit volume of material. For example,

the specific weight of steel is � = 490 lb∕f t3 (= 0.284 lb∕in.3). However, specific

weight is not the same as density, although they are related. Density is defined to be

the mass of a unit volume of material, and when SI units are used, it is most common

to directly report a material’s density. Thus, for steel, the density is � = 7850 kg/m3.

These measures are related by Eq. (1.11) as follows. Imagine a certain volume � of

material has weight (on Earth) � and mass 
. Dividing Eq. (1.11) by volume �
provides

�
�

=


�
�. (1.13)

In this expression,� ∕� is the definition of specific weight � , and 
∕� is the defi-

nition of density �. Thus, Eq. (1.13) becomes

� = �� or � =
�

�
. (1.14)
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E X A M P L E 1.3 Weight and Force of Mutual Attraction

��

220 mm 220 mm

Lucinda Dowell

Figure 1

Two bowling balls resting on a shelf touch one another. The balls have 220 mm diameter

and are made of plastic with density �� = 1170 kg/m3 for ball � and �� = 980 kg/m3 for

ball �. Determine the weight of each ball and the force of mutual attraction, expressing

both in SI units and U.S. Customary units.

SOLUT ION

Road Map The forces to be determined are shown in Fig. 2. The weights of balls � and

� are forces (vectors) with magnitudes�� and�� , respectively, and these forces act in

the downward vertical direction. The force of mutual attraction between the two balls has

magnitude 	 , with directions as shown in Fig. 2. Note that Newton’s third law requires

the force of mutual attraction between the two balls to have equal magnitude and opposite

direction. We will assume both balls are uniform (i.e., the density is the same throughout

each ball), and we will neglect the presence of the finger holes. We will first determine the

mass of each ball. We will then determine the weight of each ball, using�� = 
�� and

�� = 
��, and then the force of mutual attraction, using Newton’s law of gravitational

attraction.

�� ��

	 	

� �

Figure 2

The weight of each ball and the force of mutual

attraction are vectors with the directions shown.

Important Note: The bowling balls are also sub-

jected to other forces that are not shown (see the

Helpful Information margin note below).

Helpful Information

Additional forces. The balls shown in Fig. 2

are subjected to additional forces that are

not shown. For example, the shelf applies a

force to each ball, and there are probably

contact forces between the two balls where

they touch. Clearly, without these additional

forces, the bowling balls could not be in

static equilibrium. Chapter 3 will thoroughly

discuss these additional forces and how

they may be determined.

Governing Equations & Computation The mass 
� of ball � is the product of the

material’s density �� and the ball’s volume ��, and similarly for ball �. Thus,


� = ���� =

(
1170

kg

∕m3

)
4

3
�

(
0.220 ∕m

2

)3

= 6.523 kg, (1)


� = ���� =

(
980

kg

∕m3

)
4

3
�

(
0.220 ∕m

2

)3

= 5.464 kg. (2)

The weight of each ball is

�� = 
�� = (6.523 kg)
(

9.81
m

s2

)
= 63.99

kg⋅m

s2
= 63.99 N, (3)

�� = 
�� = (5.464 kg)
(

9.81
m

s2

)
= 53.60

kg⋅m

s2
= 53.60 N. (4)

In U.S. Customary units, �� = (63.99 ∕N)(1 lb∕4.448 ∕N) = 14.39 lb and �� =

(53.60 ∕N)(1 lb∕4.448 ∕N) = 12.05 lb.

The force of mutual attraction is given by Eq. (1.10) (with subscripts 1 and 2 replaced

by � and �) as

	 = �

�
�
�2

=

⎛⎜⎜⎜⎜⎜⎝

66.74 × 10−12

∕m2
⋅m

⏞⏞⏞

m3

∕kg⋅s2

⎞⎟⎟⎟⎟⎟⎠

(6.523 ∕kg)(5.464 kg)

(0.220 ∕m)2

= 4.91 × 10−8 kg⋅m

s2
= 4.915 × 10−8 N. (5)

In Eq. (5), � = 0.220 m is the distance between the center of each ball. In U.S. Customary

units, 	 = (4.915 × 10−8 ∕N)(1 lb∕4.448 ∕N) = 1.105 × 10−8 lb.

Discussion & Verification As you might have expected, the force of mutual attraction

between the two balls is very small compared to the weight of the balls (9 orders of mag-

nitude smaller). In developing models for engineering problems, the force of mutual at-

traction will usually be small compared to other forces, and when this is the case, it will

be neglected.
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E X A M P L E 1.4 Specific Weight and Density

The specific weight of a particular aluminum alloy is � = 0.099 lb∕in.3. Determine the

density of this alloy, and report this in U.S. Customary units.

SOLUT ION

Road Map Beginning with weight per unit volume for an aluminum alloy, we will de-

termine its mass per unit volume.

Governing Equations & Computation We use Eq. (1.14), with appropriate unit trans-

formations

� =
�

�
=

0.099 lb∕in.3

32.2 ∕ft∕s2

∕ft

12 in.
= 2.562 × 10−4 lb⋅s2

in.4

= 2.562 × 10−4 ∕lb⋅ ∕s2

in.4
⏟⏟⏟

∕in.⋅ in.3

slug

∕lb⋅ ∕s2∕∕ft

12 ∕in.

∕ft
= 3.075 × 10−3 slug

in.3
. (1)

Discussion & Verification The first expression in Eq. (1), � = 2.562 × 10−4 lb⋅s2∕in.4,

does not use the conventional U.S. Customary unit for mass, but is otherwise an acceptable

and useful answer for the density of this aluminum alloy. The second expression in Eq. (1),

� = 3.075 × 10−3 slug∕in.3, incorporates the mass unit slug and provides the density in

the expected form of mass per unit volume.
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1.8 Failure

Among all of the goals confronting engineers when they design structures and ma-

chines, the most crucial goal is to develop designs that are as safe as possible. Un-

fortunately, despite all human efforts to meet this goal, sometimes we do not, and for

reasons that are almost always unexpected, failure occurs. When failure occurs, we

must learn from it so that our mistakes and/or lack of foresight are not repeated in the

future.∗ In this section, some examples of engineering failures are highlighted.

• Tacoma Narrows bridge. Only four months after its opening in 1940, the

Tacoma Narrows suspension bridge in Washington collapsed violently due to

severe vibrations produced by aerodynamic forces that were not fully antici-

pated and accounted for in its design (see Fig. 1.10). Interestingly, the Deer Isle

bridge along the coast of Maine, while smaller, was of similar construction. It

opened one year earlier and also experienced severe wind-induced vibrations.

However, the designer of this bridge had the foresight and perhaps sufficient

time to add wind fairings along the bridge’s length to give it better aerodynamic

properties, and additional diagonal cable bracing to provide greater stiffness.

This bridge is still in service today.†

Library of Congress Prints and Photographs Division

Washington, D.C. 20540 USA

Figure 1.10

Failure of the Tacoma Narrows bridge in Tacoma,

Washington, in 1940, due to severe vibrations

produced by a 42 mph wind.

• Escambia Bay bridge. Fifty-six sections of the Interstate 10 bridge cross-

ing Escambia Bay in Pensacola, Florida, were dislodged by Hurricane Ivan

in September 2004, including numerous sections that were completely washed

into the bay (see Fig. 1.11). Each of these sections weighed about 220 tons.

The National Weather Service categorizes the intensity of hurricanes using a

scale of 1 to 5. When Ivan struck the Escambia Bay bridge, it was a category 3

hurricane with sustained winds of 111 to 130 mph. While Ivan was not an ex-

treme hurricane according to this scale, the damage caused to the Escambia

Bay bridge was extreme.

ZUMA Press Inc/Alamy Stock Photo

Figure 1.11

Failure of the Escambia Bay bridge in Pensacola,

Florida, during Hurricane Ivan in September

2004.

• Airbus A300 failure. On November 12, 2001, only minutes after takeoff, Amer-

ican Airlines flight 587, an Airbus A300, crashed into a residential area of Belle

Harbor, New York, because the airplane’s vertical stabilizer separated in flight

due to failure of the attachment lugs between the stabilizer and fuselage (see

Fig. 1.12). All 260 people on board and five people on the ground were killed. The

National Transportation Safety Board‡ (NTSB) investigated the accident and at-

tributed the cause to high aerodynamic loads resulting from unnecessary and

excessive rudder pedal inputs as the first officer reacted to turbulence caused by

another aircraft. The airline’s pilot training program and the airplane’s rudder

design were also cited as contributing factors. Among the recommendations

made by the NTSB were to modify the rudder control systems to increase pro-

tection from high forces due to hazardous rudder pedal inputs at high speeds.

∗ Interesting case studies of failures and how we can learn from these are given in H. Petroski, Design

Paradigms: Case Histories of Error and Judgment in Engineering, Cambridge University Press, New

York, 1994.
† For additional reading, see B. Moran (1999), “A Bridge That Didn’t Collapse,” Invention and Technology,

15(2), pp. 10–18.
‡ The National Transportation Safety Board (NTSB) is an independent federal agency charged by Congress

with investigating every civil aviation accident in the United States and significant accidents in other

modes of transportation including railroad, highway, marine and pipeline, and issuing safety recommen-

dations aimed at preventing future accidents. Although implementation of the NTSB’s recommendations

is not mandatory, over 80% of their recommendations have been adopted.
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Anthony Correia/Getty Images

Figure 1.12

The vertical stabilizer of an Airbus A300 airplane

separated in flight and was recovered from Ja-

maica Bay, about 1 mile from the crash site.

• Kansas City Hyatt Regency Hotel. On July 17, 1981, two suspended walk-

ways at the Kansas City Hyatt Regency Hotel collapsed during a dance party,

killing 114 people and seriously injuring many more. The collapse was caused

by connections that failed, as shown in Fig. 1.13(a). The original connection

design, shown in Fig. 1.13(b), was changed during construction to the design

shown in Fig. 1.13(c), with the agreement of all parties involved. While the

original design had satisfactory strength, the revised design was easier to fab-

ricate, featured shorter bars that were more readily available, and was more

straightforward than the potentially confusing original design. However, the

revised design was never analyzed to determine its adequacy.∗

(a) (b) original design (c) as constructed
Lee Lowery/Texas A&M University

Figure 1.13. (a) Failure of a connection supporting a walkway at the Kansas City

Hyatt Regency Hotel, where a support rod has pulled through a box beam, allow-

ing the walkways to collapse. (b) The original design, which had satisfactory strength.

(c) The revised design, which was easier to fabricate.

• Tropicana Casino parking garage. On October 30, 2003, a 10-story park-

ing garage under construction at the Tropicana Casino and Resort in Atlantic

City, New Jersey, collapsed, killing four workers and injuring 21 others (see

Fig. 1.14). The failure occurred as concrete was being poured for one of the up-

per floor decks. The Occupational Safety and Health Administration† (OSHA)

investigated the failure and fined the concrete contractor for intentional disre-

gard of safety standards for failing to erect, support, brace, and maintain frame-

work that would be capable of supporting all vertical and lateral loads that may

reasonably be anticipated during construction. The design of the building itself

was adequate, but the design of structures needed for fabrication was not. Note

that concrete requires time after pouring (28 days is common) to reach its full

design strength.

Donald Kravitz/Getty Images News

Figure 1.14

Inspectors survey a five-story collapsed section of

a parking garage under construction at the Tropi-

cana Casino and Resort in Atlantic City, New Jer-

sey, October 30, 2003.

∗ Additional aspects of this failure are discussed in H. Petroski, Design Paradigms: Case Histories of Error

and Judgment in Engineering, Cambridge University Press, New York, 1994.
† The mission and regulatory powers of the Occupational Safety and Health Administration are described

on p. 347.
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1.9 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized. For equa-

tions and/or concepts that are not clear, you should refer to the original equation numbers

cited for additional details.

Scalars and vectors

A scalar is a quantity that is completely characterized by a single number. A vector has

both size (or magnitude) and direction. In this book, scalars are denoted by italic symbols

such as �, and vectors are denoted by placing an arrow above the symbol for the vector,

such as �⃗.

Position, velocity, and acceleration

Position, velocity, and acceleration are all vector quantities. If �⃗ denotes the position of

a particle relative to some location, then the velocity and acceleration of the particle are

defined by

�⃗ = ��⃗∕��,

Eq. (1.1), p. 7

�⃗ = ��⃗∕��.

Eq. (1.2), p. 7

When �⃗ = 0⃗, the particle is said to be in static equilibrium, or simply equilibrium, and

it either moves with constant velocity or remains stationary in space. If �⃗ ≠ 0⃗, then the

particle will move with velocity and position that change with time.

Laws of motion

Newton’s three laws of motion are as follows:

First Law. A particle remains at rest, or continues to move in a straight line with uniform

velocity, if there is no unbalanced force acting on it.

Second Law. The acceleration of a particle is proportional to the resultant force acting

on the particle and is in the direction of this force.

	⃗ = 
�⃗.

Eq. (1.3), p. 7

Third Law. The forces of action and reaction between interacting bodies are equal in

magnitude, opposite in direction, and collinear.

Static equilibrium

In Eq. (1.3), if the resultant force 	⃗ acting on a particle is zero, then the acceleration of

the particle is zero, and hence the particle will have uniform velocity which may be zero

or nonzero in value; if nonzero value then the particle will move in a straight line. Hence,

when there is no acceleration (i.e., �⃗ = 0⃗), the particle is said to be in static equilibrium,

or simply equilibrium.
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Small angle approximations

Consider the right triangle shown in Fig. 1.15. If angle � is measured in radians and is

small (� ≪ 1 rad), then the small angle approximations are




�

�

�

Figure 1.15

If � is measured in radians and is small (� ≪

1 rad), then the small angle approximations are

sin � ≈ �, cos � ≈ 1, and tan � ≈ �.

sin � ≈ � and cos � ≈ 1, if � ≪ 1 rad,

Eq. (1.8), p. 12

� ≈
�



, � ≈ 
, and � ≈

�

�
, if � ≪ 1 rad.

Eq. (1.9), p. 12

Newton’s law of gravitation

Newton’s law of universal gravitational attraction, as shown in Fig. 1.16, is

�

	

	


1


2

Figure 1.16

The force 	 that attracts two particles toward one

another is provided by Newton’s law of universal

gravitational attraction.

	 = �

1
2

�2

Eq. (1.10), p. 16

where


1, 
2 = masses of particles 1 and 2;

� = distance between the particles;

� = universal gravitational constant, found to be ap-

proximately 66.74×10−12 m3∕(kg⋅s2);

	 = force of attraction between two particles.

When written for objects resting on or near the surface of Earth, this law takes the simple

and useful form

� = 
�

Eq. (1.11), p. 16

where 
 is an object’s mass, � is acceleration due to gravity (� =9.81m∕s2 =32.2 f t∕s2),

and � is the object’s weight.

Relationship between specific weight and density. The density � of a material

is defined to be the material’s mass per unit volume. The specific weight � of a material

(sometimes also called weight density, or unit weight) is defined to be the material’s weight

on Earth per unit volume. The relation between these is

� = �� or � =
�

�
.

Eq. (1.14), p. 18

Attention to units

It is strongly recommended that you always use appropriate units in all equations. Such

practice helps avoid catastrophic blunders and provides a useful check on a solution, be-

cause if an equation is found to be dimensionally inconsistent, then an error has certainly

been made.


