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P R E F A C E

Welcome to dynamics! Dynamics is the science that relates motion to the forces that

cause and are caused by that motion. Dynamics is at the heart of the design and anal-

ysis of mechanical systems whose operating principles rely on motion or are meant

to control motion. The engineering applications of dynamics are many and varied.

Traditional applications include the design of mechanisms, engines, turbines, and

airplanes. Other (perhaps less known) applications include the kinesiology of the hu-

man body, the analysis of cell motion, and the design of some micro- and nano-size

devices, including both sensors and actuators. All of these applications stem from

the combination of kinematics, which describes the geometry of motion, with a few

basic principles anchored in Newton’s laws of motion, such as the work-energy and

the impulse-momentum principles.

With this book we hope to provide a teaching and learning experience that is not

only effective but also motivates the study and application of dynamics. We have

structured the book to achieve four main objectives. First, we provide a rigorous in-

troduction to the fundamental principles of particle and rigid body dynamics. In a

constantly changing technological landscape, it is by relying on fundamentals that we

can find new ways of applying what we know. Second, we incorporate those pedagog-

ical principles that recent research in math, science, and engineering education has

identified as essential for improving student learning. While it is commonly accepted

that a good conceptual understanding is important to improve problem-solving skills,

it has been discovered that problem-solving skills and concepts need to be taught in

different ways. Third, we have made modeling the underlying theme of our approach

to problem solving. We believe that modeling, understood as the making of sensible

assumptions to reduce a real complex problem to a simpler but solvable problem,

is also something that must be taught and discussed alongside the basic principles.

Fourth, we emphasize a systematic approach to solving every problem, an integral

part of which is creating the aforementioned model. The four objectives that animate

this textbook have been incorporated in a series of clearly identifiable features that are

used consistently throughout the book. We believe these features make the book new

and unique, and we hope that they will improve both the teaching and the learning

experience.

This book is the second volume of a Statics and Dynamics series. Let’s see in detail

what makes these books different.

Why Another Statics and Dynamics Series?

These books provide thorough coverage of all the pertinent topics traditionally asso-

ciated with statics and dynamics. Indeed, many of the currently available texts also

provide this. However, these texts offer several major innovations that enhance the

learning objectives and outcomes in these subjects.

What Then Are the Major Di�erences Between These Books and Other

Engineering Mechanics Texts?

A Consistent and Systematic Approach to Problem Solving One of the main

objectives of these texts is to foster the habit of solving problems using a systematic

approach. Therefore, the example problems in these texts follow a structured four-

step problem-solving methodology that will help you develop your problem-solving
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skills not only in statics and dynamics, but also in all other mechanics subjects that fol-

low. This structured problem-solving approach consists of the following steps: Road

Map & Modeling, Governing Equations, Computation, and Discussion & Verifica-

tion. The Road Map provides some of the general objectives of the problem and de-

velops a strategy for how the solution will be developed. Modeling is next, where a

real-life problem is idealized by a model. This step results in the creation of a free

body diagram and the selection of the balance laws needed to solve the problem. The

Governing Equations step is devoted to writing all the equations needed to solve the

problem. These equations typically include the equilibrium equations, and, depend-

ing upon the particular problem, force laws (e.g., spring laws or frictional laws) and

kinematic equations. In the Computation step, the governing equations are solved. In

the final step, Discussion & Verification, the solution is interrogated to ensure that it

is meaningful and accurate. This four-step problem-solving methodology is followed

for all examples that involve a balance principle such as Newton’s second law or the

work-energy principle. Some problems (e.g., kinematics problems) do not involve

balance principles, and for these the Modeling step is not needed.

Contemporary Examples, Problems, and Applications The examples, home-

work problems, and design problems were carefully constructed to help show you

how the various topics of statics and dynamics are used in engineering practice. Stat-

ics and dynamics are immensely important subjects in modern engineering and sci-

ence, and one of our goals is to excite you about these subjects and the career that lies

ahead of you.

A Focus on Design A major difference between these texts and other books is the

systematic incorporation of design and modeling of real-life problems throughout.

In statics, topics include important discussions on design, ethics, and professional

responsibility. In dynamics, the emphasis is on parametric analysis and motion over

ranges of time and space. These books show you that meaningful engineering design

is possible using the concepts of statics and dynamics. Not only is the ability to de-

velop a design very satisfying, but it also helps you develop a greater understanding

of basic concepts and helps sharpen your ability to apply these concepts. Because

the main focus of statics and dynamics textbooks should be the establishment of a

firm understanding of basic concepts and correct problem-solving techniques, design

topics do not have an overbearing presence in the books. Rather, design topics are

included where they are most appropriate. While some of the discussions on design

could be described as “common sense,” such a characterization trivializes the impor-

tance and necessity for discussing pertinent issues such as safety, uncertainty in deter-

mining loads, the designer’s responsibility to anticipate uses, even unintended uses,

communications, ethics, and uncertainty in workmanship. Perhaps the most impor-

tant feature of our inclusion of design and modeling topics is that you get a glimpse

of what engineering is about and where your career in engineering is headed. The

book is structured so that design topics and design problems are offered in a variety

of places, and it is possible to pick when and where the coverage of design is most

effective.

Computational Tools Some examples and problems are appropriate for solution

using computer software. The use of computers extends the types of problems that

can be solved while alleviating the burden of solving equations. Such examples and

problems give you insight into the power of computer tools and further insight into

how statics and dynamics are used in engineering practice.
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Modern Pedagogy Numerous modern pedagogical elements have been included.

These elements are designed to reinforce concepts, and they provide additional in-

formation to help you make meaningful connections with real-world applications.

Marginal notes (i.e., Helpful Information, Common Pitfalls, Interesting Facts, and

Concept Alerts) help you place topics, ideas, and examples in a larger context. These

notes will help you study (e.g., Helpful Information and Common Pitfalls), will pro-

vide real-world examples of how different aspects of statics and dynamics are used

(e.g., Interesting Facts), and will drive home important concepts or help dispel mis-

conceptions (e.g., Concepts Alerts and Common Pitfalls). Mini-Examples are used

throughout the text to immediately and quickly illustrate a point or concept without

making readers wait for the worked-out examples at the end of the section.

Answers to Problems The answers to most even-numbered problems have been

included in the back matter for ease of use as Appendix B. Providing answers in this

manner allows for the inclusion of more complex information than would otherwise

be possible. In addition to final numerical and/or symbolic answers, plots for Com-

puter Problems are included.

Changes to the Third Edition

The third editions of Engineering Mechanics: Statics and Engineering Mechanics:

Dynamics retain all of the major pedagogical features of the previous editions, includ-

ing a structured problem-solving methodology for all example problems, contempo-

rary engineering applications in the example problems and homework exercises, the

inclusion of engineering design and its implications for problem solving and appli-

cations, and use of computational tools where applicable. In addition, as a result of

the author-based typesetting process, the outstanding accuracy of the earlier editions

has been preserved, leading to books whose accuracy is unrivaled among textbooks.

The third editions contain revised and enhanced textual discussions and example

problems, additional figures where effective, and new homework exercises. In Con-

nect, the online homework system, there are significant updates, including an auto-

graded FBD tool and interactive learning tools. These interactive assignments help

reinforce what is being covered in the text and show students how to tie the mate-

rial to real-world situations. These tools complement the hundreds of auto-graded,

algorithmic-exercises that are included in Connect from the text.
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GU I D E D TOUR

force of attraction between two bodies. The gravitational force on a mass �1 due to a

mass �2 a distance � away from �1 is

�⃗12 =
��1�2

�2
	̂, (11.5)

where 	̂ is a unit vector pointing from �1 to �2 and � is the universal gravitational

constant∗ (sometimes called the constant of gravitation or constant of universal grav-

itation). The following example demonstrates the application of this law.

�




�

	̂�⃗�


�⃗
�

(left) JPL/University of Arizona/NASA; (right) NASA/JPL

Figure

The gravitational force between the planets

Jupiter � and Neptune 
 . The relative sizes of

the planets are accurate, but their separation dis-

tance is not.

Mini-Example

Using the planets Jupiter and Neptune as an example, the force on Jupiter due to

the gravitational attraction of Neptune, �⃗�
 , is given by (see Fig. 11.2)

�⃗�
 =
��� �


�2
	̂, (11.6)

where � is the distance between the two bodies, �� is the mass of Jupiter, �
 is

the mass of Neptune, and 	̂ is a unit vector pointing from the center of Jupiter to

the center of Neptune. The mass of Jupiter is 1.9×1027 kg, and that of Neptune

is 1.02×1026 kg. Since the mean radius of Jupiter’s orbit is 778,300,000 km and

that of Neptune is 4,505,000,000 km, we assume that their closest approach to one

another is approximately 3,727,000,000 km. Thus, at their closest approach, the

magnitude of the force between these two planets is

�⃗�
 = 6.674×10−11
m3

kg⋅s2

1.9×1027 kg 1.02×1026 kg

3.727×1012 m
2

= 9.312×1017 N.

(11.7)

We can compare this force with the force of gravitation between Jupiter and the

Sun. The Sun’s mass is 1.989×1030 kg, and we have already stated that the mean

radius of Jupiter’s orbit is 778,300,000 km. Applying Eq. (11.5) between Jupiter

and the Sun gives 4.164×1023 N, which is almost 450,000 times larger.

Interesting Fact

The radius of the Earth. The Earth is not

a perfect sphere. Therefore, there are

di�erent notions of “radius of the Earth.” The

given value of km is the volumetric

Acceleration due to gravity. Equation (11.5) allows us to determine the force of

Earth’s gravity on an object of mass � on the surface of the Earth. This is done by

noting that the radius of the Earth is 6371.0 km (see the marginal note) and the mass

of the Earth is 5.9736×1024 kg and then applying Eq. (11.5):

3 5 9736×1024 kg �3

E X A M P L E Tension in a Wrecking Ball Cable

�

�

�

�

Figure

The wrecking ball � shown in Fig. 1 is released from rest when � = �0 = 30◦, and it

swings freely about the fixed point at �. Assuming that the weight of the ball is � =

2500 lb and � = 30 f t, determine the tension in the cable to which the ball is attached

when the ball reaches � = 0◦.

SOLUT ION

	̂�

�
	̂�

� �

�

�

�

Figure

FBD of the wrecking ball as it swings downward.

Road Map & Modeling Modeling the wrecking ball as a particle and neglecting all

forces except the weight force � and the cable tension � , the FBD is as shown in Fig. 2.

Applying Newton’s second law in the polar component system shown should allow us to

find the tension in the cable as a function of its swing angle and thus, find its tension when

� = 0◦.

Governing Equations

Balance Principles Referring to the FBD in Fig. 2 and applying Newton’s second law,

we obtain

�� ∶ −� sin � = ��� , (1)

�� ∶ � cos � − � = ���, (2)

where � = � ∕
.

Force Laws All forces are accounted for on the FBD.

Kinematic Equations Writing �� and �� in polar components gives

�� = ��̈ + 2�̇�̇ = ��̈ and �� = �̈ − ��̇2 = −��̇2, (3)

where we have replaced � with the constant length �.

Computation Substituting Eqs. (3) into Eqs. (1) and (2), we obtain

− � sin � = ���̈ and � cos � − � = −���̇2

�̈ = −



�
sin � and � = � cos � + ���̇2. (4)

Notice that the tension is a function of �̇, so we need to integrate �̈(�) to find �̇(�) using

the chain rule, that is,

�̈ = �̇
��̇

��
= −




�
sin �

�̇

0

�̇ ��̇ = −



�

�

�0

sin � ��

�̇2 = 2



�
cos � − cos �0 . (5)

Substituting Eq. (5) into the expression for � in Eq. (4) gives � (�) as

� = � (3 cos � − 2 cos �0) (6)

where we have used � = 2500 lb and �0 = 30◦ to obtain the final numerical result.

Discussion & Verification The final result in Eq. (6) is dimensionally correct, and the

magnitude of the tension seems reasonable. Interestingly, the tension does not depend on

the length of the supporting cable. That is, if the initial angle is 30◦ and the wrecking

ball is released from rest, the tension in the cable will always be 3170 lb, regardless of the

length of the suspending cable.

� (� = 0) = � 3 − 2 cos �0 = 3170 lb,

Mini-Examples
Mini-examples are used throughout the text to

immediately and quickly illustrate a point or concept

without having to wait for the worked-out examples at

the end of the section.

Examples
Consistent Problem-Solving Methodology

Every problem in the text employs a carefully

defined problem-solving methodology to

encourage systematic problem formulation,

while reinforcing the steps needed to arrive at

correct and realistic solutions.

Each example problem contains these four

steps:

• Road Map & Modeling

• Governing Equations

• Computation

• Discussion & Verification

Some examples include a Closer Look (noted

with a magnifying glass icon ) that offers

additional insight into the example.
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Interesting Fact

Cyclic loading and fatigue. The fact that,

under the given conditions, the rotor

bearing experiences a cyclic load

times per second means that it will quickly

experience a large number of load cycles.

It turns out that even a rather low stress

can cause an object to break after millions

of load cycles. The higher the stress, the

smaller the number of cycles required. This

mechanism of failure is called fatigue. Since

the number of load cycles on the rotor

bearing of a centrifuge grows quickly, even

a small imbalance can cause failure due to

fatigue. To learn more about fatigue, see

W. D. Callister, Jr., Materials Science and

Engineering: An Introduction th ed., John

Wiley & Sons,

Problem

An object is lowered very slowly onto a conveyor belt that is moving to the right. What is

the direction of the friction force acting on the object at the instant the object touches the

belt?

�

Figure

Problem

A person is trying to move a heavy crate by pushing on it. While the person is pushing,

what is the resultant force acting on the crate if the crate does not move?

owly onto a conveyor belt that is moving to the right. What is

forceff acting on the object at the instant the object touches the

Concept Alert

Direction of velocity vectors. One of the

most important concepts in kinematics is

that the velocity of a particle is always tan-

gent to the particle’s path.

C

u

b

t

e

I

Common Pitfall

Newton’s second law and inertial frames.

Since the application of Newton’s second

law requires the use of an inertial refer-

ence frame, the component system shown

in Fig. must be understood as originat-

ing from an �� coordinate system fixed with

the ground—this is the inertial reference

frame. It would be a mistake to choose a co-

ordinate system moving with the truck be-

cause the truck is decelerating with respect

to the ground and, therefore, is not an inertial

frame of reference.

It turns out that even a

can cause an object to b

of load cycles. The high

smaller the number of cyc

mechanism of failuref is ca

the number of load cyc

bearing of a centrifuge gr

a small imbalance can ca

fatigue. To lTT earn more a

W. D. Callister, Jrr r., Mater

Engineering: An Introduct

Wiley & Sons,

I

c

o

s

m

t

b

a

f

W

nate system fixedxx with

the inertial reference

istake to choose a co-

ng with the truck be-

celerating with respect

refore, is not an inertial

Helpful Information

The right-hand rule. In three dimensions,

a Cartesian coordinate system uses three

orthogonal reference directions. These are

the �, �, and � directions shown below.

� �

�

Proper interpretation of many vector oper-

ations, such as the cross product, requires

that the �, �, and � directions be arranged in

a consistent manner. The convention in me-

chanics and vector mathematics in general

is that if the axes are arranged as shown,

then, according to the right-hand rule, rotat-

ing the � direction into the � direction yields

the � direction. The result is called a right-

handed coordinate system.

Concept Alerts and Concept Problems
Two additional features are the Concept Alerts and the Concept

Problems. These have been included because research has shown

(and it has been our experience) that even though you may do quite

well in a science or engineering course, your conceptual understand-

ing may be lacking. Concept Alerts are marginal notes and are used

to drive home important concepts (or help dispel misconceptions)

that are related to the material being developed at that point in the

text. Concept Problems are mixed in with the problems that appear

at the end of each section. These are questions designed to get you

thinking about the application of a concept or idea presented within

that section. They should never require calculation and should

require answers of no more than a few sentences.

Marginal Notes
Marginal notes have been implemented that will

help place topics, ideas, and examples in a larger

context. This feature will help students study

(using Helpful Information and Common

Pitfalls) and will provide real-world examples of

how different aspects of dynamics are used (using

Interesting Facts).
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Sections and End of Section Summary

Each chapter is organized into several sections. There is a wealth of information and features within each section,

including examples, problems, marginal notes, and other pedagogical aids. Each section concludes with an end of

section summary that succinctly summarizes that section. In many cases, cross-referenced important equations are

presented again for review and reinforcement before the student proceeds to the examples and homework

problems.

Undamped Forced Vibration

Many systems are forced to vibrate by an external excitation. This section is devoted

to the forced vibration of mechanical systems.

Standard form of the forced harmonic oscillator

A standard forced harmonic oscillator is shown in Fig. 19.11, in which the block of

mass � is attached to a fixed support by a linear spring of constant � and is also

being driven by the time-dependent force � (�) = �0 sin�0�. Modeling the block as a

� � � (�) = �0 sin�0�

Figure

A forced harmonic oscillator whose equation of

motion is given by Eq. (19.31) with �� =
√

�∕�.

The position � is measured from the equilibrium

position of the system when �0 = 0.

particle, its FBD is as shown in Fig. 19.12, where �� is the spring force acting on the

block. Summing forces in the � direction, we obtain

�


 ̂

!̂
��




� (�) = �0 sin�0�

Figure

FBD of the forced harmonic oscillator in

Fig. 19.11.

�� ∶ � (�) − �� = ���, (19.29)

where the force law is given by �� = �� and the kinematic equation is �� = �̈.

Substituting these relations, as well as � (�) into Eq. (19.29), we obtain

�0 sin�0� − �� = ��̈ �̈ +
�

�
� =

�0

�
sin�0�. (19.30)

Noting that �2
� = �∕�, this last equation becomes

�̈ + �2
�� =

�0

�
sin�0�, (19.31)

which is the standard form of the forced harmonic oscillator equation. It is a nonho-

mogeneous version of Eq. (19.12) on p. 1291 as a result of the term (�0∕�) sin�0�.

The term on the right-hand side of Eq. (19.31) is a function of only the independent

variable �. It is often called a forcing function because it forces the system to vibrate.

This particular type of forcing is harmonic because it is a harmonic function of time.

The theory of differential equations tells us that the general solution of Eq. (19.31)

is the sum of the complementary solution �"(�) and a particular solution �#(�). The

complementary solution∗ is the solution of the associated homogeneous equation

(i.e., Eq. (19.12)) given in Eq. (19.3) (or in Eq. (19.13)). The particular solution is

any solution of Eq. (19.31). One way to obtain a particular solution is to guess its form

and then verify whether or not the guess is correct. Since it seems reasonable that the

response of a forced harmonic oscillator should resemble the forcing, we conjecture

that the particular solution �# is of the form

�# = $ sin�0�, (19.32)

where $ is a constant to be determined. We can verify whether our guess is correct

by substituting Eq. (19.32) into Eq. (19.31). Doing so yields

Interesting Fact

How practical is harmonic forcing? The

answer to this question lies in an amazing

result due to Jean Baptiste Joseph Fourier

and later contributors. It

says that any periodic piecewise smooth

function can be represented by an infinite

series of sines and cosines (called Fourier

series in honor of Fourier). This means

that any periodic forcing can be regarded

as the sum of harmonic functions! In ad-

dition, given the nature of the left side of

Eq. (i.e., it is linear), it turns out that

the overall particular solution for a sum of

harmonic forcing terms is simply the sum of

the particular solutions for each individual

harmonic forcing term. These results taken

together allow engineers to easily obtain

the solutions to problems with any periodic

forcing as a sum of simple forced harmonic

oscillator solutions. Because periodic forc-

ing is ubiquitous in engineering systems,

this is one of the most important results in

applied mathematics.

−$�2
0
sin�0� + �2

�$ sin�0� =
�0

�
sin�0�. (19.33)

Canceling sin�0� and solving for $, we obtain

$ =
�0∕�

�2
� − �2

0

=
�0∕�

1 − �0∕��

2
, (19.34)

∗ The complementary solution is sometimes called the homogeneous solution.

(i.e., Eq. (19.12)) given in Eq. (19.3) (or in Eq. (19.13)). The parparticiticulalularr sollsolutiiutionon is

anyn solution of Eq. (19.31). One way to obtain a particular solution is to guess its form

and then verify whether or not the guess is correct. Since it seems reasonable that the

response of a forcedff harmonic oscillator should resemble the forcing,ff we conjecture

that the particular solution �# is of the forff m

�# = $ sin�0�, (19.32)

where $ is a constant to be determined. We can verify whether our guess is correct

by substituting Eq. (19.32) into Eq. (19.31). Doing so yields

and later cont

says that any periodic piecew

function can be represented by

series of sines and cosines (ca

series in honor of Fourier). T

that any periodic forcing can be

as the sum of harmonic functi

dition, given the nature of the

Eq. (i.e., it is linear), it tur

the overall particular solution fo

harmonic forcing terms is simply

the particular solutions for each

harmonic forcing term. These re

together allow engineers to ea

the solutions to problems with a

forcing as a sum of simple force

oscillator solutions. Because pe

ing is ubiquitous in engineerin

this is one of the most importan

applied mathematics.

−$�2
0
sin�0� + �2

�$ sin�0� =
�0��

�
sin�0�. (19.33)

Canceling sin�0� and solving for $, we obtain

$ =
�0�� ∕�

�2
� − �2

0

=
�0�� ∕�

1 − �0∕��

2
, (19.34)

∗ The complementary solution is sometimes called the homogeneous solution.

End of Sect ion Summary

When a harmonic oscillator is subject to harmonic forcing, the standard form of the

equation of motion is

�̈ + �2
�� =

�0

�
sin�0�,

Eq. (19.31), p. 1307

where �0 is the amplitude of the forcing and �0 is its frequency (see Fig. 19.16).

The general solution to this equation consists of the sum of the complementary solu-

� � � (�) = �0 sin�0�

Figure

A forced harmonic oscillator whose equation of

motion is given by Eq. (19.31) with �� =
√

�∕�.

The position � is measured from the equilibrium

position of the block.

tion and a particular solution. The complementary solution �" is the solution of the

associated homogeneous equation, which is given by, for example, Eq. (19.13). For

�0 ≠ ��, a particular solution was found to be

�# =
�0∕�

1 − �0∕��

2
sin�0�,

Eq. (19.35), p. 1308
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Problems

Problems and

�

�

%
�1






Figure and

The radar dish can rotate about the vertical � axis at rate �1 and about the horizontal �

axis (not shown in the figure) at rate �̇. The distance between the center of rotation at 


and the subreflector at % is �.

Problem If �1 and �̇ are both constant, determine the velocity and acceleration

of the subreflector % in terms of the elevation angle �.

Problem If �1(�) and �̇(�) are known functions of time, determine the velocity

and acceleration of the subreflector % in terms of the elevation angle �.

Problems and

The truncated cone rolls without slipping on the �� plane. At the instant shown, the an-

gular speed about the � axis is �1, and it is changing at �̇1.

�

�



�1

Figure and

Problem Determine expressions for the angular velocity and angular acceleration

of the cone in terms of �, �, �, �1, and �̇. Express your answers in the rotating component

system shown.

�

�



�1

Figure and

Problem Determine expressions for the angular velocity and angular acceleration

of the cone in terms of �, �, �, �1, and �̇. Express your answers in the rotating component

system shown.

Problems and

spin axis

rotating disk
inlet

pin joint outlet

stationary plate
spiral groove

�

�

�

�̂
�

�̂
�

Figure and

A micro spiral pump∗ consists of a spiral channel attached to a stationary plate. This plate

has two ports, one for fluid inlet and another for outlet, the outlet being farther from the

center of the plate than the inlet. The system is capped by a rotating disk. The fluid trapped

between the rotating disk and the stationary plate is put in motion by the rotation of the

top disk, which pulls the fluid through the spiral channel.

Problem Consider a spiral channel with the geometry given by the equation

� = &� + �0, where �0 = 146'm is the starting radius, � is the distance from the spin

axis, and �, measured in radians, is the angular position of a point in the spiral channel.

Assume that the radius at the outlet is �
out

= 190'm, that the top disk rotates with a

constant angular speed �, and that the fluid particles in contact with the rotating disk are

essentially stuck to it. Determine the constant & and the value of � (in rpm) such that after

1.25 rev of the top disk, the speed of the particles in contact with this disk is � = 0.5 m∕s

at the outlet.

Modern Problems

Problems of varying difficulty follow each section. These

problems allow students to develop their ability to apply

concepts of dynamics on their own. The most common question

asked by students is “How do I set this problem up?” What is

really meant by this question is “How do I develop a good

mathematical model for this problem?” The only way to

develop this ability is by practicing numerous problems.

Answers to most even-numbered problems appear in Appendix

B. Providing answers in this manner allows for more complex

information than would otherwise be possible. Each problem in

the book is accompanied by a thermometer icon that indicates

the approximate level of difficulty. Those considered to be

“introductory” are indicated with the symbol . Problems

considered to be “representative” are indicated with the

symbol , and problems that are considered to be “challenging”

are indicated with the symbol .
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Engineering Design and Design Problems

Several design problems are presented where appropriate throughout the book. These problems can be tackled

with the knowledge and skill set that are typical of introductory-level courses, although the use of mathematical

software is strongly recommended. These problems are open ended, and their solution requires the definition of a

parameter space in which the dynamics of the system must be analyzed. In dynamics we have chosen to

emphasize the role played by parametric analyses in the overall design process, as opposed to cost-benefit

analyses or the choice of specific materials and/or components.

Design Problems

Design Problem

Revisit the calculations done at the beginning of the chapter concerning the determination

of the maximum acceleration that can be achieved by a motorcycle without causing the

front wheel to lift off the ground. Specifically, construct a new model of the motorcycle

by selecting a real-life motorcycle and researching its geometry and inertia properties,

including the inertia properties of the wheels. Then analyze your model to determine how

the maximum acceleration in question depends on the horizontal and vertical positions

of the center of mass with respect to the points of contact between the ground and the

wheels. Include in your analysis a comparison of results that account for the inertia of the

front wheel with results that neglect the inertia of the front wheel.

Figure

Guitar Studio/Shutterstock
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11Introduction to Dynamics
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Raphael’s School of Athens depicts ancient Greek philosophers, such as Aristotle, Plato, Euclid, and

Pythagoras. This fresco celebrates the kinship that the renaissance humanists felt with the great minds

from antiquity as they explored new ways of thinking about the arts, sciences, and engineering.

In Section 11.1, we introduce Isaac Newton’s

(1643–1727) laws of motion and his univer-

sal law of gravitation. In Section 11.2, we

review those elements of physics and vector

algebra needed to develop thematerial in the

remainder of the book. In Section 11.3, we

touch upon the role of dynamics in engineer-

ing design.

11.1 The Newtonian Equations

The dynamics we study in this book is the part of mechanics concerned with the

motion of bodies, the forces causing their motion, and/or the forces caused by their

motion. Dynamics builds upon statics in that the ability to draw free body diagrams

and to write the corresponding balance equations for particles and rigid bodies are

fundamental to dynamics. Dynamics also complements mechanics of materials in

that it develops your ability to find forces due to the acceleration of objects, forces

that can be used to find stresses using mechanics of materials.

Since the middle of the 20th century, dynamics has also included the study and

analysis of any time-varying process, be it mechanical, electrical, chemical, or bi-

ological. While we focus on mechanical processes, much of what we study is also
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620 Introduction to Dynamics Chapter 11

applicable to other time-varying phenomena. Our goal is to provide an introduction

to the science, skill, and art involved in modeling mechanical systems to predict their

motion.

Newton’s laws of motion

Newton’s three laws of motion are

First Law. A particle remains at rest, or moves in a straight line with a constant

speed, as long as the total force acting on the particle is zero.

Second Law. The time rate of change of momentum of a particle is equal to the

resultant force acting on that particle.

Third Law. The forces of action and reaction between interacting particles are equal

in magnitude, opposite in direction, and collinear.

The second law, stated mathematically, is

�⃗ =
��⃗

��
=

�(��⃗)

��
, (11.1)

where �⃗ is the net force acting on the particle, �⃗ is the momentum of the particle,

� is the mass of the particle, and �⃗ is the velocity of the particle. We have used the

definition of momentum, which is �⃗ = ��⃗. Throughout this book, we will denote

vectors by using either a superposed arrow ( ⃗ ) or a superposed caret or hat ( ̂ ) if the

vector is a unit vector. Newton’s second law is often written as

�⃗ = �
⃗, (11.2)

which explicitly accounts for the fact that a particle is generally understood to have

constant mass.∗ We will learn in Chapter 13 that the first law is simply a special case

of the second. The second and third laws, along with the ideas developed by Leonhard

Euler (1707–1783) for rigid body dynamics, are all that is needed to solve a broad

spectrum of problems involving particles and rigid bodies.

The third law, stated mathematically, is

�⃗�� = −�⃗��, (11.3)

�⃗�� × (
⃗� − 
⃗�) = 0⃗, (11.4)

where, for any interacting particles � and �, �⃗�� is the force on particle � due to particle

� and 
⃗� is the position of the ith particle (Fig. 11.1). Some people refer to Newton’s

Interesting Fact

Newton’s third law in modern mechanics.

Modern mechanics generally discards

Newton’s third law and replaces it with a

much more general result based on the

concept of angular momentum. Since the

1950s, it has been proposed that an even

more general notion called the principle

of material frame indi�erence could be

used to replace Newton’s third law. This

latter principle states that the properties of

materials and the actions of bodies on one

another are the same for all observers.

third law as just Eq. (11.3), while others require both Eqs. (11.3) and (11.4). Requiring

both equations is sometimes referred to as the strong form of Newton’s third law.
�

�

�


⃗�

��
�⃗��

�⃗�� 
⃗�

��
�⃗��

�⃗��


⃗� ��

�⃗��
�⃗��

Figure 11.1

A system of particles interacting with one

another. Newton’s universal law of gravitation

Newton used his laws of dynamics along with the laws postulated by Johannes

Kepler (1571–1630) to deduce the universal law of gravitation, which describes the

∗ The application of Eq. (11.1) to variable mass systems will be considered in Section 15.5.
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force of attraction between two bodies. The gravitational force on a mass �1 due to a

mass �2 a distance 
 away from �1 is

�⃗12 =
��1�2


2
�̂, (11.5)

where �̂ is a unit vector pointing from �1 to �2 and � is the universal gravitational

constant∗ (sometimes called the constant of gravitation or constant of universal grav-

itation). The following example demonstrates the application of this law.




�

�

�̂�⃗��

�⃗��

(left) JPL/University of Arizona/NASA; (right) NASA/JPL

Figure 11.2

The gravitational force between the planets

Jupiter � and Neptune � . The relative sizes of

the planets are accurate, but their separation dis-

tance is not.

Mini-Example

Using the planets Jupiter and Neptune as an example, the force on Jupiter due to

the gravitational attraction of Neptune, �⃗�� , is given by (see Fig. 11.2)

�⃗�� =
��� ��


2
�̂, (11.6)

where 
 is the distance between the two bodies, �� is the mass of Jupiter, �� is

the mass of Neptune, and �̂ is a unit vector pointing from the center of Jupiter to

the center of Neptune. The mass of Jupiter is 1.9×1027 kg, and that of Neptune

is 1.02×1026 kg. Since the mean radius of Jupiter’s orbit is 778,300,000 km and

that of Neptune is 4,505,000,000 km, we assume that their closest approach to one

another is approximately 3,727,000,000 km. Thus, at their closest approach, the

magnitude of the force between these two planets is

|�⃗�� | =
(
6.674×10−11

m3

kg⋅s2

)(
1.9×1027 kg

)(
1.02×1026 kg

)

(
3.727×1012 m

)2

= 9.312×1017 N.

(11.7)

We can compare this force with the force of gravitation between Jupiter and the

Sun. The Sun’s mass is 1.989×1030 kg, and we have already stated that the mean

radius of Jupiter’s orbit is 778,300,000 km. Applying Eq. (11.5) between Jupiter

and the Sun gives 4.164×1023 N, which is almost 450,000 times larger.

Interesting Fact

The radius of the Earth. The Earth is not

a perfect sphere. Therefore, there are

di�erent notions of “radius of the Earth.” The

given value of 6371.0 km is the volumetric

radius when rounded to 5 significant digits.

The Earth’s volumetric radius is the radius of

a perfect sphere with volume equal to that

of the Earth. Other measures of the Earth’s

radius, rounded to 5 significant digits, are

the quadratic mean radius, the authalic

mean radius, and the meridional Earth

radius, which are equal to 6372.8, 6371.0,

and 6367.4 km, respectively.

Acceleration due to gravity. Equation (11.5) allows us to determine the force of

Earth’s gravity on an object of mass � on the surface of the Earth. This is done by

noting that the radius of the Earth is 6371.0 km (see the marginal note) and the mass

of the Earth is 5.9736×1024 kg and then applying Eq. (11.5):

�� =

(
6.674×10−11

m3

kg⋅s2

)(
5.9736×1024 kg

)
�

(
6371.0×103 m

)2

=
(
9.8222m∕s2

)
�.

(11.8)

This result† tells us that the force of gravity (in N) on an object on the Earth’s sur-

face is about 9.8 times the object’s mass (in kg). This factor of 9.8 is so prevalent

in engineering that it is given the label �, and it is called the acceleration due to

∗ Henry Cavendish (1731–1810) was the first to measure � and did so in 1798. The generally accepted

value is � = 6.674×10−11 m3∕(kg⋅s2) = 3.439×10−8 f t3∕(slug⋅s2).
† We will normally round the result of all calculations to 4 significant digits. Here we are using 5 significant

figures because the data used in this particular calculation is known to that degree of accuracy.
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gravity because it has units of acceleration and its value is the acceleration of objects

in free fall near the surface of the Earth. We will take the value of � to be 9.81m∕s2

in SI units and 32.2 f t∕s2 in U.S. Customary units. Notice that the value of � obtained

in Eq. (11.8) is slightly greater than the 9.81m∕s2 that we will use in this book. The

difference between these values has several causes, including that the Earth is not per-

fectly spherical, does not have uniform mass distribution, and is rotating. Because of

these factors, the actual acceleration due to gravity is about 0.27% lower at the equa-

tor, and 0.26% higher at the poles, relative to the standard value of � = 9.81m∕s2,

which is for a north or south latitude of 45◦ at sea level. There may also be small local

variations in gravity due to geological formations. Nonetheless, throughout this book

we will use the standard value of � stated above.

Change in acceleration due to altitude. There is a formula that allows us to

find how the acceleration due to gravity changes with altitude. To find it, we begin by

equating Eqs. (11.2) and (11.5) to determine the acceleration 
 at a height ℎ above

the surface of the Earth


 =
���

(
� + ℎ)2
, (11.9)

where 
� is the radius of the Earth, �� is the mass of the Earth, and we have canceled

the mass of the object on both sides of the equation. Now, at the surface of the Earth,

we know that 
 = � and ℎ = 0, so Eq. (11.9) becomes

� = ���∕
2� ⇒ ��� = �
2� . (11.10)

Substituting Eq. (11.10) into Eq. (11.9), we see that 
 is given by


 = �

2�

(
� + ℎ)2
, (11.11)

where � is the acceleration due to gravity at the surface of the Earth. Equation (11.11)

is very handy because it requires knowledge of only the radius of the Earth to get the

acceleration due to gravity rather than having to know both the radius of the Earth

and the universal gravitational constant �.

Building on statics to develop mastery in dynamics

Students undertaking dynamics have often just finished a prior course in statics. It is

useful to point out the similarities and differences between the two subjects before

outlining the content in dynamics. The approach to solving a large subset of statics

problems can be summarized as follows:

1. Draw one or more Free Body Diagrams (FBDs) representing the loads and re-

actions acting on rigid bodies.

2. Write the equations of static equilibrium informed by those FBDs.

3. Solve the resulting equations for reactions or internal loads.

Unless we examine problems involving distributed loads, mathematical proficiency

required for such problems is restricted to geometry, trigonometry, and algebra.

FBDs are as important in dynamics as they are in statics, but we will use more

than Cartesian components to solve problems. Our governing equation, as embodied
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in Eq. (11.1), now contains the time rate of change of the linear momentum, so force

imbalance implies motion.

Because velocity is time rate of change of position, and acceleration is time rate

of change in velocity, we will find ourselves in need of calculus from the outset of

dynamics. An additional complication arises from our differentiating a vector with

respect to time. Because the velocity vector has a direction as well as a magnitude,

�⃗ = � �̂�, where � = |�⃗| and �̂� is a unit vector in the direction of �⃗,∗ the acceleration

in Eq. (11.2) generally requires the product rule from calculus:


⃗ =
��⃗

��
=

��

��
�̂� + �

��̂�

��
. (11.12)

This tells us that acceleration can occur not just from the familiar change in speed,

as embodied in the first term, but from change in direction, as embodied in ��̂�∕��.

As an example, a satellite in a circular orbit about the Earth has a constant speed but

is always accelerating because the direction of the velocity unit vector is constantly

changing. There is no contradiction between a satellite at altitude ℎ above the surface

of the Earth having the acceleration as described by Eq. (11.11) and stating that the

satellite moves at constant speed. The ability to account for changing directions of unit

vectors in different component systems is of the utmost importance in describing the

motion of particles.

In statics, we generally begin from simpler 2D and 3D particle equilibrium prob-

lems before moving on to 2D and 3D equilibrium of individual rigid bodies and then,

finally, 2D and 3D equilibrium of assemblies of rigid bodies in the form of trusses,

frames, and machines. Once we transition from particles to rigid bodies, we need to

impose rotational as well as translational equilibrium, and the former requires a ro-

tational constraint in the form that the sum of moments about a point, on or off the

rigid body, must equal zero.

In dynamics, we likewise begin with an examination of particle behavior. Be-

cause particle motion is an entirely new subject for us, we devote an entire chapter

(Chapter 12) to descriptions of motion in different component systems. One of the

challenges is selecting the appropriate component system for each problem. In some

problems, the forces are naturally described in one component system, while the mo-

tion is most appropriately described in a different component system. This requires us

to map either the forces or the motion into the other component system before writing

our equations of motion.

Once we understand how to represent particle motion in different component sys-

tems, we turn to the examination of force imbalance as embodied in Eq. (11.2). In

Chapters 13, 14, and 15 we provide different methods for examining force imbal-

ance on particles. In statics, we found many ways to draw FBDs and solve for internal

loads and reactions, but some processes were more efficient than others. In dynam-

ics, we might begin with Eq. (11.2) and follow the evolution of a particle’s motion

from some initial state to a final state. This is an approach we use in Chapter 13, and

this can be characterized as a path-dependent approach to particle dynamics. In con-

trast, we will see that some problems are amenable to a path-independent approach,

where the final state can be inferred from information about the initial state, and

without having to follow all the details from initial to final state. This is the subject

of Chapters 14 and 15. In Chapter 14, we examine transitions over distance, while in

Chapter 15, we examine transitions through time. All three chapters begin from the

∗ We will cover this in detail in Section 12.4.
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same fundamental equation, Eq. (11.2), and the choice of problem-solving method is

often telegraphed by the form of the problem statement.

Chapters 16, 17, and 18 follow a similar development for the dynamics of rigid

bodies. Chapter 16 is devoted to a description of rigid body motion, and is to rigid

bodies what Chapter 12 is to particles. To keep problems relatively simple, we restrict

our attention in these chapters to planar motion, where all rotational motion is in the

out-of-plane direction. For rigid bodies in general plane motion, we will see that every

material point in the body has, in general, a different velocity and acceleration at any

one instant in time. We will show that the treatment of a rigid body as an assembly of

particles leads to a translational dynamics equation similar to Eq. (11.2), but with the

acceleration on the right-hand side being equal to that of the body’s center of mass.

We will also be able to formulate an equation describing the rotational dynamics of

the body. Unlike statics, the rotational dynamics equation is not equally simple at all

points. Rotational dynamics is most simply expressed when taking moments about the

center of mass. Chapter 17 is to rigid bodies as Chapter 13 is to particles. Chapter 18

articulates path-independent processes for planar rigid body dynamics, and is to rigid

bodies as Chapters 14 and 15 are to particles.

Chapter 19 is devoted to an introduction to mechanical vibrations, where we ex-

amine the interplay of inertia and compliance. Vibrations is an important subject all

its own, providing a foundation for structural dynamics. The subject matter examined

in this chapter is confined to single degree-of-freedom problems, where the vibration

of a single translational or rotational degree-of-freedom is of interest.

Finally, Chapter 20 relaxes the constraint on planar motion and presents 3D dy-

namics of rigid bodies. Rotational inertia must now be treated as a full tensor, as

rotation about any axis is possible. To the uninitiated, it may seem as though the tran-

sition from 2D to 3D rigid body motion is relatively straightforward. But there is an

order of magnitude increase in complexity associated with this transition, and a quick

skim of the equations in Chapter 20 should disabuse the reader of the notion that this

is a simple transition.

For now, we devote a bit of space to discussing some fundamental concepts in

dynamics as well as reviewing important vector mechanics operations. The ability to

resolve a vector into orthogonal components in any coordinate system is especially

useful when we go back and forth between different coordinate systems in Chapter 12.
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11.2 Fundamental Concepts in Dynamics

Space and time

Space

Space is the environment in which objects move, and we consider it to be a collection

of locations or points. The position of a point is indicated by the point’s coordinates in

a chosen coordinate system. Figure 11.3 shows a three-dimensional Cartesian coordi-
�

�

�

�

�
��

��

��

Figure 11.3

A point in a three-dimensional space.

nate system with origin at � and mutually orthogonal axes �, �, and �. The Cartesian

coordinates of the point � are �� , �� , and �� , which are scalars obtained by measur-

ing the distance between � and the perpendicular projections of the point � onto the

axes �, �, and �, respectively. Note that �� , �� , and �� have a positive or negative

sign depending on whether, in going from � to the projections of � along each axis,

one moves in the positive or negative direction of these axes. In Chapter 12, we will

introduce additional coordinate systems.

Helpful Information

The right-hand rule. In three dimensions,

a Cartesian coordinate system uses three

orthogonal reference directions. These are

the �, �, and � directions shown below.

� �

�

Proper interpretation of many vector oper-

ations, such as the cross product, requires

that the �, �, and � directions be arranged in

a consistent manner. The convention in me-

chanics and vector mathematics in general

is that if the axes are arranged as shown,

then, according to the right-hand rule, rotat-

ing the � direction into the � direction yields

the � direction. The result is called a right-

handed coordinate system.

Time

Time is a scalar variable that allows us to specify the order of a sequence of events.

In classical mechanics and in this book, the most important assumption about time

is that it is absolute. We assume that the duration of an event is independent of the

motion of the observer making time measurements. Einstein’s theory of relativity

rejects this assumption.

Force, mass, and inertia

Force

The force acting on an object is the interaction between that object and its environ-

ment. A more precise description of this interaction requires that we know something

about the interaction in question. For example, if two objects collide or slide against

one another, we say that they interact via contact forces. Regardless of the type, the

characteristics of a force are its magnitude, its line of action, and its orientation or

direction. This is why we use vectors to represent forces.

Mass

The mass of an object is a measure of the amount of matter in the object. Along with

the concept of force, the concept of mass is considered a primitive concept—that is,

not explainable via more elementary ideas. Newton’s second law postulates that the

force acting on a body is proportional to the body’s acceleration—the constant of

proportionality is the mass of the body.

Inertia

Inertia is commonly understood as a body’s resistance to changing its state of motion

in response to the application of a force system. In this book, we use inertia as an

umbrella term encompassing both the idea of mass and that of mass distribution over

a region of space. The inertia properties of an object are its mass and a quantitative

description of the mass distribution.
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Particle and rigid body

Particle

A particle is an object whose mass is concentrated at a point; therefore, it is also called

a point mass. The inertia properties of a particle consist only of its mass. A particle is

generally understood to have zero volume. It is meaningless to talk about the rotation

of a particle whose position is held fixed, although we do say that a particle can

“rotate about a point,” meaning that a particle can move along a path around a point.

Regardless of its volume, when we choose to model an object as a particle, we neglect

the possibility that the object might rotate in the sense of “change its orientation”

relative to some chosen reference.

Rigid body

A rigid body is an object whose mass is (1) distributed over a region of space and (2)

such that the distance between any two points on it never changes. Since its mass is not

concentrated at a point, the rigid body is the simplest model for the study of motions

that include the possibility of rotation—that is, a change of orientation relative to

a chosen reference. We model objects as rigid bodies when we want to account for

the possibility of rotation while neglecting the effects of deformation. Finally, the

mass distribution of a rigid body does not change relative to an observer moving with

the body. This fact makes it possible to describe the inertia properties of a three-

dimensional rigid body with seven pieces of information consisting of the body’s

mass and six mass moments of inertia.∗

Vectors and their Cartesian representation

Notation

Scalars. By scalar we mean a real number. Scalars will be denoted by italic roman

characters (e.g., 
, ℎ, or � ) or by Greek letters (e.g., �, �, or �).

Vectors. We will always denote vectors by placing arrows or carets (in the case of

unit vectors) over letters, such as �⃗ or  ̂. The conventions we use to depict vectors in

figures are shown in Fig. 11.4. The color scheme used in the figure is defined in the

�

�
 ̂

!̂


⃗ or 


⃗ or 


�⃗ or �

�⃗ or � �⃗ or �

"⃗ or "

If the label is a signed length

(scalar), the arrow’s direction will

establish the positive direction.

�⃗ or �

Figure 11.4

Notation and colors for commonly used vectors.

Position vectors will always be blue (
⃗), veloc-

ity (linear and angular) vectors purple (�⃗ and

�⃗), and acceleration (linear and angular) vectors

green (
⃗ and �⃗). Forces and moments will al-

ways be red (�⃗ and "⃗) and unit vectors or-

ange ( ̂ and !̂). Vectors with no particular phys-

ical significance will be black , magenta , or

gray .

caption. Depending on what we want or need to emphasize in a figure, a vector will

be labeled with a letter that has an arrow placed above it (e.g., 
⃗ or �⃗ ) or with just a

letter (e.g., 
 or �) according to the following conventions:

• In figures, a vector will be labeled with arrows over letters when it is important

to emphasize the arbitrary directional nature of the vector (e.g., a velocity) or

the vectorial nature of the quantity (e.g., a unit vector).

• Base vectors in Cartesian components will be designated using the unit vectors

 ̂, !̂, and �̂. A unit vector is a vector with magnitude equal to 1. In any other

context, e.g., in other component systems, unit vectors will be designated using

a caret over the letter �, that is, �̂, often accompanied by a subscript indicating

the direction of the vector, such as �̂
.

• In figures, the label of a vector with known direction will generally not be a

letter with an arrow over it. A vector with known direction will usually be

∗ For a definition of the mass moments of inertia of a rigid body, see Section 10.3 on p. 593 of M. E. Plesha,

G. L. Gray, R. J. Witt, and F. Costanzo, Engineering Mechanics: Statics, McGraw-Hill, Dubuque, IA, 2023.
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labeled as a signed length (i.e., a scalar component) whose positive direction

is that of the arrow in the figure.

• Double-headed arrows will designate vectors associated with “rotational”

quantities—that is, moments, angular velocities, and angular accelerations (an-

gular velocities and accelerations will be discussed in Chapter 12).

Cartesian vector representation

We now review those aspects of vectors in two dimensions that are most important

for our applications. This presentation is easily extended to three dimensions.

Figure 11.5 shows the position of a point � with respect to the origin � of a

�

�

�

�

#

 ̂

!̂

�

�̂



⃗�∕� = 
⃗




�


Figure 11.5. Description of the position of a point � . The curved arrows indicating an angle

with a single arrowhead designate an angle’s positive direction.

rectangular coordinate system. The position of � is represented by the arrow that

starts at � and ends at � , which we call the vector 
⃗�∕�. The subscript “�∕�” is read

“� relative to �,” or “� as seen by an observer at �,” or “� with respect to �.” When

only one point is being discussed, we typically drop the “�∕�” part of the notation

and simply indicate position as 
⃗.

The Cartesian representation of 
⃗ is


⃗ = 
�  ̂ + 
� !̂, (11.13)

where  ̂ and !̂ are unit vectors in the � and � directions, respectively. The quantities 
�

and 
� are the (scalar) Cartesian components of 
⃗. Using trigonometry, we have


� = |
⃗| cos # and 
� = |
⃗| sin #, (11.14)

where # is the orientation of the segment �� (the bar over the letters � and � desig-

nates the line segment connecting the points � and � ) relative to the � axis and |
⃗|,
called the magnitude of 
⃗ or length of 
⃗, is the length of �� . Equation (11.13) could

be written as 
⃗ = 
⃗� + 
⃗�, where the vectors 
⃗� = 
�  ̂ and 
⃗� = 
� !̂ are called the

� and � vector components of 
⃗, respectively. In this book, component will always

mean scalar component. When talking about vector components, we will explicitly

say vector components.

Generalizing what we said about 
⃗�∕�, given points $ and % with coordinates

�

�

$

�

%

 ̂

!̂


⃗$∕%

� $
−

� %

�$ − �%

Figure 11.6

Vector representation of the position of $ relative

to %.

(�$, �$) and (�% , �%), respectively, the vector


⃗$∕% =
(
�$ − �%

)
 ̂ +

(
�$ − �%

)
!̂ (11.15)

will be called the position of $ with respect to %, or position of $ relative to %

(Fig. 11.6).
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Vector operations

Here are the vector operations we will use:

1. A vector 
⃗ can be multiplied by a scalar 
 in the following way:



⃗ = 

�  ̂ + 

� !̂. (11.16)

This scales the magnitude of 
⃗ by the factor |
|. The object 

⃗ is a vector (not a

scalar) with the same line of action as 
⃗; the direction of 

⃗ is the same as that

of 
⃗ if 
 > 0, whereas it is opposite to 
⃗ if 
 < 0.

2. Two vectors can be summed to obtain another vector as follows:


⃗ + &⃗ =
(

� + &�

)
 ̂ +

(

� + &�

)
!̂, (11.17)

which conforms to the triangle law of vector addition (see Fig. 11.7).

�

�

�  ̂

!̂

&�


�


⃗

&⃗


⃗ + &⃗


� &�

Figure 11.7

Graphical representation of the vector addition of


⃗ and &⃗ showing the “triangle law.” 3. The operation of summing a scalar with a vector is not defined.

4. Referring to Fig. 11.8, the dot or scalar product of two vectors 
⃗ and &⃗ is

#

⃗

&⃗


⃗ × &⃗

Figure 11.8

Graphical representation of the vector cross prod-

uct of 
⃗ and &⃗.

denoted by 
⃗ ⋅ &⃗ and yields the following scalar quantity:


⃗ ⋅ &⃗ = |
⃗||&⃗| cos #. (11.18)

5. Referring to Fig. 11.8, the cross product of two vectors 
⃗ and &⃗ is the vector

denoted by 
⃗ × &⃗ with

(a) magnitude

|
⃗ × &⃗| = |
⃗||&⃗| sin #, (11.19)

(b) line of action perpendicular to the plane containing 
⃗ and &⃗, and

(c) direction determined by the right-hand rule.

In Eqs. (11.18) and (11.19), # is the smallest angle that will rotate one of the vectors

into the other. For the cross product, this choice of # ensures that Eq. (11.19) always

yields a nonnegative value. For the dot product, since cos # = cos(2' − #), # can

be replaced by 2' − #. Finally, the definition of cross product implies that the cross

product is anticommutative, that is,


⃗ × &⃗ = −&⃗ × 
⃗. (11.20)

Referring to Fig. 11.9, we recall that 
⃗ represents the length and orientation of

�

�

�

�

#

 ̂

!̂

�

�̂



⃗�∕� = 
⃗




�


Figure 11.9

Description of the position of a particle � .

the segment �� . Using the Pythagorean theorem and trigonometry, and expressing

angles in radians, we have

length of 
⃗ = |
⃗| =
√


2� + 
2�, (11.21)

and

direction of 
⃗ = # = tan−1
( 
�


�

)
± (', ( = 0, 1, 2,… (11.22)

where ( is found by identifying the quadrant containing � (for the case in Fig. 11.9,

( = 0). Finally, Eqs. (11.13) and (11.14) allow us to rewrite 
⃗ as


⃗ = |
⃗| �̂
, where �̂
 = cos #  ̂ + sin # !̂. (11.23)

Since �̂
 is a unit vector in the direction of 
⃗, Eq. (11.23) implies that

The information carried by any vector can be written as the product of

its magnitude and a unit vector pointing in the direction of that vector.
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Useful vector “tips and tricks”

Components of a vector

We now review how to find the components of a vector, since this operation occurs

often in dynamics.

Figure 11.10 shows two perpendicular and oriented lines �1 and �2, where by

$

%

$1

$2

%1

%2

)1

)2

#1
#2

#
2

�̂1�̂2 �1

�2

)⃗

Figure 11.10

Diagram showing the components of )⃗ in the di-

rections of �̂1 and �̂2.

oriented we mean that they have a positive and a negative direction. The lines are

oriented using the unit vector �̂1 for �1 and �̂2 for �2. We also have a vector )⃗ oriented

arbitrarily relative to �1 and �2. Our goal is to find the scalar components of )⃗ along

�1 and �2.

If we apply Eq. (11.18) to Fig. 11.10 and let 
⃗ be )⃗, &⃗ be �̂1, and # be #1, we see

that the dot product gives us )1 directly, that is,

)1 = )⃗ ⋅ �̂1 = |)⃗||�̂1| cos #1 = |)⃗| cos #1. (11.24)

The quantity )1 in Eq. (11.24) is what we were looking for because, according to the

definition of scalar component of a vector and Fig. 11.10,

1. |)1| is the distance between $1 and %1.

2. The sign of )⃗ ⋅ �̂1 is determined by the sign of cos #1, which is positive if 0◦ ≤

#1 < 90◦ and negative if 90◦ < #1 ≤ 180◦ (if #1 = 90◦, $1 and %1 coincide so

that )1 = 0).

In summary,

component of )⃗ along �1 = )1 = )⃗ ⋅ �̂1. (11.25)

Repeating the foregoing discussion in the case of )2 we have that the

component of )⃗ along �2 = )2 = )⃗ ⋅ �̂2 = |)⃗| cos #2 = −|)⃗| cos #′
2
, (11.26)

since #2 = #′
2
+ ' and cos

(
#′
2
+ '

)
= −cos #′

2
.

In dynamics we often face the situation depicted in Fig. 11.11, in which we need

�

�

 ̂

!̂


⃗ )⃗#

#


�


�

)�

)�

Figure 11.11

Diagram showing the Cartesian components of

the vector )⃗ as well as the vector 
⃗ that is orthog-

onal to )⃗.

to calculate the Cartesian components of two mutually orthogonal vectors )⃗ and 
⃗. If

the angle # defining the orientation of )⃗ relative to the � axis is given, to express )⃗

and 
⃗ in components, we can write )⃗ as

)⃗ = ()⃗ ⋅  ̂)  ̂ + ()⃗ ⋅ !̂) !̂ = |)⃗| cos
(
# +

'

2

)
 ̂ + |)⃗| cos # !̂

= −|)⃗| sin #  ̂ + |)⃗| cos # !̂

= |)⃗| (− sin #  ̂ + cos # !̂)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

unit vector

, (11.27)

and then we can write 
⃗ as


⃗ = (
⃗ ⋅  ̂)  ̂ + (
⃗ ⋅ !̂) !̂ = |
⃗| cos(' − #)  ̂ + |
⃗| cos
(
# +

'

2

)
!̂

= −|
⃗| cos #  ̂ − |
⃗| sin # !̂

= |
⃗| (− cos #  ̂ − sin # !̂)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

unit vector

. (11.28)

Equations (11.27) and (11.28) demonstrate that the two equations have the following

structure:

• Each vector is equal to its magnitude times a unit vector with one sine and one

cosine term.
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• The argument of the sine and cosine terms is the angle orienting one of the

vectors with respect to one of the component directions.

• In the two equations there will always be three positive terms and one negative

term or three negative terms and one positive term. As a final check that the

decomposition has been performed correctly, note that since )⃗ and 
⃗ are orthog-

onal, their dot product should yield zero. The dot product of the unit vectors in

(11.27) and (11.28) give us sin # cos # − sin # cos # = 0.

Cross products

Since we will often encounter cross products in dynamics, here is a useful procedure

to help us evaluate them. Consider three unit vectors  ̂, !̂, and �̂ such that, according

 ̂

!̂ �̂

Figure 11.12

A little “trick” to help remember the cross prod-

ucts between Cartesian unit vectors.

to the right-hand rule,  ̂ × !̂ = �̂. Arrange the three vectors as shown in Fig. 11.12.

To calculate the product of, say, !̂ × �̂, just move around the circle, starting from !̂

and going toward �̂. Now notice that (1) the next vector on the circle is  ̂ and (2) in

going from !̂ to �̂ we move with the arrow (counterclockwise). Hence, !̂ × �̂ = + ̂.

Now consider �̂× !̂ and notice that in going from �̂ toward !̂, the next vector along the

circle is  ̂, and we move opposite to the arrow. Therefore, the result is negative, and

we have �̂ × !̂ = − ̂.

Helpful Information

Cross products using determinants. You

may be familiar with the following deter-

minant method of evaluating the cross

product of two vectors:


⃗ × 0⃗ =

|||||||

 ̂ !̂ �̂

� 
� 
�

0� 0� 0�

|||||||
.

For vectors in 3D, this method provides a

very e
cient evaluation. As an alternative,

the cross product may be evaluated on a

term-by-termbasis by expanding the follow-

ing product:


⃗ × 0⃗ =
(

�  ̂ + 
� !̂ + 
� �̂

)

×
(
0�  ̂ + 0� !̂ + 0� �̂

)
.

When expanded, nine terms such as 
�  ̂ ×
0�  ̂ and 
�  ̂ × 0� !̂ must be evaluated. This

is accomplished quickly using Fig. 11.12. In

this book, we primarily do cross products of

vectors in2D, andwewill likely find the term-

by-term evaluation to be quicker.

Units

Units are essential to any quantifiable measure. Newton’s second law in scalar form,

� = �
, provides for the formulation of a consistent and unambiguous system of

units. We will use both U.S. Customary units and SI units (International System∗) as

shown in Table 11.1. Each system has three base dimensions and a fourth derived

Table 11.1. U.S. Customary and SI unit systems.

System of units

Base dimension U.S. Customary SI

force pound (lb) newtona (N) ≡ kg⋅m∕s2

mass sluga
≡ lb⋅s2∕ft kilogram (kg)

length foot (ft) meter (m)

time second (s) second (s)

a derived unit

dimension. In the U.S. Customary system, the base dimensions are force, length, and

time, whose corresponding base units are lb (pounds), ft (feet), and s (seconds), re-

spectively. The corresponding derived dimension is mass, which is obtained from the

equation � = �∕
. This gives the mass unit as lb ⋅s2∕ft. This unit of mass is often

called the slug.

In the SI system, the base dimensions are mass, length, and time, whose corre-

sponding base units are kg (kilogram), m (meter), and s (second), respectively. The

corresponding derived dimension is force, the unit of which is obtained from the

∗ SI has been adopted as the abbreviation for the French Le Système International d’Unités.
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equation � = �
, which gives the force unit as kg⋅m∕s2. This unit of force is referred

to as a newton, and its abbreviation is N.
Common Pitfall

Weight and mass. Unfortunately, it is com-

mon to refer to weight using mass units.

For example, the person who says, “I weigh

70 ��” really means “My mass is 70 ��.” In

science and engineering it is essential that

accurate nomenclature be used. Weights

and forces must be reported using appro-

priate force units, and masses must be re-

ported using appropriate mass units.

Because of the difference in base dimensions between the U.S. Customary system

and the SI system, when using the U.S. Customary system, we normally specify the

weight of an object (typically in lb) instead of its mass; and, conversely, when using

the SI system, we normally specify the mass of an object (typically in kg) instead of

its weight.

For both systems, we may occasionally use different, but consistent, units for some

dimensions. For example, we may use minutes rather than seconds, inches instead of

feet, grams instead of kilograms.

Plane angles are dimensionless quantities (they are defined as the ratio of two

lengths). In both the U.S. Customary and SI systems, angles are expressed in radians,

abbreviated rad. Another commonly used unit to express angle measurements is the

degree, indicated by the symbol ◦. Angle measurements in degrees and in radians are

related as follows:

180◦ = ' rad. (11.29)

Dimensional homogeneity and unit conversions

Equations must be dimensionally homogeneous. This means that the quantities on the

two sides of the equal sign must have the same dimensions. Our strong recommen-

dation is that appropriate units always be used in all equations during a calculation to

make sure that the results are dimensionally correct. Such practice helps avoid catas-

trophic blunders and provides a useful check on a solution, for if an equation is found

to be dimensionally inconsistent, then an error has certainly been made. In Septem-

ber 1999, NASA (National Aeronautics and Space Administration) lost a $125 million

Mars orbiter because the climate orbiter spacecraft team at the contractor who built

the spacecraft used U.S. Customary units when computing rocket thrust, while the

mission navigation team at NASA used metric units for this key spacecraft operation.

This units error, which came into play when the spacecraft was to be inserted into or-

bit around Mars, caused the spacecraft to approach Mars at too low an altitude, thus

causing it to burn up in Mars’ atmosphere.

Unit conversions are often needed and are easily done using conversion factors,

such as those shown in Table 11.2, and rules of algebra. The basic idea is to multiply

Table 11.2

Conversion factors between U.S. Customary and

SI unit systems.

U.S. Customary SI

length 1 in. 0.0254m
(25.4mm)

1 f t (12 in.) 0.3048m
1mi (5280 f t) 1.609 km

force 1 lb 4.448N
1 kip (1000 lb) 4.448 kN

mass 1 slug (1 lb⋅s2∕f t) 14.59 kg

either or both sides of an equation by dimensionless factors of unity, where each factor

of unity embodies an appropriate unit conversion. This procedure is illustrated in the

examples at the end of this section.

Prefixes

Prefixes are a useful alternative to scientific notation for representing numbers that

are very large or very small. Common prefixes and a summary of rules for their use

are given in Table 11.3.

Here is a list of common rules for correct prefix use:

1. With few exceptions, prefixes should be used only in the numerator of unit

combinations; for example, use the unit km∕s (kilometer per second) and avoid

the unit m∕ms (meter per millisecond). One common exception to this rule is

kg, which may appear in numerator or denominator; for example, use the unit

kW∕kg (kilowatt per kilogram) and avoid the unit W∕g (watt per gram).
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Table 11.3. Common prefixes used in the SI unit systems.

Multiplication factor Prefix Symbol

1 000 000 000 000 000 000 000 000 1024 yotta Y

1 000 000 000 000 000 000 000 1021 zetta Z

1 000 000 000 000 000 000 1018 exa E

1 000 000 000 000 000 1015 peta P

1 000 000 000 000 1012 tera T

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

100 102 hecto h

10 101 deka da

0.1 10−1 deci d

0.01 10−2 centi c

0.001 10−3 milli m

0.000 001 10−6 micro 1

0.000 000 001 10−9 nano n

0.000 000 000 001 10−12 pico p

0.000 000 000 000 001 10−15 femto f

0.000 000 000 000 000 001 10−18 atto a

0.000 000 000 000 000 000 001 10−21 zepto z

0.000 000 000 000 000 000 000 001 10−24 yocto y

2. Double prefixes must be avoided; for example, use the unit GHz (gigahertz)

and avoid the unit kMHz (kilo-megahertz).

3. Use a center dot or dash to denote multiplication of units, for example, N ⋅m

or N-m. In this book, we denote multiplication of units by a dot, for example, N⋅m.

4. Exponentiation applies to both the unit and prefix, for example, mm2 = (mm)2.

5. If the number of digits on either side of a decimal point exceeds 4, it is common

to group the digits into groups of 3, with the groups separated by commas or

thin spaces. Since many countries use a comma to represent a decimal point,

the thin space is sometimes preferable; for example, 1234.0 could be written

as is, but by contrast, 12345.0 should be written as 12,345.0 or as 12 345.0.

While prefixes can often be incorporated into an expression by inspection, the rules

for doing this are identical to those for performing unit transformations.

Accuracy of numbers in calculations

Throughout this book, we will generally assume that the data given for problems is

accurate to three significant digits. When calculations are performed, such as in ex-

ample problems, all intermediate results are stored in the memory of a calculator or

computer using the full precision these machines offer. However, when these inter-

mediate results are reported in this book, they are rounded to four significant digits.

Final answers are usually reported with three significant digits. If you verify the cal-

culations described in this book using the rounded numbers that are reported, you

may occasionally calculate results that are slightly different from those shown.
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End of Sect ion Summary

Review of vector operations. Referring to Fig. 11.13, the Cartesian representa-

�

�

�

�

#

 ̂

!̂

�

�̂



⃗�∕� = 
⃗




�


Figure 11.13

Description of the position of a particle � .

tion of a two-dimensional vector 
⃗ takes the form


⃗ = 
�  ̂ + 
� !̂,

Eq. (11.13), p. 627

where  ̂ and !̂ are unit vectors in the positive � and � directions, respectively, and where


� and 
� are the � and � (scalar) components of 
⃗, respectively. Using trigonometry,


� and 
� are given by


� = |
⃗| cos # and 
� = |
⃗| sin #,

Eqs. (11.14), p. 627

where # is the orientation of the segment �� relative to the � axis and |
⃗|, called the

magnitude of 
⃗ or length of 
⃗, is the length of �� .

The dot or scalar product of the vectors 
⃗ and &⃗ gives the scalar


⃗ ⋅ &⃗ = |
⃗||&⃗| cos #,

Eq. (11.18), p. 628

with # being the smallest angle that will rotate one of the vectors into the other.

Referring to Fig. 11.14, the cross product of two vectors 
⃗ and &⃗ is denoted by

#

⃗

&⃗


⃗ × &⃗

Figure 11.14

Graphical representation of the vector cross prod-

uct of 
⃗ and &⃗.


⃗ × &⃗ and gives a vector

1. With magnitude equal to

|
⃗ × &⃗| = |
⃗||&⃗| sin #,

Eq. (11.19), p. 628

where # is the smallest angle that will rotate one of the vectors into the other

(to ensure that |
⃗||&⃗| sin # ≥ 0).

2. Whose line of action is perpendicular to the plane containing 
⃗ and &⃗ and

whose direction is determined by the right-hand rule.

3. For which the cross product is anticommutative; i.e., 
⃗ × &⃗ = −&⃗ × 
⃗.

Referring to Fig 11.13, given 
� and 
�, we compute |
⃗| and # as follows:

length of 
⃗ = |
⃗| =
√


2� + 
2�,

direction of 
⃗ = # = tan−1
( 
�


�

)
.

Eqs. (11.21) and (11.22), p. 628

Another useful representation of a vector 
⃗ is as follows:


⃗ = |
⃗| �̂
, where �̂
 = cos #  ̂ + sin # !̂,

Eq. (11.23), p. 628

where �̂
 is the unit vector in the direction of 
⃗.
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Useful vector “tips and tricks.” Referring to Fig. 11.15, the component of a vec-

tor in a given direction can be computed using the dot product. For example,

$

%

$1

$2

%1

%2

)1

)2

#1
#2

#
2

�̂1�̂2 �1

�2

)⃗

Figure 11.15

Diagram showing the components of )⃗ in the di-

rections of �̂1 and �̂2.

)1 = )⃗ ⋅ �̂1 = |)⃗||�̂1| cos #1 = |)⃗| cos #1,

Eq. (11.24), p. 629

that is,

component of )⃗ along �1 = )1 = )⃗ ⋅ �̂1.

Eq. (11.25), p. 629

Referring to Fig. 11.16, for two mutually orthogonal vectors 
⃗ and )⃗ the following

relations hold:

�

�

 ̂

!̂


⃗ )⃗#

#


�


�

)�

)�

Figure 11.16

Diagram showing the Cartesian components of

the vector )⃗ as well as the vector 
⃗ that is orthog-

onal to )⃗.

)⃗ = ()⃗ ⋅  ̂)  ̂ + ()⃗ ⋅ !̂) !̂ = |)⃗| cos
(
# +

'

2

)
 ̂ + |)⃗| cos # !̂

= −|)⃗| sin #  ̂ + |)⃗| cos # !̂

= |)⃗|(− sin #  ̂ + cos # !̂),


⃗ = (
⃗ ⋅  ̂)  ̂ + (
⃗ ⋅ !̂) !̂ = |
⃗| cos(' − #)  ̂ + |
⃗| cos
(
# +

'

2

)
!̂

= −|
⃗| cos #  ̂ − |
⃗| sin # !̂

= |
⃗|(− cos #  ̂ − sin # !̂).

Eqs. (11.27) and (11.28), p. 629
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E X A M P L E 11.1 Components of Vectors

airplane’s path

�

�

 ̂

!̂


⃗

#

2
�̂(

�̂�

Figure 1

An airplane performing a maneuver.

At the instant shown, the acceleration of the airplane in Fig. 1 is the vector


⃗ = (5.63 �̂� + 37.2 �̂()m∕s2, (1)

where the mutually perpendicular unit vectors �̂� and �̂( are tangent and perpendicular

to the airplane’s path, respectively. The angle between �̂� and the horizontal direction is

# = 26◦. Determine 2, the angle between 
⃗ and �̂�, and the expression of 
⃗ relative to the

unit vectors  ̂ and !̂, which are horizontal and vertical, respectively.

SOLUT ION

Road Map Letting 
� and 
( be the components of 
⃗ in the (�̂�, �̂() component system,

Eq. (1) implies that 
� = 5.63m∕s2 and 
( = 37.2m∕s2. Since 
� and 
( are known,

2 can be found via Eq. (11.22) on p. 628 after replacing the quantities 
� and 
� in that

equation with 
� and 
(, respectively. To express 
⃗ using  ̂ and !̂, we need to determine the

components of 
⃗ in the  ̂ and !̂ directions. This can be done via Eq. (11.27) on p. 629.

Determination of 2

Computation Replacing 
� and 
� in Eq. (11.22) on p. 628 with 
� and 
(, respectively,

we have

2 = tan−1
(


(


�

)
± (', ( = 0, 1, 2,… . (2)

Since the components 
( and 
� are both positive, the vector 
⃗ lies in the first quadrant

of the (�̂�, �̂() system. Therefore, we can choose ( = 0 in Eq. (2). Recalling that 
� =

5.63m∕s2 and 
( = 37.2m∕s2, Eq. (2) can be evaluated to obtain

2 = 81.39◦. (3)

Expression of 
⃗ via  ̂ and !̂

Computation Replacing the vector )⃗ with 
⃗ = 
� �̂� + 
( �̂( in the first equality in

Eq. (11.27) on p. 629, we have


⃗ =
[
(
� �̂� + 
( �̂() ⋅  ̂

]
 ̂ +

[
(
� �̂� + 
( �̂() ⋅ !̂

]
!̂

= (
��̂� ⋅  ̂ + 
(�̂( ⋅  ̂)  ̂ + (
��̂� ⋅ !̂ + 
(�̂( ⋅ !̂) !̂. (4)

Referring to Fig. 2, the angles between �̂� and the unit vectors  ̂ and !̂ are # and 90◦ − #,

 ̂

!̂

#

#

�̂(

�̂�

# + 90◦

90◦ − #

Figure 2

Orientation of the unit vectors �̂� and �̂( relative

to the unit vectors  ̂ and !̂.

respectively. Similarly, the angles between �̂( and the unit vectors  ̂ and !̂ are # + 90◦ and

#, respectively. Therefore, we have

�̂� ⋅  ̂ = cos #, �̂� ⋅ !̂ = cos(90◦ − #) = sin #, (5)

�̂( ⋅  ̂ = cos(# + 90◦) = − sin #, �̂( ⋅ !̂ = cos #. (6)

Using Eqs. (5) and (6), Eq. (4) can be simplified to


⃗ = (
� cos # − 
( sin #)  ̂ + (
� sin # + 
( cos #) !̂. (7)

Recalling that 
� = 5.63m∕s2, 
( = 37.2m∕s2, and # = 26◦, Eq. (7) gives


⃗ = (−11.25  ̂ + 35.90 !̂)m∕s2. (8)

Discussion &Verification The value of 2 seems reasonable given how much larger 
( is

relative to 
�. To verify the result in Eq. (8), we can calculate the magnitude of 
⃗ using its

components relative to both the ( ̂, !̂) and the (�̂�, �̂() systems and check that we obtain the

same value. In the ( ̂, !̂) system, we have |
⃗| =
(
−11.252+35.902

)1∕2
m∕s2 = 37.62m∕s2.

In the (�̂�, �̂() system we have |
⃗| =
(
5.632 + 37.22

)1∕2
m∕s2 = 37.62m∕s2. Since the

result is as expected, we can say that the result in Eq. (8) appears to be correct.
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E X A M P L E 11.2 Position Vectors, Relative Position Vectors, and Components

�, north

International
Falls

Fargo/

Moorhead

Duluth

St. Paul

100 mi

�, east

Minneapolis/

�

Figure 1

A map of the state of Minnesota with the loca-

tions of four of its cities. An east-north or �� co-

ordinate frame with origin at � is also defined.

The map of the state of Minnesota in Fig. 1 shows four of its cities and defines a coordinate

system whose origin is at �. The coordinates of the four cities relative to � are given in

Table 1. Assuming the Earth is flat and ignoring errors due to the map projection used,

the � and � directions can be considered to be east and north, respectively. Using the

information in Table 1, determine

(a) The position of Duluth (3) relative to Minneapolis/St. Paul ("), 
⃗3∕" .

(b) The orientation, relative to north, of the position of International Falls (4) relative to

Fargo/Moorhead (� ).

(c) The east and north (scalar) components of the position of Fargo/Moorhead relative to

Minneapolis/St. Paul.

(d) The position of the point 5 halfway between Minneapolis/St. Paul and International

Falls.

Table 1.Coordinates of the four cities in the state of Minnesota shown in Fig. 1. All coordinates

are relative to the origin �.

City x, east (mi) y, north (mi)

Minneapolis/St. Paul (") 216 130

Duluth (3) 259 267

Fargo/Moorhead (� ) 12 278

International Falls (4) 195 413

SOLUT ION

Part (a)

Road Map Since the coordinates of points 3 and " are available, the components of


⃗3∕" can be found by using Eq. (11.15) on p. 627 to compute the difference between the

coordinates of 3 and " .

�

�

3

�
5

4

"

�  ̂

!̂

#4∕�

�̂4∕�


⃗�∕"

��∕"

��∕"


⃗5∕"


⃗5

⃗3∕"

#3∕"


⃗"

100 mi

Figure 2

Vectors, projections, and angles needed to com-

pute the quantities of interest.

Computation Referring to Fig. 2 and Table 1 and then taking the difference between


⃗3 and 
⃗" , we obtain


⃗3∕" = 
⃗3 − 
⃗" =
(
�3 − �"

)
 ̂ +

(
�3 − �"

)
!̂

=
[
(259 − 216)  ̂ + (267 − 130) !̂

]
mi

= (43.00  ̂ + 137.0 !̂)mi = 143.6mi @ 72.57◦ ,

(1)

where #3∕" = 72.57◦.

Discussion & Verification Referring to Fig. 2 and taking advantage of the scale indi-

cated on the map, we can graphically verify that our answers are correct. We note that in

this problem, the answer given as a length (143.6mi) and a direction (#3∕" = 72.57◦)

is probably more straightforward to verify than the answer given in terms of Cartesian

components, since we could directly measure the distance from Minneapolis/St. Paul to

Duluth on the map itself.

Part (b)

Road Map To determine the orientation of 4 relative to � , finding either the unit vector

�̂4∕� or the angle #4∕� will suffice. To find �̂4∕� , we can find 
⃗4∕� and then divide by its

magnitude [Eq. (11.21) on page 628].
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Computation Again referring to Fig. 2 and Table 1 and using Eq. (11.15), the vector

�̂4∕� is given by

�̂4∕� =

⃗4∕�

|
⃗4∕� |
=

(195 − 12)  ̂ + (413 − 278) !̂
√
(195 − 12)2 + (413 − 278)2

= 0.8047  ̂ + 0.5936 !̂. (2)

Now, we can find the angle #4∕� by applying Eq. (11.22), which gives

#4∕� = tan−1
(�4∕�

�4∕�

)
= tan−1

(
183

135

)
= 53.58◦, (3)

which would be approximately northeast.

Discussion & Verification As with Part (a), we have expressed the answer in two dif-

ferent ways, and the version given in terms of an angle [i.e., Eq. (3)] probably allows for

an easier verification that the solution is reasonable.

Part (c)

RoadMap To find the east (�) and north (�) components of 
⃗�∕" , we can use Eq. (11.25)

on p. 629.

Computation Referring to Fig. 2 and using Eq. (11.25), we find that

��∕" = 
⃗�∕" ⋅  ̂ =
[
(12 − 216)  ̂ + (278 − 130) !̂

]
⋅  ̂ mi = −204.0mi,

��∕" = 
⃗�∕" ⋅ !̂ =
[
(12 − 216)  ̂ + (278 − 130) !̂

]
⋅ !̂ mi = 148.0mi,

(4)

(5)

where we have used the fact that  ̂ ⋅  ̂ = !̂ ⋅ !̂ = 1 and  ̂ ⋅ !̂ = !̂ ⋅  ̂ = 0.

Discussion & Verification We calculated that Fargo/Moorhead is 148.0mi north of

Minneapolis/St. Paul, and it is 204.0mi west (i.e., −204mi east), which certainly seem

reasonable given the figure.

Part (d)

Road Map As we can see from Fig. 2, the position of the point 5 , which is halfway

between Minneapolis/St. Paul and International Falls, is given by the vector 
⃗5 . The key

to the solution is then seeing that we can write this position as 
⃗5 = 
⃗" + 
⃗5∕" .

Computation We begin with the decomposition of 
⃗5 , which is given by


⃗5 = 
⃗" + 
⃗5∕" . (6)

We can write 
⃗5∕" as


⃗5∕" =
1

2

⃗4∕" =

1

2

[
(195 − 216)  ̂ + (413 − 130) !̂

]
mi = (−10.50  ̂ + 141.5 !̂)mi, (7)

which, when substituted into Eq. (6), gives


⃗5 =
[
(216  ̂ + 130 !̂) + (−10.50  ̂ + 141.5 !̂)

]
mi = (205.5  ̂ + 271.5 !̂)mi, (8)

where we have used 
⃗" = (216  ̂ + 130 !̂)mi from Table 1.

Discussion & Verification Again referring to Fig. 2, the result in Eq. (8) looks reason-

able. In addition, the power of vectors starts to come into focus in this part of the example.

That is, once we knew the position of International Falls relative to Minneapolis/St. Paul,

computing the position at any fraction of the distance in between was trivial. Once that

was computed, vector addition allowed us to easily find the position of the halfway point

relative to the origin at �.
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E X A M P L E 11.3 Dimensional Analysis and Unit Usage

�

�

� − �0

6,

Figure 1

A car about to collide with a concrete block.

In a collision, the bumper of a car can undergo both elastic (i.e., reversible) and permanent

deformation. A model for the force � transmitted by the bumper to the car is given by

� = � +�(�− �0) + 6 ��∕��, where �− �0 is the compression experienced by the bumper

and has the dimension of length, �0 is a constant with dimension of length, and ��∕�� is

the time rate of change of �, which has the dimension of length over time. The quantity

� is the force needed to permanently deform the bumper, � is the stiffness of the system,

and 6 is a constant that relates the overall force to the speed of deformation. Determine

(a) The dimensions of � , �, and 6, and

(b) The units that these quantities would have in the SI and the U.S. Customary systems.

SOLUT ION

Part (a)

Road Map The first step in dimensional analysis is the identification of a basic relation,

such as a law of nature, containing the quantities to analyze and for which the dimensions

are known. Since we are dealing with the expression of a force, we can use Eq. (11.2) on

p. 620 as the basic relation. Notice that the given force law consists of the sum of three

terms. For this sum to be meaningful, each of the terms in question must have dimensions

of force. We call this property dimensional homogeneity, and it is the key to solving the

given problem.

Computation Let 7, " , and 8 denote length, mass, and time, respectively. Writing

“[something]” to mean the “dimensions of something,” for Eq. (11.2), we have

[� ] = [�
] = [�] [
] = "
7

8 2
. (1)

Considering the given force law, we have

[� ] =

[
� + �(� − �0) + 6

��

��

]
= [� ] + [�(� − �0)] +

[
6

��

��

]
. (2)

Comparing Eq. (1) with Eq. (2) and enforcing dimensional homogeneity between them,

Concept Alert

Dimensional homogeneity. In writing

Eq. (2), we have used a property stating

that “[something + something else] =

[something] + [something else].” This prop-

erty expresses the requirement that the

sum of two physical quantities makes sense

only when these quantities have the same

dimensions. Using a more formal language,

we say that the quantities in question

must satisfy dimensional homogeneity

or, equivalently, must be dimensionally

homogeneous.

we see that [� ], [�(� − �0)], and [6 ��∕��] must each be "7∕8 2. Therefore, the quantity

� must have the dimensions of force:

[� ] = "
7

8 2
. (3)

For the term �, we have

[�(� − �0)] = [�] [� − �0] = [�]7 = "
7

8 2
, (4)

where we have used the fact that the dimension of � and �0 is 7. Simplifying the last

equality in Eq. (4), we have

[�] =
"

8 2
. (5)

Next, considering the term with 6 in Eq. (2), we have
[
6

��

��

]
= [6]

[
��

��

]
= [6]

7

8
= "

7

8 2
, (6)

where we have used the fact that the dimensions of ��∕�� are 7∕8 . Simplifying the last

equality in Eq. (6), we have

[6] =
"

8
. (7)
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Discussion & Verification The correctness of our dimensional analysis in the case of

� is apparent, since � must have the dimensions of a force. In the case of � and 6, we

can verify the correctness of our solution by substituting these quantities back into the

expression for � . Doing so confirms that the dimensions of � and 6 are correct.

Part (b)

Road Map To solve Part (b) of the problem, we need to match the dimensions obtained

in Part (a) with their corresponding units according to the conventions established by the

SI and U.S. Customary systems. To do this, we need only look at Table 11.1 on p. 630.

Computation Since � has the same dimensions as a force, its SI units can be simply

taken to be N (newtons) or, using the SI system base units, kg⋅m∕s2. In the U.S. Custom-

ary system, � is measured in lb (pounds).

Since the dimensions of � are mass over time squared, the corresponding units are

kg∕s2 in the SI system and lb∕ft in the U.S. Customary system. Notice that in the SI system,

the units of � can also be expressed as N∕m.

Recalling that 6 has dimensions of mass over time, the units of 6 are kg∕s in the

SI system and slug∕s in the U.S. Customary system. Using the base units of the U.S.

Customary system, the units of 6 are lb⋅s∕ft.

All of these results are summarized in Table 1.

Table 1. Summary of the solution to the second part of the problem.

Quantity SI units U.S. Customary units

� N or kg⋅m∕s2 lb

� kg∕s2 or N∕m lb∕ft

6 kg∕s lb⋅s∕ft

Discussion & Verification The correctness of our results can be verified by replacing

the units with the dimensions they correspond to. For example, for � we have that the

dimensions corresponding to the unit of pound are those of a force, i.e., "7∕8 2, which are

the dimensions of � obtained in Part (a) of the problem solution. Repeating this process

for the other quantities and for both the SI system and the U.S. Customary system, we see

that our results are correct.
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E X A M P L E 11.4 Dimensional Analysis and Unit Conversion

� (0, �)

�

Figure 1

A moving string with one end being dragged.

In studying the motion of a string, it is determined that the speed at various points along

the string is given by the function

�(�, �) = � + 9�2 − :� + �
�

�
, (1)

where � is the coordinate of points along the string, � is time, and �, 9, : , and � are

constants.

(a) What are the dimensions of �, 9, : , and �?

(b) If �, 9, : , and � are all equal to 1 in SI units, what are they in U.S. Customary units?

Interesting Fact

Are engineers really interested in the

motion of strings? The answer is “Actually,

yes!” Highly detailedmodels of real physical

objects tend to be quite complicated, di
-

cult to tackle from a numerical standpoint,

and often di
cult to interpret. Therefore,

before delving into the complexity of highly

detailed models, both physicists and engi-

neers tend to “simplify things” and model

real systems as simple objects, such as

strings (or beams). Simple models can be

very e�ective in capturing the essential

physical behavior of real physical objects

and, in that way, give us useful insight into

the physical world.

SOLUT ION

Part (a)

Road Map Since the dimensions of speed are 7∕8 (with corresponding units of m∕s

in SI and ft∕s in U.S. Customary), the dimensions of every term on the right-hand side of

Eq. (1) must also be 7∕8 .

Computation Begin with [�], which must have the same dimensions as those of the

speed �, so they are simply 7∕8 . As for [9], we know that
[
9�2

]
= [9]8 2 = 7∕8 ⇒ [9] = 7∕8 3. (2)

To get [:], we proceed as in Eq. (2) to obtain

[:�] = [:]7 = 7∕8 ⇒ [:] = 1∕8 . (3)

Finally, [�] is obtained similarly as
[
�

�

�

]
= [�]7∕8 = 7∕8 ⇒ [�] is dimensionless. (4)

Discussion & Verification The verification of the results for � is immediate since no

calculations were performed to obtain them. In the case of 9, : , and �, substituting the

results in Eqs. (2)–(4), we see that our results are correct.

Part (b)

Road Map After expressing �, 9, and : in SI units, we need to convert them into U.S.

Customary units. Note that no conversion is needed for � since it is dimensionless.

Computation Based on Part (a), the SI units of �, 9, and : are m∕s, m∕s3, and s−1,

respectively. Converting unit values for �, 9, and : to U.S. Customary units gives

� = 1m∕s = 1
∕m

s

(
ft

0.3048 ∕m

)
= 3.281 f t∕s,

9 = 1m∕s3 = 1
∕m

s3

(
ft

0.3048 ∕m

)
= 3.281 f t∕s3,

: = 1 s−1,

(5)

(6)

(7)

where no conversion is needed for : since 1 s−1 is the same in either SI or U.S. Customary

units.

Discussion & Verification The only results to verify are those for � and 9, which have

dimensions of 7∕8 and 7∕8 3, respectively. Therefore, since the base unit for time is the

same in both the SI and U.S. Customary systems, the unit conversion was expected to

affect only the 7 dimension and yield the same value (namely, 3.281) for both � and 9.

Finally, the value in question was expected to be close to 3 since a meter is a little over

3 f t. Thus, our results appear to be correct.


