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In courses such as calculus or differential equations, the con-

tent is fairly standardized, but the content of a course entitled 

engineering mathematics often varies considerably between 

two different academic institutions. Therefore a text entitled 

Advanced Engineering Mathematics is a compendium of 

many mathematical topics, all of which are loosely related 

by the expedient of either being needed or useful in courses 

in science and engineering or in subsequent careers in these 

areas. There is literally no upper bound to the number of 

topics that could be included in a text such as this. Conse-

quently, this book represents the author’s opinion of what 

constitutes engineering mathematics.

Content of the Text
For flexibility in topic selection this text is divided into five 

major parts. As can be seen from the titles of these vari-

ous parts, it should be obvious that it is my belief that the 

backbone of science/engineering-related mathematics is the 

theory and applications of ordinary and partial differential 

equations.

PART 1: Ordinary Differential Equations 

(Chapters 1–6)

The six chapters in Part 1 constitute a complete short course 

in ordinary differential equations. These chapters, with some 

modifications, correspond to Chapters 1, 2, 3, 4, 5, 6, 7, and 

9 in the text A First Course in Differential Equations with 

 Modeling Applications, Eleventh Edition, by Dennis G. Zill 

(Cengage Learning). In Chapter 2 the focus is on  methods 

for solving first-order differential equations and their 

 applications. Chapter 3 deals mainly with linear second- order 

differential equations and their applications. Chapter 4 is 

 devoted to the solution of differential equations and systems 

of differential equations by the important Laplace transform.

PART 2: Vectors, Matrices, and Vector Calculus 

(Chapters 7–9)

Chapter 7, Vectors, and Chapter 9, Vector Calculus, include 

the standard topics that are usually covered in the third semes-

ter of a calculus sequence: vectors in 2- and 3-space, vector 

functions, directional derivatives, line integrals, double and 

triple integrals, surface integrals, Green’s theorem, Stokes’ 

theorem, and the divergence theorem. In Section 7.6 the vec-

tor concept is generalized; by defining vectors analytically 

we lose their geometric interpretation but keep many of their 

properties in n-dimensional and infinite-dimensional vector 

spaces. Chapter 8, Matrices, is an introduction to systems of 

algebraic equations, determinants, and matrix algebra, with 

special emphasis on those types of matrices that are useful 

in solving systems of linear differential equations. Optional 

sections on cryptography, error correcting codes, the method 

of least squares, and discrete compartmental models are pre-

sented as applications of matrix algebra.

PART 3: Systems of Differential Equations 

(Chapters 10 and 11)

There are two chapters in Part 3. Chapter 10, Systems of 

 Linear Differential Equations, and Chapter 11, Systems of 

Nonlinear Differential Equations, draw heavily on the  matrix 

material presented in Chapter 8 of Part 2. In  Chapter 10, 

 systems of linear first-order equations are solved utilizing 

the concepts of eigenvalues and eigenvectors, diagonaliza-

tion, and by means of a matrix exponential function. In 

Chapter 11, qualitative aspects of autonomous linear and 

nonlinear systems are considered in depth.

PART 4: Partial Differential Equations 

(Chapters 12–16)

The core material on Fourier series and boundary-value prob-

lems involving second-order partial differential equations was 

drawn from the text Differential Equations with Boundary-

Value Problems, Ninth Edition, by Dennis G. Zill (Cengage 

Learning). In Chapter 12, Fourier Series, the fundamental 

topics of sets of orthogonal functions and expansions of func-

tions in terms of an infinite series of orthogonal functions are 

presented. These topics are then utilized in Chapters 13 and 14 

where boundary-value problems in rectangular, polar, cylin-

drical, and spherical coordinates are solved using the method 

of separation of variables. In Chapter 15, Integral Transforms, 

boundary-value problems are solved by means of the Laplace 

and Fourier integral transforms.
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PART 5: Complex Analysis (Chapters 17–20)

The final four chapters of the hardbound text cover topics 

ranging from the basic complex number system through ap-

plications of conformal mappings in the solution of Dirichlet’s 

problem. This material by itself could easily serve as a one 

quarter introductory course in complex variables. This mate-

rial was taken from Complex Analysis: A First Course with 

 Applications, Third Edition, by Dennis G. Zill and Patrick D. 

Shanahan (Jones & Bartlett Learning).

Design of the Text
For the benefit of those instructors and students who have 

not used the preceding edition, a word about the design of 

the text is in order. Each chapter opens with its own table of 

contents and a brief introduction to the material covered in 

that chapter. Because of the great number of figures, defi-

nitions, and theorems throughout this text, I use a double-

decimal numeration system. For example, the interpretation 

of “Figure 1.2.3” is

 Chapter Section of Chapter 1

 T T

1.2.3 d Third figure in Section 1.2

I think that this kind of numeration makes it easier to find, 

say, a theorem or figure when it is referred to in a later sec-

tion or chapter. In addition, to better link a figure with the 

text, the first textual reference to each figure is done in the 

same font style and color as the figure number. For example, 

the first reference to the second figure in Section 5.7 is given 

as FIGURE 5.7.2 and all subsequent references to that figure are 

written in the traditional style Figure 5.7.2.

Features of the Seventh Edition
�� One of the goals of this revision was to emphasize appli-

cations throughout the text. So, the application problems 

contributed to previous editions

Air Exchange, Exercises 2.7

Potassium-40 Decay, Exercises 2.9

Potassium–Argon Dating, Exercises 2.9

Invasion of the Marine Toads, Chapter 2 in Review 

Temperature of a Fluid, Exercises 3.6

Blowing in the Wind, Exercises 3.9

The Paris Guns, Chapter 3 in Review

have been retained.

�� Section 15.5, Finite Fourier Transforms, is new to the 

text.

�� New examples and many new problems (conceptual and 

applied) have been added throughout the text.

�� New figures and photos have been added to highlight 

some of the older problems and discussions.

�� New REMARKS have been added to some sections, and 

some of the older REMARKS have been expanded.

�� A bit of history has been added following the proper 

name of a person associated with a certain differential 

equation or problem.

�� Several application problems in chapter review exercises 

have been moved to the appropriate section exercises.

�� Parts of several sections have been rewritten in an attempt 

to improve clarity.

�� Appendix A, Integral-Defined Functions, is new to the text.

�� The table of Laplace transforms in Appendix C has been 

expanded.

Supplements
For Instructors

�� Complete Solutions Manual (CSM) by Warren S. Wright 

and Roberto Martinez

�� Test Bank

�� Slides in PowerPoint format

�� Image Bank

�� WebAssign: WebAssign is a flexible and fully customiz-

able online instructional system that puts powerful tools 

in the hands of teachers, enabling them to deploy assign-

ments, instantly assess individual student performance, 

and realize their teaching goals. Much more than just a 

homework grading system, WebAssign delivers  secure 

online testing, customizable precoded questions directly 

from  exercises in this textbook, and unparalleled  customer 

service. Instructors who adopt this program for their 

classroom use will have access to a digital version of this 

textbook. Students who purchase an access code for 

WebAssign will also have access to the digital version of 

the printed text.

  With WebAssign instructors can:

�y Create and distribute algorithmic assignments  

using questions specific to this textbook

�y Grade, record, and analyze student responses and 

performance instantly

�y Offer more practice exercises, quizzes, and 

homework

�y Upload resources to share and communicate with 

students seamlessly

For more detailed information and to sign up for free 

faculty access, please visit webassign.com. For information 

on how students can purchase access to WebAssign bundled 

with this textbook, please contact your Jones & Bartlett 

 account representative at go.jblearning.com/findmyrep.
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Designated instructor materials are for qualified instruc-

tors only. Jones & Bartlett Learning reserves the right to 

evaluate all requests. For detailed information and to request 

access to instructor resources, please visit:

 

go.jblearning.com/ZillAEM7e.

For Students

�� A WebAssign Student Access Code can be bundled with a 

copy of this text at a discount when requested by the 

adopting instructor. It may also be purchased separately 

online when WebAssign is required by the student’s 

 instructor or institution. The student access code provides 

the student with access to his or her specific classroom 

 assignments in WebAssign and access to a digital version 

of this text.

�� A Student Solutions Manual (SSM) prepared by Warren S. 

Wright and Roberto Martinez provides solutions to  selected 

problems from the text.

�� Access to the Student Companion Website and Projects 

Center, available at go.jblearning.com/ZillAEM7e, is in-

cluded with each new copy of the text. This site includes 

the following resources to enhance student learning:

�y Chapter 21 Probability

�y Chapter 22 Statistics

�y Additional projects and essays that appeared in 

earlier editions of this text, including:

Two Properties of the Sphere

Vibration Control: Vibration Isolation

Vibration Control: Vibration Absorbers

Minimal Surfaces

Road Mirages

Two Ports in Electrical Circuits

The Hydrogen Atom

Instabilities of Numerical Methods

A Matrix Model for Environmental Life Cycle 

Assessment

Steady Transonic Flow Past Thin Airfoils

Making Waves: Convection, Diffusion, and 

Traffic Flow

When Differential Equations Invaded Geometry: 

Inverse Tangent Problem of the 17th Century

Tricky Time: The Isochrones of Huygens and Leibniz

The Uncertainty Inequality in Signal Processing

Traffic Flow

Temperature Dependence of Resistivity

Fraunhofer Diffraction by a Circular Aperture

The Collapse of the Tacoma Narrow Bridge: 

A Modern Viewpoint

Atmospheric Drag and the Decay of Satellite 

Orbits

Forebody Drag of Bluff Bodies
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Ordinary Differential 
Equations



Introduction to 
Differential Equations
1.1 Definitions and Terminology

1.2 Initial-Value Problems

1.3  Differential Equations as Mathematical Models

 Chapter 1 in Review

The purpose of this short chapter is twofold: to introduce the basic terminology of differential 

equations and to briefly examine how differential equations arise in an attempt to describe or 
model physical phenomena in mathematical terms.

CHAPTER1



1.1 Definitions and Terminology

INTRODUCTION The words differential and equation certainly suggest solving some kind of 

equation that contains derivatives. But before you start solving anything, you must learn some 

of the basic definitions and terminology of the subject.

 A Definition The derivative dy/dx of a function y  f(x) is itself another function f9(x)  

found by an appropriate rule. For example, the function y 5 e 
0.1x 

2

 is differentiable on the interval  

(2q , q ), and its derivative is dy/dx  0.2xe 
0.1x 

2

. If we replace e 
0.1x 

2

 in the last equation by the 

symbol y, we obtain

 
dy

dx
5 0.2xy. (1)

Now imagine that a friend of yours simply hands you the differential equation in (1), and that 

you have no idea how it was constructed. Your friend asks: “What is the function represented by 

the symbol y?” You are now face-to-face with one of the basic problems in a course in differential 

equations:

How do you solve such an equation for the unknown function y  f(x)?

The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given 

a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a dif-

ferential equation.

DEFINITION 1.1.1   Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to 

one or more independent variables, is said to be a differential equation (DE).

In order to talk about them, we will classify a differential equation by type, order, and 

linearity.

 Classification by Type If a differential equation contains only ordinary derivatives of 

one or more functions with respect to a single independent variable it is said to be an ordinary 

differential equation (ODE). An equation involving only partial derivatives of one or more 

functions of two or more independent variables is called a partial differential equation (PDE). 

Our first example illustrates several of each type of differential equation.

EXAMPLE 1 Types of Differential Equations

(a) The equations

 an ODE can contain more
 than one dependent variable

 T	 T

 
dy

dx
1 6y 5 e 

2x, 
d  

2y

dx 
2

1
dy

dx
2 12y 5 0, and 

dx

dt
1

dy

dt
5 3x 1 2y (2)

are examples of ordinary differential equations.

(b) The equations

 
' 

2u

'x  

2
1
' 

2u

'y  

2
5 0, 

' 

2u

'x 
2

5
' 

2u

't 
2

2
'u

't
, 
'u

'y
5 2 

'v

'x
 (3)

are examples of partial differential equations. Notice in the third equation that there are two 

dependent variables and two independent variables in the PDE. This indicates that u and v 

must be functions of two or more independent variables.

 1.1 Definitions and Terminology | 3



 Notation Throughout this text, ordinary derivatives will be written using either the Leibniz 

notation dy/dx, d 2y/dx 2, d 3y/dx 3, … , or the prime notation y9, y 0, y , … . Using the latter nota-

tion, the first two differential equations in (2) can be written a little more compactly as  

y9 1 6y  e2x and y 0 1 y9 2 12y  0, respectively. Actually, the prime notation is used to denote 

only the first three derivatives; the fourth derivative is written y(4) instead of y 00. In general, the 

nth derivative is d ny/dx n or y (n). Although less convenient to write and to typeset, the Leibniz 

notation has an advantage over the prime notation in that it clearly displays both the dependent  

and independent variables. For example, in the differential equation d 2x/dt 2 1 16x  0, it is im-

mediately seen that the symbol x now represents a dependent variable, whereas the independent  

variable is t. You should also be aware that in physical sciences and engineering, Newton’s dot 

notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to 

denote derivatives with respect to time t. Thus the differential equation d 2s/dt 2  232 becomes 

s
$

5 232. Partial derivatives are often denoted by a subscript notation indicating the indepen-

dent variables. For example, the first and second equations in (3) can be written, in turn, as  

uxx 1 uyy  0 and uxx  utt 2 ut.

 Classification by Order The order of a differential equation (ODE or PDE) is the 

order of the highest derivative in the equation.

EXAMPLE 2 Order of a Differential Equation

The differential equations

 highest order highest order

 T T

 
d 

2y

dx 
2

1 5ady

dx
b3

2 4y 5 e 
x,  2 

0  
4u

0x 
4

1
0  

2u

0t 
2

5 0

are examples of a second-order ordinary differential equation and a fourth-order partial dif-

ferential equation, respectively.

A first-order ordinary differential equation is sometimes written in the differential form

 M(x, y) dx 1 N(x, y) dy 5 0.

EXAMPLE 3 Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a first-order ODE, then recall from calculus 

that the differential dy is defined to be dy 5 y rdx.

(a) By dividing by the differential dx an alternative form of the equation 

 ( y 2 x) dx 1 4x dy 5 0 

is given by

 y 2 x 1 4x 
dy

dx
5 0 or equivalently 4x 

dy

dx
1 y 5 x.

(b) By multiplying the differential equation

6xy  

dy

dx
1 x 

2 1 y 
2 5 0

by dx we see that the equation has the alternative differential form

 (x 2 1	y 2) dx 1	6xy dy 	0.

In symbols, we can express an nth-order ordinary differential equation in one dependent vari-

able by the general form

 F(x, y, y9, … , y (n) )  0, (4)
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where F is a real-valued function of n 1 2 variables: x, y, y9, … , y (n). For both practical and theo-

retical reasons, we shall also make the assumption hereafter that it is possible to solve an or-

dinary differential equation in the form (4) uniquely for the highest derivative y (n) in terms of 

the remaining n 1 1 variables. The differential equation

 
d 

 ny

dx 
n

5 f (x, y, y r, ... , y 
(n21) ) , (5)

where f is a real-valued continuous function, is referred to as the normal form of (4). Thus, when 

it suits our purposes, we shall use the normal forms

 
dy

dx
5 f (x, y) and 

d 
 2y

dx 
2

5 f (x, y, y r)

to represent general first- and second-order ordinary differential equations.

EXAMPLE 4 Normal Form of an ODE

(a) By solving for the derivative dy/dx the normal form of the first-order differential equation

 4x  

dy

dx
1 y 5 x is 

dy

dx
5

x 2 y

4x
.

(b) By solving for the derivative y 0 the normal form of the second-order differential  

equation

 y 0 2 y9 1	6y 	0 is y 0 	y9 2 6y.

 Classification by Linearity An nth-order ordinary differential equation (4) is said to  

be linear in the variable y if F is linear in y, y9, … , y (n). This means that an nth-order ODE is 

linear when (4) is an(x)y (n) 1 an21(x)y (n21) 1 c1 a1(x)y r 1 a0(x)y 2 g(x) 5 0 or

 an(x) 
d 

 ny

dx 
 n

1 an21(x) 
d 

 n21y

dx  
n21

1 c1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (6)

Two important special cases of (6) are linear first-order (n  1) and linear second-order  

(n  2) ODEs.

 a1(x) 
dy

dx
1 a0(x)y 5 g(x) and a2(x) 

d 
 2y

dx 
2

1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (7)

In the additive combination on the left-hand side of (6) we see that the characteristic two proper-

ties of a linear ODE are

•  The dependent variable y and all its derivatives y9, y 0, … , y (n) are of the first degree; that 

is, the power of each term involving y is 1.

•  The coefficients a0, a1, … , an of y, y9, … , y (n) depend at most on the independent 

variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients of 

y, y9, … , y (n) contain the dependent variable y or its derivatives or if powers of y, y9, … , y (n), such 

as (y9) 2, appear in the equation, then the DE is nonlinear. Also, nonlinear functions of the depen-

dent variable or its derivatives, such as sin y or e y9, cannot appear in a linear  equation.

 EXAMPLE 5 Linear and Nonlinear Differential Equations

(a) The equations

 (y 2 x)  dx 1 4x  dy 5 0, ys 2 2y r 1 y 5 0, x 
3 

d 
3y

dx 
3

1 3x 
dy

dx
2 5y 5 e 

x

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations. 

We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by 

writing it in the alternative form 4x y9 1 y  x.

Remember these two  
characteristics of a  
linear ODE.
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(b) The equations

 nonlinear term: nonlinear term: nonlinear term:
 coefficient depends on y nonlinear function of y power not 1

 T T T

 (1 2 y)y r 1 2y 5 e 
x,  

d 
 2 y

dx 
2

1  sin y 5 0,  
d 

4 y

dx 
4

1 y 
2 5 0,

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, 

respectively.

(c) By using the quadratic formula the nonlinear first-order differential equation 

( y r)2 1 2xy r 2 y 5 0 can be written as two nonlinear first-order equations in normal form

 y r 5 2x 1 "x 
2 1 y and y r 5 2x 2 "x 

2 1 y.

 Solution As stated before, one of our goals in this course is to solve—or find solutions 

of—differential equations. The concept of a solution of an ordinary differential equation is 

defined next.

DEFINITION 1.1.2   Solution of an ODE

Any function f, defined on an interval I and possessing at least n derivatives that are continuous 

on I, which when substituted into an nth-order ordinary differential equation reduces the 

equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a function f 

that possesses at least n derivatives and

 F(x, f(x), f9(x), … , f (n)(x))  0 for all x in I.

We say that f satisfies the differential equation on I. For our purposes, we shall also assume that 

a solution f is a real-valued function. In our initial discussion we have already seen that y 5 e 
0.1x 

2

 

is a solution of dy/dx  0.2xy on the interval (2q , q ).

Occasionally it will be convenient to denote a solution by the alternative symbol y(x).

 Interval of Definition You can’t think solution of an ordinary differential equation 

without simultaneously thinking interval. The interval I in Definition 1.1.2 is variously called 

the interval of definition, the interval of validity, or the domain of the solution and can be an 

open interval (a, b), a closed interval [a, b], an infinite interval (a, q), and so on.

EXAMPLE 6 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval 

(2q , q ).

(a) 
dy

dx
5 xy 

1/2; y 5 1
16x 

4 (b) y 0 2 2y9 1 y  0; y  xe x

SOLUTION One way of verifying that the given function is a solution is to see, after substi-

tuting, whether each side of the equation is the same for every x in the interval (2q , q ).

(a) From left-hand side: 
dy

dx
5 4 # x 

3

16
5

x 
3

4

   right-hand side: xy 

1/2 5 x # a x 
4

16
b1/2

5 x # x 
2

4
5

x 
3

4
,

we see that each side of the equation is the same for every real number x. Note that y 1/2  14x 2 is, 

by definition, the nonnegative square root of 1
16x 4.
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(b) From the derivatives y9  xe x + e x and y 0  xe x 1 2e x we have for every real number x,

 left-hand side: y 0 2 2y 9 1 y  (xe x 1 2e x) 2 2(xe x 1 e x) 1 xe x  0

 right-hand side: 0.

Note, too, that in Example 6 each differential equation possesses the constant solution y  0,  

defined on (2q , q ). A solution of a differential equation that is identically zero on an interval 

I is said to be a trivial solution.

 Solution Curve The graph of a solution f of an ODE is called a solution curve. Since 

f is a differentiable function, it is continuous on its interval I of definition. Thus there may be a 

difference between the graph of the function f and the graph of the solution f. Put another way, 

the domain of the function f does not need to be the same as the interval I of definition (or 

 domain) of the solution f.

EXAMPLE 7 Function vs. Solution

(a) Considered simply as a function, the domain of y  1/x is the set of all real numbers x 

except 0. When we graph y  1/x, we plot points in the xy-plane corresponding to a judicious 

sampling of numbers taken from its domain. The rational function y  1/x is discontinuous 

at 0, and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function 

y  1/x is not differentiable at x  0 since the y-axis (whose equation is x  0) is a vertical 

asymptote of the graph.

(b) Now y  1/x is also a solution of the linear first-order differential equation xy9 1 y  0 

(verify). But when we say y  1/x is a solution of this DE we mean it is a function defined on 

an interval I on which it is differentiable and satisfies the equation. In other words,  

y  1/x is a solution of the DE on any interval not containing 0, such as (23, 21), ( 12, 10),  

(2q , 0), or (0, q). Because the solution curves defined by y  1/x on the intervals (23, 21) 

and on (1
2 , 10) are simply segments or pieces of the solution curves defined by  

y  1/x on (2q , 0) and (0, q), respectively, it makes sense to take the interval I to be as large 

as possible. Thus we would take I to be either (2q , 0) or (0, q). The solution curve on the 

interval (0, q) is shown in Figure 1.1.1(b).

 Explicit and Implicit Solutions You should be familiar with the terms explicit and 

implicit functions from your study of calculus. A solution in which the dependent variable is 

expressed solely in terms of the independent variable and constants is said to be an explicit solution. 

For our purposes, let us think of an explicit solution as an explicit formula y  f(x) that we can 

manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two 

examples that y  1
16   x 4, y  xe x, and y  1/x are, in turn, explicit solutions of dy/dx  xy 1/2,  

y  0 2 2y9 1 y  0, and xy9 1 y  0. Moreover, the trivial solution y  0 is an explicit solution 

of all three equations. We shall see when we get down to the business of actually solving some 

ordinary differential equations that methods of solution do not always lead directly to an explicit 

solution y  f(x). This is particularly true when attempting to solve nonlinear first-order dif-

ferential equations. Often we have to be content with a relation or expression G(x, y)  0 that 

defines a solution f implicitly.

DEFINITION 1.1.3   Implicit Solution of an ODE

A relation G(x, y)  0 is said to be an implicit solution of an ordinary differential equation (4) 

on an interval I provided there exists at least one function f that satisfies the relation as well 

as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a relation  

G (x, y)  0 defines a differentiable function f. So we shall assume that if the formal implemen-

tation of a method of solution leads to a relation G (x, y)  0, then there exists at least one function 

f that satisfies both the relation (that is, G(x, f (x))  0) and the differential equation on an 

y

x
1

1

y

x
1

1

(a) Function y = 1/x, x � 0

(b) Solution y = 1/x, (0, �)

FIGURE 1.1.1 Example 7 illustrates  

the difference between the function 

y  1/x and the solution y  1/x
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x

y

c > 0

c = 0

c < 0

FIGURE 1.1.3 Some solutions of DE 

in part (a) of Example 9

interval I. If the implicit solution G (x, y)  0 is fairly simple, we may be able to solve for y in 

terms of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8 Verification of an Implicit Solution

The relation x 2 1 y 2  25 is an implicit solution of the nonlinear differential equation

 
dy

dx
5 2

x

y
 (8)

on the interval defined by 25  x  5. By implicit differentiation we obtain

 
d

dx
 x 

2 1
d

dx
 y 

2 5
d

dx
 25  or  2x 1 2y 

dy

dx
5 0. (9)

Solving the last equation in (9) for the symbol dy/dx gives (8). Moreover, solving x 2 1 y 2  25  

for y in terms of x yields y 5 6"25 2 x 
2. The two functions y 5 f1(x) 5 "25 2 x 

2 and 

y 5 f2(x) 5 2"25 2 x 
2 satisfy the relation (that is, x 2 1 f2

1  25 and x 2 1 f2
2  25) and are 

explicit solutions defined on the interval (25, 5). The solution curves given in FIGURE 1.1.2(b) 

and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

(a) Implicit solution

5

–5

x

y

–5

5

x2 + y2 = 25

(b) Explicit solution

y
1
 = √25 – x2, –5 < x < 5

5
x

y

–5

5

(c) Explicit solution

y
2
 = –√25 – x2, –5 < x < 5

5

–5

x

y

–5

5

FIGURE 1.1.2 An implicit solution and two explicit solutions in Example 8

Any relation of the form x 2 1 y 2 2 c  0 formally satisfies (8) for any constant c. However, 

it is understood that the relation should always make sense in the real number system; thus, for 

example, we cannot say that x 2 1 y 2 1 25  0 is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intui-

tively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit) 

solution.”

 Families of Solutions The study of differential equations is similar to that of integral 

calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant 

c of integration. Analogously, when solving a first-order differential equation F(x, y, y9)  0, we 

usually obtain a solution containing a single arbitrary constant or parameter c. A solution contain-

ing an arbitrary constant represents a set G(x, y, c)  0 of solutions called a one-parameter 

family of solutions. When solving an nth-order differential equation F(x, y, y9, … , y (n))  0, we 

seek an n-parameter family of solutions G(x, y, c1, c2, … , cn)  0. This means that a single 

differential equation can possess an infinite number of solutions corresponding to the unlim-

ited number of choices for the parameter(s). A solution of a differential equation that is free 

of arbitrary parameters is called a particular solution.

EXAMPLE 9  Particular Solution

(a) For all values of c, the one-parameter family y 5 cx 2 x cos x is an explicit solution of 

the linear first-order differential equation

 xy r 2 y 5 x 
2
 sin x

on the interval (2q , q ). FIGURE 1.1.3 shows the graphs of some particular solutions in this 

family for various choices of c. The solution y 5 2x cos  x, the red curve in the figure, is a 

particular solution corresponding to c 5 0.
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(b) The two-parameter family y 5 c1e 
x 1 c2xe 

x is an explicit solution of the linear second-

order differential equation

 y s 2 2y r 1 y 5 0

in part (b) of Example 6. FIGURE 1.1.4 shows seven of the “double infinity” of solutions in  

this family. The solution curves in red, green, and blue are the graphs of the particular solu-

tions y 5 5xe 
x (c1 5 0, c2 5 5), y 5 3e 

x (c1 5 3, c2 5 0), and y 5 5e 
x 2 2xe 

x  (c1 5 5, 

c2 5 22)  respectively.

In all the preceding examples, we have used x and y to denote the independent and dependent 

variables, respectively. But you should become accustomed to seeing and working with other 

symbols to denote these variables. For example, we could denote the independent variable by t 

and the dependent variable by x.

EXAMPLE 10  Using Different Symbols

The functions x  c1 cos 4t and x  c2 sin 4t, where c1 and c2 are arbitrary constants or 

parameters, are both solutions of the linear differential equation

 x 0 1 16x  0.

For x  c1 cos 4t, the first two derivatives with respect to t are x9  24c1 sin 4t and 

x 0  216c1 cos 4t. Substituting x 0 and x then gives

 x 0 1 16x  216c1 cos 4t 1 16(c1 cos 4t)  0.

In like manner, for x  c2 sin 4t we have x 0  216c2 sin 4t, and so

 x 0 1 16x  216c2 sin 4t 1 16(c2 sin 4t)  0.

Finally, it is straightforward to verify that the linear combination of solutions for the two-

parameter family x  c1 cos 4t 1 c2 sin 4t is also a solution of the differential equation.

The next example shows that a solution of a differential equation can be a piecewise-defined 

function.

EXAMPLE 11  A Piecewise-Defined Solution

You should verify that the one-parameter family y  cx 4 is a one-parameter family of solutions 

of the linear differential equation xy9 2 4y  0 on the interval (2q , q ). See FIGURE 1.1.5(a). 

The piecewise-defined differentiable function

 y 5 e2x 
4, x , 0

  x 
4, x $ 0

is a particular solution of the equation but cannot be obtained from the family y  cx 4 by a 

single choice of c; the solution is constructed from the family by choosing c  21 for x  0 

and c  1 for x  0. See FIGURE 1.1.5(b).

 Singular Solution Sometimes an nth-order differential equation possesses a solution 

that is not a member of an n-parameter family of solutions of the equation—that is, a solution 

that cannot be obtained by specializing any of the parameters in the family of solutions. Such a 

solution is called a singular solution.*

EXAMPLE 12 Singular Solution

We saw on pages 6 and 7 that the functions y 5 1
16x 

4 and y 5 0 are solutions of the differential 

equation dy>dx 5 xy 

1
2 on (2q , q ). In Section 2.2 we shall demonstrate, by actually solving 

it, that the differential equation dy>dx 5 xy 

1

2 possesses the one-parameter family of solutions  

(a)

x

y

c = 1

c = –1

c = 1
x ≥ 0

c = –1
x < 0

(b)

x

y

FIGURE 1.1.5 Some solutions of  

xy9 2 4y  0 in Example 11

*There is a bit more to the definition of a singular solution, but it is beyond the intended level of this text.

FIGURE 1.1.4 Some solutions of DE  

in part (b) of Example 9

y

x
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y 5 (1
4x 

2 1 c)2, c $ 0. When c 	0 the resulting particular solution is y 5 1
16x 

4. But the 

trivial solution y  0 is a singular solution since it is not a member of the family y 5 (1
4x 

2 1 c)2;  

there is no way of assigning a value to the constant c to obtain y  0.

 Systems of Differential Equations Up to this point we have been discussing single 

differential equations containing one unknown function. But often in theory, as well as in many 

applications, we must deal with systems of differential equations. A system of ordinary  

differential equations is two or more equations involving the derivatives of two or more unknown 

functions of a single independent variable. For example, if x and y denote dependent variables 

and t the independent variable, then a system of two first-order differential equations is given by

  
dx

dt
5 f ( t, x, y)

  
dy

dt
5 g( t, x, y) . 

(10)

A solution of a system such as (10) is a pair of differentiable functions x  f1(t), y  f2(t)  

defined on a common interval I that satisfy each equation of the system on this interval. See 

Problems 49 and 50 in Exercises 1.1.

REMARKS

(i) It might not be apparent whether a first-order ODE written in differential form M(x, y) dx 1  

N(x, y) dy  0 is linear or nonlinear because there is nothing in this form that tells us which 

symbol denotes the dependent variable. See Problems 11 and 12 in Exercises 1.1.

(ii) We will see in the chapters that follow that a solution of a differential equation may  

involve an integral-defined function. One way of defining a function F of a single variable x 

by means of a definite integral is

 F(x) 5 #
x

a

g (t) dt. (11)

If the integrand g in (11) is continuous on an interval [a, b] and a  x  b, then the derivative 

form of the Fundamental Theorem of Calculus states that F is differentiable on (a, b) and

 F r(x) 5
d

dx#
x

a

g (t) dt 5 g (x). (12)

The integral in (11) is often nonelementary, that is, an integral of a function g that does 

not have an elementary-function antiderivative. Elementary functions include the familiar 

functions studied in a typical precalculus course:

constant, polynomial, rational, exponential, logarithmic, trigonometric, and 

inverse trigonometric functions,

as well as rational powers of these functions, finite combinations of these functions using 

addition, subtraction, multiplication, division, and function compositions. For example, even 

though e 
2t 

2

, "1 1 t 
3, and cos t 2 are elementary functions, the integrals ee 

2t 
2 

dt,  e"1 1 t 
3 dt, 

and ecos t 
2 dt are nonelementary. See Problems 27–30 in Exercises 1.1.

(iii) Although the concept of a solution of a differential equation has been emphasized in 

this section, you should be aware that a DE does not necessarily have to possess a solution. 

See Problem 51 in Exercises 1.1. The question of whether a solution exists will be touched 

on in the next section.

(iv) A few last words about implicit solutions of differential equations are in order. In Example 8 

we were able to solve the relation x 2 1 y 2  25 for y in terms of x to get two ex plicit solutions,  

f1(x) 5 "25 2 x 
2 and f2 (x) 5 2"25 2 x 

2, of the differential equation (8). But don’t 

read too much into this one example. Unless it is easy, obvious, or important, or you are
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instructed to, there is usually no need to try to solve an implicit solution G(x, y)  0  

for y explicitly in terms of x. Also do not misinterpret the second sentence following  

Definition 1.1.3. An implicit solution G(x, y)  0 can define a perfectly good differentiable 

function f that is a solution of a DE, but yet we may not be able to solve G(x, y)  0 using 

analytical methods such as algebra. The solution curve of f may be a segment or piece of 

the graph of G(x, y)  0. See Problems 57 and 58 in Exercises 1.1.

(v) If every solution of an nth-order ODE F(x, y, y9, … , y (n))  0 on an interval I can be ob-

tained from an n-parameter family G(x, y, c1, c2, … , cn)  0 by appropriate choices of the 

parameters ci, i  1, 2, … , n, we then say that the family is the general solution of the DE. 

In solving linear ODEs, we shall impose relatively simple restrictions on the coefficients of 

the equation; with these restrictions one can be assured that not only does a solution exist on 

an interval but also that a family of solutions yields all possible solutions. Nonlinear equations, 

with the exception of some first-order DEs, are usually difficult or even impossible to solve 

in terms of familiar elementary functions. Furthermore, if we happen to obtain a family of 

solutions for a nonlinear equation, it is not evident whether this family contains all solutions. 

On a practical level, then, the designation “general solution” is applied only to linear DEs. 

Don’t be concerned about this concept at this point but store the words general solution in the 

back of your mind—we will come back to this notion in Section 2.3 and again in Chapter 3.

In Problems 1–10, state the order of the given ordinary 

differential equation. Determine whether the equation is  

linear or nonlinear by matching it with (6).

 1. (1 2 x)y 0 2 4xy9 1 5y  cos x

 2. x 

d 
 3y

dx 
3

2 ady

dx
b4

1 y 5 0

 3. t 5y (4) 2 t 3y 0 1 6y  0

 4. 
d 

 2u

dr 
 2

1
du

dr
1 u 5  cos (r 1 u)

 5. 
d 2y

dx 
2

5 Å1 1 ady

dx
b2

 6. 
d 

 2R

dt 
 2

5 2
k

R 
2

 7. (sin u)y  2 (cos u)y9  2

 8. x
$

2 (1 2 1
3 x

#  2 ) x
#

1 x 5 0

 9. sin ady

dx
b 5 y 1 x

 10. 
dx

dy
1 y 

3
 x 5  sin y

In Problems 11 and 12, determine whether the given 

first-order differential equation is linear in the indicated  

dependent variable by matching it with the first differential 

equation given in (7).

 11. ( y 2 2 1) dx 1 x dy  0; in y; in x

 12. u  dv 1 (v 1 uv 2 ue u) du  0; in v; in u

In Problems 13–16, verify that the indicated function is an  

explicit solution of the given differential equation. Assume  

an appropriate interval I of definition for each solution.

 13. 2y9 1 y  0; y  e 2x/2

 14. 
dy

dt
1 20y 5 24; y 5 6

5 2 6
5 

 
e220t

 15. y 0 2 6y9 1 13y  0; y  e 3x cos 2x

 16. y 0 1 y  tan x; y  2(cos x) ln(sec x 1 tan x)

In Problems 17–20, verify that the indicated function y  f(x)  

is an explicit solution of the given first-order differential  

equation. Proceed as in Example 7, by considering f simply  

as a function, give its domain. Then by considering f as a 

solution of the differential equation, give at least one interval I 

of definition.

 17. ( y 2 x)y r 5 y 2 x 1 8; y 5 x 1 4"x 1 2

 18. y9  25 1 y 2; y  5 tan 5x

 19. y9  2xy 2; y  1/(4 2 x 2)

 20. 2y9  y 3 cos x; y  (1 2 sin x) 21/2

In Problems 21 and 22, verify that the indicated expression  

is an implicit solution of the given first-order differential 

equation. Find at least one explicit solution y  f(x) in  

each case. Use a graphing utility to obtain the graph of an  

explicit solution. Give an interval I of definition of each  

solution f.

 21. 
dX

dt
5 (X 2 1)(1 2 2X  ); lna2X 2 1

X 2 1
b 5 t

 22. 2xy dx 1 (x 2 2 y) dy  0; 22x 2y 1 y 2  1

1.1 Exercises Answers to selected odd-numbered problems begin on page ANS-1.
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In Problems 23–26, verify that the indicated family of functions 

is a solution of the given differential equation. Assume an 

appropriate interval I of definition for each solution.

 23. 
dP

dt
5 P(1 2 P); P 5

c1e 
t

1 1 c1e 
t

 24. 
dy

dx
1 4xy 5 8x 

3; y 5 2x 
2 2 1 1 c1e 

22x 
2

 25. 
d 

 2y

dx 
 2

2 4 
dy

dx
1 4y 5 0; y 5 c1e 

2x 1 c2xe 
2x

 26. x 
3 

d 
3y

dx 
3

1 2x 
2 

d 
2y

dx 
2

2 x 
dy

dx
1 y 5 12x 

2;

  y  c1x
21 1 c2x 1 c3x ln x 1 4x 2

In Problems 27–30, use (12) to verify that the indicated  

function is a solution of the given differential equation. 

Assume an appropriate interval I of definition of each solution.

 27. x  

dy

dx
2 3xy 5 1; y 5 e 

3x#
x

1

e23t

t
 dt

 28. 2x  

dy

dx
2 y 5 2x cos x; y 5 "x#

x

4

cos t"t
 dt

 29. x 
2 

 

dy

dx
1 xy 5 10 sin x; y 5

5

x
1

10

x #
x

1

sin t

t
 dt

 30. 
dy

dx
1 2xy 5 1; y 5 e 

2x 
2

1 e2x 
2#

x

0

e 
t 

2

dt

 31. Verify that the piecewise-defined function

 y 5 e2x 
2, x , 0

x 
2, x $ 0

  is a solution of the differential equation xy9 2 2y  0 on 

the interval (2q , q ).

 32. In Example 8 we saw that y 5 f1(x) 5 "25 2 x 2 and 

y 5 f2(x) 5 2"25 2 x 2 are solutions of dy/dx  2x/y  

on the interval (25, 5). Explain why the piecewise-defined 

function

 y 5 e "25 2 x 2, 25 , x , 0

2"25 2 x 2, 0 # x , 5

  is not a solution of the differential equation on the interval 

(25, 5).

In Problems 33–36, find values of m so that the function y  e mx 

is a solution of the given differential equation.

 33. y9 1 2y  0 34. 3y9  4y

 35. y 0 2 5y9 1 6y  0 36. 2y 0 1 9y9 2 5y  0

In Problems 37–40, find values of m so that the function 

y  x m is a solution of the given differential equation.

 37. xy 0 1 2y9  0 38. 4x2y 0 1 y  0

 39. x2y 0 2 7xy9 1 15y  0 40. x2y  2 3xy 0 1 3y9  0

In Problems 41–44, use the concept that y  c, 2q   x  q,  

is a constant function if and only if y9  0 to determine 

whether the given differential equation possesses constant  

solutions.

 41. 3xy9 1 5y  10 42. y9  y 2 1 2y 2 3

 43. ( y 2 1)y9  1 44. y0 1 4y9 1 6y  10

In Problems 45–48, verify that the one-parameter family is a 

solution of the given differential equation. Find at least one 

singular solution of the DE.

 45. y 5 (x 1 c1)
2; ady

dx
b2

5 4y

 46. y 5 3 sin (x 1 c1); ady

dx
b2

5 9 2 y 
2

 47. x 2 "16 2 y 
2 5 c1; y 

dy

dx
1 "16 2 y 

2 5 0

 48. y 5 x 2 (x 2 c1)
2; ady

dx
b2

2 2
dy

dx
1 4y 5 4x 2 1

In Problems 49 and 50, verify that the indicated pair of  

functions is a solution of the given system of differential  

equations on the interval (2q , q ).

 49. 
dx

dt
5 x 1 3y 50. 

d 
2x

dt 
2

5 4y 1 e 
t

  
dy

dt
5 5x 1 3y;  

d 
2y

dt 
2

5 4x 2 e 
t;

  x 5 e 
22t 1 3e 

6t,  x 5  cos 2t 1 sin 2t 1 1
5e 

t,

  y 5 2e 
22t 1 5e 

6t  y  2cos 2t 2 sin 2t 2 1
5e 

t

Discussion Problems

 51. Make up a differential equation that does not possess any 

real solutions.

 52. Make up a differential equation that you feel confident 

possesses only the trivial solution y  0. Explain your 

reasoning.

 53. What function do you know from calculus is such that its 

first derivative is itself? Its first derivative is a constant mul-

tiple k of itself? Write each answer in the form of a first-

order differential equation with a solution.

 54. What function (or functions) do you know from calculus is 

such that its second derivative is itself? Its second derivative 

is the negative of itself? Write each answer in the form of 

a second-order differential equation with a solution.

 55. Given that y  sin x is an explicit solution of the first-order 

differential equation dy/dx 5 "1 2 y 
2. Find an interval 

I of definition. [Hint: I is not the interval (2q , q ).]

 56. Discuss why it makes intuitive sense to presume that the 

linear differential equation y 0 1 2y9 1 4y  5 sin t has a 

solution of the form y  A sin t 1 B cos t, where A and B are 

constants. Then find specific constants A and B so 

that y  A sin t 1 B cos t is a particular solution of the DE.

12 | CHAPTER 1 Introduction to Differential Equations



In Problems 57 and 58, the given figure represents the graph 

of an implicit solution G(x, y)  0 of a differential equation 

dy/dx  f (x, y). In each case the relation G(x, y)  0 implicitly 

defines several solutions of the DE. Carefully reproduce each 

figure on a piece of paper. Use different colored pencils to 

mark off segments, or pieces, on each graph that correspond to 

graphs of solutions. Keep in mind that a solution f must be a 

function and differentiable. Use the solution curve to estimate 

the interval I of definition of each solution f.

 57. 

FIGURE 1.1.6 Graph for 

Problem 57

x

y

1

1

 58.  

FIGURE 1.1.7 Graph for 

Problem 58

1

1
x

y

 59. The graphs of the members of the one-parameter family  

x 3 1 y 3  3cxy are called folia of Descartes after the  

French mathematician and inventor of analytic geometry, 

René Descartes (1596–1650). Verify that this family is an 

implicit solution of the first-order differential equation.

 
dy

dx
5

y( y 
3 2 2x 

3)

x(2y 
3 2 x 

3)
.

 60. The graph in FIGURE 1.1.7 is the member of the family of 

folia in Problem 59 corresponding to c  1. Discuss: How 

can the DE in Problem 59 help in finding points on the graph 

of x 3 1 y 3  3xy where the tangent line is vertical? How 

does knowing where a tangent line is vertical help in deter-

mining an interval I of definition of a solution f of the DE? 

Carry out your ideas and compare with your estimates of 

the intervals in Problem 58.

 61. In Example 8, the largest interval I over which the explicit 

solutions y  f1(x) and y  f2(x) are defined is the open 

interval (25, 5). Why can’t the interval I of definition be 

the closed interval [25, 5]?

 62. In Problem 23, a one-parameter family of solutions of the 

DE P9  P(1	2 P) is given. Does any solution curve pass 

through the point (0, 3)? Through the point (0, 1)?

 63. Discuss, and illustrate with examples, how to solve  

differential equations of the forms dy/dx  f (x) and  

d 2y/dx2  f (x).

 64. The differential equation x(y9)2 2 4y9 2 12x 3  0 has the 

form given in (4). Determine whether the equation can be 

put into the normal form dy/dx  f (x, y).

 65. The normal form (5) of an nth-order differential equation 

is equivalent to (4) whenever both forms have exactly the 

same solutions. Make up a first-order differential equation 

for which F(x, y, y9)  0 is not equivalent to the normal 

form dy/dx  f (x, y).

 66. Find a linear second-order differential equation F(x, y, y9, y 0	)   

0 for which y  c1x 1 c2x 2 is a two-parameter family of  

solutions. Make sure that your equation is free of the arbitrary 

parameters c1 and c2.

Qualitative information about a solution y  f(x) of a 

differential equation can often be obtained from the equation 

itself. Before working Problems 67–70, recall the geometric 

significance of the derivatives dy/dx and d 2y/dx 2.

 67. Consider the differential equation dy/dx 5 e2x 
2

.

(a) Explain why a solution of the DE must be an increasing 

function on any interval of the x-axis.

(b) What are lim
xS 2q

dy/dx and lim
xSq

dy/dx? What does this  

suggest about a solution curve as x S q?

(c) Determine an interval over which a solution curve is 

concave down and an interval over which the curve  

is concave up.

(d) Sketch the graph of a solution y  f(x) of the differen-

tial equation whose shape is suggested by parts (a)–(c).

 68. Consider the differential equation dy/dx  5 2 y.

(a) Either by inspection, or by the method suggested in 

Problems 41–44, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on 

the y-axis on which a nonconstant solution y  f(x) is 

increasing. Find intervals on the y-axis on which  

y  f(x) is decreasing.

 69. Consider the differential equation dy/dx  y (a 2 by), where 

a and b are positive constants.

(a) Either by inspection, or by the method suggested  

in Problems 41–44, find two constant solutions of 

the DE.

(b) Using only the differential equation, find intervals on 

the y-axis on which a nonconstant solution y  f(x) is 

 increasing. On which y  f(x) is decreasing.

(c) Using only the differential equation, explain why  

y  a/2b is the y-coordinate of a point of inflection of 

the graph of a nonconstant solution y  f(x).

(d) On the same coordinate axes, sketch the graphs of the 

two constant solutions found in part (a). These constant 

solutions partition the xy-plane into three regions. In 

each region, sketch the graph of a nonconstant solution 

y  f(x) whose shape is suggested by the results in 

parts (b) and (c).

 70. Consider the differential equation y9  y 2 1 4.

(a) Explain why there exist no constant solutions of the 

DE.

(b) Describe the graph of a solution y  f(x). For example, 

can a solution curve have any relative extrema?

(c) Explain why y  0 is the y-coordinate of a point of 

inflection of a solution curve.

(d) Sketch the graph of a solution y  f(x) of the dif-

ferential equation whose shape is suggested by  

parts (a)–(c).
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Computer Lab Assignments

In Problems 71 and 72, use a CAS to compute all derivatives 

and to carry out the simplifications needed to verify that the  

indicated function is a particular solution of the given  

differential equation.

 71. y (4) 2 20y  1 158y 0 2 580y9 1 841y  0;

  y  xe 5x cos 2x

 72. x 3y  1 2x 2y 0 1 20xy9 2 78y  0;

  y 5 20 
 cos (5 ln x)

x
2 3 

 sin (5 ln x)

x

1.2 Initial-Value Problems

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a 

differential equation so that y(x) satisfies prescribed side conditions—that is, conditions that are 

imposed on the unknown y(x) or on its derivatives. In this section we examine one such problem 

called an initial-value problem.

 Initial-Value Problem On some interval I containing x0, the problem

 Solve: 
d 

n
 y

dx 
n

5 f (x, y, y r, c , y(n21))
 (1)

 Subject to: y(x0 ) 5 y0, y r (x0 ) 5 y1, c , y
(n21) (x0 ) 5 yn21,

where y0, y1, … , yn21 are arbitrarily specified real constants, is called an initial-value problem (IVP). 

The values of y(x) and its first n21 derivatives at a single point x0: y(x0)  y0, y9(x0)  y1, … , 

y (n21)(x0)  yn21, are called initial conditions (IC).

 First- and Second-Order IVPs The problem given in (1) is also called an nth-order 

initial-value problem. For example,

 Solve: 
dy

dx
5 f (x, y)

 Subject to: y(x0 ) 5 y0 

(2)

and Solve: 
d 

 2y

dx 
2

5 f (x, y, y r )

 Subject to: y(x0 ) 5 y0, y r (x0 ) 5 y1 

(3)

are first- and second-order initial-value problems, respectively. These two problems are easy 

to interpret in geometric terms. For (2) we are seeking a solution of the differential equation on 

an interval I containing x0 so that a solution curve passes through the prescribed point (x0, y0). 

See FIGURE 1.2.1. For (3) we want to find a solution of the differential equation whose graph not 

only passes through (x0, y0) but passes through so that the slope of the curve at this point is y1. 

See FIGURE 1.2.2. The term initial condition derives from physical systems where the independent 

variable is time t and where y(t0)  y0 and y9(t0)  y1 represent, respectively, the position and 

velocity of an object at some beginning, or initial, time t0.

Solving an nth-order initial-value problem frequently entails using an n-parameter family of 

solutions of the given differential equation to find n specialized constants so that the resulting 

particular solution of the equation also “fits”—that is, satisfies—the n initial conditions.

EXAMPLE 1 First-Order IVPs

(a) It is readily verified that y  ce x is a one-parameter family of solutions of the simple 

first-order equation y9  y on the interval (2q , q ). If we specify an initial condition, say,  

y(0)  3, then substituting x  0, y  3 in the family determines the constant 3  ce0  c. 

Thus the function y  3e x is a solution of the initial-value problem

 y9  y, y(0)  3.

y

x

solutions of the DE

I

(x0, y0)

FIGURE 1.2.1 First-order IVP

y
solutions of the DE

I

x

m = y1

(x0, y0)

FIGURE 1.2.2 Second-order IVP
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(b) Now if we demand that a solution of the differential equation pass through the point  

(1, 22) rather than (0, 3), then y(1)  22 will yield 22  ce or c  22e21. The function 

y  22e x21 is a solution of the initial-value problem

 y9  y, y(1)  22.

The graphs of these two solutions are shown in blue in FIGURE 1.2.3.

The next example illustrates another first-order initial-value problem. In this example, notice 

how the interval I of definition of the solution y(x) depends on the initial condition y(x0)  y0.

EXAMPLE 2 Interval I of Definition of a Solution

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family of  

solutions of the first-order differential equation y9 1 2xy 2  0 is y  1/(x 2 1 c). If we impose 

the initial condition y(0)  21, then substituting x  0 and y  21 into the family of  

solutions gives 21  1/c or c  21. Thus, y  1/(x 2 2 1). We now emphasize the following 

three distinctions.

•  Considered as a function, the domain of y  1/(x 2 2 1) is the set of real numbers x for 

which y(x) is defined; this is the set of all real numbers except x  21 and  

x  1. See FIGURE 1.2.4(a).

•  Considered as a solution of the differential equation y9 1 2xy 2  0, the interval I  

of definition of y  1/(x 2 2 1) could be taken to be any interval over which y(x) is  

defined and differentiable. As can be seen in Figure 1.2.4(a), the largest intervals on which 

y  1/(x 2 2 1) is a solution are (2q , 21), (21, 1), and (1, q ).

•  Considered as a solution of the initial-value problem y9 1 2xy 2  0, y(0)  21, the interval 

I of definition of y  1/(x 2 2 1) could be taken to be any interval over which y(x) is defined, 

differentiable, and contains the initial point x  0; the largest interval for which this is true 

is (–1, 1). See Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

EXAMPLE 3 Second-Order IVP

In Example 10 of Section 1.1 we saw that x  c1 cos 4t 1 c2 sin 4t is a two-parameter family 

of solutions of x 0 1 16x  0. Find a solution of the initial-value problem

 xs 1 16x 5 0, x(p/2)  22, x9(p/2)  1. (4)

SOLUTION  We first apply x(p/2)  22 to the given family of solutions: c1 cos 2p 1 c2 sin 2p  

22. Since cos 2p  1 and sin 2p  0, we find that c1  22. We next apply x9(p/2)  1  

to the one-parameter family x(t)  22 cos 4t 1 c2 sin 4t. Differentiating and then setting  

t  p/2 and x9  1 gives 8 sin 2p 1 4c2 cos 2p  1, from which we see that c2  1
4 . Hence 

x 5 22 cos 4t 1 1
4 sin 4t is a solution of (4).

 Existence and Uniqueness Two fundamental questions arise in considering an initial-

value problem:

Does a solution of the problem exist? If a solution exists, is it unique?

For a first-order initial-value problem such as (2), we ask:

Existence
 5  Does the differential equation dy/dx  f (x, y) possess solutions? 

Do any of the solution curves pass through the point (x0, y0)?

Uniqueness 5  When can we be certain that there is precisely one solution curve passing 

through the point (x0, y0)?

Note that in Examples 1 and 3, the phrase “a solution” is used rather than “the solution” of the 

problem. The indefinite article “a” is used deliberately to suggest the possibility that other solu-

tions may exist. At this point it has not been demonstrated that there is a single solution of each 

problem. The next example illustrates an initial-value problem with two solutions.

x

y

(1, –2)

(0, 3)

FIGURE 1.2.3 Solutions of IVPs in 

Example 1

FIGURE 1.2.4 Graphs of function  

and  solution of IVP in Example 2

y

x
–1 1

y

x
–1 1

(a) Function defined for all x

     except x = ±1

(b) Solution defined on interval 

      containing x = 0

(0, –1)
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EXAMPLE 4 An IVP Can Have Several Solutions

Each of the functions y  0 and y 5 1
16 x 

4 satisfies the differential equation dy/dx  xy 1/2 and 

the initial condition y(0)  0, and so the initial-value problem dy/dx  xy 1/2, y(0)  0, has at 

least two solutions. As illustrated in FIGURE 1.2.5, the graphs of both functions pass through 

the same point (0, 0).

Within the safe confines of a formal course in differential equations one can be fairly con-

fident that most differential equations will have solutions and that solutions of initial-value 

problems will probably be unique. Real life, however, is not so idyllic. Thus it is desirable to 

know in advance of trying to solve an initial-value problem whether a solution exists and, when 

it does, whether it is the only solution of the problem. Since we are going to consider first-

order differential equations in the next two chapters, we state here without proof a straight-

forward theorem that gives conditions that are sufficient to guarantee the existence and 

uniqueness of a solution of a first-order initial-value problem of the form given in (2). We 

shall wait until Chapter 3 to address the question of existence and uniqueness of a second-order 

initial-value problem.

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a  x  b, c  y  d, that contains 

the point (x0, y0) in its interior. If f (x, y) and f/y are continuous on R, then there exists some 

interval I0: (x0 2 h, x0 1 h), h  0, contained in [a, b], and a unique function y(x) defined on 

I0 that is a solution of the initial-value problem (2).

The foregoing result is one of the most popular existence and uniqueness theorems for first-

order differential equations, because the criteria of continuity of f (x, y) and f/y are relatively 

easy to check. The geometry of Theorem 1.2.1 is illustrated in FIGURE 1.2.6.

EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dy/dx  xy 1/2 possesses at least two solu-

tions whose graphs pass through (0, 0). Inspection of the functions

 f (x, y) 5 xy1/2 and 
'f

'y
5

x

2y1/2

shows that they are continuous in the upper half-plane defined by y  0. Hence Theorem 1.2.1 

enables us to conclude that through any point (x0, y0), y0  0, in the upper half-plane there 

is some interval centered at x0 on which the given differential equation has a unique 

solution. Thus, for example, even without solving it we know that there exists some 

interval centered at 2 on which the initial-value problem dy/dx  xy 1/2, y(2)  1, has a 

unique solution.

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the initial-value 

problems y9  y, y(0)  3, and y9  y, y(1)  22, other than y  3e x and y  22e x–1, respec-

tively. This follows from the fact that f (x, y)  y and f/y  1 are continuous throughout the 

entire xy-plane. It can be further shown that the interval I on which each solution is defined 

is (2q , q ).

 Interval of Existence/Uniqueness Suppose y(x) represents a solution of the 

initial-value problem (2). The following three sets on the real x-axis may not be the same: 

the domain of the function y(x), the interval I over which the solution y(x) is defined or exists, 

and the interval I0 of existence and uniqueness. In Example 7 of Section 1.1 we illustrated 

the difference between the domain of a function and the interval I of definition. Now suppose  

(x0, y0) is a point in the interior of the rectangular region R in Theorem 1.2.1. It turns out that the 

continuity of the function f (x, y) on R by itself is sufficient to guarantee the existence of at least 

one solution of dy/dx  f (x, y), y(x0) = y0, defined on some interval I. The interval I of definition 

for this initial-value problem is usually taken to be the largest interval containing x0 over which 

FIGURE 1.2.5 Two solutions of the 

same IVP in Example 4

y

x
(0, 0)

1

y = x4/16

y = 0

FIGURE 1.2.6 Rectangular region R

x

y

d

c

a b

R

(x0, y0)

I0
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the solution y(x) is defined and differentiable. The interval I depends on both f (x, y) and the 

initial condition y(x0)  y0. See Problems 31–34 in Exercises 1.2. The extra condition of continu-

ity of the first partial derivative f/y on R enables us to say that not only does a solution exist 

on some interval I0 containing x0, but it also is the only solution satisfying y(x0)  y0. However, 

Theorem 1.2.1 does not give any indication of the sizes of the intervals I and I0; the interval I of 

definition need not be as wide as the region R, and the interval I0 of existence and uniqueness 

may not be as large as I. The number h  0 that defines the interval I0: (x0 2 h, x0 1 h), could 

be very small, and so it is best to think that the solution y(x) is unique in a local sense, that is, a 

solution defined near the point (x0, y0). See Problem 50 in Exercises 1.2.

REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. When f (x, y) and f/y 

are continuous on a rectangular region R, it must always follow that a solution of (2) exists 

and is unique whenever (x0, y0) is a point interior to R. However, if the conditions stated  

in the hypotheses of Theorem 1.2.1 do not hold, then anything could happen: Problem (2)  

may still have a solution and this solution may be unique, or (2) may have several solutions, 

or it may have no solution at all. A rereading of Example 4 reveals that the hypotheses of 

Theorem 1.2.1 do not hold on the line y  0 for the differential equation dy/dx  xy 1/2, and 

so it is not surprising, as we saw in Example 4 of this section, that there are two solutions 

defined on a common interval (2h, h) satisfying y(0)  0. On the other hand, the hypotheses 

of Theorem 1.2.1 do not hold on the line y  1 for the differential equation dy/dx  | y 2 1|. 

Nevertheless, it can be proved that the solution of the initial-value problem dy/dx  | y 2 1|, 

y(0)  1, is unique. Can you guess this solution?

(ii) You are encouraged to read, think about, work, and then keep in mind Problem 49 in 

Exercises 1.2.

In Problems 1 and 2, y  1/(1 1 c1e – x) is a one-parameter 

family of solutions of the first-order DE y9  y 2 y 2. Find a 

solution of the first-order IVP consisting of this differential 

equation and the given initial condition.

 1. y(0) 5 21
3  2. y(21)  2

In Problems 3–6, y  1/(x 2 1 c) is a one-parameter family of 

 solutions of the first-order DE y9 1 2xy 2  0. Find a solution 

of the first-order IVP consisting of this differential equation 

and the given initial condition. Give the largest interval I over 

which the solution is defined.

 3. y(2)  1
3  4. y(22)  1

2

 5. y(0)  1 6. y ( 1
2
) 5 24

In Problems 7–10, x  c1 cos t 1 c2 sin t is a two-parameter 

family of solutions of the second-order DE x 0 1 x  0. Find a 

solution of the second-order IVP consisting of this differential 

equation and the given initial conditions.

 7. x(0)  21, x9(0)  8

 8. x(p/2)  0, x9(p/2)  1

 9. x(p/6) 	
1
2, x9(p/6)  0

 10. x(p/4) 	!2, x9(p/4)  2!2

In Problems 11–14, y  c1e x 1 c2e – x is a two-parameter  

family of solutions of the second-order DE y 0 2 y  0.  

Find a solution of the second-order IVP consisting of this  

differential equation and the given initial conditions.

 11. y(0)  1, y9(0)  2 12. y(1)  0, y9(1)  e

 13. y(21)  5, y9(21)  25 14. y(0)  0, y9(0)  0

In Problems 15 and 16, determine by inspection at least two  

solutions of the given first-order IVP.

 15. y9  3y 2/3, y(0)  0 16. xy9  2y, y(0)  0

In Problems 17–24, determine a region of the xy-plane  

for which the given differential equation would have a unique 

solution whose graph passes through a point (x0, y0) in the  

region.

 17. 
dy

dx
5 y 2/3 18. 

dy

dx
5 "xy

 19. x 
dy

dx
5 y 20. 

dy

dx
2 y 5 x

 21. (4 2 y 
2 )y r 5 x 

2 22. (1 1 y 
3 )y r 5 x 

2

 23. (x 
2 1 y 

2 )y r 5 y 
2 24. (y 2 x)y r 5 y 1 x

In Problems 25–28, determine whether Theorem 1.2.1 guaran-

tees that the differential equation y r 5 "y 
2 2 9 possesses a 

unique solution through the given point.

 25. (1, 4) 26. (5, 3)

 27. (2, 23) 28. (21, 1)

1.2 Exercises Answers to selected odd-numbered problems begin on page ANS-1.
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 29. (a)  By inspection, find a one-parameter family of solutions 

of the differential equation xy9  y. Verify that each 

member of the family is a solution of the initial-value 

problem xy9  y, y(0)  0.

(b) Explain part (a) by determining a region R in the  

xy-plane for which the differential equation xy9  y  

would have a unique solution through a point (x0, y0) in R.

(c) Verify that the piecewise-defined function

 y 5 e0, x , 0

x, x $ 0

 satisfies the condition y(0)  0. Determine whether 

this function is also a solution of the initial-value prob-

lem in part (a).

 30. (a)  Verify that y  tan (x 1 c) is a one-parameter family 

of solutions of the differential equation y9  1 1 y 2.

(b) Since f (x, y)  1 1 y 2 and f/y  2y are continuous 

everywhere, the region R in Theorem 1.2.1 can be taken 

to be the entire xy-plane. Use the family of solutions 

in part (a) to find an explicit solution of the first-order 

initial-value problem y9  1 1 y 2, y(0)  0. Even 

though x0  0 is in the interval (22, 2), explain why 

the solution is not defined on this interval.

(c) Determine the largest interval I of definition for the 

solution of the initial-value problem in part (b).

 31. (a)  Verify that y  –1/(x 1 c) is a one-parameter family 

of solutions of the differential equation y9  y 2.

(b) Since f (x, y)  y 2 and f/y  2y are continuous  

everywhere, the region R in Theorem 1.2.1 can be  

taken to be the entire xy-plane. Find a solution from 

the family in part (a) that satisfies y(0)  1. Find a 

solution from the family in part (a) that satisfies  

y(0)  21. Determine the largest interval I of definition 

for the solution of each initial-value problem.

 32. (a)  Find a solution from the family in part (a) of 

Problem 31 that satisfies y9  y 2, y(0)  y0, where  

y0  0. Explain why the largest interval I of definition 

for this solution is either (2q , 1/y0) or (1/y0, q ).

(b) Determine the largest interval I of definition for the 

solution of the first-order initial-value problem  

y9  y 2, y(0)  0.

 33. (a)  Verify that 3x 2 2 y 2  c is a one-parameter family of 

solutions of the differential equation y dy/dx  3x.

(b) By hand, sketch the graph of the implicit solution  

3x 2 2 y 2  3. Find all explicit solutions y  f(x) of 

the DE in part (a) defined by this relation. Give the 

interval I of definition of each explicit solution.

(c) The point (22, 3) is on the graph of 3x 2 2 y 2  3, but 

which of the explicit solutions in part (b) satisfies  

y(22)  3?

 34. (a)  Use the family of solutions in part (a) of Problem 33 

to find an implicit solution of the initial-value problem 

y  dy/dx  3x, y(2)  24. Then, by hand, sketch the 

graph of the explicit solution of this problem and give 

its interval I of definition.

(b) Are there any explicit solutions of y dy/dx  3x that 

pass through the origin?

In Problems 35–38, the graph of a member of a family of  

solutions of a second-order differential equation  

d 2y/dx 2  f (x, y, y9) is given. Match the solution curve  

with at least one pair of the following initial conditions.

(a) y(1)  1, y9(1)  –2 (b) y(21)  0, y9(21)  24

(c) y(1)  1, y9(1)  2 (d) y(0)  21, y9(0)  2

(e) y(0)  21, y9(0)  0 (f ) y(0)  24, y9(0)  –2

 35. 

x

y

5

5

–5

FIGURE 1.2.7 Graph for 

Problem 35

 36. 

FIGURE 1.2.8 Graph for 

Problem 36

x

y

5

5

–5

 37. 

FIGURE 1.2.9 Graph for 

Problem 37

x

y

5

5

–5

 38. 

FIGURE 1.2.10 Graph for 

Problem 38

x

y

5

5

–5

In Problems 39–44, y  c1 cos 3x 1 c2 sin 3x is a two-param-

eter family of solutions of the second-order DE y 0 1 9y  0. 

If possible, find a solution of the differential equation that  

satisfies the given side conditions. The conditions specified at 

two different points are called boundary conditions.

 39. y(0)  0, y(p/6)  21 40. y(0)  0, y(p)  0

 41. y9(0)  0, y9(p/4)  0 42. y(0)  1, y9(p)  5

 43. y(0)  0, y(p)  4 44. y9(p/3)  1, y9(p)  0

Discussion Problems

In Problems 45 and 46, use Problem 63 in Exercises 1.1 and 

(2) and (3) of this section.

 45. Find a function y  f (x) whose graph at each point (x, y) has 

the slope given by 8e 2x 1 6x and has the y-intercept (0, 9).

 46. Find a function y  f (x) whose second derivative is  

y 0  12x 2 2 at each point (x, y) on its graph and  

y  2x 1 5 is tangent to the graph at the point correspond-

ing to x  1.

 47. Consider the initial-value problem y9  x 2 2y, y(0)  1
2 . 

Determine which of the two curves shown in FIGURE 1.2.11 

is the only plausible solution curve. Explain your reasoning.
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x

y

1

1

(0, ¹⁄₂)

FIGURE 1.2.11 Graph for Problem 47

 48. Without attempting to solve the initial-value problem  

y9  x 2 1 y 2, y(0)  1, find the values of y9(0) and y 0(0).

 49. Suppose that the first-order differential equation  

dy/dx  f (x, y) possesses a one-parameter family of solu-

tions and that f (x, y) satisfies the hypotheses of Theorem 

1.2.1 in some rectangular region R of the xy-plane. Explain 

why two different solution curves cannot intersect or be 

tangent to each other at a point (x0, y0) in R.

 50. The functions

 y(x) 5 1
16x 

4, 2q , x , q

  and y(x) 5 e 0, x , 0
1

16x 
 4, x $ 0

  have the same domain but are clearly different. See  

FIGURES 1.2.12(a) and 1.2.12(b), respectively. Show that both 

functions are solutions of the initial-value problem  

dy/dx  xy 1/2, y(2)  1 on the interval (2q , q ). Resolve 

the apparent contradiction between this fact and the last sen-

tence in Example 5.

   FIGURE 1.2.12 Two solutions of the IVP in Problem 50

y

x

(2, 1)
1

(a)

y

x

(2, 1)
1

(b)

 51. Show that

x 5 #
y

0

1"t3 1 1
 dt

  is an implicit solution of the initial-value problem

               2 

d 
 2y

dx 
2

2 3y 
2 5 0, y(0) 5 0, y r(0) 5 1.

  Assume that y $ 0. [Hint: The integral is nonelementary. 

See (ii) in the Remarks at the end of Section 1.1.]

1.3 Differential Equations as Mathematical Models

INTRODUCTION In this section we introduce the notion of a mathematical model. Roughly 

speaking, a mathematical model is a mathematical description of something. This description could 

be as simple as a function. For example, Leonardo da Vinci (1452–1519) was able to deduce the 

speed v of a falling body by examining a sequence. Leonardo allowed water drops to fall, at equally 

spaced intervals of time, between two boards covered with blotting paper. When a spring mechanism 

was disengaged, the boards were clapped together. See FIGURE 1.3.1. By carefully examining the 

sequence of water blots, Leonardo discovered that the distances between consecutive drops increased 

in “a continuous arithmetic proportion.” In this manner he discovered the formula v  gt.

Although there are many kinds of mathematical models, in this section we focus only on dif-

ferential equations and discuss some specific differential-equation models in biology, physics, 

and chemistry. Once we have studied some methods for solving DEs, in Chapters 2 and 3 we 

return to, and solve, some of these models.

 Mathematical Models It is often desirable to describe the behavior of some real-life 

system or phenomenon, whether physical, sociological, or even economic, in mathematical terms. 

The mathematical description of a system or a phenomenon is called a mathematical model and 

is constructed with certain goals in mind. For example, we may wish to understand the mecha-

nisms of a certain ecosystem by studying the growth of animal populations in that system, or we 

may wish to date fossils by means of analyzing the decay of a radioactive substance either in the 

fossil or in the stratum in which it was discovered.

Construction of a mathematical model of a system starts with identification of the variables that 

are responsible for changing the system. We may choose not to incorporate all these variables into 

the model at first. In this first step we are specifying the level of resolution of the model. Next, 

we make a set of reasonable assumptions or hypotheses about the system we are trying to describe. 

These assumptions will also include any empirical laws that may be applicable to the system.

FIGURE 1.3.1 Da Vinci’s apparatus 

for  determining the speed of falling 

body
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For some purposes it may be perfectly within reason to be content with low-resolution models. 

For example, you may already be aware that in modeling the motion of a body falling near the surface 

of the Earth, the retarding force of air friction is sometimes ignored in beginning physics courses; 

but if you are a scientist whose job it is to accurately predict the flight path of a long-range projectile, 

air resistance and other factors such as the curvature of the Earth have to be taken into account.

Since the assumptions made about a system frequently involve a rate of change of one or more 

of the variables, the mathematical depiction of all these assumptions may be one or more equa-

tions involving derivatives. In other words, the mathematical model may be a differential equation 

or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equation or a 

system of differential equations, we are faced with the not insignificant problem of trying to solve 

it. If we can solve it, then we deem the model to be reasonable if its solution is consistent with 

either experimental data or known facts about the behavior of the system. But if the predictions 

produced by the solution are poor, we can either increase the level of resolution of the model or 

make alternative assumptions about the mechanisms for change in the system. The steps of the 

modeling process are then repeated as shown in FIGURE 1.3.2.

Assumptions

and hypotheses

Mathematical

formulation

Check model

predictions with

known facts

Obtain

solutions

Express assumptions

in terms of DEs

Display predictions

of the model

(e.g., graphically)

If necessary,

alter assumptions

or increase resolution

of the model

Solve the DEs

FIGURE 1.3.2 Steps in the modeling process

Of course, by increasing the resolution we add to the complexity of the mathematical model and 

increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t. A solution of 

the model then gives the state of the system; in other words, for appropriate values of t, the values 

of the dependent variable (or variables) describe the system in the past, present, and future.

 Population Dynamics One of the earliest attempts to model human population growth 

by means of mathematics was by the English economist Thomas Robert Malthus (1776–1834) 

in 1798. Basically, the idea of the Malthusian model is the assumption that the rate at which a 

population of a country grows at a certain time is proportional* to the total population of the 

country at that time. In other words, the more people there are at time t, the more there are going 

to be in the future. In mathematical terms, if P(t) denotes the total population at time t, then this 

assumption can be expressed as

 
dP

dt
 r  P or 

dP

dt
5 kP, (1)

where k is a constant of proportionality. This simple model, which fails to take into account many 

factors (immigration and emigration, for example) that can influence human populations to either 

grow or decline, nevertheless turned out to be fairly accurate in predicting the population of the 

United States during the years 1790–1860. Populations that grow at a rate described by (1) are 

rare; nevertheless, (1) is still used to model growth of small populations over short intervals of 

time, for example, bacteria growing in a petri dish.

*If two quantities u and v are proportional, we write u ~ v. This means one quantity is a constant multiple 

of the other: u  kv.
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 Radioactive Decay The nucleus of an atom consists of combinations of protons and 

neutrons. Many of these combinations of protons and neutrons are unstable; that is, the atoms 

decay or transmute into the atoms of another substance. Such nuclei are said to be radioactive. 

For example, over time, the highly radioactive radium, Ra-226, transmutes into the radioactive 

gas radon, Rn-222. In modeling the phenomenon of radioactive decay, it is assumed that the 

rate dA/dt at which the nuclei of a substance decay is proportional to the amount (more precisely, 

the number of nuclei) A(t) of the substance remaining at time t:

 
dA

dt
r A or 

dA

dt
5 kA. (2)

Of course equations (1) and (2) are exactly the same; the difference is only in the interpretation 

of the symbols and the constants of proportionality. For growth, as we expect in (1), k  0, and 

in the case of (2) and decay, k  0.

The model (1) for growth can be seen as the equation dS/dt  rS, which describes the growth of 

capital S when an annual rate of interest r is compounded continuously. The model (2) for decay also 

occurs in a biological setting, such as determining the half-life of a drug—the time that it takes for 

50% of a drug to be eliminated from a body by excretion or metabolism. In chemistry, the decay 

model (2) appears as the mathematical description of a first-order chemical reaction. The point is this:

A single differential equation can serve as a mathematical model for many different 

 phenomena.

Mathematical models are often accompanied by certain side conditions. For example, in (1) 

and (2) we would expect to know, in turn, an initial population P0 and an initial amount of radio-

active substance A0 that is on hand. If this initial point in time is taken to be t  0, then we know 

that P(0)  P0 and A(0)  A0. In other words, a mathematical model can consist of either an initial-

value problem or, as we shall see later in Section 3.9, a boundary-value problem.

 Newton’s Law of Cooling/Warming According to Newton’s empirical law of  

cooling—or warming—the rate at which the temperature of a body changes is proportional to the 

difference between the temperature of the body and the temperature of the surrounding medium, 

the so-called ambient temperature. If T(t) represents the temperature of a body at time t, Tm the 

temperature of the surrounding medium, and dT/dt the rate at which the temperature of the body 

changes, then Newton’s law of cooling/warming translates into the mathematical statement

 
dT

dt
r T 2 Tm or 

dT

dt
5 k(T 2 Tm ) , (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a constant, 

it stands to reason that k  0.

 Spread of a Disease A contagious disease—for example, a flu virus—is spread through-

out a community by people coming into contact with other people. Let x(t) denote the number 

of people who have contracted the disease and y(t) the number of people who have not yet been 

exposed. It seems reasonable to assume that the rate dx/dt at which the disease spreads is pro-

portional to the number of encounters or interactions between these two groups of people. If we 

assume that the number of interactions is jointly proportional to x(t) and y(t), that is, proportional 

to the product xy, then

 
dx

dt
5 kxy, (4)

where k is the usual constant of proportionality. Suppose a small community has a fixed population 

of n people. If one infected person is introduced into this community, then it could be argued that x(t) 

and y(t) are related by x 1 y  n 1 1. Using this last equation to eliminate y in (4) gives us the model

 
dx

dt
5 kx(n 1 1 2 x) . (5)

An obvious initial condition accompanying equation (5) is x(0)  1.

 Chemical Reactions The disintegration of a radioactive substance, governed by the 

differential equation (2), is said to be a first-order reaction. In chemistry, a few reactions follow 

this same empirical law: If the molecules of substance A decompose into smaller molecules, it 
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is a natural assumption that the rate at which this decomposition takes place is proportional to 

the amount of the first substance that has not undergone conversion; that is, if X(t) is the amount 

of substance A remaining at any time, then dX/dt  kX, where k is a negative constant since X is 

decreasing. An example of a first-order chemical reaction is the conversion of t-butyl chloride 

into t-butyl alcohol:

 (CH3)3CCl 1 NaOH S (CH3)3COH 1 NaCl.

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the reaction

 CH3Cl 1 NaOH S CH3OH 1 NaCl,

for every molecule of methyl chloride, one molecule of sodium hydroxide is consumed, thus 

forming one molecule of methyl alcohol and one molecule of sodium chloride. In this case the 

rate at which the reaction proceeds is proportional to the product of the remaining concentrations 

of CH3Cl and of NaOH. If X denotes the amount of CH3OH formed and a and b are the given 

amounts of the first two chemicals A and B, then the instantaneous amounts not converted to 

chemical C are a 2 X and b 2 X, respectively. Hence the rate of formation of C is given by

 
dX

dt
5 k(a 2 X) (b 2 X) , (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is said to be 

second order.

 Mixtures The mixing of two salt solutions of differing concentrations gives rise to a 

first-order differential equation for the amount of salt contained in the mixture. Let us suppose 

that a large mixing tank initially holds 300 gallons of brine (that is, water in which a certain 

number of pounds of salt has been dissolved). Another brine solution is pumped into the large 

tank at a rate of 3 gallons per minute; the concentration of the salt in this inflow is 2 pounds of 

salt per gallon. When the solution in the tank is well stirred, it is pumped out at the same rate as 

the entering solution. See FIGURE 1.3.3. If A(t) denotes the amount of salt (measured in pounds) 

in the tank at time t, then the rate at which A(t) changes is a net rate:

 
dA

dt
5 ainput rate

of salt
b 2 aoutput rate

of salt
b 5 Rin 2 Rout. (7)

The input rate Rin at which the salt enters the tank is the product of the inflow concentration of 

salt and the inflow rate of fluid. Note that Rin is measured in pounds per minute:

 concentration
 of salt input rate input rate
 in inflow of brine of salt

 T T T

 Rin  (2 lb/gal) # (3 gal/min)  (6 lb/min).

Now, since the solution is being pumped out of the tank at the same rate that it is pumped in, the num-

ber of gallons of brine in the tank at time t is a constant 300 gallons. Hence the concentration of the 

salt in the tank, as well as in the outflow, is c(t)  A(t)/300 lb/gal, and so the output rate Rout of salt is

 concentration
 of salt output rate output rate
 in outflow of brine of salt

 T T T

 Rout 5 aA( t)

300
 lb/galb # (3 gal/min) 5

A( t)

100
  lb/min.

The net rate (7) then becomes

 
dA

dt
5 6 2

A

100
  or  

dA

dt
1

1

100
 A 5 6. (8)

If rin and rout denote general input and output rates of the brine solutions,* respectively, then 

there are three possibilities: rin  rout , rin  rout , and rin  rout . In the analysis leading to (8) we 

have assumed that rin  rout . In the latter two cases, the number of gallons of brine in the tank is 

constant
300 gal

input rate of brine
3 gal/min

output rate of brine
3 gal/min

FIGURE 1.3.3 Mixing tank

*Don’t confuse these symbols with Rin and Rout , which are input and output rates of salt.
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either increasing (rin  rout) or decreasing (rin  rout) at the net rate rin 2 rout . See Problems 10–12 

in Exercises 1.3.

 Draining a Tank Evangelista Torricelli (1608–1647) was an Italian physicist who  

invented the barometer and was a student of Galileo Galilei. In hydrodynamics, Torricelli’s law 

states that the speed v of efflux of water through a sharp-edged hole at the bottom of a tank  

filled to a depth h is the same as the speed that a body (in this case a drop of water) would acquire 

in falling freely from a height h; that is, v 5 "2gh, where g is the acceleration due to gravity. This 

last expression comes from equating the kinetic energy 1
2  mv 2 with the potential energy mgh and  

solving for v. Suppose a tank filled with water is allowed to drain through a hole under the  

influence of gravity. We would like to find the depth h of water remaining in the tank at time t. 

Consider the tank shown in FIGURE 1.3.4. If the area of the hole is Ah (in ft 2) and the speed of the 

water leaving the tank is v 5 "2gh (in ft/s), then the volume of water leaving the tank per  

second is Ah"2gh (in ft 3/s). Thus if V(t) denotes the volume of water in the tank at time t,

 
dV

dt
5 2Ah"2gh, (9)

where the minus sign indicates that V is decreasing. Note here that we are ignoring the possibility 

of friction at the hole that might cause a reduction of the rate of flow there. Now if the tank is such 

that the volume of water in it at time t can be written V(t)  Aw  h, where Aw (in ft 2) is the constant 

area of the upper surface of the water (see Figure 1.3.4), then dV/dt  Aw dh/dt. Substituting this last 

expression into (9) gives us the desired differential equation for the height of the water at time t:

 
dh

dt
5 2 

Ah

Aw

 "2gh. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this case we must 

express the upper surface area of the water as a function of h; that is, Aw  A(h). See Problem 14 

in Exercises 1.3.

 Series Circuits The mathematical analysis of electrical circuits and networks is relatively 

straightforward, using two laws formulated by the German physicist Gustav Robert Kirchhoff 

(1824–1887) in 1845 while he was still a student. Consider the single-loop LRC-series circuit 

containing an inductor, resistor, and capacitor shown in FIGURE 1.3.5(a). The current in a circuit after 

a switch is closed is denoted by i(t); the charge on a capacitor at time t is denoted by q(t). The letters 

L, R, and C are known as inductance, resistance, and capacitance, respectively, and are generally 

constants. Now according to Kirchhoff’s second law, the impressed voltage E(t) on a closed loop 

must equal the sum of the voltage drops in the loop. Figure 1.3.5(b) also shows the symbols and 

the formulas for the respective voltage drops across an inductor, a resistor, and a capacitor. Since 

current i(t) is related to charge q(t) on the capacitor by i  dq/dt, by adding the three voltage drops

 Inductor Resistor Capacitor

 L 
di

dt
5 L 

d 
2q

dt 
2

,  iR 5 R 
dq

dt
,  

1

C
 q

and equating the sum to the impressed voltage, we obtain a second-order differential equation

  L 
d 

2q

dt 
2

1 R 
dq

dt
1

1

C
 q 5 E( t) . (11)

We will examine a differential equation analogous to (11) in great detail in Section 3.8.

 Falling Bodies In constructing a mathematical model of the motion of a body moving in 

a force field, one often starts with Newton’s second law of motion. Recall from elementary phys-

ics that Newton’s first law of motion states that a body will either remain at rest or will continue 

to move with a constant velocity unless acted upon by an external force. In each case this is 

equivalent to saying that when the sum of the forces F  SFk —that is, the net or resultant force—

acting on the body is zero, then the acceleration a of the body is zero. Newton’s second law of 

motion indicates that when the net force acting on a body is not zero, then the net force is propor-

tional to its acceleration a, or more precisely, F  ma, where m is the mass of the body.

Aw

Ah

h

FIGURE 1.3.4 Water draining from a 

tank

Inductor

di

dt

L
i

Resistor

C

i
R

i

Capacitor

q
1
C

(a) LRC-series circuit

(b) Symbols and voltage drops

L
R

C

E(t)

resistance R: ohms (Ω)

voltage drop across: iR

capacitance C: farads (f)

voltage drop across: 

inductance L: henrys (h)

voltage drop across: L

FIGURE 1.3.5 Current i(t) and charge 

q(t) are measured in amperes (A) and 

coulombs (C), respectively
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Now suppose a rock is tossed upward from a roof of a building as illustrated in FIGURE 1.3.6. 

What is the position s(t) of the rock relative to the ground at time t ? The acceleration of the rock 

is the second derivative d  2s/dt  2. If we assume that the upward direction is positive and that no 

force acts on the rock other than the force of gravity, then Newton’s second law gives

 m 
d 

2s

dt 
2

5 2mg  or  
d 

2s

dt 
2

5 2g. (12)

In other words, the net force is simply the weight F  F1  2W of the rock near the surface of 

the Earth. Recall that the magnitude of the weight is W  mg, where m is the mass of the body 

and g is the acceleration due to gravity. The minus sign in (12) is used because the weight of the 

rock is a force directed downward, which is opposite to the positive direction. If the height of the 

building is s0 and the initial velocity of the rock is v0, then s is determined from the second-order 

initial-value problem

 
d 

2s

dt 
2

5 2g, s (0) 5 s0, s r (0) 5 v0. (13)

Although we have not stressed solutions of the equations we have constructed, we note that (13) 

can be solved by integrating the constant 2g twice with respect to t. The initial conditions  

determine the two constants of integration. You might recognize the solution of (13) from elemen-

tary physics as the formula s(t)  21
2 gt 2 1 v0 t 1 s0.

 Falling Bodies and Air Resistance Prior to the famous experiment by Italian  

mathematician and physicist Galileo Galilei (1564–1642) from the Leaning Tower of Pisa, it 

was generally believed that heavier objects in free fall, such as a cannonball, fell with a greater 

acceleration than lighter objects, such as a feather. Obviously a cannonball and a feather, when 

dropped simultaneously from the same height, do fall at different rates, but it is not because a 

cannonball is heavier. The difference in rates is due to air resistance. The resistive force of air 

was ignored in the model given in (13). Under some circumstances a falling body of mass  

m—such as a feather with low density and irregular shape—encounters air resistance propor-

tional to its instantaneous velocity v. If we take, in this circumstance, the positive direction to 

be oriented downward, then the net force acting on the mass is given by F  F1 1 F2  mg 2 kv, 

where the weight F1  mg of the body is a force acting in the positive direction and air resis-

tance F2  2kv is a force, called viscous damping, or drag, acting in the opposite or upward 

direction. See FIGURE 1.3.7. Now since v is related to acceleration a by a  dv/dt, Newton’s second 

law becomes F  ma  m dv/dt. By equating the net force to this form of Newton’s second law, 

we obtain a first-order differential equation for the velocity v(t) of the body at time t,

  m 
dv

dt
5 mg 2 kv. (14)

Here k is a positive constant of proportionality called the drag coefficient. If s(t) is the distance 

the body falls in time t from its initial point of release, then v  ds/dt and a  dv/dt  d  2s/dt 2. 

In terms of s, (14) is a second-order differential equation

 m 
d 

2s

dt 
2

5 mg 2 k 
ds

dt
  or  m 

d 
2s

dt 
2

1 k 
ds

dt
5 mg. (15)

 Suspended Cables Suppose a flexible cable, wire, or heavy rope is suspended between 

two vertical supports. Physical examples of this could be a long telephone wire strung between 

two posts as shown in red in FIGURE 1.3.8(a), or one of the two cables supporting the roadbed of a 

suspension bridge shown in red in Figure 1.3.8(b). Our goal is to construct a mathematical model 

that describes the shape that such a cable assumes.

To begin, let’s agree to examine only a portion or element of the cable between its lowest point 

P1 and any arbitrary point P2. As drawn in blue in FIGURE 1.3.9, this element of the cable is the 

curve in a rectangular coordinate system with the y-axis chosen to pass through the lowest point 

P1 on the curve and the x-axis chosen a units below P1. Three forces are acting on the cable: the 

tensions T1 and T2 in the cable that are tangent to the cable at P1 and P2, respectively, and the 

portion W of the total vertical load between the points P1 and P2. Let T1  | T1 |,  

T2  | T2 |, and W  | W | denote the magnitudes of these vectors. Now the tension T2 resolves 

FIGURE 1.3.7 Falling body of mass m
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between vertical supports
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REMARKS

Except for equation (16), the differential equations derived in this section have described a 

dynamical system—a system that changes or evolves over time. Since the study of dynamical 

systems is a branch of mathematics currently in vogue, we shall occasionally relate the termi-

nology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-dependent variables, 

called state variables, together with a rule that enables us to determine (without ambiguity) the 

state of the system (this may be past, present, or future states) in terms of a state prescribed at 

some time t0. Dynamical systems are classified as either discrete-time systems or continuous-time  

systems. In this course we shall be concerned only with continuous-time dynamical systems—

systems in which all variables are defined over a continuous range of time. The rule or the 

mathematical model in a continuous-time dynamical system is a differential equation or a system 

of differential equations. The state of the system at a time t is the value of the state variables at 

that time; the specified state of the system at a time t0 is simply the initial conditions that ac-

company the mathematical model. The solution of the initial-value problem is referred to as the 

response of the system. For example, in the preceding case of radioactive decay, the rule is  

dA/dt  kA. Now if the quantity of a radioactive substance at some time t0 is known, say  

A(t0)  A0, then by solving the rule, the response of the system for t  t0 is found to be 

A( t) 5 A0e
t2 t0 (see Section 2.7). The response A(t) is the single-state variable for this  system. 

In the case of the rock tossed from the roof of the building, the response of the system, the solu-

tion of the differential equation d  2s/dt  2  2g subject to the initial state s(0)  s0, s9(0)  v0, is 

the function s(t)  21
2 gt 2 1 v0t 1 s0, 0  t  T, where the symbol T represents the time when 

the rock hits the ground. The state variables are s(t) and s9(t), which are, respectively, the vertical 

position of the rock above ground and its velocity at time t. The acceleration s 0(t) is not a state 

variable since we only have to know any initial position and initial velocity at a time t0 to uniquely 

determine the rock’s position s(t) and velocity s9(t)  v(t) for any time in the interval [t0, T ]. The 

acceleration s 0(t)  a(t) is, of course, given by the differential equation s 0(t)  2g, 0  t  T.

One last point: Not every system studied in this text is a dynamical system. We shall also 

examine some static systems in which the model is a differential equation.

Population Dynamics

 1. Under the same assumptions underlying the model in (1), 

determine a differential equation governing the growing 

population P(t) of a country when individuals are allowed 

to immigrate into the country at a constant rate r  0. What 

is the differential equation for the population P(t) of the 

country when individuals are allowed to emigrate at a con-

stant rate r  0?

 2. The population model given in (1) fails to take death into 

consideration; the growth rate equals the birth rate. In  

another model of a changing population of a community, it 

is assumed that the rate at which the population changes is 

a net rate—that is, the difference between the rate of births 

and the rate of deaths in the community. Determine a model 

for the population P(t) if both the birth rate and the death 

rate are proportional to the population present at time t.

 3. Using the concept of a net rate introduced in Problem 2, 

determine a differential equation governing a population 

P(t) if the birth rate is proportional to the population present 

at time t but the death rate is proportional to the square of 

the population present at time t.

1.3 Exercises Answers to selected odd-numbered problems begin on page ANS-1.

into horizontal and vertical components T2 cos u and T2 sin u. Because of static equilibrium, we 

can write

 T1 5 T2 cos u  and W 5 T2 sin u .

By dividing the last equation by the first, we eliminate T2 and get tan u  W/T1. But since  

dy/dx  tan u, we arrive at

 
dy

dx
5

W

T1

. (16)

This simple first-order differential equation serves as a model for both the shape of a flexible wire, 

such as a telephone wire hanging under its own weight, as well as the shape of the cables that 

support the roadbed. We will come back to equation (16) in Exercises 2.2 and in Section 3.11.
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 4. Modify the model in Problem 3 for the net rate at which the 

population P(t) of a certain kind of fish changes by also as-

suming that the fish are harvested at a constant rate h  0.

Newton’s Law of Cooling/Warming

 5. A cup of coffee cools according to Newton’s law of cooling 

(3). Use data from the graph of the temperature T(t) in 

FIGURE 1.3.10 to estimate the constants Tm, T0, and k in a 

model of the form of the first-order initial-value problem

 
dT

dt
5 k(T 2 Tm ) , T (0) 5 T0.

FIGURE 1.3.10 Cooling curve in Problem 5
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 6. The ambient temperature Tm in (3) could be a function of 

time t. Suppose that in an artificially controlled environment, 

Tm(t) is periodic with a 24-hour period, as illustrated in 

FIGURE 1.3.11. Devise a mathematical model for the tem-

perature T(t) of a body within this environment.

  FIGURE 1.3.11 Ambient temperature in Problem 6
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Spread of a Disease/Technology

 7. Suppose a student carrying a flu virus returns to an isolated 

college campus of 1000 students. Determine a differential 

equation governing the number of students x(t) who have 

contracted the flu if the rate at which the disease spreads is 

proportional to the number of interactions between the num-

ber of students with the flu and the number of students who 

have not yet been exposed to it.

 8. At a time t  0, a technological innovation is introduced into 

a community with a fixed population of n people. Determine 

a differential equation governing the number of people x(t) 

who have adopted the innovation at time t if it is assumed that 

the rate at which the innovation spreads through the commu-

nity is jointly proportional to the number of people who have 

adopted it and the number of people who have not adopted it.

Mixtures

 9. Suppose that a large mixing tank initially holds 300 gallons 

of water in which 50 pounds of salt has been dissolved. Pure 

water is pumped into the tank at a rate of 3 gal/min, and 

when the solution is well stirred, it is pumped out at the 

same rate. Determine a differential equation for the amount 

A(t) of salt in the tank at time t. What is A(0)?

 10. Suppose that a large mixing tank initially holds 300 gallons 

of water in which 50 pounds of salt has been dissolved. 

Another brine solution is pumped into the tank at a rate of 

3 gal/min, and when the solution is well stirred, it is pumped 

out at a slower rate of 2 gal/min. If the concentration of the 

solution entering is 2 lb/gal, determine a differential equa-

tion for the amount A(t) of salt in the tank at time t.

 11. What is the differential equation in Problem 10 if the well-

stirred solution is pumped out at a faster rate of 3.5 gal/min?

 12. Generalize the model given in (8) of this section by assum-

ing that the large tank initially contains N0 number of gallons 

of brine, rin and rout are the input and output rates of the 

brine, respectively (measured in gallons per minute), cin  

is the concentration of the salt in the inflow, c(t) is the  

concentration of the salt in the tank as well as in the outflow 

at time t (measured in pounds of salt per gallon), and A(t) 

is the amount of salt in the tank at time t.

Draining a Tank

 13. Suppose water is leaking from a tank through a circular hole 

of area Ah at its bottom. When water leaks through a hole, 

friction and contraction of the stream near the hole reduce 

the volume of the water leaving the tank per second to 

cAh  "2gh where c (0  c  1) is an empirical constant. 

Determine a differential equation for the height h of water 

at time t for the cubical tank in FIGURE 1.3.12. The radius of 

the hole is 2 in. and g  32 ft/s 2.

  FIGURE 1.3.12 Cubical tank in Problem 13

h
10 ft

circular

hole

Aw

 14. The right-circular conical tank shown in FIGURE 1.3.13 loses 

water out of a circular hole at its bottom. Determine a dif-

ferential equation for the height of the water h at time t. The 

radius of the hole is 2 in., g  32 ft/s 2, and the friction/

contraction factor introduced in Problem 13 is c  0.6. 

FIGURE 1.3.13 Conical tank in Problem 14
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Series Circuits

 15. A series circuit contains a resistor and an inductor as shown 

in FIGURE 1.3.14. Determine a differential equation for the 

current i(t) if the resistance is R, the inductance is L, and 

the impressed voltage is E(t). 

FIGURE 1.3.14 LR-series circuit in Problem 15

R
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E

 16. A series circuit contains a resistor and a capacitor as shown 

in FIGURE 1.3.15. Determine a differential equation for the 

charge q(t) on the capacitor if the resistance is R, the  

capacitance is C, and the impressed voltage is E(t).

FIGURE 1.3.15 RC-series circuit in Problem 16
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Falling Bodies and Air Resistance

 17. For high-speed motion through the air—such as the skydiver 

shown in FIGURE 1.3.16 falling before the parachute is 

opened—air resistance is closer to a power of the instanta-

neous velocity v(t). Determine a differential equation for 

the velocity v(t) of a falling body of mass m if air resistance 

is proportional to the square of the instantaneous velocity.

FIGURE 1.3.16 Air resistance proportional to square  

of velocity in Problem 17

mg

kv2

Newton’s Second Law and Archimedes’ Principle

 18. A cylindrical barrel s ft in diameter of weight w lb is floating 

in water as shown in FIGURE 1.3.17(a). After an initial depres-

sion, the barrel exhibits an up-and-down bobbing motion 

along a vertical line. Using Figure 1.3.17(b), determine a 

differential equation for the vertical displacement y(t) if the 

origin is taken to be on the vertical axis at the surface of the 

water when the barrel is at rest. Assume the downward direc-

tion is positive, that the weight density of the water is  

62.4 lb/ft 3, and that there is no resistance between the barrel 

and the water. Use Archimedes’ principle: Buoyancy, or 

the upward force of the water on the barrel, is equal to the 

weight of the water displaced. Archimedes of Syracuse  

(287 BCE–212 BCE) was arguably one of the greatest  

scientists/mathematicians of antiquity. Using his approxima-

tion of the number , he found the area of a circle as well 

as the surface area and volume of a sphere.

FIGURE 1.3.17 Bobbing motion of floating barrel in Problem 18
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Newton’s Second Law and Hooke’s Law

 19. After a mass m is attached to a spring, it stretches s units 

and then hangs at rest in the equilibrium position as shown 

in FIGURE 1.3.18(b). After the spring/mass system has been 

set in motion, let x(t) denote the directed distance of the 

mass beyond the equilibrium position. As indicated in 

Figure 1.3.18(c), assume that the downward direction is 

positive, that the motion takes place in a vertical straight 

line through the center of gravity of the mass, and that the 

only forces acting on the system are the weight of the mass 

and the restoring force of the stretched spring. Use Hooke’s 

law: The restoring force of a spring is proportional to its 

total elongation. Determine a differential equation for the 

displacement x(t) at time t. 

FIGURE 1.3.18 Spring/mass system in Problem 19
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 20. In Problem 19, what is a differential equation for the dis-

placement x(t) if the motion takes place in a medium that 

imparts a damping force on the spring/mass system that is 

proportional to the instantaneous velocity of the mass and 

acts in a direction opposite to that of motion?

Newton’s Second Law and Variable Mass

When the mass m of a body moving through a force field is 

variable, Newton’s second law of motion takes on the following 

form: If the net force acting on a body is not zero, then the net 

force F is equal to the time rate of change of momentum of the 

body. That is,
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 F 5
d

dt
 (mv)*

, (17)

where mv is momentum. Use this formulation of Newton’s  

second law in Problems 21 and 22.

 21. Consider a single-stage rocket that is launched vertically 

upward as shown in the accompanying photo. Let m(t) denote 

the total mass of the rocket at time t (which is the sum of 

three masses: the constant mass of the payload, the constant 

mass of the vehicle, and the variable amount of fuel). Assume 

that the positive direction is upward, air resistance is pro-

portional to the instantaneous velocity v of the rocket, and 

R is the upward thrust or force generated by the propulsion 

system. Use (17) to find a mathematical model for the veloc-

ity v(t) of the rocket.

© Sebastian Kaulitzki/Shutterstock

Rocket in Problem 21

 22. In Problem 21, suppose m(t)  mp 1 mv 1	mf (t) where mp 

is constant mass of the payload, mv is the constant mass of 

the vehicle, and mf (t) is the variable amount of fuel. 

(a) Show that the rate at which the total mass of the rocket 

changes is the same as the rate at which the mass of the 

fuel changes.

(b) If the rocket consumes its fuel at a constant rate l, find 

m(t). Then rewrite the differential equation in Problem 

21 in terms of l and the initial total mass m(0)  m0.

(c) Under the assumption in part (b), show that the burnout 

time tb  0 of the rocket, or the time at which all the 

fuel is consumed, is tb  mf (0)/l, where mf (0) is the 

initial mass of the fuel.

Newton’s Second Law and the Law of Universal 
Gravitation

 23. By Newton’s law of universal gravitation, the free-fall ac-

celeration a of a body, such as the satellite shown in 

FIGURE 1.3.19, falling a great distance to the surface is not the 

constant g. Rather, the acceleration a is inversely proportional  

to the square of the distance from the center of the Earth,  

a  k/r 2, where k is the constant of proportionality. Use  

the fact that at the surface of the Earth r  R and a  g to 

determine k. If the positive direction is upward, use Newton’s 

second law and his universal law of gravitation to find a 

differential equation for the distance r.

FIGURE 1.3.19 Satellite in Problem 23
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 24. Suppose a hole is drilled through the center of the Earth and 

a bowling ball of mass m is dropped into the hole, as shown 

in FIGURE 1.3.20. Construct a mathematical model that de-

scribes the motion of the ball. At time t let r denote the 

distance from the center of the Earth to the mass m, M denote 

the mass of the Earth, Mr denote the mass of that portion of 

the Earth within a sphere of radius r, and d denote the con-

stant density of the Earth.

FIGURE 1.3.20 Hole through Earth in Problem 24
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Additional Mathematical Models

 25. Learning Theory In the theory of learning, the rate at which 

a subject is memorized is assumed to be proportional to the 

amount that is left to be memorized. Suppose M denotes the 

total amount of a subject to be memorized and A(t) is 

the amount memorized in time t. Determine a differential 

equation for the amount A(t).

 26. Forgetfulness In Problem 25, assume that the rate at which 

material is forgotten is proportional to the amount memo-

rized in time t. Determine a differential equation for A(t) 

when forgetfulness is taken into account.

 27. Infusion of a Drug A drug is infused into a patient’s blood-

stream at a constant rate of r grams per second. 

Simultaneously, the drug is removed at a rate proportional 

to the amount x(t) of the drug present at time t. Determine 

a differential equation governing the amount x(t).

 28. Tractrix A motorboat starts at the origin and moves in the 

direction of the positive x-axis, pulling a waterskier along 

a curve C called a tractrix. See FIGURE 1.3.21. The waterskier, 

initially located on the y-axis at the point (0, s), is pulled by 

keeping a rope of constant length s, which is kept taut 

throughout the motion. At time t . 0 the waterskier is at 

the point P(x, y). Find the differential equation of the path 

of motion C.

*Note that when m is constant, this is the same as F  ma.
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FIGURE 1.3.21 Tractrix curve in Problem 28
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 29. Reflecting Surface Assume that when the plane curve C 

shown in FIGURE 1.3.22 is revolved about the x-axis it 

generates a surface of revolution with the property that all 

light rays L parallel to the x-axis striking the surface are 

reflected to a single point O (the origin). Use the fact that 

the angle of incidence is equal to the angle of reflection to 

determine a differential equation that describes the shape 

of the curve C. Such a curve C is important in applications 

ranging from construction of telescopes to satellite antennas, 

automobile headlights, and solar collectors. [Hint: Inspection 

of the figure shows that we can write f  2u. Why? Now 

use an appropriate trigonometric identity.]

© George Dukin/Shutterstock

Satellite dish antenna

FIGURE 1.3.22 Reflecting surface  

in Problem 29
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Discussion Problems

 30. Reread Problem 53 in Exercises 1.1 and then give an explicit 

solution P(t) for equation (1). Find a one-parameter family 

of solutions of (1).

 31. Reread the sentence following equation (3) and assume that 

Tm is a positive constant. Discuss why we would expect  

k  0 in (3) in both cases of cooling and warming. You 

might start by interpreting, say, T(t)  Tm in a graphical 

manner.

 32. Reread the discussion leading up to equation (8). If we 

assume that initially the tank holds, say, 50 lb of salt, it stands 

to reason that since salt is being added to the tank continu-

ously for t  0, that A(t) should be an increasing function. 

Discuss how you might determine from the DE, without 

actually solving it, the number of pounds of salt in the tank 

after a long period of time.

 33. Population Model The differential equation dP/dt 		

(k cos t)P, where k is a positive constant, is a model of  

human population P(t) of a certain community. Discuss an 

interpretation for the solution of this equation; in other 

words, what kind of population do you think the differential 

equation describes?

 34. Rotating Fluid As shown in FIGURE 1.3.23(a), a right-circular 

cylinder partially filled with fluid is rotated with a constant 

angular velocity v about a vertical y-axis through its center. 

The rotating fluid is a surface of revolution S. To identify S, 

we first establish a coordinate system consisting of a vertical 

plane determined by the y-axis and an x-axis drawn perpen-

dicular to the y-axis such that the point of intersection of the 

axes (the origin) is located at the lowest point on the surface S. 

We then seek a function y  f (x), which represents the curve C 

of intersection of the surface S and the vertical coordinate 

plane. Let the point P(x, y) denote the position of a particle 

of the rotating fluid of mass m in the coordinate plane. See 

Figure 1.3.23(b).

(a) At P, there is a reaction force of magnitude F due to the 

other particles of the fluid, which is normal to the 

surface S. By Newton’s second law the magnitude of the 

net force acting on the particle is mv2x. What is this force? 

Use Figure 1.3.23(b) to discuss the nature and origin of 

the equations

F cos u  mg,  F sin u  mv 2x.

(b) Use part (a) to find a first-order differential equation 

that defines the function y  f (x). 

FIGURE 1.3.23 Rotating fluid in Problem 34
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 35. Falling Body In Problem 23, suppose r  R 1 s, where s 

is the distance from the surface of the Earth to the falling 

body. What does the differential equation obtained in 

Problem 23 become when s is very small compared to R?

 36. Raindrops Keep Falling In meteorology, the term virga 

refers to falling raindrops or ice particles that evaporate 

before they reach the ground. Assume that a typical raindrop 

is spherical in shape. Starting at some time, which we can 

designate as t  0, the raindrop of radius r0 falls from rest 

from a cloud and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a man-

ner that its shape remains spherical, then it also makes 

sense to assume that the rate at which the raindrop 

evaporates—that is, the rate at which it loses mass—is 

proportional to its surface area. Show that this latter  

assumption implies that the rate at which the radius r of 

the raindrop decreases is a constant. Find r(t). [Hint: See 

Problem 63 in Exercises 1.1.]

 1.3 Differential Equations as Mathematical Models | 29



In Problems 1 and 2, fill in the blank and then write this result 

as a linear first-order differential equation that is free of the 

symbol c1 and has the form dy/dx  f (x, y). The symbols c1 

and k represent constants.

 1. 
d

dx
 c1e 

k x 5  

 2. 
d

dx
 (5 1 c1e 

22x
 ) 5  

In Problems 3 and 4, fill in the blank and then write this result 

as a linear second-order differential equation that is free of the 

symbols c1 and c2 and has the form F( y, y0)  0. The symbols 

c1, c2, and k represent constants.

 3. 
d 

 2

dx 2
 (c1 cos kx 1 c2 sin kx) 5  

 4. 
d 

 2

dx 2
 (c1 cosh kx 1 c2 sinh kx) 5  

In Problems 5 and 6, compute y9 and y 0 and then combine 

these derivatives with y as a linear second-order differential 

equation that is free of the symbols c1 and c2 and has the  

form F(y, y9, y0)  0. The symbols c1 and c2 represent  

constants.

 5. y 5 c1e 
x 1 c2xe 

x 6. y 5 c1e 
x
 cos x 1 c2e 

x
 sin x

In Problems 7–12, match each of the given differential equations 

with one or more of these solutions:

(a) y  0, (b) y  2, (c) y  2x, (d) y  2x 2.

 7. xy9  2y 8. y9  2

 9. y9  2y 2 4 10. xy9  y

 11. y 0 1 9y  18 12. xy 0 2 y9  0

In Problems 13 and 14, determine by inspection at least one  

solution of the given differential equation.

 13. y 0  y9 14. y9  y( y 2 3)

1 Chapter in Review Answers to selected odd-numbered problems begin on page ANS-1.

(b) If the positive direction is downward, construct a math-

ematical model for the velocity v of the falling raindrop 

at time t. Ignore air resistance. [Hint: Use the form of 

Newton’s second law as given in (17).]

 37. Let It Snow The “snowplow problem” is a classic and 

appears in many differential equations texts but was prob-

ably made famous by Ralph Palmer Agnew:

One day it started snowing at a heavy and steady rate.  

A snowplow started out at noon, going 2 miles the first 

hour and 1 mile the second hour. What time did it start 

snowing?

  If possible, find the text Differential Equations, Ralph 

Palmer Agnew, McGraw-Hill, and then discuss the con-

struction and solution of the mathematical model.

© aetb/iStock/Thinkstock

Snowplow in Problem 37

 38. Reread this section and classify each mathematical model 

as linear or nonlinear.

 39. Population Dynamics Suppose that P9(t)  0.15 P(t) rep-

resents a mathematical model for the growth of a certain 

cell culture, where P(t) is the size of the culture (measured 

in millions of cells) at time t (measured in hours). How fast 

is the culture growing at the time t when the size of the 

culture reaches 2 million cells?

 40. Radioactive Decay Suppose that 

 A9(t)  20.0004332 A(t)

  represents a mathematical model for the decay of  

radium-226, where A(t) is the amount of radium (measured 

in grams) remaining at time t (measured in years). How 

much of the radium sample remains at time t when the 

sample is decaying at a rate of 0.002 grams per year?
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In Problems 15 and 16, interpret each statement as a differen-

tial equation.

 15. On the graph of y  f(x), the slope of the tangent line at a 

point P(x, y) is the square of the distance from P(x, y) to the 

origin.

 16. On the graph of y  f(x), the rate at which the slope changes 

with respect to x at a point P(x, y) is the negative of the slope 

of the tangent line at P(x, y).

 17. (a)  Give the domain of the function y  x 2/3.

(b)  Give the largest interval I of definition over which  

y  x 2/3 is a solution of the differential equation  

3xy9 2 2y  0.

 18. (a)  Verify that the one-parameter family y 2 2 2y  x 2 2  

x 1 c is an implicit solution of the differential equation  

(2y 2 2)y9  2x 2 1.

(b)  Find a member of the one-parameter family in part (a) 

that satisfies the initial condition y(0)  1.

(c)  Use your result in part (b) to find an explicit function  

y  f(x) that satisfies y(0)  1. Give the domain of f.  

Is y  f(x) a solution of the initial-value problem? If 

so, give its interval I of definition; if not, explain.

 19. Given that y 52
2

x
1 x is a solution of the DE xy9 1 y  2x.

  Find x0 and the largest interval I for which y(x) is a solution 

of the IVP

 xy r 1 y 5 2x,  y(x0 ) 5 1.

 20. Suppose that y(x) denotes a solution of the initial-value  

problem y9  x 2 1 y 2, y(1)  21 and that y(x) possesses at 

least a second derivative at x  1. In some neighborhood  

of x  1, use the DE to determine whether y(x) is increasing 

or decreasing, and whether the graph y(x) is concave up or 

concave down.

 21. A differential equation may possess more than one family 

of solutions.

(a)  Plot different members of the families y  f1(x)   

x 2 1 c1 and y  f2(x)  2x 2 1 c2.

(b)  Verify that y  f1(x) and y  f2(x) are two solutions 

of the nonlinear first-order differential equation  

( y9) 2  4x 2.

(c)  Construct a piecewise-defined function that is a solu-

tion of the nonlinear DE in part (b) but is not a member 

of either family of solutions in part (a).

 22. What is the slope of the tangent line to the graph of the 

 solution of y9 	6"y 1 5x 
3 that passes through (21, 4)?

In Problems 23–26, verify that the indicated function is an  

explicit solution of the given differential equation. Give an  

interval of definition I for each solution.

 23. y 0 1 y  2 cos x 2 2 sin x; y  x sin x 1 x cos x

 24. y 0 1 y  sec x; y  x sin x 1 (cos x) ln(cos x)

 25. x 2y 0 1 xy9 1 y  0; y  sin(ln x)

 26. x 2y 0 1 xy9 1 y  sec(ln x);  

  y  cos(ln x) ln(cos(ln x)) 1 (ln x) sin(ln x)

In Problems 27–30, use (12) of Section 1.1 to verify that  

the indicated function is a solution of the given differential 

equation. Assume an appropriate interval I of definition of 

each solution.

 27. 
dy

dx
1 (sin x)y 5 x; y 5 ecos x#

x

0

te2cos t dt

 28. 
dy

dx
2 2xy 5 e 

x; y 5 e 
x 

2#
x

0

e 
t2 t 

2

 dt

 29. x 
2ys 1 (x 

2 2 x)y r 1 (1 2 x)y 5 0; y 5 x#
x

1

e2t

t
 dt

 30. ys 1 y 5 e 
x 

2

; y 5 sin x#
x

0

e 
t 

2

cos t dt 2 cos x#
x

0

e 
t 

2

sin t dt

In Problems 31–34, verify that the indicated expression is an 

implicit solution of the given differential equation.

 31. x  

dy

dx
1 y 5

1

y 
2
; x 

3y 
3 5 x 

3 1 5

 32. ady

dx
b2

1 1 5
1

y 
2
; (x 2 7)2 1 y 

2 5 1

 33. y 0  2y( y9)3; y 3 1 3y  2 2 3x

 34. (1 1 xy)y9 1 y 2  0; y  e2xy

 35. Find a constant c1 such that y  c1 1 cos 3x is a solution of 

the differential equation y 0 1 9y  5.

 36. Find constants c1 and c2 such that y  c1 1 c2x is a solution 

of the differential equation y9 1 2y  3x.

 37. If c is an arbitrary constant, find a first-order differential 

equation for which y  ce2	x 1 4x 2	6 is a solution. [Hint: 

Differentiate and eliminate c between the two equations.]

 38. Find a function y  f(x) whose graph passes through  

(0, 0) and whose slope at any point (x, y) in the xy-plane  

is 6 2	2x.

In Problems 39–42, y 5 c1e 
23x 1 c2e 

x 1 4x is a two- 

parameter family of the second-order differential equation 

ys 1 2y r 2 3y 5 212x 1 8. Find a solution of the second- 

order initial-value problem consisting of this differential  

equation and the given initial conditions.

 39. y(0) 5 0, y r (0) 5 0 40. y(0) 5 5, y r (0) 5 211

 41. y(1) 5 22, y r (1) 5 4 42. y(21) 5 1, y r (21) 5 1

In Problems 43 and 44, verify that the function defined by the 

definite integral is a particular solution of the given differen-

tial equation. In both problems, use Leibniz’s rule for the 

derivative of an integral:

d

dx
 #

v(x)

u(x)

F(x, t) dt 5 F(x, v(x)) 

dv

dx
2 F(x, u(x)) 

du

dx
1 #

v(x)

u(x)

0

0x
 F(x, t) dt.

 43. y 0 1 9y  f (x); y(x) 5
1

3#
x

0

 f (t) sin 3(x 2 t) dt
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 44. xys 1 y r 2 xy 5 0; y 5 #
p

0

e 
x cos t dt [Hint: After com-

puting y r use integration by parts with respect to t.]

 45. The graph of a solution of a second-order initial-value prob-

lem d 2y/dx 2  f (x, y, y9), y(2)  y0, y9(2)  y1, is given in 

FIGURE 1.R.1. Use the graph to estimate the values of y0 and y1. 

FIGURE 1.R.1 Graph for Problem 45

y

x

5

–5

5

 46. A tank in the form of a right-circular cylinder of radius  

2 ft and height 10 ft is standing on end. If the tank is initially 

full of water, and water leaks from a circular hole of radius 
1
2  in. at its bottom, determine a differential equation for the 

height h of the water at time t. Ignore friction and contrac-

tion of water at the hole.

 47. A uniform 10-foot-long heavy rope is coiled loosely on the 

ground. As shown in FIGURE 1.R.2 one end of the rope is 

pulled vertically upward by means of a constant force of  

5 lb. The rope weighs 1 lb/ft. Use Newton’s second law in 

the form given in (17) in Exercises 1.3 to determine a dif-

ferential equation for the height x(t) of the end above ground 

level at time t. Assume that the positive direction is upward.

 FIGURE 1.R.2 Rope pulled upward in Problem 47

x(t)

5 lb

upward

force

Part Opener: © Nuno Valente Fotografia/Shutterstock; Chapter Opener: © PhilipYb Studio/Shutterstock
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First-Order  
Differential Equations

We begin our study of differential equations (DEs) with first-order equations. In this chapter we 
illustrate the three different ways DEs can be studied: qualitatively (Section 2.1), analytically 
(Sections 2.2–2.5), and numerically (Section 2.6). The chapter ends with an introduction to 
mathematical modeling with DEs (Sections 2.7–2.9).
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2.6 A Numerical Method

2.7 Linear Models

2.8 Nonlinear Models

2.9  Modeling with Systems of  
First-Order DEs
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2.1 Solution Curves Without a Solution

INTRODUCTION Some differential equations do not possess any solutions. For example, 

there is no real function that satisfies (y9) 2 1 1 5 0. Some differential equations possess solu-

tions that can be found analytically, that is, solutions in explicit or implicit form found by 

implementing an equation-specific method of solution. These solution methods may involve 

certain manipulations, such as a substitution, and procedures, such as integration. Some dif-

ferential equations possess solutions, but the differential equation cannot be solved analytically. 

In other words, when we say that a solution of a DE exists, we do not mean that there also exists 

a method of solution that will produce explicit or implicit solutions. Over a time span of centu-

ries, mathematicians have devised ingenious procedures for solving some very specialized equa-

tions, so there are, not surprisingly, a large number of differential equations that can be solved 

analytically. Although we shall study some of these methods of solution for first-order equations 

in the subsequent sections of this chapter, let us imagine for the moment that we have in front 

of us a first-order differential equation in normal form dy/dx 5 f (x, y), and let us further imag-

ine that we can neither find nor invent a method for solving it analytically. This is not as bad a 

predicament as one might think, since the differential equation itself can sometimes “tell” us 

specifics about how its solutions “behave.” We have seen in Section 1.2 that whenever f (x, y) 

and 0f/0y satisfy certain continuity conditions, qualitative questions about existence and unique-

ness of solutions can be answered. In this section we shall see that other qualitative questions 

about properties of solutions—such as, How does a solution behave near a certain point? or  

How does a solution behave as x S q?—can often be answered when the function f depends 

solely on the variable y.

We begin our study of first-order differential equations with two ways of analyzing a DE 

qualitatively. Both these ways enable us to determine, in an approximate sense, what a solution 

curve must look like without actually solving the equation.

2.1.1 Direction Fields

 Slope We begin with a simple concept from calculus: A derivative dy/dx of a differen-

tiable function y 5 y(x) gives slopes of tangent lines at points on its graph. Because a solution 

y 5 y(x) of a first-order differential equation dy/dx 5 f (x, y) is necessarily a differentiable 

function on its interval I of definition, it must also be continuous on I. Thus the corresponding 

solution curve on I must have no breaks and must possess a tangent line at each point (x, y(x)). 

The slope of the tangent line at (x, y(x)) on a solution curve is the value of the first derivative 

dy/dx at this point, and this we know from the differential equation f (x, y(x)). Now suppose 

that (x, y) represents any point in a region of the xy-plane over which the function f is defined. 

The value f (x, y) that the function f assigns to the point represents the slope of a line, or as we 

shall envision it, a line segment called a lineal element. For example, consider the equation 

dy/dx 5 0.2xy, where f (x, y) 5 0.2xy. At, say, the point (2, 3), the slope of a lineal element is 

f (2, 3) 5 0.2(2)(3) 5 1.2. FIGURE 2.1.1(a) shows a line segment with slope 1.2 passing through 

(2, 3). As shown in Figure 2.1.1(b), if a solution curve also passes through the point (2, 3), it 

does so tangent to this line segment; in other words, the lineal element is a miniature tangent 

line at that point.

 Direction Field If we systematically evaluate f over a rectangular grid of points in the 

xy-plane and draw a lineal element at each point (x, y) of the grid with slope f (x, y), then the 

collection of all these lineal elements is called a direction field or a slope field of the differential 

equation dy/dx 5 f (x, y). Visually, the direction field suggests the appearance or shape of a fam-

ily of solution curves of the differential equation, and consequently it may be possible to see at 

a glance certain qualitative aspects of the solutions—regions in the plane, for example, in which 

a solution exhibits an unusual behavior. A single solution curve that passes through a direction 

field must follow the flow pattern of the field; it is tangent to a lineal element when it intersects 

a point in the grid.
FIGURE 2.1.1 Solution curve is tangent  

to lineal element at (2, 3)

x

y

(a) f (2, 3) = 1.2 is slope of 

     lineal element at (2, 3)

(2, 3)

slope = 1.2

x

y

(b) A solution curve 

              passing through (2, 3)

(2, 3)

solution
curve

tangent
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EXAMPLE 1 Direction Field

The direction field for the differential equation dy/dx 5 0.2xy shown in FIGURE 2.1.2(a) was 

obtained using computer software in which a 5 3 5 grid of points (mh, nh), m and  

n integers, was defined by letting 25 # m # 5, 25 # n # 5 and h 5 1. Notice in 

Figure 2.1.2(a) that at any point along the x-axis (y 5 0) and the y-axis (x 5 0) the slopes 

are f (x, 0) 5 0 and f (0, y) 5 0, respectively, so the lineal elements are horizontal. Moreover, 

observe in the first quadrant that for a fixed value of x, the values of f (x, y) 5 0.2xy 

 increase as y increases; similarly, for a fixed y, the values of f (x, y) 5 0.2xy increase as 

x increases. This means that as both x and y increase, the lineal elements become almost 

vertical and have positive slope ( f (x, y) 5 0.2xy  0 for x  0, y  0). In the second 

quadrant, | f (x, y)| increases as |x| and y increase, and so the lineal elements again become 

almost vertical but this time have negative slope ( f (x, y) 5 0.2xy  0 for x  0, y  0). 

Reading left to right, imagine a solution curve starts at a point in the second quadrant, 

moves steeply downward, becomes flat as it passes through the y-axis, and then as it 

enters the first quadrant moves steeply upward—in other words, its shape would be  concave 

upward and similar to a horseshoe. From this it could be surmised that y S q  as x S 6q . 

Now in the third and fourth quadrants, since f (x, y) 5 0.2xy  0 and f (x, y) 5 0.2xy  0, 

respectively, the situation is reversed; a solution curve increases and then decreases as 

we move from left to right.

 We saw in (1) of Section 1.1 that y 5 e 
0.1x 

2

 is an explicit solution of the differential 

equation dy/dx 5 0.2xy; you should verify that a one-parameter family of solutions of the 

same equation is given by y 5 ce 
0.1x 

2

. For purposes of comparison with Fig ure 2.1.2(a) some 

representative graphs of members of this family are shown in Figure 2.1.2(b).

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value  problem 

dy/dx 5 sin y, y(0) 5 2 32 .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) 5 sin y and 

0f/0y 5 cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve passing 

through any specified point (x0, y0) in the plane. Now we set our computer software again 

for a 5 3 5 rectangular region and specify (because of the initial condition) points in that 

region with vertical and horizontal separation of 1
2  unit—that is, at points (mh, nh), h 5 1

2 ,  

m and n integers such that 210 # m # 10, 210 # n # 10. The result is shown in FIGURE 2.1.3. 

Since the right-hand side of dy/dx 5 sin y is 0 at y 5 0 and at y 5 2p, the lineal elements 

are horizontal at all points whose second coordinates are y 5 0 or y 5 2p. It makes sense 

then that a solution curve passing through the initial point (0, 2 32) has the shape shown in 

color in the figure.

 Increasing/Decreasing Interpretation of the derivative dy/dx as a function that gives 

slope plays the key role in the construction of a direction field. Another telling property of the 

first derivative will be used next, namely, if dy/dx  0 (or dy/dx  0) for all x in an interval I, 

then a differentiable function y 5 y(x) is increasing (or decreasing) on I.

REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is probably one 

of those tasks about which an argument can be made for doing it once or twice in a lifetime, 

but it is overall most efficiently carried out by means of computer software. Prior to calculators, 

PCs, and software, the method of isoclines was used to facilitate sketching a direction field 

by hand. For the DE dy/dx 5 f (x, y), any member of the family of curves f (x, y) 5 c, c  

a constant, is called an isocline. Lineal elements drawn through points on a specific isocline, 

say, f (x, y) 5 c1, all have the same slope c1. In Problem 15 in Exercises 2.1, you have your two 

opportunities to sketch a direction field by hand.

FIGURE 2.1.2 Direction field and 

solution curves in Example 1
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2.1.2 Autonomous First-Order DEs

 DEs Free of the Independent Variable In Section 1.1 we divided the class of ordi-

nary differential equations into two types: linear and nonlinear. We now consider briefly another 

kind of classification of ordinary differential equations, a classification that is of particular  

importance in the qualitative investigation of differential equations. An ordinary differential 

equation in which the independent variable does not appear explicitly is said to be autonomous.  

If the symbol x denotes the independent variable, then an autonomous first-order differential 

equation can be written in general form as F(y, y9) 5 0 or in normal form as

 
dy

dx
5 f ( y). (1)

We shall assume throughout the discussion that follows that f in (1) and its derivative f 9 are 

continuous functions of y on some interval I. The first-order equations

      f ( y) f (x, y)

      T T

     
dy

dx
5 1 1 y 

2 and 
dy

dx
5 0.2xy

are autonomous and nonautonomous, respectively.

Many differential equations encountered in applications, or equations that are models of  

physical laws that do not change over time, are autonomous. As we have already seen in  

Section 1.3, in an applied context, symbols other than y and x are routinely used to represent the 

dependent and independent variables. For example, if t represents time, then inspection of

 
dA

dt
5 kA, 

dx

dt
5 kx(n 1 1 2 x) , 

dT

dt
5 k(T 2 Tm ) , 

dA

dt
5 6 2

1

100
 A,

where k, n, and Tm are constants, shows that each equation is time-independent. Indeed, all of 

the first-order differential equations introduced in Section 1.3 are time-independent and so are 

autonomous.

 Critical Points The zeros of the function f in (1) are of special importance. We say that 

a real number c is a critical point of the autonomous differential equation (1) if it is a zero of f  , 

that is, f (c) 5 0. A critical point is also called an equilibrium point or stationary point. Now 

observe that if we substitute the constant function y(x) 5 c into (1), then both sides of the equation 

equal zero. This means

If c is a critical point of (1), then y (x) 5 c is a constant solution of the autonomous  

differential equation.

A constant solution y(x) 5 c of (1) is called an equilibrium solution; equilibria are the only 

constant solutions of (1).

As already mentioned, we can tell when a nonconstant solution y 5 y(x) of (1) is increas-

ing or decreasing by determining the algebraic sign of the derivative dy/dx; in the case of (1) 

we do this by identifying the intervals on the y-axis over which the function f (y) is positive 

or negative.

EXAMPLE 3 An Autonomous DE

The differential equation

 
dP

dt
5 P(a 2 bP),

where a and b are positive constants, has the normal form dP/dt 5 f (P), which is (1) with  

t and P playing the parts of x and y, respectively, and hence is autonomous. From f (P) 5  

P(a 2 bP) 5 0, we see that 0 and a/b are critical points of the equation and so the equilibrium 

solutions are P(t) 5 0 and P(t) 5 a/b. By putting the critical points on a vertical line, we divide 
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FIGURE 2.1.4 Phase portrait for  

Example 3

P-axis

a

b

0

FIGURE 2.1.5 Lines y (x ) 5 c1 and  

y (x ) 5 c2 partition R into three  

horizontal subregions

x

y

R

I

(a) Region R 

x

I

(b) Subregions R1, R2, and R3 

y

(x0, y0)

(x0, y0)

R3

R2

R1

y(x) = c2

y(x) = c1

the line into three intervals defined by 2q  P  0, 0  P  a/b, a/b  P  q . The arrows 

on the line shown in FIGURE 2.1.4 indicate the algebraic sign of f (P) 5 P(a 2 bP) on these 

intervals and whether a nonconstant solution P(t) is increasing or decreasing on an interval. 

The following table explains the figure.

Interval Sign of f (P) P(t) Arrow

(2q, 0) minus decreasing points down

(0, a/b) plus increasing points up

(a/b, q) minus decreasing points down

Figure 2.1.4 is called a one-dimensional phase portrait, or simply phase portrait, of the 

differential equation dP/dt 5 P(a 2 bP). The vertical line is called a phase line.

 Solution Curves Without solving an autonomous differential equation, we can usually 

say a great deal about its solution curves. Since the function f in (1) is independent of the vari-

able x, we can consider f defined for 2q  x  q  or for 0 # x  q . Also, since f and its 

derivative f 9 are continuous functions of y on some interval I of the y-axis, the fundamental results 

of Theorem 1.2.1 hold in some horizontal strip or region R in the xy-plane corresponding to I, 

and so through any point (x0, y0) in R there passes only one solution curve of (1). See FIGURE 2.1.5 (a). 

For the sake of discussion, let us suppose that (1) possesses exactly two critical points, c1 and c2, 

and that c1  c2. The graphs of the equilibrium solutions y(x) 5 c1 and y(x) 5 c2 are horizontal 

lines, and these lines partition the region R into three subregions R1, R2, and R3 as illustrated in 

Figure 2.1.5(b). Without proof, here are some conclusions that we can draw about a nonconstant 

solution y(x) of (1):

•  If (x0, y0) is in a subregion Ri, i 5 1, 2, 3, and y(x) is a solution whose graph passes through 

this point, then y(x) remains in the subregion Ri for all x. As illustrated in Figure 2.1.5(b), 

the solution y(x) in R2 is bounded below by c1 and above by c2; that is, c1  y(x)  c2 for 

all x. The solution curve stays within R2 for all x because the graph of a nonconstant solu-

tion of (1) cannot cross the graph of either equilibrium solution y(x) 5 c1 or y(x) 5 c2. See 

Problem 33 in Exercises 2.1.

•  By continuity of f we must then have either f (y)  0 or f (y)  0 for all x in a subregion Ri, 

i 5 1, 2, 3. In other words, f (y) cannot change signs in a subregion. See Problem 33 in 

Exercises 2.1.

•  Since dy/dx 5 f (y(x)) is either positive or negative in a subregion Ri, i 5 1, 2, 3, a solution 

y(x) is strictly monotonic—that is, y(x) is either increasing or decreasing in a subregion Ri. 

Therefore y(x) cannot be oscillatory, nor can it have a relative extremum (maximum or 

minimum). See Problem 33 in Exercises 2.1.

•  If y(x) is bounded above by a critical point c1 (as in subregion R1 where y(x)  c1 for all x), 

then the graph of y(x) must approach the graph of the equilibrium solution y(x) 5 c1 either  

as x S q  or as x S 2q. If y(x) is bounded, that is, bounded above and below by two 

consecutive critical points (as in subregion R2 where c1  y(x)  c2 for all x), then the graph 

of y(x) must approach the graphs of the equilibrium solutions y(x) 5 c1 and y(x) 5 c2, one 

as x S q  and the other as x S 2q. If y(x) is bounded below by a critical point (as in 

subregion R3 where c2  y(x) for all x), then the graph of y(x) must approach the graph of 

the equilibrium solution y(x) 5 c2 either as x S q  or as x S 2q. See Problem 34 in 

Exercises 2.1.

 With the foregoing facts in mind, let us reexamine the differential equation in Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points P 5 0 and 

P 5 a/b now correspond in the tP-plane to three subregions:

 R1: 2q  P  0,  R2: 0  P  a/b,  R3: a/b  P  q ,
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where 2q  t  q . The phase portrait in Figure 2.1.4 tells us that P(t) is decreasing in R1, 

increasing in R2, and decreasing in R3. If P(0) 5 P0 is an initial value, then in R1, R2, and R3, 

we have, respectively, the following:

 (i)  For P0  0, P(t) is bounded above. Since P(t) is decreasing, P(t) decreases without 

bound for increasing t and so P(t) S 0 as t S 2q. This means the negative t-axis, 

the graph of the equilibrium solution P(t) 5 0, is a horizontal asymptote for a solu-

tion curve.

 (ii)  For 0  P0  a/b, P(t) is bounded. Since P(t) is increasing, P(t) S a/b as t S q  

and P(t) S 0 as t S 2q. The graphs of the two equilibrium solutions, P(t) 5 0 and 

P(t) 5 a/b, are horizontal lines that are horizontal asymptotes for any solution curve 

starting in this subregion.

 (iii)  For P0  a/b, P(t) is bounded below. Since P(t) is decreasing, P(t) S a/b as t S q . 

The graph of the equilibrium solution P(t) 5 a/b is a horizontal  asymptote for a 

solution curve.

In FIGURE 2.1.6, the phase line is the P-axis in the tP-plane. For clarity, the original phase 

line from Figure 2.1.4 is reproduced to the left of the plane in which the subregions R1, R2, 

and R3 are shaded. The graphs of the equilibrium solutions P(t) 5 a/b and P(t) 5 0 (the t-axis) 

are shown in the figure as blue dashed lines; the solid graphs represent typical graphs of P(t) 

illustrating the three cases just discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded below, we 

must necessarily have P(t) S 2q. Do not interpret this last statement to mean P(t) S 2q as 

t S q; we could have P(t) S 2q as t S T, where T  0 is a finite number that depends on the 

initial condition P(t0) 5 P0. Thinking in dynamic terms, P(t) could “blow up” in finite time; 

thinking graphically, P(t) could have a vertical asymptote at t 5 T  0. A similar remark holds 

for the subregion R3.

The differential equation dy/dx 5 sin y in Example 2 is autonomous and has an infinite number 

of critical points since sin y 5 0 at y 5 np, n an integer. Moreover, we now know that because 

the solution y(x) that passes through (0, 23
2) is bounded above and below by two consecutive 

critical points (2p  y(x)  0) and is decreasing (sin y  0 for 2p  y  0), the graph of y(x) 

must approach the graphs of the equilibrium solutions as horizontal asymptotes: y(x) S 2p as 

x S q and y(x) S 0 as x S 2q.

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy/dx 5 (y 2 1) 2 possesses the single critical point 1. From the 

phase portrait in FIGURE 2.1.7(a), we conclude that a solution y(x) is an increasing function in 

the subregions defined by 2q  y  1 and 1  y  q, where 2q  x  q. For an initial 

condition y(0) 5 y0  1, a solution y(x) is increasing and bounded above by 1, and so y(x) S 1 

as x S q; for y(0) 5 y0  1, a solution y(x) is increasing and unbounded.

Now y(x) 5 1 2 1/(x 1 c) is a one-parameter family of solutions of the differential equa-

tion. (See Problem 4 in Exercises 2.2.) A given initial condition determines a value for c.  

For the initial conditions, say, y(0) 5 21  1 and y(0) 5 2  1, we find, in turn, that  

y(x) 5 1 2 1/(x 1 
1
2) and so y(x) 5 1 2 1/(x 2 1). As shown in Figure 2.1.7(b) and 2.1.7(c), 

the graph of each of these rational functions possesses a vertical asymptote. But bear in mind 

that the solutions of the IVPs

 
dy

dx
5 (y 2 1) 

2,  y(0) 5 21 and 
dy

dx
5 (y 2 1) 

2,  y(0) 5 2

are defined on special intervals. The two solutions are, respectively,

 y(x) 5 1 2
1

x 1 1
2

, 2
1

2
, x , q and y(x) 5 1 2

1

x 2 1
, 2q , x , 1.

The solution curves are the portions of the graphs in Figures 2.1.7(b) and 2.1.7(c) shown 

in blue. As predicted by the phase portrait, for the solution curve in Figure 2.1.7(b), y(x) S 1 

as x S q ; for the solution curve in Figure 2.1.7(c), y(x) S q  as x S 1 from the left.

FIGURE 2.1.6 Phase portrait and 

solution curves in each of the three 

subregions in Example 4
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FIGURE 2.1.7 Behavior of solutions near y 5 1 in Example 5  

 Attractors and Repellers Suppose y(x) is a nonconstant solution of the autonomous 

differential equation given in (1) and that c is a critical point of the DE. There are basically three 

types of behavior y(x) can exhibit near c. In FIGURE 2.1.8 we have placed c on four vertical phase 

lines. When both arrowheads on either side of the dot labeled c point toward c, as in Figure 2.1.8(a), 

all solutions y(x) of (1) that start from an initial point (x0, y0) sufficiently near c exhibit the  

asymptotic behavior limxSq y(x) 5 c. For this reason the critical point c is said to be asymp-

totically stable. Using a physical analogy, a solution that starts near c is like a charged particle 

that, over time, is drawn to a particle of opposite charge, and so c is also referred to as an attrac-

tor. When both arrowheads on either side of the dot labeled c point away from c, as in  

Figure 2.1.8(b), all solutions y(x) of (1) that start from an initial point (x0, y0) move away from c 

as x increases. In this case the critical point c is said to be unstable. An unstable critical point is 

also called a repeller, for obvious reasons. The critical point c illustrated in Figures 2.1.8(c) and 

2.1.8(d) is neither an attractor nor a repeller. But since c exhibits characteristics of both an  

attractor and a repeller—that is, a solution starting from an initial point (x0, y0) sufficiently near 

c is attracted to c from one side and repelled from the other side—we say that the critical point 

c is semi-stable. In Example 3, the critical point a/b is asymptotically stable (an attractor) and 

the critical point 0 is unstable (a repeller). The critical point 1 in Example 5 is semi-stable.

EXAMPLE 6 Classifying Critical Points

Locate and classify all critical points of  
dy

dx
5 4y 2 y 

3.

SOLUTION Rewriting the differential equation as

dy

dx
5 y(4 2 y 

2) 5 y(2 2 y)(2 1 y)

we see from y(2 2  y)(2 1  y) 5 0 that y 5 0, y 5 2, and y 5 2 2 are critical points of the DE.

Now by examining, in turn, the algebraic signs of dy/dx on intervals of the y-axis determined 

by the critical points, we see from the phase portrait in FIGURE 2.1.9 that:

(2q, 22), (22, 0)

dy/dx > 0 dy/dx < 0

, implies y 5 22 is asymptotically stable (attractor),

(22,  0),   (0,  2),

dy/dx < 0 dy/dx > 0

implies y 5 0 is unstable (repeller),

(0,  2),   (2,  q),

dy/dx > 0 dy/dx < 0

implies y 5 2 is asymptotically stable (attractor).

See Problems 21–28 in Exercises 2.1.

FIGURE 2.1.8 Critical point c is an  

attractor in (a), a repeller in (b), and 

semi-stable in (c) and (d)
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FIGURE 2.1.9 Phase portrait of DE  

in Example 6
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